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ABSTRACT 

Anhydrous ammonia (AA) is an important N fertilizer in the U.S., and with large farming 

operations rapid application is needed.  This study evaluated the impact of AA application timing 

and N rates when applied with a high speed low draft (HSLD) or a conventional till knife (CTKI) 

on corn (Zea Mays L.) production in no-tillage fields.  The study was conducted at sites located 

in Illinois, Iowa, and Kansas from 2007 to 2009.  The experimental design was a split-plot 

factorial arrangement of application method, timing (fall; spring preplant, SP; and sidedress, SD), 

and five N rates.  Fall AA application was least efficient (mean 55 kg N ha–1 higher optimum N 

and 2% lower grain yield, GY), with SP and SD equivalent.  The HSLD was comparable to the 

CTKI with most applications, except when high N rates (180 and 225 kg N ha-1) were applied SP.  

For these treatments AA injury reduced plant population (PP), early season growth, canopy 

NDVI, and GY.  Seedling injury did not occur with any N rate or timing with the CTKI.  

Shallow AA placement at high speed with the HSLD can provide a viable alternative to 

traditional deeper knife injection when conditions are suitable for AA application and positioning 

avoids corn seedling injury.  Anhydrous ammonia application with the HSLD, however, should 

be avoided where high SP AA rates may be placed directly under future corn rows. 

Abbreviations: AA, anhydrous ammonia; AONR, agronomic optimum nitrogen rate; CTKI, 

conventional till knife injection system; GY, grain yield; HSLD, high speed-low draft opener 
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system; NDVI, normalized difference vegetative index; PP, plant population; RCM, relative 

chlorophyll meter; RPP, relative plant population; SD, sidedress; SP, spring preplant.  

Nitrogen fertilizer is needed to maximize profitability in many corn fields.  Of many different 

sources of N available to U.S. farmers, AA is generally readily available and the least expensive 

source of N fertilizer, has the most concentrated analysis at 82% N, and is more slowly converted 

to nitrate than other N fertilizers (Fernández et al., 2009).  It can be applied in the fall following 

harvest, in the spring prior to seeding, or sidedress during the growing season.  Different 

application timings, however, may impact its efficiency and corn production. 

Injecting AA below the soil surface is required to avoid volatile losses during application.  

The traditional injection system in use for many years has been a shank and knife system, with 

an outlet at the bottom sides of a delivery tube behind the knife (Blue and Eno, 1954).  The 

injection requirement can result in higher corn GY compared to surface applied urea or urea-

ammonium nitrate solution in no-tillage and high crop residue levels (Mengel et al., 1982).  

However, anhydrous ammonia requires specialized and expensive storage facilities, and transport 

and application equipment (Schmitt and Rehm, 1993).  These requirements can sometimes 

constrain dealer storage capacity and overall AA supply at critical application times.  To spread 

out workloads and to more effectively utilize favorable conditions farmers desire to apply AA in 

the fall to avoid the busy spring planting season (Bundy, 1986; Randall and Schmitt, 1998; 

Kyveryga et al., 2004).  An alternative would be to increase capacity by increasing speed of 

application, which would decrease springtime application-days and labor requirements, but 

would increase critical AA supply need. 
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Although spring preplant (SP) and SD application of AA is generally most efficient because 

the application is closer to peak crop demand (Smith, 1966), late fall application of AA is 

practiced in the northern U.S. where soil temperatures result in slower conversion of AA to 

nitrate and where precipitation patterns lower potential for nitrate losses.  Randall and Sawyer 

(2008) estimated that 25% of the corn acreage across the Corn Belt receives fall applied N.  

However, risk of N loss from fall applications are greater than SP or SD because losses increase 

with the length of time between when applied and when needed by the plant (Chalk et al., 1975).  

This N loss can also result in reduced GY relative to spring applications (Bundy, 1986; Randall 

and Sawyer, 2008; Miller et al., 2011).  A nitrification inhibitor, like nitrapyrin [2-chloro-6-

(trichloromethyl)pyridine], can increase N use efficiency by delaying conversion of ammonium 

to nitrate when loss conditions occur (Hoeft, 1984; Shi and Norton, 2000; Randall et al., 2003).  

However, the use of nitrification inhibitors with fall applied AA has produced inconsistent 

results (Boswell, 1977; Hendrickson et al., 1978; Blackmer and Sanchez, 1988; Randall and 

Sawyer, 2008).  

At the time of application, excessive ammonia movement from the injection point can result 

in loss of AA from soil and toxicity damage to corn seedlings and roots.  Ammonia movement 

from the injection point increases in soils with low moisture, low organic matter, and coarse 

textures (Papendick and Parr, 1966; Parr and Papendick, 1966; Schmitt and Rehm, 1993).  Also, 

physical disruption from injection knives, such as large voids in dry cloddy soil or smearing of 

the injection track in overly wet soils, can create zones that allow ammonia movement toward 

the soil surface (Stanley and Smith, 1956; Overdahl and Rehm, 1990).  Conversely, retention of 

AA can generally be enhanced with lower N rates, deeper injection, and narrower injection 

spacing (McDowell and Smith, 1958). 
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Reducing the injection depth would reduce tractor power requirements and allow greater 

application speeds. This would also increase field application capacity and require less fuel, but 

would be an advantage only if ammonia losses are held to acceptable levels (Hanna et al., 2005).  

Also, reducing injection depth would increase the chance for corn seedlings and roots to be near 

or in the ammonia injection zone, which would increase potential for seed/seedling toxicity and 

thus make shallow injection more problematic (Cooke, 1962; Swart et al., 1971; Overdahl and 

Rehm, 1990; Fujinuma et al., 2011).  Blue and Eno (1954) found injected ammonia to be 

concentrated in zones from 5 to 20 cm in width, depending on soil moisture content.  Most 

ammonia was retained within an 8-cm zone of the injection point. 

As farm size increases there is a need to increase the speed of N application without 

sacrificing N use efficiency.  New applicators have been developed that inject AA using a large 

coulter wheel to open the soil and place AA into the soil, and with an offset closing wheel to 

close the injection track.  These application tools operate at a shallower depth, requiring less 

draft power and causing less surface disturbance (Hanna et al., 2005).  Decreased surface soil 

disturbance would be helpful in maintaining surface residue for erosion control in no-tillage 

systems.  With the desire to reduce environmental degradation related to nitrate leaching and 

improve N use efficiency, increased speed of AA application at SP and SD would allow 

movement away from fall application.  While such AA equipment has been commercially 

developed, research on crop response following AA application is lacking.  The objectives of this 

study were to compare agronomic performance of AA application with a proprietary, shallow 

placement, low soil disturbance opener system to a conventional knife injection system.  



5 
 

MATERIALS AND METHODS 

Study Site Characteristics 

The study was conducted for three years (2007–2009) in three locations: University of 

Illinois Research and Education Center at Champaign, IL (40° 5'27.78"N, 88°13'38.48"W); Iowa 

State University Agronomy and Agricultural Engineering Research Farm, near Boone, IA (42° 

00’ 37” N, 93° 44’ 32” W); and near Kansas State University on cooperating private farms near 

Willard, KS  (39° 5’ 36” N, 95° 56’ 27” W) in 2007 and near Silver Lake, KS (39°5’ 52”N, 95° 

49’ 33”W) in 2008 and 2009.  Table 1 summarizes the geographic sites and predominant soils.  

The soils ranged from loam to silty clay loam surface textures.  

At each site, soil samples were collected before treatment application from the 0–15 or 0–20 

cm depth, air-dried, ground, and used to determine routine soil tests (Table 1).  Soil NO3–N was 

determined on soil samples collected at SP before treatment application at Illinois sites, 0–30 cm 

depth; early June from control plots at Iowa sites, 0–30 cm depth; and before treatment 

application spring (2007) or fall (2007 and 2008) at Kansas sites, 0–60 cm depth (Table 1).  For 

all soil samples, composite samples were collected per replicate:  Illinois, five cores; Iowa, 

twelve cores; and Kansas, fifteen cores.  Routine soil analyses were conducted using 

recommended procedures for the North-Central Region (Brown, 1998).  When P and K soil test 

levels were found to be deficient using the individual state soil test calibrations, recommended P 

or K rates were applied prior to planting.  At the Iowa site in 2008, triple superphosphate 

fertilizer was broadcast applied in the spring at 37 kg P ha–1.  At the Kansas site in 2007, 60 kg P 

ha-1 as monoammonium phosphate (supplied 12 kg N ha-1) and 33 kg K ha–1 as potassium 

chloride was broadcast the prior fall by the cooperating farmer.  In Kansas in 2007 and 2008, 10 

kg P ha-1 and in 2009, 25 kg P ha–1 was applied at planting as a surface dribble starter of 
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ammonium polyphosphate.  In all years at the Kansas sites, the ammonium polyphosphate 

application at planting was adjusted to a total of 20 kg N ha–1 with urea-ammonium nitrate.  The 

AA rates were not adjusted for N applied in the starter or P fertilizers.  At the Illinois sites, no 

fertilizer was applied prior to planting as soil nutrient levels were considered adequate. 

At all sites, soybean (Glycine max. L. Merr.) was the previous crop.  There was no tillage 

done before or after AA application.  Weeds were controlled using some combination of residual, 

soil applied herbicides, and glyphosate post emergence as needed.  Anhydrous ammonia 

application dates, corn planting dates, and hybrids are summarized in Table 2.  At all sites, 

hybrids were adapted to the geographic area and Bacillus thuringiensis (Bt) traits were used for 

insect control.  No additional insecticides were applied.  Seeding rates ranged from 59,300 to 

86,500 seeds ha–1 in different years and sites, with the intent to plant near optimal seeding rates 

for the specific site; with actual rate therefore varying between sites and mainly between states 

(Table 2).  Corn was planted in 76-cm width rows, with individual plots 4 rows wide by 30 to 70 

m in length.  A 15- to 40-m border length was used to bring the tractor to desired speed and AA 

to desired flow rates prior to entering plots for treatment application. 

Anhydrous Ammonia Treatment Applications 

Treatments were arranged in a split-plot, randomized complete block, using a factorial design 

and four replications.  The main plot was time of AA application, and the application method and 

N rate were randomized within the time of application main plot.  The AA application timing 

was late fall after soil temperature was below 10◦C at the 10-cm depth, SP 7 d minimum prior to 

planting (7–14 d across sites and years), and SD at the V2 corn growth stage (Abendroth et al., 

2011) (V2–V6 across sites and years).  In 2007, only SP and SD applications were made due to 

study initiation in the spring of 2007.  Actual application dates varied due to geographic location, 
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soil moisture conditions, and corn growth, but were approximately early- to mid-Nov. for fall, 

mid-Apr. to mid-May for SP, and mid-June for SD.  The N application rates were 0, 90, 135, 180, 

and 225 kg N ha-1 for all fall and SP applications.  In 2008 and 2009 at the Illinois and Iowa sites, 

the SD treatments had 20 kg N ha–1 applied preplant or at planting as ammonium nitrate or urea-

ammonium nitrate solution, but the application at SD was adjusted accordingly to maintain a 

consistent rate across timings of application.   

Anhydrous ammonia application rates were calibrated in set-length test areas immediately 

before application.  Applicators were equipped with 454 L tanks and weigh systems so 

differential in AA tank weights were used for calibration.  Ammonia rate and distribution control 

varied between years and sites, and included a Kontrol-Flo II controller, Equa-Flo distributor, 

and Sky-Trac GPS (Squibb-Taylor, Dallas, TX) in 2007 and 2008 at Illinois sites and 2007 in 

Iowa; and a Continental C-2500 Meter Matic (Continental NH3 Products, West Yorktown, TX) 

and Impellicone (CDS-John Blue Company, Huntsville, AL) flow divider all years at Kansas 

sites, 2009 in Illinois, and 2008 and 2009 at Iowa sites. 

Two systems of AA placement into soil were used.  One method was a newly developed 

proprietary opener system (John Deere, Waterloo, IA) designed to place AA at a shallow depth, 

with low soil disturbance, and at a high application speed (the HSLD system); and the other was 

a conventional-till knife injection system (the CTKI system) with covering disks, also supplied 

by John Deere, designed to place AA at a traditional depth and application speed.  The HSLD is 

an integrated unit that consisted of a 56-cm straight blade coulter set on a four degree angle, a 7-

cm wide depth gage wheel, an opener shoe with the AA outlet port behind the shoe (AA released 

from the bottom of the supply tube) and under a sealing wing, and two 30-cm cast trailing 

closing wheels running on the soil surface, each angled in opposite directions with the first one 
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including a notched blade protruding from the wheel (Picture 1).  The HSLD opener system has 

been since modified and is commercially available on the John Deere 2510H® nutrient applicator.  

The CTKI consisted of a straight blade coulter for cutting surface residue, a forward swept knife 

with a leading shoe and the AA outlet ports (AA released from each side of the supply tube) 

behind and at the bottom of the knife, and two wavy coulters angled to provide surface soil 

coverage over the injection track (Picture 2). 

Planned AA application depth and ground speed for the HSLD was 10 cm at all application 

timings and 16 km hr–1 fall and SP, and 13 km hr–1 SD; and for the CTKI was 18 cm and 10 km 

hr–1 at all application timings.  Actual application depth and speed varied by site due to several 

factors, including soil conditions and tractor limitations; and were 10 to 13 cm and 13 to16 km 

hr–1 with the HSLD, and 18 to 20 cm and 9 to 10 km hr–1 with the CTKI.  For fall and SP 

applications, the applicator had four of the HSLD or CTKI, set on 76-cm spacing.  The injection 

tracks were oriented to be placed under future corn rows.  This orientation with the corn rows 

was planned to provide the worst-case scenario for AA damage to corn seedlings and roots.  For 

SD applications, the applicator had two of the HSLD or CTKI systems, set on 152-cm spacing, 

and with the injection tracks placed between every other row.  With the SD applied between 

alternate rows, the N rate doubled per injection track.  Each system was also run through the zero 

N rate plots at each application.  During applications, observations were made for visual loss of 

ammonia, and after application visual damage to corn roots, seedlings, and plant vegetation.  

Corn Plant and Grain Measurements 

Corn plant population (PP) was counted at the V2 growth stage shortly before SD application 

to determine fall and SP AA application effects on plant establishment.  All plants were counted 
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in a 12-m marked length in each of the center two rows per plot.  Since the seeding rate was 

different at each site, a relative plant population (RPP) was calculated with the population from 

all SD timing counts used as 100% since no SD treatments had yet been applied.  At the Illinois 

and Iowa sites, plant height of 30 and 20 plants per plot, respectively, was measured 

approximately 14 d after SD application (V4 and V8 growth stages in Illinois and V4–V6  stages 

in Iowa) by measuring from the soil surface to the most extended (tallest) leaf tip.     

As an estimate of mid-season plant N status, chlorophyll meter readings were collected using a 

Minolta SPAD-502 meter (Konica Minolta, Ramsey, NJ) at the V8 to V14 growth stages at 

Illinois and Iowa sites.  The meter produces an output in SPAD units, which are correlated with 

leaf chlorophyll and N concentration (Schepers et al., 1992; Markwell et al., 1995).  The 

chlorophyll meter readings were taken from the uppermost fully developed leaf (leaf with collar 

fully visible) on fifteen to twenty plants per plot, at a point one-half the distance from the leaf tip 

to the leaf base, and halfway between the leaf margin and midrib using the procedure described 

by Peterson et al. (1993).  Due to the range of hybrids, sites, and years, relative chlorophyll meter 

(RCM) values for each plot were used in analyses instead of SPAD meter reading.  The RCM 

values were calculated by dividing plot mean chlorophyll meter readings by the mean 

chlorophyll meter reading from the highest N rate for each application method and timing within 

a site, and then multiplied by 100.  Use of the RCM values provides an estimate of the presence 

or absence of corn N deficiency.  Chlorophyll meter readings have been widely reported to be 

related to the N status of corn plants (Piekielek and Fox, 1992; Blackmer and Schepers, 1994; 

Piekielek et al., 1995; Fox et al., 2001) with RCM values at 95 to 97 indicating adequate N 

(critical or sufficiency levels) and less than those values indicating deficient N (Peterson et al., 

1993; Blackmer and Schepers, 1995; Varvel et al., 1997; Hawkins et al., 2007). 
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At the Iowa sites, the corn canopy biomass and growth response was measured with a 

Holland Scientific Crop Circle ACS-210TM (Holland Scientific, Lincoln, NE) optical, active light 

canopy sensor on the same day as the chlorophyll meter measurements.  The sensor was mounted 

on a mast, positioned between the center two plot rows, and carried by hand at 1.5 m s–1 and 0.60 

to 0.90 m height above the crop canopy.  Visible (VIS) and near infrared (NIR) reflectance 

values were recorded with a datalogger and used to calculate plot mean normalized difference 

vegetation index using the following equation: 

       [1] 

Corn GY was determined by either hand harvesting from the center two rows of each plot or 

by machine harvesting the entire center two rows using a plot combine.  Reported GYs were 

adjusted to 155 g kg–1 moisture.  

Statistical Analyses and Calculations 

Analysis of variance (ANOVA) was conducted with the GLIMMIX procedure in SAS (SAS 

Institute, 2012) for each measurement, having main plots AA application timing and sub-plots a 

factorial arrangement of application method and N rate.  Treatments were considered fixed and 

replicates random.  For across site analyses, replicates, sites, years, and interactions with 

treatments were considered random.  When significant, differences between main effects of 

application timing, method, and their interactions were determined with the PDIFF option in 

GLIMMIX (P ≤ 0.05).  When the effect of N rate or N rate interaction with application timing 

and method were significant, linear, linear-plateau, quadratic, and quadratic-plateau regression 

models were fit using GLM and NLIN procedures of SAS.  The model statistically significant (P 

≤ 0.05) and with the largest coefficient of determination (R2) was selected.  With GY, the fitted 
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regression models were used to determine the maximum response and agronomic optimum N 

rate (AONR).  

RESULTS 

Climatic Conditions 

Mean monthly temperatures in the years of study were similar to long-term means at all sites 

(Appendix I).  Total yearly and growing season precipitation varied due to geographic 

distribution of the study sites (Appendix II).  The Illinois site in 2007 was relatively dry through 

the growing season, but in 2008 and 2009 had above normal precipitation, especially in 2008.  At 

the Iowa sites in 2007 and 2008, repeated spring and early summer precipitation events resulted 

in wet soils and water ponding in some of the study areas.  This caused poor corn plant 

population in one replicate each of those years, and therefore, only three replications were used 

in 2007 and 2008.  In 2009, the Iowa site had below normal precipitation for most of the growing 

season.  At the Kansas sites, growing season precipitation was below normal in 2007 and 2008, 

with 2009 receiving more normal precipitation.  At the Kansas sites in 2008 and 2009, 

supplemental irrigation was applied as suggested using the KANSCHED irrigation scheduling 

program.  No irrigation was applied at other sites. 

Corn Plant Measurements 

Plant Population 

The statistical significance of AA application timing, method, and N rate on RPP (V2 growth 

stage) across all sites is given in Table 3.  The PP measurements were taken before SD 

application, therefore, the RPP only include fall and SP applications.  Across all sites, none of 

the application treatments had a significant effect on RPP (Tables 3 and 4), but site was 
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significant (P = 0.005).  Among sites within each state, AA application method had a significant 

effect on RPP in 2007 and 2009 at the Iowa sites, and the application method by timing 

interaction was significant in 2008 at the Illinois site (Table 5).  No effect from AA application 

method on RPP occurred for the Kansas sites in any year.  At the Iowa sites, application method 

was significant in 2007, and timing, N rate, and the timing by N rate interaction and the timing 

by application method interaction was significant in 2009.  There was no reduction in mean RPP 

with the CTKI, but the HSLD system produced an 11% reduction in 2007 (Table 6).  In 2009 at 

the Iowa site, the mean RPP was only 1% lower with the HSLD application (Table 7).  The 

significant N rate by application timing interaction in 2009 resulted in a reduced RPP with the 

two highest N rates, predominantly due to reduced PP with the spring HSLD application.  In 

2008 in Illinois, the application timing by method interaction (Table 5) was explained by a 

reduction in RPP with the HSLD compared to the CTKI when AA was applied in the fall  (6% 

lower), but the opposite with the SP timing (4% higher with the HSLD) (data not shown).  This 

application method effect on RPP was opposite of that found at the Iowa 2007 and 2009 sites. 

Plant Height 

Averaged across sites (measured each year at the Illinois and Iowa sites only), corn plant 

height (V4–V6 growth stages) was influenced by the timing by method interaction and 

application method by N rate interaction (Tables 3 and 8).  The HSLD applications resulted in 

the mean corn height 3 cm shorter than with the CTKI.  The HSLD application affected corn 

height with the SP application, but not with the fall application.  The timing by application 

method interaction was explained by a reduction in plant height with HSLD relative to CTKI in 

the SP, but not the fall.  This reduction in plant height with HSLD was likely related to seedling 

damage resulting from the higher N rates (4% and 11% height reduction in highest two N rates 
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compared to no fertilizer, respectively) (Table 8).  These findings follow a similar trend as 

observed with RPP in Iowa where the HSLD system created root and seedling injury. The overall 

N rate effect was an increase in plant height in response to applied AA, but that response was 

negated at higher rates due to seedling damage and slower growth at the highest N rates with the 

SP HSLD application (Table 8).  The reduced plant height with the SP HSLD application at the 

two highest N rates followed the same trend as found with RPP at the Iowa sites where shallow 

placed AA caused root and seedling growth injury.   

Plant Canopy and Nitrogen Status 

The chlorophyll meter readings were taken from just one leaf per plant, not the entire plant. 

Therefore, only N response (leaf greenness), and not plant canopy or biomass response to 

application method, would be reflected in RCM values.  Leaf RCM values were influenced by 

timing, method, N rate, and the timing by N rate interaction (Table 3).  Mean RCM values were 

lower with fall application than SP or SD (Table 9).  This indicates less available N with the FA 

application. The HSLD applications had 2% higher mean RCM value than the CTKI, reflecting 

lower RCM values with the fall CTKI application at the lowest two N rates. The timing by N rate 

interaction is shown in Fig. 1.  The RCM values were lower with the fall application at the 90 kg 

N ha–1 rate, but the similar with other N rates.  An RCM value less than 97 has been shown in 

Iowa research to indicate N deficiency in corn (Hawkins et al., 2007).  The RCM values with the 

SP and SD applications were at or above that critical level with 94 or more and 79 or more kg N 

ha–1, respectively, but only with 144 or more kg N ha–1 with the fall application.  These RCM 

differences indicate a potential for some N loss with the fall applications compared to SP and SD. 

The RCM values do not give any indication of damage from the HSLD as was found with RPP 

and plant height. 
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Plant canopy sensing was conducted only at the Iowa sites.  The NDVI values across the 

three years are given in Table 10.  All main and interaction effects were significant (Table 3).  

There was an overall response to N rate, however, the NDVI values reached a peak at 100 kg N 

ha–1 and then declined at higher N rates with the SP HSLD application, but reached a plateau at 

138 kg N ha–1 with the CTKI and fall and SD HSLD applications (Fig. 2).  The NDVI values 

recorded by the Crop Circle canopy sensor provide an indication of plant N status and crop 

canopy size.  The reduction in NDVI values with the two highest N rates when applied with the 

HSLD would be a reflection of the reduced RPP and plant height found with those applications 

at the Iowa sites.  The effect of AA damage on corn roots and early plant growth rate at the Iowa 

sites with the SP HSLD were evident in the reduced canopy NDVI values at the two highest N 

rates, and a reflection of reduced plant biomass rather than N deficiency.  The NDVI values at 

the 180 and 235 kg N ha–1 rates with the HSLD application were the same or lower as with the 

zero N rate. These low NDVI values indicate a small corn plant canopy, reduced leaf area, low 

plant density and biomass, and soil background effect on canopy sensing values. 

Corn Grain Yield 

Across all sites, corn GY was highly responsive to applied N rate (Table 11).  There was a 

significant GY response to the interactions of timing and method with N rate (Table 3).  

Although the mean difference in GY among the three application times was not highly 

significant at the P ≤ 0.05 level (Table 3), there was a mean 4% decrease in GY with the fall 

application compared to SP and SD (Table 11).  The timing by N rate interaction indicated a 

reduction in GY with fall application in the 90 to 180 kg N ha-1 rates (Fig. 3).  Those lower 

yields with fall application would be the reason for the lower mean yield with fall application.  

The mean difference (across all N rates) in GY between HSLD and CTKI applications across all 
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sites, while significant, was only 0.16 Mg ha–1 (Table 11).  The difference in GY between 

application methods was from the seedling injury, expressed in the RPP and canopy sensing 

results, caused by the HSLD at the highest SP N rates (5.5% lower GY at 225 kg N ha–1) (Fig. 4).  

With the Iowa SP application data, GY was correlated (PROC CORR, SAS Institute, 2012 with 

PP and NDVI (r = 0.69 and 0.86, respectively; P < 0.001; n = 100), which indicates the effect of 

HSLD AA application on seedling damage. 

The mean across-site GY response to N rate, timing, and application method was evaluated 

by fitting regression models.  Quadratic regressions were the best fitted model, P ≤ 0.01.  The SP 

and SD applications produced higher GY with lower N rates relative to the fall application (Fig. 

3).  The agronomic optimum N rate (AONR) and yield at AONR were similar for SP and SD 

applications with 11.87 Mg ha-1 at 167 for SP and 11.99 Mg ha-1 at 174 kg N ha–1 for SD.  The 

fall timing, however, had an AONR at 225 kg N ha–1 with a GY of 11.73 Mg ha–1, resulting in a 

mean 55 kg N ha–1 higher optimum N and 2% lower GY.  The higher AONR and lower GY with 

the fall timing indicates lower efficiency of the fall AA application compared to SP and SD.  

The mean GY response to N rates was a quadratic fit for both HSLD and CTKI methods (Fig 

4).  The GY decreased at the highest N rate with the HSLD application, but not the CTKI.  This 

resulted in a higher GY at the AONR for the CTKI application than HSLD (11.95 Mg ha–1 at 205 

kg N ha–1 and 11.69 Mg ha–1 at 168 kg N ha–1, respectively, for the CTKI and HSLD).  The 

AONR was lower for the HSLD as a result of the GY decrease with the highest N rate, which 

reduced overall GY potential by 0.28 Mg ha–1 (2.3%). 
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DISCUSSION 

Corn response to N rate was generally positive, with an increase in plant growth and GY.  

However, there were situations where AA applied with the HSLD system resulted in reduced 

RPP, early growth, and crop canopy.  This occurred in two years at Iowa sites when applied SP 

with N rates ≥ 180 kg N ha–1.  Plant damage did not occur with fall or SD applications at any N 

rate.  Conditions that would lead to seedling damages are a small vertical distance from the point 

of AA placement to the seed, such as the 10-cm AA application depth with the HSLD and 5-cm 

seed depth.  Depending on soil moisture and various soil physical properties, ammonia is often 

concentrated in zones from 5 to 20 cm wide (Blue and Eno, 1954; McDowell and Smith, 1958; 

Papendick and Parr, 1966).  Higher N rates also result in a greater AA concentration in the 

injection band and result in more ammonia movement away from the band and toward the soil 

surface.  Injected AA tends to move upward and laterally more than downward (Stanley and 

Smith, 1956).  With the CTKI system, the apparent greater separation distance between the AA 

injection point (20 cm) and the corn seed eliminated the potential for AA damage to corn 

seedlings and roots.  In our study, planting corn seed directly along or over the AA injection 

track provided the situation for the greatest chance of seedling damage from free ammonia.  A 

solution to this potential problem would be to offset the corn row from the HSLD injection track, 

with the increased untreated soil between the seed and AA band buffering potential AA injury.  

Deeper AA placement, as with the CTKI, would also help provide soil separation and reduce AA 

injury, as found in our study. 

Various studies have reported injury to corn from AA application.  Parr and Papendick 

(1966) reported corn root damage due to ammonia toxicity, which resulted in reduced GY.  

Colliver and Welch (1970) observed reduced PP, stunted early growth, and restricted seedling 
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root development when a high rate of AA (224 kg N ha–1) was applied at a 10-cm depth 

immediately before planting (seed at a 5-cm depth).  Increasing the time interval to 1 or 2 wk 

between AA application and corn planting reduced the injury, but an increased application depth 

was more effective in reducing injury than the increased time interval (Colliver and Welch, 

1970).  In our study, seedling injury in Iowa was evident visually and in the lower measured PP 

as a result of the shallow HSLD AA placement at the highest two N rates (180 and 225 kg N ha–

1) when SP applied.  No plant injury was observed with the fall or SD HSLD applications, or

measured in the RPP or later with canopy sensing. 

Depth of AA placement, N rate, and soil conditions affect AA retention and potential for 

ammonia movement and loss at application.  Soil conditions include moisture level, texture, 

organic matter, and structure (Jackson and Chang, 1947; Blue and Eno, 1954; Nommik and 

Vahtras, 1982).  Injection depth has a large influence on potential AA loss at application.  In 

Iowa studies, increased loss of AA was reported with decreased injection depth regardless of the 

application speed (Abo-Abda, 1995) and when applied with a single-disc opener at a shallow 5 to 

10 cm depth (Hanna et al., 2005); and in Kansas and Missouri studies AA loss increased with 

injection at depths < 10 cm (Wagner and Smith, 1958; Swart et al., 1971).  Visible AA loss at 

application, as indicated by white water vapor puffing, occurred with some HSLD applications 

(visible at the point of release from the delivery tube before the closing wheels, with no loss 

visible after the closing wheels), especially at high N rates.  Loss was not observed with CTKI 

applications at any N rate.  Although conditions conducive to ammonia loss were not quantified 

in our study, they appeared to be related to a shallow injection point, high rate of AA, and soil 

physical structure that did not fracture within the operating depth of the HSLD, that is, the HSLD 

opener shoe sliced through the soil rather than fracturing soil.  Potential for AA loss at 
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application appeared to be related to the small size of the cavity created by the HSLD, the 

tendency for AA to move up the seam created by the disc blade and opener shoe, and a lower 

potential for AA to move laterally in soil that was less fractured and with a smaller cavity 

compared to the CTKI.  

In 2007 and 2009 at the Iowa sites, there was visual root damage (necrotic tissue and reduced 

root growth), delayed emergence, and reduced seedling growth due to ammonia toxicity with the 

SP HSLD application at the highest three N rates.  This observed damage (no damage ratings 

collected) produced the reduced RPP at the two Iowa sites, and effects on plant growth persisted 

into the growing season.  There was no visible root damage observed with the CTKI from any 

application time or N rate.  Apparently the shallow SP AA zone at the high N rates with the 

HSLD, and application relatively soon before planting, was too close to the planted corn seed 

and subsequent root growth at those Iowa site-years.  The intended planting of the corn rows 

directly over previously applied preplant AA would result in the worst-case scenario for root 

damage.  With the SD application, no change in RPP was measured with either the HSLD or 

CTKI (determined at the Illinois and Iowa sites, data not shown).  This would be expected with 

the AA being placed at 38 cm from corn rows (mid inter-row) where depth of application would 

not have a differential impact on plant rooting. 

Across all sites in the three states, fall AA application had an overall lower GY and higher 

AONR than SP and SD.  Also, the GY N response was the same with SP and SD application. 

The lower GY and higher AONR with fall application was likely because of the long period 

between N application and uptake by the crop, with the increased chance of conversion of 

applied AA to nitrate and loss with wet conditions that often occur in the spring.  Research 

comparing fall and SP AA application have found variable GY response, mainly due to 
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differences in environment.  In Ontario, Canada, fall application produced lower corn GY than 

SP or SD applications regardless of the N rate (from 56 to 224 kg N ha–1) when applied to clay, 

clay loam, and silt loam soils (Stevenson and Baldwin, 1969).  Reduced GY with fall application 

was greater on clay than loam textured soils.  Welch et al. (1971) reported that a three-year 

average corn GY with fall application in central and northern Illinois was only 80% and 90% as 

effective as SP application at rates of 67 and 134 kg N ha–1, respectively.  Chalk et al. (1975), 

however, found no significant difference in corn GY between fall and SP application at medium 

(112 kg N ha–1) and high (336 kg N ha–1) rates of AA on a silt loam soil in Wisconsin. 

CONCLUSIONS 

There were positive plant and GY response to applied N with both the HSLD and CTKI 

application methods, and with fall, SP, and SD application timings.  Fall application resulted in a 

higher AONR and lower GY than the SP and SD timings, and thus was the least efficient time of 

application.  Corn response to applied N was the same with the SP and SD applications.  High 

speed (13–16 km hr–1) and shallow (10–13 cm depth) AA placement was successfully achieved 

with the HSLD applicator and corn response to applied N was similar with both application 

methods.  However, with SP applications at some sites, especially at the two highest N rates of 

180 and 225 kg N ha–1, there were visual observations of ammonia loss during application with 

the HSLD and corn seedling root injury from ammonia toxicity which led to reduced PP, smaller 

plants, reduced canopy color (NDVI), and reduced GY.  Seedling injury did not occur with any 

N rate or timing with the CTKI (18–20 depth and 9–10 km hr–1 application).   

Overall, results indicate that shallow placement of AA at high speed with the HSLD opener 

system can provide a viable substitute to traditional deeper knife injection with fall, SP, and SD 

applications, both with respect to retaining N in the soil and providing N supply to a corn crop; 
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specifically, when soil conditions are conducive for proper HSLD operation and soil retention of 

AA.  Anhydrous ammonia application with the HSLD, however, should be avoided where the 

AA may be injected directly under future corn rows and with high N rates.  Global positioning 

equipped HSLD applicators and planters could be utilized to place SP applied AA away from 

future corn rows, or SD application made between corn rows, as a means to avoid seedling injury. 
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Fig. 1.  Interaction of N application timing by N rate for corn relative chlorophyll meter (RCM) 

values, across Illinois and Iowa sites, 2007–2009.  The interaction is based on the statistical 

results in Table 3.  Spring preplant (SP) and sidedress (SD). 

Fig. 2.  Interaction of N application timing by method by N rate for corn canopy normalized 

difference vegetative index, across Iowa sites, 2007–2009.  The interaction is based on the 

statistical results in Table 3.  The interaction is shown by the response for the spring preplant 

(SP) HSLD system high speed-low draft opener system (HSLD) application and the mean of all 

other timing and method applications.   

Fig. 3.  Interaction of N application timing by N rate for corn grain yield, across all sites, 2007–

2009.  The interaction is based on the statistical results in Table 3.  Open symbols represent 

means and closed symbols represent agronomic optimum N rate.  Spring preplant (SP) and 

sidedress (SD). 

Fig. 4.  Interaction of N application method by N rate for corn grain yield, across all sites, 2007–

2009.  The interaction is based on the statistical results in Table 3.  Open symbols represent 

means and closed symbols represent the agronomic optimum N rate.  High speed-low draft 

opener system (HSLD) and conventional till knife injection system (CTKI). 

Picture 1. The high speed-low draft opener system (HSLD). 

Picture 2. The conventional till knife injection system (CTKI). 
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Table 1. Site information and selected background soil test values for each site, 2007–2009. 
 Predominant soils Soil Tests 

Site Town State Year Series Texture† Classification pH‡ STP‡ STK‡ NO3-N§ OM‡ 

   - - - - - mg kg-1- - - - - g kg-1 

1 Champaign Illinois 2007 Flanagan Sl fine, smectitic, mesic Aquic 
Argiudolls 5.6 45 198 7 36 

2 Champaign Illinois 2008 Flanagan Sl fine, smectitic, mesic Aquic 
Argiudolls 6.0 26 160 5 32 

3 Champaign Illinois 2009 Flanagan Sl fine, smectitic, mesic Aquic 
Argiudolls 6.1 19 191 6 36 

    Drummer Sl fine-silty, mixed, superactive, 
mesic Typic Endoaquolls 

4 Boone  Iowa 2007 Clarion L 
fine-loamy, mixed, 
superactive, mesic Typic 
Hapludolls 6.6 31 177 5 43 

Nicollet L 
fine-loamy, mixed, 
superactive, mesic Aquic 
Hapludolls 

5 Boone  Iowa 2008 Harps L 
fine-loamy, mixed, 
superactive, mesic Typic 
Calciaquolls 7.6 13 182 14 82 

    Webster Scl 
fine-loamy, mixed, 
superactive, mesic Typic 
Endoaquolls 

6 Boone  Iowa 2009 Clarion L 
fine-loamy, mixed, 
superactive, mesic Typic 
Hapludolls 6.7 16 179 6 45 

    Nicollet L 
fine-loamy, mixed, 
superactive, mesic Aquic 
Hapludolls 
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7 Willard Kansas 2007 Lady Smith Scl fine, smectitic, mesic Pachic 
Udertic Argiustolls 6.1 15 200 8 12 

8 Silver Lake Kansas 2008 Rossville Sl fine-silty, mixed, superactive, 
mesic Cummulic Hapludolls 7.2 12 335 5 19 

9 Silver Lake Kansas 2009 Rossville Sl fine-silty, mixed, superactive, 
mesic Cummulic Hapludolls 6.9 13 397 4 19 

† L, loam; Scl, silty clay loam; Sl, silt loam. 

‡ Soil sample before treatment application, 0–15 cm depth Iowa and Kansas and 0–20 cm depth Illinois. STP, soil test P; STK, soil test K; OM, 
soil organic matter.  

§ Soil NO3–N sample depth and timing: Illinois, 0–30 cm depth spring before treatment application; Iowa, 0–30 cm depth early June from control
plots; Kansas, 0–60 cm spring (2007) or fall (2007 and 2008) before treatment application. 
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Table 2. Anhydrous ammonia application date, corn planting date, hybrid, and seeding rate for 
each site. 

Site 
Application date Corn planting 

date Hybrid† 
Seeding 

rate (ha-1) Fall Spring preplant  Sidedress  
1 –‡ 8 May 2007 13 June 2007 17 May 2007 P 34N40 84000
2 18 Nov. 2007 23 Apr. 2008 12 June 2008 30 May 2008 P 32T85  84000
3 10 Nov. 2008 30 May 2009 25 June 2009 5 June 2009 P 32T85  79100
4 – 14 May 2007 11 June 2007 21 May 2007 DK 61-69 73900
5 31 Oct. 2007 30 Apr. 2008 18 June 2008 15 May 2008 P 34A18 86500
6 3 Nov. 2008 16 Apr. 2009 5 June 2009 5 May 2009 DK 61-69 81500
7 – 30 Apr. 2007 18 June 2007 14 May 2007 GH 9006  59300
8 17 Nov. 2007 15 Apr. 2008 16 June 2008  2 May 2008 PH 7624  73100
9 19 Nov. 2008 22 Apr. 2009 19 June 2009 11 May 2009 PH 7624  78100

† DK, DeKalb; GH, Golden harvest; P, Pioneer; PH, Producers hybrids.  
‡ Anhydrous ammonia not applied fall 2007.  
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Table 3. Statistical significance of the effect of anhydrous ammonia timing, 
application method, and N rate on relative plant population (RPP) across all sites, 
plant height and relative chlorophyll meter (RCM) values across Illinois and Iowa 
sites, canopy normalized difference vegetation index (NDVI) across Iowa sites, and 
corn grain yield (GY) across all sites, 2007–2009. 

Source RPP Plant height RCM NDVI 
Corn 
GY 

----------------------------------------  P > F --------------------------------------- 
Location 0.005 0.240 0.802 –† 0.672 
Timing (T) 0.680 0.770 0.047 0.009 0.065 
Method (M) 0.466 0.005 <0.001 <0.001 0.031 
N rate (R) 0.390 0.016 <0.001 <0.001 <0.001 
T x M 0.740 0.009 0.281 <0.001 0.088 
T x R 0.590 0.414 0.016 0.001 <0.001 
M x R 0.485 0.076 0.212 <0.001 0.002 
T x M x R 0.505 0.202 0.806 0.001 0.566 
† Canopy NDVI measured only at Iowa sites. 
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Table 4. Effect of anhydrous ammonia timing, application method, and N rate on relative corn 
plant population before sidedress N application across all sites, 2007–2009. 

N rate 
Fall  Spring preplant  Method mean N rate    

mean HSLD† CTKI† Mean  HSLD CTKI Mean  HSLD CTKI

kg N ha–1

0 100‡ 100 100 102 101 101 101 100 101 
90 101 101 101 100 100 100 100 101 100 
135 99 99 99 100 101 100 100 100 100 
180 98 102 100 100 101 100 99 101 100
225 100 99 100 99 99 99 99 99 99 

Method mean 100 100 100 100 100 100 
Timing mean 100 100 

† HSLD, high speed low draft opener system; CTKI, conventional till knife injection system. 

‡ No treatments or interactions statistically significant (P ≤ 0.05). Statistical analysis provided in Table 3. 
20 

21 

22 

23 

24 



33 

25 

Table 5. Statistical significance of the effect of anhydrous ammonia timing, application method, and N 
rate on relative corn plant population before sidedress N application across sites within each location, 
2007–2009. 

Source 
Iowa Illinois Kansas

2007 2008 2009  2007 2008 2009   2007 2008 2009 
----------------------------------------------------  P > F --------------------------------------------------- 

Timing (T) -† 0.263 0.004 - 0.648 0.338 - 0.851 0.589 
Method (M) 0.015 0.293 0.014 0.559 0.703 0.168 0.282 0.561 0.975 
N rate (R) 0.253 0.294 0.004 0.865 0.512 0.569 0.387 0.319 0.668 
T x M - 0.439 0.054 - 0.015 0.242 - 0.194 0.427 
T x R - 0.946 0.021 - 0.311 0.305 - 0.092 0.888 
M x R 0.256 0.377 0.114 0.131 0.288 0.352 0.763 0.633 0.119 
T x M x R - 0.051 0.292 - 0.323 0.052 - 0.822 0.788 
† Anhydrous ammonia not applied fall 2007 at each site and SD application excluded from analysis.  
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Table 6. Effect of anhydrous ammonia timing, application 
method, and N rate on relative corn plant population before 
sidedress N application across Iowa sites in 2007. 

N rate 
Spring preplant 

HSLD† CTKI Mean 

kg N ha–1 
0 92 99 96
90 99 97 98
135 96 100 98
180 86 104 95
225 73 98 86

Method mean 89b‡ 100a 
† HSLD, high speed low draft opener system; CTKI, 
conventional till knife injection system. 

‡ Letters indicate statistical difference at P ≤ 0.05. No means 
separation shown if treatments or interactions not significantly 
different. Statistical analysis provided in Table 5. 
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Table 7. Effect of anhydrous ammonia timing, application method, and N rate on relative corn plant 
population before sidedress N application across Iowa sites in 2009. 

N rate 
Fall Spring preplant Method mean N rate  

mean HSLD† CTKI† Mean  HSLD CTKI Mean  HSLD CTKI

kg N ha–1 
0 101 102 101a‡ 101 103 102a 101 103 102
90 101 102 102a 100 101 100a 100 102 101
135 102 100 101a 101 100 100a 101 100 101
180 101 103 102a 98 102 100b 100 102 101
225 101 101 101a 93 99 96b 97 100 98

Method mean 101 101 99 101 100b 101a 
Timing mean     101a      100b  

† HSLD, high speed low draft opener system; CTKI, conventional till knife injection system. 

‡ Regression models for the timing by N rate interaction were not significant. Therefore, means separation was 
used to determine significant treatment effects with letters indicating statistical difference at P ≤ 0.05. No means 
separation shown if treatments or interactions not significantly different. Statistical analysis provided in Table 5. 
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Table 8. Effect of anhydrous ammonia timing, application method, and N rate on corn plant height 
(V4–V8 growth stages) across Illinois and Iowa sites, 2007–2009. 

N rate 
Fall  Spring preplant  Method mean N rate 

mean‡ HSLD† CTKI† Mean  HSLD CTKI Mean  HSLD CTKI  

kg N ha–1 -------------------------------------------- cm ------------------------------------------ 
0 85 82 83 82 81 81 83 81 82 
90 86 87 87 86 89 88 86 88 87 
135 83 87 85 85 88 87 84 88 86 
180 86 85 86 79 89 84 83 87 85 
225 84 85 85 73 87 80 78 86 82 

Method mean 85a§ 85a 81b 87a 83b 86a 
Timing mean     85      84         
† HSLD, high speed low draft opener system; CTKI, conventional till knife injection system. 

‡ The N rate main effect significant regression model is y = 82.1 + 0.083x – 0.000371x2; R2 = 0.98, P > F = 
0.023. 

§ Letters indicate statistical difference at P ≤ 0.05. No means separation shown if treatments or interactions 
not significantly different. Statistical analysis provided in Table 3. 
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Table 9. Effect of anhydrous ammonia timing, application method, and N rate on mid-vegetative corn leaf relative 
chlorophyll meter values across Illinois and Iowa sites, 2007–2009. 

N rate 
Fall  Spring preplant  Sidedress  Method mean N rate 

mean HSLD† CTKI† Mean HSLD CTKI Mean HSLD CTKI Mean HSLD CTKI

kg N ha–1   
0 84 81 82 84 82 83 84 82 83 84 82 83 
90 94 90 92 98 97 97 100 96 98 98 94 96 
135 100 95 97 99 99 99 100 100 100 99 98 98 
180 100 98 99 102 99 101 100 98 99 101 99 100 
225 101 101 101 100 100 100 100 100 100 100 100 100 

Method mean 96 93 96 95 97 95 96a‡ 94b 
Timing mean     94b     96a     96a       
† HSLD, high speed low draft opener system; CTKI, conventional till knife injection system. 

‡ Letters indicate statistical difference at P ≤ 0.05. No means separation shown if treatments or interactions not significantly 
different. Significant timing by N rate interaction shown in Fig. 1. Statistical analysis provided in Table 3. 
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Table 10. Effect of anhydrous ammonia timing, application method, and N rate on canopy normalized difference 
vegetation index at the corn mid-vegetative growth stage across Iowa sites, 2007–2009. 

N rate 
Fall Spring preplant Sidedress  Method mean N rate 

mean HSLD† CTKI† Mean HSLD CTKI Mean HSLD CTKI Mean HSLD CTKI 

kg N ha–1   
0 0.687 0.687 0.687 0.671 0.682 0.676 0.677 0.675 0.676 0.678 0.681 0.680
90 0.726 0.712 0.719 0.720 0.723 0.722 0.724 0.728 0.726 0.723 0.721 0.722
135 0.727 0.713 0.720 0.715 0.729 0.722 0.728 0.731 0.730 0.723 0.724 0.724
180 0.731 0.728 0.730 0.690 0.737 0.713 0.723 0.732 0.727 0.714 0.732 0.723
225 0.723 0.728 0.726 0.643 0.734 0.688 0.730 0.731 0.731 0.699 0.731 0.715

Method mean 0.719a‡ 0.714a 0.688b 0.721a 0.716a 0.720a 0.708b 0.718a
Timing mean     0.716a     0.704b     0.718a       
† HSLD, high speed low draft opener system; CTKI, conventional till knife injection system. 
‡ Letters indicate statistical difference at P ≤ 0.05. No means separation shown if treatments or interactions not significantly 
different. Significant timing by method by N rate interaction shown in Fig. 2. Statistical analysis provided in Table 3. 
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Table 11. Effect of anhydrous ammonia timing, application method, and N rate on corn grain yield across all sites, 
2007–2009. 

N rate 
Fall  Spring preplant  Sidedress  Method mean N rate 

mean HSLD† CTKI† Mean HSLD CTKI Mean HSLD CTKI Mean HSLD CTKI 

kg N ha–1 ---------------------------------------------------------- Mg ha–1 --------------------------------------------------------- 
0 7.56 7.70 7.63 7.91 8.46 8.19 7.85 7.59 7.72 7.78 7.92 7.85 
90 10.56 9.94 10.25 11.12 11.12 11.12 11.12 10.96 11.04 10.93 10.67 10.80 
135 11.37 10.84 11.10 11.52 11.72 11.62 11.63 11.89 11.76 11.50 11.48 11.49 
180 11.20 11.54 11.37 11.80 12.17 11.98 11.83 12.01 11.92 11.61 11.90 11.76 
225 11.48 12.11 11.80 10.96 11.78 11.37 11.39 11.93 11.66 11.28 11.94 11.61 

Method mean 10.43 10.43 10.66 11.05 10.76 10.88 10.62b‡ 10.78a
Timing mean 10.43 10.86 10.82 
† HSLD, high speed low draft opener system; CTKI, conventional till knife injection system. 

‡ Letters indicate statistical difference at P ≤ 0.05. No means separation shown if treatments or interactions not significantly 
different. Significant timing by N rate and method by N rate interactions shown in Figs. 3 and 4. Statistical analysis provided in 
Table 3. 
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Appendix I. Long-term and mean monthly temperature for each site. 
Site Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

------------------------------------------- oC ------------------------------------------- 
1 2007 0 –6 9 11 21 24 24 25 21 15 6 –1
2 2008 –3 –3 4 11 15 23 24 23 20 13 4 –3
3 2009 –6 0 7 11 17 23 21 21 19 10 8 –18

Long-term mean† –4 –1 5 11 17 22 24 23 19 12 5 –1
4 2007 –7 –9 6 8 18 22 24 24 18 13 2 –6
5 2008 –9 –8 0 8 15 21 23 21 17 11 2 –8
6 2009 –10 –3 3 9 16 21 20 20 18 7 7 –7

Long-term mean –6 –4 3 10 16 21 23 22 18 11 3 –4
7 2007 –1 –1 12 11 20 23 26 28 21 15 6 –2
8 2008 –2 –2 6 11 18 24 26 24 19 13 7 –1
9 2009 –2 3 7 12 19 24 23 23 19 10 9 –3

Long-term mean –1 1 7 13 19 24 26 25 20 13 6 0

† Long-term mean temperature data obtained from available 30 (IL sites 1–3), 27 (IA sites 4–6), and 
28 (KS site 7–9) years of mean monthly temperature obtained from ISWS (2013), IEM (2013), and 
KSRE (2013), respectively. 
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Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 2007 455 +39 0 –33 –38 –82 +36 –21 –88 –24 –6 +25 +5 838
2 2008 820 +13 +103 –3 –46 +27 +26 +82 –93 +118 –1 –49 +40 1243
3 2009 788 –33 –6 –3 +81 +8 +1 +37 +26 –65 +136 +5 –68 1141
4 2007 643 –2 +34 +18 +47 +30 –78 –52 +68 –37 +49 –39 –18 803
5 2008 829 –13 –19 –39 +25 +64 +112 +81 –54 –7 +33 +14 +8 988
6 2009 330 0 –19 +48 +11 –19 –74 –116 –95 –71 –42 –39 –18 348
7 2007 509 –12 –13 +11 –23 +83 –8 –26 –75 –39 +48 –35 –4 661
8 2008 495 –12 +13 –19 –18 –32 –3 –5 –77 +63 +29 –22 +1 674
9 2009 634 –16 –27 +13 +32 –68 +49 +71 –11 –40 –14 +9 +3 757

-------------------------------------------------------------- mm ----------------------------------------------

† Total precipitation from March through September from nearby weather stations, obtained from ISWS (2013) for 
IL sites 1–3, IEM (2012) for IA sites 4–6, and KSRE (2013) for KS sites 7–9.
‡ Deviation from the available 30 (IL sites 1–3), 27 (IA sites 4–6), and 28 (KS sites 7–9) years of mean monthly 

Appendix II. Precipitation for each site.

Site Year
Precipit
ation†

Deviation from long-term mean precipitation‡ Calendar 
year total
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Picture 1 
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Picture 2 
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