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INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT

Effects of Entomopathogens on Mortality of Western Corn Rootworm
(Coleoptera: Chrysomelidae) and Fitness Costs of Resistance to

Cry3Bb1 Maize

AMANDA M. HOFFMANN,1,2 B. WADE FRENCH,3 STEFAN T. JARONSKI,4

AND AARON J. GASSMANN1

J. Econ. Entomol. 107(1): 352Ð360 (2014); DOI: http://dx.doi.org/10.1603/EC13247

ABSTRACT Fitness costs can delay pest resistance to crops that produce insecticidal toxins derived
from the bacterium Bacillus thuringiensis (Bt), and past research has found that entomopathogens
impose Þtness costs of Bt resistance. In addition, entomopathogens can be used for integrated pest
management by providing biological control of pests. The western corn rootworm,Diabrotica virgifera
virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of maize and is currently managed
by planting of Bt maize. We tested whether entomopathogenic nematodes and fungi increased
mortality of western corn rootworm and whether these entomopathogens increased Þtness costs of
resistance to Cry3Bb1 maize. We exposed western corn rootworm larvae to two species of nematodes,
Heterorhabditis bacteriophoraPoinar (Rhabditida: Heterorhabditidae) and Steinernema feltiaeFilipjev
(Rhabditida: Steinernematidae), and to two species of fungi, Beauveria bassiana (Balsamo) Vuillemin
(Hypocreales: Cordycipitaceae) (strain GHA) and Metarhizium brunneum (Metschnikoff) Sorokin
(Hypocreales: Clavicipitaceae) (strain F52) in two assay types, namely, seedling mat and small cup.
Larval mortality increased with the concentration of H. bacteriophora and S. feltiae in the small cup
assay, and with the exception of S. feltiae and B. bassiana in the seedling mat assay, mortality from
entomopathogens was signiÞcantly greater than zero for the remaining entomopathogens in both
assays. However, no Þtness costs were observed in either assay type for any entomopathogen.
Increased mortality of western corn rootworm larvae caused by these entomopathogens supports their
potential use in biological control; however, the lack of Þtness costs suggests that entomopathogens
will not delay the evolution of Bt resistance in western corn rootworm.

KEY WORDS biological control, Diabrotica virgifera virgifera, fungi, nematode, refuge strategy

The western corn rootworm, Diabrotica virgifera vir-
gifera LeConte (Coleoptera: Chrysomelidae), is one
of the most economically signiÞcant pests of maize in
the United States (Gray et al. 2009). This pest has
repeatedly developed resistance to management strat-
egies, including insecticides, crop rotation, and, re-
cently, to the insecticidal toxin Cry3Bb1, which is
derived from the bacteriumBacillus thuringiensis (Bt)
and is produced by transgenic maize (Levine and
Oloumi-Sadeghi 1991, Meinke et al. 1998, Gassmann et
al. 2011). In 2003, the United States Environmental
Protection Agency registered genetically modiÞed
maize (Zea mays L.) that produces Cry3Bb1 for the
management of western corn rootworm (Environ-
mental Protection Agency [EPA] 2010). In 2012, 67%
of maize planted in the United States produced at least

one Bt toxin and this widespread planting places in-
tense selection on pest populations to develop resis-
tance (Economic Research Service [ERS] 2012).

In the United States and elsewhere, the refuge strat-
egy is used to delay the development of resistance to
Bt crops (Gould 1998). The refuge strategy uses
non-Bt host plants that allow the survival of Bt-sus-
ceptible insects so they may mate with Bt-resistant
insects. To the extent that heterozygous progeny have
lower Þtness on a Bt crop than their homozygous
resistant parents, and therefore resistance is expected
to be delayed, with delays becoming greater as the
genetic dominance of resistance decreases (Tabash-
nik et al. 2004). In addition, as the amount of refuge
increases, delays in resistance become greater (Car-
riére and Tabashnik 2001). Furthermore, Þtness costs
will delay the evolution of resistance and these delays
become greater as Þtness costs become larger (Car-
riére et al. 2010).

A Þtness cost of Bt resistance occurs when individ-
uals with resistance alleles have lower Þtness than
Bt-susceptible individuals in the absence of Bt toxin
(Gassmann et al. 2009a). Fitness costs can delay re-
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sistance evolution by reducing the frequency of re-
sistance alleles present in the refuge (Carriére and
Tabashnik 2001, Gassmann et al. 2009a). Thus, the rate
of resistance evolution is affected not only by pro-
duction of susceptible insects from the refuge, but also
by the presence of Þtness costs in refuges. Impor-
tantly, ecological factors, including entomopathogens,
can magnify Þtness costs of Bt resistance (Gassmann
et al. 2006, Raymond et al. 2007, Hannon et al. 2010).

Several species of entomopathogenic fungi and
nematodes have been shown to infect and kill western
corn rootworm larvae and have potential for use in
biological control (Meyling and Eilenberg 2007, Pilz et
al. 2007, Toepfer et al. 2009). Furthermore, ento-
mopathogenic nematodes and fungi have been found
to occur naturally in maize Þelds (Pilz et al. 2008,
Rudeen et al. 2013). Fungal conidia contact the insect
cuticle, germinate, and subsequently penetrate the
hemocoel, where they grow and produce insecticidal
compounds, leading to death of the host (Shah and
Pell 2003, Lewis et al. 2006). Following death of the
host, conidia are subsequentlyproducedon thecuticle
and then disperse to infect additional insects (Hajek
and St. Leger 1994). Infective juveniles of ento-
mopathogenic nematodes are motile and free-living,
and enter the hemocoel through natural openings and
release symbiotic bacteria that kills the host within
24Ð48 h. Nematodes then feed and reproduce inside
the cadaver, and a subsequent generation of infective
juveniles disperses into the environment (Kaya and
Gaugler 1993, Grewal et al. 1994).

This study examined whether entomopathogenic
nematodes and fungi cause mortality of larvae of west-
ern corn rootworm and whether these entomopatho-
gens can magnify Þtness costs of resistance to Cry3Bb1
maize. These results are relevant both to the applica-
tion of entomopathogens in biological control of west-
ern corn rootworm and to insect resistance manage-
ment for Bt crops. By testing which ecological factors
magnify Þtness costs of Bt resistance, it may be pos-
sible to design non-Bt refuges that enhance Þtness
costs, thereby delaying Bt resistance more effectively
(Carriére and Tabashnik 2001, Pittendrigh et al. 2004).

Materials and Methods

Insect Strains. Field-collected adult males of west-
ern corn rootworm from four locations (Hamilton
County, OH; Moody/Lake County, SD; Phillips
County, CO; and Will County, IL) were crossed with
females from a nondiapause strain at the North Cen-
tral Agricultural Research Laboratory (NCARL; Os-
wald et al. 2011). From this cross, the following two
strains were developed: 1) a susceptible strain not
exposed to Bt toxin and 2) a resistant strain (the
moderately selected strain in Oswald et al. 2011) that
was fed Cry3Bb1 maize for increasing durations over
11 generations (F0 to F10). Strains were sent from
NCARL to Iowa State University at the F13, where
they were reared on maize seedling mats according to
the methods of Jackson (1986) and Oswald et al.
(2011), and maintained at a population size of �1,200

adults. The F13, F15, and F17 of the resistant strain were
reared on Cry3Bb1 maize (hybrid DKC 61-69, Mon-
santo Company, Saint Louis, MO) and the susceptible
strain was reared on non-Bt maize (hybrid 34M94,
DuPont Pioneer, Johnston, IA), both of which were
free of seed treatments. The susceptible strain was
maintained concurrently with, but independently
from, the resistant strain. To increase genetic similar-
ity between strains, the resistant strain was back-
crossed to the susceptible strain at a 1:1 ratio during
the F13 and F15. During the F14, F16, and F18 through
F24, the resistant and susceptible strains were reared
on non-Bt maize (hybrid 34M94). In the F24, survival
to adulthood on seedling mats of Cry3Bb1 maize was
more than twice as high for the resistant strain com-
pared with the susceptible strain (Hoffmann 2013).
Entomopathogens. The entomopathogens used in

this experiment were selected because past research
found that they could infect and kill western corn
rootworm larvae (Pilz et al. 2007; Toepfer et al. 2008,
2009). The entomopathogenic nematodes Heterorhab-
ditis bacteriophora Poinar (Rhabditida: Heterorhabditi-
dae) and Steinernema feltiaeFilipjev (Rhabditida: Stein-
ernematidae) were received from Becker-Underwood
(Ames, IA) and reared in Galleria mellonella L. (Lepi-
doptera: Pyralidae) larvae as described by Kaya and
Stock (1997). Infective juvenile nematodes were used in
experiments within 2 wk of emerging fromG.mellonella
cadavers. The entomopathogenic fungi Beauveria bassi-
ana (Balsamo) Vuillemin (Hypocreales: Cordycipita-
ceae) (strain GHA) and Metarhizium brunneum (Met-
schnikoff) Sorokin (Hypocreales: Clavicipitaceae)
(strain F52) were received from the U.S. Department of
AgricultureÐAgricultural Research Service (USDAÐ
ARS), Northern Plains Agricultural Research Labora-
tory, and stored at 6�C until they were used in experi-
ments.

Two assays were used to test of effects of ento-
mopathogens on western corn rootworm larvae. One
assay was the small cup assay described by Petzold-
Maxwell et al. (2012a). The second assay used a seed-
ling mat, which is a standard medium for rearing west-
ern corn rootworm larvae in the laboratory (Oswald
et al. 2012). Applying two bioassay methods enabled
a more complete understanding of potential interac-
tions between western corn rootworm larvae and en-
tomopathogens. This is because these methods dif-
fered in the quantity of corn roots, density of roots,
and the spatial distribution of corn roots and soil, all of
which could inßuence interactions between western
corn rootworm larvae and entomopathogens, and sub-
sequent larval mortality.
SeedlingMatAssay.This experiment was conducted

during February and March 2012 using the F22 of
the resistant and susceptible strains. For each ento-
mopathogen, a separate experiment was conducted
using a fully crossed block design with two insect
strains (resistant and susceptible) and four concen-
trations of entomopathogen. For each of the four spe-
cies of entomopathogen, eight blocks were run. Both
the resistant and susceptible strains were tested in
each block using one seedling mat for each of the four
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entomopathogen concentrations and three control
seedling mats, for a total of 14 seedling mats per block.
Control seedling mats were not treated with ento-
mopathogens but were otherwise identical to seedling
mats with entomopathogens. Thus, for each of the four
entomopathogen species, 112 seedling mats were
tested, and for the entire experiment, total 448 seed-
ling mats were tested.

Seedling mats were made using 40 ml of maize seed
(�65 kernels of the non-Bt hybrid 34M94) that was
presoaked for 12 h in deionized (DI) water and then
placed in a 0.95-liter container (Pactiv Showcase,
Johnson Paper and Supply Company, Minneapolis,
MN) with a lid that contained six holes (diameter �
1 cm) for ventilation. Seeds were covered with a moist
paper towel (23504, GA PaciÞc, Atlanta, GA), and
placed in a growth chamber (25�C, 65% relative hu-
midity [RH], and a photoperiod of 16:8 [L:D] h) for
3Ð4 d. The paper towel was then removed and seeds
covered with 150 g (dry mass) of soil that was a
mixture of 40%, by volume, of Þeld-collected soil and
60% Sunshine Sun Gro LC1 potting soil mix (Sun Gro
Horticulture Canada Ltd., Vancouver, BC, Canada).
Before being placed in containers, the soil was moist-
ened with either 30 ml of entomopathogen solution, or
in the case of control mats, 30 ml of a control solution
that lacked entomopathogens (Fig. 1).

Concentrations of live infective juvenile nematodes
were measured with a microscope (MZ6, Leica Mi-
crosystems, Wetzlar, Germany) and a Sedgewick-Raf-
ter counting cell (Pyser-SGI, Edenbridge, Kent,
United Kingdom). Nematode solutions were made
using DI water and added to soil to achieve the fol-
lowing four concentrations of nematodes within the
soil: 50, 100, 150, and 200 nematodes per gram of dry
soil. Concentrations were selected based on the re-
sults of Petzold-Maxwell et al. (2012a). Each seedling
mat with nematodes received 30 ml of nematode so-

lution and each control seedling mat received 30 ml of
DI water. Thirty milliliters of liquid moistened the soil
to 25% of water holding capacity. Solutions were in-
corporated into the soil by hand, and the moistened
soil was then placed on top of the seedling mats.

Solutions of fungal entomopathogens were made by
combining conidia with an autoclaved solution of
0.10% sorbitan monooleate (Tween 80, Acros Organ-
ics, Morris Plains, NJ). Concentration of conidia was
determined using a hemocytometer (3520, Fisher,
Waltham, MA) and microscope (Eclipse E200, Nikon,
Melville, NY) with viability measured 24 h before
application as described by Goettel and Inglis (1997).
Four concentrations of conidia were tested: 1.0 � 104,
1.0 � 105, 1.0 � 106, and 1.0 � 107 viable conidia per
g of dry soil. These concentrations were selected
based on the results of Petzold-Maxwell et al. (2012b).
Soil for seedling mats received either 30 ml of solution
with fungal conidia, or in the case of control mats, 30
ml of 0.10% sorbitan monooleate solution that did not
contain fungal conidia. Each solution was mixed into
the soil by hand before soil was placed on top of and
underneath maize seeds. This modiÞcation from the
seedling mat assay with nematodes was made to in-
crease contact of the soil with maize roots.

For all assays, seedling mats with soil were returned
to a growth chamber and allowed to grow for an
additional 3Ð4 d, after which time 25 neonate larvae
(�1 d old) of the appropriate strain of western corn
rootworm were placed on the surface of the soil with
a Þne-hair paintbrush. Fine-mesh fabric (25 by 25 cm,
194811 Poly Chiffon, Hobby Lobby Stores Inc., Okla-
homa City, OK) covered the underside of the plastic
lid to prevent larvae from escaping. Containers were
placed in a growth chamber (25�C, 65% RH, and a
photoperiod of 16:8 [L:D] h) for 10 d, with seedling
mats receiving 30 ml of DI water 7 d after neonates
were added. After 10 d, seedling mat, soil, and larvae

Fig. 1. A diagrammatic representation of methods applied to conduct bioassays.
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from each bioassay container were placed individually
on Berlese funnels for 3 d to extract live larvae into
vials containing 85% ethanol. The total number of
larvae extracted per bioassay container was counted.
SmallCupAssay.This experiment was conducted at

the same time as the seedling mat assay. Each of the
four species of entomopathogens was tested in a sep-
arate set of assays. For each species of entomopatho-
gen, a fully crossed block design was used with two
insect strains (susceptible and resistant) and four con-
centrations of entomopathogen. For each species of
entomopathogen, eight blocks were run. Within a
block, both the resistant and susceptible strains were
tested in two containers for each of the four ento-
mopathogen concentrations and in four control con-
tainers that did not receive entomopathogens, for a
total of 24 containers per block. For each species of
entomopathogen, total 192 bioassay containers were
evaluated, and in the entire experiment, total 768 bio-
assay containers were evaluated.

Bioassays used 44-ml containers with lids (Translu-
cent Plastic Soufße Cup, Solo Cup Company, High-
land Park, IL). Maize seed was the same as in the
seedling mat assay. Seed was soaked for 12 h and then
placed on moistened paper towels for 3 d, after which
time there was �2 cm of a radical root per seed. Three
germinated seedlings were placed at the bottom of
each bioassay container and covered with soil that
contained pathogens, or in the case of control con-
tainers, lacked pathogens. Solutions of nematodes and
fungi were prepared in the same manner as the seed-
ling mat assay. For each bioassay container, 30 g of
sieved Þeld soil (�600 �m) was combined with 4.5 ml
of either the appropriate entomopathogen solution or
a control solution that lacked pathogens, and then
placed on top of the maize seedlings. Adding 4.5 ml of
liquid moistened the soil to 25% of water holding
capacity. Finally, six neonate larvae from either the
resistant or susceptible strain were placed on the sur-
face of the soil in each bioassay container. Small holes
in the lid provided ventilation and mesh fabric under
the lid prevented larvae from escaping. Containers
were placed in a single layer between two plastic trays
(CT1216, Carlisle Foodservice Products, Oklahoma
City, OK) that were lined with moistened paper tow-
els. Plastic trays containing cups were then placed
inside a large plastic bag (Hefty EasyFlaps 13 Gallon
Tall Kitchen Bags, Reynolds Consumer Products, Lake
Forest, IL) to retain humidity and provide a dark
environment. Trays were placed inside a growth
chamber (25�C, 65% RH) for 10 d. Soil in each con-
tainer received 1 ml of DI water at Day 7. On Day 10,
soil with seedlings and larvae were placed on Berlese
funnels for 3 d to extract live larvae into a vial with 85%
ethanol. The total number of larvae extracted in each
bioassay container was recorded (Fig. 1).
Data Analysis. Analyses were conducted using SAS

Enterprise Guide 5.1 (SAS Institute 2012). For each
bioassay, data on larval mortality in the experimental
controls was compared between resistant and suscep-
tible strains with an analysis of variance (ANOVA)
using the MIXED procedure. Larval mortality in the

presence of entomopathogens was Þrst adjusted for
control mortality using AbbottÕs correction (Abbott
1925), and then analyzed separately for each combi-
nation of entomopathogen species and assay type us-
ing a mixed model ANOVA and analysis of covariance
(ANCOVA) based on the MIXED procedure de-
scribed by Hannon et al. (2010). In addition, a t-test
was used to test whether corrected mortality was sig-
niÞcantly greater than zero (PROC TTEST).

For corrected mortality in each combination of en-
tomopathogen species and assay type, an ANOVA was
used Þrst to test whether a difference in the regression
slope of rootworm mortality onto entomopathogen
concentration was present between strains. Fixed fac-
tors in this ANOVA were the continuous variable of
entomopathogen concentration, the categorical vari-
able of insect strain, and their interaction. If the slopes
did not differ, data were then analyzed within an
ANCOVA that included the categorical variable of
insect strain and the continuous covariate of ento-
mopathogen concentration. In both the ANCOVA and
ANOVA, block and its interactions with Þxed factors
were coded as random factors and were tested for
signiÞcance with a log-likelihood ratio statistic (�2
RES log likelihood in PROC MIXED) based on a
one-tailed chi-square test with one degree of freedom
(Littell et al. 1996). If a random factor was not signif-
icant at P � 0.25, it was removed from the model to
increase the statistical power (Quinn and Keough
2002). Lower order terms were retained if their higher
order interactions were signiÞcant.

For each entomopathogen, t-tests were conducted
as described by Sokal and Rohlf (2003) to test whether
1) average corrected mortality for larvae in the small
cup assay differed from average corrected mortality in
the seedling mat assay, this was also conducted for the
controls, and 2) whether average corrected mortality
differed between species of nematodes and fungi in
the small cup assay.

Results

In the seedling mat assay, larval mortality in the
experimental controls, which lacked entomopatho-
gens, ranged from 17 to 39% (Table 1). Control mor-
tality did not differ signiÞcantly between western corn
rootworm strains, indicating that Þtness costs were not
present in the absence of pathogens. No signiÞcant
difference in mortality between strains was found for
H. bacteriophora (Fig. 2A), S. feltiae (Fig. 2B), or M.
brunneum (Fig. 2C), which suggests that the presence
of these pathogens did not impose Þtness costs of Bt
resistance (Table 2). In the presence of B. bassiana
(Fig. 2D), larval mortality was signiÞcantly lower for
the resistant strain at the two lower concentrations
when compared with the susceptible strain, again in-
dicating the absence of any Þtness cost associated with
Bt resistance. Corrected mortality of western corn
rootworm was signiÞcantly greater than zero in the
presence of H. bacteriophora and M. brunneum, pro-
viding evidence that these entomopathogens in-
creased mortality of western corn rootworm in the
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seedling mat assay (Table 3). However, no increase in
mortality from entomopathogens in the seedling mat
assay was detected for S. feltiae or B. bassiana, as
corrected mortality did not differ signiÞcantly from
zero for either of these pathogens (Table 3). For all
pathogens, there was not a signiÞcant affect of con-
centration on mortality (Table 2), with larval mortal-
ity remaining at similar values as pathogen concen-
tration increased (Fig. 2).

In the small cup assay, larval mortality in experi-
mental controls that lacked entomopathogens did not
differ signiÞcantly between strains, suggesting an ab-

Table 1. Percent larval mortality for experimental control
containers that did not receive entomopathogens in the seedling mat
assay and small cup assay, and accompanying analysis of variance
comparing larval mortality between strains

Assay type

Larval mortality

df F PResistant
susceptible

Strain

Seedling mat assay
H. bacteriophora 18% 17% 1,7 0.1 0.76
S. feltiae 18% 17% 1,7 0.04 0.84
M. brunneum 21% 25% 1,7 1.76 0.23
B. bassiana 38% 39% 1,7 0 0.98

Small cup assay
H. bacteriophora 19% 20% 1,7 0.08 0.78
S. feltiae 9% 15% 1,7 1.57 0.25
M. brunneum 32% 22% 1,7 4.52 0.07
B. bassiana 13% 13% 1,7 0 1.000

Fig. 2. Corrected mortality (mean 	 SE) for western corn rootworm larvae in the seedling mat assay when exposed to
entomopathogenic nematodesÑ(A)H.bacteriophoraand (B)S. feltiaeÑand entomopathogenic fungiÑ(C)M.brunneumand
(D) B. bassiana. An asterisk indicates signiÞcant difference between strains within a concentration.

Table 2. ANCOVA and ANOVA for larval mortality from four
species of entomopathogens in the seedling mat assay

Effect df F P

H. bacteriophoraa,b

Strain 1,47 1.58 0.21
Concn 1,7 2.16 0.18
S. feltiaec,d

Strain 1,7 0.03 0.87
Concn 1,47 0.71 0.40
M. brunneumd,e

Strain 1,7 1.11 0.33
Concn 1,47 0.32 0.58
B. bassianaf,g

Strain 1,7 21.52 0.002
Concn 1,7 1.46 0.27

Strain � Concn 1,7 5.89 0.04

a Strain � concentration was not signiÞcant (F� 1.17; df � 1,7; P�
0.31) and was removed from the model to allow data to be analyzed
with an ANCOVA.
b Random factors included in the model were block and block �

concentration.
c Strain � concentration was not signiÞcant (F� 1.67; df � 1,7; P�

0.24) and was removed from the model to allow data to be analyzed
with an ANCOVA.
d Random factors included in the model were block and block �

strain.
e Strain � concentration was not signiÞcant (F� 1.22; df � 1,7; P�

0.31) and was removed from the model to allow data to be analyzed
with an ANCOVA.
f Because of the signiÞcant strain � concentration interaction, data

were analyzed with an ANOVA.
g Random factors included in the model were block, block � strain,

block � concentration, and block � strain � concentration.
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sence of Þtness costs when pathogens were not pres-
ent (Table 1). Mortality in the experimental controls
ranged from 9 to 32%, with a mean value of 17.9%,
which was signiÞcantly lower than mortality of the
experimental controls in the seedling mat assay (mean
mortality � 23.0%; t� 2.7; df � 443;P� 0.007). As with
the seedling mat assay, there was no signiÞcant dif-
ference between strains for corrected mortality in the
small cup assay, indicating a lack of Þtness costs (Fig.
3; Table 4). Corrected mortality for western corn
rootworm larvae was signiÞcantly greater than zero in
the presence of all four pathogens (Table 3) in the
small cup assay, providing evidence for the capacity of
all pathogens tested to impose mortality on western
corn rootworm larvae. Furthermore, for both species

Table 3. Corrected larval mortality imposed by entomopatho-
gens in the seedling mat and small cup assays

Assay type Mean SE ta df P

Seedling mat assay
H. bacteriophora 0.26 0.03 9.92 63 �0.0001
S. feltiae 0.02 0.03 0.70 63 0.49
M. brunneum 0.10 0.04 2.71 63 0.01
B. bassiana �0.003 0.05 0.06 63 0.95

Small cup assay
H. bacteriophora 0.39 0.03 13.75 127 �0.0001
S. feltiae 0.46 0.03 18.27 127 �0.0001
M. brunneum 0.09 0.03 2.96 127 0.004
B. bassiana 0.11 0.02 4.49 127 �0.0001

a The null hypothesis was that the mean equals zero.

Fig. 3. Corrected mortality (mean 	 SE) for western corn rootworm larvae in the small cup assay when exposed to
entomopathogenic nematodesÑ(A)H.bacteriophoraand (B)S. feltiaeÑand entomopathogenic fungiÑ(C)M.brunneumand
(D) B. bassiana.

Table 4. Analysis of covariance for larval mortality from each
of four entomopathogen species in the small cup assay

Effect df F P

H. bacteriophoraa,b

Strain 1,7 0.48 0.51
Concn 1,111 23.88 �0.0001
S. feltiaec,d

Strain 1,118 1.11 0.29
Concn 1,118 14.89 0.0002
M. brunneume,f

Strain 1,111 1.07 0.30
Concn 1,7 1.11 0.33
B. bassianag,b

Strain 1,7 0.93 0.37
Concn 1,111 1.34 0.25

a Strain � concentration was not signiÞcant (F� 1.82; df � 1,7; P�
0.22) and was removed from the model to allow data to be analyzed
with an ANCOVA.
b Random factors included in the model were block and block �

strain.
c Strain � concentration was not signiÞcant (F� 0.62; df � 1,7; P�

0.46) and was removed from the model to allow data to be analyzed
with an ANCOVA.
d Random factor included in the model was block.
e Strain � concentration was not signiÞcant (F� 0.10; df � 1,7; P�

0.76) and was removed from the model to allow data to be analyzed
with an ANCOVA.
f Random factors included in the model were block and block �

concentration.
g Strain � concentration was not signiÞcant (F� 0.58; df � 1,7; P�

0.47) and was removed from the model to allow data to be analyzed
with an ANCOVA.
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of nematodes in the small cup assay, there was a
signiÞcant affect of pathogen concentration on larval
mortality, with larval mortality increasing as the con-
centration of pathogens increased (Fig. 3A and B;
Table 4). In contrast, for both species of entomopatho-
genic fungi, no signiÞcant effect of concentration was
detected (Table 4), and larval mortality displayed
similar values as pathogen concentration increased
(Fig. 3C and D).

In general, mortality of western corn rootworm lar-
vae from entomopathogens was greater in the small
cup assay than in the seedling mat assay (Table 3).
SigniÞcantly greater corrected mortality in the small
cup assay versus the seedling mat assay was observed
for H. bacteriophora (t� 3.09; df � 190; P� 0.002), S.
feltiae (t� 11.18; df � 190;P� 0.0001), andB. bassiana
(t� 2.38; df � 190; P� 0.02). However, no difference
between assay methods was found for M. brunneum
(t� 0.17; df � 190; P� 0.86). In addition, mortality of
western corn rootworm larvae from entomopathogens
tended to be greater for nematodes than fungi (Table
3). In the small cup assay, H. bacteriophora imposed
signiÞcantly greater mortality than either B. bassiana
(t � 7.4; df � 254; P � 0.0001) or M. brunneum (t �
7.5; df � 254; P � 0.0001), and S. feltiae imposed
signiÞcantly greater mortality than either B. bassiana
(t � 9.9; df � 254; P � 0.0001) or M. brunneum (t �
9.7; df � 254; P � 0.0001).

Discussion

Fitness costs can delay the evolution of Bt resis-
tance, and the presence of entomopathogens can mag-
nify Þtness costs (Gassmann et al. 2009a). The ento-
mopathogenic nematodes and fungi tested in this
study did not increase larval mortality for the Bt-
resistant strain when compared with the Bt-suscepti-
ble strain (Tables 2 and 4), indicating that Þtness costs
of Bt resistance were not imposed by these ento-
mopathogens. However, increased mortality of west-
ern corn rootworm larvae caused by entomopatho-
gens was detected in six of the eight experiments
conducted in this study (Table 3). These results par-
allel the work of Petzold-Maxwell et al. (2012a), which
also found that entomopathogens did not increase
Þtness costs of resistance to Cry3Bb1 maize for west-
ern corn rootworm. Although signiÞcantly higher
mortality was observed for the susceptible strain com-
pared with resistant strain at some concentration of
conidia in the seedling mat assay with B. bassiana,
mortality in this assay was highly variable and did not
differ signiÞcantly from zero (Fig. 2D; Table 3). Fur-
thermore, no difference was observed between strains
in the small cup assay with B. bassiana (Fig. 3D).
Higher concentrations of B. bassiana would likely
need to be used in the seedling mat assay to provide
a more complete test of the potential effects of B.
bassiana on differences in Þtness between resistant
and susceptible strains.

Effects of entomopathogens on Þtness costs of Bt
resistance have been tested for pest species other than
western corn rootworm. The entomopathogenic nem-

atodes S. riobrave and H. bacteriophora imposed the
Þtness cost of higher mortality for Cry1Ac-resistant
Pectinophora gossypiella (Saunders) (Lepidoptera:
Gelechiidea; Gassmann et al. 2006, 2008, 2009b),
although Þtness costs were absent in the presence
of Steinernema carpocapsaeWeiser, Steinernema sp.
(ML18 strain), andH. sonorensis (Hannon et al. 2010).
In addition, Cry1Ac-resistant Plutella xylostella L.
(Lepidoptera: Plutellidae) exposed to an insect virus
(Vcal MNPV) experienced a Þtness cost of decreased
egg viability (Raymond et al. 2007). Although some
entomopathogens may increase Þtness costs of Bt re-
sistance for some insect species, pathogen-mediated
costs appear not to be present in some cases.

Corrected mortality of western corn rootworm was
signiÞcantly greater than zero when treated with any
of the four pathogens in the small cup assay, and when
treated with H. bacteriophora andM. brunneum in the
seeding mat assay (Table 3). For H. bacteriophora, S.
feltiae, andB. bassiana, signiÞcantly higher larval mor-
tality was imposed in the small cup assay than in the
seedling mat assay. This may be due to the soil sur-
rounding individual seedlings in the small cup assay,
which would increase contact of larvae with patho-
gens. In contrast, in the seedling mat assay, larvae
could move within a mat of maize roots and not con-
tact the soil. Thus, the small cup assay may more
closely resemble Þeld conditions where individual
nodal maize roots are surrounded by soil. In addition,
entomopathogenic nematodes exhibit different forag-
ing strategies, withH. bacteriophora, a cruiser, actively
searching for a host, whereas S. feltiae, an intermediate
forager, exhibits both cruiser and ambush strategies
(Grewal et al. 1994). The more active foraging of H.
bacteriophoracomparedwithS. feltiaemayaccount for
signiÞcant mortality imposed by H. bacteriophora but
not S. feltiae in the seedling mat assay.

Data from the small cup assay support the use of
entomopathogenic nematodes and fungi as one com-
ponent of an integrated pest management (IPM) strat-
egy by providing biological control of western corn
rootworm. In a Þeld study with western corn root-
worm, Toepfer et al. (2008) found that H. bacterio-
phora and H. megidis imposed �70% mortality and S.
feltiae imposed 32% mortality when applied at 3.4 �
109 nematodes per hectare. (Toepfer et al. 2008). In
the small cup assay,H.bacteriophora andS. feltiaewere
applied at an average rate of 4.7 � 109 nematodes per
hectare and imposed an average of 39 and 46% mor-
tality, respectively (Table 3). Metarhizium anisopliae
imposed31%mortality againstwesterncorn rootworm
when applied in the Þeld at a range of 4 � 1013 to 7 �
1013 conidia per hectare (Pilz et al. 2009). In the small
cup assay reported here,M. brunneum and B. bassiana
were applied at an average rate of 3.5 � 1012 conidia
per hectare and imposed an average 9 and 11% mor-
tality, respectively (Table 3). At the application rates
studied in the small cup assay, H. bacteriophora and S.
feltiae imposed signiÞcantly higher mortality than M.
brunneum and B. bassiana, suggesting that nematodes
may be more effective biological control agents for
western corn rootworm larvae. However, additional

358 JOURNAL OF ECONOMIC ENTOMOLOGY Vol. 107, no. 1



ecological complexities can arise in the Þeld, including
semiochemical-based recruitment of nematodes to in-
jured maize roots (Rasmann et al. 2005) and coloni-
zation of the rhizosphere by entomopathogenic fungi
(Bruck 2010). Such complexities are likely not cap-
tured by the short-duration laboratory bioassays con-
ducted in this study.

The IPM beneÞt of entomopathogens for manage-
ment of rootworm has been found in Þeld studies
evaluating crop yield and larval feeding injury. Field
trials indicate that entomopathogens, both fungi and
nematodes, have the ability to decrease injury to
maize roots, and in some cases, increase yield
(Krueger and Roberts 1997, Journey and Ostlie 2000,
Toepfer et al. 2010, Petzold-Maxwell et al. 2013). For
example, a combination of two entomopathogenic
nematodes, H. bacteriophora and S. carpocapsae, and
one fungus, M. brunneum, signiÞcantly increased
maize yield for both Bt maize and non-Bt maize (Pet-
zold-Maxwell et al. 2013). Furthermore, these patho-
gens reduced root injury to Bt maize when western
corn rootworm abundance in the Þeld was high, and
to non-Bt maize when rootworm abundance was low
(Petzold-Maxwell et al. 2013). In a Þeld study, H.
bacteriophora signiÞcantly reduced root injury from
feeding by larvae of western corn rootworm by 25Ð
79% (Toepfer et al. 2010). Thus, use of entomopatho-
gens in conjunction with other management tactics,
such as crop rotation or Bt maize, may help to augment
management of western corn rootworm and preserve
yield.

Current data suggest that few Þtness costs may ac-
company Cry3Bb1 resistance in western corn root-
worm. Both the results of this study and the results of
Petzold-Maxwell et al. (2012a), found an absence of
Þtness costs in the presence of entomopathogens. In a
study of Þve Cry3Bb1-resistant western corn root-
worm strains (including the strain used here), Oswald
et al. (2012) did not detect Þtness costs for survival,
fecundity, and egg viability, but did detect increased
Þtness for resistant strains through faster developmen-
tal rate and higher fecundity. In contrast, Meihls et al.
(2012) found evidence of Þtness costs affecting fe-
cundity and longevity among three Cry3Bb1-resistant
strains of western corn rootworm in greenhouse and
Þeld studies. In the absence of Þtness costs, resistance
will evolve more rapidly and it will persist after se-
lection (Carriére and Tabashnik 2001). In the Þeld,
Cry3Bb1 resistance has been detected in western corn
rootworm populations after as few as three pest gen-
erations (Gassmann et al. 2011) and has been found to
persist after Þelds were rotated away from Cry3Bb1
maize (Gassmann et al. 2012). The increased risk of
resistance associated with a lack of Þtness costs high-
lights the need for sound IPM for western corn root-
worm, and the data presented here illustrate the po-
tential use of entomopathogens as one component of
an IPM strategy. Future research on strains of western
corn rootworm with Þeld-evolved resistance to Bt
corn will be an important next step in understanding
Þtness costs and other biologically relevant variables
that affect the evolution of Bt resistance.
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Gassmann, A. J., Y. Carriére, and B. E. Tabashnik. 2009a.
Fitness costs of insect resistance to Bacillus thuringiensis.
Annu. Rev. Entomol. 54: 147Ð163.

Gassmann,A. J., J. A.Fabrick,M. S. Sisterson,E.R.Hannon, S. P.
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