
Abnormality Management in Spatial Crowdsourcing for Multi-skilled Workers

Assignment

by

Srinandan Kota

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Goce Trajcevski, Major Professor

The student author, whose presentation of the scholarship herein was approved by the program

of study committee, is solely responsible for the content of this dissertation. The Graduate

College will ensure this dissertation is globally accessible and will not permit alterations after a

degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright © Srinandan Kota, 2019. All rights reserved.

ii

TABLE OF CONTENTS
 Page

LIST OF FIGURES ... iv

LIST OF TABLES ...v

NOMENCLATURE ... vi

ACKNOWLEDGEMENTS ... vii

ABSTRACT .. viii

CHAPTER 1. OVERVIEW ..9

1.1 Spatial Crowdsourcing ...9

1.2 Challenges of Spatial Crowdsourcing ..10

1.3 Taxonomy ..11

1.4 Vehicle Routing Problem ..14

1.5 Sub-problem of Spatial Crowd Sourcing ..15

CHAPTER 2. PROBLEM DEFNITION ...17

2.1 Spatial Crowdsourcing system ..17

2.2 Time constrained tasks in the spatial environment ... 18
2.3 Multi skilled workers .. 19
2.4 Trajectory ... 19

CHAPTER 3. EXAMPLE SCENARIO ...21

CHAPTER 4. FRAMEWORK ...26

CHAPTER 5. FRAMEWORK COMPONENTS ...27

5.1 Assignment of tasks to workers based on skillsets ...27

5.2 Assignment of trajectories ... 28

5.3 Guided Local Search for Vehicle Routing Problem ... 28

5.3.1 General guided local search .. 29

5.3.2 Application of GLS for VRPTW to obtain trajectories…………... 30
5.4 Fast re-assignment of trajectories ... 30

CHAPTER 6. EXPERIMENTAL SETUP AND TESTS ...33

6.1 Datasets .. 33

6.2 Implementation details ... 33

6.2.1 State changes with no abnormality …………... ... 36
6.2.2 State changes with an abnormality …………... ... 37

CHAPTER 7. CONCLUSION ..39

REFERENCES ...40

APPENDIX A. SIMULATION OF SCENARIO WITH NORMAL STATES 41

iii

APPENDIX B. SIMULATION OF SCENARIO WITH ABNORMAL STATES 42

APPENDIX C. DETAILS ABOUT SIMULATION ..44

iv

LIST OF FIGURES

Page

Figure 3.1 Location of jobs and workers against Ahmerst city backdrop………21

v

LIST OF TABLES

Table 3.1 Jobs, their descriptions and sub-tasks .. 22

Table 3.2 Worker/Task Skills .. 22

Table 3.3 Description of Skills and time required to complete them .. 22

Table 3.4 Task, Location and validity period .. 22

Table 3.5 Worker ID, Worker Initial Location, Travelling speed .. 23

Table 3.6 Important events and descriptors at different time instants in the environment 24

Table 4.1 Symbols and Descriptions .. 26

Table 6.1 Simulation parameters and results for normal state changes in the environment 36

Table 6.2 Simulation parameters and results for abnormal state changes in the environment 38

vi

NOMENCLATURE

 VRPTW Vehicle Routing Problem with Time Windows

 GLS Guided Local Search

vii

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Goce Trajcevski, for giving me an opportunity to

work under his guidance and be a part of this research project. I am grateful to him for seeing

potential in me, commending me on my work, constructive criticism, and being patient when my

performance wasn’t at my best.

In addition, I would also like to thank my friends, colleagues, the department faculty and

staff for making my time at the Department of Computer Engineering, and Iowa State University

a wonderful experience. I want to also offer my appreciation to students working on similar

problems in this research area at the university and numerous other well-wishers who have

provided feedback and information that helped me complete this project.

Last but not the least I would like to thank my parents, and my brother who have always

been a constant source of support and motivation to me throughout my journey.

viii

ABSTRACT

Crowdsourcing is dependent on a number of skilled workers who are needed to accomplish spatial

tasks. This has been an active area of research and is gaining wide popularity now. Most of these

tasks can be completed online due to convenience, but this method fails when there is a need of

completing a task at actual physical locations. This has led to a new area called Spatial crowd

sourcing [1] that consists of location-specific tasks that require people who can accomplish them

to physically be at specific locations. The tasks which require specific skillsets, completion times

or other constraints are matched with workers who can meet these constraints and complete them.

In this report we consider a situation where the jobs are at different locations with sequential sub-

tasks, each with time and skill constraints, and are to be completed within the given interval by

workers who have those required skills and are dispersed. The aim is to finish a majority of tasks

in the environment before a final cap time given the constraints of this environment. First workers

are assigned to tasks appropriately so that each worker has the skill needed to complete each of

the tasks allocated. After the assignment is complete, a variant of the vehicle routing problem

called vehicle routing problem with time windows (VRPTW) is used to assign these workers the

paths and visiting times that they need to follow to reach specific task locations and finish them

within the required time intervals. The vehicle routing problem with time windows (VRPTW) is a

generalization of the vehicle routing problem where the service of a customer can begin within the

time window defined by the earliest and the latest times when the customer will permit the start of

service [2]. We also consider the case when a worker cannot reach a particular task location in an

abnormal situation and perform a re-assignment that does not need to re-assign tasks to all workers

and is faster. By following these approaches, we aim to create a technique that can be applied to

many real-world problems in the spatial crowd-sourcing environment with such practical events.

9

CHAPTER 1. OVERVIEW

Most tasks in the real world are time bound and require particular skills in order to complete them

by the end of a day. Also, there may be many workers who can finish these tasks and they can start

from different locations. There also may be scenarios where a worker cannot finish a task assigned

to him. An important solution to this problem will need to consider efficient assignments of tasks

to workers for such situations. We try to provide solutions to these problems and also suggest a

technique which allows us to perform a re-assignment without having to perform complete

assignments of all tasks to all workers when a worker notifies that he cannot perform a task. This

leads to less load on the server platform.

1.1 Spatial Crowdsourcing

The term ‘Crowdsourcing’ was first introduced by Jeff Howe in a Wired magazine article titled

‘The Rise of Crowd-sourcing’ in June 2006 as follows: “Crowdsourcing represents the act of a

company or institution taking a function once performed by employees and outsourcing it to an

undefined (and generally large) network of people in the form of an open call.” It can be performed

by individuals or groups. This field has wide ranging applications in the field of data mining and

software engineering. Some of the terms used to represent crowdsourcing is social computing,

crowdsensing, crowd computing, crowd wisdom, smart mobs and mass collaboration. Typically,

this happens online and there are many commercial and academic platforms for this field of

computing. An example is Amazon Mechanical Turk (AMT) that publishes tasks which can be

completed by people. The workers who receive the tasks or request the tasks do not usually have

to be in the same location. However, there are many tasks that require workers to be at a particular

location. This requirement and the availability of mobile phones have led to a new form of

crowdsourcing called spatial crowdsourcing.

10

Spatial Crowdsourcing is an emerging field in crowdsourcing which needs workers to

move to a particular location to perform the task. This type of crowd wisdom needs people to

gather, analyze and disseminate geographical with or without social information. In this a requester

can commission workers to perform spatial tasks (tasks related to geographical location and time).

There are many projects by companies and governments in this area like the Open Street Map,

Google MapMaker and Wikimapia.

1.2 Challenges of Spatial Crowdsourcing

These are some of the most common issues that a crowdsourcing system faces-

1) Task formulation: It is very important to formulate tasks and this deals with questions like

if the task needs to be well defined and if each larger task needs to be split into smaller

tasks.

2) Task assignment: The issue here is to assign a task to a worker or workers with some

constraints like minimum budget allocation, reliability or stringent time requirements.

3) Incentive mechanism: Some tasks are reward driven and there needs to be an incentive-

based design to motivate workers to perform tasks. These can involve money, prestige or

other rewards.

4) Scalability: The design of such a system has to be scalable regardless of the number of

tasks and workers.

5) Quality: The data has to be of some acceptable quality as needed by the design. For

example, malicious and poor-quality data need to be removed from the system. The data

also needs to be reliable and compare against the ground truth.

6) Privacy: It also important to protect some users’ privacy by not sharing this data with other

users.

11

In addition to these there are several other issues like-

1) Location awareness: This is one of the most important characteristics of the spatial

crowdsourcing system and the user movement is involved in the system. Some systems

check if the users have really reached the task location.

2) Workers path selection: The users need to travel to an event place and perform the tasks

and we need to calculate the best paths for the workers and schedule the task sequence.

Classic Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP)

are commonly used to solve this issue. In VRP, all workers start from the same location

and the number of workers is fixed. This is the technique we will be using for our

implementation.

3) Datasets: Only few real-world data sets are available for these systems. There are no

real-world data sets that can be directly used for spatial crowdsourcing. These data sets

can be obtained by modifying some available datasets so that it can be applied to and

be used to solve the spatial crowd sourcing problem.

1.3 Taxonomy

This is the general taxonomy of spatial crowdsourcing which helps us identify the future

applications as discussed in [1]-

A. Worker model

a. The spatial crowdsourcing model consists of human workers. Each worker can be

represented by set of attributes like an identifier, geographical coordinates, user’s

proficiency level, expertise or any other relevant metric. Usually the workers can

be classified into reward seeking workers and voluntary workers. Reward seeking

12

workers perform tasks to gain money or commodities and voluntary workers

usually perform without rewards.

B. Task model

a. Each task is associated with a set of attributes like an identifier, deadline of the task

which means the task has real-time constraints, location of the task, number of

workers, incentive and other relevant parameters. The task can be further divided

into single worker required tasks and multiple workers required tasks.

Once the task model and worker model are selected then we can consider task assignment

and worker selection. There are two models here-

b. Server assigning tasks. The server assigns each task to workers based on the task

and worker locations according to the system optimization goals such as

minimizing the total travel distance. This often leads to global optimization for the

system.

c. Worker selecting tasks. The server publishes the various tasks online and the

worker chooses the tasks based on his preference.

In both the models, the workers’ travelling routes which usually consists of the tasks and their

locations must be determined. This problem becomes even more prominent when multiple tasks

are assigned to workers. As the tasks are not in the same location, we need to avoid unnecessary

travelling between locations by assigning paths and by scheduling tasks.

13

C. Response model

a. Different spatial crowdsourcing applications pose different tasks. Workers may

contribute different types of data such as categorical data, continuous data, or

multimedia data.

D. Optimization goal

There are usually two different focuses, one is the workers perspective and the other is the

system’s perspective.

a. From a worker’s perspective, the goal is to maximize the total reward which may

be anything that we discussed earlier in this report. To achieve this, a worker may

seek as many tasks as possible on his travelling path, then the workers compete to

complete these tasks. To reduce the cost, the worker may choose the best route to

accomplish all the tasks, so task scheduling and path selection need to be jointly

considered in the task selection.

b. From a system’s perspective, the idea is to maximize the number of assigned tasks.

i. Maximize task coverage. To achieve this, the server first collects all the

locations of the workers and then tries to maximize the overall number of

assigned tasks. The workers are considered to be of the same expertise level

and then this is reduced to a matching problem. Other systems assign scores

to each worker based on expertise levels. Higher scores are given to workers

who match the expertise. Due to the nature of travelling involved, task

assignment problem often needs to consider task scheduling.

14

ii. Minimize system costs. The total cost can be defined as the incentives paid

or the travelling distances of all the workers. It also possible to use budget

to maximize task coverage.

iii. Maximize data quality. A number of strategies can be applied to maximize

data quality. This again depends on the definition of data quality.

iv. Minimize number of tasks with missed deadlines. Spatial tasks usually have

time constraints and usually the tasks need to be completed before the

deadlines. Task scheduling and path selection becomes important here.

If the system is selecting the tasks then it determines the locations of all the workers and

then assigns the tasks to the workers and if the workers are choosing the tasks then the selection is

based on the maximum reward he/she can achieve by completing the tasks in the system. These

assignments utilize the information from worker model and task model. This report will focus on

some of the taxonomies mentioned here which are applicable for our implementation and will give

reasons for the choice made, propose a more complex scenario with the possibility of re-

assignment of tasks to workers when a worker cannot finish a task assigned to him and provide a

solution to it which can be extended to more realistic problems.

1.4 Vehicle Routing problem

The routing and scheduling of vehicles form an important part of the distribution and the

transportation systems. Vehicle routing involves the design of a set of minimum cost routes,

originating and terminating at a central depot, for vehicles which serve a set of customers with

known demands. Each customer is serviced once and all customers are assigned to vehicles such

that the given capacities are not exceeded. This is the general vehicle routing problem and many

variants of this technique exist. One such variant is vehicle routing problem with time windows

15

(VRPTW) which adds the complexity of allowable delivery times, or time windows. In this, the

service of customers (usually pick-up or delivery of goods) can begin within the time window

defined by the earliest and the latest times depending on the customer’s requirements. Time

windows are common to problems faced by organizations that work on fixed time schedules. Some

of the most popular approaches in this technique are dynamic programming algorithms to obtain

integer optimal solutions with time window constraints, column generation approaches for set

partitioning formulations of several VRPTW variants, approximation algorithms for VRPTW and

few other recently used ones which have known to give optimal results are local search algorithms

for routing in VRPTW problems [3]. We use the last one because of its efficiency.

1.5 Sub-problem of Spatial Crowd Sourcing

The problem space of spatial crowd sourcing is very large as introduced here in the report. Here

the focus will be on addressing the challenges like task formulation, assignment and worker path

selection. The solution in this report uses the server assigning task model with the goal of finishing

a majority of tasks given a final cap time, fixed set of workers and tasks. It also tries to minimize

the total time spent by each of the workers in the path followed by him/her. The assumption here

is that by minimizing the time spent on a route, the worker saves his time still allowing many of

the tasks to be completed within their required time windows. The workers are all considered to

be of equal expertise levels and the service times are associated with the tasks which means a task

is completed in the same time by any worker who is assigned the task. The report will first

sequentially assign the tasks to workers based on matching skill description of the workers and

tasks. We use GLS of VRPTW to solve the issue of routing and scheduling of workers to tasks

with time windows in the environment. We also suggest and demonstrate a technique that performs

a re-assignment that does not need complete re-assignment of tasks and workers when some

16

worker notifies that a task assigned to him cannot be finished in the environment, still allowing

the system to complete a majority of the tasks.

17

CHAPTER 2. PROBLEM DEFINITION

In this section, the report provides some of the terminology used in the spatial crowdsourcing

system and parameters in our environment.

2.1 Spatial Crowdsourcing system

Here we will introduce the concept of the environment and states in the system which are referred

to frequently in this report. These concepts are important when we are modelling the real-word

problem.

Definition 1. Environment: The entire space of workers and jobs at different instances of time

consists of the environment and all the tasks in these jobs will be removed from the environment

at a certain cap time at which time they become unavailable. The goal is to complete as many tasks

as possible before this final time while satisfying the time requirements of these tasks given a fixed

set of jobs and workers.

Definition 2. Skill sets: In this work we assume, that ψ = {(s1, comp1), (s2, comp2)…, (sk, compk)}

is the universe of skills in the environment which consists of a set of tuples of skills and the times

required to perform tasks requiring those skills. The first parameter si (1 ≤ 𝑖 ≤ 𝑘) in every tuple

from this set denotes the skill and each skill is associated with a completion time compi (1 ≤ 𝑖 ≤

𝑘) denoted by the second parameter in each tuple.

Definition 3. State: The state of the environment is any particular time instant in the environment

is when any worker starts moving from his location after completing his task or when he reaches

a location and stops to do any work or otherwise.

18

The concept of environment, skill sets, and state are used to explain our scenario and can

be extended further to define new parameters in the environment. Each of these changes from one

state in the environment to another are considered to be evolutions which change as time proceeds

in the environment. If the initial assignment of tasks to workers do not change in the environment

as time proceeds, then these evolutions are deterministic. Now if at any particular instant of time

if a moving worker stops abruptly and notifies other users that he cannot complete a particular task

because of delays in traffic or any other event then this is a state that was not expected in the

system. This is an abnormal state in the evolution of the states in the environment and a fast re-

assignment among tasks and workers related to this particular task need to happen while checking

some things like if the workers are currently not working on a task. Evolutions of state from this

abnormal state have to be determined again.

2.2 Time constrained tasks in the spatial environment

This section describes the jobs and their sequential tasks in the environment. The implementations

we provide tries to complete a majority of the fixed number of tasks completed given a final cap

time and a set of fixed workers.

Definition 4. Jobs: Let J= {j1, j2 …., jm} be a set of jobs in the environment. Each job ji (1≤ 𝑖 ≤

𝑚) is comprised of sequential tasks τj. That is, task τp cannot be started unless task τq is done where

q < p. Each τj can be written as a triplet of the form < lj, (δj,δk), sj > where lj is the location of the

task represented by x and y co-ordinate in a two dimensional plane, δj indicates the start time by

which the servicing of the task needs to start and δk indicates the time at which it needs to be

completed and sj is the skill required to finish this task and it is a skill from the set ψ with a

completion time associated with it.

19

The jobs and their tasks in the environment each have a unique ID and the number of jobs

and tasks in the system are fixed. The workers need to arrive at the task location and finish

servicing them in the time window specified for a task. Each task also requires only one skill and

has a time of completion associated with it. If a task is allocated to a worker and completed, then

it is removed from the environment. All these tasks will be removed from the environment at a

final cap time tf beyond which these tasks will be unavailable in the environment.

2.3 Multi skilled workers

We consider multi-skilled workers in our environment. Each of these workers have one or multiple

skills from ψ and can perform services for tasks that require his/her skills.

Definition 5. Workers: Let W = {w1, w2….., wn} be a set of workers in the environment. Each

worker wi (1 ≤ 𝑖 ≤ 𝑛) is recognized by a set of tuples of the form <li(t), Si, speedi >,where li(t) is

the location of the worker at timestamp t, Si is a subset of skills that he/she has from ψ and speedi

is the travelling speed of the worker which determines his travel time given the distance between

locations.

In this report, the speed of all the workers are assumed to be the same and all workers start

from different locations. So, the travel times of workers depends mainly on the distance between

the locations of workers and tasks. The number of workers is assumed to be a constant in the

environment and each worker has a unique ID associated with him to locate him.

2.4 Trajectory

Trajectories have information like the route, the order in which tasks are to be completed and the

earliest arrival and latest departure times of each location the worker visits in his route. Each

worker has a start location in the trajectory which does not have any service time and does no work

20

at that location. A worker after completing his tasks returns back to his starting location in his

assigned trajectory.

Definition 6. At any instant of time in the environment, the workers are assigned tasks from

different jobs in the form of a sequence (τ0, τ1, τ2…. τn, τ0) such that each worker has a set of tasks

formed < τ1, τ2…. τn> that the worker needs to travel to and finish servicing in order. τ0 is the starting

position of a worker which requires no servicing. Here a worker starts from a location τ0, moves

to task τ1 and then τ2 and his last task will be τn. He then returns to his start location. Also, each

task τi (1 ≤ 𝑖 ≤ 𝑛) in the sequence has tuple of times (arri, depti) where arri represents the earliest

arrival time at the task location and depti represents the latest departure time from the task location.

The location τ0 usually has the same arri and depti or has depti as the final cap time and there is no

service time associated with the location. The initial assignment of tasks is done in such a way that

a maximum number of the tasks in the environment will be completed by the final time tf. When

there is an abnormal change in the environment such as defined previously, there needs to be a

reassignment among the workers who are not busy and could have reached this task location, their

uncompleted tasks, the worker who could not perform the task and his/her unfinished tasks such

that new trajectories are assigned to these workers. The goal is to still complete a majority of the

initially assigned tasks in the environment before tf. The worker who cannot complete this task

which causes abnormality is not assigned this task in the new trajectory. In other words, only a

part of these workers and tasks are affected by this abnormal change in state and we avoid a

complete re-assignment of tasks and workers when it occurs in the environment.

21

CHAPTER 3. EXAMPLE SCENARIO

Figure 3.1 - Location of jobs and workers against Ahmerst city backdrop

Consider a scenario in spatial crowdsourcing against the city backdrop of Amherst in

Massachusetts in Fig. 3.1, where a user wants to restructure a house and another user wants to post

tasks related to the maintenance of a car. However, the job of restructuring this house has sub-

tasks like repairing the house, which requires a skill (repair), and painting which requires another

skill (paint). Similarly, the job related to the maintenance of the car may have sub-tasks like

washing, which requires a skill (wash), and cleaning which requires another skill (clean). We

consider the co-ordinates in the scenario to be relative to each other for ease of description of

events. Each of these tasks have service time associated with it as shown in Table 3.3. There is a

final cap time of t = 50 before which majority of tasks posted in the environment need to be

completed and there are many skilled workers that can accomplish one or some of these tasks. All

workers with a particular skill take the same amount of time to complete a task requiring that skill.

22

Table 3.1 - Jobs, their descriptions and sub-tasks

Job ID Job Description Sub-tasks

J1 House-restructuring T1, T2

J2 Car maintenance T3, T4

Table 3.2 - Worker/Task Skills

Worker/Task skill key set

w1 a1, a3

w2 a2

w3 a3, a4

T1 a1

T2 a2

T3 a3

T4 a4

Table 3.3 - Description of Skills and time required to complete them

Skill key Skill Service time

a1 repair 5

a2 paint 3

a3 wash 5

a4 clean 5

Table 3.4 - Task, Location and validity period

Task id (x, y) co-ordinate Time window- (time to start,

time to end)

T1 0, 2 0, 10

T2 0, 2 10, 15

T3 2,2 0, 20

T4 2,2 20, 30

In this scenario, let the user post a spatial job with ID - J1 with sub-tasks having IDs - T1

and T2, and another spatial job with ID - J2 with sub-tasks having IDs - T3 and T4, as shown in

Fig. 3.1, in the spatial crowdsourcing system, which requires a set of skills (given in Tables 3.2

and 3.3). The jobs IDs, descriptions and their tasks are shown in Table 3.1. The location of these

23

tasks and windows of time to arrive and complete these tasks are shown in Table 3.4. In Fig. 3.1,

there are three workers, w1, w2 and w3, each of whom has a different set of skills as given in Table

3.2. For example, worker w1 has the skill set repair and wash.

Table 3.5 - Worker ID, Worker Initial Location, Travelling speed

Worker Current location - (x, y) co-

ordinate at time t = 0

Speed of travelling (Mph)

w1 (0,0) 1

w2 (12,2) 1

w3 (15,2) 1

In addition, each worker has a current location represented at a specific time and a

travelling speed as shown in Table 3.5. Moreover, all workers have the same moving velocities of

one unit in this example scenario which makes the travelling time the same as his distances

between tasks and worker locations. The workers start from different locations and all the workers

are assumed to depart from their visited locations from their latest possible departure times

associated with that location for ease of explanation. If they complete early, they are assumed to

wait at their current location in this scenario. To accomplish the spatial job J1 (i.e., repair and

paint), the spatial crowdsourcing platform needs to select a best subset of workers from w1, w2

and w3, such that the union of their skill sets can cover the required skill set of task T1 and T2,

and, moreover, workers can travel to the location of T1 and T2 under the constraints of time

windows (earliest arrival and latest departure times) and service them. For example, we can assign

task T1 to worker w1 and task T2 to worker w2 whose skills can cover all the required skills of J1

and they can satisfy the time requirements of this task. Similarly, task T4 is assigned to w3. T3

which can be assigned to w1 and w3 is assigned to w1 as he can complete this task within the time

window and is available first. Here once a task is assigned to a worker then it is removed from the

spatial crowd sourcing platform to avoid duplicate assignment.

24

Table 3.6 - Important events and descriptors at different time instants in the environment

Time

instant

State Worker

w1
travel

path

Worker

w2
travel

path

Worker

w3
travel

path

Worker

w1
trajectory

Worker

w2
trajectory

Worker

w3
trajectory

Tasks

not
assigned

Tasks

completed

Description

of
Events

t = 0 - (0,0)

(12,2)

(15,2) {w1, T1,

T3, w1}

{w2, T2,

w2}

{w3, T4,

w3}

- - All workers are

assigned initial

trajectories

t = 0 1 Moving

towards

(0,2)

Moving

towards

(0,2)

Moving

towards

(2,2)

{T1, T3,

w1}

{T2, w2} {T4, w3} - - All workers move

to their next tasks;

Previous tasks or
locations are

removed from

trajectories

t = 2 2 (0,2) Moving
towards

(0,2)

Moving
towards

(2,2)

{T3, w1} {T2, w2} {T4, w3} - - Worker w1 reached
and started working

on task T1

t = 10 3 Moving
towards

(2,2)

Moving
towards

(0,2)

Moving
towards

(2,2)

{T3, w1} {T2, w2} {T4, w3} - T1 Worker w1 moving
towards next task in

his trajectory

t = 11 3a (1,2) Moving
towards

(0,2)

(4,2) - {T2, w2} - T3, T4 T1 Worker w1 cannot
reach task T3,

Reassignment for

w1, w3, T3 and T4

t = 12 4 (1,2) (0,2) Moving

towards
(2,2)

- {w2} {T3, T4,

w3}

- T1 Worker w1 does

not have any tasks
and reaches start

location, worker w3
is assigned new

trajectory and w2 is

not affected and
reaches Task T2

t = 13 5 (1,2) (0,2) (2,2) - {w2} {T4, w3} - T1 Worker w2 is

working on his task

T2, w3 reaches task
T3 and starts

working on it

t = 15 6 (1,2) Moving
towards

(12,2)

(2,2) - {w2} {T4, w3} - T1, T2 Worker w2 starts
moving towards his

start location

t= 18 6 (1,2) Moving

towards
(12,2)

(2,2) - {w2} {T4, w3} - T1, T2, T3 Worker w3 finishes

task T3

t = 20 6 (1,2) Moving

towards
(12,2)

(2,2) - {w2} {w3} - T1, T2, T3 Worker w3 starts

task T4

t = 25 6 (1,2) Moving

towards

(12,2)

(2,2) - - {w3} - T1, T2, T3,

T4

Worker w3 finishes

task T4

t = 27 7 (1,2) (12,2) (2,2) - - {w3} - T1, T2, T3,

T4

Worker w2 reaches

his start location

t = 30 8 (1,2) (12,2) Moving
towards

(4, 2)

- - {w3} - T1, T2, T3,
T4

Worker w3 starts
towards his start

location

t = 32 9 (1,2) (12,2) (15,2) - - - - T1, T2, T3,

T4

Worker w3 reaches

his start location;
No more state

changes in the

environment

t =50 9 (1,2) (12,2) (15,2) - - - - T1, T2, T3,

T4

Final cap time

reached

25

The state changes and a brief description of important events at different significant time

instants are shown in Table 3.6 and the trajectories are represented by IDs of locations from which

their location and times can be determined. This table gives information about the change of states,

description of events, travelling path of workers, trajectories of workers and information about

completed tasks. The states are a metric that can be used to detect an abnormality and perform a

re-assignment in our work as explained already. It occurs when a worker starts from a location or

stops at a location to perform a task or otherwise and it is used to explain this example scenario.

The evolutions of states and the events that followed till State 3 and after it would have been

deterministic if the initial assignments described above were fixed. However, at time t=11 after

leaving from his current task location at time t = 10, w1 notifies all the constituents of the system

that he cannot do task T3 as he has faced a problem due to traffic. This is an abnormal change in

the state of the system as Worker w1 stops abruptly. This is State 3a of the environment, which

was not present in the states determined earlier, and there needs to be a reassignment of tasks to

workers related to this unfinished task as described in Section 2 such that a majority of the tasks

in the environment are completed within their time windows using algorithms mentioned in

Section 5. Now a re-assignment between workers w1, w3 and tasks T3, T4 need to happen. Tasks

T3 and T4 are reassigned to worker w3 as he has the skillsets required to perform these tasks, can

satisfy their time requirements and is currently not working on a task and is not busy. Worker w1

is not assigned task T3 in this re-assignment and as he has no other tasks left to do, he returns to

the start location of his new trajectory. Worker w2 is not considered for this re-assignment as he

cannot perform this task and retains his initial trajectory. There is a fast re-assignment at this point.

At time t=32 all workers would have returned to their starting locations of their current trajectories.

There are no more state changes till the final cap time of the environment.

26

CHAPTER 4. FRAMEWORK

The framework we propose uses two main stages. In the first stage we keep a record of all the tasks

a worker can perform based only on the skillsets. The second stage then assigns the trajectories

(order of the task, times and the route) to each worker in a sequence. We also consider

reassignment. Some of the common terms used to describe this are defined in Table 4.1

Table 4.1 - Symbols and Descriptions

Symbols Descriptions
si Skill with ID – i
compi Completion time associated with skill si

ψ Universe of skillsets containing si and compi
τi Sequential task i
ji Job with ID - i comprised of a number of

sequential tasks τj
J Set of Jobs J

wi Worker with ID - i
L List of task lists of all workers
Li list of tasks that each worker wi can complete

based on skillset
Mi Trajectory that each worker wi is assigned

M List of trajectories

F Set of features
λ penalty factor

c cost vector

ci cost of feature i

fi Indicator function for feature i ϵ F

fi (S) = 1 if the feature i is in solution S, and 0

otherwise.

p Penalty vector

pi Integer number of times feature i has been

penalized

(xi, yi) Notification co-ordinates

τi
’ Unreachable task tuple

W’ Workers who are not currently working and can

perform task τi
’

wn Worker who sends notification

Ln Task list of wn

wi
’ Worker in W’

t Time at which notification is received

Mi
’ Current trajectory of worker wi

’

27

CHAPTER 5. FRAMEWORK COMPONENTS

The implementation is divided into main components like assigning tasks to workers based on

skillsets, assignment of routes to workers using GLS for VRPTW and a quick re-assignment of a

small subset of workers and tasks when a worker cannot reach a task. A brief discussion is given

in this section for each of the components. The last component performs a fast assignment that

does not displace other workers, who are not related to or cannot do the notified task, and their

tasks. This leads to fast assignment times even in an event of abnormality in the environment.

5.1 Assignment of tasks to workers based on skillsets

This is the first stage of our implementation where the jobs and workers are inputs of the

algorithm and the output is a list of lists where each list is associated with a worker and consists

of the all the tasks in the environment that this worker can complete based only on skillsets. Line

1 iterates through each worker, and for each worker we iterate through each skill of this worker in

Line 2 and we check for all the tasks in Job J which requires this skill in Line 3. We then add this

task to the task list Li of this worker in Line 4. This gives us a set of workers and a list of all the

tasks a worker can perform in the environment.

Algorithm 1. Initialization of tasks to workers based on skillsets

Input: Jobs J, Workers W

Output: Task lists of all workers L

1. For each worker wi in W:

2. For skill si in skillset of w:

3. If skill si is in skill required by any task τi in J:

4. Add τi to Li

28

5.2 Assignment of trajectories

This is the part of our implementation where workers are assigned tasks in an order which

satisfies the time requirements of these tasks while trying to complete a majority of tasks in the

environment. The input to this algorithm is the set of workers W and list of tasks L and outputs are

an initial set of trajectories which each worker is assigned in the environment. Line 1 traverses

through each worker in the worker set W. The modified GLS for VRPTW is applied to each task

list of a worker in Line 2. This assigns an order in which tasks need to be completed and a route

that the worker needs to follow, satisfying the time requirements of the sequential tasks, and

outputs a list of ordered tasks with suggested visiting times for each worker. The trajectory is then

updated to a set M that stores all the worker IDs and their respective current trajectories. Finally,

we remove all occurrences of tasks in L which are present in the obtained trajectory in Line 3 to

avoid duplicate assignment of tasks.

5.3 Guided Local Search for Vehicle Routing Problem

We apply a method called Guided Local Search for VRPTW to obtain a trajectory for a worker by

treating him as a vehicle and the task locations as the customer locations. The starting point of a

worker in the current trajectory is the depot location of the vehicle.

Algorithm 2. Trajectory assignment

Input: Workers W, List of task lists L

Output: Trajectories of all workers M

1. For each worker wi in W:

2. Apply GLS of VRPTW for tasks in Li and store them in trajectory Mi of

 Worker wi

3. Remove tasks τi from task list L which is present in Mi

29

5.3.1 General guided local search

Guided local search (GLS) is a metaheuristic which is based on penalties. It moves out of

a local minimum by penalizing particular solution features that according to it should not appear

in a near-optimal solution. It uses a modified objective function, augmented with a set of penalty

terms on these features. The local search method is then invoked to improve this function and we

use the default method provided in [4]. This cycle of local search and update to penalty term can

be repeated frequently. GLS tracks penalties applied via p.

 Assuming O(S) is the original objective function for the problem, GLS defines an

augmented objective function: O’(S) = O(S) + λ Σ i ϵ F fi(S) pi ci and requires a local search

procedure that minimizes it. The LocalSearch(S,p) that performs a local search, starting at solution

S based on the improvement with objective function O’ is provided by the user.

GLS provides a function called ChoosePenaltyFeatures(S,p) which takes a solution and the

current penalties and returns the set of features to be penalized. GLS penalizes the most costly

Algorithm 3. GLS for VRPTW

Input: Set of features F, Cost Vector c, Penalty factor λ

Output: S*

1. p:=O

2. S:= InitialSolution()

3. S:= LocalSearch(S,p)

4. S*:=S

5. While not StoppingCondition() do

6. f:= ChoosePenaltyFeatures(S,p)

7. forall g in f do

8. pg:= pg+1

9. S:= LocalSearch(S,p)

10. if O(S) < O(S*) then

11. S*:=S

12. S*:= LocalSearch(S*,O)

13. RETURN S*

30

features in the current solution, weighted by the number of times the feature has already been

penalized. GLS chooses the features i ϵ F for which ci/(pi+1) is the largest among the feature in S.

Usually only one feature is selected.

This is assuming InitialSolution() and StoppingCondition() exist. A brief explanation of

this algorithm is given in [5].

5.3.2 Application of GLS for VRPTW to obtain trajectories

In the Guided Local Search for VRPTW problem we have the following descriptors,

1. Feature set F: Time windows are penalized

2. Feature Costing: We assume the cost ca to be the service time of the location and travel

time to next location

3. Penalty factor λ: 0.1

4. InitialSolution() is the default solution and LocalSearch(S,p) is the algorithm

implemented by default in the software suite in [4]. More about the details of the use of

this algorithm in our implementation is discussed in Section 6.

For each run of the algorithm we try to minimize the amount of time spent by a worker in

the route assigned to him. This finds a path for a worker while trying to minimize all the travel

and service times of a worker in his current route.

5.4 Fast re-assignment of trajectories

Algorithm 4. doFastAssignment

Input: Trajectories M, Notification co-ordinates (xi, yi), unreachable task τi
’, Task list L,

Worker wn

Output: Task List L

1. Find travel time and notification time t from (xi, yi) and M

2. W’= Find all workers who are not currently working and can perform task τi
’

3. Remove tasks τ’ completed by workers in W’ till the notification time instant t and all

tasks completed by workers in W not in W’ from L

31

This is the algorithm which is called when there is a notification from a worker indicating

that he cannot reach a task in his initial trajectory. It needs initial trajectories obtained from

algorithm 4. This algorithm is designed to be called when there is an abnormal state change in the

environment which was discussed in Section 2.1. The input to the algorithm is the initial

trajectories of workers, the co-ordinates at which the notification was received, the unreachable

task of the worker who sent the notification, this worker’s tuple which describes him in the

environment and Task lists L. The output is L with the uncompleted tasks in it. In line 1 we find

the current notification time based on the notification co-ordinates, the co-ordinates of the last

location the worker visited who sends the notification and the co-ordinates of next location which

he cannot reach using linear algebra and this gives us the current environment time and the

travelling time required to reach the notification location. We find all the workers who can do this

task based on simple modification and iteration on task list L, the current environment time and

iterations on initial trajectories M as indicated in line 2. In Line 3 we remove all completed tasks

by workers in W’ from L till notification time t and we also remove all completed tasks by other

workers not in W’ from L using information from their initial trajectories in M to avoid duplicate

assignments. In line 4 we remove unreachable task τi
’ from task list Ln of worker wn so that it is

not assigned to him. We then update all the new locations of workers in W’ in line 5 using the

current notification time instant, the travelling time and the initial trajectories of these workers. A

new location is assigned to these workers which are between their last visited location before the

4. Remove τi
’ from task list Ln

5. Update new locations for all workers in W’ at notification instant t using travel time

6. For each worker wi
’ in W’

7. Apply GLS for VRPTW for tasks in his task list Li
’ and obtain current trajectory

Mi
’

8. Remove tasks in Mi
’ from L

32

current environment time and the next location they were supposed to visit after the current

environment time in their initial trajectories. In lines 6-7, we iterate through each of the workers

in W’ and obtain new trajectories for them for the remaining tasks in L, from their new locations

and current environment time t. In line 8, we remove the completed tasks in the new trajectories

from Task lists L. This gives us new trajectories for workers which were considered for re-

assignment and the tasks left unfinished. The other workers retain their initial trajectories obtained

from Algorithm 4. These algorithms are simulated in our implementation on a few test cases and

results are obtained.

33

CHAPTER 6. EXPERIMENTAL SETUP AND TESTS

The implementation was tested on a fixed set of user defined workers and tasks modified based on

VRPTW datasets so that it can be reproduced for analysis. The experiments were conducted on a

x64-based PC (16 GB, 512 GB SSD), running Windows 10 Home edition. The entire

implementation was done using Python 3.6 and the Google OR-Tools software suite (v6.10) which

is a binary distribution and can be found in [4]. All the data pre-processing to modify the datasets

was done using pandas library in Python. The reason we chose this software suite and language is

because of the availability of open source packages and support.

6.1 Datasets

The experiments were conducted using real data sets used for Vehicle Routing Problem with Time

Windows given in the Transportation Optimization Portal of SINTEF Applied Mathematics [6].

We used our implementation to test our example scenario mentioned in Section 3. For a larger test

set we tried it out with an instance of 100 customers location in Solomon’s VRPTW benchmark

problem named rc207. Our next test was to use 1000 customer VRPTW rc2_10_10 instance in the

Gehring & Homberger benchmark. The information necessary for our implementation were

customer number, their position co-ordinates, ready time, due date and service time. We prepare

the data using pandas. We assigned a skill and an id based on the customer number for each

customer giving us jobs in the environment. We assign a task ID for each task in these jobs. The

number of workers were experimented with until we found a combination of workers that would

finish all the tasks for both normal state changes and the abnormal state change. Each worker was

associated with two to four skills and each task was associated with one skill from the set "repair",

"wash", "clean", "paint", "dry" and "build".

34

We tested our implementation for both the normal state changes in the environment and

when there is an abnormal state in the environment. All the important results and the parameters

selected for the simulations are noted in this report in Section 6.2.

6.2 Implementation details

The implementation has a two-stage approach. We first assign all the tasks to workers based on

skillsets only and then apply GLS for VRPTW for each worker using the google or-tools software

suite [4] to obtain a set of distinct tasks and their suggested visit times , the order in which they

need to be completed and the route in which a worker has to travel, which is his trajectory. We

treat each worker as a moving vehicle so that we can apply a variant of VRPTW algorithm called

GLS of VRPTW. GLS is generally the most efficient metaheuristic for vehicle routing [7]. The

arc costs are defined to be the travelling times and service times of a worker, which is utilized by

the solver in the google or-tools software suite to minimize the time spent by a worker in his current

route. The software suite needs a data model as input. The data model consists of an array of travel

times between locations, time windows of each locations, number of locations, number of vehicles

and a depot location. In our case we have used a distance matrix instead of a time matrix as speed

of the worker is the same and is one unit. The distance matrix for each worker is the distances

between every task which he can do to every other task that he can do and distance between his

current position to every other task he can do. To find the distances between locations represented

by (x, y) co-ordinates, we have made use of Manhattan distances. The time windows are the

requested time of visits at a task location. Initially when a worker starts form his location, we

assign a time window of (0,0) indicating that he starts at time t = 0 from his location. The number

of locations for a worker depends on the number of tasks he performs at any point in time. The

number of vehicles is one as we consider one worker at a time and the depot location is the current

35

starting location of a worker. We limit the search of every GLS of VRPTW algorithm run till a

fixed number of solutions are obtained as shown in Tables 6.1 and 6.2 and the best among them is

treated as the final trajectory of a worker. This is the stopping condition we use. For each task

assigned to a trajectory of a worker we remove it from the main task set. This is done to avoid

duplication of task assignments. Every worker has his own start location in a trajectory which is

his current location and he reaches back to this start location after completing all his assigned tasks.

We also add time constraints to the workers so that they have a waiting time and a final cap time

which is the same as the final cap time of our environment. The waiting condition allows some

buffer for workers to wait on tasks if they finish a task earlier than the required time. We create

dimensions which keep track of quantities that accumulate over a vehicle’s route. Here we keep

track of the time spent on a route by a worker. The task and worker location are also assigned a

solution window which forces the worker to visit and service the locations in that time window.

We also handle routing problems that have no feasible solutions and allow dropping of visits. To

do this we assign what is known as penalties for all task locations. All these methods used have

been explained in google or-tools software suite documentation and we have adapted it to our

problem to make sure that our implementation scales for large amounts of workers and tasks. The

GLS algorithm is run on every worker by treating him as a vehicle and by following the above

methods to prepare our data so that it can be input to the software suite to obtain the results. After

we obtain the trajectories for the environment without any abnormality, we make a note of all these

trajectories. We then pick a task from a trajectory assigned to a worker and make it an unreachable

task in our implementation. We use his ID and fix appropriate notification co-ordinates to be the

co-ordinates after his last completed task. These are the parameters used to test our implementation

for the abnormal situation. Our simulation times for the complete assignment and fast re-

36

assignment is recorded in this report. The solutions obtained are the trajectories which have worker

and task IDs, their time intervals of arrival and departure times and the order in which they are

performed along with other results which describe the simulation. The worker and task IDs in the

trajectories are representative of the location which the worker has to visit and the time intervals

indicates the times in which they have to visit the location associated with that ID to meet the time

requirements associated with that location and stay on schedule. The algorithms discussed in

Section 5 are implemented using the google or-tools software suite.

6.2.1 State changes with no abnormality

Our implementation was first tested for the situation where all the state changes in the environment

is known and do not change. In other words, all workers complete all the tasks in the environment

without any interference. The implementation details use the same framework components as

described in section 5. The important results obtained for a few test cases and the parameters in

the google or-tool software suit selected for the same are shown in Table 6.1. The first test of our

implementation is shown in the second row in Table 6.1 and it simulates the example scenario with

normal state changes described in Section 3. Its sample output from the simulation is shown in

Appendix A.

Table 6.1 – Simulation parameters and results for normal state changes in the environment

Test
No.

Description of Data set
used for demonstration

No of
Tasks

No of
workers

Percentage of
completed tasks

Final
Cap

time

Stopping condition for
VRPTW (Based on

number of solutions

returned by Guided Local
Search)

Simulation time in
milliseconds for

assignment of all

trajectories to
workers

1 Example Scenario from

Section 3

4 3 100 50 1 15.628

2 rc207 instance from
Solomon’s VRPTW

benchmark

100 10 100 1200 5 73.802

3 rc2_10_10 instance in
the Gehring &

Homberger benchmark

1000 70 100 7500 7 15512.269

37

6.2.2 State changes with an abnormality

Our implementation was then tested for the situation where there is an abnormality in the

environment. In other words, when a worker cannot complete a task in the environment then there

is a re-assignment of a small subset of the tasks and workers such that we can attempt to finish the

unfinished task too. There is a rerouting of workers who can perform this task and are currently

not working on any task. To test this, we picked a task from a trajectory of a worker obtained from

each of the test cases in Table 6.1 and made it unreachable along with the co-ordinates at which

the notification was received and the worker who sends this notification. The new results were

noted. For now, the user defines the notification parameters like the task which cannot be reached,

the worker who is sending this notification and the co-ordinates at which the notification is sent

for every run of our implementation. From this and his last visited location co-ordinates and

visiting times we determine the possible travel time of the worker to the notification co-ordinates

and the time at which the notification may have been sent. From these times and the initial

trajectories obtained without abnormal state changes, we find and update new starting locations,

between location visits around the current environment time, of all the workers who are currently

not working and can perform this task. We run the GLS of VRPTW algorithm to obtain new

trajectories for these workers and the tasks that they can complete from this time instant and new

starting co-ordinates. The worker who sends the notification is not assigned this task which caused

the abnormal state in his new trajectory. We get the new trajectories of these workers. All the other

workers have their initial trajectories. We record our approximate simulation time needed for this

re-assignment. The main results and the parameters used to obtain them are shown in Table 6.2. A

complete simulation output on the first test case of Table 6.2 is shown in Appendix B. The

explanation of the simulation results is given in Appendix C.

38

Table 6.2 – Simulation parameters and results for abnormal state changes in the environment

Test No. Description of Data

set used for
demonstration

No of

Tasks

No of

workers

ID of worker

who sends
notification,

ID of

unfinished
task, x and y

co-ordinates

at which
notification is

received,

Time instant
of

notification

Percentage of

completed
tasks

Final

Cap
time

Stopping

condition
for VRPTW

(Based on

number of
solutions

returned by

Guided
Local

Search)

Simulation time in

milliseconds for fast re-
assignment

1 Example Scenario

from Section 3

4 3 1, J2t1, (1,2),

11

100 50 1 3.024

2 rc207 instance from
Solomon’s

VRPTW

benchmark

100 10 2, J75T1,
(24,75), 280

100 1200 5 12.966

3 rc2_10_10 instance
in the Gehring &

Homberger

benchmark

1000 70 1, J5T1,
(254,254),

710

100 7500 7 3674.287

39

CHAPTER 7. CONCLUSION

In all the existing spatial crowd sourcing solutions that have been proposed till now, there are only

solutions for normal assignment of tasks to workers given constraints like minimizing the distance

traveled, servicing tasks with time windows, budget and many others. They assume that workers

finish tasks assigned to them. But none of the works consider the case when a worker cannot reach

the task assigned to him. This report proposes an approach to solve the normal worker and task

assignment problem given some of these constraints and an approach to solve this problem with

an abnormality. The workers are assigned a trajectory which is a route, an order and the times in

which the worker has to visit task locations to complete these tasks before a final cap time. The

report then suggests a technique which does a fast re-assignment that does not require complete

re-assignment of tasks to all workers when some worker cannot reach a task assigned to him or

during an abnormal state change. This solution helps in finding new trajectories very quickly and

still completes a majority of tasks. It is a solution to some of the problems that are faced by workers

and people who post jobs in the crowd-sourcing platforms. Even though this report demonstrates

the effectiveness of the solution proposed, there are further optimizations that can be done like

minimizing the cost of travel of a worker by allocating a budget, allowing workers to start and

reach their desired locations and many more such optimizations to provide a more robust solution

to these practical problems in spatial crowdsourcing platforms. We can also improve the accuracy

even further and test our implementation for larger data sets. This report proposes a simple and

innovative solution to a possible problem in the spatial crowd sourcing platforms and sets a base

for further improvements along this line.

40

REFERENCES

[1] Zhao, Yongjian & Han, Qi. (2016). Spatial Crowdsourcing: Current State and Future

Directions. IEEE Communications Magazine. 54. 102-107. 10.1109/MCOM.2016.7509386.

[2] Desrochers, Martin & Desrosiers, Jacques & M Solomon, M. (1992). A New Optimization

Algorithm for the Vehicle Routing Problem with Time Windows. Operations Research. 40. 342-

354. 10.1287/opre.40.2.342.

[3] Nasser A. El-Sherbeny, Vehicle routing with time windows: An overview of exact, heuristic

and metaheuristic methods, Journal of King Saud University - Science, Volume 22, Issue 3,

2010, Pages 123-131, ISSN 1018-3647, https://doi.org/10.1016/j.jksus.2010.03.002.

[4] "Google OR-Tools," Google, [Online]. Available:

https://developers.google.com/optimization/. [Accessed 4 6 2019].

[5] Kilby, Philip & Prosser, Patrick & Shaw, Paul. (2002). Guided Local Search for the Vehicle

Routing Problem. 10.1007/978-1-4615-5775-3_32.

[6] "Transportation Optimization Portal," SINTEF Applied Mathematics, [Online]. Available:

https://www.sintef.no/projectweb/top/. [Accessed 4 6 2019].

[7] "Guided Local Search," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Guided_Local_Search. [Accessed 4 6 2019].

[8] Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. 2016. Online

minimum matching in real-time spatial data: experiments and analysis. Proc. VLDB

Endow. 9, 12 (August 2016), 1053-1064. DOI:

http://dx.doi.org/10.14778/2994509.2994523

[9] P. Cheng, X. Lian, L. Chen, J. Han and J. Zhao, "Task Assignment on Multi-Skill Oriented

Spatial Crowdsourcing," in IEEE Transactions on Knowledge and Data Engineering, vol. 28, no.

8, pp. 2201-2215, 1 Aug. 2016.

[10] "FIND A BUS STOP," Greyhound, [Online]. Available:

https://locations.greyhound.com/us/massachusetts. [Accessed 7 April 2019].

https://doi.org/10.1016/j.jksus.2010.03.002

41

APPENDIX A. SIMULATION OF SCENARIO WITH NORMAL STATES

42

 APPENDIX B. SIMULATION OF SCENARIO WITH ABNORMAL STATES

43

44

 APPENDIX C. DETAILS OF THE SIMULATION

1. The simulation results displayed give information about the set of skills, worker

information (ID, Current location, skills, speed), jobs (Job ID, Task ID) which has tasks

(Task ID, Location, Time interval, skill), trajectories of workers and other important

information which help us to follow the simulation results.

2. A trajectory of a worker is displayed for each worker.

3. The trajectories of workers are represented by a worker ID or task ID and the possible times

in which the worker can visit that location next to them and the order in which it needs to

be followed represented by ‘->’. This task after symbol ‘->’ is the next task that needs to

be visited. The location of tasks and workers can be obtained from the ID at any point in

time and we are representing trajectories by IDs as it is visually more appealing.

4. For the abnormal state all the workers who are not re-assigned because of the notification

from a worker retain their initial trajectories and they are displayed initially.

5. Details about the notification like the ID of the worker who sent it, the ID of the task which

cannot be performed by this worker and the notification time are displayed in the

simulation.

6. The initial trajectory of the worker who sends the notification till the notification time

instant is displayed indicating he has followed that trajectory and completed those tasks.

Similarly updates on workers who can perform this task are then displayed till the

notification time. If a capable worker is busy, then he retains his initial trajectory and it is

displayed indicating those tasks are completed.

7. For the worker who sends the notification and all the workers who are re-assigned, their

new locations are updated. The new locations are between their last visited and next to be

45

visited location in their initial trajectories so that they can start from new co-ordinates. The

new locations of the worker are updated to be the co-ordinates that they might be around

during the current environment time and not their previous starting positions of initial

trajectories. This information is displayed in the simulation.

8. Now the rest of the trajectories for workers who have the locations updated are displayed

in the same pattern as before, starting after the notification time instant indicating they

complete the tasks after this time instant and from their current updated starting locations.

9. The approximate time needed for the simulation of total assignment and re-assignment is

displayed in these results.

