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ABSTRACT

As an emerging area gaining prevalence in the industry, Web Services was established to

satisfy the needs for better flexibility and higher reliability in web applications. However, due

to the lack of reliable frameworks and difficulties in constructing versatile service composition

platform, web developers encountered major obstacles in large-scale deployment of web ser-

vices. Meanwhile, performance has been one of the major concerns and a largely unexplored

area in Web Services research. There is high demand for researchers to conceive and develop

feasible solutions to design, monitor, and deploy web service systems that can adapt to fail-

ures, especially performance failures. Though many techniques have been proposed to solve

this problem, none of them offers a comprehensive solution to overcome the difficulties that

challenge practitioners.

Central to the performance-engineering studies, performance analysis and performance

adaptation are of paramount importance to the success of a software project. The industry

learned through many hard lessons the significance of well-founded and well-executed perfor-

mance engineering plans. An important fact is that it is too expensive to tackle performance

evaluation, mostly through performance testing, after the software is developed. This is es-

pecially true in recent decades when software complexity has risen sharply. After the system

is deployed, performance adaptation is essential to maintaining and improving software sys-

tem reliability. Performance adaptation provides techniques to mitigate the consequence of

performance failures and therefore is an important research issue. Performance adaptation

is particularly meaningful for mission-critical software systems and software systems with in-

evitable frequent performance failures, such as Web Services.

This dissertation focuses on Web Services framework and proposes a performance-driven



xiv

service composition scheme, called WS-Pro, to support both performance analysis and perfor-

mance adaptation. A formalism of transformation from WS-BPEL to Petri net is first defined

to enable the analysis of system properties and facilitate quality prediction. A state-transition

based proof is presented to show that the transformed Petri net model correctly simulates

the behavior of the WS-BPEL process. The generated Petri net model was augmented using

performance data supplied by both historical data and runtime data. Results of executing

the Petri nets suggest that optimal composition plans can be achieved based on the proposed

method.

The performance of service composition procedure is an important research issue which

has not been sufficiently treated by researchers. However, such an issue is critical for dynamic

service composition, where re-planning must be done in a timely manner. In order to improve

the performance of service composition procedure and enhance performance adaptation, this

dissertation presents an algorithm to remove loops in the reachability graphs so that a large

portion of the computation time of service composition can be moved to a pre-processing unit;

hence the response time is shortened during runtime. We also extended the WS-Pro to the

ubiquitous computing area to improve fault-tolerance.
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CHAPTER 1. INTRODUCTION

This chapter discusses research challenges in Service-Oriented Computing (SOC), intro-

duces the motivation of this dissertation, and outlines the approach of this research.

1.1 Service-Oriented Computing

Reuse and integration have become two major concerns of software engineering in recent

years. With the widespread use of software in modern society, software systems are becoming

more and more complex and heterogeneous. It is usually difficult and financially inefficient

for a sole organization to develop and maintain a complex software system for its own use;

moreover, sometimes it is necessary to provide one-stop shopping for customers who require

different functionalities from different organizations. Meanwhile, industry has been facing the

challenge of rapid development in order to adapt to the fast changing business environment

(for example, change of business model, shift of supplier, emergence of new competitor, etc).

Rapid development usually demands fast requirement analysis and implementation based on

off-the-shelf software.

Besides its importance in the business world, integration is a compelling internal concern

of any organization due to the existence of legacy systems. Legacy systems are regarded

as major bottlenecks of rapid software development. As reported by Forrester research on

their survey conducted on the government and companies of all sizes (from small, medium,

large to global), more than half of the companies surveyed have legacy systems running core

business applications. Moreover, around 80% of their IT budget was spent on maintaining and

upgrading legacy systems, leaving only 20% for new development (77)(78). Another survey

conducted by CIO magazine suggested that 85% of companies have IT project backlog, and



2

they prefer integrating existing systems to buying new ones (39). The integration allows them

to keep the intractable legacy systems running and to smoothly upgrade the old systems to

newer business process and technologies.

Unfortunately, integration is an intricate and difficult issue. Software programs to be

integrated can be completely heterogeneous. They may be implemented in various platforms,

programming languages, communication protocols, interfaces, etc. Most integration needs

to be done in the across-organization and across-location fashion. This type of corporation

requires a mechanism to seamlessly integrate software applications together.

Responding to this demand, Service-Oriented Computing (SOC) has been proposed and

researched in recent years. In SOC, services are basic building blocks for software development.

Services are self-describing and self-containing software applications published in a repository

by different providers. By wrapping software applications into services, implementation de-

tails in frameworks, languages, interfaces and others can be hidden. Services are functionally

independent and loosely coupled. The software architecture built on the concept of service-

orientation is called Service-Oriented Architecture (SOA). SOA greatly improves the integra-

tion process by bringing the integration process from IT level to the business level. Researchers

and practitioners both regard SOA promising in promoting efficient software development (72).

Building on the great success of XML (11) and HTTP, Web Services have been accepted

as the best way to implement SOA and have became the new trend for e-business. Web

Services has a rich set of XML-based protocols and languages. Through a specific interface,

called UDDI (Universal Description, Discovery and Integration) (102), software components

are published as services. Using standard protocols, including SOAP (Simple Object Access

Protocol) (97) and WS-BPEL (Web Services Business Process Execution Language) (81), etc.,

different services can cooperate or be composed to form a whole piece to fulfill greater needs.

In Web Services, integration is achieved through the process of service composition, which

is the core activity in service-oriented computing. The key point in this process is automation.

Researchers are trying to build a expressive and powerful framework so that services can

be automatically located, understood, and seamlessly combined. Services should be able to
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communicate freely and semantically unambiguously. Though great progress has been made in

the past several years, there are still many issues requiring attention in Web Services research.

1.2 Performance Engineering in Web Services

Smith defined “performance” (96) as “the degree to which a system or component accom-

plishes its designated functions within given constraints, such as speed, accuracy, or memory

usage”. Increasing awareness of performance has been noticed in industry. As our dependency

on software increases, so does the size and complexity of software systems. This completely

makes it more and more difficult to develop, test, and maintain these software systems. The

cost of software failure tends to be unacceptable and unpredictable. Srivastava and Koehler

(99) described the demand from industry for robust and verifiable web services with high per-

formance. Ludwig also pointed out that performance is “typically the first QoS aspect that

needs to be addressed” (63). When it comes to the Web Services world, performance becomes

an even more urgent issue because we observe more performance failure due to heterogeneous

underlying frameworks.

Though with the promising advantages of integration and reuse, the Web Services frame-

work introduces new challenges to our performance study. Unlike distributed software, Web

Services have unique characteristics, such as loose coupling, statelessness, and dynamic com-

position, which makes it more intricate to analyze and guarantee service performance. In a

distributed software system, developers have full control of all components. Thus the assurance

of the service quality becomes a relatively easier internal task. Software systems can be thor-

oughly tested to ensure their correctness and their possession of certain properties. However,

in a Web Services framework, component services are provided by different service providers

which may spread around the world. The across-organization and across-location properties

fail many existing performance analytic techniques in service-oriented computing.

Performance engineering in Web Services pertains to issues ranging from performance anal-

ysis, performance testing and performance monitoring to runtime adaptation. Because of dy-

namic service composition, most composite services are composed and delivered at runtime,
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which diminishes the effectiveness of software testing. Until now, the most effective method

to evaluate web services performance is runtime monitoring (5). With this circumstance, well-

planned performance design and performance adaptation are critical to the success of Web

Services. By integrating performance analysis into the service design, we hope to mitigate the

risk of performance failure. At the same time, an effective performance adaptation mechanism

aims at improving system tolerance on performance failure.

1.3 Research Questions and Challenges

We identify three major issues in performance engineering of web services. Performance

modelling, performance-driven service composition, and performance adaptation.

1.3.1 Performance modelling

Traditionally, a common method used to evaluate system performance is performance test-

ing, which can be only carried out after the software system is implemented. Performance

requirements, as part of the core system requirements, tend to be overlooked during the design

stage. When performance problems are disclosed during testing, software engineers have to

face the high cost of redesign. To address this problem, many software researchers, motivated

by the immaturity of research in software performance testing (105), devoted much effort to

study software system performance analysis in the last decade. Unlike run-time performance

testing, performance analysis, which relies on performance modelling, can be performed at

early stages of software development to help developers evaluate software designs and avoid

the high cost of redesign.

With performance modelling, we can predict the performance of a design to a certain extent

and identify potential performance bottlenecks and design faults. With this information, we

can refine our software design. Since this re-design happens before we put effort into implemen-

tation, the cost is relatively low. In this way, we reduce the cost of project development and

mitigate the risk of software failure. A well founded and well executed performance analysis

plan is very important to large-scale software development.



5

As a major mechanism to predict system performance, performance analysis provides im-

portant support for impact analysis. As reported by the Standish Group, 11.8% of the failure

causes of failed projects can be attributed to changing requirements (100). Changing require-

ments cause the software system to either fail to deliver some functionalities or fail to meet

quality criteria. Impact analysis techniques enable software engineers to evaluate the functional

and non-functional impact of speculative changes on a software system. While functional im-

pact is given primary attention, impact on system performance is often neglected. Introducing

changes to the system without non-functional impact analysis can be extremely harmful be-

cause the changes may degrade the QoS level of the system or even cause system failure.

Fortunately, with performance analysis, software engineers can predict performance of the sys-

tem with speculative changes instead of real ones, evaluate system designs, and make decisions

on alternative architectures, reducing the risk of project failure (19).

Though it shows great promise to promote software quality, performance modelling is an

error-prone process that requires special expertise. This difficulty limits its use in industry.

Instead, researchers have been seeking to derive analytic models from existing software archi-

tecture models (108) (107). In the Web Services paradigm, the business process is such a model

to depict compositional architecture of aggregated services. Once written in WS-BPEL (81),

a business process can describe how the component services are composed together and how

they interact to achieve functional goals. Therefore, the first issue of performance engineering

is to accurately and efficiently transform WS-BPEL into a performance modelling language.

In other words, we intend to generate a performance model from the business process written

in WS-BPEL. The specific performance model we are interested is Petri net (51) (76).

The correctness of the transformation is the key concern as the generated model provides

the basis for analysis and computation. To the best of our knowledge, none of the existing

works ever proved the correctness of the transformation, manual or automatic, from business

process to analytical model.
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1.3.2 Performance-based service composition

In the service composition procedure, a service provider holds a business process, and needs

to bind each component task to a real service. After the binding is finished, an execution plan

is formed. The binding process converts the business process to a concrete service. Speaking

of performance engineering, we need to guide the composition procedure so that the execution

plan has optimal performance.

The performance of the service composition procedure itself is another issue that also

requires attention. In dynamic composition, which is one of the design goals of Web Services,

the computation of the execution plan is actually included in the response time to the user.

Therefore, the performance of our composition algorithm should be given equal priority with

the overall performance issue.

1.3.3 Service adaptation

As discussed above, Web Services framework is a dynamic environment with heterogeneous

platforms. Service failure, either functional failure or performance failure, is a norm. In order to

provide continuous service to our customers with acceptable performance, we need adaptation

mechanisms. The adaptation mechanism is usually called re-planning because we basically re-

plan the service composition at runtime. Existing works do not provide a satisfactory solution

for this problem. One reason is the poor performance of the re-planning procedure itself.

1.4 Research Goals

Our research goal is meant to venture into the many challenges to developing a com-

prehensive solution. This dissertation addresses the performance engineering issue of service

composition to improve the overall performance of the whole web service framework.

We will first take the business process as an architecture model and transform it to a per-

formance model. The performance model we use here is Petri net in favor of its modelling and

analytic power. This transformation bridges software design and system property analysis.

After generating Petri net, we can use it to verify whether the service composition is function-
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ally correct, and whether it suffers deadlock (107). We can also use it to check the stochastic

properties of the composite service and to identify performance bottlenecks.

The key point for this work is to ensure that our transformation is sound. In other words,

the generated Petri net must correctly simulate system behavior described in the business

process.

Though verifying the correctness of service composition is a big concern in the Web Services

research, the verification activity itself does not depart from the model checking research that

has been pursued for decades (85). We do not discuss how to used the generated Petri net for

performance prediction and system property verification in this dissertation. Interested readers

can refer to our previous publication (107) and other related works (35). In this dissertation

we only focus on how to correctly generate Petri net model that maintains the fidelity of the

business process behavior.

We also design algorithms to efficiently compute the optimal execution plan of the com-

posite service, and provide timely adaptation to performance failure. Our approach can be

summarized as follows.

1. Defining a formalism to transform WS-BPEL 2.0 to Petri net, which enables property

verification. We also demonstrate the soundness of this transformation - we prove that

the state-transition systems of the business process and Petri net are isomorphic. The

transformation and proof are conducted in an inductive fashion.

2. Designing a two-phase algorithm to compute execution plan. This algorithm is based

on Petri net model. We design an algorithm to remove loops in the state graph so that

major computation can be moved to the offline phase. This algorithm ensures optimal

runtime computation.

3. Designing a performance-based adaptation algorithm. This algorithm takes business

alliances and financial cost into account.

4. Evaluating WS-Pro through experiments and simulation. Some small-scale projects were

used to evaluate the performance of the two-phase composition algorithm. We simulated
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large-scale service environment to evaluate the effectiveness of the adaptation algorithm.

Both experiments generated promising results.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows.

• Chapter 2: A research background introduction to Web Services, service composition,

and Petri net.

• Chapter 3: A summary of representative work related to this research in the areas of

performance modelling, business process modelling, and service composition/adaptation.

• Chapter 4: Detailed transformation from WS-BPEL to Petri net. A state-transition

based proof serves to demonstrate the soundness of the transformation. The transforma-

tion is conducted based on constructs (basic activities and structured activities).

• Chapter 5: A two-phase composition algorithm that can compute the execution plan

to achieve optimal performance is introduced. Preliminary evaluation results of this

composition algorithm are reported in this chapter. We also present the adaptation

algorithm and simulation results.

• Chapter 6: As an extension, the WS-Pro is applied in the ubiquitous computing area to

help improving fault-resilience.

• Chapter 7: We conclude this research, list contributions and discuss several directions

for future extension work.
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CHAPTER 2. BACKGROUND OF RESEARCH

Web Services are the target system of this research and performance is the problem we try

to address. This research heavily relies on the modelling language of Petri net. This chapter

provides some background information of Web Services and Petri net.

2.1 Web Services

SOA proposes an important concept to build software in the service-oriented way. This

concept can be implemented using a wide range of available technologies, including CORBA

(20), RPC (93), RMI (26), Web Services (9) and DCOM (40). Among them, Web Services

are usually the best option. Building on the http and XML, Web Services have a rich set of

protocols covering service description, composition, publishing, communication, service level,

security, governance, etc. These xml-based protocols includes WSDL (Web Service Description

Language) (106) for service description, UDDI (Universal Description, Discovery and Integra-

tion) for service publishing and finding (102), SOAP (Simple Object Access Protocol) (97) for

communication, and WS-BPEL (Web Services Business Process Execution Language Version

2.0) for business process description (81), etc. With these lingua francas, Web Services become

the best way to implement SOA. They are strongly loose-coupled and address the problem of

software integration.

In terms of software integration, most of the technologies available for building SOA are

working at the IT level. Web Services have a complete stack of protocols from the business level

to the lower communication level. With these protocols, Web Services bring the integration

from the IT (Information Technology) level up to the business level, hence achieving better

interoperability and higher flexibility. We mentioned the need for rapid development to adapt
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in the fast changing business environment in chapter 1. Web Services are designed from the

ground focusing on the integration issue. It allows service providers to easily tune their business

model, replace technologies, and shift platforms, etc.

Another important feature of Web Services is loose coupling. In frameworks such as

CORBA and RPC/RMI, developers have to generate server code (skeleton) and client code

(stub) for a single method. All communication between service providers and service requesters

has to go through the server code and client code. Service requester needs to obtain and deploy

the stub in order to invoke the remote service. Alternatively, in Web Services, communication

is through message passing. No pre-installation is needed. Generally speaking, CORBA is an

Object-Oriented framework where software deals with objects. It allows integration indepen-

dent of platform and language; however, this integration is achieved through tight coupling.

Web Services are not centering around objects, but documents (such as SOAP message, WSDL

description, etc.). With the same platform-independent and language-independent features,

services are integrated through these documents (despite the abbreviation “SOAP” contains

the word “object”, Web Services do not deal with objects at all).

Software systems developed using traditional integration technologies are more focused on

architecture design, just as we used to research on distributed software design patterns. With

the evolution of these systems, architecture design is difficult and costly to modify. In Web

Services, however, the issue of “architecture design” becomes less critical because it is easier

to ship changes in business logic to the end product.

We have already discussed why Web Services are becoming the dominating software design

paradigm. One may intuitively ask: “What is a web service?”

According to the definition by the w3 consortium (9), “A web service is a software system

designed to support interoperable machine-to-machine interaction over a network. It has an

interface described in a machine-processable format (specifically WSDL (106)). Other systems

interact with the Web service in a manner prescribed by its description using SOAP (97)

messages, typically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards.”
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Figure 2.1 Web services scenario

As shown in Figure 2.1, in the framework of Web Services the service provider wraps its

software as a service, describes the service using WSDL protocol, and then publishes it to the

service repository called UDDI. The customer can search UDDI and find this service. Then the

customer directly contacts the service provider requesting for the service. In this framework,

the communication between different parties, such as requests and responses, are based on

message passing. The messages have to follow a format called SOAP.

A service could be basic or composite. A basic service is a building block for a composite

service. The process of integrating basic services is called service composition. A composite

service can also be used as a basic service for other composite services.

2.1.1 Service composition

In Web Services, software integration is realized through the service composition process,

which is the core activity in the Web Services framework. In this procedure, we have a business

process defined using the WS-BPEL (81) language. A business process describes how the

components services are composed together and how they interact to achieve functional goals.

If we treat the composite service as the software product, then the business process serves as

the model to describe the operational logic of the software system. In other words, it models
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system behavior. With the business process defined, software developers need to bind each

component task to a real service. After finishing binding, we have an execution plan. At this

stage, the business process becomes a concrete service. We then complete the execution plan

and deliver the service to the clients.

Figure 2.2 Services composition

The service composition raises many research problems including: how to discover available

component services, how to select the ones best suitable for pre-defined goals, how to bind

them, and how to adjust the composition when problems arising during execution. Ideally, this

procedure will achieve “value-added” that is usually associated with the integration process.

The composition procedure can be manual or automatic. Currently most Web Services

applications are based on manual composition. However, the ultimate objective and design goal

of Web Services is automatic service composition, called dynamic service composition. Due to

the gigantic amount of data over the internet, the number of available services can easily reach

hundreds or thousands. For specialized applications, this number may be limited. However, the

work of selecting component services and deploying the composite service is burdensome and

error-prone. It is only feasible for small-size projects that have limited scope and corporation

- usually with internal integration. The other major drawback is that manual composition

cannot respond to runtime failure efficiently. Since manual composition is normally finalized

at design time, it usually does not specify what actions should be taken when problems (service
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failure, service overdue, etc.) arise during runtime execution.

Dynamic service composition aims at automating the complete procedure of integration in-

cluding service discovery, service selection (with or without guidelines), service binding, service

execution, and runtime adaptation.

Comparing these two types of composition, obviously the manual approach is much simpler

and easier to handle, but lacks flexibility and scalability. Dynamic service composition provides

the most desired features but adds complexity. Among all the issues necessary to realize

dynamic composition, two issues gain the most attention and are critical to advance Web

Services research:

• Dynamic service selection

• Runtime adaptation

Dynamic service selection includes two parts: selection of an execution path (if there are

alternative ones), and selection of a provider for each component service in this path.

Runtime adaptation requires effective monitoring techniques, design of adaptation trigger,

and adaptation mechanism. There might be varied considerations in the design of these issues.

For example, if the criteria of adaptation is too strict we may interrupt the execution frequently,

which may decrease the efficiency and waste resources. Contrarily, if the criteria is too loose,

we may disappoint our customers. Another issue is whether we want the absolute optimal

solution or near-optimal solution. Sometimes finding the absolute optimal solution takes long

time may delay our response to the performance failure.

2.2 Petri net

As a mathematical and graphic tool, Petri net has been proved to be a very powerful

modelling tool for a large variety of systems (50) (84) (85). Murata (76) described Petri nets as

promising for modelling systems that are distributed, parallel, nondeterministic, or stochastic.

Besides using them to model system behavior such as concurrency and asynchronies, Petri nets

are also frequently used to model system properties such as performance (65). The graphic
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representation allows Petri net to provide better pictorial view of architecture than the peer

analytic model, Queueing Network, which only keeps the conceptual system architecture.

A Petri net can be formally defined as (84):

PN = (P, T, I,O,M0) where

–P = {p1, p2, pn}, the set of places

–T = {t1, t2, tm}, the set of transitions

–I ⊆ (P × T ), the set of input arcs from places to transitions

–O ⊆ (T × P ), the set of output arcs from transitions to places

–M0 = P → {0, 1, 2, }, the initial marking.

In Petri nets places can hold tokens. The distribution of tokens among all the places is called

marking which describes the status of the system. When all the input arcs of a transition hold

the required number of tokens, we say that this transition is enabled. An enabled transition

can be fired, which moves tokens from the input places to the output places (Note the moving

may not be equal. For example, the total number of tokens taken from the input arcs may be

greater or less than the total number of tokens put into the output arcs).

Figure 2.3 A Petri net that models a server.

In Figure 2.3, we have a Petri net that models a server. Whenever the lower left transition

fires, one token is added to place p1, which means one request comes in. One token in place p1

means the server is busy (processing one task or multiple tasks). Therefore, we can interpret

markings as follows:

• Marking 00 (both places are empty): the server is idling and the queue is empty.
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• Marking 01 (p1 is empty and p2 holds one token): the server is busy and the queue is

empty.

• Marking 10 (p1 holds tokens and p2 is empty): there are waiting requests in the queue

and the server is idling.

• Marking 11 (p1 is non-empty and p2 holds one token): the server is busy and some other

requests are waiting in the queue.

2.2.1 Generalized Stochastic Petri Nets (GSPN)

Various extensions to Petri net models have been proposed to address different modelling

needs. One such enhancement is the Generalized Stochastic Petri Net (GSPN) which associates

a random firing time to each transition. A GSPN is defined formally as a tuple (2):

GSPN = (P, T, I, O,M0, R) where

–P , T , I, O, M0 are as in basic PN

–R = r1, r2, , rm is the set of firing rates associated with the transitions.

In GSPN transitions are classified into two groups: immediate and timed transitions. Im-

mediate transitions have higher priority than timed transitions, fire in zero time and are labelled

with a marking-dependent firing probability. Random, exponentially distributed firing times

are associated with timed transitions. A marking in which immediate transitions are enabled

is known as a vanishing marking, while a marking in which only timed transitions are enabled

is known as a tangible marking. Vanishing states have sojourn times which are zero, while

tangible states have nonzero exponentially distributed sojourn times. Using GSPN we can

randomize arrival rates and processing delays.

A good property of GSPN is that its reachability graph can be turned into a Continuous-

time Markov Chain (CTMC) by assigning to each edge a weight equal to the firing rate of

the associated GSPN transition (2). CTMC is one of the most useful tools for numerical

analysis. However, it is difficult to directly generate CTMC for middle and large scale sys-

tems. Compared to CTMC, the GSPN model is more straightforward to build. Therefore,

the normal method is to create a GSPN model first, and then recognize its embedded CTMC.
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Based on steady-state and transient-state distribution probabilities derived from CTMC, most

performance analysis can be conducted.
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CHAPTER 3. REVIEW OF LITERATURE

Business modelling and service composition must take into account performance adapta-

tion. Our research aims to provide comprehensive performance solution that takes business

process is presented in WS-BPEL, computes all the way to the final execution plan, and pro-

vides effective adaptation. No other work exists that is as comprehensive; however, there are

many similar works with different aspects. By focusing on the three performance issues iden-

tified in chapter 1, we summarize the related work in the following three major categories:

performance modelling, business process modelling, and service composition/adaptation.

3.1 Performance Modelling

Five major trends in performance modelling are studied in this section: Software Perfor-

mance Engineering (SPE)-based, simulation model-based, Process Algebra-based, Queueing

Network-based, and Petri net-based. We review their strengths and weaknesses. Some of the

modelling methods reviewed in this section are created with brute-force way and some of them

are generated from an architecture model (for the necessity of generating a performance model

from an architecture model, see chapter 1). The architecture model considered here is the

UML model that dominates architecture design in industry.

3.1.1 SPE-based approaches

As one of the earliest works in software performance engineering, SPE (96) is often quoted

for its capabilities in modelling and analyzing system performance. Two major models, Sys-

tem Execution Model and Execution Graph are provided in SPE for system deployment and

system behavior analysis. An Execution Graph follows the critical path of execution and offers



18

a best-case response time for a particular sequence. The System Execution Model considers

queuing delay caused by resource contention and yields not only response time but also such

metrics as utilization, throughput, and residence time. Both models offer fast analysis because

of their computational simplicity. They are also organized around resource requirements so

the effects of different hardware configurations can be studied easily. The drawback of SPE

is limited support for scheduling algorithms, synchronous communication, random arrival and

processing delay distributions. It is noted that neither of the two SPE models are able to

predict system behavior under the overload condition. Moreover, neither of the two models

provides the means to collect performance metrics that are essential to later performance evalu-

ation. Therefore, in its original form, SPE does not provide adequate models to represent both

performance properties and system architecture, nor does it supply the feedback mechanism.

Further validation through extension work of SPE was deemed necessary and embarked later.

For example, inspired by SPE, Vittorio Cortellessa et al. introduced an incremental

method, PRIMA-UML, to transform UML-represented architecture into SPE models (21) (23).

Their approach contains two parts: UML2EG and UML2QN. UML2EG generates Execution

Graph, which carries software architecture and behavior information, from use case and se-

quence diagrams. UML2QN generates Queue Networks, which contains hosts information

from deployment diagrams. The two results are then integrated into the SPE process for

evaluating system performance. Their approach bridges UML-based software architecture and

existing performance models, thereby enabling performance evaluation of software architecture

at design stage. The value of this approach is limited by the problems with SPE discussed

above.

Besides SPE-based performance modelling, Vittorio Cortellessa et al. also created a frame-

work (24) which is intended to encompass more ADLs and analytic models. Effort in this

framework includes generating the SPIN (48) models from state machines and scenarios, and

transforming Amilia textual description to Markov Chain models. Aiming at non-functional

analysis, this framework propagates analysis feedback through different models to help software

architecture evaluation. Central to this framework is the XML-based integration core, which
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takes the XML representation of the architecture model and generates analytic models such

as SPIN and Queueing Network models. SPIN model checker helps software engineers identify

deadlocks and race conditions. They plan to integrate their PRIMA-UML, the SPE-based

performance analysis approach, into this framework.

3.1.2 Simulation model-based approaches

Some researchers are devoted to generating simulation models directly from software ar-

chitectural design. Among them, a formal simulation language called SimML (Simulation

Modelling Language) (3) was combined with UML by Arief et al. to study the performance

of a particular event sequence. In SimML, a sequence is built in a sequence diagram using

SimML classifiers and operations. Each sequence simulation is capable of producing the aver-

age time it takes to process a job for a given arrival interval. SimML has certain advantages

over SPE. It can evaluate different arrival distributions and processing profiles by employing

random arrival time and process delay distribution through random variables. SimML does not

assume balanced workload and is therefore able to calculate the average processing time even

if conditions become overloaded. An integrated environment was created to support SimML

design and simulation; however, there is no embedded metrics designed in the UML extensions

of SimML, or a mechanism to feed the simulation results back to the software architecture

design.

Unlike SPE, SimML does not consider resource requirements; instead it groups all delays

into one variable, the processing delay. Therefore, in order to study the effects of alternative

hardware, the analyst must guess at how the processing delay distribution will change, instead

of just considering new resource characteristics. The lack of resource profiling also means that

memory and disk usage requirements cannot be verified. SimML does not take into account

various scheduling algorithms. It is not possible to investigate the behavior of synchronous

communication because SimML is event based. Besides these disadvantages, SimML has its

own design environment. A SimML model has to be manually created using its notations in

order to run simulation.
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Marzolla and Balsamo proposed a new process-oriented simulation model called UML-

Ψ (70) (71). They developed a UML notation by modifying UML SPT (UML profile for

schedulability, performance and time specification) (82). The simulation model is generated

from annotated use case, deployment, activity, and collaboration diagrams. The transformation

from the UML diagrams to the simulation model is automated by a tool. Simulation results are

reported back and associated with UML diagrams. The authors proposed a new idea to validate

the simulation models using the equivalence relations ≈M and ≈U. The ≈M relation judges

whether two simulation models are equivalent and ≈U evaluates whether two UML diagrams

are equal. They argued that the simulation models can be validated if two simulation models

have the same structure and demonstrate equivalent performance, and their corresponding

software architectures are equivalent as evaluated by ≈U. Unfortunately, the definitions of the

equivalence relations were not shown or put into practice in their reported approach.

Another interesting study on extending UML to generate simulation models was reported

in (73). The authors targeted real-time systems and defined stereotypes related to real-time

domain constrains, such as period, deadline, jitter, etc. They used static diagrams, collabora-

tion diagrams, classes, nodes, and associations to generate the simulation model. Scheduling

policies are well presented in their work; however, the transformation from the extended UML

model to the simulation model or analytic model was not specified in their paper. Since this

approach was specifically designed for a real-time system, it is not suitable for studying general

software systems.

3.1.3 Process Algebra-based approaches

Transforming software architecture into Process Algebra is another possible approach (7)

(88) (13). Bennett and Field proposed an approach to transform UML sequence diagram into

state machine upon which a finite state processes (FSP) (64) model is generated (7). The

transformation, however, must be done manually.

Pooley (88) combined state diagrams with collaboration diagrams to generate a Process

Algebra model for each combined diagram. The generated Process Algebra models are then
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integrated together to create a single PEPA (Performance Evaluation Process Algebra) model.

The difficulty of combining individual PEPA models was discussed in the approach. He also

suggested a way to directly derive a continuous Markov Chain model from the combined state

and collaboration diagrams.

The combination of UML 2.0 activity diagram and PEPA was studied in (13). The activity

diagram underwent significant changes in UML 2.0 compared to its earlier representation in

UML 1.x, thus presented a much higher level of complexity because it includes some high-

level modelling techniques such as control flows and object flows. The authors specifically

investigated the transformation from the UML 2.0 activity diagram to PEPA.

In Process Algebra-based approaches, usually stochastic behavior and resources are inte-

grated into system architecture and the performance evaluation is based on the numerical

calculation of the underlying Markov Chain. One major concern for this kind of approach is

the state explosion problem well-known in the model checking area. In addition, the major

drawbacks of Process Algebra-based approaches include a low degree of automation, lack of a

feedback mechanism, and requirements of expert-level knowledge.

3.1.4 Queueing Network-based approaches

In order to harness the power and effectiveness of graph-analytic models such as Queueing

Network (59) and Petri net (66), many researchers have tried to transform software architec-

ture to these models and their variations. Among these models, Extended Queueing Network

is gaining popularity (41) (86) (42) (89) (22) (52). By extending UML to represent perfor-

mance properties, analytic models can be derived from UML diagrams and studied during the

requirements, analysis, and design phases of the software lifecycle.

Pooley and King (89) suggested extending UML use cases for depicting workload, using

sequence diagrams to trace simulation, and mapping state diagrams to Markov Chain models,

etc. As an example, they derived a queueing network for the ATM machine example to

illustrate their ideas. Though preliminary, these attempts sketched the possible transformation

from UML to performance models.
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Kahkipuro (52) (53) proposed a work to translate extended UML diagrams into AQN

(augmented queueing networks), which represent simultaneous resource possessions. The aug-

mented queueing networks are accepted by a decomposition algorithm in textual format to

generate and solve queueing networks. Finally, the results are reported back in the sequence or

collaboration diagrams. The transformation and the decomposition algorithm are supported

by an automatic tool. However, this approach only supports textual representation, which de-

grades the quality of user interfaces. Furthermore, a set of systematic metrics and scheduling

policies are needed for this approach to support comprehensive performance evaluation.

Some researchers consider software architecture patterns when evaluating their performance

(41) (42). Dorina Petriu and his colleagues intended to generate Layered Queueing Network

(LQN) from the annotated UML by using an intermediate format, Extensible Stylesheet Lan-

guage Transformation (XSLT) (86). The analysis based on the LQN models can help evaluate

performance of different software architecture patterns. This approach annotates UML col-

laboration, deployment and activity diagrams to present performance properties, while other

diagrams such as use case and sequence diagrams, which illustrate important timing and be-

havior information, are not used. Moreover, this approach lacks the mechanisms to collect

performance metrics or report performance results back to the architecture. The generated

LQN has to be analyzed by an external tool.

Another study on evaluating software architecture patterns was reported in (38). Focusing

on the component interconnection patterns, the authors annotate UML diagrams and map the

annotated diagrams into extended Queue networks. Nevertheless, this study did not provide

a systematic transformation from the annotated software architecture to performance models.

3.1.5 Petri net-based approaches

Unlike the conceptual graphical presentation of Queueing Network, Petri net maintains a

better software architecture view. Interestingly, compared to the great amount of effort devoted

to Queueing Network, less work has been done to transform software architecture into Petri net

models. One common problem for existing work in this area is that most transformations are
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based on UML statecharts, making the transformation process difficult because of the added

complexity of statechart generation.

King and Pooley (54) (55) presented a work to derive Petri nets and a continuous Markov

Chain using UML collaboration and statechart diagrams as the major source. The idea is

to first embed the statecharts into collaboration diagrams to express the global state of a

system. It then transforms the combined diagrams into GSPN models, which are finally

united as a single GSPN model. The problem of this approach stems from identifying shared

transitions to combine individual Petri nets together. Additionally, they did not provide a

tool to automate the transformation from UML diagrams to Petri nets, nor an integrated

environment to evaluate the generated Petri nets for performance predictions.

Lopez-Grao and his colleagues explored the possibility to formally transform different dia-

grams into LGSPN (Labeled GSPN) (61). The concept of this approach is to combine activity

diagrams with statecharts to model possible execution paths. Statecharts are used as the high

level model and activity diagrams are used for modelling internal flow process at lower level.

In other words, an activity diagram describes a doActivity in the statechart. The activity

diagrams may have hierarchy. After annotating performance requirements to the UML di-

agrams, each activity diagram is translated into a LGSPN. All the individual LGSPNs are

finally combined and guided by the statecharts into a single performance model for the whole

system or for a specific scenario. In this methodology, the transformation is automated by a

CASE tool, ArgoUML. There is no support in this methodology to report performance results

back into the software architecture. As pointed out by the authors, the LGSPN model has

to be replicated for different doActivity/subactivity invocations. The inadequate expressing

capability of LGSPN restricts the pattern of activities invocation (i.e., the invocation paths

must be acyclic.)

Different from other approaches which focus on transformation from UML models, the

approach created by Fukuzawa and Saeki (33) directly models the software architecture as

Colored Petri net (CPN). The final model allows not only evaluation of software performance,

but also other properties such as security and reliability. Nevertheless, their work seems pre-
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liminary. No experiment has been conducted to verify whether this approach is practical.

There is one special technique which cannot be categorized into any of the five trends – the

UML profile for schedulability, performance and time specification (UML SPT) (82) published

by Object Management Group in 2002. UML SPT was published in response to the great

demand and the fruitful research outcome of UML performance profile. It provides a way to

annotate UML diagrams with performance requirements, system resources, and performance

related behavior information. However, this profile only formalizes the way to extend UML

diagrams, where no specific performance model can be created. Therefore, it lacks the capabil-

ity to evaluate system performance. UML SPT was later integrated with some of the existing

performance analysis techniques reviewed above (70) (71) (41) (86) (4) (7).

3.2 Modelling of the Business Process

Researchers have tried to model the business process using many analytical tools, such as

abstract state machine (27), finite state machine (32), process algebra (30), and many more;

however, most of them only worked on a subset of WS-BPEL language. For example, most

of them do not consider control dependency, an important concept in WS-BPEL. Instead, we

chose Petri net as our analytical model because of its powerful modelling capability and its

nice graphic interface. Petri net has been proved to be very effective in stochastic modelling

too. Milanovic and Malek summarized current web service composition solutions in (74). They

compared Petri net with OWL-S, pi-calculus, and model checking/FSM, etc. They concluded

that Petri net has good service connectivity, can prove composition correctness, but cannot

specify non-functional properties, lacks the support of automatic composition, and has low

degree of scalability. To the contrary of this statement, extended Petri nets such as stochastic

Petri net and timed Petri net are well known for modelling stochastic properties of software

system. Quantitative non-functional properties can be described and verified by an extended

Petri net. As mentioned above, industry needs robust and verifiable web services with high

performance (99). By using extended Petri nets, evaluation of web services performance and

verification of service composition can be achieved at the same time. We summarize the
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application of Petri net to service composition modelling below.

In fact, researchers have already tried to apply Petri net theory to web service composi-

tion. Martens defined usability, equivalence, and compatibility, etc., in (68). He used Petri

net-based semantics to formally verify those properties. He and his colleagues also tried to

translate BPEL4WS into Petri net(67). They used the “communication graph” defined in (68)

to model the communication process among different services. This “communication graph”

pairs communication links between service requesters and providers. However, the authors did

not prove that the “communication graph” preserves the same behavior of the original BPEL

process.

As an early experiment to model Web Services business processes in Petri net, a semantic

model was proposed by Hamadi and Benatallah (46). This approach works directly on the

composition of brute-force formed Petri net without the transformation from WS-BPEL. The

authors of (46) modelled major business constructs but neglected many other semantics such as

handler (compensation handler, fault handler, etc.) and control dependencies (control links).

The constructs researched in (46) do not match the ones specified in WS-BPEL standards.

Research results reported in (94) and (104) (83) are most similar to ours. Both groups

tried to transform WS4BPEL to Petri net. WS4BPEL is an obsolete version of WS-BPEL.

Schmidt and Stahl (94) claimed that the generated Petri nets can be reduced in state space

so that certain model checking tools can be used to verify system properties. They also cre-

ated a tool under the open-source license, called BPEL2oWFN (its predecessor is BPEL2PN).

However, Chitrakar reported that this tool generated incorrect Petri net Markup Language

results (PNML) (8) that could not be accepted by other analytic tools (17). Coincidentally,

Verbeek and Aalst (104) proposed the transformation from WS-BPEL to WF-net (103). As

pointed out by Chitrakar, this approach introduced “skip-paths” which created a large number

of unnecessary places and transitions (17). The result is Petri nets with big sizes in terms of

places and transitions. Running computation on the big Petri nets is inefficient.

Lohmann and his colleagues improved BPEL2oWFN and expanded the model to adopt

WS-BPEL 2.0 specification that was released in April 2007 (62). The Petri nets generated
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from this work can have different patterns depending on the level of abstraction. The authors

claimed that this approach is more effective in space reduction than the work reported in (104)

and (83).

Different from the above approaches that focused on the control flow of WS-BPEL, Moser’s

work presented in (75) tried to model the data flow of WS-BPEL. They identified the data

dependencies in WS-BPEL and represent them using CSSA (Concurrent Single Static Assign-

ment Form) (60). The data dependencies were integrated into the mapping from WS-BPEL to

Petri net. The authors argued that by including data dependencies their approach can avoid

false-positive analysis results.

Some other researchers focused on using a formal model to predict service performance.

The mathematical model presented in (92) was based on operations research techniques. It

generates resources metrics such as utilization and throughput. Marzolla and Mirandola pro-

posed in (69) another approach that applied Queueing Network techniques for performance

prediction. In this approach, each service was modelled as a queueing network connected using

edges according to the WS-BPEL description. Some experiments were conducted to evaluate

the effectiveness of this approach. Koizumi and Oyama presented a similarly work using Timed

Petri net (57). It is difficult to assess this work in terms of transformation from WS-BPEL

to Timed Petri net because it is not documented with sufficient detail. This approach can

simulate the generated Petri nets at different abstraction levels and generate response time

according to different statistical confidence levels.

It is worth pointing out that almost none of the existing works considers the correctness of

the transformation. The analytical model provides the basis for our verification and computa-

tion. It is crucial to ensure its correctness, which requires the soundness of the transformation

process. In our approach, we use a state-transition based proof to demonstrate the soundness

of transformation. This soundness distinguishes our approach from others. Additionally, we

believe that Petri nets can be used to support the computation of the execution plan but as

of this writing, not much work in the area has been reported.
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3.3 Service Composition and Adaptation

Zeng and his colleagues divided service composition planning into two categories: local

planning and global planning (116)(117). Local planning is limited to the task level at which the

service composer computes QoS value of each candidate service and selects the best candidate

for each specific task. Global planning takes the whole execution map into account and only

computes QoS values for critical tasks. Integer Programming is used for global planning,

however, the architecture of this approach is very simple and the authors did not make concrete

design of the trigger for re-planning. It is worth pointing out that authors investigated the

performance of the service composition procedure. Whereas poor performance was reported

in this paper – re-planning may take longer duration than current execution.

The broker-based architecture proposed by Yu and Lin (115) targets composing, selecting,

and adapting service composition. The service composition problem was modeled as a MCKP

(Multiple Choice Knapsack Problem) and Pisinger’s algorithm was used to solve it. Different

from other approaches, this methodology takes the level of service into account when selecting

services. This approach is designed for a multimedia domain so it includes some domain specific

attributes in the QoS model. This approach did not consider re-planning.

Gokhale and Lu (37) modelled user group patterns using Customer Behavior Model Graph

(CBMG) and transferring a CBMG into a discrete Time Markov Chain (DTMC) . The calcu-

lation of DTMC can reveal session time and availability based on pre-defined state availability

parameters. This work is useful for understanding the impact of user pattern on system per-

formance. However, this work only studies traditional e-commerce sites at high levels and does

not fit in the Web Services framework.

Nguyen and his colleagues (80) proposed a disCSP-based methodology to solve the QoS-

based service selection problem. Nested services and corporation among services are considered

in this approach. They used disCSP to model the QoS problem and introduced Fuzzy theory

to represent soft constraints on agents. A framework was developed to support this approach.

Specifically focusing on re-planning, Canfora and his colleague (14) defined triggers and selec-

tion algorithms using Genetic Algorithm.
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As discussed above, comprehensive performance management should include a selection

program and a performance adaptation mechanism. The common problem with existing ap-

proaches is the neglection of the performance of the selection and adaptation procedures.
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CHAPTER 4. TRANSFORMATION OF WS-BPEL TO PETRI-NET

The Web Services Business Process Execution Language (WS-BPEL) (81) is an executable

language to describe business processes. It allows designers to write both executable and ab-

stract business processes. WS-BPEL focuses on orchestration in the view of a central service

and models the operational logic of a composed system, including when to invoke a service,

whether to execute a service, or skip it, etc. This language supports programming structures

such as IF and WHILE, and allows expression of parallel behavior (e.g., flow) and synchro-

nization (e.g., control links). The syntax of WS-BPEL follows XML format (11). Below is

an incomplete representation of this language. More details can be found in Appendix A. For

complete syntax and semantics of WS-BPEL, interested readers can refer to (81).

WS-BPEL ::= U( O(import), O(documentation), O(partnerlink), O(variables),

O(activities), O(handler), O(extension), O(messageExchanges), O(correlationSets) )

Activities ::= P(basic-activities | structured-activities)

Basic-activities ::= Invoke | Receive | Reply | Assign | Throw | Wait | Empty | Extension

activity | Exit | Rethrow

Structured-activities ::= Sequence | If | While | RepeatUntil | Pick | Flow | ForEach |

Compensate | CompensateScope

standard-attributes ::= U( O(name), O(suppressJoinFailure) )

standard-elements ::= U( O(targets), O(sources) )

Invoke ::= “<invoke” invoke-attributes “>” invoke-elements “</invoke>”

invoke-attributes ::= U( standard-attributes, partnerLink, O(portType), operation,
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O(inputVariable), O(outputVariable) )

invoke-elements ::= U( standard-elements, O(correlations), O(catch),

O(compensationHandler), O(toParts), O(fromParts) )

Where

O(x) ::= empty | x

#(x) ::= any number of x

P(x) ::= x #(x)

U(x,y) ::= any order of x and y

All the basic activities can be in the “<activity attributes />” form when there is no

elements included. For example, the invoke activity may be defined as: “<invoke” invoke-

attributes “/>”.

A WS-BPEL process can be treated as an inductively defined system composed by multiple

constructs (or called “activities”) (79). In this section, we define the transformation from WS-

BPEL to Petri net. In order to show that the generated Petri nets conform to the original

system behavior, we demonstrate that the Petri net and the WS-BPEL process have isomorphic

state-transition systems.

By induction, if we can prove the transformation of basic constructs is correct and this

correctness remains during the inductive step, then we prove the soundness for transformation

of the whole WS-BPEL process. The correctness of the transformation on constructs is dis-

cussed in the following of this section. The correctness of the inductive procedure is discussed

in chapter 4.6.2.

4.1 Assumptions and Definitions

To ensure valid execution of a WS-BPEL process, we make the following assumptions.

Assumption 1. The suppressJoinFailure is set to be “yes” so that bpel:joinFailure is not

thrown when join condition is not satisfied; instead, the activity is skipped and the control

passes on.

Assumption 2. The partnerLinks and correlation sets are always satisfied.
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Assumption 1 ensures that the business process will not be stopped due to join failure

of links. Assumption 2 eliminates meaningless system states. If we model the mismatch

of correlations, we will have a large number of system states that represent the skipping of

activities due to mismatch of instances. This kind of skipping is meaningless to system analysis

and adds complexity to our model.

Assumption 3. All the basic services studied in this thesis must end.

Assumption 4. All the Petri nets generated in this thesis except PNexit have a start place

and an end place.

As stated in the previous section, we aim to generate Petri net from WS-BPEL to model

business process behavior. It is widely accepted that UML statecharts (58) effectively depict

software behavior and system state transition. Meanwhile, reachability graph illustrates state

transition in the Petri net world. Therefore, the problem of proving the correctness of trans-

formation from WS-BPEL to Petri net becomes proving isomorphism of the statechart and

the reachability graph.

WS-BPEL has concurrent activities that may include synchronization links. This complex

situation is modeled in statechart with high level of abstraction, hence cannot illustrate the

state transition with adequate detail. Moreover, reachability graphs of Petri nets model the

state transition systems in the way of a state machine. A state machine can only be in one of

the possible states at the same time, while the statechart can be in multiple states concurrently.

Therefore, in this thesis, statecharts are used to model sequential state transition and state

machines are used when concurrent state transition is involved (Flow and parallel ForEach

activities). They are compared to the reachability graphs of the generated Petri nets. The

isomorphism between the statechart / state machine and the reachability graph indicates the

soundness of the transformation from WS-BPEL to Petri net.

Definition 1. For a WS-BPEL construct P , its statechart is a 4-tuple SCp = (S, A, S0, Se),

where

- S = {si | si is the ith state, 0 6 i 6 n}
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- A = {aij | (aij is the transition between si and sj) ∧ (si, sj ∈ S) }

- S0 = {s0}

- Se = {sn}.

The state transition system STSC corresponding to this statechart is the 3-tuple STSCP
= (S,

A, S0), where S, A and S0 are defined as above.

Definition 2. For a WS-BPEL construct P , its generated Petri net is PNP , where

PNP = (P, T, IN, OUT, R, M0) (PNP will be defined according to each WS-BPEL construct)

with reachability graph

RGp = (M, EG, M0)

- M = {mi | mi is the ith marking of PNP , 0 ≤ i ≤ k}

- EG = {gij | (gij is the transition between mi and mj) ∧ (mi, mj ∈ M) };

- M0 = {m0}.

The state transition system corresponding to this Petri net is defined as:

STPNP
= (M, EG, M0)

- M, EG and M0 are defined as above.

Definition 3. A graph G1 = (V1, E1) is isomorphic, denoted as ∼=, to another graph S =

(V2, E2) iff ∃ a bijection function f : V1 → V2 such that

for any u, v ∈ V1, (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.

Theorem 1. (correctness): For a given WS-BPEL construct P, let PNP be its Petri net

presentation and SCP be its statechart. PNP simulates SCP if STPNP
∼= STSCP

, where ∼=

stands for isomorphic.

Proof. Suppose STPNP
∼= STSCP

, based on the complete proof in (36), isomorphism implies

bisimulation equivalence, which is denoted by ∼.

STPNP
∼= STSCP

⇒ STPNP
∼ STSCP

⇒ PNP simulates SCP

�
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Note that we do not need to prove the number of iterations for loop activities equal to the

one in Petri net. Our purpose of transformation is to model the behavior, or the control flow,

of different activities. In the Petri nets, we give different probability rates for staying or exiting

the loop. These domain-specific probability rates will be used for the service composition at

later stages.

There are two types of transitions in the Petri nets used in this thesis: timed transitions

and immediate transitions. Timed transitions are illustrated in hollow rectangles, as shown in

Figure 4.1. They are associated with firing rates, which are used to decide the probabilities of

different branches.

4.2 Operational Semantics of WS-BPEL Activities

We borrow graphic items from flowcharts to visualize the control flow of WS-BPEL. Expe-

rienced readers may question whether the control flow depicts the correct semantics (someone

may argue that the same WS-BPEL process can carry different semantics in different environ-

ments). To clarify this point, we can use Abstract State Machine (ASM) (44) to describe the

operational semantics of WS-BPEL and illustrate the semantics in a control flow. Gurevich

and Huggins has defined the semantics for C language using ASM (43). All the logic constructs

defined in that work - for example, basic activities of invoke and receive, conditional expres-

sions, logic branches and loops - are applicable for WS-BPEL. Farahdbod et al have formalized

the operational semantics of BPEL using ASM (28) (29). They extended the original macro

concept defined by Gurevich in (44) and described the state transition of BPEL control flow.

Each BPEL activity is defined to have three possible states: enabled, disabled and completed.

Fahland and Reisig refined this work by including events handling, dead-path elimination and

correlation handling with a focus on “faulty” (27). We believe these works are enough to

convey the operational semantics of WS-BPEL in control flows. Therefore, in the following we

directly use the state transition models drawn in statecharts or state machines.

In the rest sections, we show how we transform basic activities and structured activities

into Petri net. We also demonstrate the isomorphism between the statecharts of the original
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activities and the reachability graphs of the generated Petri net. According to Theorem 1, this

isomorphism suggests the soundness of the transformation.

4.3 Control links

4.3.1 Semantics of control links

Control dependency is an important feature of WS-BPEL. It is used to realize synchro-

nization among parallel executing activities. Therefore, control links only pertain to “Flow”

activities that have parallel execution paths. Each link has a source activity and a target

activity.

Control links have the following characteristics.

(1) Synchronization. If a link has a source activity “A” and a target activity “B”, then

“B” has to wait till “A” finishes and passes link status (either true or false) to start its own

execution.

(2) Cross boundaries. In WS-BPEL, control links may cross activity boundaries. For

example, a flow with three Sequence activities can have control links between different execution

paths2. These links are said to be crossing the boundaries of the Sequence activities.

Due to the cross-boundary property of control links, in our hierarchical transformation

process, it is normal that we do not have complete link information when we transform a

certain activity. For example, link “XtoY” directs from activity X to activity Y while X and

Y locate in different Sequence’s. When we generate the Petri net for X, Y has not been

transformed yet. In this case, it is hard to connect PNx with PNy instantly. Therefore, during

transformation, we create Petri nets for all the component activities first regardless control

links, and then add control links.

Control links do not cross the boundaries of loops or parallel executions. For example, we

have a While activity that has one component activity A. WS-BPEL semantics do not allow

control links from outside While activity to be associated with A. The outside links can only

be associated with the While activity itself. Similarly, WS-BPEL does not allow control links
2In WS-BPEL there should be no control link going backward in one single sequential path (81).
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from outside a Flow activity to be associated with any component activity inside the Flow

scope.

(3) Join conditions and transition conditions. Each target activity has a join con-

dition that evaluates whether this activity should be executed or not. The join condition is

expressed in WS-BPEL using the < joincondition > element. Only when all the incoming

links are true, the < joincondition > is evaluated to true. If at least one control link has

false status, the < joincondition > is evaluated to false. The < joincondition > will not

be evaluated unless all the incoming links have their status set. For example, activity A has

n incoming links. At a certain moment, all the links have status false except link ln that still

has undecided status. At this moment, even though we know that the < joincondition > of

A will eventually be evaluated to false, we wait for link ln to gain its status.

On the source activity side, each outgoing link can be associated with a

< transitioncondition >. When < transitioncondition > is specified, the outgoing link is set

to be true only when < transitioncondition > is evaluated to true.

Note that control links leaving the same source activity may carry different link status

depending on their corresponding < transitioncondition >.

4.3.2 Modeling control links in Petri net

The activity P with two incoming links and one outgoing link is modeled in Petri net as

shown in Figure 4.1. In this Petri net, places start, r1, and end represent the three states of

the activity P : start, running, and end. The place r1 may represent a sub-Petri net if the

activity P is a structured activity.

4.3.2.1 Modeling incoming links

In Figure 4.1, the join condition of the activity P is represented in the two types of transi-

tions jf and jt. Two incoming links form four possible input values for a join condition. Only

one of the four inputs leads to a true join condition (when both incoming links are true). The

other three inputs lead to a false join condition. Therefore, in Figure 4.1, we have one jt
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Figure 4.1 Modelling incoming control link status by Petri net.

transition corresponding to the input that leads to a true join condition, and three jfk|1≤k≤3

transitions corresponding to the three inputs that lead to a false join condition.

Whenever the join condition is evaluated to true, the jt transition fires. Otherwise jfk

transition is fired. The firing of jfk skips the execution of this activity.

Places lf ′1 and lt′1 in Figure 4.1 represent the status of incoming link 1. Similarly, places

lf ′2 and lt′2 represent the status of incoming link 2. These four places are connected to

transitions jt and jfk so that the following two requirements are met:

(1) Only when both incoming links have their status set (with a status other than “unset”),

the join condition can be decided.

(2) Only when both incoming links have “true” status, jt is fired; otherwise one transition

jfk|1≤k≤3 is fired.

Each join condition transition is connected to all the incoming links (lf ′i or lt′i). Therefore,

if one incoming link i has unset status, neither lf ′i or lt′i holds a token. Consequently, none

of the transitions is enabled. This way, Requirement (1) is satisfied.

The connection of lf ′i, lt′i to jt and jfk ensures the satisfaction of requirement (2).

In a general case.

For l number of incoming links, there are totally 2l possible link status, among which only

one satisfies true link condition and all the rest lead to false link condition. Therefore, in the

Petri net, we have one jt transition and (2l − 1) jfk|1≤k≤2l−1 transitions.

The connection from lf ′i and lt′i to jt and jfk|1≤k≤2l is described in Algorithm 5.
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4.3.2.2 Modeling outgoing links

After the execution of the activity, a false or true status is assigned to the outgoing link. We

use two places, lf (link false) and lt (link true) to model link status. The transition condition of

the outgoing link is modeled through Petri net transitions ck|1≤k≤2. The enabling of transition

c1 means the transition condition is evaluated to false. The firing of c1 will set the link to be

false - putting a token in the lf place. Similarly, the firing of transition c2 assigns value true

to the outgoing link.

When transition condition is absent, the outgoing link is always set to true. In this case,

the sub-net shown in Figure 4.2(a) is replaced by Figure 4.2(b).

Figure 4.2 Modelling outgoing control link status by Petri net.

When both transitions c1 and c2 are enabled at the same time (place r1 has one token),

their firing rates will be used to decide which one to fire. The firing rates, which in this case

are the different probabilities of “false transition condition” and “true transition condition”

can be specified using domain-specific information or operational profile.

In a general case.

An activity with one outgoing link has two places indicating the status of the link: lf and

lt. With multiple links, the two places are duplicated to illustrate status of different links. We

have

Nsp = 2l (4.1)

Nst = 2l (4.2)
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where Nsp is the number of places representing link status, Nst is the number of transitions

representing transition conditions, and l is the number of outgoing links.

Disclaimer:

Each WS-BPEL activity may have different incoming links and outgoing links. In our

transformation, the modelling of activities without links is simpler to the one with links. The

transformation and proof for activities with and without links are highly similar. For this

reason, we only demonstrate linked activities in this thesis.

In the following, we describe atomic transformation for each type of WS-BPEL activity,

and then elaborate how they are composed together. The composition follows concatenation

and insertion rules as described in section 4.5.

4.4 Atomic Transformation

4.4.1 Basic activities

As mentioned in the previous section, we intend to model the behavior of a WS-BPEL

process, i.e., its control flow. All the basic activities share the same syntax pattern except

invoke, which represents the operation of invoking a remote service. Invoke has non-standard

control elements such as compensationHandler and catch. The compensationHandler describes

how to compensate a failed service and catch captures exceptional events. Both of them

transfer control from the main activity to handlers described using other activities. However,

as described in (81), an invoke activity can be transformed into a scope activity. Therefore,

we can still express all the basic activities using the same syntax format and perform the same

transformation.

All the basic activities may be associated with control dependencies. In the following of

this section we examine Basic Activities With Links (BAWL).

4.4.1.1 Transformation

The syntax for basic activities with links (both incoming links and outgoing links) can be

written as follows.
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Basic-activities ::= O(Attrs) O(Elements) ACTivity

where O(x) ::= empty|x; Attris denote attributes and Elements denote elements such as

targets/sources and correlations. The corresponding operational semantics can be written

using IF statement:

If not(join condition)

then set linkFalse

else ACTivity

If not(transition condition)

then set linkFalse

else set linkTrue

end If

end If

With this semantics, we can draw the control flow as in Figure 4.3. The Petri net repre-

senting the above semantics is shown in Figure 4.3(b). Its plain Petri net view is shown in

Figure 4.3(c).

The definition of this Petri net is PNBAWL = (P, T, IN,OUT,R,M0), where

P = (start, r1, lt, lf, end)

T = {jt, jf, c1, c2, te, fe}

IN = {(start, jt), (start, jf), (r1, c1), (r1, c2), (lt, te), (lf, fe)}

OUT ={(jt, r1), (jf, lf), (c1, lf), (c2, lt), (fe, end), (te, end)}

R = {rjt, rjf , rc1, rc2} (firing rates for timed transitions)

M0 = {[start]}

All the labels of places and transitions here are for illustration purposes and will be changed

accordingly when composed together into one complete Petri net for the whole WS-BPEL

process.

In the Petri net shown in Figure 4.3, timed transitions are used to model control branches,

such as c1 and c2. If the control flow is sequential (i.e., no competitive branches), an immediate

transition is used, for example, te and tf.
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Figure 4.3 BAWL atomic activity. (a) control flow; (b) statechart
SCBAWL; (c) illustrating Petri net PNBAWL; (d) Petri net
PNBAWL; (e) reachability graph RGBAWL.

4.4.1.2 Correctness

Now we prove that PNBAWL simulates the BAWL construct, i.e., the transformation is

correct.

State Transition Systems. The transition systems STSCBAWL
and STPNBAWL

are shown

as in Figure 4.4. Obviously, STSCBAWL
∼= STPNBAWL

according to definition 4.1.

The proof of the transformation from WS-BPEL to Petri net is similar for most WS-BPEL

constructs. Therefore, we will skip proofs in the rest of this thesis. Only statecharts and

reachability graphs will be provided for illustration.
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Figure 4.4 (a) STSCBAWL
; (b) STPNBAWL

.

4.4.1.3 Basic activities without links (BANL)

Now we study basic activities without links, BANL. Its control flow and Petri net repre-

sentation are depicted in Figure 4.5.

Figure 4.5 BANL atomic activities. (a) control flow; (b) statechart; (c)
reachability graph; (d) Petri net.

The Petri net in 3(b) can be described as PNBANL = (P, T, IN,OUT,R,M0), where

P = {start, r, end}

T = {jt, c}

IN = {(start, jt), (r, c)}

OUT = {(jt, r), (c, end)}

R = ∅

M0 = {start}
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4.4.1.4 Exit

The exit atomic activity is modeled as in Figure 4.6.

Figure 4.6 Exit atomic activities. (a) control flow; (b) statechart; (c) Petri
net.

The Petri net in 4(b) can be described as PNexit = (P, T, IN,OUT,R,M0), where

P = {start}(note that the ”process end” place is the ending place for the whole service instance

which is outside this Petri net)

T = {c}

IN = {(start, c)}

OUT = {(c, ProcessEnd)}

R = ∅

M0 = {start}

In the rest of this section, we describe the transformation for structured activities. From

the above analysis on basic activities we can see that an activity without links is just a simpler

case of one with links. The transformation and proof for both cases are highly similar. For

this reason, below we only show the linked version for structured activities.

Some structured activities share the same Petri net models. For example: PNSequence =

PNBAWL, PNPick = PNif , PNsequentialforeach = PNwhile, and PNparallelforeach = PNflow

when completioncondition is absent. Though not shown in details in this thesis, we model

handlers (exception handler, compensation handler, etc.) as branches after the main activity

(similar to the Scope construct).
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4.4.2 If

The syntax of the If construct is

If ::= “<if” standard-attributes “>”standard-elements condition Activities #(elseif) O(else)

“</if>”

which is re-written as:

If not(join condition)

then set linkFalse

else If (condition 1)

activity 1

elseif (condition 2)

activity 2

else

activity 3

end If

If not(transition condition)

then set linkFalse

else set linkTrue

end If

end If

The If construct is modeled as in Figure 4.7. According to the WS-BPEL definition of

construct If, there may be any number of elseif ’s. Here we only model one elseif. However,

the transformation scales up with the number of elseif and the proof remains the same. The

original flow chart is depicted in the left graph of Figure 4.7(a). Since we only analyze control

flow, branches (1) to (4) can be simplified to three branches, as shown in the right graph of

Figure 4.7(a). Both figures are equivalent in terms of control. The transformation is based on

the simplified graph.
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Figure 4.7 If construct. (a) control flow; (b) Petri net; (c) statechart; (d)
reachability graph.
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WS-BPEL does not prevent different branches from having the same condition. As a result,

there might be race condition if multiple branches specify the same condition (Similarly, Pick

activity may have race condition too). The handling of race condition is implementation

dependent. WS-BPEL does not mandate any specific mechanism. In practice, branches with

same condition are used to represent alternative execution paths.

PNif = (P, T, IN, OUT, R, M0), where

P = {start, {ri}, lf, lt, end}

T = {{condi}, {ci1}, {ci2}, jf, jt, fe, te}

IN = {(start, jf), (start, {condi}), {(ri, ci1)}, {(ri, ci2)}, (lf, fe), (lt, te)}

OUT ={(jf, lf), {(condi, ri)}, ({ci1}, lf), ({ci2},lt), (fe,end), (te, end)}

R = { rjf , {rcondi}, {rci1}, {rci2}} (firing rates for timed transitions)

M0 = {[start]}

– 1 ≤ i ≤ n, where n is the number of “elseif” and “else” branches.

– {ri} is the set of places for “elseif” and “else”.

– {condi} is the set of transitions to start “elseif” and “else” branches.

– {ci1} and {ci2} are the sets of transitions to complete “elseif” and “else” branches.

Proof skipped.

4.4.3 While

The syntax of the While construct is

While ::= “<while” standard-attributes “>” standard-elements condition Activities “</while>”

which is re-written as:

If not(join condition)

then set linkFalse

else while (expression) do

activities

endwhile

If not(transition condition)
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Figure 4.8 While construct. (a) control flow; (b) reachability graph; (c)
Petri net; (d) statechart.

then set linkFalse

else set linkTrue

end If

end If

The While construct is modeled in Figure 4.8. We have:

PNwhile = (P, T, IN,OUT,R,M0), where

P = {start, r1, lf, lt, end}

T = {jf, jt, fc1, fc2, loop, c1, c2, fe, te}
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IN = {(start, jf), (start, jt), (start, fc1), (start, fc2), (r1, loop), (r1, c1), (r1, c2), (lf, fe), (lt,

te)}

OUT ={(jf, lf), (jt, r1), (fc1, fe), (fc2, te), (loop, r1), (c1, lf), (c2, lt), (fe, end), (te, end)}

R = { rjf , rjt, rfc1, rfc2, rloop, rc1, rc2}

M0 = {[start]}

Proof skipped.

The transitions jf and jt model the join condition just as other activities.

In the While construct, the while condition may be evaluated to false the first time. As

a result, the activity may never be executed. Note that the transition condition is evaluated

independent of the while condition. Even though the while condition is evaluated to false and

the activity is never executed, the transition condition may still be evaluated to true. We use

transitions fc1 and fc2 to model the case that initial while condition is false and the activity

is skipped. The firing of fc1 skips the execution of the activity and sets the outgoing link to

be false. Similarly the firing of fc2 skips the activity and sets the outgoing link to be true.

When the “While” activity does not contain any outgoing links, the fc1 and fc2 transitions

are absent in PNwhile.

If the activity is being executed (place r1 holds a token), three transitions are enabled,

including loop, c1 and c2. Transition loop revisits the loop. Transitions c1 and c2 terminate

the iterative execution. Which transition to fire is decided by their firing rates that are set

using domain-specific information or operational profile (from historical usage data).

4.4.4 RepeatUntil

The syntax of the RepeatUntil construct is

RepeatUntil ::= “<RepeatUntil” standard-attributes “>” standard-elements Activities condi-

tion “</RepeatUntil>”

which is re-written as:

If not(join condition)

then set linkFalse



48

Figure 4.9 RepeatUntil construct. (a) control flow; (b) reachability graph;
(c) Petri net; (d) statechart.

else do

activities

Untill (expression)

If not(transition condition)

then set linkFalse

else set linkTrue

end If

end If
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The RepeatUntil construct is modeled in Figure 4.9. Note that the difference between PNWhile

and PNRepeatUntil is that PNWhile has two extra transitions fc1 and fc2 that represent skipping

the activity right from the beginning. In the RepeatUntil construct, the activity will be

executed at least once. Therefore, we do not need the fc1 and fc2 transitions.

PNRepeatUntil = (P, T, IN,OUT,R,M0), where

P = {start, r1, lf, lt, end}

T = {jf, jt, loop, c1, c2, fe, te}

IN = {(start, jf), (start, jt), (r1, loop), (r1, c1), (r1, c2), (lf, fe), (lt, te)}

OUT ={(jf, lf), (jt, r1), (loop, r1), (c1, lf), (c2, lt), (fe, end), (te, end)}

R = { rjf , rjt, rloop, rc1, rc2}

M0 = {[start]}

Proof skipped.

4.4.5 Pick

The syntax of Pick is:

Pick ::= “<pick” pick-attributes “>”U(standard-elements, P(onMessage), O(onAlarm) )

“</pick>”

Each branch in the Pick activity is an event, either message or alarm. These branches may

form a race condition. Similar to the If activity, the handling of the race condition is left to

real implementation, hence not specified in the WS-BPEL.

We use a three-branch Pick construct as an example. Its control flow is depicted in Figure

4.10. This control flow has the same operational semantics with the If construct. Therefore,

PNPick = PNif , where

– 1 ≤ i ≤ n, where n is the number of “onMessage” and “onAlarm” branches.

– {ri} is the set of places for “onMessage” and “onAlarm” branches.

– {coni} is the set of transitions to start branches.

– {ci1} and {ci2} are the sets of transitions to complete branches.

Proof skipped.
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Figure 4.10 Control flow of Pick construct.

4.4.6 Flow

We use a three-parallel-branch Flow construct as an example, which is modelled in Figure

4.11. The syntax of flow is:

flow ::= “<flow” standard-attributes “>” U( standard-elements, O(links), Activities) “<flow>”

We use three places to represent the three execution paths, but in fact, we can model the

parallel execution using only one place. Either way, we get the same state transition system.

Flow is a structured activity that is composed hierarchically by other activities. Section 4.5

describes how a Flow activity is composed – each ri place is replaced by a component Petri

net. For this reason, we create one place for one execution path in PNflow at the beginning

so that we can insert the component Petri nets into PNflow correctly.

PNflow = (P, T, IN,OUT,R,M0), where

P = {start, {ri}, lf, lt, end}

T = {jf, jt, c1, c2, fe, te}

IN = {(start, jf), (start, jt), ({ri}, c1), ({ri}, c2), (lf, fe), (lt, te)}
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OUT = {(jf, lf), (jt, {ri}), (c1, lf), (c2, lt), (fe, end), (te, end)}

R = {rjf , rjt, rc1, rc2} (firing rates for timed transitions)

M0 = {[start]}

– 1 ≤ i ≤ n, where n is the number of parallel branches.

– {ri} is the set of places for parallel branches.

Proof skipped.

Figure 4.11 Flow construct. (a) control flow; (b) reachability graph; (c)
Petri net; (d) statechart.
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4.4.7 ForEach

The syntax of ForEach is:

forEach ::= “<forEach” foreach-attributes “>”U(standard-elements, startCounterValue, final-

CounterValue, O(completionCondition) ) Scope “</forEach>”

foreach-attributes ::= U( counterName, parallel, standard-attributes )

The ForEach construct can be sequential or parallel depending on the value of the parallel

attribute. The operational semantics for sequential and parallel are different, hence we model

them separately.

4.4.7.1 Sequential ForEach

The control flow is illustrated in Figure 4.12. If the number of repetitions has not been

reached, the scope is re-visited. Otherwise, the loop terminates and the control flow proceeds

to the transition condition evaluation. The operational semantics of sequential ForEach is the

same with While activity. We design the probabilities of “staying in the loop” and “exiting the

loop” so that the mean number of iterations is equal to the predefined number of iterations.

We have PNseq foreach = PNwhile.

4.4.7.2 Parallel ForEach

Depending on the values of <startCounterValue> and <finalCounterValue>, there are

(finalCounterV alue−startCounterV alue+1) instances of < scope >. Here we assume there

are 3 instances of <scope> to demonstrate our concepts.

CompletionCondition can be used in the parallel ForEach activity. When it is used, the

completionCondition is evaluated upon the completion of each instance. If it is evaluated to

true, then all the running instances are terminated. The control flow is demonstrated in Figure

4.13.

As stated in the WS-BPEL 2.0 speicification (81), “In essence an implicit <flow> is dynam-

ically created with N+1 copies of the <ForEach>>’s enclosed <scope> activity as children.”

Therefore,
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Figure 4.12 Control flow for sequential ForEach construct.

1. When the completionCondition is not specified, our transformation for parallel ForEach

follows the rule for Flow construct. The hierarchical composition of the ForEach activity

also follows the rule for Flow construct.

PNpar foreach = PNflow

– 1 ≤ i ≤ n, where n is the number of repetitions decided by (finalCounterValue -

startCounterValue + 1).

– {ri} is the set of places for “scope” instances.

Proof skipped.

2. When the completionCondition is specified, any instance completion can terminate all
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Figure 4.13 Control flow for parallel ForEach construct. (a) without
completionCondition; (b) with completionCondition.

other running instances. During atomic transformation, since all the instances are ex-

ecuted concurrently and the execution of each instance is represented by a single place

in the Petri net, There is no difference between this case and the previous case when

completionCondition is absent. Therefore, we generate the same Petri net for this case

and “Flow” activity. However, when connecting component activities to the higher level

structured activities, rules are different for “Flow” and “parallel ForEach with comple-

tionCondition specified”, as described in Algorithm 4. Details are proved in section

4.6.1.2.

We have
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PNpar foreach = PNflow

– 1 ≤ i ≤ n, where n is the number of repetitions decided by (finalCounterValue -

startCounterValue + 1).

– {ri} is the set of places for “scope” instances.

Proof skipped.

4.4.8 Scope

Different from other structured activities, “Scope” is used to enclose an activity (that can

be a basic activity or a structured activity) with different handlers, including eventHandlers,

faultHandlers, and terminationHandler, etc.

The syntax of Scope is:

scope ::= “<scope” scope-attributes “>” scope-elements “</scope>”

scope-attributes ::= U(standard-attributes, O(isolated), exitOnStandardFault )

scope-elements ::= U( standard-elements, O(partnerLink), O(messageExchanges), O(variables),

O(correlationSets), #(handlers), Activities )

We model it as in Figure 4.14.

PNscope = (P, T, IN,OUT,R,M0), where

P = {start, r1, hdlg, lf, lt, end}

T = {jf, jt, e1, c1, c2, h1, h2, fe, te}

IN = {(start, jf), (start, jt), (r1, c1), (r1, c2), (r1, e1), (hdlg, h1), (hdlg, h2), (lf, fe), (lt,

te)}

OUT ={(jf, lf), (jt, r1), (c1, lf), (c2, lt), (e1, hdlg), (h1, lf), (h2, lt), (fe, end), (te, sf)}

R = {rjf , rjt, rc1, rc2, re1, rh1, rh2} (firing rates for timed transitions)

M0 = {[start]}.

Proof skipped.
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Figure 4.14 Scope construct. (a) control flow; (b) statechart; (c) Petri net;
(d) reachability graph.

4.5 Transformation of Composition

4.5.1 Algorithms

A business process described in WS-BPEL is an XML document, which has a tree structure.

Therefore, we can parse the WS-BPEL description into a tree T of WS-BPEL constructs,

abbreviated as construct tree. Each node in this tree, abbreviated as construct node, is an

activity that can be basic (having no child) or structured (with children). Algorithm 1 outlines

the overall transformation process.

The construct tree T discussed here carries the same semantics of WS-BPEL. The ordering
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of child activities is the same with the one described in the business process. For example,

a “Sequence” activity may have 5 or more child activities. The 5 child activities are sibling

nodes in the construct tree. They are placed in the same order as in the WS-BPEL process.

In WS-BPEL, the composition is realized through structured activities. In our transfor-

mation, this composition is the process to compose child nodes into the parent node in the

construct tree. The operation of composition, denoted as ◦, is realized in two ways:

• Sequential composition of activities, denoted as ⊕. In transformation, the sequential

composition is performed as concatenation, i.e., we concatenate the component Petri

nets together.

• Hierarchical composition, denoted as
⊙

(for example, composing a While activity using

component activities). In transformation,
⊙

is performed as insertion. More specifically,

we generate a Petri net for the parent node first, and then insert the child Petri nets into

the parent Petri net. Details are shown in Algorithm 4.

Root Activity.

The root node of a construct tree T is a Sequence activity.

Let {T1, T2, . . . , Tn} be the set of T ’s children, and {PN1, PN2,. . . , PNn} be the set of Petri

nets corresponding to the child nodes.

Then PNT = PN1⊕PN2⊕ . . .⊕PNn. Note that each Ti may be hierarchical, so does PNi.

Algorithm 1 depicts the overall process of transformation. This algorithm takes a WS-

BPEL document as input and outputs a Petri net.

Algorithm 1. PN BPEL2PN(BPEL Bprocess)

Begin

Parse Bprocess into construct tree T

PNBprocess = ProcessNode(T )
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return PNBprocess

End

Algorithm 2 describes how we process the construct tree. This recursive algorithm traverses

the construct tree in depth-first order. Consequently, the Petri net is generated hierarchically.

When T is a basic activity, it is represented as a leaf node in the construct tree. In this

case, Lp is an empty set.

Algorithm 2. PN ProcessNode(node T )

Begin

Let Lp be empty list

For each Ti child of T Do

PNi = ProcessNode(Ti)

Add PNi to Lp

Generate PNT for T with Lp using StructuredAct(T , Lp)

/∗Lp is ∅ when T has no child∗/

Return PNT

End

The composition process, ◦, is depicted in function StructuredAct(T , Lp) (Algorithm 3).

As described at the beginning of this section, we process composition in two ways: concatena-

tion and insertion. Concatenation is described in Algorithm 3. The insertion operation,
⊙

, is

performed using function InsertPN that is displayed in Algorithm 4.

Note that when we process “Flow” activity (in Algorithm 3) we transform the “Flow” ac-

tivity regardless its enclosed control links first, and then add the control links to the generated

Petri net by invoking the ProcessLink function (shown in Algorithm 5). As stated in section

4.3, this is because that control links may cross sequential activity boundaries.
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Algorithm 3. PN StructuredAct(node T , List Lp)

Begin

Switch T

Case “Basic”:

Generate a Petri net PNT for T according to PNBAWL, PNBANL, or PNexit

Case “Sequence”: /∗operation ⊕∗/

Concatenate Lp sequentially to PNT

/∗merge the end place of PNi−1 with the start place of PNi∗/

Case “If”, “Pick”:

Generate a Petri net PNT according to PNif

/ ∗ |ri| = |Lp| ∗ /

Replace places {ri} in PNT with Lp using InsertPN(PNT , Lp)

Case “While”, “Sequential ForEach”:

Generate a Petri net PNT according to PNwhile

Replace place r1 in PNT with Lp using InsertPN(PNT , Lp)

Case “RepeatUntil”:

Generate a Petri net PNT according to PNRepeatUntil

Replace place r1 in PNT with Lp using InsertPN(PNT , Lp)

Replace places ri in PNT with Lp using InsertPN(PNT , Lp)

Case “Flow”:

Generate a Petri net PNT according to PNflow

Replace places {ri} in PNT with Lp using InsertPN(PNT , Lp)

ProcessLink(Bprocess, PNT )

Case “Parallel ForEach”:

Generate a Petri net PNT according to PNflow

Replace places {ri} in PNT with Lp using InsertPN(PNT , Lp)

Case “Scope”:

Generate a Petri net PNT according to PNscope
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Replace place r1 in PNT with Lp using InsertPN(PNT , Lp)

End Switch

Return PNT

End

Algorithm 4. PN InsertPN(PN PNT , List Lp)

Begin

Switch PNT

Case “If”:

For each PNi in Lp Do

Remove place ri from PNT

Remove links (condi, ri), (ri, ci1), and (ri, ci2) from PNT

Add links (condi, starti), (endi, ci1) and (endi, ci2) to PNT

/∗starti and endi are the “start” and “end” places of PNi, respectively∗/

Case “While”, “Sequential ForEach”:

Pop PN1 from Lp

/ ∗While activity has one child node: basic activity or Sequence activity ∗/

Remove links (jt, r1), (r1, loop), (loop, r1), (r1, c1), and (r1, c2) from PNT

Remove place r1 from PNT

Add links (jt, start1), (end1, c1) and (end1, c2) to PNT

/∗start1 and end1 are the “start” place and “end” place of PN1, respectively∗/

Case “RepeatUntil”:

Pop PN1 from Lp

/ ∗RepeatUntil activity has only one child node

Remove links (jt, r1), (r1, loop), (loop, r1), (r1, c1), and (r1, c2) from PNT

Remove place r1 from PNT

Add links (jt, start1), (end1, c1) and (end1, c2) to PNT

/∗start1 and end1 are the “start” place and “end” place of PN1, respectively∗/

Case “Pick”:
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For each PNi in Lp Do

Remove place ri from PNT

Remove links (condi, ri), (ri, ci1), and (ri, ci2) from PNT

Add links (condi, starti), (endi, ci1) and (endi, ci2) to PNT

/∗starti and endi are the “start” and “end” places of PNi, respectively∗/

Case “Flow”:

For each PNi in Lp Do

Remove place ri from PNT

Remove links (jt, ri), (ri, ci1), and (ri, ci2) from PNT

Add links (jt, starti), (endi, ci1) and (endi, ci2) to PNT

/∗starti and endi are the “start” and “end” places of PNi, respectively∗/

Case Parallel “ForEach” without completionCondition specified:

For each PNi in Lp Do

Remove place ri from PNT

Remove links (jt, ri), (ri, ci1), and (ri, ci2) from PNT

Add links (jt, starti), (endi, ci1) and (endi, ci2) to PNT

/∗starti and endi are the “start” and “end” places of PNi, respectively∗/

Case Parallel “ForEach” with completionCondition specified:

For each PNi in Lp Do

Remove place ri from PNT

Remove links (jt, ri), (ri, ci1), and (ri, ci2) from PNT

Add links (jt, starti), (endi, ci1) and (endi, ci2) to PNT

/∗starti and endi are the “start” and “end” places of PNi, respectively∗/

For each transition in {cik|cik ∈ Ti and cik points to ei} Do

Update the name of transition cik to ccfik

/∗Now add extra transition cctik and marking-dependent arcs∗/

Add transition cctik

Add arcs (Pj − {ej}, cctik), where j 6= i and Pj is the set of places in PNj
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Set the arc cardinality of (pj , cctik) to be µpj

Let pi = the input place of transition ccfik, add arc (pi, cctik)

Add arcs (cctik, {ej}1≤j≤n)

Case “Scope”:

Pop PN1 from Lp

/ ∗ Scope activity has only one child node

Remove links (jt, r1), (r1, e1), (r1, c1), and (r1, c2) from PNT

Remove place r1 from PNT

Add links (jt, start1), (end1, e1), (end1, c1) and (end1, c2) to PNT

/∗start1 and end1 are the “start” and “end” places of PN1, respectively∗/

End Switch

Return PNT

End

In WS-BPEL, each control link has a unique ID, called “name”, and specified source activity

and target activity. Therefore, it is possible to find and connect the corresponding source Petri

net and target Petri net for a specific link.

For each join condition, let l be the number of incoming links. There are totally 2l−1 “join

false” transitions and 1 “join true” transition jt, as discussed in section 4.3. We number all

the join transitions according to their incoming link status. These numbers can be converted

into bit-strings. Each of such a string has l bits and each bit represents a link status. For

example, for 6’th join transition of join condition d, the bit-string is [0, 0, ..., 1, 0, 0]. That

means only link3 = true. All other links are false. In this case, we should connect lt3 to jfd6,

and connect {lfk|1 ≤ k ≤ l and k 6= 3} to jfd6. Similarly, the bit-string for jtd is [1, 1, ..., 1],

which is converted from integer 2l− 1. That means all the incoming links are true. We should

connect {ltk|1 ≤ k ≤ l} to jtd.

Following the above rules, we use Algorithm 5 to process control links.

Algorithm 5. PN ProcessLink(BPEL T, PN pnt)

Begin
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For each control link (s, t) in PNT Do

/∗ Firstly, connect from source activities to link status places. ∗/

/ ∗ fes and tes are the transitions pertaining to the source Petri net. ∗/

Create places lfst and ltst

Add arc (tes, ltst)

If the source activity specifies transitionCondition, Then

Add arc (fes, lfst)

For each (join condition) Do

/∗ Secondly, connect link status places to the target activities.∗/

Let l be the number of incoming links for this join condition

For i from 0 to 2l − 1 Do

/∗ Connect each join transition JTi. JTi = jt when i = 2l − 1; Otherwise JTi = jfi ∗/

Convert i to bit-string B, B contains l bits

For j from 1 to l Do

/∗Connect each incoming link to JTi. ∗/

/∗ lfj and ltj are the places representing link status for the j′th incoming link. ∗/

/∗ In the Petri net, lfj and ltj are represented as lfst and ltst, where t is the Petri

net holding the current join condition ∗/

If Bj = 0, Then

Add arc (lfj , JTi)

Else

Add arc (ltj , JTi)

If the target activity is a While construct, Then

/∗ fc1t, and fc2t are the transitions pertaining to the target Petri net.∗/

For j from 1 to l Do

Add arcs (ltj , fc1t) and (ltj , fc2t)

End
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4.5.2 Examples

There are plenty of tools available for analyzing and simulating Petri nets, through which

different properties can be verified. Our work of formalizing the transformation from WS-

BPEL to Petri net bridges the business process design language and the analytic models.

This makes it easier for service designers to verify their design, conduct performance analysis,

and carry out impact analysis, etc. In the following, we use two examples to illustrate how

service composition can be handled using Petri net. These examples are extracted from the

SmartHome project at Iowa State University (47).

4.5.2.1 The SeeMovie example

Figure 4.15 SeeMovie WS-BPEL process.

The first example describes the scenario of going out to see a movie. The WS-BPEL

process describing the behavioral model is shown in Appendix B. When the elder resident

invokes the SeeMovie service, a flow construct is executed to check movie/bus schedule and

purchase tickets. As shown in the Figure 4.15, there are two synchronizing links between the

two parallel sequences. One is from Invoke BusSchedule to Invoke Ticket since one can only

decide which bus to take when the movie schedule is set. The other synchronizing link goes



65

Figure 4.16 PNseemovie
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from the Invoke MovieTicket service to the Invoke BusFare, which decides that only after the

movie ticket is purchased do we purchase bus tickets.

The whole procedure is enclosed in a “Scope” activity. This “Scope” activity has a event

handler. The event handler catches cancel messages from the client. When a cancel message

arrives, a compensate activity reverses the transactions (returning the tickets, etc.) and then

terminates the whole process. This scenario can be expanded to include other transportation

methods such as a taxi. Here we simplify our example to demonstrate the merits of composition.

Figure 4.15 displays this WS-BPEL process. Figure 4.16 depicts its Petri net presenta-

tion. The “Compensation Handling” illustrates the event handler associated with the “Scope”

activity. The analysis of Figure 4.16 shows this Petri net is safe and livelock free.

4.5.2.2 The FireHazard example

The second example is used to illustrate flow and IF constructs. The WS-BPEL process

describing the behavioral model is shown in Appendix C. It describes the composite service of

fire hazard processor. In an efficiency apartment within a smart apartment complex, the digital

smoke detector senses an unusual amount of smoke in the air, which immediately triggers the

service of FireHazardProcessor. This service initiates the fire alarm and the sprinkler system

as part of fire emergency service and makes 911 emergency calls. The next step is to check

fire status through smoke detector, chemical sensors or temperature sensors. If fire is assured

to be eliminated, FireHazardProcessor service ends itself; otherwise this loop continues till the

fire is out. The WS-BPEL process of this service is depicted in Figure 4.17 and its generated

Petri net is shown as in Figure 4.18.
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Figure 4.17 FireHazard WS-BPEL process.
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Figure 4.18 PNfirehazard.
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4.6 Correctness of Transformation

In section 4.4 we have proved that the atomic transformation preserves the original system

behavior (the soundness). Now we demonstrate that the soundness is preserved during the

composition process.

4.6.1 Correctness of atomic composition

“Atomic composition” means that only one step composition is performed, such as com-

posing two sequential activities and composing one structured activity using its component

activities. Section 4.5 lists two ways of composition: sequential composition and hierarchi-

cal composition. In the transformation presented in this thesis, the sequential composition is

processed as concatenation, and the hierarchical composition is processed as insertion.

Note that the sequential composition may still involve control links if both activities of the

sequential composition belong to a “Flow” activity. However, we do not process control links

unless we have connected all the component Petri nets of a “Flow” activity, as stated above in

Algorithm 4.

Below we show that atomic sequential composition and atomic hierarchical composition

are correct.

4.6.1.1 Correctness of atomic sequential composition

Let PN1 = (P1, T1, IN1, OUT1, R1,M01), PN2 = (P2, T2, IN2, OUT2, R2,M02).

Then PNT = PN1
⊕
PN2 = (P, T, IN,OUT,R,M0), where

P = P1
⋃
P2 − {end1}

T = T1
⋃
T2

IN = IN1
⋃
IN2

OUT = OUT1
⋃
OUT2

⋃
{(t, start2)|∃t ∈ T1 and (t, end1) ∈ OUT1}

−{(t, end1)|∃t ∈ T1 and (t, end1) ∈ OUT1}

R = R1
⋃
R2

M0 = {[start1]}
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Let G1 and G2 be the reachability graphs of PN1 and PN2.

Let S1 and S2 be the statecharts of T1 and T2. We have:

G1 = (V1, E1),

S1 = (A1, B1),

Bijection function f : V1 → A1

G1 and S1 are isomorphic, i.e., (c, d) ∈ E1 ⇔ (f(c), f(d)) ∈ B1

G2 = (V2, E2),

S2 = (A2, B2),

Bijection function t : V2 → A2

G2 and S2 are isomorphic, i.e., (x, y) ∈ E2 ⇔ (t(x), t(y)) ∈ B2

Obviously, the reachability graph of T , G, is the concatenation of G1 and G2. G = (V,E),

where

V = V1
⋃
V2

[end1] = [start2], where [end1] is the end marking of G1 and [start2] is the start marking

of G2

E = E1
⋃
E2

V1
⋂
V2 = [start2]

E1
⋂
E2 = ∅

Similarly, define the statechart of T as S = (A,B), where

A = A1
⋃
A2

end1 = start2, end1 is the end state of S1 and start2 is the start state of S2

B = B1
⋃
B2

A1
⋂
A2 = start2

B1
⋂
B2 = ∅

Theorem 2. Concatenating sequential Petri nets preserves the soundness of atomic transfor-

mation, i.e., G ∼= S(G and S are defined as above).

Proof. Define a bijection function h : V → A as
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h(x) =

f(x) if x ∈ V1

t(x) if x ∈ V2

Because B1 and B2 are disjoint,

(h(x), h(y)) ∈ B1

⇔ x, y ∈ V1

⇔ (h(x) = f(x)) ∧ (h(y) = f(y))

(4.3)

Similarly,

(h(x), h(y)) ∈ B2 ⇔ (h(x) = t(x)) ∧ (h(y) = t(y)) (4.4)

We need to prove that

(x, y) ∈ E ⇔ (h(x), h(y)) ∈ B.

(h(x), h(y)) ∈ B

⇔ (h(x), h(y)) ∈ B1 or (h(x), h(y)) ∈ B2

⇔ (f(x), f(y)) ∈ B1 or (t(x), t(y)) ∈ B2 by (4.3) and (4.4)

⇔ (x, y) ∈ E1 or (x, y) ∈ E2

⇔ (x, y) ∈ E

From Theorem 2, we can see that after sequential composition, the transformed Petri net

and the original WS-BPEL description still have isomorphic state transition models.

Example.

Below we use an example to illustrate this process. Figure 4.19 demonstrate the sequential

composition of two basic activities, T1 and T2.

The isomorphism between the startchart and the reachability graph shown in Figure 4.19

indicates that our transformation of composing two sequential basic activities preserves the

original system behavior. In fact, the transformation of composing any two activities, either

basic or structured, will not change the original system state transition. This has been proved

in theorem 2.
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Figure 4.19 Composing two basic activities (a) Control flow; (b) Petri net;
(c) Statechart; (d) Reachability graph.



73

4.6.1.2 Correctness of atomic hierarchical composition

In a hierarchical state model, a certain state can be expanded to a state model of a lower-

level system. In other words, a component state transition system is represented as a single

state in the higher-level system. Our hierarchical composition follows the same rule.

However, the situation is more complex when the higher-level system has concurrency

(parallel execution). In this case, the state model of the higher-level system is not a simple

composition of its component state models as described above. One state in the higher-level

state model represents not only the state of one component system, but the state of all the

concurrent component systems. In fact, the state transition of the concurrent execution is a

product of all the concurrent state models. If the concurrent execution has synchronization

dependency, the situation is even more complicated.

Below we study the four cases separately:

(1) hierarchical composition without concurrency;

(2) hierarchical composition with concurrency but no synchronization;

(3) Parallel ForEach when completionCondition is specified, which is a special case of (2);

and

(4) hierarchical composition with concurrency and synchronization.

In our transformation from WS-BPEL to Petri net, “Flow” construct belongs to case (2)

and case (4). Parallel “ForEach” when completionCondition is not specified belongs to case

(2). Parallel “ForEach” when completionCondition is specified is a special case of (2). The

concurrent execution of (3) is the same with the one of (2). However, because we add extra

transitions and marking-dependent arcs (18), the ending of the concurrent execution in (2) is

different from the one in (3). Therefore, we take (3) out as a special case. All other hierarchical

composition, such as While, Sequential ForEach, If , and Scope, belong to case (1).

4.6.1.3 Correctness of atomic hierarchical composition without concurrency.

T is the structured activity that is composed using Ta. PNP is the Petri nets generated for

T according to its activity type during atomic transformation. PNa is the Petri net modelling
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Ta. Following algorithm shown in Algorithm 4, PNa is inserted into PNP to replace the r1

place. The Petri net after the insertion is denoted as PNT . We have

PNP = (PP , TP , INP , OUTP , RP ,M0P ),

PNa = (Pa, Ta, INa, OUTa, Ra,M0a).

Then PNT = PNP
⊙
PNA = (P, T, IN,OUT,R,M0), where

P = PP
⋃
Pa − {r1P }

T = TP
⋃
Ta

IN = INP
⋃
INa

⋃
{enda, {tranP }} − {r1P , {tranP }}, where {tranP } is the set of

r1P ’s output transitions.

OUT = OUTP
⋃
OUTa

⋃
{{tranP }, starta}−{{tranP }, r1P }, where {tranP } is the set

of r1P ’s input transitions.

R = RP
⋃
Ra

M0 = {[startP ]}.

Let GP and Ga be the reachability graphs of PNP and PNa.

Let SP and Sa be the statecharts of TP and Ta. We have:

GP = (VP , EP ),

SP = (AP , BP ),

Ga = (Va, Ea),

Sa = (Aa, Ba),

From the atomic transformation, we have GP
∼= SP and Ga

∼= Sa.

Define a bijection function t : VP → AP ,

(c, d) ∈ EP ⇔ (t(c), t(d)) ∈ BP (4.5)

Bijection function f : Va → Aa,

(x, y) ∈ Ea ⇔ (f(x), f(y)) ∈ Ba (4.6)

More specifically, we have
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f([starta]) = starta,

f([enda]) = enda,

t([r1P ]) = rP , where [r1P ] ∈ VP and [r1P ] is the state to be replaced hierarchically by Ga;

rP ∈ AP and rP is the state to be replaced hierarchically by Sa.

Following the properties of hierarchical state model, the reachability graph of PNT is:

G = (V,E), where

V = VP
⋃
Va − {[r1P ]}

E = EP
⋃
Ea⋃

{([enda], [starta]) | ([r1P ], [r1P ]) ∈ EP ,

(sP , [starta]) | ∃sP ∈ VP and sP 6= [r1P ], (sP , [r1P ]) ∈ EP ,

([enda], tP ) | ∃tP ∈ VP and tP 6= [r1P ], ([r1P ], tP ) ∈ EP }

−{(sP , [r1P ]) | ∃sP ∈ VP and sP 6= [r1P ], (sP , [r1P ]) ∈ EP ,

([r1P ], tP ) | ∃tP ∈ VP and tP 6= [r1P ], ([r1P ], tP ) ∈ EP }

Let Eb = {([enda], [starta]) | ([r1P ], [r1P ]) ∈ EP ,

(sP , [starta]) | ∃sP ∈ VP and sP 6= [r1P ], (sP , [r1P ]) ∈ EP ,

([enda], tP ) | ∃tP ∈ VP and tP 6= [r1P ], ([r1P ], tP ) ∈ EP }

Let Eps = {(sP , [r1P ]) | ∃sP ∈ VP and sP 6= [r1P ], (sP , [r1P ]) ∈ EP ,

([r1P ], tP ) | ∃tP ∈ VP and tP 6= [r1P ], ([r1P ], tP ) ∈ EP }

Obviously Eps ⊂ EP

Then E = (EP − Eps)
⋃
Ea

⋃
Eb

(EP − Eps), Ea, Eb are pairwise disjoint.

Similarly, the statechart of T is

S = (A,B), where

A = AP
⋃
Aa − {rP }

B = BP
⋃
Ba⋃

{(enda, starta) | (rP , rP ) ∈ BP ,
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(ssP , starta) | ∃ssP ∈ AP and sP 6= rP , (sP , rP ) ∈ BP ,

(enda, ttP ) | ∃ttP ∈ AP and ttP 6= rP , (rP , ttP ) ∈ BP }

−{(ssP , rP ) | ∃ssP ∈ AP and ssP 6= rP , (ssP , rP ) ∈ BP ,

(rP , ttP ) | ∃ttP ∈ AP and ttP 6= rP , (rP , ttP ) ∈ BP }

= (BP −Bps)
⋃
Ba

⋃
Bb

(BP −Bps), Ba, Bb are pairwise disjoint.

Theorem 3. Based on the definitions of G,GP , Ga, S, SP , Sa, if GP
∼= SP and Ga

∼= Sa, then

G ∼= S.

Proof. Define a bijection function h : V → A as

h(x) =

t(x) if x ∈ VP

f(x) if x ∈ Va

Because (BP −Bps), Ba and Bb are pairwise disjoint,

(h(x), h(y)) ∈ B

⇔ (1)(h(x), h(y)) ∈ (BP −Bps)

or (2) (h(x), h(y)) ∈ Ba

or (3) (h(x), h(y)) ∈ Bb

⇔ (1)(t(x), t(y)) ∈ BP

and t(x) 6= rP and t(y) 6= rP

or (2) (f(x), f(y)) ∈ Ba

or (3) (h(x), h(y)) = (enda, starta)

or (h(y) = starta ∧ h(x) ∈ AP ∧ h(x) 6= rP ∧ (h(x), rP ) ∈ BP )

or (h(x) = enda ∧ h(y) ∈ AP ∧ h(y) 6= rP ∧ (rP , h(y)) ∈ BP )

⇔ (1)(x, y) ∈ EP

and x 6= [r1P ] and y 6= [r1P ]

or (2) (x, y) ∈ Ea
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or (3) ((x, y) = ([enda], [starta])

or (y = [starta] ∧ h(x) ∈ VP ∧ h(x) 6= [r1P ] ∧ (x, [r1P ]) ∈ EP )

or (x = [enda],∧h(y) ∈ VP ∧ h(y) 6= [r1P ] ∧ ([r1P ], y) ∈ EP ))

⇔ (1)(x, y) ∈ (EP − Eps)

or (2) (x, y) ∈ Ea

or (3) (x, y) ∈ Eb

⇔ (x, y) ∈ E

Theorem 3 ensures that inserting one component state transition models into the parent

state transition model preserves the soundness of atomic transformation.

Theorem 4. Hierarchical composition without concurrency preserves the original system be-

havior.

Proof. For “While” and “Sequential ForEach” composition, we have only one state rP to be

replaced. This soundness is proved by Theorem 3.

For “If” and “Pick” compositions, we have multiple child state transition models to insert

into the parent model. We can conduct the insertion step by step. Each step of insertion

preserves the soundness according to Theorem 3. Therefore, after the insertion process is

done, the composed Petri net still preserves the original behavior of the composed activity.

Example.

In this example, we compose the “While” activity using its child activity, Ta. The control

flow and statechart are shown in Figure 4.20.

The transformation follows Algorithm 3. We first generate a Petri net PNa for its child

activity, then create Petri net PNwhile according to the transformation defined in section 4.4.3,

and finally insert PNa into PNwhile and update arcs. This process is shown in Figure 4.21.

The corresponding reachability graphs are shown in Figure 4.22.
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Figure 4.20 Hierarchical composition - While. (a) Control flow; (b) state-
chart.
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Figure 4.21 Hierarchical composition - While: Petri net.
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Figure 4.22 Hierarchical composition - While: Reachability graph.

The reachability graph of the composed Petri net PNT , G shown in Figure 4.22, is isomor-

phic to the original statechart, as shown in Figure 4.20(b).

4.6.1.4 Correctness of atomic hierarchical composition with concurrency (No

synchronization).

In this case, we consider concurrent composition without control links. As stated in section

4.1, state machines are used to describe the state transition of systems with concurrency.

The composition of all the structured activities follows the same “insertion” rule: replacing

the running state r with the state transition of the component systems, denoted as Sa. However,

Sa is different for activities with or without concurrency.
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1. For activities without concurrency, the Sa is simply the state transition model of the

single component activity.

2. Flow and parallel ForEach have multiple concurrent components. Therefore the Sa is

the product of the component state transition models.

Let T be the structured activity that is composed using concurrent activities {Ti}, where

|Ti| = n. PNP is the Petri net generated for T according to its activity type during atomic

transformation. PNi is the Petri net modelling Ti.

PNP = (PP , TP , INP , OUTP , RP ,M0P ),

PNi = (Pi, Ti, INi, OUTi, Ri,M0i), where 1 ≤ i ≤ n

Then PNT = PNP
⊙
{PNi} = (P, T, IN,OUT,R,M0), where

P = PP
⋃
{Pi} − {ri}P

T = TP
⋃
{Ti}

IN = INP
⋃
{INi}

⋃
{({endi}, c1), ({endi}, c2)}P − {({ri}, c1), ({ri}, c2)}P

OUT = OUTP
⋃
{OUTi}

⋃
{(jt, {starti})}P − {(jt, {ri})}P

R = RP
⋃
{Ri}

M0 = {[startP ]}.

PNP , PNi, PNT are shown in Figure 4.23.

GP = (VP , EP ) is the reachability graph of PNP that is isomorphic to the statechart

SP = (AP , BP ).

Gi = (Vi, Ei) is the reachability graph of PNi.

Let Ga be the product of Gi, i.e., Ga = G1 × . . .×Gn = (Va, Ea).

Va = V1 × V2 × . . .× Vn,

Ea = {(p1. . .pn, q1. . .qn) | ∃ i such that (pi, qi) ∈ Ei ∧ (∀j, 1≤j≤n and j 6= i,

pj = qj)}

–[starta] = [start1 . . . starti . . . startn]

–[enda] = [end1 . . . endi . . . endn].
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Figure 4.23 Hierarchical composition with concurrency.

Then we have G = (V,E), where

V = VP
⋃
Va − {[{ri}P ]}

E = EP
⋃
Ea⋃

{(sP , [starta]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([enda], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

−{(sP , [{ri}P ]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([{ri}P ], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

Let Eb = {(sP , [starta]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,
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([enda], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

Eps = {(sP , [{ri}P ]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([{ri}P ], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

Then E = (EP − Eps)
⋃
Ea

⋃
Eb.

Figure 4.24 Hierarchical composition with concurrency.

The composition of G from GP and Ga is shown in Figure 4.24.

Similarly, Si = (Ai, Bi) is the statechart of activity Ti.

Let Sa be the product of Si, i.e., Sa = S1 × S2 × . . .× Sn = (Aa, Ba), where
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Aa = A1 ×A2 × . . .×An,

Ba = {(k1. . .kn, r1. . .rn) | ∃ i such that (ki, ri) ∈ Bi ∧ (∀j, 1≤j≤n and (j 6= i),

kj = rj)}

The statechart of T is S = (A,B), where

A = AP
⋃
Aa − {{ri}P }

B = BP
⋃
Ba⋃

{(ssP , starta) | ∃ssP ∈ AP , (ssP , {ri}P ) ∈ BP ,

(enda, ttP ) | ∃ttP ∈ AP , ({ri}P , ttP ) ∈ BP }

−{(ssP , {ri}P ) | ∃ssP ∈ AP , (sP , {ri}P ) ∈ BP ,

({ri}P , ttP ) | ∃ttP ∈ AP , ({ri}P , ttP ) ∈ BP }

= (BP −Bps)
⋃
Ba

⋃
Bb

–starta = start1 . . . starti . . . startn

–enda = end1 . . . endi . . . endn.

Theorem 5. Based on the definitions above, if Gi
∼= Si, then Ga

∼= Sa.

Proof. Since Gi
∼= Si, there exists a bijection function fi : Vi → Ai, such that

(x, y) ∈ Ei ⇔ (fi(x), fi(y)) ∈ Bi (4.7)

Define a new bijection function f : Va → Aa as

f(x) = f1(x1)...fn(xn),when x = x1x2...xn ∈ Va (4.8)

Since [starti] ∈ Vi and starti ∈ Ai, with 4.7 we have fi([starti]) = starti.

With 4.7 and 4.8, we have

f([starta]) = f([start1...startn]) = f1([start1]) . . . fi([starti]) . . . fn([startn])

= start1 . . . starti . . . startn = starta.

f([enda]) = enda.
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To prove Ga
∼= Sa, we need to prove that (f(x), f(y)) ∈ Ba ⇔ (x, y) ∈ Ea.

(f(x), f(y)) ∈ Ba

⇔ (f(x), f(y)) = (f1(x1)...fn(xn), f1(y1)...fn(yn)) ∈ Ba

⇔ (f(x), f(y)) = (f1(x1)...fn(xn), f1(y1)...fn(yn)) ∧ ∃i such that

(fi(xi), fi(yi)) ∈ Bi∧

∀j(1 ≤ j ≤ n and j 6= i, fj(xj) = fj(yj))

⇔ (x, y) = (x1...xn, y1...yn) ∧ ∃i such that

(xi, yi) ∈ Ei∧ /∗by equation (4.7)∗/

∀j(1 ≤ j ≤ n and j 6= i, xj = yj)

⇔ (x, y) = (x1...xn, y1...yn) ∧ (x1...xn, y1...yn) ∈ Ea

⇔ (x, y) ∈ Ea

Theorem 6. Based on the definitions of G,S,Ga, Sa, GP , SP , if GP
∼= SP and Ga

∼= Sa, then

G ∼= S.

Proof. The proof is the same with the one for Theorem 3.

Theorem 6 proves that the Flow activity and parallel ForEach (completionCondition is

not specified) have reachability graphs isomorphic to the original state transition systems.

4.6.1.5 Correctness of atomic hierarchical composition - Parallel ForEach with

completionCondition specified.

When composing a parallel ForEach activity with completionCondition, our first step

follows the same insertion rule: we insert the Petri nets of instances into the parent Petri net.

After the first step, we add more transitions and marking-dependent arcs.

Revisiting section 4.4.7.2, when the completionCondition is specified, any instance com-

pletion can terminate all other running instances.

Let T be the ForEach structured activity that is composed by Ti. Ti can be atomic activity

or structured activity. PNi is the Petri net for instance Ti. The starting place and ending
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place in PNi are si and ei, respectively. PNP is the Petri net generated for T from atomic

transformation. PNP = PNflow.

Ti does not have incoming or outgoing control links according to the properties of control

links (section 4.3). Therefore, PNi has at most two transitions immediately preceding the

end place ei. If Ti is a While activity or a sequential ForEach activity, then in PNi there

are two transitions pointing to ei: fc and c. Transition fc represents the situation of “while

condition is not satisfied” and transition c represents the completion of activity execution. If

Ti is not a While or sequential ForEach activiy, PNi has only one transition c pointing to

ei. For convenience, in the description of PNpar foreach shown below, we use cik to represent

a transition that points to ei in PNi, where k ∈ {1, 2}. In fact, {cik} = {fci, ci} when Ti is a

While or a sequential ForEach activity. Otherwise {cik} = {ci}.

The Petri net generated for this activity is:

PNT = (P, T, IN,OUT,D−, R,M0), where

P = PP
⋃
{Pi} − {ri}P

T = TP
⋃
{Ti

⋃
{ccfik, cctik|∃cik, (cik, ei) ∈ OUTi}k − {cik|∃cik, (cik, ei) ∈ OUTi}k}i

IN = (INP
⋃
{({ei}, c1), ({ei}, c2)} − {({ri}, c1), ({ri}, c2)}P )⋃

{INi
⋃
{(pi, cctik), (pi, ccfik)|∃pi ∈ Pi, cik ∈ Ti, (pi, cik) ∈ INi and (cik, ei) ∈ OUTi}k

−{(pi, cik)|∃pi ∈ Pi, cik ∈ Ti, (pi, cik) ∈ INi and (cik, ei) ∈ OUTi}k}i⋃
{(pj , cctik)|∃pj ∈ Pj , cik ∈ Ti, i 6= j}i,j

OUT = (OUTP
⋃
{(jt, {starti})} − {(jt, {ri})}P )⋃

{OUTi
⋃
{(ccfik, ei), (cctik, ei)|∃cik ∈ Ti, (cik, ei) ∈ OUTi}k

−{(cik, ei)|∃cik ∈ Ti, (cik, ei) ∈ OUTi}k}i⋃
{(cctik, ej)|∃cik ∈ Ti, i 6= j}i,j

D− = {(µpj , (pj , cctik))|∃pj ∈ Pj and (pj , cctik) ∈ IN, i 6= j}k,i,j

R = RP
⋃
{Ri

⋃
{rccfik

, rcctik |∃ccfik, cctik ∈ T}k − {rcik
|∃cik ∈ Ti and (cik, ei) ∈ OUTi}k}i

M0 = {[start]}

- 1 ≤ i ≤ n, 1 ≤ j ≤ n

- n is the number of instances
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- µa is the marking of place a.

Figure 4.25 Parallel ForEach with completionCondition. (a) statechart;
(b) Petri net.

The composition of PNT is displayed in Figure 4.25. To ease the presentation, we set three

instances of basic activity for this parallel ForEach activity.

In this graph, we still insert the component Petri net PNi into the the parent Petri net

PNP . After insertion, we replace each transition that points to the ei place with a set of

transitions: ccfi and ccti.

If the instances are “While” or “sequential ForEach” activities, then there are two sets of

ccfi and ccti transitions for each instance i. This is because that there are two transitions
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pointing to the end place in such activities (as discussed above).

All the places pertained to other instances are connected to the transition ccti through

marking-dependent arcs (18). The marking-dependent arc cardinalities are defined in D−.

∀pi ∈ P,∀tj ∈ T,D−i,j : IN |P | → IN is the marking-dependent cardinality of the input arc

from pi to tj .

For example, the arc (si, cctj) has cardinality µsi , which is the marking of place si. When

µsi = 0, this arc has no impact on transition cctj , i.e., no token is removed from place si if cctj

fires. When µsi = 1, the token in place si is removed by the firing of cctj .

This way, the firing of transition cctj terminates all the instances in the Petri net.

When instance j is about to end (the execution finishes or the “while” condition is not

satisfied), transitions ccfj and cctj are enabled at the same time. They stand for two condi-

tions: “completionCondition is false” and “completionCondition is true”, respectively. If the

completionCondition is not satisfied, ccfj fires and the token is moved from rj to ej . Instance

j waits for other instances to complete. If the completionCondition is satisfied, transition cctj

is fired that removes all the tokens in this Petri net and put tokens in {ei}i, i.e., all other

instances are terminated.

The state transition of the ForEach activity is shown in Figure Figure 4.26(a). The

statechart displays the concurrent execution of the two instances. The statechart of each

instance has three states: si, ri, ei, representing the states: start, running, and end. The ri

state may be hierarchically replaced using another component state machine Gai if the instance

is a structured activity. In this case, the curved arrow from ri to ei illustrates the transition

from any state inside Gai to ei.

The transition from si to ei and the transition from ri (or Gai) to ei is enabled only when

at least one other instance j is in state ej and the completionCondition is true. The state

transition for each instance is shown in Figure 4.26(b).

Lemma 1. In Figure 4.25, {Ti} is the set of concurrent instances, where |Ti| = n. Si is the

statechart of instance Ti, and Gi is the reachability graph of PNi. Gi
∼= Si.
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Figure 4.26 Instance state transition systems. (a) State machine of the
ForEach activity; (b) state machine of each instance; (c)
reachability graph of each instance.

Proof. Let G′i = (V ′i , E
′
i) be the original reachability graph of PNi.

Based on Figure 4.25, the new reachability graph of PNi is Gi = (Vi, Ei), where

Vi = V ′i .

Ei = E′i
⋃
{(ssi, [ei]) | ∃ssi ∈ Vi − {[si], [ei]}, (ssi, [ei]) /∈ E′i,

and ∃j, i 6= j, the current state in Gj is [ej ]∧ completionCondition is true) }⋃
{([si], [ei]) | ([si], [ei]) ∈ E′i and

(“While” condition is not satisfied) or

∃j, i 6= j, the current state in Gj is [ej ]∧ completionCondition is true)

or (([si], [ei]) /∈ E′i and

∃j, i 6= j, the current state in Gj is [ej ]∧ completionCondition is true) }

−{([si], [ei]) | ([si], [ei]) ∈ E′i}

Similarly, the statechart of each instance is changed. Now each state in Si, except ri and

ei, can be directly transited to the ei state when some other instance finishes and satisfies the

“completionCondition”. Let S′i = (A′i, B
′
i) be the original statechart of each instance. The new

statechart Si is:

Si = (Ai, Bi), where

Ai = A′i.
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Bi = B′i
⋃
{(tti, ei) | ∃tti ∈ Ai − {si, ei}, (tti, ei) /∈ B′i,

and ∃j, i 6= j, the current state in Sj is ej∧ completionCondition is true) }⋃
{(si, ei) | (si, ei) ∈ B′i and

(“While” condition is not satisfied) or

∃j, i 6= j, the current state in Sj is ej∧ completionCondition is true)

or ((si, ei) /∈ B′i and

∃j, i 6= j, the current state in Sj is ej∧ completionCondition is true) }

−{(si, ei) | (si, ei) ∈ B′i}

The comparison of original statecharts and new statecharts for different types of activities

is illustrated in Figure 4.27.

Since G′i ∼= S′i, there exists a bijection function f ′i : V ′i → A′i such that

(x, y) ∈ E′i ⇔ (f ′i(x), f ′i(y)) ∈ B′i

Now define a new bijection function fi = f ′i .

(fi(x), fi(y)) ∈ Bi

⇔ (1)(f ′i(x), f ′i(y)) ∈ B′i and (f ′i(x), f ′i(y)) 6= (si, ei),

or (2) ((f ′i(x), f ′i(y)) /∈ B′i) ∧ f ′i(x) /∈ {si, ei} ∧ f ′i(y) = ei

∧ ∃j, j 6= i, the current state in Sj is ej ∧ completionCondition is true

or (3) (f ′i(x), f ′i(y)) = (si, ei) and

if (f ′i(x), f ′i(y)) ∈ B′i, then (completionCondition is true or

∃j, i 6= j, the current state in Sj is ej∧ completionCondition is true)

else (∃j, i 6= j, the current state in Sj is ej∧ completionCondition is true)

⇔ (1)(x, y) ∈ E′i and (x, y) 6= ([si], [ei]),

or (2) ((x, y) /∈ E′i) ∧ x /∈ {[si], [ei]} ∧ y = [ei]

∧ ∃j, j 6= i, the current state in Gj is [ej ] ∧ completionCondition is true

or (3) (x, y) = ([si], [ei]) and

if (x, y) ∈ E′i, then (completionCondition is true or

∃j, i 6= j, the current state in Gj is [ej ]∧ completionCondition is true)
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else (∃j, i 6= j, the current state in Gj is [ej ]∧ completionCondition is true)

⇔ (x, y) ∈ Ei

Therefore, Gi
∼= Si.

Figure 4.27 Original instance statecharts vs. Modified instance state-
charts.
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Let Ga be the product of Gi, i.e., Ga = G1 × . . .×Gn = (Va, Ea).

Va = V1 × ...× Vn

Ea = {(p1...pn, q1...qn)|

∃i such that (pi, qi) ∈ Ei ∧ ∀j(1 ≤ j ≤ n and j 6= i, pj = qj)

or

∃j, d, (1 ≤ j, d ≤ n, (pj , qj) ∈ Ej ∧ qj = ej , (pd, qd) ∈ Ed ∧ qd = ed)

→ ∀m, 1 ≤ m ≤ n, qm = em}

−[starta] = [s1 . . . si . . . sn]

−[enda] = [e1 . . . ei . . . en]

Then we have G = (V,E), where

V = VP
⋃
Va − {[{ri}P ]}

E = EP
⋃
Ea⋃

{(sP , [starta]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([enda], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

−{(sP , [{ri}P ]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([{ri}P ], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

Let Eb = {(sP , [starta]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([enda], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

Eps = {(sP , [{ri}P ]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([{ri}P ], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

Then E = (EP − Eps)
⋃
Ea

⋃
Eb.

The composition of G from GP and Ga is shown on the right of Figure 4.28.

Similarly, Si = (Ai, Bi) is the statechart of activity Ti.

Let Sa be the product of Si, i.e., Sa = S1 × S2 × . . .× Sn = (Aa, Ba), where

Aa = A1 × ...×An
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Figure 4.28 State transition systems for the parallel ForEach construct.

Ba = {(k1...kn, r1...rn)|

∃i such that (ki, ri) ∈ Bi ∧ ∀j(1 ≤ j ≤ n and j 6= i, kj = rj)

or

∃j, d, (1 ≤ j, d ≤ n, (kj , rj) ∈ Bj ∧ rj = ej , (kd, rd) ∈ Bd ∧ rd = ed)

→ ∀m, 1 ≤ m ≤ n, rm = em}

The statechart of T is S = (A,B), where

A = AP
⋃
Aa − {{ri}P }

B = BP
⋃
Ba⋃

{(ssP , starta) | ∃ssP ∈ AP , (ssP , {ri}P ) ∈ BP ,

(enda, ttP ) | ∃ttP ∈ AP , ({ri}P , ttP ) ∈ BP }

−{(ssP , {ri}P ) | ∃ssP ∈ AP , (sP , {ri}P ) ∈ BP ,

({ri}P , ttP ) | ∃ttP ∈ AP , ({ri}P , ttP ) ∈ BP }

= (BP −Bps)
⋃
Ba

⋃
Bb

–starta = s1 . . . si . . . sn

–enda = e1 . . . ei . . . en.

The composition of S from SP and Si is shown on the left of Figure 4.28
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Lemma 2. Based on the definitions of Ga, Gi, Sa, Si, if Gi
∼= Si, then Ga

∼= Sa.

Proof. Since Gi
∼= Si, there exists a bijection function fi : Vi → Ai, such that

(x, y) ∈ Ei ⇔ (fi(x), fi(y)) ∈ Bi (4.9)

Define a new bijection function f : Va → Aa as

f(x) = f1(x1)...fn(xn),when x = x1x2...xn ∈ Va (4.10)

Since [si] ∈ Vi and si ∈ Ai, with 4.9 we have fi([si]) = si.

With 4.9 and 4.10, we have

f([starta]) = f([s1...sn]) = f1([s1]) . . . fi([si]) . . . fn([sn])

= s1 . . . si . . . sn = starta.

f([enda]) = enda.

To prove Ga
∼= Sa, we need to prove that (f(x), f(y)) ∈ Ba ⇔ (x, y) ∈ Ea.

(f(x), f(y)) ∈ Ba

⇔ (f(x), f(y)) = (f1(x1)...fn(xn), f1(y1)...fn(yn)) ∈ Ba /∗by equation (4.10)∗/

⇔ (f(x), f(y)) = (f1(x1)...fn(xn), f1(y1)...fn(yn)) and either of the following is satisfied:

(1) ∃i such that (fi(xi), fi(yi)) ∈ Bi ∧ ∀j(1 ≤ j ≤ n and j 6= i, fj(xj) = fj(yj))

(2) ∃j, d, (1 ≤ j, d ≤ n, (fj(xj), fj(yj)) ∈ Bj ∧ fj(yj) = fj(ej), (fd(xd), fd(yd)) ∈ Bd

∧fd(yd) = fd(ed))→ ∀m, 1 ≤ m ≤ n, fm(ym) = fm(em)

⇔ (x, y) = (x1...xn, y1...yn) and either of the following is satisfied:

(1) ∃i such that (xi, yi) ∈ Ei ∧ ∀j(1 ≤ j ≤ n and j 6= i, xj = yj) /∗by equation (4.9)∗/

(2) ∃j, d, (1 ≤ j, d ≤ n, (xj , yj) ∈ Ej ∧ yj = ej , (xd, yd) ∈ Ed

∧yd = ed)→ ∀m, 1 ≤ m ≤ n, ym = em

⇔ (x, y) = (x1...xn, y1...yn) ∈ EX

⇔ (x, y) ∈ E
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Theorem 3 demonstrates that when Ga
∼= Sa and GP

∼= SP , we have G ∼= S. Therefore,

from Lemma 1, Lemma 2 and Theorem 3, we can derive the following theorem.

Theorem 7. The composition of parallel ForEach activity preserves the original system be-

havior.

4.6.1.6 Correctness of atomic hierarchical composition with Concurrency and

Synchronization.

Control links are contained only in “Flow” activities to realize synchronization. They may

change the original state transition of a business process. To analyze state transition with

control links, we need to analyze the whole “Flow” activity that contains all the control links.

In section 4.3 we state that control links do not cross the boundaries of loops or parallel

executions.

1. Reachability graph G.

Firstly, we define the Petri net modelling the “Flow” activity with control links. Algo-

rithm 5 describes how to add control links to the Petri net of “Flow” activity, PNT . We

depict the added arcs and places in Figure 4.29.

In the Flow activity, there are totally m join places (or join conditions). An arbitrary

join condition d has zd input links.

As shown in Figure 4.29, the d’th join condition has zd sets of {lfdk, ltdk}k places, where

1 ≤ k ≤ zd.

The total number of added places in PNT is
∑m

d=1(2 ∗ zd).

According to the specification of WS-BPEL (81), each link has three status codes:

undecided, false and true. In Figure 4.29, the status of each link ldk is represented

using two places: lfdk and ltdk. The markings of [lfdk, ltdk] have the following meanings:

ldk =


true, [lfdk, ltdk] = 01;

false, [lfdk, ltdk] = 10;

undecided, [lfdk, ltdk] = 00.
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Figure 4.29 The d’th join condition in PNT .

Note that [lfdk, ltdk] = 11 is not defined above because it is an infeasible marking in our

generated Petri nets.

Let VLij be the set of possible states for link lij . We have

VLij = {true, false, undecided}.

Furthermore, let VLd
be the set of possible states for join condition d. We have

VLd
= {true |∀j, ldj = true,

false |∃k, ldk = false ∧ ∀j, ldj 6= undecided,

undecided |∃k, ldk = undecided }.

Let PNP be the Petri net generated for T according to PNFlow during atomic transfor-

mation. With PNP , PNi and the places/arcs added, we compose them into the Petri

net PNT :
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PNT = (P, T, IN,OUT,R,M0), where

1 ≤ d ≤ m, 1 ≤ k ≤ zd, 1 ≤ r ≤ (2zd − 1)

P = (PP − {rPi})
⋃
{Pi}

⋃
{{ltdk}, {lfdk}}k,d

T = TP
⋃
{Ti}

IN = INP
⋃
{INi}

⋃
{({endi}, c1), ({endi}, c2)}P − {({ri}, c1), ({ri}, c2)}P

/* Added input arcs */⋃
{({lfdk|ltdk}k, {jfjh}r), ({ltdk}k, jtjh),

{({ltdk}k, fc1jh), ({ltdk}k, fc2jh)| ∃fc1jh, fc2jh ∈ PNjh}

| ∃PNjh that holds join condition d}d

OUT = OUTP
⋃
{OUTi}

⋃
{(jt, {starti})}P − {(jt, {ri})}P

/* Added output arcs */⋃
{(teig, ltdk)|∃Tig is the source activity of link ldk}k,d⋃
{(feig, lfdk)|∃Tig is the source activity of link ldk and the transition

condition for ldk is specified.}k,d

R = RP
⋃
{Ri}

M0 = {[startP ]}.

GP = (VP , EP ).

Gi = (Vi, Ei)

Let Ga be the reachability graph of the concurrent execution part. We have Ga =

(Va, Ea), where

Va = {p1 . . . pnl1 . . . lm|∀i, pi ∈ Vi, ∀j, lj ∈ VLj}

Ea = {(p1. . .pnl1 . . . lm, q1. . .qnl
′
1 . . . l

′
m) | either (1.1)-(1.3) or (2.1)-(2.4) or (3.1)-(3.4)

are satisfied:
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(1.1) ∃i such that (pi, qi) ∈ Ei

(1.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, (pj = qj)

(1.3) ∀k, lk = l
′
k

(1.4) pi ∈ Vig, Tig is not associated with any control link, or

Tig has incoming links ∧pi 6= [startig], or

Tig has outgoing links ∧ri 6= [endig];

or

(2.1) ∃i such that (pi, qi) ∈ Ei and qi = [endig] ∈ Vig

(2.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, (pj = qj)

(2.3) ∃{(c, x)}, where |{(c, x)}| = nl, 1 ≤ c ≤ m, 1 ≤ x ≤ zc, such that

/∗ {(c, x)} represents the set of links {lcx} leaving Tig. ∗/

/ ∗ nl is the total number of Tig’s output links. ∗/

∃tig ∈ Ti, (tig, endig) ∈ OUTi ∧ (pi, qi) corresponds to the firing of tig

∧(tig, ltcx) ∈ OUT ∧ [ltcx] = 0 ∧ [ltcx]′ = 1

/∗ lcx = undecided and l′cx = true ∗/

or

∃tig ∈ Ti, (tig, endig) ∈ OUTi ∧ (pi, qi) corresponds to the firing of tig

∧(tig, lfcx) ∈ OUT ∧ [lfcx] = 0 ∧ [lfcx]′ = 1

/∗ lcx = undecided and l′cx = false ∗/

(2.4) ∀ links ldy and ldy /∈ {lcx}, ldy = l
′
dy;

or

(3.1) ∃i such that (pi, qi) ∈ Ei and pi = [startig]

(3.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, (pj = qj)

(3.3) ∃ join condition lc, such that
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/∗ Tig holds join condition lc ∗/

∃tig ∈ Ti, (startig, tig) ∈ INi ∧ (pi, qi) corresponds to the firing of tig, and

(3.3.1) qi /∈ {[endig], [lfig]|lfig ∈ Pig} ∧ ∀x, (ltcx, tig) ∈ IN ∧ lc = true

∧l′c = undecided /∗ join true ∗/

or

(3.3.2) qi ∈ {[endig], [lfig]|lfig ∈ Pig} ∧ ∃x, (lfcx, tig) ∈ IN ∧ lc = false

∧l′c = undecided /∗ join false ∗/

or

(3.3.3) qi = [end] ∧ lc 6= undecided ∧ l′c = undecided

/∗ Tig is an “Exit” activity∗/

(3.4) ∀d 6= c, join condition ld = l
′
d.

–[starta] = [starti . . . startn].

–[enda] = [endi . . . endn].

–Note that both [starta] and [enda] do not contain any token in places added for

control links because all those added places are empty (all the links are undecided) when

the “Flow” activity just starts or terminates.

Then we have the reachability graph of PNT , G = (V,E), where

V = VP
⋃
Va − {[{ri}P ]}

E = EP
⋃
Ea⋃

{(sP , [starta]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([enda], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }

−{(sP , [{ri}P ]) | ∃sP ∈ VP , (sP , [{ri}P ]) ∈ EP ,

([{ri}P ], tP ) | ∃tP ∈ VP , ([{ri}P ], tP ) ∈ EP }.
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2. State machine S.

Suppose there is a link l from activity A11 to A22, where A11 and A22 belong to the

concurrent paths p1 and p2, respectively. We only know the status of link l after A11

finishes. Let {A1i} be the set of activities in p1 that are executed after A11 finishes but

before A22 starts. {A1i} have to carry the status of link l so that when A22 starts, the

system knows whether to execute A22 or not. In other words, link status is part of the

system state.

Let ALij be the set of possible states for link lij . We have

ALij = {true, false, undecided}.

Let ALd
be the set of possible states for join condition d. We have

ALd
= {true |∀j, ldj = true,

false |∃k, ldk = false ∧ ∀j, ldj 6= undecided,

undecided |∃k, ldk = undecided },

where ldj = {undecided, false, true}.

Let Si = (Ai, Bi) be the original state machine of component activity Ti.

Let Sa be the state transition of the concurrent execution of “Flow” activity T . We have:

Sa = (Aa, Ba).

Aa = {k1 . . . knll1 . . . llm|∀i, ki ∈ Ai, ∀j, llj ∈ ALj},

Ba = {(k1. . .knll1 . . . llm, r1. . .rnll′1 . . . ll
′
m) | either (1.1)-(1.3) or (2.1)-(2.4) or (3.1)-

(3.4) are satisfied:

(1.1) ∃i, (ki, ri) ∈ Bi

(1.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, (kj = rj)

(1.3) ∀i, lli = ll
′
i

(1.4) ki ∈ Aig, Tig is not associated with any control link, or

Tig has incoming links ∧ki 6= startig, or
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Tig has outgoing links ∧ri 6= endig;

or

(2.1) ∃i such that (ki, ri) ∈ Bi and ri = endig

(2.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, (kj = rj)

(2.3) ki contains the status of links {lcx}|nl|, where nl is the number of output

links for Tig, such that:

ki = LinkTrueigcx ∧ lcx = undecided ∧ l′cx = true, or

ki = LinkFalseigcx ∧ lcx = undecided ∧ l′cx = false

(2.4) ∀ links ldy and lldy /∈ {lcx}, ldy = l
′
dy;

or

(3.1) ∃i such that (ki, ri) ∈ Bi and ki = startig

(3.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, (kj = rj)

(3.3) ∃ join condition lc, Tig holds join condition lc, such that

/∗ (ki, ri) represents join true ∗/

ri 6= (endig|LinkFalseig) ∧ lc = true ∧ l′c = undecided, or

/∗ (ki, ri) represents join false ∗/

ri = (endig|LinkFalseig) ∧ lc = false ∧ l′c = undecided, or

/∗ (ki, ri) represents the start of an “Exit” activity ∗/

ri = end ∧ lc 6= undecided ∧ l′c = undecided

(3.4) ∀d 6= c, join condition ld = l
′
d.

–starta = starti . . . startn{undecided}|m|

–enda = endi . . . endn{undecided}|m|.

The statechart of T is S = (A,B), where
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A = AP
⋃
Aa − {{ri}P }

B = BP
⋃
Ba⋃

{(ssP , starta) | ∃ssP ∈ AP , (ssP , {ri}P ) ∈ BP ,

(enda, ttP ) | ∃ttP ∈ AP , ({ri}P , ttP ) ∈ BP }

−{(ssP , {ri}P ) | ∃ssP ∈ AP , (sP , {ri}P ) ∈ BP ,

({ri}P , ttP ) | ∃ttP ∈ AP , ({ri}P , ttP ) ∈ BP }.

3. Isomorphism.

Theorem 8. Based on the definitions above, if Gi
∼= Si, then Sa

∼= Ga.

Proof. Define a bijection function fij : VLij ⇒ ALij such that

fij(lij) = llij ,when lij ∈ VLij (4.11)

Define a bijection function fLi : VLi ⇒ ALi such that

fLi(li) = lli,when li ∈ VLi (4.12)

Define a bijection function f : Va → Aa as

f(x) = f1(x1)...fn(xn)fL1(l1)...fLm(lm), if x = x1x2...xnl1...lm ∈ Va.

To prove that Ga
∼= Sa, we need to prove that (f(x), f(y)) ∈ Ba ⇔ (x, y) ∈ Ea.

(f(x), f(y)) ∈ Ba

⇔ (f1(x1)...fn(xn)fL1(l1)...fLm(lm), f1(y1)...fn(yn)fL1(l1)′...fLm(lm)′) ∈ Ba

⇔ Either (1.1)-(1.3) or (2.1)-(2.4) or (3.1)-(3.4) are satisfied:

(1.1) ∃i, (fi(xi), fi(yi)) ∈ Bi

(1.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, fj(xj) = fj(yj)

(1.3) ∀i, fLi(li) = fLi(li)
′
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(1.4) fi(xi) ∈ Aig, Tig is not associated with any control link, or

Tig has incoming links ∧fi(xi) 6= startig, or

Tig has outgoing links ∧fi(yi) 6= endig;

or

(2.1) ∃i such that (fi(xi), fi(yi)) ∈ Bi and fi(yi) = endig

(2.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, fj(xj) = fj(yj)

(2.3) fi(xi) contains the status of links {fLcx(lcx)}|nl|, where nl is the number of

output links for Tig, such that:

fi(xi) = LinkTrueigcx ∧ fLcx(lcx) = undecided ∧ fLcx(lcx)
′

= true, or

fi(xi) = LinkFalseigcx ∧ fLcx(lcx) = undecided ∧ fLcx(lcx)
′

= false

(2.4) ∀ links fLdy
(ldy) and fLdy

(ldy) /∈ {fLcx(lcx)}, fLdy
(ldy) = fLdy

(ldy)′;

or

(3.1) ∃i such that (fi(xi), fi(yi)) ∈ Bi and fi(xi) = startig

(3.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, fj(xj) = fj(yj)

(3.3) ∃ join condition fLc(lc), Tig holds join condition fLc(lc), such that

/∗ (fi(xi), fi(yi)) requires true join condition ∗/

fi(yi) 6= (endig|LinkFalseig) ∧ fLc(lc) = true ∧ fLc(lc)
′

= undecided, or

/∗ (fi(xi), fi(yi)) requires false join condition ∗/

fi(yi) = (endig|LinkFalseig) ∧ fLc(lc) = false ∧ fLc(lc)
′

= undecided, or

/∗ (fi(xi), fi(yi)) represents the start of an “Exit” activity ∗/

fi(yi) = end ∧ fLc(lc) 6= undecided ∧ fLc(lc)
′

= undecided

(3.4) ∀d 6= c, join condition fLd
(ld) = fLd

(ld)′.

⇔ Either (1.1)-(1.3) or (2.1)-(2.4) or (3.1)-(3.4) are satisfied:

(1.1) ∃i, (xi, yi) ∈ Vi
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(1.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, xj = yj

(1.3) ∀i, li = l′i

(1.4) xi ∈ Vig, Tig is not associated with any control link, or

Tig has incoming links ∧xi 6= [startig], or

Tig has outgoing links ∧yi 6= [endig];

or

(2.1) ∃i such that (xi, yi) ∈ Vi and yi = [endig]

(2.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, xj = yj

(2.3) xi contains the status of links {lcx}|nl|, where |{(c, x)}| = nl, 1 ≤ c ≤ m, 1 ≤

x ≤ zc, such that

/∗In other words, in OUT , the transition (xi, yi) corresponds to ltcx or lfcx ∗/

[ltcx] = 0 ∧ [ltcx]′ = 1, or

[lfcx] = 0 ∧ [lfcx]′ = 1

(2.4) ∀ links ldy and ldy /∈ {lcx}, ldy = l′dy;

or

(3.1) ∃i such that (xi, yi) ∈ Vi and xi = [startig]

(3.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, xj = yj

(3.3) ∃ join condition lc, Tig holds join condition lc, such that

yi /∈ {[endig], [lfig]|lfig ∈ Pig} ∧ lc = true ∧ l′c = undecided, or

yi ∈ {[endig], [lfig]|lfig ∈ Pig} ∧ lc = false ∧ l′c = undecided, or

yi = [end] ∧ lc 6= undecided ∧ l′c = undecided

(3.4) ∀d 6= c, join condition ld = l′d

⇔ Either (1.1)-(1.3) or (2.1)-(2.4) or (3.1)-(3.4) are satisfied:

(1.1) ∃i, (xi, yi) ∈ Vi
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(1.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, xj = yj

(1.3) ∀i, li = l′i

(1.4) xi ∈ Vig, Tig is not associated with any control link, or

Tig has incoming links ∧xi 6= [startig], or

Tig has outgoing links ∧yi 6= [endig];

or

(2.1) ∃i such that (xi, yi) ∈ Vi and yi = [endig]

(2.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, xj = yj

(2.3) ∃{(c, x)}, where |{(c, x)}| = nl, 1 ≤ c ≤ m, 1 ≤ x ≤ zc, such that

∃tig ∈ Ti, (tig, endig) ∈ OUTi ∧ (xi, yi) corresponds to the firing of tig

∧(tig, ltcx) ∈ OUT ∧ [ltcx] = 0 ∧ [ltcx]′ = 1

/∗ lcx = undecided and l′cx = true ∗/

or

∃tig ∈ Ti, (tig, endig) ∈ OUTi ∧ (xi, yi) corresponds to the firing of tig

∧(tig, lfcx) ∈ OUT ∧ [lfcx] = 0 ∧ [lfcx]′ = 1

/∗ lcx = undecided and l′cx = false ∗/

(2.4) ∀ links ldy and ldy /∈ {lcx}, ldy = l′dy;

or

(3.1) ∃i such that (xi, yi) ∈ Vi and xi = [startig]

(3.2) ∀j, 1 ≤ j ≤ n ∧ j 6= i, xj = yj

(3.3)∃ join condition lc, such that

/∗ Tig holds join condition lc ∗/

∃tig ∈ Ti, (startig, tig) ∈ INi ∧ (xi, yi) corresponds to the firing of tig, and

/∗ join true ∗/
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yi /∈ {[endig], [lfig]|lfig ∈ Pig} ∧ ∀x, (ltcx, tig) ∈ IN ∧ lc = true∧ l′c = undecided

or

/∗ join false ∗/

yi ∈ {[endig], [lfig]|lfig ∈ Pig}∧∃x, (lfcx, tig) ∈ IN∧lc = false∧l′c = undecided

or

yi = [end] ∧ lc 6= undecided ∧ l′c = undecided

(3.4) ∀d 6= c, join condition ld = l′d

⇔ (x, y) ∈ Ea.

Therefore, Sa
∼= Ga.

Theorem 3 demonstrates that when Ga
∼= Sa and GP

∼= SP , we have G ∼= S. Therefore,

from Theorem 8 and Theorem 3, we can derive the following theorem.

Theorem 9. The composition of Flow activity with control links preserves the original system

behavior.

Example.

In Figure 4.30, we study a “Flow” activity that has two parallel child sequences. Each

sequence has two basic activities. To ease the presentation, there is only one control link going

from the Act11 activity to the Act22 activity (the control link is not shown in the control flow

Figure 4.30(a)). That means activity Act22 waits for Act11 to finish and to pass link status. If

the link status is “true” then activity Act22 executes, otherwise activity Act22 skips execution

and terminates.

As described in Algorithm 1, we process control links after transforming all the component

activities for Flow. The processing of control links follows Algorithm 5. In this example, we

have only one link. For this link, we create two extra places: lf ’ and lt’. They represent the
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join condition for Act22. As pointed out in section 4.4.1.1, when Act22 has multiple incoming

links, the place lt’ will be duplicated for each incoming links, as depicted in Figure 4.1. Act22

has only one lf ’ place to represent the join false condition even if it has multiple incoming

links. This way, any false incoming link can enable the jf transition that skips the activity

execution.

Note that when any incoming link has “false” status (place lf ’ has one token), its corre-

sponding lt’ place does not hold tokens. At this time, transition jt is not enabled. In other

words, for one activity, its jf and jt will not be enabled at the same time.

The state transition systems of the original control flow and the Petri net are depicted in

Figure 4.31. In Figure 4.31(a), S11, A11 and E11 represent the starting, running, and ending

states of activity Act11. When Act11 is finished (the status of the link is known) and Act22 has

not entered running state, we need to carry the link status information in the system states.

Therefore, we use S̄12 to represent that “Act12 is in start state and Act11 finished with a false

link”. Similarly, Ā12 means “Act12 is running and Act11 finished with a false link”.

The graphs shown in Figure 4.31 are isomorphic that means the composed “Flow” Petri

net maintains the fidelity of the original business process behavior.
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Figure 4.30 Hierarchical composition - Flow. (a) Control flow; (b) Petri
net.
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Figure 4.31 State transition systems for Figure 4.30. (a) state machine;
(b) reachability graph.
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4.6.2 Correctness of the composition process

As the foundation to the formalism of transformation from WS-BPEL to Petri net, the proof

of correctness is essential. It contains two steps: correct transformation of basic constructs

and correct composition procedure.

Let n be the number of constructs contained in one WS-BPEL process. Pi be the business

process with i constructs.

1. Correctness of atomic transformation

Recall that PNi is defined in section 4.5 to be the Petri net generated from construct

Ti. When n = 1, we have only one Petri net PN1, and PNP1 = PN1. The correctness of

PN1 is gained from the correctness of basic transformation as proved in section 4.4.

2. Correctness of composition procedure

When n = 2, PNP2 = PN1 ◦PN2, the correctness of the composition is demonstrated in

section 4.6.1.2.

Assume the composition is correct (the composite Petri net simulates the WS-BPEL

process) when n <= k, i.e., PNPk
= PN1 ◦ PN2 ◦ . . . ◦ PNk. For a WS-BPEL process

Pk+1 with (k+1) constructs, PNPk+1
= PN1 ◦PN2 ◦ . . .◦PNk ◦PNk+1 = PNk ◦PNk+1.

Hence PNPk+1
is transformed into a WS-BPEL process with only two constructs, PNPk

and PNk+1. Both PNPk
and PNk+1 are correct since their size is ≤ k. According to the

assumption that the composition is correct for WS-BPEL process with ≤ k constructs,

PNPk+1
is correct.

Thus the correctness is preserved during the inductive composition procedure.

4.7 Evaluation of the Transformation Approach

In chapter 3, we briefly evaluated two existing tools that transform WS-BPEL to Petri net:

BPEL2oWFN (94) and BPEL2PNML (104). As pointed out by (17), these two approaches

generate abundant places and transitions that increases the complexity of analytic work. The
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Table 4.1 Comparison of the three transformations from WS-BPEL to
Petri net

Problem
BPEL2PNML BPEL2oWFN WS-Pro

Places Transitions Places Transitions Places Transitions
Readers-Writers
problem (11 basic
& 5 structured
activities)

90 119 119 121 19 23

Dining-
Philosophers
problem (2 philoso-
phers) (8 basic
& 6 structured
activities)

92 121 119 121 20 23

examples used by Chitrakar to evaluate the two approaches include a Readers-Writers prob-

lem and Dining-Philosophers (2 philosophers) problem. Chitrakar provides detailed BPEL

description in (17). The abstract control flow of these two examples is displayed in Figure

4.32. Here we use the same two examples to evaluate our transformation approach. The

results are summarized in Table 4.1.

Figure 4.32 Control flow of (a) Readers-writers and (b) Dining Philoso-
phers business processes.

Both BPEL2oWFN and BPEL2PNML create much larger Petri net than our approach,

WS-Pro. As an analytic model, Petri net is known to be saddled from state-exposure problem.

Many researchers in this area have been devoted to reduce state space. A smaller size is
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beneficial for our analysis and computation. Examining BPEL2oWFN and BPEL2PNML, we

found that both of them tend to create at least 4 places for basic activities. Moreover, two

adjacent Petri nets do not overlap even though the end place of the first one can be regarded

as the start place of the next one. In these two approaches, authors add “skip-path” for each

activity no matter whether that activity has control flow or now. “skip-path” means this

activity will be skipped if:

(1) join condition of control links is false, or

(2) partnerLink do not match, or

(3) corelation set do not match.

However, (1) is unnecessary if the activity does not have control links at all. The irrelevance

of (2) and (3) has been discussed in Assumption 2.

Table 4.1 demonstrates the great advantages of our transformation in terms of Petri net

sizes. Our transformation generates 3 places for each basic activity and sequential activities

share the adjacent places. We only create extra places and transitions when control links are

present. Our experiment shows that unnecessary “skip-paths” greatly increase the numbers of

places and transitions in the Petri net.
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CHAPTER 5. SERVICE COMPOSITION AND ADAPTATION

With the Petri net generated, software designers are able to conduct system property

analysis and verification. Rich work has been done in this direction (62)(57)(75)(68) (6). We

also reported in (107) our work of using Stochastic Petri net to predict system performance

and identify performance bottlenecks.

In this chapter we focus on the other direction: using Petri net to compute the execution

plan out from the business process.

Business processes usually include alternative execution paths. This redundancy provides

different business options to customers and helps enhance service reliability. It is believed to

improve user experience. For example, a travel agency service provides at least three alternative

ways to book a vacation to a theme park: (1) call an Airlines service to book air tickets, call

a hotel service to book hotel rooms, call a car rental service to reserve a car, and call a theme

park service to book park tickets; (2) call another travel agency service such as Expedia to

book the whole trip; (3) call another travel agency service such as AAA to book the air tickets,

hotel rooms, and a rental car, and then call a theme park service to book park tickets. These

alternative execution paths can be specified using If or Switch activities in the BPEL process.

If is a better choice in this example because Switch is based on incoming events.

As discussed in section 4.4.2 and 4.4.5, the alternative paths form race conditions in a

business process. Process engines may employ different mechanisms to handle these race

conditions. The handling of race condition is expressed as “computing the execution plan”

in this chapter. The goal of this chapter is to compute such a path based on the Petri net

generated using the approach described in Chapter 4.

We build our prototype on the top of PIPE2 (87). PIPE2 is an open source, Java-based



114

Petri net tool which adopts PNML (Petri net Mark-up Language) standard. The PIPE2

provides a graphic interface for users to create Petri nets, generates reachability graphs, and

conduct stochastic analysis.

In our Petri net, weights are used to present performance values (i.e. invocation time

and response time). Weights are attached to transitions that are linked to ending places of

component services. The path in the Petri net with the least total weight has the best expected

performance (shortest response time).

5.1 Performance Metrics

The performance study usually involves a rich set of metrics such as utilization, response

time, residence time, queue length, and throughput, etc. In this thesis, we only consider the

metrics related to time observation that is regarded as the most important factor to illustrate

user satisfaction on online systems (12). We use two metrics: “invocation time” and “response

time”. They are defined as follows.

Definition 4. Invocation time is the length of time required for invoking a service.

Definition 5. Response time is the length of time that a user must wait from the instant that

they invoke a service to the instant that they receive the response to that request.

“Invocation time” usually includes the time spent on packing/unpacking SOAP messages,

processing/validating XML documents, data retrieval, etc. “Response time” depends on many

factors such as operation of services, database visits, network delays, resources utilization, etc.

5.2 Computation of Execution Plan

5.2.1 Algorithms

Algorithm 6. String COMP-PATH(PN pnet)

Begin

COMPRESS(pnet)
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Remove loops in pnet using LoopRemoval(pnet)

Path ← COMP -PATH(pnet)

Return Path

End

This algorithm has five steps.

Step 1 Remove false control links. They do not affect performance analysis and create un-

necessary places and transitions. COMPRESS() function helps reduce the size of the

graph.

Step 2 Augment the Petri net with performance data, invocation time and response time. The

performance data is reasoned out from historical data or specified by the service level

agreement. We can use data mining techniques when a large amount of historical data is

available, otherwise we can conduct re-sampling and non-parametric statistic estimation

techniques. When no historical data is available, we use the performance specification

from the Service Level Agreement (SLA) (25).

Step 3 Remove all the loops in the Petri net. The LoopRemoval algorithm uses Control Flow

Graph (CFG) algorithms to identify loops and depends on statistic mean of iterations to

perform loop removal.

Step 4 Compute the optimal execution plan using COMP -PATH().

In this algorithm, only the last step is runtime computation.

5.2.1.1 Loop Removal

Our preliminary experiments show that the processing of loops (the Petri net may have

nested loops) caused steep increase in runtime computation if the graph is cyclic. If we can

remove all the loops before service execution, we can greatly reduce the runtime computation.

To achieve this, we designed a statistical loop removal technique utilizing historical data (Step

3 in the algorithm above).
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The algorithm of removing loops has two steps: loop detection and loop removal. The Petri

nets studied in this research all have starting node and ending node. They can be structurally

treated as Control Flow Graph. Therefore, we can use the existing CFG theories to implement

loop detection.

Before removing loops (in fact, removing the back-edges), we need to modify all the weights

contained in this loop so that they reflect the correct estimation. To do this, we calculate the

mean iteration Ī for each loop and multiple Ī to all the weights contained in that loop.

The details of this algorithm is shown as below.

Algorithm 7. Graph LoopRemoval(Graph G)

Begin

/∗Part I: Identify loops∗/

/∗All the loops are either mutually disjoint or one is completely contained in the other∗/

Find all loops and store then in the set LOOP using Ramalingam’s enhanced algorithms

(90)

/∗Part II: Remove loops∗/

For each loop Loopyx in LOOP Do

Calculate the mean number of iterations Ī based on the rate of (y, x)

Multiply all the weights in this loop by Ī

/∗Remove the loop∗/

Remove the back-edge

End

(1) Loop detection

In CFG theory, one of the most widely known algorithms for loop detection is to use

“dominators”, demonstrated in (1). The basic concepts of this algorithm are described in

Algorithm 8. Havlak (45) proposed another algorithm by modifying Tarjan’s algorithm

proposed in 1974 and 1983 (101). This algorithm can detect loops for reducible and
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irreducible graphs. In 1999, this algorithm was modified again by Ramalingam to improve

its time complexity (90). With all these efforts, this algorithm can identify loops from a

CFG in almost linear time. Another popular algorithm in the CFG research was proposed

by Sreedhar and his colleagues (98). It was enhanced by Ramalingam to make it run in

almost linear time too (90).

Our LoopRemoval utilizes the existing optimized algorithms to identify loops. The time

complexity, as reported by the above researchers, is almost linear. We will use O(m) as

the running time for loop detection in the followings, where m = |IN ∪OUT |.

Algorithm 8. Aho-Sethi-UllmanAlgorithm(Graph G)

Begin

/∗Part I: Find dominators for each place∗/

/∗In a Control Flow Graph (V,E, Start, End), a node x dominates y, if every path

from start to y has to pass through x. n = |V | and m = |E|. ∗/

Dstart = {Start} //Di is the set of dominator for node i

For each i ∈ V and i 6= start Do

Di = V

End For

While change Do

change = false

For each node Do

tempDi = i+Dj1
⋂
Dj2

⋂
. . .

⋂
Djm

where j1 . . . jm are the predecessors of i.

If tempDi 6= Di Then

Di = tempDi

change = true
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End If

End For

End While

/∗Part II: Identify loops∗/

For each edge (y, x) Do

If (y, x) is a back-edge Then

/∗A back-edge (y, x) is an edge from y to x where x is y’s dominator∗/

Dbyx = {all the nodes that are dominated by x}

/∗Find all the nodes inside the loop∗/

Loopyx = Dbyx
⋂
{nodes that can reach y}

Add Loopyx to LOOP /∗LOOP is the set of loops∗/

End If

End For

End

(2) Loop removal

We have two types of loops: stochastic loop and deterministic loop. While and RepeatUn-

til are of the first type, sequential ForEach is a deterministic loop. For a deterministic

loop we know the number of iterations beforehand, which is Ī. For stochastic loops, we

need to calculate its mean value. Let the probability of staying in the loop be p, which

is annotated as the rate of the transition loop in the Petri net. The number of itera-

tions till the first time when loop’s competitive transitions are fired follows Geometric

distribution. By the properties of Geometric, we know that its expected value (mean) is

1
(1−p) . p is set based on the harmonics of statistically analyzed historical data, Service

Level Agreement (SLA) specifications, and performance requirements.
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Now we analyze the time complexity of the loop removal process. For each loop, both

computing the mean iteration Ī and removing the back-edge take constant time. Modify-

ing weights contained in each loop takes O(m) time in worst case, where m = |IN∪OUT |.

Putting these operations together, the required time to process one loop in worst case is

O(m). The number of loops is no more than O(|T |), where |T | is the number of transi-

tions in the original Petri net. Therefore, the process of removing loops takes O(m ∗ |T |)

running time in worst case.

(3) Time complexity

From the analysis above, the loop detection process runs in almost linear time and the

loop removal process runs in O(m∗|T |) time in worst case. As a result, Step 3, “Removing

loops from the Petri net” takes O(m ∗ |T |) running time.

5.2.1.2 Path Generation

Here we add a new variable called distance that represents the least total weights collected

along the path from the start place to a place or a transition.

The distance variable can be associated with both places and transitions. In other words,

we are searching for a shortest path (in terms of time) from the start place to each other place.

The initial value of distance is 0 for all the places and transitions. After the computation,

the distance on the end place is the total expected response time of the optimal execution

path.

Algorithm 9. String COMP-PATH(PN pnet)

Begin

For each place p Do

Set distancep = 0

End For

For each transition t Do

Set distancet = 0
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End For

While change Do

change = false

If find a place, p that satisfies the following

(1) p’s distance = 0, and

(2) p has predecessor(s), and for each of p’s predecessor place pp,

distancepp = 0 if pp = start; otherwise distancepp > 0,

Then

change = true

/∗Updating the distance for this place∗/

For each transition i that has p as an output place Do

distancei = max{distances of input places}+ weighti

End For

Set distancep = min{distancei}

Set the backtrace = the chosen transition

End If

End While

End

The algorithm 9 scans the graph and updates all the places until the end place is updated.

We only update a place when all of its predecessors have already been updated. When there

are multiple input arcs, the updating obeys the following rules. Figure 5.1 illustrates the rules.

• For places:

If there are multiple input transitions (If and Pick situations), then choose the transition

with the minimum distance.

• For transitions:

If there are multiple input places (Flow situation), then choose the place with the max-

imum distance.
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We also set a variable backtrace to trace the chosen predecessor. This way, after computa-

tion, we can output the whole optimal execution path.

Figure 5.1 Updating rules

(1) Correctness

In Algorithm 9 the requirements (1) and (2) decide that each place is updated only once.

We can prove that this is a reasonable restriction.

Claim 1. According to Algorithm 9, each place needs to be updated only once.

Proof. Let n = the number of places in Petri net pnet.

When n = 1, the start place is updated once.

Assume Claim 1 is correct when n < k. In other words, when the Petri net has < k

places, each place only needs to be updated once.

When n = k, assume place pi needs to be updated twice. That means at least one of

pi’s predecessors, pa, was updated again after pi’s first update. Considering the Petri net

without pi, it has size of k − 1. However, one of its places, pa was updated more than

once. This conflict suggests that Claim 1 applies for Petri net with size ≥ k.
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(2) Time Complexity

In Algorithm 9, we need to update all the places (O(|P |)), and each place may have

O(|T |) transitions. Therefore, Algorithm 9 has runtime computation of O(|T | ∗ |P |).

5.2.2 To complete the FireHazard example

This chapter describes the process of computing an optimal execution plan when there are

alternative paths (more specifically, there are If or Pick constructs in the business process

description). We have two examples demonstrated in chapter 4, SeeMovie and FireHazard.

The SeeMovie example does not include any If or Pick activity. There is no optimization

issue in that example. Hence, we work on the FireHazard example to demonstrate how

Algorithm 6 works. The Firehazard example is described in section 4.5.2.2. Its WS-BPEL

description and generated Petri net PNfirehazard are shown in Appendix C and Figure 4.18,

respectively.

PNfirehazard does not have a control link, hence we skip the COMPRESS module. The

Petri net generated in Figure 4.18 is augmented using the expected time information. The

Petri net with performance information is shown in Figure 5.2. The response time of the first

component activity Receive is 300ms. Performance data of other activities are denoted on

the Petri net similarly. Note the “invocation time” is associated to the Invoke activities only.

In Figure 5.2, transitions jt21, jt22, jt23, jt31, jt32, jt33 (corresponding to Invoke activities:

Alarm, 911 call, Sprinkler, Smoke detector, Chemical sensor, Temperature sensor) are

associated with weights that represent “invocation time”.

There is one loop in PNfirehazard, going from place e4 to place e1 through the transition

loop2. The firing rates of loop2 and te4 are 0.7 and 0.3, respectively. In Petri net, exponentially

distributed firing rates specify the firing delay. When both t1 and t2 are enabled with firing

rates r1 and r2, the probability of firing t1 is r1
r1+r2

. Therefore, the probability of firing loop2,

i.e., the probability of staying in the loop, is 0.7.
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Figure 5.2 RGfirehazard augmented with performance data.
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The LoopRemoval algorithm detects this back-edge of loop2 and identifies all the nodes in-

cluded in this loop. Then the algorithm calculates the mean number of iteration Ī = 1
(1−rloop2) ≈

3.33 (the mean of Geometric Distribution). All the weights associated with transitions in the

loop are timed by Ī. Finally, the LoopRemoval algorithm removes the back-edge loop2.

Based on the acyclic Petri net, Algorithm 9 computes an execution plan with optimal

response time. The optimal execution plan is represented as a sequence of transition firing:

jt1, c1, jt2, jt21, c21, jt23, c23, jt22, c22, c2, cond32, jt32, te32, c32, jt4, c4, te4, which represents

the activities in the sequence of receive(onFire), While{Flow, Invoke(Chemical sensor), As-

sign(onFire)}.

5.3 Service Adaptation

Service adaptation mechanism applies when performance failure is captured. The perfor-

mance failure is the service failure of not meeting the performance requirements. In this thesis,

it specifically means failure to meet the response time requirements. Performance failure hap-

pens frequently in the heterogenous Web Services framework. The possible causes includes

network failure, service relocation, request overload and operation rename, etc. It is of partic-

ular interest to researchers to develop a mechanism that can re-plan the service composition so

that the service can be delivered without interruption. We present our adaptation algorithm

in Figure 5.3.

In the service composition environment, service executor is a software component to execute

the composite service (generating service bindings, packing SOAP messages, monitoring service

execution, etc.). When the service executor finds that a certain component service has a

performance problem, it calls for the adaptation algorithm to act.

5.3.1 Algorithm

This algorithm can be applied on the acyclic reachability graph or directly on the acyclic

Petri net. There are two considerations in the design of adaptation algorithm.

(1) We set backup candidate services for each activity. This is particular meaningful to
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Figure 5.3 Adaptation algorithm

business alliances. When performance problem arises, we check alliances for backups.

If replacing component service provider does not solve the problem, we re-compute the

execution path.

(2) We do performance optimization under the consideration of business cost. Since each

service invocation has financial cost, we do re-planning in a hill-climbing way. That

means we try our best to keep the services that have already been executed. In this case,

the adaptation plan may not be the best solution but is a near optimal solution with the

least budget lost.

5.3.2 To complete the FireHazard example

In section 4.5.2.2, we compute an optimal execution path of “receive(onFire), While{Flow,

Invoke(chemical sensor), Assign(onFire)}”. Suppose that a performance exception is cap-

tured with the Invoke(chemical sensor) service during the execution of this composite service

FireHazard (e.g., the expected response time of 1.5 sec has been exceeded). Then, the service

executor calls for the adaptation algorithm shown in Figure 5.3. The adaptation algorithm

replaces the service provider for the Invoke(chemical sensor) activity and returns the updated
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composition plan to the service executor.

Unfortunately, all the service providers for Invoke(chemical sensor) are not responding

due to the damage caused by the fire. Then the adaptation algorithm was called again for

re-planning. The adaptation algorithm then checks the composition graph for alternative

execution paths (to avoid the Invoke(checmical sensor) activity). Invoke(temperature sensor)

is chosen as the path to replace the Invoke(checmical sensor) activity.

5.3.3 Simulation

The FireHazard example has only one If activity that contains three basic activities.

This example is too small to evaluate the effectiveness of the adaptation algorithm. We use

simulation to evaluate the effectiveness of the adaptation algorithm. Figure 5.4 depicts an

acyclic graph we used in the simulation. Each component service in the graph shown in Figure

5.4 has two values. The first value is its average response time. The second value is the average

response time of one of its backup services (As stated in previous section, each activity has

backup candidate services).

In Figure 5.4, the dotted path is our original execution path. Suppose now node t13 has

performance exception. Replacing the service provider can not solve the problem. Then we

move backward to the first node with an alternative path, which is t6. All the nodes between

t6 and t13 have been executed, and we now discard their execution. We set t6 to be starting

point and try to find another path from t6 to the end. If we cannot find such a path to satisfy

performance requirements, we repeat the backward motion over and over till we reach the

starting point t1.

As described above, the adaptation algorithm handles service exceptions. In a Web Services

environment, service consumers have no way to differentiate the causes of service exceptions.

They can not tell whether the service stops functioning or it is still functioning but with

performance delay. The general strategy is to consider both cases as “service failure”. Here

we define service failure as below.

Definition 6. Component deadline: a component deadline is the predefined response time for
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Figure 5.4 Service adaptation: acyclic execution graph and adaptation
process

a specific component service.

Definition 7. Global deadline: a global deadline is the predefined response time for a composite

service.

Definition 8. Component service failure: a component service is considered to be failed if the

service execution passes a predefined deadline.

Definition 9. Composite service failure: a composite service fails if its execution passes its

predefined global deadline or the composite service fails to deliver its functionalities.

In order to analyze the effect of adaptation algorithm, we set the service deadlines according

to probability coverages. For example, if a deadline is set according to a 95% coverage, then we

expect the service to finish before the deadline with the probability of 95%. In other words,

the probability coverage sets the component failure rate. A 90% probability coverage

sets the component failure rate to 0.1.

Component deadlines work with adaptation. As described above, when the execution of

a component service exceeds its deadline, the adaptation algorithm kicks in and re-plans the

service composition. In other words, the component deadlines decide when the adaptation

algorithm should apply.

Since we set component deadlines according to probability coverages, the component dead-

lines might be large values (especially for Exponential distribution). In reality we usually have
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a global deadline for the composite service set according to the performance requirements. The

global deadline is a much lower bound than the sum of all component deadlines in most cases.

Therefore, even though with probability coverage 1, in which case we should have failure rate

0, we might still have service failure due to the bound of the global deadline.

The machine used for simulation has the following configurations.

• CPU/Memory: Intel(R) Pentium(R) 4 CPU 3.20GHz, 3GB RAM

• OS: Red Hat Enterprise Linux 4, Linux 2.6.9

• Virtual Machine: Sun Java JDK 5.0, version 1.5.0 08

The simulation is conducted with the following specifications.

• Iterations conducted to generate each average value: 10,000,000

• Probability distribution used to generate response times: Exponential, truncated Normal,

Gamma, and Erlang (which is a special Gamma distribution). The Normal distribution

is truncated to eliminate negative response time. In the rest of the chapter, the term

“Normal” is used instead of “truncated Normal” to ease presentation.

The purpose of the simulation is to evaluate the effectiveness of the adaptation algorithm.

The simulation results are described in two parts: average response time and average failure

rate.

5.3.3.1 Average total response time

The first job of this simulation is to evaluate the performance of our Adaptation mechanism.

The Adaptation mechanism introduces overhead to the service execution time. It includes the

time for adaptation computation itself, and the time spent on executing alternative services

and alternative paths. In oder to evaluate the performance of our Adaptation mechanism, one

major task is to evaluate whether the overhead added by the Adaptation mechanism is tolerable

in the composite service. We want to compare the total response times of the composite service

when with adaptation and without adaptation.
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In this simulation, all the component services respond independent from each other. The

composite response time is the sum of all the component response times. According to the

statistical theory, the mean response time of the composite service is the sum of component

means. Therefore, the mean response time of the composite service composed from Figure 5.4

will be in the range of [19.8, 20.8] depending on which execution path is chosen.

The average total response time of the simulation is shown in Figure 5.5. The comparisons

are shown based on different probability distributions for the component services. Among the

three distributions, Exponential has the longest tail and Normal has limited scale.

When the adaptation algorithm is not used, we allow all the component services to finish

their execution no matter how long that execution takes. In other words, there is no deadline

for component services. Therefore, the probability coverage does not affect the total response

time (the probability coverage is used to set component deadlines). This is demonstrated in

Figure 5.5. The total response time of the composite service is almost constant when adaptation

algorithm is not used.

When the adaptation algorithm is used, each component service has a deadline. Once

component services pass their deadlines, the adaptation algorithm is triggered. Revisiting Def-

inition 9, we know that the composite service may abandon its execution when its component

services fail and no valid alternative execution plan can be found. However, in this specific sim-

ulation, we allow the failed composite service to finish. This way, we can analyze the real total

cost of the composite service, thus evaluate the performance of the Adaptation mechanism.

In Figure 5.5, a curve is presented when the adaptation algorithm is used. This curve

illustrates that the adaptation algorithm adds overhead to the total response time. This over-

head contains the cost of adaptation algorithm and the execution of alternative services/paths.

With the increasing of probability coverage, the number of failed component services drops,

which results in fewer invocations of adaptation algorithm and less overhead.

The overhead added by the adaptation algorithm is small. With the adaptation algorithm,

the total response time is increased by 2.85% at probability coverage 90%.
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Figure 5.5 Average response time: Adaptation vs. noAdaptation
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To check the impact of the adaptation algorithm on the total response time, we demonstrate

the histogram of the total response time at probability coverage 90% and 99.5%, illustrated

in Figure 5.6 and Figure 5.7, respectively. These two graphs show that the histograms of the

two cases, “NoAdaptation” and “Adaptation”, are similar. They have the same scale. The

“Adaptation” curves are more right-skewed with thicker tails. They also have less mass in

the “center”. This phenomenon is better demonstrated in Figure 5.6. Figure 5.7 has very low

component failure rate. Adaptation mechanism is less invoked. Therefore the two histograms

of “NoAdaptation” and “Adaptation” almost match.

5.3.3.2 Failure rate

In this section, we evaluate the failure rate of the component service when with adaptation

and without adaptation. As discussed above, a service is considered to be failed once its

execution exceeds the predefined deadline. Besides, any component service failure causes the

composite service to fail when the adaptation mechanism is not in use. Below we report our

simulation results in two cases: with global deadline and without global deadline.

1. Without global deadline

In this simulation, we set the global deadline to a very large number Long.MAX V ALUE =

263 − 1.

Probability distribution is not an impact factor in this simulation. It only affects component

deadlines. For example, with a Exponential(20.0) distribution, when the probability coverage

is equal to 0.995, the component deadline is 105.966. If with a Erlang(10, 2.0) distribution,

this component deadline should be 39.997. However, since we do not have a global time

boundary, we do not need to worry about the values of component deadlines. All we care

is whether a component service fails or not. The probability of this failure is pre-defined

(the probability coverage) for any probability distribution. Therefore, both Exponential and

Erlang generates the same results in this simulation. Below we only display the simulation

results based on Exponential distribution.
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Figure 5.6 Histogram of the total response time at 90% probability cover-
age
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Figure 5.7 Histogram of the total response time at 99.5% probability cov-
erage
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We set the probability coverage from 0.9 to 0.995 and simulate the execution of the com-

posite service. The failure rates of the composite service according to different probability

coverage are depicted in Figure 5.8.

Figure 5.8 Average failure rate without global deadline: Adaptation vs.
noAdaptation

This figure shows that the failure rate drops for both “noAdapation” and “Adapation”

cases when the probability coverage increases. This phenomena conforms to the theory: higher

probability coverage results in long deadlines, which lead to fewer failures.

At coverage 90%, the failure rate of “noAdapation” is 0.6559, as displayed in Figure 5.8.

This can be easily explained by probability theory. For 10 sequential jobs, if each job has 90%

chance to succeed, then the probability of all successful execution is 0.910 = 0.3486. Hence, the

probability of composite service failure is 1− 0.3486 = 0.6513, which is close to our simulation

result, 0.6532.

Contrast to the high failure rate of “noAdapation”, the failure rate for the “Adapation”

case is very low, ranging from 0 to 0.04. The failures for “Adaptation” appear only when there

are enough failures in the graph shown in Figure 5.4 such that the adaptation algorithm can not

find alternative paths. The high failure rate for “noAdaptation” represents the “single point
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failure” problem in business composition using WS-BPEL. The composite service is aggregated

by multiple component services. Any fault of the component services (content fault or timing

fault) causes composite service fault. In reality, the high failure rate forces the execution

engine to frequently abandon the execution and re-invoke the service. This is unacceptable in

the business world. Our simulation results demonstrate that a remedy mechanism is necessary

in the Web Services environment.

2. With global deadline

The global deadline is usually set by the performance requirements (or expected perfor-

mance). The sum of component deadlines may be greater than the global deadline. Hence,

different probability distribution may affect our simulation results as the probability distribu-

tion affects component deadlines. In this simulation, we used three probability distributions:

Exponential, Erlang, and Normal. The shape parameter k of Erlang is set to 2 so that this

distribution is more right-skewed (positive-skewed with a longer upper tail).

(1) Firstly, we check how the global dealdine affects the “noAdaptation” case.

The probability coverage sets the failure rates for all the component services, regardless

which distribution is used. We compare the failure rates of “noAdaptation” in two cases:

no global deadline and 20 seconds global deadline. The results are shown in Figure 5.9.

When there is no global deadline, the failure rate is the same for all the distributions.

As explained above, this is identical component failure rates.

We then set the global deadline to 20 seconds, which is roughly the expected mean

response time (by adding all the mean response time of component services together).

As demonstrated in Figure 5.9, when the probability coverage is low (short deadlines), the

global deadline has slight effect on the failure rate of the composite service (only increased

the failure rate by 0.03% at probability coverage 90%). With higher probability coverage,

each component service has a longer deadline. This allows earlier services plenty of time

to finish while causing latter services to fail due to the global deadline. We call this effect

as “Loose head, tight tail”. This effect is apparent when we have a short global deadline:

in the Figure 5.9, when probability coverage approaches 1.0, the curve with 20 seconds
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Figure 5.9 Failure rates for “noAdaptation”. No global deadline, 40sec
global deadline and 20sec global deadline

global deadline has higher failure rate than the one without global deadline.

Besides, we observed higher failure rates for distributions with more left skewness. Com-

paring the CDF functions of the three different distributions, we see that Normal gen-

erates the lowest cumulative distribution value when x ≤ 20.27, where x is the total

response time. That indicates more service failures for Normal distribution.

(2) Secondly, we check how the global deadline affects the “Adaptation” case.

Figure 5.10 displays the comparison between different deadlines according to different

probability distributions.

It is intuitive that shorter global deadlines result in higher failure rates. Long global

deadlines accommondates the adaptation overhead better than short global deadlines.

This phenomena is confirmed in Figure 5.10, where a 20 seconds global deadline causes

a sharp increase in the failure rates of “Adaptation” case.

(3) Thirdly, we check how the probability distribution affects the “Adaptation”

case. We have already discussed that when the global deadline is not present, the
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probability distribution does not affect the failure rate of the composite service. Below

we show the impact of probability distribution on the failure rate when global deadline

is set.

From Figure 5.10 we can see that the change of probability coverage does not impact

Erlang and Normal as much as it impacts Exponential. This is because Exponential

has much higher component deadlines than the other two distributions for the same

probability coverage. The change of probability coverage also results in bigger change in

Exponential’s component deadlines. This phenomenon can be verified from the inverse

cumulative distribution functions. The component deadlines determine when Adaptation

algorithm kicks in. As discussed at the beginning of this subsection, long component

deadlines result in the “Loose head, tight tail” problem. A “Loose head, tight tail”

case increases the failure rate. This is why the failure rate drops for Exponential when

the probability coverage increases. The decreasing in the failure rate illustrates the

effectiveness of the Adaptation mechanism.

Instead, in Erlang and Normal cases, especially Normal that has narrower scale, the

change of probability coverage does not impact the local deadlines as much as for Ex-

ponential. Accordingly, the component deadlines do not change that much with the

increasing of probability coverage. Therefore, the failure rates for Erlang and Normal,

especially Normal, do not have obvious decrease.

From the discussion above, we can see that the adaptation algorithm greatly helps reduce

the failure rate of the composite service, while adding tolerable overhead to the total response

time. Its effectiveness in reducing the failure rate drops with the decreasing of the global

deadline. Different distribution of the component service response time may affect the failure

rate of the composite service. Therefore, when selecting the service provider for a certain task,

it is benefitial to analyze the operational profile of candidate providers.
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Figure 5.10 Failure rates for “Adaptation”.
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CHAPTER 6. FAULT-RESILIENT UBIQUITOUS SERVICE

COMPOSITION

The popularity of Web Services extends to the domain of pervasive computing, as its char-

acteristics of loose-coupling, stateless, and platform-independence make it an ideal candidate

for integrating pervasive devices. While the semantics of SOA are being standardized, its

use in pervasive computing is the subject of extensive research and experimentation. In fact,

SOA-based pervasive computing systems are fast becoming a reality with the introduction of

technology such as the Atlas Platform (56).

However, in spite of all the promises offered by favorable characteristics of SOA for coping

with dynamic and heterogeneous environments, one should not forget that underneath all the

nice wrappings of highly reliable and self-integrating services, the actual data sources are mass-

deployed low-end sensors that are poor in terms of resources available, and they are inherently

unreliable, both because of the large number of entities deployed and the common choice of

employing low-cost components with few guarantees for their quality. For pervasive services to

work properly and reliably, mechanisms need to be in place to improve their availability and

assess the quality of their data so that necessary adjustments can be made.

Our proposed solution for building fault-resilient pervasive computing systems consists of

two parts (112) (114). The first part is the Virtual Sensor framework (10) which improves the

availability of basic component services. The second part consists of an architecture for per-

forming service composition that can efficiently model, monitor and re-plan this process. In this

architecture, WS-Pro (110)(109)(111), the probe-based web service composition mechanism,

is adjusted to support the Abstract Service Composition Template (ASCT), a template-based

service composition scheme for providing generic solutions for high-performance pervasive ser-
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vice composition.

To create a comprehensive solution, these two parts have to work hand-in-hand during the

entire life cycle of pervasive services. During the design stage, programmers examine the func-

tional requirements and the type of physical sensors available to create virtual sensor services,

which can then be used to match against the specifications in ASCT. During the execution

stage, the compensation provided by virtual sensors provides the first line of defense against

sensor failures. However, if the failures are widespread or occur within service components of

higher abstraction, the WS-Pro/ASCT mechanism kicks in to identify replacement services for

the failed ones.

6.1 Efficient Pervasive Service Composition

Service composition has been well studied by the web service community, and the widespread

adoption of SOA in pervasive computing inspires researchers to examine whether the techniques

designed for web services are equally applicable to pervasive services. Subtle but critical dif-

ferences exist between the two. For instance, in web service composition it is assumed that the

underlying Internet infrastructure is universal so that services can always be discovered and

composed regardless of the differences in platform or communication medium used. The perva-

sive services, however, are tightly bound to heterogeneous hardware platforms and communi-

cation mediums, making their composition different. For example, the discovery of Bluetooth

services is limited by the range of the Bluetooth device. This limitation imposes additional

challenges in composition of pervasive services.

Hummel identifies fault-tolerance as a crucial issue in pervasive services (49) and points

out the importance of pervasive services being able to react to dynamic changes in time. Our

experience in the Gator Tech Smart House also agrees with this assessment. Different smart

devices are represented as collaborating services in SOA. However, just because they work

properly in collaboration does not guarantee satisfactory service to users; they may fail to

deliver in time. In any typical pervasive computing environment such as a smart home, the

concern for safety and security are very real and the services addressing these issues have to
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be delivered promptly. In addition, users usually expect such environments to respond in a

reasonably short period of time. Therefore timely delivery of services is critical. By optimizing

the reconfiguration and re-composition of pervasive services, we improve the fault-tolerance as

well as user satisfaction.

6.1.1 Classification of basic pervasive services

Pervasive services can be categorized into three types of abstract service elements based on

their functionalities and the roles they play. As depicted in Figure 6.1, a typical end-to-end

service consists of a context provider, context processor and information deliverer.

A context provider is an abstract service element that retrieves context-specific data from

sensors. In other words, a context provider is a wrapper for input sensing components for

detecting a specific context. In addition, each context provider has internal test functions for

monitoring the health and data quality of its member components. For example, a weather

monitor as a wrapper of real or virtual sensors can obtain the current temperature, humidity

and wind velocity outside a house.

The context processor deals with data from context providers or a database and produces

the meaningful context-based information for information deliverers. A context processor

may be required to be connected with a particular set of context providers. For example, a

personal scheduler can retrieve timetables from a database based on location, time and weather

to provide the customized travel information.

The information deliverer is also a wrapper of a specific hardware component, such as a

monitor, a printer, or an emergency alarm, used to present the information generated by the

context processor. An information deliverer includes a transcoding feature that transforms the

information created by the context processor into a more appropriate format. For example, a

printing deliverer creates a PDF file based on the information fed from context processors and

sends it to a printer.

There are two kinds of paths in the composition template: the paths between context

providers or information deliverers and context processors (in the form of software services),
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Figure 6.1 Composition of a typical end-to-end pervasive service.

and the paths among multiple software context processor services. The first path is usually

performance critical and more susceptible to changes and failures. Although context processors

can themselves be end-to-end services, hierarchically composed with nested context processor

and context providers or information deliverers and still be highly related to the hardware

devices, this association is considered indirect. Therefore we can still pinpoint the critical path

as the path within the nested service provider between the component context providers or

information deliverers and its directly linked context processor.

6.1.2 Performance engineering of pervasive service composition

We observe that context providers and information deliverers encounter more performance

problems than context processors. The problem may exist either in the hardware layer (such as

device connectivity failure) or the service layer (protocols, service failures, etc.). This problem

creates a need for techniques to monitor, verify and improve system performance. It is very

important to monitor both the link between services bounded by physical devices and context

processors, as well as the link between the physical devices and their corresponding services,

which can be either a context provider or an information deliverer.

The first link can be monitored by the pervasive service composer using probing techniques.

The second link cannot be checked by the monitoring system, because not all hardware com-

ponents are capable of reporting their own status. Even those devices capable of self-reporting

incur high overhead to transmit data regularly. As a result, the probe has to send test messages

to locate problematic hardware components. An alternative is to embed a checking mechanism

when wrapping the device in a corresponding singleton service so that the health of the devices
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can be monitored.

Run-time monitoring is the best solution in assessing properties of services, when traditional

verification techniques are insufficient as shown in (5). Therefore, mechanisms to monitor the

healthiness of pervasive equipment are highly demanded.

Figure 6.2 Overview of pervasive service composition

6.2 WS-Pro: A Service Composition Engine

WS-Pro was developed to model and optimize system performance in standard web service

infrastructure. A testing-based probe was used to actively collect run-time performance status

of component services. It supports runtime service composition and composition re-planning.

A technique based on Petri net is used to model the stochastic property of service composition.

This technique helps to select the best candidate services which will optimize the performance

of the composite service and makes automatic verification of the composition possible. A com-

position re-planning algorithm was designed based on Petri net truncation. The architecture

of applying WS-Pro in pervasive service composition is illustrated in Figure 6.2.
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6.3 Abstract Service Composition Template (ASCT)

An Abstract Service Composition Template (ASCT) is used to describe the sequential

process of critical functions to deliver a composite service. A similar approach using service

templates is shown in (113). An ASCT consists of a critical flow of a service using abstract

service elements that perform critical functions. Based on the abstract service elements in an

ASCT, composite services can be materialized by searching and selecting appropriate actual

service instances such as a context provider with assorted virtual sensors. The authors im-

plemented a composition engine, evaluated its performance in terms of processing time and

memory usage, and discussed the suitable size of the categories and the number of service

elements in each category. The novelty of this approach is the introduction of an abstract

layer for describing composite services and the support for their automatic composition. As a

result, scenarios of a composite service can be easily described without considering strict and

detailed interface description of the intended composite services. Furthermore, this makes it

possible for users to create their own services or customize existing ones.

6.4 WS-Pro with ASCT Approach

As described earlier, WS-Pro was originally designed for dynamic web service composition.

However, it does not adapt well to pervasive services because of two major reasons. First,

dynamic composition is important in web services because there is always a large pool of

candidate component services. With pervasive computing, however, the options are often much

more limited in terms of functionality, making WS-Pro unsuitable for service composition.

Second, all devices in pervasive computing, even low-level ones such as physical sensors, are

represented as atomic services, resulting in a huge number of nodes that need to be modeled.

The Generalized Stochastic Petri Net(GSPN), which is used in WS-Pro, does not scale well

and hence, cannot serve as an appropriate modelling tool.

To address the first problem, we introduced the notion of ASCT. By using abstract service

elements instead of well defined Web Services Definition Language (WSDL) interfaces, different

devices with similar functions (for example, different presentation devices such as monitor,
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printer, speaker, etc.) can be discovered and composed using the same service discovery

queries. This approach also allows similar services to be considered as alternative candidates.

Therefore, ASCT eliminates the problem of insufficient candidate pool at the actual service

instance level when applying WS-Pro in pervasive computing environments. In addition, an

ASCT can further reduce the size of the Petri Net that models the whole service composition.

The second problem can be mitigated by replacing GSPN with a Finite Population Queuing

System Petri Net (FPQSPN) (15). FPQSPN extends the Petri Net by introducing “shared

places and transitions,” hence greatly reducing its size. Original GSPN only uses exponential

distribution on transitions in order to preserve time independence. However, FPQSPN allows

users to use other probability distributions which extend the GSPN’s stochastic modelling

capability. A Finite Population Queuing Systems Petri Net (FPQSPN) is formally defined

using a 9-tuple (P, T, Pre, Post,M0, so, t, tt, k) such that:

• P is a finite and non-empty set of places

• T is a finite and non-empty set of transitions

• Pre is an input function, called precondition matrix of size (|P |, |T |)

• Post is an output function, called post-condition matrix of size (|P |, |T |)

• M0 : P (R){1, 2, 3, ...} is an initial marking

• t : T (R) t ∈ R+is the time associated to transition

• tt : T (R) tt is the type of time associated to transition

• so : Ti : Ti ∈ T, Pi : Pi ∈ P (R) {0, 1} determines, whether the place or transition is shared

• k : k ∈ N is number of customers (in terms of queuing systems, the size of population)

Therefore, our approach uses abstract descriptions to represent scenarios of the intended

composite services. In addition to the informal approach for ASCT, we support the use of

FPQSPN to describe a flow of a composite service in the composition architecture. This gives us
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a concrete mathematical model to analyze the performance of services running on the proposed

architecture. Accordingly, ASCTs are transformed into basic Petri Nets for verification of

the semantic correctness of the composed service. Once the ASCT is realized by selecting

appropriate actual service instances, we extend this basic Petri Net to FPQSPN based on their

properties. A FPQSPN can efficiently depict a sub-diagram representing repeated processes by

folding corresponding places or transitions into a non-shared one. We can effectively evaluate

the service scenarios using multiple instances of an identical service. As discussed before,

the three distinctive categories of basic pervasive services, namely context providers, context

processors and information deliverers, are the necessary components of an end-to-end composite

service. Therefore, an ASCT in Figure 6.3 should involve at least three different abstract

service elements, with each category contributing at least one element in order to support an

end-to-end pervasive service.

Figure 6.3 Pervasive service composition via ASCT

6.5 Enhancement in Efficient Adaptability using WS-Pro with ASCT

To demonstrate how our WS-Pro/ASCT approach enhances the efficiency in adaptation,

let us consider the example of FireHazard described in Chapter 4.
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6.5.1 ASCT for the mission critical service

In Figure 6.4, an ASCT for an emergency fire management service is associated with a

set of actual service instances. Here, the service process for the ASCT consists of abstract

service elements denoted with dashed filled boxes and flows denoted with dashed filled arrows.

Once appropriate real services denoted with a box are selected by WS-Pro/ASCT, they are

associated with an abstract service element. These associations are denoted using shaded

arrows.

According to the scenario, the smoke detectors are quickly knocked out of action. The

probe in WS-Pro/ASCT captures this exception and notifies the service composer to perform

service re-planning. In this case, WS-Pro/ASCT does not need to create a new ASCT. Instead,

based on the current service process of the ASCT shown in Figure 6.4, WS-Pro/ASCT searches

alternative actual service instances which are still alive, and associates them with the abstract

service elements. For example, the smoke detector is replaced with a derived virtual sensor

composed of a temperature sensor and a chemical sensor. Similarly, the abstract service element

”Responder” is re-associated with an automatic 911 caller. During this process, WS-Pro/ASCT

considers performance data including reliability and availability.

6.5.2 Petri Net model for mission critical service in WS-Pro/ASCT

In order to provide timely composition, the Petri Net in our WS-Pro/ASCT approach

is based on the FPQSPN model. Figure 6.5 shows the FPQSPN derived from the ASCT

illustrated in Figure 6.4. The object with a double line border represents a shared object such

as virtual sensors while the one with a single line border depicts a non-shared object such as

a unique software component.

After a FPQSPN model is generated by transforming an ASCT, it can be used to measure

the performance of a working mission-critical service or evaluate the performance of a new

service composed based on ASCT. Note that the real data related to the t and tt tuples in the

FPQSPN model are obtained from the actual service instances associated at present. Multiple

instances of the context provider are presented as a non-shared object with the number of the
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Figure 6.4 The ASCT for an emergency fire management service

service elements represented as k in the FPQSPN model. For this measurement for evaluation

purposes, a simulator such as StpnPlay (16) is used. However, we plan to have an integrated

evaluation module of FPQSPN as part of the metrics computing module in WS-Pro/ASCT.

6.6 Putting It All Together: A Comprehensive Solution for

Fault-resiliency

We present the overall system architecture in Figure 6.6 which provides a comprehensive

solution for fault-resiliency, by bringing virtual sensors and WS-Pro/ASCT together.

The inclusion of virtual sensors and WS-Pro/ASCT in a pervasive computing system al-
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Figure 6.5 A FPQSPN for the ASCT in Figure 6.4

Figure 6.6 System architecture

lows it to continue functioning properly and degrading gracefully in face of sensor failures.

Virtual sensors enable this by exploiting explicit redundancy (replicas) or indirect redundancy

(correlated sensors) to compensate for the loss of data. However, when the system experiences

extensive failures or becomes unstable, WS-Pro/ASCT kicks in and exploits redundancy at

a higher level in the form of semantically equivalent services to stablize the system. Even

though both share the same objective of enhancing availability, each works at different levels

and employs independent mechanisms, and their strengths complement each other. To provide

a comprehensive solution to address the issue of fault-resiliency, it is crucial to ensure a logical

and smooth integration at various stages in the life cycle of the system.
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Figure 6.7 Design process for integrating virtual sensors into service tem-
plates

The aim of the virtual sensor is to provide a robust and high quality data source. The

designers of a system look at the features of services in a system, and decide which sensors to

deploy, and the required level of fault-resiliency as shown in 6.7. The feature design dictates

what kinds of basic virtual sensor needed to be implemented, which include attributes such as

the number, quality and spatial distribution of singleton virtual sensors, as well as the aggre-

gation algorithm to be used. This decomposition process gives a blueprint of which physical

sensors to use, as well as where and how they should be deployed. On the other front, the

functional requirements of services would justify the conceptual design and composition of mul-

tiple basic virtual sensors into a derived virtual sensor. Some of the reasons to design derived
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virtual sensors include dimensions which do not have means for direct measurement, the need

for more comprehensive and abstract contextual information than raw readings, and the fre-

quent reuse of certain aggregated data and information. As all virtual sensors are implemented

as services, any of the singleton, basic, or derived virtual sensors can be a candidate in the

service composition process. WS-Pro/ASCT service composition mechanism can match and

choose these virtual sensor services based on various criteria, for instance, the fault-tolerance

requirement, or whether raw data is preferred over comprehensive contexts.

These two pieces of the puzzle also work closely during runtime operation. Each virtual sen-

sor service by default constantly monitors its member virtual sensors and tries to compensate

should any of them fail. In the case involving wide-spread sensor failures or malfunctioning of

hard-to-compensate sensors, the quality of virtual sensor, might fall below certain predefined

threshold. Should such situation occur, the virtual sensor immediately notifies the WS-Pro

module and requests for a service replanning. WS-Pro works in tandem with the ASCT to re-

plan the services utilizing the failed virtual sensor, and search for a replacement virtual sensor

service to prevent interruption and breakdown of the overall service.
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CHAPTER 7. SUMMARY AND DISCUSSION

7.1 Summary

With the prevalence of software on almost every aspect of our social life, the complexity and

size of software systems have profoundly increased. Practitioners have been seeking a highly

effective software design paradigm that can realize rapid software development, adapt to fast

changing business needs, and more importantly, seamlessly integrate legacy systems with other

legacy systems and new developments. Responding to this demand, SOA was proposed as a

critical concept to create software systems using available applications and to facilitate software

integration.

Recent great advances in XML inspired researchers to build an interoperability stack, called

Web Services Architecture (9), based on XML technology. This stack contains standards and

specifications from business level to the lower implementation level. This stack is purely XML-

based that provides developers great flexibility and interoperability. Hence, Web Services is

widely accepted to be the best way to implement SOA and is becoming the dominant software

design paradigm in industry.

While Web Services research is still in its in-mature stage and its implementation details

are still to finalize, we should start to consider the performance engineering issue. Industry has

learned through numerous hard lessons (107) the significance of well founded and well executed

performance analysis plans. We identified three key performance engineering issues in the

Web Services framework, performance modelling, performance-based service composition, and

performance adaptation. To address these issues, this dissertation proposed a comprehensive

performance management approach, called WS-Pro.

We provide support for performance prediction. We designed a transformation to generate
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Petri net from business process described in WS-BPEL. Through the generated Petri nets, we

can verify system properties and predict performance to certain extent. The prediction can

help practitioners evaluate their design. This early feedback can help mitigate software cost

and business lost.

We also addressed the problem of performance adaptation in Web Services. Web Services

paradigm is a heterogenous distributed computing that can be dynamically configured. Ser-

vices are all autonomous applications which are beyond software developers’ control. We need

to make sure the composite service will not stop functioning due to single failures. Considering

from performance aspect, we not only need to keep the service functioning, but also try to

deliver service on time. It requires a mechanism that can respond to exceptions (failure or de-

lay) quickly. Unfortunately, very limited research has been conducted to solve these problems.

Our adaptation mechanism can replace failed services or switch to other execution paths if

there are alternative ones. We also focused on improving the performance of our adaptation

mechanism to provide timely support.

As an extension, WS-Pro was extended to fit into the ubiquitous environment. We pro-

posed an abstract service description template, called Abstract Service Composition Template

(ASCT), to tackle the obstacle we faced – the lack of available functional components. This

extension work is designed to enhance fault-resilience combining with other platform-related

techniques.

7.2 Contribution

The contribution of this research contains:

• A general framework to address performance engineering issues in Web Ser-

vices.

We designed a service composition framework that guides service selection and dynami-

cally re-configures the composition based on several theoretically sound algorithms.

• A transformation from WS-BPEL to Petri net
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Our first research objective was to provide analytical support to service composition

procedure. WS-Pro is based on the formalism of transforming WS-BPEL to Petri net.

We transform business processes written in WS-BPEL into analytic model represented

in Petri nets. We also proved the soundness of the transformation. The results of the

transformation can be used for analytical purposes.

• A two-phase algorithm to compute optimal execution plan

We designed algorithms to compute optimal execution plans based on the Petri nets. The

WS-Pro is aimed to optimize performance of service composition to address designer’s

concerns in two aspects: performance of the delivered service and performance of the

composition procedure. We are particularly concerned about the latter one as it is often

neglected in existing works. The algorithms we designed contain off-line part and runtime

part. We were able to minimize the runtime computation but had to compromise a little

in terms of the total computation (i.e., the extra steps of compression and loop removal).

Our experiments generated promising results to show the efficiency of our design.

• A performance-based adaptation algorithm

We cannot prevent failure because services’ behavior is highly unpredictable. Instead,

we provide the runtime adaptation mechanism to handle performance exceptions. In the

adaptation mechanism, we considered business alliances and financial cost-efficiency. We

evaluate our approach using both real cases and simulation. The experiments generated

promising results that had demonstrated the effectiveness of WS-Pro.

• Extension to ubiquitous computing

Ubiquitous (pervasive) computing is a fast growing area which quickly adopts the service-

oriented concept because of its power of composition. However, in a ubiquitous environ-

ment service composition often suffers from slow integration of a massive number of sen-

sors and limited alternatives at the application service level. The latter problem restricts

the use of our performance adaptation mechanism defined in the Web Services setting.

To overcome this, we defined the Abstract Service Composition Template (ASCT) (112)
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(114). Through ASCT, a service pool can scale up using services of the same meta-level

functionalities.

7.3 Future Work

WS-Pro can be improved in different ways. We outline several major directions as follows.

• A tool to support automatic transformation

“Dynamic” is a key word in Web Services because the framework is designed for au-

tonomous computing. Service composition environment should be able to automatically

discover and select component services, automatically compose and re-configure them

based on pre-specified documents (i.e. WSDL and BPEL description). In order to fully

automate WS-Pro, we need a tool to perform the transformation task. It will allow non-

experts to fully use the functionalities provided by WS-Pro without understanding the

underlying theoretical background.

• A powerful tool to generate reachability graph for Petri nets

Currently we use PIPE2 to generate reachability graphs. PIPE2 is favored by many

researchers because of its graphic interface. It also has various stochastic analysis features

that are very useful for performance study. However, PIPE2 has limited computational

power - it can only compute Petri nets with fewer than 32 places (with a few loops and

branches). Moreover, we could not use PIPE2 through back-end. Currently PIPE2 is

separate from other components including compressor, loop removal program, etc.

• Performance data mining

Performance data provides important references to select best services. The data are

mainly reasoned out from historical data. We have tried different statistical approaches,

such as F-test and ANOVA - Bonferroni, to analyze response time and confidence interval.

In empirical studies, re-sampling and non-parametric statistic estimation techniques can

be used if the available data is not adequate. When large amount of data are available,

more powerful data mining techniques should be considered.
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• Web Services testing

A test component will improve the healthiness of WS-Pro. There are situations where

historical data and SLA requirements are not reliable. A fast probing technique will

allow WS-Pro to understand the real status of services and take corresponding actions.

In the Web Services framework, we need to test the composite business logic without

knowing implementation details of each component. This testing process needs to be

adaptive to dynamic service binding and dynamic service composition. Therefore, the

test suit needs to have good re-configurability to test different bindings of component

services. It can also involve a search-based algorithm to select bindings because we cannot

exhaustively test all the possible system configurations.

Furthermore, the connection between the local monitoring component and testing com-

ponent should be reinforced in many ways. The data collected through monitoring can be

use to guide the generation of test data. Pre and post conditions can be derived through

logic reasoning on the historical data. These conditions are useful when generating test

logic.

• Empirical study

Though our research prototype demonstrates promising results, an empirical study is

still highly desired. This requires a Web Services environment as test bed. Smart Home

being developed in both Iowa State University (91) (95) and University of Florida (47)

will be such environments.

• A new software design in service-oriented ubiquitous computing

When we put our WS-Pro framework and the virtual sensor network together (Chapter

6), we encountered integration problem. There is some overlapping between the two

frameworks. However, this overlapping does not merge smoothly. We then proposed

the feature-based design – starting the service design at the feature level and then going

upward for conceptual design or going downward for business logic design. This design
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paradigm needs to be refined from software engineering’s aspect. It will advance the

research of service-oriented design in pervasive environment.

• Extension to a comprehensive Qos-based framework

WS-Pro is a performance-based service composition framework. It can be expanded to

the general QoS research by including more quality attributes. This requires a multi-

dimensional model. Such a model should have a mechanism to compute a total qual-

ity value based on different prioritization. We will investigate the possibility of using

Bayesian network as such a model.
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APPENDIX A. SYNTAX OF WS-BPEL

Notation:

O(x) ::= empty | x

#(x) ::= any number of x

P(x) ::= x #(x)

U(x,y) ::= any order of x and y

All the basic activities can be in the “<activity attributes />” form when there is no

elements included. For example, the invoke activity may be defined as: “<invoke” invoke-

attributes “/>”.

WS-BPEL ::= U( O(import), O(documentation), O(partnerlink), O(variables),

O(activities), O(handler), O(extension), O(messageExchanges), O(correlationSets) )

Activities ::= P(basic-activities | structured-activities)

Basic-activities ::= Invoke | Receive | Reply | Assign | Throw | Wait | Empty | Extension

activity | Exit | Rethrow

Structured-activities ::= Sequence | If | While | RepeatUntil | Pick | Flow | ForEach |

Compensate | CompensateScope

standard-attributes ::= U( O(name), O(suppressJoinFailure) )

standard-elements ::= U( O(targets), O(sources) )

Invoke ::= “<invoke” invoke-attributes “>” invoke-elements “</invoke>”

invoke-attributes ::= U( standard-attributes, partnerLink, O(portType), operation,

O(inputVariable), O(outputVariable) )
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invoke-elements ::= U( standard-elements, O(correlations), O(catch),

O(compensationHandler), O(toParts), O(fromParts) )

Receive ::= “<receive” receive-attributes“>” U( standard-elements, O(correlations),

O(fromParts) ) “</receive>”

receive-attributes ::= U( standard-attributes, partnerLink, O(portType), operation,

O(variable), O(createInstance), O(messageExchange) )

Reply ::= “<reply” reply-attributes “>”U( standard-elements, O(correlations),

O(toParts) ) “</reply>”

reply-attributes ::= U( standard-attributes, partnerLink, O(portType), operation,

O(variable), O(faultName), O(messageExchange) )

Assign ::= “<assign” O(validate) standard-attributes “>” U( standard-elements, P( copy

| O(extensionAssignOperation) ) ) “</Assign>”

copy ::= “<copy>” from to “</copy>” (the definition of ”from” and ”to” are skipped here)

Throw ::= “<throw” throw-attributes “>” standard-elements “</Throw>”

throw-attributes ::= U( standard-attributes, O( faultName), O(faultVariable) )

Wait ::= “<wait” standard-attributes “>” U( standard-elements, O(for) | O(until) )

“</wait>”

Empty ::= “<empty” standard-attributes “>” standard-elements “</empty>”

ExtensionActivity ::= “<extensionActivity” #(anyElementQName)

“</extensionActivity>”

Exit ::= “<exit” standard-attributes “>” standard-elements “</exit>”

Rethrow ::= “<rethrow” standard-attributes “>” standard-elements “</rethrow>”

Sequence ::= “<sequence” standard-attributes “>” U( standard-elements, Activities )
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“</sequence>”

If ::= “<if” standard-attributes“>”standard-elements condition Activities #(elseif) O(else)

“</if>”

While ::= “<while” standard-attributes “>” standard-elements condition Activities

“</while>”

RepeatUntil ::= “<repeatUntil” standard-attributes “>” standard-elements Activities con-

dition “</repeatUntil >”

Pick ::= “<pick” pick-attributes “>”U(standard-elements, P(onMessage),

O(onAlarm) ) “</pick>”

pick-attributes ::= U( O(createInstance), standard-attributes )

onMessage ::= “<onMessage” message-attributes “>” O(correlations)

O(fromParts) Activities “</onMessage>”

onAlarm ::= “<onAlarm> (” O(for | until) “</onAlarm>”

flow ::= “<flow” standard-attributes “>” U( standard-elements, O(links), Activities)

“</flow>”

forEach ::= “<forEach” foreach-attributes “>”U(standard-elements, startCounterValue,

finalCounterValue, O(completionCondition) ) Scope “</forEach>”

foreach-attributes ::= U( counterName, parallel, standard-attributes )

scope ::= “<scope” scope-attributes “>” scope-elements “</scope>”

scope-attributes ::= U(standard-attributes, O(isolated), exitOnStandardFault )

scope-elements ::= U( standard-elements, O(partnerLink), O(messageExchanges),
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O(variables), O(correlationSets), #(handlers), Activities )

compensateScope ::= “<compensateScope” U( target, standard-attributes) “>

”standard-elements “</compensateScope>”

compensate ::= “<compensate” standard-attributes “>”standard-elements

“</compensate>”
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APPENDIX B. BUSINESS PROCESS DESCRIPTION OF THE

SEEMOVIE SERVICE

<?xml version = "1.0" encoding = "UTF-8" ?>

<!-- <process

name="SeeMovie" suppressJoinFailure="yes"

targetNamespace="http://SeeMovie"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:ns1="http://services.otn.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--

///////////////////////////////////////////////////////////////////////////////

PARTNERLINKS

List of services participating in this BPEL process

///////////////////////////////////////////////////////////////////////////////

-->

<partnerLinks>

<!--

The ’client’ role represents the requester of this service. It is

used for callback. The location and correlation information associated

with the client role are automatically set using WS-Addressing.

-->

<partnerLink name="client" partnerLinkType="client:SeeMovie"

myRole="SeeMovieProvider" partnerRole="SeeMovieRequester"/>

<partnerLink name="MovieScheduleService"

partnerLinkType="ns1:MovieScheduleService"
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partnerRole="MovieScheduleServiceProvider"/>

<partnerLink name="TicketService" partnerLinkType="ns1:TicketService"

partnerRole="TicketServiceProvider"/>

<partnerLink name="BusScheduleService"

partnerRole="BusScheduleServiceProvider"

partnerLinkType="ns1:BusScheduleService"/>

<partnerLink name="BusFareService" partnerRole="BusFareServiceProvider"

partnerLinkType="ns1:BusFareService"/>

</partnerLinks>

<!--

///////////////////////////////////////////////////////////////////////////////

VARIABLES

List of messages and XML documents used within this BPEL process

///////////////////////////////////////////////////////////////////////////////

-->

<variables>

<!-- Reference to the message passed as input during initiation -->

<variable name="inputVariable"

messageType="client:SeeMovieRequestMessage"/>

<!-- Reference to the message that will be sent back to the requester during

callback -->

<variable name="outputVariable"

messageType="client:SeeMovieResponseMessage"/>

<variable name="Invoke_checkSchedule_schedule_InputVariable"

messageType="ns1:MovieScheduleServiceRequestMessage"/>

<variable name="Invoke_checkSchedule_schedule_OutputVariable"

messageType="ns1:MovieScheduleServiceResponseMessage"/>

<variable name="Invoke_BusSchedule_busschedule_InputVariable"

messageType="ns1:BusScheduleServiceRequestMessage"/>

<variable name="Invoke_BusSchedule_busschedule_OutputVariable"

messageType="ns1:BusScheduleServiceResponseMessage"/>

<variable name="Invoke_BusFare_fare_InputVariable"
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messageType="ns1:BusFareServiceRequestMessage"/>

<variable name="Invoke_BusFare_fare_OutputVariable"

messageType="ns1:BusFareServiceResponseMessage"/>

<variable name="Invoke_Ticket_process_InputVariable"

messageType="ns1:TicketServiceRequestMessage"/>

<variable name="Invoke_Ticket_process_OutputVariable"

messageType="ns1:TicketServiceResponseMessage"/>

<variable name="CancelTrip_InputVariable"

messageType="ns1:CancelMessage"/>

</variables>

<eventHandlers>

<onMessage portType="client:CancelMovie" operation="cancel"

partnerLink="client" variable="CancelTrip_InputVariable">

<sequence name="Sequence_3">

<compensate name="Compensate_CancelTrip"/>

<terminate name="Exit"/>

</sequence>

</onMessage>

</eventHandlers>

<!--

///////////////////////////////////////////////////////////////////////////////

ORCHESTRATION LOGIC

Set of activities coordinating the flow of messages across the

services integrated within this business process

///////////////////////////////////////////////////////////////////////////////

-->

<sequence name="main">

<!-- Receive input from requestor. (Note: This maps to operation defined in

SeeMovie.wsdl) -->

<receive name="receiveInput" partnerLink="client"

portType="client:SeeMovie" operation="initiate"

variable="inputVariable" createInstance="yes"/>
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<!--

Asynchronous callback to the requester. (Note: the callback location and

correlation id is transparently handled using WS-addressing.)

-->

<scope name="Scope_seemovie">

<flow name="Flow_seemovie">

<links>

<link name="busToticket"/>

<link name="ticketTobus"/>

</links>

<sequence name="Sequence_1">

<assign name="Assign_1">

<copy>

<from variable="inputVariable" part="payload"

query="/client:SeeMovieProcessRequest/client:input"/>

<to variable="Invoke_checkSchedule_schedule_InputVariable"

part="payload" query="/ns1:title"/>

</copy>

</assign>

<invoke name="Invoke_MovieSchedule"

partnerLink="MovieScheduleService"

portType="ns1:MovieScheduleService"

operation="schedule"

inputVariable="Invoke_checkSchedule_schedule_InputVariable"

outputVariable="Invoke_checkSchedule_schedule_OutputVariable">

<source linkName="ticketTobus"/>

</invoke>

<assign name="Assign_4">

<copy>

<from variable="Invoke_checkSchedule_schedule_OutputVariable"

part="payload" query="/ns1:info"/>

<to variable="Invoke_Ticket_process_InputVariable"
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part="payload" query="/ns1:movieinfo"/>

</copy>

</assign>

<invoke name="Invoke_Ticket" partnerLink="TicketService"

portType="ns1:TicketService" operation="process"

inputVariable="Invoke_Ticket_process_InputVariable"

outputVariable="Invoke_Ticket_process_OutputVariable">

<target linkName="busToticket"/>

</invoke>

</sequence>

<sequence name="Sequence_2">

<assign name="Assign_2">

<copy>

<from variable="inputVariable" part="payload"

query="/client:SeeMovieProcessRequest/client:input"/>

<to variable="Invoke_BusSchedule_busschedule_InputVariable"

part="payload" query="/ns1:locations"/>

</copy>

</assign>

<invoke name="Invoke_BusSchedule"

partnerLink="BusScheduleService"

portType="ns1:BusScheduleService"

operation="busschedule"

inputVariable="Invoke_BusSchedule_busschedule_InputVariable"

outputVariable="Invoke_BusSchedule_busschedule_OutputVariable">

<target linkName="ticketTobus"/>

</invoke>

<assign name="Assign_3">

<copy>

<from variable="Invoke_BusSchedule_busschedule_OutputVariable"

part="payload" query="/ns1:info"/>

<to variable="Invoke_BusFare_fare_InputVariable"
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part="payload" query="/ns1:route"/>

</copy>

</assign>

<invoke name="Invoke_BusFare" partnerLink="BusFareService"

portType="ns1:BusFareService" operation="fare"

inputVariable="Invoke_BusFare_fare_InputVariable"

outputVariable="Invoke_BusFare_fare_OutputVariable">

<source linkName="busToticket"/>

</invoke>

</sequence>

</flow>

<invoke name="callbackClient" partnerLink="client"

portType="client:SeeMovieCallback" operation="onResult"

inputVariable="outputVariable"/>

</scope>

</sequence>

</process>
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APPENDIX C. BUSINESS PROCESS DESCRIPTION OF THE

FIREHAZARD SERVICE

<?xml version = "1.0" encoding = "UTF-8" ?><process

name="FireHazard" suppressJoinFailure="yes"

targetNamespace="http://xmlns.oracle.com/FireHazard"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="http://services.otn.com"

<!--

//////////////////////////////////////////////////////////////////////////////

PARTNERLINKS

List of services participating in this BPEL process

//////////////////////////////////////////////////////////////////////////////

-->

<partnerLinks>

<!--

The ’client’ role represents the requester of this service. It is

used for callback. The location and correlation information associated

with the client role are automatically set using WS-Addressing.

-->

<partnerLink name="Smoke_detector" partnerLinkType="client:FireHazard"

myRole="SmokeProvider" partnerRole="SmokeRequester"/>

<partnerLink name="Chemical_detector"

partnerLinkType="ns1:ChemicalService"

partnerRole="ChemicalServiceProvider"/>
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<partnerLink name="SprinklerService" partnerLinkType="ns1:SprinklerService"

partnerRole="SprinklerServiceProvider"/>

<partnerLink name="AlarmService"

partnerRole="AlarmServiceProvider"

partnerLinkType="ns1:AlarmService"/>

<partnerLink name="Temperature_detector"

partnerRole="TemperatureProvider"

partnerLinkType="ns1:TemperatureService"/>

<partnerLink name="NotificationService"

partnerRole="NotificationServiceProvider"

partnerLinkType="ns2:NotificationServiceLink"/>

</partnerLinks>

<!--

////////////////////////////////////////////////////////////////////////////

VARIABLES

List of messages and XML documents used within this BPEL process

////////////////////////////////////////////////////////////////////////////

-->

<variables>

<!-- Reference to the message passed as input during initiation -->

<variable name="inputVariable"

messageType="client:FireHazardRequestMessage"/>

<!-- Reference to the message that will be sent back to the requester

during callback -->

<variable name="outputVariable"

messageType="client:FireHazardResponseMessage"/>

<variable name="Invoke_smoke_onResult_InputVariable"

messageType="client:FireHazardResponseMessage"/>

<variable name="Invoke_chemical_InputVariable"

messageType="ns1:ChemicalServiceRequestMessage"/>

<variable name="Invoke_temperature_InputVariable"

messageType="ns1:TemperatureServiceRequestMessage"/>
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<variable name="Invoke_Alarm_InputVariable"

messageType="ns1:AlarmServiceRequestMessage"/>

<variable name="Invoke_sprinkler_process_InputVariable"

messageType="SprinklerServiceRequestMessage"/>

</variables>

<!--

///////////////////////////////////////////////////////////////////////////

ORCHESTRATION LOGIC

Set of activities coordinating the flow of messages across the

services integrated within this business process

///////////////////////////////////////////////////////////////////////////

-->

<sequence name="main">

<!-- Receive input from requestor. (Note: This maps to operation defined

in FireHazard.wsdl) -->

<receive name="Receive_1" partnerLink="Smoke_detector"

portType="client:FireHazard" operation="initiate"

variable="inputVariable" createInstance="no"/>

<while name="While_1"

condition="bpws:getVariableData(’inputVariable’,’payload’,’/client

:FireHazardProcessRequest/client:input’) = 0">

<sequence name="Sequence_WHILE">

<flow name="Flow_fire_control">

<sequence name="Sequence_8">

<scope name="Voice_1">

<bpelx:annotation>

<bpelx:pattern patternName="bpelx:voice">

</bpelx:pattern>

</bpelx:annotation>

<variables>

<variable name="varNotificationReq"

messageType="ns2:VoiceNotificationRequest"/>
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<variable name="varNotificationResponse"

messageType="ns2:ArrayOfResponse"/>

<variable name="NotificationServiceFaultVariable"

messageType=

"ns2:NotificationServiceErrorMessage"/>

</variables>

<sequence name="Sequence_9">

<assign name="VoiceParamsAssign">

<copy>

<from expression="string(’’)"/>

<to variable="varNotificationReq"

part="VoicePayload"

query="/VoicePayload/ns2:Content

/ns2:ContentBody"/>

</copy>

<copy>

<from expression="string(’text/vxml’)"/>

<to variable="varNotificationReq"

part="VoicePayload"

query="/VoicePayload/ns2:Content/

ns2:MimeType"/>

</copy>

<copy>

<from expression="string(’43235234’)"/>

<to variable="varNotificationReq"

part="VoicePayload"

query="/VoicePayload/ns2:To"/>

</copy>

</assign>

<invoke name="InvokeNotificationService"

partnerLink="NotificationService"

portType="ns2:NotificationService"
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operation="sendVoiceNotification"

inputVariable="varNotificationReq"

outputVariable="varNotificationResponse"/>

</sequence>

</scope>

</sequence>

<sequence name="Sequence_7">

<assign name="Assign_5">

<copy>

<from variable="Invoke_smoke_onResult_InputVariable"

part="payload" query="/ns1:route"/>

<to variable="Invoke_sprinkler_process_InputVariable"

part="payload" query="/ns1:fireinfo"/>

</copy>

</assign>

<invoke name="Invoke_sprinkler"

partnerLink="SprinklerService"

portType="ns1:SprinklerService" operation="process"

inputVariable="Invoke_sprinkler_process_InputVariable"/>

</sequence>

<sequence name="Sequence_7">

<assign name="Assign_4">

<copy>

<from variable="Invoke_smoke_onResult_InputVariable"

part="payload"

query="/client:FireHazardProcessResponse/

client:result"/>

<to variable="Invoke_Alarm_InputVariable"

part="payload" query="/ns1:fireinfo"/>

</copy>

</assign>

<invoke name="Invoke_1" partnerLink="AlarmService"
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portType="ns1:AlarmService"

operation="process"

inputVariable="Invoke_Alarm_InputVariable"/>

</sequence>

</flow>

<switch name="Switch_fire_checker">

<case condition="bpws:getVariableData(’inputVariable’,’payload’,

’/client:FireHazardProcessRequest/client:input’) =2">

<sequence name="Sequence_5">

<assign name="Assign_2">

<copy>

<from variable="inputVariable"

part="payload"

query="/client:FireHazardProcessRequest/

client:input"/>

<to variable="Invoke_chemical_InputVariable"

part="payload" query="/ns1:title"/>

</copy>

</assign>

<invoke name="Invoke_chemical"

partnerLink="Chemical_detector"

portType="ns1:ChemicalService"

operation="process"

inputVariable="Invoke_chemical_InputVariable"/>

</sequence>

</case>

<case condition="bpws:getVariableData(’inputVariable’,’payload’,

’/client:FireHazardProcessRequest/client:input’) = 1">

<sequence name="Sequence_4">

<assign name="Assign_1">

<copy>

<from variable="inputVariable"
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part="payload"

query="/client:FireHazardProcessRequest/

client:input"/>

<to variable="Invoke_smoke_onResult_InputVariable"

part="payload"

query="/client:FireHazardProcessResponse/

client:result"/>

</copy>

</assign>

<invoke name="Invoke_smoke"

partnerLink="Smoke_detector"

portType="client:FireHazardCallback"

operation="onResult"

inputVariable="Invoke_smoke_onResult_InputVariable"/>

</sequence>

</case>

<otherwise>

<sequence name="Sequence_6">

<assign name="Assign_3">

<copy>

<from variable="inputVariable"

part="payload"

query="/client:FireHazardProcessRequest/

client:input"/>

<to variable="Invoke_temperature_InputVariable"

part="payload" query="/ns1:route"/>

</copy>

</assign>

<invoke name="Invoke_temperature"

partnerLink="Temperature_detector"

portType="ns1:TemperatureService"

operation="process"
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inputVariable="Invoke_temperature_InputVariable"/>

</sequence>

</otherwise>

</switch>

<assign name="Assign_onFire">

<copy>

<from variable="Invoke_sprinkler_process_InputVariable"

part="payload" query="/ns1:fireinfo"/>

<to variable="outputVariable" part="payload"

query="/client:FireHazardProcessResponse/client:result"/>

</copy>

</assign>

</sequence>

</while>

<!--

Asynchronous callback to the requester. (Note: the callback location and

correlation id is transparently handled using WS-addressing.)

-->

</sequence>

</process>
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APPENDIX D. Simulation screenshot

*****************************************************************************************

TEST 0

*****************************************************************************************

Initializing test 0

Distance from t1 to t23: 19799.999999999996

Path: [t1, t2, t3, t5, t8, t11, t14, t17, t20, t22, t23]

==========================================================

Service t22 timedout

Alter Service’s new estimated time is: 19799.999999999996(PathEstimateTime)+3600(ServiceTimeout)

-1200.0(serviceAverageTime)+1400.0(AltServiceAverageTime)+0(AlgrithmTime)=23599.999999999996

totalPathLimit is 200000

Using service t22 ’s alter

alg time is :0

result:

[t1, t2, t3, t5, t8, t11, t14, t17, t20, t22, t23]

COMPLETE[ExecutionPath ExecutionPath0 completed]

Time cal spent: 29792

Overhead Time: 0

Stage Staget1 spent 1463

Stage Staget2 spent 425

Stage Staget3 spent 2955

Stage Staget5 spent 2274

Stage Staget8 spent 1550

Stage Staget11 spent 10858

Stage Staget14 spent 1407
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Stage Staget17 spent 3526

Stage Staget20 spent 1377

Stage Staget22 spent 3957

Total is 29792

Test 0 completed

*****************************************************************************************

TEST 1

*****************************************************************************************

Initializing test 1

Distance from t1 to t23: 19799.999999999996

Path: [t1, t2, t3, t5, t8, t11, t14, t17, t20, t22, t23]

==========================================================

Service t17 timedout

Alter Service’s new estimated time is: 19799.999999999996(PathEstimateTime)+6600(ServiceTimeout)

-2200.0(serviceAverageTime)+2300.0(AltServiceAverageTime)+0(AlgrithmTime)=26499.999999999996

totalPathLimit is 200000

Using service t17 ’s alter

alg time is :0

result:

[t1, t2, t3, t5, t8, t11, t14, t17, t20, t22, t23]

COMPLETE[ExecutionPath ExecutionPath0 completed]

Time cal spent: 30287

Overhead Time: 0

Stage Staget1 spent 1033

Stage Staget2 spent 3088

Stage Staget3 spent 2102

Stage Staget5 spent 356

Stage Staget8 spent 2020

Stage Staget11 spent 5997

Stage Staget14 spent 3681

Stage Staget17 spent 9994
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Stage Staget20 spent 287

Stage Staget22 spent 1729

Total is 30287

Test 1 completed

*****************************************************************************************

TEST 2

*****************************************************************************************

Initializing test 2

Distance from t1 to t23: 19799.999999999996

Path: [t1, t2, t3, t5, t8, t11, t14, t17, t20, t22, t23]

==========================================================

Service t2 timedout

Alter Service’s new estimated time is: 19799.999999999996(PathEstimateTime)+3600(ServiceTimeout)

-1200.0(serviceAverageTime)+1300.0(AltServiceAverageTime)+0(AlgrithmTime)=23499.999999999996

totalPathLimit is 200000

Using service t2 ’s alter

alg time is :0

Service t17 timedout

Alter Service’s new estimated time is: 19799.999999999996(PathEstimateTime)+6600(ServiceTimeout)

-2200.0(serviceAverageTime)+2300.0(AltServiceAverageTime)+0(AlgrithmTime)=26499.999999999996

totalPathLimit is 200000

Using service t17 ’s alter

alg time is :0

Service t17 timedout

Service t17 ’s alter also failed, backup looking

look up for t14,

back traced to t14

backuped history nodes [t1, t2, t3, t5, t8, t11]

calculating t14 to end path

New genereated path’s etimated time is: 14890(pathExecutedTime)+8700.0(NewPathEstimateTime)

+1(AlgrithmTime)=23591.0
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totalPathLimit is 200000

new path created [t1, t2, t3, t5, t8, t11, t14, t18, t20, t22, t23]

alg time is :1

result:

[t1, t2, t3, t5, t8, t11, t14, t18, t20, t22, t23]

COMPLETE[ExecutionPath ExecutionPath1 completed]

Time cal spent: 32244

Overhead Time: 28091

Stage Staget1 spent 239

Stage Staget2 spent 3600

Stage Staget3 spent 1282

Stage Staget5 spent 1060

Stage Staget8 spent 84

Stage Staget11 spent 5489

Stage Staget14 spent 3132

Stage Staget18 spent 1950

Stage Staget20 spent 1395

Stage Staget22 spent 808

Total is 19039

history pathes 0

[t1, t2, t3, t5, t8, t11, t14, t17, t20, t22, t23]

Time cal spent: 28091

Overhead Time: 0

ROLLEDBACK[ExecutionPath ExecutionPath0 rolledback to ExecutionPath ExecutionPath1]

[ExecutionPath ExecutionPath1]

Stage Staget1 spent 239

Stage Staget2 spent 3604

Stage Staget3 spent 1282

Stage Staget5 spent 1060

Stage Staget8 spent 84

Stage Staget11 spent 5489

Stage Staget14 spent 3132
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Stage Staget17 spent 13201

Total is 28091

Test 2 completed
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