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ABSTRACT 

Crowdsourcing is dependent on a number of skilled workers who are needed to accomplish spatial 

tasks. This has been an active area of research and is gaining wide popularity now. Most of these 

tasks can be completed online due to convenience, but this method fails when there is a need of 

completing a task at actual physical locations. This has led to a new area called Spatial crowd 

sourcing [1] that consists of location-specific tasks that require people who can accomplish them 

to physically be at specific locations. The tasks which require specific skillsets, completion times 

or other constraints are matched with workers who can meet these constraints and complete them. 

In this report we consider a situation where the jobs are at different locations with sequential sub-

tasks, each with time and skill constraints, and are to be completed within the given interval by 

workers who have those required skills and are dispersed. The aim is to finish a majority of tasks 

in the environment before a final cap time given the constraints of this environment. First workers 

are assigned to tasks appropriately so that each worker has the skill needed to complete each of 

the tasks allocated. After the assignment is complete, a variant of the vehicle routing problem 

called vehicle routing problem with time windows (VRPTW) is used to assign these workers the 

paths and visiting times that they need to follow to reach specific task locations and finish them 

within the required time intervals. The vehicle routing problem with time windows (VRPTW) is a 

generalization of the vehicle routing problem where the service of a customer can begin within the 

time window defined by the earliest and the latest times when the customer will permit the start of 

service [2]. We also consider the case when a worker cannot reach a particular task location in an 

abnormal situation and perform a re-assignment that does not need to re-assign tasks to all workers 

and is faster. By following these approaches, we aim to create a technique that can be applied to 

many real-world problems in the spatial crowd-sourcing environment with such practical events. 
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CHAPTER 1. OVERVIEW 

Most tasks in the real world are time bound and require particular skills in order to complete them 

by the end of a day. Also, there may be many workers who can finish these tasks and they can start 

from different locations. There also may be scenarios where a worker cannot finish a task assigned 

to him. An important solution to this problem will need to consider efficient assignments of tasks 

to workers for such situations. We try to provide solutions to these problems and also suggest a 

technique which allows us to perform a re-assignment without having to perform complete 

assignments of all tasks to all workers when a worker notifies that he cannot perform a task. This 

leads to less load on the server platform. 

1.1 Spatial Crowdsourcing 

The term ‘Crowdsourcing’ was first introduced by Jeff Howe in a Wired magazine article titled 

‘The Rise of Crowd-sourcing’ in June 2006 as follows: “Crowdsourcing represents the act of a 

company or institution taking a function once performed by employees and outsourcing it to an 

undefined (and generally large) network of people in the form of an open call.” It can be performed 

by individuals or groups. This field has wide ranging applications in the field of data mining and 

software engineering. Some of the terms used to represent crowdsourcing is social computing, 

crowdsensing, crowd computing, crowd wisdom, smart mobs and mass collaboration. Typically, 

this happens online and there are many commercial and academic platforms for this field of 

computing. An example is Amazon Mechanical Turk (AMT) that publishes tasks which can be 

completed by people. The workers who receive the tasks or request the tasks do not usually have 

to be in the same location. However, there are many tasks that require workers to be at a particular 

location. This requirement and the availability of mobile phones have led to a new form of 

crowdsourcing called spatial crowdsourcing.   
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Spatial Crowdsourcing is an emerging field in crowdsourcing which needs workers to 

move to a particular location to perform the task. This type of crowd wisdom needs people to 

gather, analyze and disseminate geographical with or without social information. In this a requester 

can commission workers to perform spatial tasks (tasks related to geographical location and time). 

There are many projects by companies and governments in this area like the Open Street Map, 

Google MapMaker and Wikimapia.   

1.2 Challenges of Spatial Crowdsourcing 

These are some of the most common issues that a crowdsourcing system faces- 

1) Task formulation: It is very important to formulate tasks and this deals with questions like 

if the task needs to be well defined and if each larger task needs to be split into smaller 

tasks. 

2) Task assignment: The issue here is to assign a task to a worker or workers with some 

constraints like minimum budget allocation, reliability or stringent time requirements.  

3) Incentive mechanism: Some tasks are reward driven and there needs to be an incentive-

based design to motivate workers to perform tasks. These can involve money, prestige or 

other rewards. 

4) Scalability: The design of such a system has to be scalable regardless of the number of 

tasks and workers. 

5) Quality: The data has to be of some acceptable quality as needed by the design. For 

example, malicious and poor-quality data need to be removed from the system. The data 

also needs to be reliable and compare against the ground truth. 

6) Privacy: It also important to protect some users’ privacy by not sharing this data with other 

users. 
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In addition to these there are several other issues like- 

1) Location awareness: This is one of the most important characteristics of the spatial 

crowdsourcing system and the user movement is involved in the system. Some systems 

check if the users have really reached the task location. 

2) Workers path selection: The users need to travel to an event place and perform the tasks 

and we need to calculate the best paths for the workers and schedule the task sequence. 

Classic Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) 

are commonly used to solve this issue. In VRP, all workers start from the same location 

and the number of workers is fixed. This is the technique we will be using for our 

implementation. 

3) Datasets: Only few real-world data sets are available for these systems. There are no 

real-world data sets that can be directly used for spatial crowdsourcing. These data sets 

can be obtained by modifying some available datasets so that it can be applied to and 

be used to solve the spatial crowd sourcing problem. 

1.3 Taxonomy  

This is the general taxonomy of spatial crowdsourcing which helps us identify the future 

applications as discussed in [1]- 

A. Worker model 

a. The spatial crowdsourcing model consists of human workers. Each worker can be 

represented by set of attributes like an identifier, geographical coordinates, user’s 

proficiency level, expertise or any other relevant metric. Usually the workers can 

be classified into reward seeking workers and voluntary workers.  Reward seeking 
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workers perform tasks to gain money or commodities and voluntary workers 

usually perform without rewards. 

B.  Task model 

a. Each task is associated with a set of attributes like an identifier, deadline of the task 

which means the task has real-time constraints, location of the task, number of 

workers, incentive and other relevant parameters. The task can be further divided 

into single worker required tasks and multiple workers required tasks.  

Once the task model and worker model are selected then we can consider task assignment 

and worker selection. There are two models here- 

b. Server assigning tasks. The server assigns each task to workers based on the task 

and worker locations according to the system optimization goals such as 

minimizing the total travel distance. This often leads to global optimization for the 

system.  

c. Worker selecting tasks. The server publishes the various tasks online and the 

worker chooses the tasks based on his preference.  

In both the models, the workers’ travelling routes which usually consists of the tasks and their 

locations must be determined. This problem becomes even more prominent when multiple tasks 

are assigned to workers. As the tasks are not in the same location, we need to avoid unnecessary 

travelling between locations by assigning paths and by scheduling tasks.  
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C. Response model 

a. Different spatial crowdsourcing applications pose different tasks. Workers may 

contribute different types of data such as categorical data, continuous data, or 

multimedia data.  

D. Optimization goal 

There are usually two different focuses, one is the workers perspective and the other is the 

system’s perspective.  

a. From a worker’s perspective, the goal is to maximize the total reward which may 

be anything that we discussed earlier in this report. To achieve this, a worker may 

seek as many tasks as possible on his travelling path, then the workers compete to 

complete these tasks. To reduce the cost, the worker may choose the best route to 

accomplish all the tasks, so task scheduling and path selection need to be jointly 

considered in the task selection.   

b. From a system’s perspective, the idea is to maximize the number of assigned tasks. 

i. Maximize task coverage. To achieve this, the server first collects all the 

locations of the workers and then tries to maximize the overall number of 

assigned tasks. The workers are considered to be of the same expertise level 

and then this is reduced to a matching problem. Other systems assign scores 

to each worker based on expertise levels. Higher scores are given to workers 

who match the expertise. Due to the nature of travelling involved, task 

assignment problem often needs to consider task scheduling. 
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ii. Minimize system costs. The total cost can be defined as the incentives paid 

or the travelling distances of all the workers. It also possible to use budget 

to maximize task coverage. 

iii. Maximize data quality. A number of strategies can be applied to maximize 

data quality. This again depends on the definition of data quality. 

iv. Minimize number of tasks with missed deadlines. Spatial tasks usually have 

time constraints and usually the tasks need to be completed before the 

deadlines. Task scheduling and path selection becomes important here. 

If the system is selecting the tasks then it determines the locations of all the workers and 

then assigns the tasks to the workers and if the workers are choosing the tasks then the selection is 

based on the maximum reward he/she can achieve by completing the tasks in the system. These 

assignments utilize the information from worker model and task model. This report will focus on  

some of the taxonomies mentioned here which are applicable for our implementation and will give 

reasons for the choice made, propose a more complex scenario with the possibility of  re-

assignment of tasks to workers when a worker cannot finish a task assigned to him and provide a 

solution to it which can be extended to more realistic problems. 

1.4 Vehicle Routing problem 

The routing and scheduling of vehicles form an important part of the distribution and the 

transportation systems. Vehicle routing involves the design of a set of minimum cost routes, 

originating and terminating at a central depot, for vehicles which serve a set of customers with 

known demands. Each customer is serviced once and all customers are assigned to vehicles such 

that the given capacities are not exceeded. This is the general vehicle routing problem and many 

variants of this technique exist. One such variant is vehicle routing problem with time windows 
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(VRPTW) which adds the complexity of allowable delivery times, or time windows. In this, the 

service of customers (usually pick-up or delivery of goods) can begin within the time window 

defined by the earliest and the latest times depending on the customer’s requirements. Time 

windows are common to problems faced by organizations that work on fixed time schedules. Some 

of the most popular approaches in this technique are dynamic programming algorithms to obtain 

integer optimal solutions with time window constraints, column generation approaches for set 

partitioning formulations of several VRPTW variants, approximation algorithms for VRPTW  and 

few other recently used ones which have known to give optimal results are local search algorithms 

for routing in VRPTW problems [3]. We use the last one because of its efficiency. 

1.5 Sub-problem of Spatial Crowd Sourcing 

The problem space of spatial crowd sourcing is very large as introduced here in the report. Here 

the focus will be on addressing the challenges like task formulation, assignment and worker path 

selection. The solution in this report uses the server assigning task model with the goal of finishing 

a majority of tasks given a final cap time, fixed set of workers and tasks. It also tries to minimize 

the total time spent by each of the workers in the path followed by him/her. The assumption here 

is that by minimizing the time spent on a route, the worker saves his time still allowing many of 

the tasks to be completed within their required time windows.  The workers are all considered to 

be of equal expertise levels and the service times are associated with the tasks which means a task 

is completed in the same time by any worker who is assigned the task. The report will first 

sequentially assign the tasks to workers based on matching skill description of the workers and 

tasks. We use GLS of VRPTW to solve the issue of routing and scheduling of workers to tasks 

with time windows in the environment. We also suggest and demonstrate a technique that performs 

a re-assignment that does not need complete re-assignment of tasks and workers when some 
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worker notifies that a task assigned to him cannot be finished in the environment, still allowing 

the system  to complete a majority of the tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

CHAPTER 2. PROBLEM DEFINITION 

In this section, the report provides some of the terminology used in the spatial crowdsourcing 

system and parameters in our environment. 

2.1 Spatial Crowdsourcing system 

Here we will introduce the concept of the environment and states in the system which are referred 

to frequently in this report. These concepts are important when we are modelling the real-word 

problem. 

Definition 1. Environment: The entire space of workers and jobs at different instances of time 

consists of the environment and all the tasks in these jobs will be removed from the environment 

at a certain cap time at which time they become unavailable. The goal is to complete as many tasks 

as possible before this final time while satisfying the time requirements of these tasks given a fixed 

set of jobs and workers. 

Definition 2. Skill sets: In this work we assume, that ψ = {(s1, comp1), (s2, comp2)…, (sk, compk)} 

is the universe of skills in the environment which consists of a set of tuples of skills and the times 

required to perform tasks requiring those skills. The first parameter si (1 ≤ 𝑖 ≤ 𝑘) in every tuple 

from this set denotes the skill and each skill is associated with a completion time compi (1 ≤ 𝑖 ≤

𝑘)  denoted by the second parameter in each tuple.  

Definition 3. State: The state of the environment is any particular time instant in the environment 

is when any worker starts moving from his location after completing his task or when he reaches 

a location and stops to do any work or otherwise.  
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The concept of environment, skill sets, and state are used to explain our scenario and can 

be extended further to define new parameters in the environment. Each of these changes from one 

state in the environment to another are considered to be evolutions which change as time proceeds 

in the environment. If the initial assignment of tasks to workers do not change in the environment 

as time proceeds, then these evolutions are deterministic. Now if at any particular instant of time 

if a moving worker stops abruptly and notifies other users that he cannot complete a particular task 

because of delays in traffic or any other event then this is a state that was not expected in the 

system. This is an abnormal state in the evolution of the states in the environment and a fast re-

assignment among tasks and workers related to this particular task need to happen while checking 

some things like if the workers are currently not working on a task. Evolutions of state from this 

abnormal state have to be determined again. 

2.2 Time constrained tasks in the spatial environment 

This section describes the jobs and their sequential tasks in the environment. The implementations 

we provide tries to complete a majority of the fixed number of tasks completed given a final cap 

time and a set of fixed workers.  

Definition 4. Jobs: Let J= {j1, j2 …., jm} be a set of jobs in the environment. Each job ji (1≤ 𝑖 ≤

𝑚) is comprised of sequential tasks τj. That is, task τp cannot be started unless task τq is done where 

q < p.  Each τj can be written as a triplet of the form < lj, (δj,δk), sj > where lj is the location of the 

task represented by x and y co-ordinate in a two dimensional plane, δj indicates the start time by 

which the servicing of the task needs to start and δk indicates the time at which it needs to be 

completed and sj is the skill required to finish this task and it is a skill from the set ψ with a 

completion time associated with it.  
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The jobs and their tasks in the environment each have a unique ID and the number of jobs 

and tasks in the system are fixed.  The workers need to arrive at the task location and finish 

servicing them in the time window specified for a task. Each task also requires only one skill and 

has a time of completion associated with it. If a task is allocated to a worker and completed, then 

it is removed from the environment.  All these tasks will be removed from the environment at a 

final cap time tf beyond which these tasks will be unavailable in the environment. 

2.3 Multi skilled workers 

We consider multi-skilled workers in our environment. Each of these workers have one or multiple 

skills from ψ and can perform services for tasks that require his/her skills. 

Definition 5. Workers: Let W = {w1, w2….., wn} be a set of workers in the environment. Each 

worker wi (1 ≤ 𝑖 ≤ 𝑛) is recognized by a set of tuples of the form <li(t), Si, speedi >,where li(t) is 

the location of the worker at timestamp t, Si is a subset of skills that he/she has from ψ and speedi 

is the travelling speed of the worker which determines his travel time given the distance between 

locations.  

In this report, the speed of all the workers are assumed to be the same and all workers start 

from different locations. So, the travel times of workers depends mainly on the distance between 

the locations of workers and tasks. The number of workers is assumed to be a constant in the 

environment and each worker has a unique ID associated with him to locate him. 

2.4 Trajectory 

Trajectories have information like the route, the order in which tasks are to be completed and the 

earliest arrival and latest departure times of each location the worker visits in his route. Each 

worker has a start location in the trajectory which does not have any service time and does no work 
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at that location. A worker after completing his tasks returns back to his starting location in his 

assigned trajectory.   

Definition 6. At any instant of time in the environment, the workers are assigned tasks from 

different jobs in the form of a sequence (τ0, τ1, τ2…. τn, τ0) such that each worker has a set of tasks 

formed < τ1, τ2…. τn> that the worker needs to travel to and finish servicing in order. τ0 is the starting 

position of a worker which requires no servicing. Here a worker starts from a location τ0, moves 

to task τ1 and then τ2 and his last task will be τn. He then returns to his start location. Also, each 

task τi (1 ≤ 𝑖 ≤ 𝑛) in the sequence has tuple of times (arri, depti) where arri represents the earliest 

arrival time at the task location and depti represents the latest departure time from the task location. 

The location τ0 usually has the same arri and depti or has depti as the final cap time and there is no 

service time associated with the location. The initial assignment of tasks is done in such a way that 

a maximum number of the tasks in the environment will be completed by the final time tf. When 

there is an abnormal change in the environment such as defined previously, there needs to be a 

reassignment among the workers who are not busy and could have reached this task location, their 

uncompleted tasks, the worker who could not perform the task and his/her unfinished tasks such 

that new trajectories are assigned to these workers. The goal is to still complete a majority of the 

initially assigned tasks in the environment before tf. The worker who cannot complete this task 

which causes abnormality is not assigned this task in the new trajectory. In other words, only a 

part of these workers and tasks are affected by this abnormal change in state and we avoid a 

complete re-assignment of tasks and workers when it occurs in the environment.  
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CHAPTER 3. EXAMPLE SCENARIO 

 

Figure 3.1 - Location of jobs and workers against Ahmerst city backdrop 

 

Consider a scenario in spatial crowdsourcing against the city backdrop of Amherst in 

Massachusetts in Fig. 3.1, where a user wants to restructure a house and another user wants to post 

tasks related to the maintenance of a car. However, the job of restructuring this house has sub-

tasks like repairing the house, which requires a skill (repair), and painting which requires another 

skill (paint). Similarly, the job related to the maintenance of the car may have sub-tasks like 

washing, which requires a skill (wash), and cleaning which requires another skill (clean). We 

consider the co-ordinates in the scenario to be relative to each other for ease of description of 

events. Each of these tasks have service time associated with it as shown in Table 3.3. There is a 

final cap time of t = 50 before which majority of tasks posted in the environment need to be 

completed and there are many skilled workers that can accomplish one or some of these tasks. All 

workers with a particular skill take the same amount of time to complete a task requiring that skill. 
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Table 3.1 - Jobs, their descriptions and sub-tasks 

Job ID Job Description Sub-tasks 

J1  House-restructuring T1, T2 

J2  Car maintenance T3, T4 
 

Table 3.2 - Worker/Task Skills 

Worker/Task  skill key set 

w1  a1, a3 

w2  a2 

w3 a3, a4 

T1 a1 

T2 a2 

T3 a3 

T4 a4 
 

Table 3.3 - Description of Skills and time required to complete them 

Skill key Skill Service time 

a1 repair 5 

a2 paint 3 

a3 wash 5 

a4 clean 5 
 

Table 3.4 - Task, Location and validity period 

Task id (x, y) co-ordinate Time window- (time to start, 

time to end) 

T1 0, 2 0, 10 

T2 0, 2 10, 15 

T3 2,2 0, 20 

T4 2,2 20, 30 
 

In this scenario, let the user post a spatial job with ID - J1 with sub-tasks having IDs - T1 

and T2, and another spatial job with ID - J2 with sub-tasks having IDs - T3 and T4, as shown in 

Fig. 3.1, in the spatial crowdsourcing system, which requires a set of skills (given in Tables 3.2 

and 3.3). The jobs IDs, descriptions and their tasks are shown in Table 3.1. The location of these 
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tasks and windows of time to arrive and complete these tasks are shown in Table 3.4.  In Fig. 3.1, 

there are three workers, w1, w2 and w3, each of whom has a different set of skills as given in Table 

3.2. For example, worker w1 has the skill set repair and wash.  

Table 3.5 - Worker ID, Worker Initial Location, Travelling speed 

Worker Current location - (x, y) co-

ordinate at time t = 0 

Speed of travelling (Mph) 

w1 (0,0) 1 

w2 (12,2) 1 

w3 (15,2) 1 
 

In addition, each worker has a current location represented at a specific time and a 

travelling speed as shown in Table 3.5. Moreover, all workers have the same moving velocities of 

one unit in this example scenario which makes the travelling time the same as his distances 

between tasks and worker locations. The workers start from different locations and all the workers 

are assumed to depart from their visited locations from their latest possible departure times 

associated with that location for ease of explanation. If they complete early, they are assumed to 

wait at their current location in this scenario. To accomplish the spatial job J1 (i.e., repair and 

paint), the spatial crowdsourcing platform needs to select a best subset of workers from w1, w2 

and w3, such that the union of their skill sets can cover the required skill set of task T1 and T2, 

and, moreover, workers can travel to the location of T1 and T2 under the constraints of time 

windows (earliest arrival and latest departure times) and service them. For example, we can assign 

task T1 to worker w1 and task T2 to worker w2 whose skills can cover all the required skills of J1 

and they can satisfy the time requirements of this task. Similarly, task T4 is assigned to w3. T3 

which can be assigned to w1 and w3 is assigned to w1 as he can complete this task within the time 

window and is available first. Here once a task is assigned to a worker then it is removed from the 

spatial crowd sourcing platform to avoid duplicate assignment.  
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Table 3.6 - Important events and descriptors at different time instants in the environment 

Time 

instant 

State Worker 

w1 
travel 

path 

Worker 

w2 
travel 

path 

Worker 

w3 
travel 

path 

Worker  

w1 
trajectory 

Worker  

w2 
trajectory 

Worker  

w3 
trajectory 

Tasks 

not 
assigned 

Tasks 

completed 

Description 

of  
Events 

t = 0 - (0,0)  

 

(12,2) 

 

(15,2)    {w1, T1, 

T3, w1} 

{w2, T2, 

w2} 

{w3, T4, 

w3} 

- - All workers are 

assigned initial 

trajectories 

t = 0 1 Moving 

towards 

(0,2) 

Moving 

towards 

(0,2) 

Moving 

towards 

(2,2) 

{T1, T3, 

w1} 

{T2, w2} {T4, w3} - - All workers move 

to their next tasks; 

Previous tasks or 
locations are 

removed from 

trajectories 

t = 2 2 (0,2) Moving 
towards 

(0,2) 

Moving 
towards 

(2,2) 

{T3, w1} {T2, w2} {T4, w3} - - Worker w1 reached 
and started working 

on task T1 

t = 10 3 Moving 
towards 

(2,2) 

Moving 
towards 

(0,2) 

Moving 
towards 

(2,2) 

{T3, w1} {T2, w2} {T4, w3} - T1 Worker w1 moving 
towards next task in 

his trajectory 

t = 11 3a (1,2) Moving 
towards 

(0,2) 

(4,2) - {T2, w2} - T3, T4 T1 Worker w1 cannot 
reach task T3, 

Reassignment for 

w1, w3, T3 and T4 

t = 12 4 (1,2) (0,2) Moving 

towards 
(2,2) 

- {w2} {T3, T4, 

w3} 

- T1 Worker w1 does 

not have any tasks 
and reaches start 

location, worker w3 
is assigned new 

trajectory and w2 is 

not affected and 
reaches Task T2 

t = 13 5 (1,2) (0,2) (2,2) - {w2} {T4, w3} - T1 Worker w2 is 

working on his task 

T2, w3 reaches task 
T3 and starts 

working on it 

t = 15 6 (1,2) Moving 
towards 

(12,2) 

(2,2) - {w2} {T4, w3} - T1, T2 Worker w2 starts 
moving towards his 

start location 

t= 18 6 (1,2) Moving 

towards 
(12,2) 

(2,2) - {w2} {T4, w3} - T1, T2, T3 Worker w3 finishes 

task T3  

t = 20 6 (1,2) Moving 

towards 
(12,2) 

(2,2) - {w2} {w3} - T1, T2, T3 Worker w3 starts 

task T4 

t = 25 6 (1,2) Moving 

towards 

(12,2) 

(2,2) - - {w3} - T1, T2, T3, 

T4 

Worker w3 finishes 

task T4 

t = 27 7 (1,2) (12,2) (2,2) - - {w3} - T1, T2, T3, 

T4 

Worker w2 reaches 

his start location 

t = 30 8 (1,2) (12,2) Moving 
towards  

(4, 2) 

- - {w3} - T1, T2, T3, 
T4 

Worker w3 starts 
towards his start 

location 

t = 32 9 (1,2) (12,2) (15,2) - - - - T1, T2, T3, 

T4 

Worker w3 reaches 

his start location; 
No more state 

changes in the 

environment  

t =50 9 (1,2) (12,2) (15,2) - - - - T1, T2, T3, 

T4 

Final cap time 

reached 
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The state changes and a brief description of important events at different significant time 

instants are shown in Table 3.6 and the trajectories are represented by IDs of locations from which 

their location and times can be determined. This table gives information about the change of states, 

description of events, travelling path of workers, trajectories of workers and information about 

completed tasks. The states are a metric that can be used to detect an abnormality and perform a 

re-assignment in our work as explained already. It occurs when a worker starts from a location or 

stops at a location to perform a task or otherwise and it is used to explain this example scenario. 

The evolutions of states and the events that followed till State 3 and after it would have been 

deterministic if the initial assignments described above were fixed. However, at time t=11 after 

leaving from his current task location at time t = 10, w1 notifies all the constituents of the system 

that he cannot do task T3 as he has faced a problem due to traffic. This is an abnormal change in 

the state of the system as Worker w1 stops abruptly. This is State 3a of the environment, which 

was not present in the states determined earlier, and there needs to be a reassignment of tasks to 

workers related to this unfinished task as described in Section 2 such that a majority of the tasks 

in the environment are completed within their time windows using algorithms mentioned in 

Section 5. Now a re-assignment between workers w1, w3 and tasks T3, T4 need to happen. Tasks 

T3 and T4 are reassigned to worker w3 as he has the skillsets required to perform these tasks, can 

satisfy their time requirements and is currently not working on a task and is not busy. Worker w1 

is not assigned task T3 in this re-assignment and as he has no other tasks left to do, he returns to 

the start location of his new trajectory. Worker w2 is not considered for this re-assignment as he 

cannot perform this task and retains his initial trajectory. There is a fast re-assignment at this point.  

At time t=32 all workers would have returned to their starting locations of their current trajectories.  

There are no more state changes till the final cap time of the environment. 



26 

CHAPTER 4. FRAMEWORK 

The framework we propose uses two main stages. In the first stage we keep a record of all the tasks 

a worker can perform based only on the skillsets. The second stage then assigns the trajectories 

(order of the task, times and the route) to each worker in a sequence. We also consider 

reassignment. Some of the common terms used to describe this are defined in Table 4.1 

Table 4.1 - Symbols and Descriptions 

Symbols Descriptions 
si Skill with ID – i 
compi Completion time associated with skill si 

ψ Universe of skillsets containing si and compi 
τi Sequential task i 
ji Job with ID - i comprised of a number of 

sequential tasks τj 
J Set of Jobs J 

wi Worker with ID - i 
L List of task lists of all workers 
Li list of tasks that each worker wi can complete 

based on skillset 
Mi Trajectory that each worker wi is assigned   

M List of trajectories 

F Set of features 
λ penalty factor 

c cost vector 

ci cost of feature i 

fi Indicator function for feature i ϵ F 

fi (S) = 1 if the feature i is in solution S, and 0 

otherwise. 

p Penalty vector 

pi Integer number of times feature i has been 

penalized 

(xi, yi) Notification co-ordinates 

τi
’ Unreachable task tuple 

W’ Workers who are not currently working and can 

perform task τi
’ 

wn Worker who sends notification 

Ln Task list of wn 

wi
’ Worker in W’ 

t Time at which notification is received 

Mi
’ Current trajectory of worker wi

’  
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CHAPTER 5. FRAMEWORK COMPONENTS 

The implementation is divided into main components like assigning tasks to workers based on 

skillsets, assignment of routes to workers using GLS for VRPTW and a quick re-assignment of a 

small subset of workers and tasks when a worker cannot reach a task. A brief discussion is given 

in this section for each of the components. The last component performs a fast assignment that 

does not displace other workers, who are not related to or cannot do the notified task, and their 

tasks. This leads to fast assignment times even in an event of abnormality in the environment. 

5.1 Assignment of tasks to workers based on skillsets 

 

This is the first stage of our implementation where the jobs and workers are inputs of the 

algorithm and the output is a list of lists where each list is associated with a worker and consists 

of the all the tasks in the environment that this worker can complete based only on skillsets. Line 

1 iterates through each worker, and for each worker we iterate through each skill of this worker in 

Line 2 and we check for all the tasks in Job J which requires this skill in Line 3. We then add this 

task to the task list Li of this worker in Line 4. This gives us a set of workers and a list of all the 

tasks a worker can perform in the environment.  

 

 

Algorithm 1. Initialization of tasks to workers based on skillsets 

Input: Jobs J, Workers W 

Output: Task lists of all workers L 

1. For each worker wi in W: 

2.         For skill si in skillset of w: 

3.                 If skill si is in skill required by any task τi in J: 

4.                     Add τi to Li 
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5.2 Assignment of trajectories 

  

This is the part of our implementation where workers are assigned tasks in an order which 

satisfies the time requirements of these tasks while trying to complete a majority of tasks in the 

environment. The input to this algorithm is the set of workers W and list of tasks L and outputs are 

an initial set of trajectories which each worker is assigned in the environment. Line 1 traverses 

through each worker in the worker set W.  The modified GLS for VRPTW is applied to each task 

list of a worker in Line 2. This assigns an order in which tasks need to be completed and a route 

that the worker needs to follow, satisfying the time requirements of the sequential tasks, and 

outputs a list of ordered tasks with suggested visiting times for each worker. The trajectory is then 

updated to a set M that stores all the worker IDs and their respective current trajectories. Finally, 

we remove all occurrences of tasks in L which are present in the obtained trajectory in Line 3 to 

avoid duplicate assignment of tasks. 

5.3 Guided Local Search for Vehicle Routing Problem 

We apply a method called Guided Local Search for VRPTW to obtain a trajectory for a worker by 

treating him as a vehicle and the task locations as the customer locations. The starting point of a 

worker in the current trajectory is the depot location of the vehicle. 

 

 

Algorithm 2.  Trajectory assignment 

Input: Workers W, List of task lists L 

Output: Trajectories of all workers M 

1. For each worker wi in W: 

2.         Apply GLS of VRPTW for tasks in Li and store them in trajectory Mi of    

        Worker wi 

3.         Remove tasks τi from task list L which is present in Mi 
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5.3.1 General guided local search 

 

Guided local search (GLS) is a metaheuristic which is based on penalties. It moves out of 

a local minimum by penalizing particular solution features that according to it should not appear 

in a near-optimal solution. It uses a modified objective function, augmented with a set of penalty 

terms on these features. The local search method is then invoked to improve this function and we 

use the default method provided in [4]. This cycle of local search and update to penalty term can 

be repeated frequently. GLS tracks penalties applied via p. 

  Assuming O(S) is the original objective function for the problem, GLS defines an 

augmented objective function: O’(S) = O(S) + λ Σ i ϵ F  fi(S) pi ci  and requires a local search 

procedure that minimizes it. The LocalSearch(S,p) that performs a local search, starting at solution 

S based on the improvement with objective function O’ is provided by the user. 

GLS provides a function called ChoosePenaltyFeatures(S,p) which takes a solution and the 

current penalties and returns the set of features to be penalized. GLS penalizes the most costly 

Algorithm 3.   GLS for VRPTW 

Input: Set of features F, Cost Vector c, Penalty factor λ 

Output: S* 

1. p:=O  

2. S:= InitialSolution() 

3. S:= LocalSearch(S,p) 

4. S*:=S 

5. While not StoppingCondition() do 

6.          f:= ChoosePenaltyFeatures(S,p) 

7.          forall g in f do 

8.                   pg:= pg+1 

9.          S:= LocalSearch(S,p) 

10.          if  O(S) < O(S*) then  

11.               S*:=S 

12. S*:= LocalSearch(S*,O) 

13. RETURN S* 
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features in the current solution, weighted by the number of times the feature has already been 

penalized. GLS chooses the features i ϵ F for which ci/(pi+1) is the largest among the feature in S. 

Usually only one feature is selected. 

This is assuming InitialSolution() and StoppingCondition() exist. A brief explanation of 

this algorithm is given in [5]. 

5.3.2 Application of GLS for VRPTW to obtain trajectories 

In the Guided Local Search for VRPTW problem we have the following descriptors, 

1. Feature set F: Time windows are penalized 

2. Feature Costing: We assume the cost ca to be the service time of the location and travel 

time to next location 

3. Penalty factor λ: 0.1 

4. InitialSolution() is the default solution and LocalSearch(S,p) is the algorithm 

implemented by default in the software suite in [4]. More about the details of the use of 

this algorithm in our implementation is discussed in Section 6. 

For each run of the algorithm we try to minimize the amount of time spent by a worker in 

the route assigned to him.  This finds a path for a worker while trying to minimize all the travel 

and service times of a worker in his current route. 

5.4 Fast re-assignment of trajectories 

Algorithm 4.  doFastAssignment 

Input:  Trajectories M, Notification co-ordinates (xi, yi), unreachable task τi
’, Task list L, 

Worker wn 

Output: Task List L 

1. Find travel time and notification time t from (xi, yi) and M 

2. W’= Find all workers who are not currently working and can perform task τi
’ 

3. Remove tasks τ’ completed by workers in W’ till the notification time instant t and all 

tasks completed by workers in W not in W’ from L 
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This is the algorithm which is called when there is a notification from a worker indicating 

that he cannot reach a task in his initial trajectory. It needs initial trajectories obtained from 

algorithm 4. This algorithm is designed to be called when there is an abnormal state change in the 

environment which was discussed in Section 2.1. The input to the algorithm is the initial 

trajectories of workers, the co-ordinates at which the notification was received, the unreachable 

task of the worker who sent the notification, this worker’s tuple which describes him in the 

environment and Task lists L. The output is L with the uncompleted tasks in it. In line 1 we find 

the current notification time based on the notification co-ordinates, the co-ordinates of the last 

location the worker visited who sends the notification and the co-ordinates of next location which 

he cannot reach using linear algebra and this gives us the current environment time and the 

travelling time required to reach the notification location. We find all the workers who can do this 

task based on simple modification and iteration on task list L, the current environment time and 

iterations on initial trajectories M as indicated in line 2. In Line 3 we remove all completed tasks 

by workers in W’ from L till notification time t and we also remove all completed tasks by other 

workers not in W’ from L using information from their initial trajectories in M to avoid duplicate 

assignments. In line 4 we remove unreachable task τi
’ from task list Ln of worker wn so that it is 

not assigned to him. We then update all the new locations of workers in W’ in line 5 using the 

current notification time instant, the travelling time and the initial trajectories of these workers. A 

new location is assigned to these workers which are between their last visited location before the 

4. Remove τi
’ from task list Ln 

5. Update new locations for all workers in W’ at notification instant t using travel time 

6. For each worker wi
’ in W’ 

7.        Apply GLS for VRPTW for tasks in his task list Li
’ and obtain current trajectory 

Mi
’ 

8.        Remove tasks in Mi
’ from L 
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current environment time and the next location they were supposed to visit after the current 

environment time in their initial trajectories. In lines 6-7, we iterate through each of the workers 

in W’ and obtain new trajectories for them for the remaining tasks in L, from their new locations 

and current environment time t. In line 8, we remove the completed tasks in the new trajectories 

from Task lists L. This gives us new trajectories for workers which were considered for re-

assignment and the tasks left unfinished. The other workers retain their initial trajectories obtained 

from Algorithm 4. These algorithms are simulated in our implementation on a few test cases and 

results are obtained. 

 

 

 

 



33 

CHAPTER 6. EXPERIMENTAL SETUP AND TESTS 

The implementation was tested on a fixed set of user defined workers and tasks modified based on 

VRPTW datasets so that it can be reproduced for analysis. The experiments were conducted on a 

x64-based PC (16 GB, 512 GB SSD), running Windows 10 Home edition. The entire 

implementation was done using Python 3.6 and the Google OR-Tools software suite (v6.10) which 

is a binary distribution and can be found in [4]. All the data pre-processing to modify the datasets 

was done using pandas library in Python. The reason we chose this software suite and language is 

because of the availability of open source packages and support. 

6.1 Datasets 

 

The experiments were conducted using real data sets used for Vehicle Routing Problem with Time 

Windows given in the Transportation Optimization Portal of SINTEF Applied Mathematics [6]. 

We used our implementation to test our example scenario mentioned in Section 3. For a larger test 

set we tried it out with an instance of 100 customers location in Solomon’s VRPTW benchmark 

problem named rc207. Our next test was to use 1000 customer VRPTW rc2_10_10 instance in the 

Gehring & Homberger benchmark. The information necessary for our implementation were 

customer number, their position co-ordinates, ready time, due date and service time. We prepare 

the data using pandas. We assigned a skill and an id based on the customer number for each 

customer giving us jobs in the environment. We assign a task ID for each task in these jobs. The 

number of workers were experimented with until we found a combination of workers that would 

finish all the tasks for both normal state changes and the abnormal state change. Each worker was 

associated with two to four skills and each task was associated with one skill from the set "repair", 

"wash", "clean", "paint", "dry" and "build". 
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We tested our implementation for both the normal state changes in the environment and 

when there is an abnormal state in the environment. All the important results and the parameters 

selected for the simulations are noted in this report in Section 6.2. 

6.2 Implementation details 

The implementation has a two-stage approach. We first assign all the tasks to workers based on 

skillsets only and then apply GLS for VRPTW for each worker using the google or-tools software 

suite [4] to obtain a set of distinct tasks and their suggested visit times , the order in which they 

need to be completed and the route in which a worker has to travel, which is his trajectory. We 

treat each worker as a moving vehicle so that we can apply a variant of VRPTW algorithm called 

GLS of VRPTW. GLS is generally the most efficient metaheuristic for vehicle routing [7].   The 

arc costs are defined to be the travelling times and service times of a worker, which is utilized by 

the solver in the google or-tools software suite to minimize the time spent by a worker in his current 

route. The software suite needs a data model as input. The data model consists of an array of travel 

times between locations, time windows of each locations, number of locations, number of vehicles 

and a depot location. In our case we have used a distance matrix instead of a time matrix as speed 

of the worker is the same and is one unit. The distance matrix for each worker is the distances 

between every task which he can do to every other task that he can do and distance between his 

current position to every other task he can do. To find the distances between locations represented 

by (x, y) co-ordinates, we have made use of Manhattan distances. The time windows are the 

requested time of visits at a task location. Initially when a worker starts form his location, we 

assign a time window of (0,0) indicating that he starts at time t = 0 from his location. The number 

of locations for a worker depends on the number of tasks he performs at any point in time. The 

number of vehicles is one as we consider one worker at a time and the depot location is the current 
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starting location of a worker.  We limit the search of every GLS of VRPTW algorithm run till a 

fixed number of solutions are obtained as shown in Tables 6.1 and 6.2 and the best among them is 

treated as the final trajectory of a worker. This is the stopping condition we use. For each task 

assigned to a trajectory of a worker we remove it from the main task set. This is done to avoid 

duplication of task assignments. Every worker has his own start location in a trajectory which is 

his current location and he reaches back to this start location after completing all his assigned tasks. 

We also add time constraints to the workers so that they have a waiting time and a final cap time 

which is the same as the final cap time of our environment. The waiting condition allows some 

buffer for workers to wait on tasks if they finish a task earlier than the required time. We create 

dimensions which keep track of quantities that accumulate over a vehicle’s route. Here we keep 

track of the time spent on a route by a worker. The task and worker location are also assigned a 

solution window which forces the worker to visit and service the locations in that time window. 

We also handle routing problems that have no feasible solutions and allow dropping of visits. To 

do this we assign what is known as penalties for all task locations. All these methods used have 

been explained in google or-tools software suite documentation and we have adapted it to our 

problem to make sure that our implementation scales for large amounts of workers and tasks. The 

GLS algorithm is run on every worker by treating him as a vehicle and by following the above 

methods to prepare our data so that it can be input to the software suite to obtain the results.   After 

we obtain the trajectories for the environment without any abnormality, we make a note of all these 

trajectories. We then pick a task from a trajectory assigned to a worker and make it an unreachable 

task in our implementation. We use his ID and fix appropriate notification co-ordinates to be the 

co-ordinates after his last completed task. These are the parameters used to test our implementation 

for the abnormal situation. Our simulation times for the complete assignment and fast re-
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assignment is recorded in this report. The solutions obtained are the trajectories which have worker 

and task IDs, their time intervals of arrival and departure times and the order in which they are 

performed along with other results which describe the simulation. The worker and task IDs in the 

trajectories are representative of the location which the worker has to visit and the time intervals 

indicates the times in which they have to visit the location associated with that ID to meet the time 

requirements associated with that location and stay on schedule.  The algorithms discussed in 

Section 5 are implemented using the google or-tools software suite.  

6.2.1 State changes with no abnormality 

Our implementation was first tested for the situation where all the state changes in the environment 

is known and do not change. In other words, all workers complete all the tasks in the environment 

without any interference. The implementation details use the same framework components as 

described in section 5. The important results obtained for a few test cases and the parameters in 

the google or-tool software suit selected for the same are shown in Table 6.1. The first test of our 

implementation is shown in the second row in Table 6.1 and it simulates the example scenario with 

normal state changes described in Section 3. Its sample output from the simulation is shown in 

Appendix A.  

Table 6.1 – Simulation parameters and results for normal state changes in the environment 

Test 
No. 

Description of Data set 
used for demonstration 

No of 
Tasks  

No of 
workers 

Percentage of 
completed tasks 

Final 
Cap 

time 

Stopping condition for 
VRPTW (Based on 

number of solutions 

returned by Guided Local 
Search) 

Simulation time in 
milliseconds for 

assignment of all 

trajectories to 
workers 

1 Example Scenario from 

Section 3 

4 3 100 50 1 15.628 

2 rc207 instance from 
Solomon’s VRPTW 

benchmark 

100 10 100 1200 5 73.802 

3 rc2_10_10 instance in 
the Gehring & 

Homberger benchmark 

1000 70 100 7500 7 15512.269 
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6.2.2 State changes with an abnormality 

Our implementation was then tested for the situation where there is an abnormality in the 

environment. In other words, when a worker cannot complete a task in the environment then there 

is a re-assignment of a small subset of the tasks and workers such that we can attempt to finish the 

unfinished task too. There is a rerouting of workers who can perform this task and are currently 

not working on any task. To test this, we picked a task from a trajectory of a worker obtained from 

each of the test cases in Table 6.1 and made it unreachable along with the co-ordinates at which 

the notification was received and the worker who sends this notification. The new results were 

noted.  For now, the user defines the notification parameters like the task which cannot be reached, 

the worker who is sending this notification and the co-ordinates at which the notification is sent 

for every run of our implementation. From this and his last visited location co-ordinates and 

visiting times we determine the possible travel time of the worker to the notification co-ordinates 

and the time at which the notification may have been sent. From these times and the initial 

trajectories obtained without abnormal state changes, we find and update new starting locations, 

between location visits around the current environment time, of all the workers who are currently 

not working and can perform this task. We run the GLS of VRPTW algorithm to obtain new 

trajectories for these workers and the tasks that they can complete from this time instant and new 

starting co-ordinates. The worker who sends the notification is not assigned this task which caused 

the abnormal state in his new trajectory. We get the new trajectories of these workers. All the other 

workers have their initial trajectories. We record our approximate simulation time needed for this 

re-assignment. The main results and the parameters used to obtain them are shown in Table 6.2. A 

complete simulation output on the first test case of Table 6.2 is shown in Appendix B. The 

explanation of the simulation results is given in Appendix C. 
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Table 6.2 – Simulation parameters and results for abnormal state changes in the environment 

Test No. Description of Data 

set used for 
demonstration 

No of 

Tasks  

No of 

workers 

ID of worker 

who sends 
notification, 

ID of 

unfinished 
task, x and y 

co-ordinates 

at which 
notification is 

received, 

Time instant 
of 

notification 

Percentage of 

completed 
tasks 

Final 

Cap 
time 

Stopping 

condition 
for VRPTW 

(Based on 

number of 
solutions 

returned by 

Guided 
Local 

Search) 

Simulation time in 

milliseconds for fast re-
assignment 

1 Example Scenario 

from Section 3 

4 3 1, J2t1, (1,2), 

11 

100 50 1 3.024 

2 rc207 instance from 
Solomon’s 

VRPTW 

benchmark 

100 10 2, J75T1, 
(24,75), 280 

100 1200 5 12.966 

3 rc2_10_10 instance 
in the Gehring & 

Homberger 

benchmark 

1000 70 1, J5T1, 
(254,254), 

710 

100 7500 7 3674.287 
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CHAPTER 7. CONCLUSION 

In all the existing spatial crowd sourcing solutions that have been proposed till now, there are only 

solutions for normal assignment of tasks to workers given constraints like minimizing the distance 

traveled, servicing tasks with time windows, budget and many others. They assume that workers 

finish tasks assigned to them. But none of the works consider the case when a worker cannot reach 

the task assigned to him. This report proposes an approach to solve the normal worker and task 

assignment problem given some of these constraints and an approach to solve this problem with 

an abnormality. The workers are assigned a trajectory which is a route, an order and the times in 

which the worker has to visit task locations to complete these tasks before a final cap time. The 

report then suggests a technique which does a fast re-assignment that does not require complete 

re-assignment of tasks to all workers when some worker cannot reach a task assigned to him or 

during an abnormal state change. This solution helps in finding new trajectories very quickly and 

still completes a majority of tasks. It is a solution to some of the problems that are faced by workers 

and people who post jobs in the crowd-sourcing platforms. Even though this report demonstrates 

the effectiveness of the solution proposed, there are further optimizations that can be done like 

minimizing the cost of travel of a worker by allocating a budget, allowing workers to start and 

reach their desired locations and many more such optimizations to provide a more robust solution 

to these practical problems in spatial crowdsourcing platforms. We can also improve the accuracy 

even further and test our implementation for larger data sets. This report proposes a simple and 

innovative solution to a possible problem in the spatial crowd sourcing platforms and sets a base 

for further improvements along this line.       
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APPENDIX A. SIMULATION OF SCENARIO WITH NORMAL STATES 
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 APPENDIX B. SIMULATION OF SCENARIO WITH ABNORMAL STATES 
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 APPENDIX C. DETAILS OF THE SIMULATION 

1. The simulation results displayed give information about the set of skills, worker 

information (ID, Current location, skills, speed), jobs (Job ID, Task ID) which has tasks 

(Task ID, Location, Time interval, skill), trajectories of workers and other important 

information which help us to follow the simulation results. 

2. A trajectory of a worker is displayed for each worker. 

3. The trajectories of workers are represented by a worker ID or task ID and the possible times 

in which the worker can visit that location next to them and the order in which it needs to 

be followed represented by ‘->’. This task after symbol ‘->’ is the next task that needs to 

be visited. The location of tasks and workers can be obtained from the ID at any point in 

time and we are representing trajectories by IDs as it is visually more appealing. 

4.  For the abnormal state all the workers who are not re-assigned because of the notification 

from a worker retain their initial trajectories and they are displayed initially. 

5. Details about the notification like the ID of the worker who sent it, the ID of the task which 

cannot be performed by this worker and the notification time are displayed in the 

simulation. 

6. The initial trajectory of the worker who sends the notification till the notification time 

instant is displayed indicating he has followed that trajectory and completed those tasks. 

Similarly updates on workers who can perform this task are then displayed till the 

notification time. If a capable worker is busy, then he retains his initial trajectory and it is 

displayed indicating those tasks are completed. 

7. For the worker who sends the notification and all the workers who are re-assigned, their 

new locations are updated. The new locations are between their last visited and next to be 
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visited location in their initial trajectories so that they can start from new co-ordinates. The 

new locations of the worker are updated to be the co-ordinates that they might be around 

during the current environment time and not their previous starting positions of initial 

trajectories. This information is displayed in the simulation. 

8. Now the rest of the trajectories for workers who have the locations updated are displayed 

in the same pattern as before, starting after the notification time instant indicating they 

complete the tasks after this time instant and from their current updated starting locations. 

9. The approximate time needed for the simulation of total assignment and re-assignment is 

displayed in these results.  

 

 

 

 


