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Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However,
little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional
properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with
single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed
significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of
single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by
chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the
changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine
the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we
examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between
the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene
perturbations and relationships between characteristics of the perturbed genes and metabolic changes.

Rational and quantitative assessment of metabolic
changes in response to genetic modification (GM) is an
open question and in need of innovative solutions. Non-
targeted metabolite profiling can detect thousands of com-
pounds, but it is not easy to understand the significance of
the changed metabolites in the biochemical and biological
context of the organism. To better assess the changes in
metabolites from nontargeted metabolomics studies, it is
important to examine the changed metabolites in the con-
text of the genome-scalemetabolic network of the organism.

Metabolomics is a technique that aims to quantify all
the metabolites in a biological system (Nikolau and

Wurtele, 2007; Nicholson and Lindon, 2008; Roessner
and Bowne, 2009). It has been used widely in studies
ranging from disease diagnosis (Holmes et al., 2008;
DeBerardinis and Thompson, 2012) and drug discovery
(Cascante et al., 2002; Kell, 2006) to metabolic recon-
struction (Feist et al., 2009; Kim et al., 2012) and meta-
bolic engineering (Keasling, 2010; Lee et al., 2011).
Metabolomic studies have demonstrated the possibility
of identifying gene functions from changes in the relative
concentrations of metabolites (metabotypes or metabolic
signatures; Ebbels et al., 2004) in various species in-
cluding yeast (Saccharomyces cerevisiae; Raamsdonk et al.,
2001; Allen et al., 2003), Arabidopsis (Arabidopsis thaliana;
Brotman et al., 2011), tomato (Solanum lycopersicum;
Schauer et al., 2006), and maize (Zea mays; Riedelsheimer
et al., 2012). Metabolomics has also been used to better
understand how plants interact with their environments
(Field and Lake, 2011), including their responses to biotic
and abiotic stresses (Dixon et al., 2006; Arbona et al., 2013),
and to predict important agronomic traits (Riedelsheimer
et al., 2012). Metabolite profiling has been performed
on many plant species, including angiosperms such as
Arabidopsis, poplar (Populus trichocarpa), and Catharanthus
roseus (Sumner et al., 2003; Rischer et al., 2006), basal land
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plants such as Selaginella moellendorffii and Physcomitrella
patens (Erxleben et al., 2012; Yobi et al., 2012), and Chla-
mydomonas reinhardtii (Fernie et al., 2012; Davis et al., 2013).
With the availability of whole genome sequences of vari-
ous species, metabolomics has the potential to become a
useful tool for elucidating the functions of genes using
large-scale systematic analyses (Fiehn et al., 2000; Saito and
Matsuda, 2010; Hur et al., 2013).

Although metabolomics data have the potential for
identifying the roles of genes that are associated with
metabolic phenotypes, the biochemical mechanisms that
link functions of genes with metabolic phenotypes are
still poorly characterized. For example, we do not yet
know the principles behind how perturbing the expres-
sion of a single gene changes the metabolic system as a
whole. Large-scale metabolomics data have provided
useful resources for linking phenotypes to genotypes
(Fiehn et al., 2000; Roessner et al., 2001; Tikunov et al.,
2005; Schauer et al., 2006; Lu et al., 2011; Fukushima et al.,
2014). For example, Lu et al. (2011) compared morpho-
logical and metabolic phenotypes from more than 5,000
Arabidopsis chloroplast mutants using gas chromatog-
raphy (GC)- and liquid chromatography (LC)-mass
spectrometry (MS). Fukushima et al. (2014) generated
metabolite profiles from various characterized and
uncharacterizedmutant plants and clustered the mutants
with similar metabolic phenotypes by conducting mul-
tidimensional scaling with quantified metabolic pheno-
types. Nonetheless, representation and analysis of such a
large amount of data remains a challenge for scientific
discovery (Lu et al., 2011). In addition, these studies do
not examine the topological and functional characteris-
tics of metabolic changes in the context of a genome-scale
metabolic network. To understand the relationship be-
tween genotype and metabolic phenotype, we need to
investigate the metabolic changes caused by perturbing
the expression of a gene in a genome-scale metabolic
network perspective, because metabolic pathways are not
independent biochemical factories but are components of
a complex network (Berg et al., 2002; Merico et al., 2009).

Much progress has been made in the last 2 decades to
represent metabolism at a genome scale (Terzer et al.,
2009). The advances in genome sequencing and emerg-
ing fields such as biocuration and bioinformatics enabled
the representation of genome-scale metabolic network
reconstructions for model organisms (Bassel et al., 2012).
Genome-scale metabolic models have been built and
applied broadly from microbes to plants. The first step
toward modeling a genome-scale metabolism in a plant
species started with developing a genome-scale metabolic
pathway database for Arabidopsis (AraCyc; Mueller et al.,
2003) from reference pathway databases (Kanehisa and
Goto, 2000; Karp et al., 2002; Zhang et al., 2010). Genome-
scale metabolic pathway databases have been built for
several plant species (Mueller et al., 2005; Zhang et al.,
2005, 2010; Urbanczyk-Wochniak and Sumner, 2007; May
et al., 2009; Dharmawardhana et al., 2013; Monaco et al.,
2013, 2014; Van Moerkercke et al., 2013; Chae et al., 2014;
Jung et al., 2014). Efforts have been made to develop
predictive genome-scale metabolic models using enzyme

kinetics and stoichiometric flux-balance approaches
(Sweetlove et al., 2008). de Oliveira Dal’Molin et al. (2010)
developed a genome-scale metabolic model for Arabi-
dopsis and successfully validated the model by predict-
ing the classical photorespiratory cycle as well as known
key differences between redox metabolism in photosyn-
thetic and nonphotosynthetic plant cells. Other genome-
scale models have been developed for Arabidopsis
(Poolman et al., 2009; Radrich et al., 2010; Mintz-Oron
et al., 2012), C. reinhardtii (Chang et al., 2011; Dal’Molin
et al., 2011), maize (Dal’Molin et al., 2010; Saha et al.,
2011), sorghum (Sorghum bicolor; Dal’Molin et al., 2010),
and sugarcane (Saccharum officinarum; Dal’Molin et al.,
2010). These predictive models have the potential to be
applied broadly in fields such as metabolic engineering,
drug target discovery, identification of gene function,
study of evolutionary processes, risk assessment of ge-
netically modified crops, and interpretations of mutant
phenotypes (Feist and Palsson, 2008; Ricroch et al., 2011).

Here, we interrogate the metabotypes caused by 136
single gene perturbations of Arabidopsis by analyzing
the relative concentration changes of 1,348 chemically
identified metabolites using a reconstructed genome-
scale metabolic network. We examine the characteris-
tics of the changed metabolites (the metabolites whose
relative concentrations were significantly different in
mutants relative to the wild type) in the metabolic
network to uncover biological and topological conse-
quences of the perturbed genes.

RESULTS

Comprehensive Metabolite Profiles from Single
Gene Perturbations

To systematically characterize metabotypes resulting
from gene perturbations, we selected 136 Arabidopsis
genes across 11 functional categories of metabolism in the
Arabidopsis metabolic database AraCyc (Mueller et al.,
2003; Fig. 1; Supplemental Fig. S1; Supplemental Table S1).
Among these, 29 are genes with experimentally
demonstrated enzymatic function, while 33 have signif-
icant sequence similarity to known enzymatic genes. In
addition, we selected 45 experimentally uncharacterized
genes whose involvement in specific metabolic pathways
was predicted computationally using the gene cofunction
network AraNet (“Materials and Methods;” Lee et al.,
2010). AraNet integrates functional genomics data to
make probabilistic functional links between genes, which
can be used to predict functions of uncharacterized genes
using the guilt-by-association principle. Finally, 29 genes
that could not be assigned to any functional category by
existing methods were selected. We selected the genes
based on the absence of a visible phenotype from the
gene perturbation, the absence of homologs from re-
cent gene duplications, and easily detected expression
in 2-week-old leaves in AtGenExpress data (levels of
at least 100; Supplemental Fig. S1). Functions of the
well-characterized and predicted genes in this study
spanned all metabolism categories (Fig. 1).
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Wild-type ecotype Columbia (Col-0) seedlings and
mutant seedlings of the 136 selected genes were main-
tained under standard growth conditions, and metabo-
lites were analyzed as described previously (Bais et al.,
2010, 2012; Quanbeck et al., 2012). We detected 4,483
distinct metabolite peaks from the leaves of 2-week-old
seedlings using 11 mass spectrometric platforms, includ-
ing seven targeted and four nontargeted platforms. We
identified 1,348 metabolites based on mass fragmentation
patterns and chromatographic behavior (comparison with
authentic standards; Fig. 2A) and classified them into nine
categories based on systematic names, molecular struc-
tures, and functional roles in metabolism. Among the
1,348 chemically defined metabolites, fatty acids and
lipids constituted the largest class (51%), followed by
specialized metabolites (18%), carbohydrates (10%),
amino acids (7%), and other less represented categories
(Fig. 2B). The chemically defined metabolites were map-
ped to 839 metabolic reactions in AraCyc to evaluate the
global metabolic changes in the metabolic network of re-
actions (“Materials and Methods;” Supplemental Fig. S2).
The entire metabolite profiling data for all the mutants are
available online (http://www.plantmetabolomics.org;
Bais et al., 2010) and (http://www.metnetdb.org/PMR;
Wurtele et al., 2012; Hur et al., 2013).

Specificity of Changed Metabolites across 136 Single
Gene Perturbations

To determine the patterns of the changed metabolites
caused by a gene perturbation, we identified metabolites

whose relative concentrations were significantly differ-
ent in mutants relative to the wild type among the 1,348
chemically defined metabolites (Supplemental Table S2;
Supplemental Fig. S3). Over 80% (113/136) of the mu-
tants showed fewer than 10 changed metabolites (Fig. 3A).
Thirty-onemutants (23%) showed no changedmetabolites.
Only two mutants, SALK_015522C (AT5G36880) and
SALK_069657C (AT1G32200), showed more than 50
changed metabolites. These results indicate that most
single gene perturbations of metabolic genes did not
rewire the metabolic network globally. The identity of
changed metabolites varied among the mutants, sug-
gesting that metabolic changes were specific to the per-
turbed genes (Fig. 3B). The same pattern of metabolic
specificity and diversity was observed when genes with
different degrees of characterization (e.g. well character-
ized, predicted by homology, predicted by AraNet, and
unknown) were compared (Supplemental Figs. S4 and
S5). Lipids and fatty acids were most commonly affected
in the mutants, which may result from the prevalence of
this class of metabolites in the analytical platforms in this
study. The composition of the changed metabolites was
independent from the number of changed metabolites

Figure 1. Distribution of the genes selected for this study across 11
functional domains of metabolism in the Arabidopsis metabolic
pathway database AraCyc (Mueller et al., 2003). Different colored bars
in each domain of metabolism indicate proportions of genes with
different degrees of knowledge about their roles in metabolism. Genes
associated with more than one functional domain were categorized to
multiple domains of metabolism (Supplemental Table S1). The number
in parenthesis on the x axis indicates the number of pathways be-
longing to each functional domain of metabolism.

Figure 2. Distribution of metabolites detected from Arabidopsis leaves
using 11 MS platforms. A, Among 4,482 putative compounds, 1,348
(30%) compounds were chemically identified and 3,134 (70%) com-
pounds remained unnamed. B, One thousand three hundred forty-
eight metabolites were categorized into nine domains of metabolism
based on their name, molecular structure, and functional role.
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across the mutants (Supplemental Figs. S6, A and B, and
S7; Supplemental Table S3). These results demonstrate
that metabolic responses from single gene perturbations
are quantitatively and qualitatively specific and diverse.

To test whether the specificity of metabolic re-
sponses from the mutants corroborated the functional
role of the genes, we examined the changed metabo-
lites in the mutants of well-characterized genes. Fatty
acids and lipids were enriched in the changed metab-
olites of perturbed genes involved in fatty acid and
lipid metabolism (P = 0.04, hypergeometric test; Fig.
3C). Specialized metabolites were also enriched in the
changed metabolites of perturbed genes involved in
specialized metabolism, though it was not statistically
significant (P = 0.08, hypergeometric test; Fig. 3D). We
did not observe a statistical enrichment of amino acids
and carbohydrates in the changed metabolites of per-
turbed genes involved in amino acid and carbohydrate

metabolism (Fig. 3, E and F). Composition of the changed
metabolites remained similar across the metabolic do-
mains whereas the number of changed metabolites de-
creased when only three replicates were used to identify
the changed metabolites (Supplemental Fig. S8). These
results suggest that mutations in different classes of met-
abolic genes have different impacts on metabolism and
that genes involved in fatty acid and lipid metabolism
tend to specifically affect fatty acids and lipids. However,
we cannot exclude the possibility that the different num-
ber of detected metabolites in the metabolic domains may
have led to the observed statistical enrichment patterns.

Evidence of Functional Links between Changed
Metabolites and Perturbed Genes

To test whether the metabolite profiles we generated
were consistent with previously observed changes in

Figure 3. Specificity and diversity of significantly changed metabolites across 136 mutants. A, Distribution of the number of
changed metabolites per mutant. B, Distribution of the overlap of changed metabolites across the mutants. Insets show cu-
mulative distributions. C, Proportions of the changed metabolites in fatty acid and lipid metabolism in groups of mutants
belonging to four categories. D, Proportion of the changed metabolites in specialized metabolism. E and F, Proportion of the
changed metabolites in amino acid and carbohydrate metabolism. P values were determined from hypergeometric tests.
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metabolism, we examined the changed metabolites and
the perturbed enzymatic functions of two mutants as-
sociated to well-characterized genes involved in fatty
acid and lipid metabolism and specialized metabolism.
One of the well-characterized genes in our study,
AT1G32200 (Acyltransferase1 [ATS1]), encodes a chloroplast
glycerol-3-P acyltransferase that synthesizes 1-acylglycerol
3-P (lysophosphatidic acid) through the acyl-CoA-
dependent acylation of sn-glycerol-3-P (Nishida et al.,
1993). Lines carrying a transfer DNA insertion in the
gene (ats1, SALK_069657C) lack most of the plastidic
glycerol-3-P acyltransferase activity and are disrupted
in the galactoglycerolipid biosynthesis pathway (Fig.
4A; Kunst et al., 1988; Xu et al., 2006). In this mutant, the
amount of galactolipids that contained the plastid-derived
diacylglycerol (DAG) moiety decreased, whereas the
amount of galactolipids that contained the endoplasmic
reticulum (ER)-derived DAG moiety increased, perhaps
to maintain plastid membrane function (Fig. 4A; Okazaki
et al., 2013). Plastid-derived glycerolipids have a 16-
carbon fatty acid at the sn-2 position, and ER-derived
glycerolipids preferentially carry an 18-carbon fatty acid
at the sn-2 position (Heinz and Roughan, 1983; Browse
et al., 1986; Okazaki et al., 2013). The metabotype of ats1
lines showed a significant decrease in the plastid-derived
16-carbon fatty acids ofmonogalactosyl DAGs, digalactosyl
DAGs, and sulfoquinovosyl DAGs and a significant
increase in the 18-carbon fatty acids of monogalactosyl
DAG, digalactosyl DAG, and sulfoquinovosyl DAGmade
in the ER compared with the wild type (Fig. 4B). These
results show that the metabotypes of ats1 were consistent
to changes that would be caused by perturbation of the
enzyme encoded by ATS1.
Another well-characterized gene in our study,

AT5G13930 (Transparent Testa4 [TT4]), encodes a naringenin-
chalcone synthase that produces a precursor of nar-
ingenin, 2’4’6’4-tetrahydroxychalcone (Shirley et al., 1995;
Dana et al., 2006). Lines carrying a transfer DNA insertion
in TT4 (tt4, SALK_020583) lack the naringenin-chalcone
synthase activity and are blocked in the flavonoid bio-
synthesis pathway (Supplemental Fig. S9; Shirley et al.,
1995). The metabotypes of tt4 lines showed that one
metabolite, naringenin, was significantly changed in
abundance in the mutant compared with the wild type
(4-fold decrease in the mutant, P = 2.39 3 10–3, false
discovery rate [FDR]-adjusted Student’s t test). This
indicates that the lack of naringenin-chalcone synthase
activity from TT4 perturbation decreased the concentration
of naringenin. Kusano et al. (2011) and Yonekura-
Sakakibara et al. (2008) found that the relative concen-
trations of kaempferol 3-O-rhamnoside 7-O-rhamnoside,
kaempferol 3-O-glucoside 7-O-rhamnoside, and quer-
cetin 3-O-glucoside 7-O-rhamnoside from tt4 were sig-
nificantly changed when compared with the wild type.
These results also indicate that metabolic changes are
associated with the loss of the enzymatic function of
TT4, because all these metabolites are derived from the
glycosylation of kaempferol, which in turn is generated
from naringenin.

These metabotype patterns demonstrate that meta-
bolic changes of the perturbed genes are not random,
but can be closely associated with the enzymatic func-
tions of the perturbed genes in the metabolic pathways.
These observations prompted us to examine whether
the changed metabolites are closely linked to each other
and how the changed metabolites are linked to the
perturbed genes in the genome-scale metabolic network.

Patterns of Changed Metabolites in the Reconstructed
Metabolic Network

To investigate the effects caused by perturbing the
expression of a metabolic gene on the metabolic sys-
tem as a whole, we assessed metabolic changes in the
context of a metabolic network. A metabolic network
consists of a collection of metabolic pathways com-
posed of biochemical reactions where metabolites are
used as substrates to generate products. Therefore, the
metabolic system can be represented by a network
where a metabolite and a reaction are connected if the
metabolite is a substrate or a product of the reaction in
a pathway. We reconstructed a metabolic network of
Arabidopsis using the pathway database AraCyc ver-
sion 8.0 (Mueller et al., 2003; Zhang et al., 2010). The
network consists of 2,689 reactions and 2,625 metabo-
lites connected by 7,455 metabolite-reaction links
(Supplemental Table S4; Supplemental Fig. S10).

To determine whether the changed metabolites in the
mutants are catalyzed by reactions in closely related
pathways or just randomly associated, we assessed the
distance (number of enzymatic steps) between the
changed metabolites in the network. The distances
among the changed metabolites were significantly shorter
than expected by chance (P = 1.0310–4, Student’s t test) and
the distance among the unchanged metabolites (P =
9.15 3 10–8, Student’s t test) across the mutants (Fig. 5A;
Supplemental Fig. S11). As an example, the average dis-
tance among the changed metabolites of the mutant ats1
(SALK_069657C, AT1G32200) in the network was 7.68
links compared with 9.52 links from random expectation
(Fig. 5B). These results suggest that the changed metab-
olites from gene perturbations are not randomly associ-
ated but closely linked to each other in related pathways
or in the same pathway.

The Number of Isozymes Affects the Distance between the
Perturbed Reactions and Changed Metabolites

Metabolite concentrations depend on the rate of the
reactions that consume or produce them. Thus, changing
the enzymes’ abundance by perturbing the expression
of the encoding genes would change the concentra-
tion of the metabolites that are directly or closely
linked to the reactions catalyzed by these enzymes.
This somewhat obvious hypothesis has not been
tested systematically. To test this hypothesis, we asked
whether the changed metabolites were closely asso-
ciated to the perturbed reactions in the network by
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measuring the distance between the changed metab-
olites and the perturbed reactions catalyzed by well-
characterized enzymes. Twenty-one out of the 29
well-characterized enzymatic mutants were evaluated
because eight mutants did not have changed metabo-
lites in the network. In 13 perturbed reactions of seven
mutants, the changed metabolites were significantly
closer to the perturbed reactions than the same
number of randomly chosen compounds among the
detected metabolites (P , 0.05, Student’s t test). In
the remaining 26 reactions in 14 mutants, the changed
metabolites were not closer to the perturbed reactions
than expected by chance (Fig. 6A). This unexpected
result indicates that perturbing a reaction has a more
complex effect on the metabolic network than previ-
ously assumed.

To understand the causes that underpin the differ-
ence in the distance between the changed metabolites
and site of perturbation in the network, we grouped
the genes into two categories: (1) genes that cause
metabotypes that are close to the mutated reaction than
expected by chance (proximal metabotype) and (2)
genes that cause metabotypes that are not close to the
mutated reaction than expected by chance (nonproximal

metabotype). We compared biological and network
characteristics of the perturbed genes and reactions be-
tween the two groups of genes. At the enzyme-coding
gene level, we evaluated: (1) the expression levels in
2-week-old rosette leaves and (2) the existence of paralogs.
At the reaction level, we evaluated: (1) the number of
changed metabolites upon a reaction perturbation, (2)
the average distance among the metabolites affected by
the changes in the reaction, (3) the number of me-
tabolites connected to a perturbed reaction, (4) the
catalytic speed of a perturbed reaction (a rate-limiting
reaction), (5) the uniqueness of a perturbed reaction
on consuming or producing a metabolite, (6) the num-
ber of predicted isozymes catalyzing a perturbed reac-
tion, and (7) the location of the perturbed reaction in the
network.

Among the nine properties tested, only the number
of isozymes of a perturbed reaction was significantly
smaller in the proximal metabotype than the non-
proximal metabotype group (P = 1.15 3 10–4, Student’s
t test; Fig. 6B; Supplemental Fig. S12). Furthermore, the
number of predicted isozymes of the perturbed reac-
tions positively correlated with the distance between
the changed metabolites and the perturbed reaction

Figure 4. The metabotype of ats1 reflects
the enzymatic function of the gene. A,
Simplified DAG biosynthesis pathway.
Most DAGs are produced by the eukary-
otic pathway located in the ER; in this
pathway, an 18-carbon fatty acid is added
to the sn-2 position of glycerol-3-P. The
red X indicates the perturbed reaction in
the ats1mutation. Arrows show enzymatic
reactions, and thickness of the arrows in-
dicates the flux of enzymatic reactions. B,
Relative fold-changes of DAGs in the
metabotype of ats1 compared with the
wild type. In the ats1 mutant, DAGs with
16-carbon fatty acids (34:x) are signifi-
cantly decreased whereas DAGs with only
18-carbon fatty acids (36:x) are significantly
increased. DGDG, Digalactosyl DAG; LPA,
lysophosphatidic acid; MGDG, monoga-
lactosyl DAG; PA, phosphatidic acid; PC,
phosphatidylcholine; SQDG, sulfoquino-
vosyl DAG.
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(R = 0.41, R2 = 0.17, P = 0.01, Fisher’s z test; Fig. 6C).
These results indicate that metabolite abundance is
affected not simply by the adjacency to the perturbed
reaction, but by the characteristics of the associated
enzyme-encoding genes.

DISCUSSION

This study assessed patterns caused by single gene
perturbations by combining genetic, metabolomic, and
network analysis. By identifying significantly changed
metabolites across 136 single gene mutants, we observed
that changed metabolites varied quantitatively and qual-
itatively. In about 80% of the mutants, perturbing the
expression of a gene affected the concentration of less than
10 metabolites. Only two mutants affected more than 50
metabolites. This observation supports the concept that
the overall metabolic network is highly robust against
single gene mutations (Ishii et al., 2007).

To examine the global properties of the changed me-
tabolites across the 136 mutants, we reconstructed a metab-
olic network for Arabidopsis using the AraCyc database.
We removed the 24 currency metabolites (proton, water,
oxygen molecule, NADP+, NADPH, ATP, diphosphate,
carbon dioxide, phosphate, ADP, coA, UDP, NAD+,
NADH, AMP, ammonia, hydrogen peroxide, oxidized
electron acceptor, reduced electron acceptor, 3-5-ADP,
GDP, carbon monoxide, GTP, and FAD; Supplemental
Table S5) from the network because they are associated
with many reactions in the cell, thus creating many
biologically unrealistic shortcuts in the metabolic net-
work (Ma and Zeng, 2003a, 2003b; Verkhedkar et al.,
2007). For example, water is an essential compound in-
volved in most biochemical reactions. The biological
paths among reactions created by water could be neither
functionally associated nor biologically meaningful in
metabolic pathway analyses because water is not func-
tionally specific but ubiquitous in metabolism. To ana-
lyze the impact of removing the 24 currency metabolites
in the network, we measured three topological proper-
ties of the network before and after removing the cur-
rency metabolites. We compared the average distance of
all possible shortest paths, the fraction of reactions in
connected components, and the number of links before
and after removing the currency metabolites. On aver-
age, the shortest path between any two nodes before
removing currency metabolites (4.29) was much shorter
than the average distance after removing currency me-
tabolites (9.00). In addition, more than 40% of the links
(5,236/12,691) were created by the 24 currency metab-
olites. About 90% of the reactions (2,400/2,689) were
included in the largest component of the network after
deleting the currency metabolites. These analyses indi-
cate that the deletion of the currency metabolites did not
disrupt the structure of the overall network but in-
creased the possibility of identifying functionally and
biologically meaningful metabolic paths in the network.

We found that changed metabolites were closer to
each other than the same number of randomly selected
detected metabolites in the network. Because metabo-
lites are connected to reactions in the network when
the metabolite is a substrate or a product of the reac-
tion, the proximity of changed metabolites implies that
they are likely participating in the same pathway or
closely related pathways. As an example, the changed
metabolites of ats1 involved in DAG biosynthesis were

Figure 5. Distance of changed metabolites to each other across the
mutants in the metabolic network. A, Distribution of the distances
among changed metabolites compared with distances among the same
number of randomly selected metabolites from the same metabolic
domains across all genes. B, An illustrative example of metabotypes in
a reconstructed metabolic network, showing changed metabolites in
the knockout mutant SALK_069657C compared with the same number
of randomly selected metabolites. Red diamonds are perturbed reac-
tions, and blue dots are the differentially accumulated metabolites
(top) and randomly selected metabolites (bottom).
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enriched in lipids and were significantly closer to each
other than among all lipids (P = 0.01, Student’s t test)
and among randomly sampled detected compounds
(P = 3.61 3 10–15, Student’s t test; Figs. 4 and 5B;
Supplemental Table S2). However, we also observed
dispersed patterns of metabotypes in the network, sug-
gesting that enzymes encoded by these genes could be
involved in multiple reactions or regulatory pathways
rather than in specific enzymatic functions, which could
affect metabolism more globally when perturbed. An-
other possibility is that these enzymes catalyze the so
called hub metabolites, metabolites highly associated
with other metabolites in the metabolic network; thus,
disturbing these enzymes would likely have global ef-
fects. Moing et al. (2011), using a network-based analysis
to obtain a global overview of the associations among
715 metabolites in three ripening stages of melon
(Cucumis melo) fruit, identified that 13% (96/715) of
these metabolites were hub metabolites. Alternatively,
missing reactions in the network could increase the path
lengths among the changed metabolites. Although the
changed metabolites were close to each other in the
network, they were not immediately adjacent to each
other in many of the mutants. This could reflect the
plasticity of a metabolic network against gene muta-
tions by rerouting or rewiring biochemical pipelines
(Harrison et al., 2007; Hanada et al., 2011). Fendt et al.,
2010 also found that, in yeast, a perturbation in central
carbon metabolism enzymes increased the local (but not
necessarily immediate) reaction substrate concentra-
tions, probably as a passive mechanism to minimize
differences in flux upon metabolic disturbance. Better
characterization of the flux control coefficients and other
kinetic properties of the enzymes and reactions could
help explain the exact nature of this type of pattern of
metabotypes, but such efforts are outside the scope of
this study.

We also found that changed metabolites were not
always close to the perturbed reactions in mutants. In
only seven out of the 21 well-characterized mutants, the
changed metabolites were close to the perturbed reac-
tions (proximal metabotypes). To analyze which prop-
erties of the mutated genes or perturbed reactions are
responsible for the distance between the changed me-
tabolites and the site of perturbation in the network, we
investigated six biological and three metabolic network
properties of the mutated genes or perturbed reactions.
Among them, only the number of predicted isozymes
was correlated with the proximity of the changed

Figure 6. Effect of the number of predicted isozymes on the distance
between changed metabolites and perturbed reactions in the meta-
bolic network. A, Pairwise tests on the distance between changed
metabolites and perturbed reactions for each well-characterized mu-
tant. Dots represent the average distance from the perturbed reactions
to the changed metabolites and the same number of randomly selected
metabolites. Red dots are the perturbed reactions with significant

closeness to the changed metabolites. B, Distribution of the number of
isozymes between the mutants with proximal metabotype (changed
metabolites are closer to perturbed reactions than expected by chance)
and the mutants with nonproximal metabotype (changed metabolites
are not closer to the perturbed reactions than expected by chance).
C, Correlation between the number of isozymes of the perturbed re-
actions and the distance between the changed metabolites and the
perturbed reaction.
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metabolites to the site of perturbation (Fig. 6, B and C;
Supplemental Fig. S12). When there were fewer iso-
zymes annotated to a perturbed reaction, the changed
metabolites were closer to the perturbed reaction in the
metabolic network. Possibly, the absence of isozymes
for a reaction prevents the substitution or compen-
sation of the enzymatic function of the perturbed re-
action, resulting in the changed metabolites in the
vicinity of the corresponding reactions. On the other
hand, the presence of several isozymes might allow
the divergence of some of them to perform new bio-
chemical functions, resulting in catalyzing a different
(distant) reaction in the metabolic network (Schmidt
et al., 2003; Fani and Fondi, 2009). Additionally, the
isozymes could be expressed in different cell types,
and the observed metabotype could represent an aver-
age of several cell type-specific metabotypes. In these
scenarios, perturbing a gene with many isozymes is
likely to cause metabolic changes in functionally different
parts of the metabolic network. With our current exper-
imental design focusing on whole leaves, we were not
able to examine this possibility.
While growing evidence indicates that metabolomics

is valuable for understanding the biological roles of
genes (Fiehn et al., 2000; Saito and Matsuda, 2010), there
are still challenges to be overcome (Mendes, 2006). The
first fundamental issue is the large number of uniden-
tified metabolites (Fig. 2A). About 70% of the detected
compounds in our study are not annotated due either to
the complexity of the chemical structure of the com-
pounds or the lack of available standards. Second,
metabolic changes compared with the wild type are not
always detectable for single gene mutations. For ex-
ample, we could not detect any changes in metabolites
in 23% of the mutants (Supplemental Fig. S6, A and B).
One possibility is the variability of the levels of detected
metabolites arising from biological and technical noise.
Perhaps, transient metabolites would not be detected in
the current setting. Alternatively, the robustness of the
metabolic system caused by genetic or network-level re-
dundancy could also prevent the detection of metabolic
changes in the single-gene mutants (Cornelius et al.,
2011). Third, detecting changed metabolites in a single
time point and from different organs may cause distinct
metabotypes even though the same mutants are studied.
By surveying other metabolomics studies (Yonekura-
Sakakibara et al., 2008; Kusano et al., 2011) of tt4 and
tt5 mutants, the metabotypes from the previous studies
were similar, but not identical, to the metabotypes from
our study. We identified flavonoid naringenin and
naringenin derivatives including genistein, genistin, luteolin-
39-7-O-glucoside, naringenin-7-O-glucoside, and naringin
(Lapcik et al., 2006), whereas the previous studies
identified kaempferol 3-O-rhamnoside 7-O-rhamnoside,
kaempferol 3-O-glucoside 7-O-rhamnoside, and quer-
cetin 3-O-glucoside 7-O-rhamnoside as changed metab-
olites in tt4 and tt5 mutants. Because flavonoids are
known to be involved in responding to different ultra-
violet light conditions and toxic compounds in soil such
as aluminum, it is possible that differences in growth

conditions could affect the metabolic changes of flavo-
noids in different studies (Winkel-Shirley, 2002). None-
theless, both naringenin and kaempferol are known to
be associated with the catalytic activity of the enzymes
encoded by TT4 and TT5; thus, the metabolic changes
from the previous studies and this study were both as-
sociated with the metabolic functions of the mutated
genes.

In addition to the limitation of metabolite identifi-
cation, different metabolic network models represent
different sets of reactions. To minimize the impact of
this limitation, we reconstructed the metabolic network
using the AraCyc database, which is extensively curated
with experimentally validated data. However, about
38% of the chemically identified metabolites (509/1,348)
were still not present in the database, which may reduce
the power of network analysis on the metabolic response
caused by gene perturbation (Supplemental Fig. S2).
Detecting and identifying all of the metabolites in a
metabolic network in untargeted studies using incom-
plete reference compound libraries can be challenging
(Hegeman, 2010). Because we evaluated metabolic
changes of gene perturbations based on only a fraction of
the metabolites in the network, the conclusions we made
may change if there were more metabolites detected and
identified. In addition, orphan reactions (reactions that
are not connected to any other reactions) in pathway
databases may be indicators of missing metabolites and
enzymatic activities as well as the incompleteness of a
metabolic network (Mueller et al., 2003), which could
also limit the ability to link metabotypes to the perturbed
genes using metabolic network analysis.

Our study reveals characteristics of metabotypes caused
by single gene mutations in a genome-scale metabolic
network. By examining biological and topological prop-
erties of metabolic changes in the context of a genome-
scale network, metabolomics can be used as a tool to
identify the relationships between changed metabolites
and their potential impact on the metabolic system and
biology of the organism. This type of analysis could be
useful in assessing the effects of GM on crops. For ex-
ample, we found that perturbations generated by mu-
tating single genes could affect metabolites that are
proximal or nonproximal to the perturbation sites. By
targeting genes that show only proximal metabotypes,
undesired and unknown effects could potentially be
minimized and, in parallel, more direct responses could
be achieved. In addition, metabolomics combined with
metabolic network analysis has the potential to system-
atically evaluate the substantial equivalence between GM
and non-GM organisms. For example, the amount of
essential or toxic compounds in GM plants can be
quantified by comparing the metabolic profiles with the
non-GM plants (Smith et al., 2010; van Rijssen et al.,
2013). Developing tools that enable comprehensive
evaluation of the transgene’s effects upon the GM crops
will be important to fully understand the impact of the
GM (Ricroch et al., 2011). As experimental methods and
data resolution improve, our understanding of the
metabolome and the relationship between genotypes
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and metabolic phenotypes should become clearer
(Fernie, 2007). Emerging tools and resources such as
genome-scale metabolic networks, quantitative network
modeling, and metabolomics may help assess the effects
of GM on metabolism and may facilitate rational as-
sessment of unintended effects of GM on metabolism.

MATERIALS AND METHODS

Selecting Uncharacterized Genes Using AraNet

To select candidates from the pool of mutants perturbed in the expression of
previously uncharacterized genes, we predicted functions of the corresponding
gene products based on their functional similarity to known enzymes using
AraNet (Lee et al., 2010; Hwang et al., 2011). We queried AraNet using well-
characterized genes for each metabolic pathway from AraCyc 8.0 (Mueller
et al., 2003) and identified candidate genes encoding missing enzymes in the
pathway. The gene function predictability of AraNet across 11 functional
categories of metabolism is shown in Supplemental Figure S13. Out of the top
200 candidates for each pathway with area-under-the-curve scores greater
than 0.7, we chose genes with the highest log likelihood score that met the
following conditions: (1) gene expression in 2-week-old leaves was greater
than 100 in AtGenExpress data (Schmid et al., 2005), (2) there were no recently
duplicated genes (Blanc and Wolfe, 2004), (3) there were no known functional
annotations (Lamesch et al., 2012), and (4) there were no visible phenotype
(Supplemental Table S1).

Plant Growth Condition

Wild-type Col-0 and mutant seedlings of the 136 selected genes (129 ho-
mozygous lines carrying knockout alleles and seven overexpressing lines us-
ing the 35S promoter) were grown under consistent conditions to minimize
environmental effects as described in Quanbeck et al. (2012). Seeds were sown
on sterile Murashige and Skoog basal salt mixture supplemented with 0.1%
(w/v) Suc and 13 liquid vitamin solution in 100-mm 3 100-mm 3 15-mm-
square petri dishes. Seeds were arranged in a single horizontal line, and each
dish contained between 18 and 20 seeds. After sowing the seeds, the plates
were wrapped with Micropore tape and then stored horizontally for 4 d at
4°C, with illumination of 1 mE m–2 s–1 to break seed dormancy. On the 5th day,
plates were moved to the growth room and held in a vertical position in wire
rack holders for 16 d under a 24-h regimen of constant fluorescent illumination
of 50 mE m–2 s–1 and temperature of 23°C to 25°C. On the twentieth day after
sowing the seeds, dishes were opened, and the aerial portions of the plants
were harvested immediately upon plate opening and were frozen in liquid
nitrogen. Details of the plant growth condition for each batch are available on
PlantMetabolomics.org (http://www.plantmetabolomics.org) and also de-
scribed in Bais et al. (2010, 2012) and Quanbeck et al. (2012). All of the plants
were grown and harvested at Iowa State University and sent out to collabo-
rating laboratories for metabolite extraction and profiling.

Metabolomics Analytical Platforms and
Metabolite Profiling

We used 11 analytic platforms (seven targeted and four nontargeted) to
profile the concentrations of 1,348 metabolites. We first distinguished 4,482
peaks for putative compounds from the leaves of 2-week-old seedlings using
11 mass spectrometric platforms, and we then identified 1,348 metabolites
based on the mass fragmentation patterns by comparison with those of au-
thentic standards using the National Institute of Standards and Technology
library. The targeted platforms detected amino acids using GC with a flame
ionization detector, isoprenoids using HPLC with diode array detection and
MS, lipids using electrospray ionization-tandem MS, and ceramides, cuticle
waxes, fatty acids, and phytosterols using GC-MS. The nontargeted platforms
included capillary electrophoresis-MS, LC-MS, GC-time-of-flight-MS, and
ultra-performance LC-quadrupole time-of-flight-MS. These nontargeted plat-
forms captured various metabolites including amino acids, fatty acids, alcohols,
carbohydrates, nucleosides, chalcones, flavonoids, glucosinolates, and terpe-
noids. Metabolic profiling data are available at http://plantmetabolomics.vrac.
iastate.edu/ver2/datasets/overview.php (Bais et al., 2010), and details of the

extraction protocols for each platform are available at http://plantmetabolomics.
vrac.iastate.edu/ver2/tutorials/protocols.php (Bais et al., 2010, 2012).

Classifying Detected Metabolites

The chemically defined compounds were classified into nine categories (fatty
acid and lipid, specialized metabolism, carbohydrate, amino acid, nucleotide,
cofactor, plant hormone, amine and polyamine, and others) based on the AraCyc
compound ontology (Mueller et al., 2003). We wrote a Java program to map
profiled metabolite names to common names and synonyms in AraCyc using
text matching. We then manually classified the unmapped metabolites based on
the classification from chemical entities of biological interest (de Matos et al.,
2010), Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al., 2012),
PubChem (Wang et al., 2012), Wikipedia, and Google searches. We exercised
caution in adding unmapped metabolites to the database. In cases where there
was clear additional evidence for the metabolite’s existence in Arabidopsis
(Arabidopsis thaliana), for example, based on literature citations stored in the
Knapsack database (Afendi et al., 2012), the compound was added to AraCyc.
However, in cases where the compound was typically associated with bacteria,
such as aurantimycin, we used it for metabotype analysis but did not add it to
the AraCyc database. Because the network analysis required compounds to be
connected to reactions, we did not introduce unmapped compounds into the
network that were not linked to a reaction in AraCyc.

Identifying Significantly Changed Metabolites

To identify metabolites that were significantly changed in the mutants com-
paredwithwild-type plants, we processed themetabolomics data through several
filtering steps (Supplemental Fig. S3). First, we removed metabolites that were
below detection limit. To check the consistency of the metabolic concentrations
within biological replicates, we evaluated the correlation of three replicates for
the amino acid- and ceramide-targeted platforms and capillary electrophoresis-
MS and LC-MS-based untargeted platforms; three to six replicates for fatty acid-,
cuticle wax-, phytosterol-, plastidial isoprenoid-, and lipid-targeted platforms
and the ultra-performance LC-quadrupole time-of-flight-MS-based untargeted
platform; or six replicates for the GC-time-of-flight-MS-based untargeted plat-
form and removed the replicate that weakly correlated with the other replicates
(correlation threshold , 0.7). About 0.7% of the profiles were removed due to
weak correlation among biological replicates, indicating that more than 99% of
the profiles were highly reproducible. Plants were grown in several experimental
batches. In each batch for each analytic platform, metabolites were normalized
using the median concentration of log-transformed values (log2) across all geno-
types within a platform for each metabolite to minimize possible technical
differences among the batches (Quackenbush, 2002). We conducted three inde-
pendent FDR-adjusted Student’s t tests (Benjamin and Hochberg, 1993) between
mutants and two sets of wild-type (Col-0) plants to identify metabolites that were
significantly changed in the mutants (Supplemental Fig. S3). A metabolite was
deemed significantly changed in the mutant only if the FDR-adjusted Student’s
t tests were significant in the relative concentrations between a mutant and two
independent sets of wild-type plants (FDR-adjusted Student’s t test , 0.10) and
an FDR-adjusted Student’s t test was not significant between the two sets of wild-
type plants (FDR-adjusted Student’s t test $ 0.10). Significantly changed me-
tabolites for the mutants are listed in Supplemental Table S2.

Enrichment Test for Changed Metabolites across
Functional Categories of Genes

To check whether the changed metabolites were enriched in a functional
category, we conducted a hypergeometric test on the functional category of
metabolites for each functional category of the genes. First, we counted the
number of changed metabolites by metabolite functional category for each
mutant and then examined whether the changed metabolites belonging to each
category was enriched within a mutant by comparing them with the back-
ground frequency (the number of all identified metabolites in each metabolite
category). Second, we tested whether the number of mutants in a functional
category had an enriched category of metabolites using a hypergeometric test.

Reconstructing a Genome-Scale Metabolic Network

We extracted reactions, enzymes, genes, and compounds from the AraCyc
database (version 8.0; Mueller et al., 2003) and converted them into a bipartite
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metabolic network with two classes of disjoint nodes containing 2,689 reac-
tions and 2,625 metabolites (Supplemental Table S4; Supplemental Fig. S10).
Nodes represent either metabolites or reactions, and edges (links) represent
the association between metabolites and reactions. Because both a reaction-
centric network (a node is a reaction and an edge is a metabolite) and a
metabolite-centric network (a node is a metabolite and an edge is a reaction)
could not specify the links of metabolites and reactions in the networks, re-
spectively, we reconstructed a genome-scale metabolic network as an undi-
rected bipartite network. We did not consider the directionality of metabolic
reactions because only five reactions have directionality supported by exper-
imental evidences in AraCyc. A metabolite was connected to a reaction if the
metabolite was a substrate or a product of the reaction. The constructed
metabolic network is a bipartite network because nodes were divided into two
disjoint sets, U (metabolites) and V (reactions), such that every edge connected
a node in U to one in V; that is, U and V were independent sets (Diestel, 2005).
We then removed 24 currency metabolites (proton, water, oxygen molecule,
NADP+, NADPH, ATP, diphosphate, carbon dioxide, phosphate, ADP, CoA,
UDP, NAD+, NADH, AMP, ammonia, hydrogen peroxide, oxidized electron
acceptor, reduced electron acceptor, 3-5-ADP, GDP, carbon monoxide, GTP,
and FAD) from the reconstructed metabolic network (Supplemental Table S5).
Because they take part in many reactions in the cell, thereby creating many
biologically unrealistic shortcuts in the metabolic network, any path-based
measurement of the network could be biased (Ma and Zeng, 2003a, 2003b;
Verkhedkar et al., 2007). To select currency metabolites, we prioritized me-
tabolites by the connectivity (degree) of metabolites in the reconstructed
metabolic network and then manually checked the links created by them by
evaluating whether they were functionally meaningful.

Distance Measurement in the Metabolic Network

With the reconstructed metabolic network, the shortest distance among the
metabolites and reactions was calculated. The distance of two nodes is 1 when
they are directly connected in the network, and the distance of two nodes was
measured only if theywere connected in the network.Wewrote a Java program
to calculate a shortest distance based on the breadth-first search algorithm
(Russell and Norvig, 2009). A metabolic path was ignored if the path was
constructed from reactants to reactants or from products to products in a
metabolic reaction.

Using the distance calculation described above, we measured adjacency of
changed metabolites by calculating shortest distances among changed me-
tabolites. To calculate the average shortest distance among changed metabo-
lites, we determined pairwise shortest distances among all changedmetabolites
and averaged them for each mutant. We also measured the distance between a
changedmetabolite and the perturbed reactions in the network.We determined
the shortest distances between changed metabolites and a perturbed reaction
and then averaged them for each perturbed reaction of each mutant. Because
the reconstructed metabolic network is an undirected network, the direc-
tionality of a reaction is not taken into consideration for the distance calculation.

Statistical Test for Network Distance Analyses

To check the statistical significance for the distance analysis, we compared
the average shortest distance among the changed metabolites with the average
shortest distance among randomly selected metabolites in the reconstructed
metabolic network. Because the changed metabolites associated with the
mutants are a subset of detected metabolites in the network, we randomly
selected the same number of detected metabolites as the number of changed
metabolites from each mutant and calculated shortest distances among the
randomly sampled metabolites. One hundred independent selections and
calculations were made to determine the average shortest distances of the
random expectation from each mutant. Only the chemically identified (named)
metabolites in the metabolic network were taken into consideration for random
expectation of the distance of changed metabolites. Average distance among
metabolites was measured over only the connected metabolites. To determine
whether the distance among the changed metabolites was significantly dif-
ferent from random expectation, we performed Student’s t test between the
average shortest paths among the changed metabolites and the average
shortest paths among the randomly selected compounds in the 136 mutants
(Fig. 5A). In addition, the average distance between changed metabolites was
compared with the average distance between unchanged metabolites using
Student’s t test (Supplemental Fig. S11). To determine whether the distance
between the changed metabolites and the perturbed reaction was significantly

different from random expectation, we performed one-sample Student’s t test
between the distance of the average shortest path of the changed metabolites
to the perturbed reaction and the average shortest paths of randomly selected
metabolites to the perturbed reaction (100 samples) for each well-characterized
mutant (Fig. 6A).

Statistical Test of Biological and Topological Properties
of Genes

We tested six biological and three topological properties that could distin-
guish between the two groups of mutants associated with the well-characterized
genes with different proximity to the changed metabolites. The number of
predicted isozymes was determined by counting the number of enzymes as-
sociated with a reaction. The rate limitability of a reaction was curated by PMN
(2014). The catalytic irreversibility of a reaction and the catalytic uniqueness of a
reaction were obtained from AraCyc (Mueller et al., 2003). Expression levels of
the genes in 2-week-old rosette leaves were taken from the AtGenExpress da-
tabase (Schmid et al., 2005). The number of significantly changed metabolites
was determined in this study. Sets of paralogous genes were obtained from
Thomas et al. (2006). The degree of a reaction is the number of links from the
reaction to directly connected neighboring reactions through shared metabolites
in the reconstructed network. The betweenness centrality of a reaction is the
number of shortest paths from all nodes that pass through that reaction. These
two topological properties were calculated by using the open source Java
Universal Network/Graph framework (Madadhain et al., 2005). Average
shortest distance was calculated using a Java program as described in the
previous section. To evaluate statistical difference between the two groups, we
conducted Student’s t tests or Fisher’s exact tests depending on the types of data
(P , 0.05; Fig. 6B; Supplemental Fig. S12).

Sequence data from this article can be found in Supplemental Table S1.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Criteria used for selecting target genes.

Supplemental Figure S2. Composition of the detected compounds that are
named and mapped in AraCyc.

Supplemental Figure S3. Procedure used to identify significantly changed
metabolites in the mutants compared with the wild type.

Supplemental Figure S4. Diversity of changed metabolites within the four
types of the selected genes.

Supplemental Figure S5. Specificity of changed metabolites within the
four types of the selected genes.

Supplemental Figure S6. Composition and number of the changed metab-
olites across the mutants.

Supplemental Figure S7. Comparison between the proportion of each type
of compounds and the number of changed metabolites across the mu-
tants.

Supplemental Figure S8. Proportions of the changed metabolites in four
metabolic domains across well-characterized mutants when three bio-
logical replicates were used to identify changed metabolites.

Supplemental Figure S9. Illustration of the flavonoid biosynthesis path-
way.

Supplemental Figure S10. Visualization of the reconstructed metabolic
network based on AraCyc.

Supplemental Figure S11. The distance among changed metabolites across
all the mutants and the well-characterized mutants.

Supplemental Figure S12. Comparison of biological and topological prop-
erties of metabolic phenotypes between proximal and nonproximal
metabotype groups of mutants of known genes.

Supplemental Figure S13. Gene function predictability of metabolic path-
ways in AraNet.
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Supplemental Table S1. List of 136 selected mutants for this study.

Supplemental Table S2. List of significantly changed metabolites between
the wild type and mutants.

Supplemental Table S3. The number of changed metabolites across 136
genes.

Supplemental Table S4. Reconstructed bipartite metabolic network from
AraCyc version 8.0 used in this study.

Supplemental Table S5. Twenty-four currency metabolites that were re-
moved from the metabolic network.
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