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INTRODUCTION 

Ultrasonic backscattered echoes represent not only the impulse response of the 
ultrasonic transducer, but also contain information pertaining to the inhomogeneity of the 
propagation path, effect of frequency dependent absorption and scattering, dispersion 
effect, and geometric shape, size and orientation of reflectors. Therefore, a well-defined 
modeling of the backscattered echoes leading to the estimation of arrival time, echo 
skewness, center frequency, and bandwidth is highly desirable for the nondestructive 
evaluation of materials [1). In this paper, we model the backscattered echoes, assuming 
that all parameters describing the shape of the echo are unknown. Then, iterative parameter 
estimation techniques such as the Gauss-Newton method [2] or Simplex-Search method [3] 
have been applied to estimate echo parameters. These algorithms have been evaluated in 
terms of rate of convergence, sub-optimal estimation due to local minima, and presence of 
noise. 

MODELING OF ULTRASONIC ECHOES 

In general, as shown in Figure 1, the received ultrasonic signal is composed of two 
terms: 

r(t) = h(t) + u(t) (1) 

where h(t) represents superimposed back-scattered echoes corresponding to the geometry 
and property of materials, and u( t) is measurement noise. 
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Figure 1. System Description of Backscattered Echoes 
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Backscattered echoes can be modeled as the sum of M echoes, 

M 

h(t) = .2 amf(X", ;t) 
m-I 

where X", is a vector of parameters given by 

and f(xm ;t) is the echo waveform modeled as 

The parameters of the backscattered echoes are : 

am : amplitude 
am : bandwidtli factor 
'tm : arrival time 
fern: center frequency 
cilm : phase 

(2) 

(3) 

(4) 

The goal of this investigation is to estimate the above parameters in the presence of noise 
for the nondestructive evaluation of materials. 

The signal-to-noise ratio (SNR) for a single echo (M =1) is defined as the ratio of 
signal power to noise power, 

2g 2,,'r; a:n: ---
- -{l+e a } 

SNR = 10 log 2 2a 2 

0. 

Where noise is assumed to be Guassian with a variance of 0.2 . 

Vector Presentation of Signal 

Consider the discrete values of t given by 

where 6.'t is the sampling period and T = N6.'t is the signal duration. Then, the 
backscattered echoes can be written in a vector form: 

where 

is the received signal vector, 
;:; = [u(O) u(6.'t) u(26.'t) . . u(N6.'t)]T 

is the noise vector, and 
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(5) 

(6) 

(7) 

(8) 

(9) 



r f(xl ;0) f(x2 ;O) f(xM;O) r al 1 
I f(xl; ~1:) f(x2 ;~1:) f(xM;~1:) I I a 2 I 

iii = I I x I . I (10) 

I I I . I 
If(~;N~1:) f(x2 ;N~1:) f(xM ;N~1:) J l aMJ 

is the proposed model vector. Rewriting the above equation in a more compact form by 
grouping the elements of each column vector, 

(11) 

or 

iii=Axa (12) 

where A represents the backscattered model matrix. The model matrix A is formed such 
that each column of A represents an echo vector of length N, and the corresponding a i is 
the amplitude of that particular echo. 

Parameter Estimation Criteria 

Once we construct the non-linear model matrix A, then we search for an estimate of 

the amplitude vector, [, by minimizing Ir - (A x ~)I in the least square sense. Then, with 

the estimate [ , we reconstruct the model as 

- -
iii = A x a, (13) 

and define the error function as 
(14) 

If we rewrite iii in terms of echo amplitudes and echo waveforms, 

- - -
iii' = alf(xl) + al('x2 ) + ...... + aMf(xM) (15) 

By grouping the parameter vectors into a matrix X = [~ x 2 • • xM], we can write 
e = e(X). Now, the problem becomes the minimization of the error function with respect 
to the variable matrix X. Since the error function is a vector of length N, the criteria for 
minimizing a vector could be minimizing its norm. Let's define the objective function as the 
norm of the error function as, IP(X) = le(X)I. Then, the general problem description can 
be stated as 

minimize IP(X), 

X E!W 
(16) 

A problem of this type is called an unconstrained optimization problem, since there is no 
constraint provided on X. In the next section, we will present methods for minimizing the 
objective function with respect to parameter matrix X. 
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Optimization Techniques 

The optimization routines, after each iteration, update the parameter matrix X such 
that the objective function <p(X) converges to a minimum value. The global minimum of 
the objective function provides us the optimum solution for the parameter matrix X*. 
However, there are local minimums as well. A local minimum, of course, does not give 
the optimal solution. Depending on the initial guess and the applied optimization 
technique, there is always a possibility for the objective function to remain in one of the 
local minimums. A good guess may avoid the local minimums. The Simplex Search 
parameter estimation method, with a reasonable initial guess of parameters, is less sensitive 
to the local minimums although it slowly converges to the global minimum. On the other 
hand, least-square methods like Gauss-Newton, are sensitive to local minimums although 
they converge faster than the Simplex Method. The performance of these two methods of 
optimization are investigated in this study. 

PARAMETER ESTIMATION RESULTS 

Applying these methods, we have been able to detect and estimate all parameters of 
a noise-free echo with a 100% accuracy. (Fig. 2-b,c). However, in the presence of noise 
(Fig 2-d), the optimum parameter vector is not the same as the original one, because the 
noise changes the shape of the echo. The parameter estimation of an echo corrupted by 
noise with 6.12 dB SNR is robust (see Fig 2-e,f). This estimation improVed the SNR 
from 6.12 to 26.34 dB . 
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Figure 2. a) A noise-free echo with the parameter vector ~ - [ 10 5 1 0.5;n; ]; b) 
Detection of the echo by Gauss-Newton method af~r 17 iterations with an initial guess of 
~ 0 = [15 8 0.8 0] where the estimated parameter vector is the same as ~; c) 
Detection of the echo in (a) by Simplex-Search method after 461 iterations using the same 
initial guess; d) The echo in (a) corrupted with additive white Gaussian noise (SNR=6.12 
dB); e) Detection of the echo in (d) by the Gauss-Newton method after 16 iterations where 
the optimum parameter vector is x\* = [9.60 4.96 1.01 0.5;n;] and the SNR is improved 
to 26.35 dB; f) Detection of the echo in (d) by the Simplex-Search method after 401 
iterations where the optimum parameter vector is found to be the same as in (e). 
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The estimation of two distinct echoes (see Fig 3-a) greatly increases the number of 
iterations for the Simplex method due to local minimums. For the Gauss Newton method 
the number of iterations does not change significantly but the accuracy of estimation 
becomes dependent on the initial guess. Note that in Fig. 3-c, a better initial guess is used, 
compared to the one for the Simplex Search shown in Fig. 3-b Among the initial guesses of 
parameters, the one for the arrival time is crucial because frequent local minima exist due to 
the oscillatory nature of echoes. A better initial guess for the arrival time not only 
guarantees the global minimum but also reduces the number of iterations. 
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Figure 3. a) Twoechoeswith6.05dBSNR,andparametervectors ~ =[10 5 1 0], 
a 1 = 1.0 and Xz = [12 4 2.5 0.5:n:], az = 0.9; b) Detection of the echoes by the Simplex 
Search method after 3055 iterations with an initial guesses of xl

o = [6 4 0.9 0], and 
xzo=[7 3 2.4 O]wheretheoptimumparametervectorsare ~. =[10.58 5.03 1 0], 

ai' = 1.04 and xz' = [12.49 4.04 2.50 0.553t], az' = 090, and the SNR is improved to 
24.50 dB; c) Detection of the echoes by the Gauss-Newton method after 24 iterations, using a 
better initial guess for ;(10 = [6 4 0.95 0], where the same optimum parameter vectors are 
found. 
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For the case of two interfering echoes (see Fig 4-a), the problem becomes more 
complicated since the routine needs to differentiate between the two echoes. This results in 
a greater number of iterations for the Simplex Search algorithm (Fig 4-b), and requires a 
better initial guess for the Gauss Newton method. 
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Figure 4. a) Two interfering echoes with 6.81dB SNR, and parameter vectors 
~ =[10 5 1 0], a l = 1.0 and x2 =[12 4 1.5 O.5Jt], a 2 = 0.9; b) Detection of the 
echoes by the Simplex Search method after 3408 iterations with initial guesses of 
xl

o = [6 4 1.1 0], and x2
0 = [7 3 1.4 0] where the optimum parameter vectors are 

XI" =[8.11 5.06 1.01 0.17Jt], a l" =0.98 and x2" =[15.07 4.12 1.52 0.63Jt], 
a2" = 0.97, and the SNR is improved to 24.62 dB; c) Detection of the echoes by the Gauss­
Newton method after 27 iterations, using better initial guesses for xl

o = [6 4 1.05 0], and 
x2

0 = [7 3 1.45 0], where the same optimum parameter vectors are found. 
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If we increase the number of echoes in the data (Fig.5-a), the problem becomes 
even more complicated. It doubles the number of iterations and demands a good starting 
guess for the Gauss-Newton method (Fig. 5-c). Since the Simplex Search uses only 
function evaluations, the number of iterations greatly increases when the objective function 
has many variables (Fig. 5-b). 
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Figure 5. a) Three echoes with 6.26dB SNR, and parameter vectors 
~=[10 5 1 0.5Jt],a,=1.0,x2 =[8 42.5 0],a2 =0.8,andx3 =[12 640], 
a3 = 0.9; b) Detection of the echoes by the Simplex Search method after 9680 iterations with 

initialguessesofx,0=[6 3 0.95 0],x2°=[5 2 2.3 0],andx30=[9 43.80] 
where the optimum parameter vectors are ~' = [10.39 5 0.99 O.46Jt], a,' = 1.02, 
x2 '=[7.6 4 2.49 0.12Jt],a2'=0.80, andx3'=[11.27 6 4 0.07Jt], a3*=0.86, 
and the SNR improved to 28.03dB; c) Detection of the echoes by the Gauss-Newton method 
after 36 iterations, using better initial guesses for x20 = [4 2 2.45 0], and 
~ ° = [8 4 3.95 0] where the same optimum parameter vectors are found. 
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CONCLUSION 

In this investigation, ultrasonic backscattered echoes are modeled as the 
superposition of several Gaussian echoes assuming that all parameters (amplitude, arrival 
time, center frequency, bandwidith and phase) describing the shape of the echo are 
unknown. Then, the Gauss-Newton and the Simplex-Search methods have been applied to 
estimate echo parameters. It has been observed that the Simplex-Search method performs 
well in estimating parameters of echoes with low signal-to-noise ratio, although the rate of 
convergence is slower by an order of magnitude when compared with the Gauss-Newton 
method. Estimation of echo center frequency, bandwidth and skewness is robust 
regardless of the values of the initial guess of these parameters. Care is required in the 
initial guess of the arrival time due to sub-optimal estimation, although this problem can be 
eliminated by performing the estimation with multiple random initiat guesses and selecting 
the arrival time that offers the lowest estimation error. Overall, the results above indicate 
that the optimization routines are capable of detecting the ultrasonic backscattered echoes by 
their parameter vectors, while improving the SNR by about 20 dB. 
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