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ABSTRACT

Each chapter of this dissertation is devoted to one of three topics. The first two are novel false

discovery rate (FDR) controlling methods in different situations, and the third deals with a new

tuning parameter selection approach for the random forest method in regression problems.

The primary research of this dissertation is to develop methods for controlling FDR while

conducting multiple hypothesis tests with gene expression data. The first topic of this dissertation

is a gene-specific covariate-based FDR-controlling method. We propose gene length as a potential

gene-specific covariate. We develop a method based on covariate-specific conditional null

probability for promising hypotheses with low p-values. We prove that the method controls

positive FDR (pFDR) and provide an equivalent statement producing the method’s rejection rule.

Simulations demonstrate our method controls over pFDR, and the suggested method is better

than existing methods in terms of true positive rate and summary statistics for the receiver

operating characteristic (ROC) curve. Using data provided by Dr.Lim, we observe that our

method rejects more null hypotheses at most target levels than existing methods.

Another topic of this dissertation is developing an FDR-controlling method for circumstances

where data are obtained from the pilot and main studies. We assume each study has unique

properties such as sample size and error variance. Our method’s rejection rule permits a higher

p-value rejection threshold for the main study when the p-value for the pilot study is relatively

low. This relationship enables us to evaluate fewer rejection rules than a competing method,

resulting in more inference power. Our simulation study demonstrates our approach for

combining results from two studies is superior to existing methods and controls FDR to a

predetermined level. The number of rejected null hypotheses in the data analysis was greater

than that of competing methods.



xii

The last topic of the dissertation is a unique tuning approach for random forest (RF)

regression. We propose a case-specific tuning strategy for selecting the RF tuning parameter

values of mtry and nodesize. We provide an example showing case-specific tuning parameters can

be useful by demonstrating that the best choice for tuning parameter values varies across the

predictor space. The tuning algorithm is then outlined mathematically. In a simulation study, our

approach outperforms the conventional algorithms implemented in various R packages to minimize

mean squared prediction error. Moreover, this method outperforms competing methods for the

majority of the datasets we examined.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 RNA-seq differential expression analysis adjusting for relevant

gene-specific covariates

Gene expression, which is an abundance of mRNA transcript, is quantified by RNA profiling

techniques. The profiling technologies such as RNA-seq and microarray are detailed in Mantione

et al. (2014) and Lowe et al. (2017). A typical research question concerning gene expression data

is identifying differentially expressed (DE) genes with intriguing features. Genes with opposite

characteristics are called equivalently expressed (EE) genes. In general, DE genes are identified

by conducting hypothesis tests for thousands of genes. In this circumstance involving multiple

tests, statisticians have developed approaches based on different error quantities to boost the

inference power. The error quantities include familywise type 1 error (FWER), defined as the

probability of producing one or more false positives. Bonferroni correction and Holm’s (1979)

method are used to control the FWER. Regarding gene expression data, the false discovery rate

(FDR) introduced by Benjamini and Hochberg (1995) is the often applied error measure, and

Storey’s (2002) q-value method is the most commonly employed approach to control the FDR.

Modern FDR-controlling approaches have attempted to increase testing power by using

appropriate covariate variables [Korthauer et al. (2019)]. The modern approaches include

methods such as Cai and Sun (2009), Scott et al. (2015), Ignatiadis et al. (2016), Boca and Leek

(2018), and Lei and Fithian (2018). Under this contemporary tendency, two novel approaches

adjusting for appropriate covariates are proposed in Chapters 2 and 3.

A biological discovery in Lopes et al. (2021) about the relationship between biological timing

and gene length inspired the development of the positive FDR-controlling method presented in

Chapter 2. Shorter genes tend to regulate immediate biological processes such as skin recovery,

whereas longer genes tend to regulate long-term biological processes such as muscle development
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[Lopes et al. (2021)]. Depending on the treatment factor, the fraction of DE or EE genes may

vary by gene length. In the Bayesian perspective, EE gene probability (i.e., null probability) may

vary with gene length. We suggest a rejection rule that accounts for heterogeneity among tests

resulting from their distinct null probabilities. Our approach gives a higher p-value rejection

threshold for genes with a low conditional null probability, allowing us to focus more on promising

hypotheses. Lei and Fithian’s (2018) method enhances inference power by focusing on promising

hypotheses using adaptively established p-value rejection thresholds. In addition, we provide a

positive FDR estimator and identify a condition equivalently determining our rejection rule under

a reasonable model assumption.

The second FDR-controlling method was inspired by the independent hypothesis weighting

(IHW) method [Ignatiadis et al. (2016)]. IHW considers all possible rejection rules defined by

groups specified by a covariable variable. If the considered rejection rules can be reduced

reasonably, the inference power may be increased. From such intuition, we developed a method to

infer DE genes, using the p-values obtained from a pilot study and the main study. Our method

allows a higher p-value rejection threshold for the main study when the p-value for the pilot study

is relatively small. In this context, we consider the pilot study’s p-value as a covariate. Compared

to the IHW method, we can considerably reduce the number of examined rejection rules from the

negative relationship between the pilot study p-value and the main study p-value rejection

threshold used by out method. However, since many rejection rules are still evaluated, calibration

is necessary for computing FDR, and we provided a calibration method.

1.2 Random forest regression tuning algorithm

The random forest (RF) method developed by Breiman (2001) is a popular machine learning

algorithm for predictions. Lin and Jeon (2006) established the perspective of viewing the RF

method as an adaptive nearest-neighbors algorithm. The forest weight, a byproduct of the RF

method, has been used in numerous purposes. For example, see Meinshausen (2006). Xu et al.

(2016), Zhang et al. (2019), and Friedberg̊a et al. (2020). Cross-validation is frequently applied to
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assess prediction errors in machine learning literature. Instead, out-of-bag (OOB) prediction error

can be used to evaluate prediction error when utilizing bootstrap aggregation methods such as

RF. OOB prediction is the mean prediction on each training sample using just the trees that did

not include the sample in their bootstrap sample, and the OOB prediction error is the error

associated with the OOB prediction. The standard tuning parameter selection strategy of the RF

method uses the parameter values that minimize the average squared OOB prediction error.

In the third topic of this dissertation, which is presented in Chapter 4, we argue that the best

choice for values of the tuning parameters may depend on the target value of the predictor vector

at which a prediction is desired. According to this perspective, using a case-specific tuning

parameter for each predictor vector value may lower the overall prediction error. Using the

proximity weight, we can evaluate the predictor vectors close to the target predictor vector. At

the same time, each training case’s prediction error can be evaluated via its OOB prediction

error. In this regard, we suggest a case-specific tuning algorithm based on weighted average

squared OOB prediction error using proximity weight.

1.3 Dissertation Structure

Following this general introduction, the structure of this dissertation is as follows. We adhere

to the journal format through Chapters 2, 3, and 4. Each of the three chapters contains the

introduction, method proposal, simulation study, data analysis, and discussion sections. Chapters

2 and 3 present new methods for analyzing RNA-seq data. The second chapter discusses a

rejection rule employing covariate-specific conditional null probability. The third chapter

discusses a novel rejection rule that uses the p-value as a covariate. The fourth chapter discusses a

tuning parameter selection strategy for the RF regression method. The concluding chapter

provides a concise overview of the entire dissertation and future research.
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Abstract

This paper suggests a novel positive false discovery rate (pFDR) controlling method using a

gene-specific covariate variable, such as gene length. We suppose the null probability depends on

the covariate variable. In this context, we propose a rejection rule that accounts for heterogeneity

among promising tests with low p-values, while accounting for different null probabilities. We

establish a pFDR estimator for a given rejection rule by following Storey’s q-value framework. A

condition on a type 1 error posterior probability is provided that equivalently characterizes our

rejection rule. We also present a suitable procedure for selecting a tuning parameter through

cross-validation that maximizes the expected number of hypotheses declared significant. A

simulation study demonstrates that our method is comparable to or better than existing methods

across a variety of realistic scenarios. In data analysis, we find support for our method’s premise

that the null probability varies with a gene-specific covariate variable.

2.1 Introduction

Gene expression refers to an abundance of messenger RNA transcripts quantified by RNA

profiling techniques like microarray and RNA-seq. The invention of the sequencing technique
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RNA-seq enables researchers to profile nearly all genes in an organism simultaneously. At the

same time, cost decreases in RNA profiling techniques have led to an increase in the volume of

gene expression data. The accumulated knowledge on gene expression data has been made

available in public databases, and open-source software or computer packages enable scientists to

quickly access the information. As knowledge has increased, statistical methods that efficiently

select genes with interesting expression patterns have received more attention. The research

question involving gene selection often focuses on identifying genes differentially expressed (DE)

across different experimental conditions. Genes other than DE genes are called equally or

equivalently expressed (EE) genes.

DE genes are typically identified through hypothesis testing on each gene in a statistical

framework, viewed as a multiple testing problem. Under the multiple testing framework, the

classic rejection rule P ≤ 0.05 generally generates too many false positives (type I errors).

Therefore, statisticians have suppressed false positives by controlling different error quantities.

When dealing with gene expression data, the most useful error quantity is typically the false

discovery rate (FDR), introduced by Benjamini and Hochberg (1995). FDR refers to the expected

proportion of false positives among all tests whose null hypotheses have been rejected. The most

widely used procedure is Storey’s (2002) q-value method. Storey’s (2002) standard q-value

rejection rule is based on null probability π0, the probability that a tested null hypothesis is true.

Typically, π0 is unknown and needs to be estimated [Liang and Nettleton (2012), Nettleton et al.

(2006), Storey (2002), Storey et al. (2004)].

Contemporary methods for FDR control are based on gene-specific covariate variables such as

mean non-zero expression and the proportion of samples with the non-zero expression [Korthauer

et al. (2019)]. The covariate variables are used for grouping or modeling purposes. As

circumstances vary across hypothesis tests, it is vital to consider each test separately. Efron et al.

(2001) proposed local FDR adjusting for different features by employing true null probability and

density functions under null and alternatives. Sun and Cai (2007) developed a method for

estimating global FDR through the local FDR. Subsequently, Cai and Sun (2009) developed an
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FDR-controlling method using external grouping information. An FDR regression method

proposed by Scott et al. (2015) regulates FDR by utilizing the local FDR and treating the null

probability as a function of covariate variables. Boca and Leek (2018) also proposed a method

(BL), considering the FDR and null probability as functions of a covariate variable. Ignatiadis

et al. (2016) proposed an independent hypothesis weighting method (IHW) which maximizes the

number of rejected null hypotheses, based on covariate-variable-based groups. Recently, Lei and

Fithian (2018) developed a covariate-specific p-value thresholding method (AdaPT), based on

adaptively determined significance thresholds and the local FDR.

The AdaPT method has developed into a powerful approach that is expected to yield more

discoveries by focusing on promising hypotheses and utilizing adaptively defined p-value rejection

thresholds. Initially, the method establishes a constant threshold across all covariate values. The

initial threshold is updated continuously to gradually increase rejection power. As a result of

considering multiple thresholds, we predict that the method’s average ability to classify the true

positives across all nominal FDR levels may deteriorate. Simultaneously, adaptively determined

thresholds complicate FDR estimation.

This paper presents a novel and more straightforward rejection rule that accounts for the

heterogeneity between promising hypotheses with low p-values determined by the classic rejection

rule P ≤ α. To be more precise, our rejection rule is based on the product of the p-value and

covariate-specific conditional null probability, given the p-value is no larger than α. Due to the

simplicity of the rejection rule, Storey’s (2002) positive FDR (pFDR) is naturally estimated.

Because pFDR provides an upper bound on FDR, pFDR control implies FDR control. We

demonstrate that the rejection rule is uniquely determined by a property of equalizing type 1

error posterior probabilities among all tests with p-values no larger than α and any given

covariate value.

New biological discoveries are good motivating sources to develop new statistical methods.

Recently, it was discovered that there exist relationships between biological timing and gene

length: shorter genes tend to regulate immediate physical processes such as skin recovery, whereas
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longer genes tend to regulate long-term physical processes such as muscle development [Lopes

et al. (2021)]. Thus, the fraction of DE or EE genes may vary by gene length depending on the

experimental conditions studied. From a Bayesian perspective, the null probability may vary by

gene length. Because of this heterogeneity, we consider gene length as a covariate variable

potentially important to consider when identifying DE genes. Though we focus exclusively on

gene length in this paper, our approach is applicable for any gene-specific covariate.

The remainder of this paper is organized as follows. In Section 2.2, we define our method in

detail and argue its mathematical implications in terms of posterior probability. In Section 2.3,

we demonstrate the effectiveness of the method through simulation studies. In Section 2.4, we

illustrate our method’s efficacy through data analysis. Lastly, Section 2.5 evaluates the proposed

method’s potential for further development.

2.2 Method Proposal

Our research objective is to declare genes to be DE while controlling pFDR in the multiple

testing framework. Our method is inspired by Storey’s (2002) q-value method based on the

Bayesian perspective. From the Bayesian perspective, two types of conditional prior probabilities

of being an EE gene, also referred to as conditional null probabilities, are considered. In our work,

both conditional null probabilities are considered as functions of a covariate variable. Section

2.2.1 presents a rejection rule based on a conditional null probability. By inverting the rejection

rule, its rejection region is naturally determined in Section 2.2.2. This rejection region is needed

for estimating the pFDR associated with the rejection rule. In Section 2.2.3, we establish the

pFDR estimator based on another conditional null probability through mathematical reasoning.

At the same time, the q-value estimator is obtained. Section 2.2.4 describes a procedure for

estimating the conditional null probabilities, which serves as the foundation for our method.

Section 2.2.5 delves into the rejection rule’s intrinsic meaning regarding posterior probability.
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2.2.1 Rejection Rule

Our rejection rule is based on the premise that a p-value rejection threshold should be

negatively associated with null probability. Furthermore, we assume that null probability may be

associated with a gene-specific covariate. This assumption is reasonable given the change in the

fraction of DE genes with gene length discussed in the previous section. We also believe that the

association between null probability and the covariate may be most relevant among tests with low

p-values. This paper, therefore, presents a rejection rule based on the conditional null probability,

given the covariate and a low p-value event.

Consider hypothesis testing for each of m genes. For gene j ∈ {1, . . . ,m}, let Xj and Pj

denote the value of a covariate and the p-value, respectively. Let H0j denote the event that gene j

is an EE gene. Let

π0(Xj) = P(H0j | Xj), and (2.1)

π0|α(Xj) = P(H0j | Pj ≤ α,Xj). (2.2)

Expressions (2.1) and (2.2) are conditional probabilities of gene j being an EE gene. These

conditional null probabilities, as stated previously, are functions of the covariate value Xj .

Furthermore, (2.2) is the conditional null probability conditioning on the classic rejection rule

P ≤ α. It is worth noting that α can either be specified as a value or selected via a procedure, as

described in Section 2.3. Define the jth p̃-value as P̃j = Pj · π0|α(Xj). Based on the configurations

stated so far, the following rejection rule is proposed:

Rejection Rule 2.2.1. Reject all null hypotheses whose p̃-value is less than or equal to t, for

some t > 0.

The genes declared to be DE (DDE) following Rejection Rule 2.2.1 are naturally determined by

{j : P̃j ≤ t}. Under the rejection rule, both the p-value and the conditional null probability in

(2.2) affect the rejection decision for each hypothesis test. Note that we initially assume that π0(·)

and π0|α(·) are known and then replace these functions with estimates discussed in Section 2.2.4.

Section 2.2.5 discusses the rejection rule’s intrinsic meaning.
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2.2.2 Rejection Region

Considering the rejection region associated with a rejection rule is useful for estimating the

pFDR and for gaining a better understanding of the rule. By inverting the rejection rule, the

rejection region for the p-value of the jth gene can be obtained as follows:

ΓXj (t) =
{
p ∈ [0, 1] : p · π0|α(Xj) ≤ t

}
= [0, ut(Xj)], (2.3)

where ut(Xj) = 1 if π0|α(Xj) ≤ t and ut(Xj) =
t

π0|α(Xj)
otherwise. Note that

P̃j ≤ t ⇐⇒ Pj ∈ ΓXj (t) ⇐⇒ Pj ≤ ut(Xj). (2.4)

Figure 2.1.B illustrates how the rejection region’s upper bound varies as a function of x for

various t-values for the arbitrarily chosen π0|α(x) in Figure 2.1.A. Additionally, Figure 2.1.B

demonstrates that genes with relatively high p-values may, nonetheless, be declared to be DE

genes when their conditional null probabilities are low. The phenomenon is noticeable when x is

between 2 and 3.

Figure 2.1: An example function π0|α(x) is depicted in Figure A, and the rejection regions’ upper
bounds created by five distinct t-values are illustrated in Figure B.
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2.2.3 False Discovery Rate Estimator

For a given p̃-value significance threshold t, the number of genes declared to be DE is

R(t) =

m∑
j=1

1
(
P̃j ≤ t

)
. (2.5)

The number of false positives among the R(t) genes can be expressed by

V (t) =

m∑
j=1

Vj(t), where Vj(t) = 1
(
P̃j ≤ t, H0j

)
. (2.6)

Clearly, V (t) ≤ R(t). From the equivalence (2.4), Vj(t) has another expression:

Vj(t) = 1
{
Pj ≤ ut(Xj), H0j

}
. (2.7)

FDR can be expressed as FDR(t) = E
{

V (t)
R(t)∨1

}
. Our proposed method is based on pFDR

defined as pFDR(t) = E
{

V (t)
R(t)

∣∣∣R(t) > 0
}
. When P(R(t) > 0) is close to 1, FDR(t) and pFDR(t)

are nearly identical. For a generalized significance region Γ̃ of P̃j , V (Γ̃) and R(Γ̃) can be naturally

defined by replacing P̃j ≤ t with P̃j ∈ Γ̃ in the definitions (2.5) and (2.6). By using the notations,

the positive FDR is defined by pFDR(Γ̃) = E
{

V (Γ̃)

R(Γ̃)

∣∣∣R(Γ̃) > 0
}
. The following theorem is based

on the generalized significance region Γ̃.

Theorem 2.2.1. Suppose m identical hypothesis tests are performed with P̃1, · · · , P̃m and

significance region Γ̃. Let πA(·) = 1− π0(·). Assume that (P1, H1, X1), . . . , (Pm, Hm, Xm) are i.i.d.

random vectors, where P̃j = Pj · π0|α(Xj), Pj | Hj , Xj ∼ (1−Hj) · F0 +Hj · F1 for some null

distribution F0 and alternative distribution F1, and Hj | Xj ∼ Bern(πA(Xj)), Xj ∼ FX for

j = 1, · · · ,m. Then,

pFDR(Γ̃) = P(Hj = 0 | P̃j ∈ Γ̃) =
EV (Γ̃)

ER(Γ̃)
, ∀ j = 1, . . . ,m. (2.8)

Appendix I contains the proof of Theorem 2.2.1, which closely follows an analogous proof in

Storey (2003).

Remark 2.2.1. The marginal distribution of Hj in Theorem 2.2.1 is Bern(πA), where

πA = 1− π0 and π0 = P(Hj = 0) ∀ j = 1, . . . ,m. In this perspective, (Pj , Hj) are i.i.d. random
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variables, where Pj | Hj ∼ (1−Hj) · F0 +Hj · F1 and Hj ∼ Bern(πA). The standard q-value

method is established on this modeling setup. Therefore, we can still apply the standard q-value

method, while controlling pFDR, to the p-values generated from the model in Theorem 2.2.1.

Theorem 2.2.1 establishes that pFDR(t) = EV (t)
ER(t) . Our estimator is obtained by estimating

EV (t) and ER(t). The denominator ER(t) can be easily estimated as R(t). However, the number

of false positives V (t) is unknown. To estimate the numerator EV (t), we might consider

estimating F1. Because estimating F1 is not straightforward, we propose to estimate EV (t) using

E
{
V (t) | X⃗ = (X1, · · · , Xm)

}
, which is both the best predictor of V (t) under a squared error loss

function and an unbiased estimator of EV (t). Some conditions are required to derive

E
{
V (t) | X⃗

}
. Let X⃗−j denote a vector X⃗ without the jth element. Under the model assumption

described in Theorem 2.2.1, the following properties are obtained:

(Pj , Hj , Xj) ⊥ X⃗−j → Pj | X⃗
d
= Pj | Xj (2.9)

(Pj , Hj , Xj) ⊥ X⃗−j → Hj | X⃗
d
= Hj | Xj (2.10)

(Pj , Hj , Xj) ⊥ X⃗−j → Pj | Hj , X⃗
d
= Pj | Hj , Xj (2.11)

Xj ⊥ Pj | Hj → Pj | Hj , Xj
d
= Pj | Hj . (2.12)

When the simple null hypothesis is true, and the test statistic is continuous, the p-value follows a

uniform distribution between 0 and 1. Motivated by this fact, the following assumption is made:

Assumption 2.2.1. Pj | Hj = 0 ∼ Unif(0, 1).

Under properties (2.10) to (2.12) and Assumption 2.2.1, E
{
V (t) | X⃗

}
can be derived as follows:

E{V (t) | X⃗ } =

m∑
j=1

E{Vj(t) | X⃗} ∵ V (t) =

m∑
j=1

Vj(t) and linearity

=

m∑
j=1

P
{
Pj ≤ ut(Xj), H0j

∣∣∣ X⃗ }
∵ (2.7)

=

m∑
j=1

P
{
Pj ≤ ut(Xj)

∣∣∣H0j , X⃗
}
· P(H0j | X⃗)

=

m∑
j=1

P
{
Pj ≤ ut(Xj)

∣∣∣H0j , Xj

}
· P(H0j | Xj) ∵ (2.10, 2.11)

=

m∑
j=1

ut(Xj) · π0(Xj) ∵ (2.12,Assumption 2.2.1). (2.13)
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By combining the predetermined form of pFDR(t) and (2.13), the pFDR estimator is established:

p̂FDR(t) =

m∑
j=1

ut(Xj) · π0(Xj)

R(t)
(2.14)

≤ t

R(t)
·

m∑
j=1

π0(Xj)

π0|α(Xj)
, (2.15)

where π0(·) and π0|α(·) are considered known. The pFDR estimator (2.15) serves as an upper

bound for (2.14), where the equality holds when π0|α(Xj) ≥ t for all j. We adopt the simpler

version (2.15) as our pFDR estimator, which is also used in the simulation study and data

analysis, where our results using either (2.14) or (2.15) were nearly identical. Furthermore, we

may define q-values that can be utilized easily to declare genes to be DE:

Qj = min
t: t≥P̃j

pFDR(t). (2.16)

By declaring the genes with the q-value less than or equal to a nominal level γ as DE genes, one

can acquire the DDE genes list that controls the pFDR at less than or equal to γ. In addition,

the q-value estimator of (2.16) can be obtained by inserting the pFDR estimator (2.15):

Q̂j = min
t: t≥P̃j

p̂FDR(t). (2.17)

Up to this point, π0(·) and π0|α(·) have been treated as given. In practice, we must estimate both

conditional null probabilities to apply our method. The following section discusses an estimating

procedure.

2.2.4 Estimation of π0(·) and π0|α(·)

To simplify the problem of estimating π0(·) and π0|α(·), we first derive a useful property.

Under the model described in Theorem 2.2.1 and Assumption 2.2.1, π0|α(·) satisfies

π0|α(Xj) = P(H0j | Pj ≤ α,Xj) =
P(Pj ≤ α | H0j , Xj) · P(H0j | Xj)

P(Pj ≤ α | Xj)

= α · π0(Xj)

P(Pj ≤ α | Xj)
∵ (2.12,Assumption 2.2.1). (2.18)
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According to equality (2.18), when both π0(Xj) and P(Pj ≤ α | Xj) are known, π0|α(Xj) can be

obtained. Thus, we now discuss how to estimate π0(Xj) and P(Pj ≤ α | Xj).

The estimation procedure is based on the idea that the values of a function at two close points

may be similar. We suggest using the Euclidean distance between covariate variables to quantify

their closeness. Let Nnh be a user-selected neighborhood size. Let Nj ⊆ {1, · · · ,m} contain the

Nnh indices corresponding to the Nnh genes whose covariate values are closest to Xj . Both

probabilities are estimated using only the neighborhood p-values {Pi : i ∈ Nj}. First, π0(Xj) is

estimated using the method of Nettleton et al. (2006) applied to {Pi : i ∈ Nj}, which gives

π̂0(Xj) =

∑
i∈Nj

1
(
Pi ≥ Pcut,j

)
Nnh

· 1

1− Pcut,j
, (2.19)

where Pcut,j is a threshold determined by Nettleton et al. (2006) such that the empirial

distribution of {Pi : i ∈ Nj , Pi ≥ Pcut,j} is approximately uniform. See Nettleton et al. (2006) for

the details.

Next, P(Pj ≤ α | Xj) can be easily estimated as the proportion of the p-values in {Pi : i ∈ Nj}

less than or equal to α:

P̂(Pj ≤ α | Xj) =

∑
i∈Nj

1
(
Pi ≤ α

)
Nnh

. (2.20)

By (2.18), a natural estimator of π0|α(Xj) is π̂0|α(Xj) = 1 ∧
{
α · π̂0(Xj)

P̂(Pj≤α|Xj)

}
. As a result, all

necessary components for our method are obtained. The following Section 2.2.5 provides an

in-depth discussion of the rejection rule.

2.2.5 Implications of the Rejection Rule

To better understand our rejection rule, we derive an equivalent condition characterizing the

rejection rule in terms of a conditional type 1 error posterior probability, as specified in the

following theorem.

Theorem 2.2.2. Consider the same inference setup described in Theorem 2.2.1 with a rejection

rule Pj ≤ u(Xj), for a given non-negative function u(·). Assume that Assumption 2.2.1 holds. Let
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T1j be the event that a type 1 error occurs for test j. If the rejection rule is more conservative

than the classic rejection rule Pj ≤ α, that is, max
j

u(Xj) ≤ α, then,

P(T1j | Pj ≤ α, X⃗) is the same for all j = 1, . . . ,m (2.21)

⇐⇒ u(Xj) =
t

π0|α(Xj)
for all j = 1, . . . ,m and some t > 0. (2.22)

Figure 2.2: A scatterplot illustrating upper bounds satisfying the conservativeness condition
stated in Theorem 2.2.2 for a given α = 0.05. The green horizontal line is below the red horizontal
line indicating that the condition is satisfied. Because max

j
ut(Xj) ≤ 0.05, ut(x) is simplified to

t
π0|α(x)

.

The proof is included in Appendix II. According to Theorem 2.2.2, among more conservative

rejection rules than the classic rejection rule, referred to as a conservativeness condition, the

rejection rule that preserves constant type 1 error posterior probability given the low p-value

condition and covariate variables X⃗ is uniquely determined by u(Xj) =
t

π0|α(Xj)
for some t. Under

the conservativeness condition u(Xj) ≤ α, u(Xj) is identical to our proposed rejection rule’s

upper bound ut(Xj). In other words, under the conservativeness condition, our proposed rejection

rule is the only one that equalizes the conditional type 1 error posterior probability across all

tests. For clarity, ut(Xj) now refers to u(Xj).
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According to the model assumed in Theorem 2.2.2, rejection situations vary by covariate

variables. A rejection rule ignoring the distinct situations is incapable of equalizing error control

as described in Theorem 2.2.2. According to Theorem 2.2.2, however, our rejection rule ensures

constant conditional type 1 error posterior probabilities across all tests. This is in contrast to

traditional rejection rules, which provide conditional type 1 error probabilities that vary across

tests.

Lastly, let us discuss the conservativeness condition max
j

ut(Xj) ≤ α in Theorem 2.2.2. The

condition indicates that the rejection region’s upper bound is less than or equal to α. In other

words, rejections of null hypotheses occur only when the p-values are less than or equal to α.

When α is set to 0.05, Figure 2.2 illustrates the condition visually. If α is not chosen too small,

the classic rejection rule is fairly liberal, and the conservativeness condition of Theorem 2.2.2 is

easily satisfied in practice. Therefore, we can conclude that Theorem 2.2.2 is stated for a

reasonably confined condition on t.

2.3 Simulation Study

Figure 2.3: Functions from A to C illustrate three π0(·) functions used in the simulation, where
πA
0 (x) = 0.8, πB

0 (x) = 0.6 + 0.3
1+exp {−10·(x−4)} , and πC

0 (x) = 0.7 + 0.3
1+exp {−10·(x−4)} .
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2.3.1 Model Description

We conduct a simulation study to assess our method’s performance. The simulation’s model is

inspired by the model in Theorem 2.2.1. Essentially, we consider gene expression data sets with

m = 10, 000 genes generated independently from normal distributions with gene-specific standard

deviation from an inverse chi-square distribution. The log-transformed gene length denoted by X,

which affects the probability of being an EE gene or equivalently DE gene, is assumed to be

normally distributed. If a gene is chosen as a DE gene, determined by π0(·), the treatment effect

is randomly generated from a normal distribution. Let j and k be the indices for the gene and

treatment group, respectively. Let s denote a sample index within a treatment group. The sample

size within a treatment group n is set to 10. For jth gene, the data model with Yjks as the

response variable is described as follows. Note that independence holds unless otherwise specified.

Yjks ∼ N(δjk, σ
2
j ),

δj0 = 0 and δj1 | Hj = (1−Hj) · 0 +Hj ·N(µδ, σ
2
δ = 0.022),

Hj | Xj ∼ Bern(1− π0(Xj)),

Xj ∼ N(µX = 4, σ2
X = 0.52), and σj ∼ Inv-χ2

5. (2.23)

After generating the data set from (2.23), a two-sample t-test is used to obtain a p-value for

testing each gene’s treatment effect.

The simulation is conducted with different combinations of µδ and π0(·). µδ is chosen from a

set of four equally spaced values. As illustrated in Figure 2.3, three π0(·) functions are considered.

The function πA
0 (·) is a constant function, whereas πB

0 (·) and πC
0 (·) are increasing sigmoid

functions. Using πA
0 (·), we determine whether the proposed method works well when the true

model does not follow the working model in which the probability of being an EE gene varies with

gene length. Using πB
0 (·) and πC

0 (·), we determine whether the proposed method performs better

than other methods when the true model follows the working model. πC
0 (·) has a more extreme

characteristic than πB
0 (·) due to a gene-length region with a null probability of one.
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Under a target FDR level of 0.05, the proposed method is compared to the standard q-value,

IHW, BL, and AdaPT methods. These methods are chosen because they enable control of the

FDR in the simulation study of Korthauer et al. (2019). The tuning parameters of the proposed

method, Nnh and α are specified as follows. Nnh is set to 2, 000. The value of α is chosen

arbitrarily or through cross-validation. First, we choose α values of 0.05 and 1 to better

understand the proposed method’s properties. Additionally, when α equals 1, we include the

proposed method with true null probability π0(·) for a reference. We also employ an α selection

procedure based on repeated 10-fold cross-validation that maximizes the expected number of

DDE genes. More precisely, we partition the observations {(Xj , Pj) : j = 1, . . . ,m} completely at

random into 10 parts. Holding each part out as a test set in turn, the other 9 parts are used as a

training set. For each of 100 equally spaced α values between 0.001 and 0.2, and an α value 1, the

training data are used to estimate π0|α(·) and our rejection rule for controlling pFDR at the target

level 0.05. The number of DDE genes is determined based on applying the estimated rejection

rule to the test data. This entire 10-fold cross-validation process is repeated M times, and the

average number of DDE genes across the 10 × M test sets is determined for each value of α. The

value of α with the highest average number of DDE genes is selected and used with our proposed

procedure on the entire data set to identify differentially expressed genes. In the simulation study,

we use M = 1. M = 100 is used in the following data analysis section. Depending on whether the

true π0(·) is used or not, and on the value of α, the proposed method’s procedures are referred to

as prop.q(true, α = 1), prop.q(est, α = 1), prop.q(est, α = 0.05), and prop.q(est, α = cv).

As discussed in Remark 2.2.1, the standard q-value method is still applicable in our

simulation setup and is guaranteed to control pFDR. To estimate π0 = P(H = 0), the

histogram-based method of Nettleton et al. (2006) is used. Moreover, π0 can be easily

approximated from a property as follows:

P(H1 = 0) = EX1P(H1 = 0 | X1) ≈
∑m

j=1 P(Hj = 0 | Xj)

m
=

∑m
j=1 π0(Xj)

m
. (2.24)

Because m is large, the Monte Carlo approximation (2.24) is accurate. For a reference, the

standard q-value method with true null probability π0 ≈
∑m

j=1 π0(Xj)

m is also included in the
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comparison. Again, depending on whether the true parameter is used or not, the standard q-value

method’s procedures are referred to as std.q(true) and std.q(est). For simplicity, the omission of

the estimator and true parameter symbols indicates the version of the procedure with parameters

estimated from data (i.e., the version of the procedure that can be used in practice). For example,

std.q = std.q(est).

Lastly, we turn to the IHW, BL, and AdaPT methods implemented in R packages IHW, swfdr,

and adaptMT. IHW and swfdr are Bioconductor R packages, and adaptMT is a CRAN R package.

Essentially, we follow the default configuration of the packages. For the AdaPT method, inspired

by the simulation results in Korthauer et al. (2019), we use the adapt glm function with the

settings specified in the paper. Moreover, in the case of the IHW and AdaPT methods, the target

FDR is set to 0.05. The procedures associated with the three methods are denoted by their

respective names. In total, nine procedures are compared. The simulation results are analyzed

mostly without employing the procedures that use true parameter values because these methods

cannot be used in practice.

2.3.2 Simulation Results

            Procedure std.q prop.q(α = 1) prop.q(α = 0.05) prop.q(α = cv) IHW BL AdaPT
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Figure 2.4: Four graphs of summary statistics of V/R, S, AUC, and pAUC derived from the
scenarios of πA

0 (·).
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            Procedure std.q prop.q(α = 1) prop.q(α = 0.05) prop.q(α = cv) IHW BL AdaPT
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Figure 2.5: Four graphs of summary statistics of V/R, S, AUC, and pAUC derived from the
scenarios of πB

0 (·).

The nine procedures are compared in terms of mean false discovery proportion, mean true

positive number, mean area under the receiver-operating characteristic (ROC) curve (AUC), and

mean partial area under the ROC curve (pAUC). The ROC curve displays the trade-off between

true-positive rate and false-positive rate. AUC and pAUC are the ROC curve’s summary

statistics, calculated based on each procedure’s adjusted p-values or q-values. High AUC and

pAUC values indicate that the procedure generally prioritizes true positives over false positives.

The pAUC value is calculated by the standardized area under the ROC curve with a false-positive

rate less than or equal to 0.1, regarded as a relevant region in our situation.

For each scenario composed of µδ and π0(·), we generated 5000 data sets, which were used to

approximate the four mean values: mean false discovery proportion, mean true positive number,

mean AUC, and mean pAUC, denoted by V/R, S, AUC and pAUC. When a procedure declares

no significant hypotheses, the false discovery proportion is set to zero, which means V/R is an

empirical estimate of FDR rather than pFDR. However, in all our simulation scenarios, the

probabilities of discovery corresponding to our proposed procedures are approximately 1.

Therefore, for our proposed procedures, FDR ≈ pFDR in our simulation.
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            Procedure std.q prop.q(α = 1) prop.q(α = 0.05) prop.q(α = cv) IHW BL AdaPT
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Figure 2.6: Four graphs of summary statistics of V/R, S, AUC, and pAUC derived from the
scenarios of πC

0 (·).

Table 2.3 summarizes all the simulation results. Figures 2.4 to 2.6 illustrate the results

associated with the functions πA
0 (·), πB

0 (·) and πC
0 (·), respectively. In the figures, except for V/R,

the ratio to std.q is calculated to illustrate the relative performance. Above all, all procedures

under consideration control FDR in all scenarios.

Let us discuss the πA
0 (·) results. As illustrated in Figure 2.4, all procedures have nearly

identical AUC and pAUC across all scenarios, showing that they perform similarly in terms of

prioritizing true discoveries. In terms of true positive number S, when µδ is small, the std.q

outperforms the IHW and AdaPT. On the other hand, all procedures associated with the

proposed method perform nearly identically to the std.q, which is understandable as the proposed

method generalizes the standard q-value method. Given the constant π0(·), the rejection rule and

FDR estimator for both methods are equivalent. In other words, if we know the constant null

probability, both methods are equivalent. The results of πA
0 (·) suggest that the proposed method

performs as well as std.q even when the covariate is irrelevant.

We now turn to the πB
0 (·) and πC

0 (·) results. First, we explore the proposed method’s

properties by comparing the related procedures to std.q. The summary statistics S, AUC, and

pAUC all indicate the same conclusion. The procedure performs best in the order of prop(α=cv),
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Figure 2.7: The histogram of log10 transformed gene length for 10, 858 genes. The log10 trans-
formed gene lengths have a mean of 4.4 and a standard deviation of 0.61.

prop(α=0.05), prop(α=1), then std.q. The order is well illustrated in Figures 2.5 and 2.6. Since

prop.q(α = 1) is better than std.q, we can conclude that there is an improvement by considering

covariate-specific null probability. It is noteworthy that the BL method consistently outperforms

prop(α=1), even though both methods employ the covariate-specific null probability. By

comparing prop(α=0.05) and prop(α=1), we can conclude that incorporating the classic rejection

rule improves the proposed method. From the comparison between prop(α=cv) and

prop(α=0.05), it can be concluded that cross-validation is beneficial for α selection to improve all

evaluation criteria. As a result, we recommend using cross-validation to determine the value of α

and setting the default value to 0.05.

The prop(α=cv) method is now compared to IHW, BL, and AdaPT. In terms of S and AUC,

prop(α=cv) surpasses other procedures in all scenarios. In the case of the AdaPT method, we can

see that the performance is weakened in terms of AUC, which is likely due to the vulnerability

stated in Section 2.1. As seen in Figure 2.6, there are scenarios where AdaPT method
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outperforms prop(α=cv) regarding pAUC. For the corresponding scenarios, however, prop(α=cv)

consistently generates more true positives S than AdaPT, which may be attributed to the

differing FDR estimators. Based on our simulation setup, we can conclude that the proposed

method employing cross-validation to select α outperforms the competing FDR-controlling

methods in most scenarios and evaluation criteria that we considered.

2.4 Data Analysis

We tested our proposed method using RNA-seq data regarding disease resilience in young,

healthy pigs [Lim et al. (2021)], and additional data on gene lengths. A comprehensive description

of the study’s design and hypotheses testing is described in Lim et al. (2021), which is summarized

as follows. The study enrolled 912 F1 barrows at ∼ 27 days of age in 15 batches. After three

weeks in a healthy quarantine nursery, the piglets were exposed to natural polymicrobial diseases

found on commercial farms. Not only were gene expression levels of the piglets’ blood samples

quantified, but also disease resilience phenotypes such as subjective health score, treatment rate,

mortality, and growth rate. Although the paper [Lim et al. (2021)] tested numerous hypotheses,

our current paper focuses on the association between gene expression and concurrent growth rate

using blood samples taken during quarantine nursery periods before disease exposure. We

anticipated that the disease-independent growth rate would be a long-term physical process,

which is expected to be associated with the expression of longer genes. This expectation

motivated us to concentrate on the association involving growth rate before disease exposure.

The following is the analysis we conducted. The gene expression in blood samples acquired

during quarantine nursery was quantified using 3’mRNA sequencing with a globin block.

Focusing on the data in Lim et al. (2021) from profiling period 2 and genes in the Ensembl

database, we analyzed 10, 858 genes with a non-zero read count for at least 80% of the samples.

The growth rate of a pig was used as a common dependent variable. We used log-scale read

counts normalized and adjusted for nuisance factors as described by Lim et al. (2021). A p-value

was calculated for each gene, testing whether the adjusted log2 transformed read count has a zero
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slope coefficient. In total, we generated 10, 858 p-values. Figure 2.7 illustrates the histogram of

log10-transformed gene lengths utilized to determine the covariate distribution in the simulation

discussed in Section 2.3.

Table 2.1: Summary of the number of tests declared to be significant by the seven procedures at
four nominal FDR levels 0.01, 0.05, 0.1, and 0.2.

nominal FDR std.q prop.q(α=1) prop.q(α=0.05) prop.q(α=cv) IHW BL AdaPT

0.01 181 182 182 184 185 184 0

0.05 298 298 305 306 290 299 291

0.10 419 425 442 443 385 426 455

0.20 707 753 774 774 608 736 725

Table 2.2: Summary of the number of tests declared to be significant by multiple procedures at a
nominal FDR level of 0.2 for four gene length-based groups. The grouping condition is expressed
as a gene-length interval, and n denotes the number of genes contained within a group.

Group Grouping Criteria n std.q prop.q(α=1) prop.q(α=0.05) prop.q(α=cv) IHW BL AdaPT

1 [0, 11365) 2715 178 177 174 173 123 161 136

2 [11365, 27566) 2714 167 167 165 162 114 165 159

3 [27566, 66235) 2714 177 199 202 203 159 188 180

4 [66235,∞) 2715 185 210 233 236 212 222 250

We applied the seven procedures, described in Section 2.3, to the p-values and their associated

gene lengths. For prop.q(α=cv), we employed repeated 10-fold cross-validation 100 times to

reduce the sampling variation associated with cross-validation. The number of significant tests at

various nominal FDR levels are summarized in Table 2.1. For each nominal FDR level, we varied

the target FDR level when applying the IHW, AdaPT, and prop.q(α=cv). Regarding the

proposed method, decreasing α from 1 to 0.05 or using cross-validation to select α tended to

increase the number of significant tests, consistent with the simulation outcome. Furthermore,

prop.q(α=cv) consistently declared a greater or similar number of tests significant than the std.q,

IHW, and BL methods. Except for the nominal level of 0.1, the prop.q(α=cv) generated more

significant results than AdaPT. When the nominal level is set to 0.01, the AdaPT method

declared no tests significant. According to Figure 2.8, the null probability estimates tend to
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Figure 2.8: Null probability estimates of π0(x) and π0|α(x) for 10,858 covariate values, following
the procedure explained in Section 2.2.4. The nominal FDR level is set to 0.2. An α value of 0.0312
was chosen through the cross-validation approach.

decrease as the gene length grows. This tendency supports our assumption that the null

probability varies with covariates, which is also consistent with our expectation that longer genes

are more likely to be DE genes.

We classified genes according to their lengths into four groups with almost equal numbers. The

grouping criteria are summarized in Table 2.2. The table shows the number of significant tests at

a nominal FDR level of 0.2 for each group. Across all procedures, some interesting features are

observed. As illustrated in Figure 2.9, the significant tests are observed in greater abundance in

the 4th quantile group than in all other quantile groups. The phenomenon is noticeable when the

AdaPT method is used. Additionally, the number of significant tests increases gradually from the

second quantile group. This finding supports our intuition that the disease-independent growth

rate is a long-term physical process that tends to involve longer genes. The standard q-value
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method, which does not require knowledge of gene length, produced the same trend, supporting

the validity of our method’s assumption that the null probability varies with gene length.
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Figure 2.9: Barplot depiction of the proportion of tests declared to be significant by the three
procedures at a nominal FDR level of 0.2 for four gene length-based groups. The grouping criteria
are explained in Table 2.2.

2.5 Discussion

While the proposed method demonstrates significant gains over existing methods, there are

still areas for improvement. First, the modeling framework upon which our method is developed

is generalizable. One may consider a method in which the alternative distribution F1 varies with

the covariate variable. Second, the estimation procedure for estimating the null probabilities can

be improved. The simulation results indicate that the BL method consistently beats our method

with α = 1, indicating a promising direction for further development of the estimation procedure.
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Finally, different rejection rules can be defined using different posterior probability types.

Performance is predicted to vary according to the target posterior probability. We anticipate that

subsequent studies will examine our method from various perspectives. Simultaneously, we hope

that our paper will inspire other scholars and be used in various fields.
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2.8 Appendix I: Proof of Theorem 2.2.1

Proof. The equality is derived as follows:

E
[V (Γ̃)

R(Γ̃)

∣∣∣R(Γ̃) > 0
]
=

m∑
k=1

E
[V (Γ̃)

R(Γ̃)

∣∣∣R(Γ̃)=k,R(Γ̃)>0

]
· P(R(Γ̃) = k | R(Γ̃) > 0)

=
m∑
k=1

E
[V (Γ̃)

k

∣∣∣R(Γ̃) = k
]
· P(R(Γ̃) = k(Γ̃) > 0)

(⋆)
= P(Hj = 0 | P̃j ∈ Γ̃) · P(R(Γ̃) > 0 | R(Γ̃) > 0) = P(Hj = 0 | P̃j ∈ Γ̃)

=
m · P(Hj = 0, P̃j ∈ Γ̃)

m · P(P̃j ∈ Γ̃)
=

EV (Γ̃)

ER(Γ̃) □
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∵ E[V (Γ̃) | R(Γ̃) = k] = E
[ m∑

i=1

1(Hj = 0)1(P̃i ∈ Γ̃) | P̃1,...,P̃k∈Γ̃, P̃k+1,...,P̃m /∈Γ̃
]

= E
[ k∑

i=1

1(Hi = 0) | P̃1,...P̃k∈Γ̃, P̃k+1,...P̃m /∈Γ̃
]
=

k∑
i=1

P
[
Hi = 0 | P̃1,...P̃k∈Γ̃, P̃k+1,...P̃m /∈Γ̃

]
= k · P(Hj = 0 | P̃j ∈ Γ̃) ∵ i.i.d. − (⋆)

2.9 Appendix II: Proof of Theorem 2.2.2

Proof. Let H0j denote Hj = 0.

P(T1j | Pj ≤ α, X⃗) = P
(
Pj ≤ u(Xj), H0j | Pj ≤ α, X⃗

)
∵ (2.7)

= P
(
Pj ≤ u(Xj) | H0j , Pj ≤ α, X⃗

)
· P

(
H0j | Pj ≤ α, X⃗

)
=

P
(
Pj ≤ u(Xj), Pj ≤ α | H0j , X⃗

)
P
(
Pj ≤ α | H0j , X⃗

) ·
P
(
H0j , Pj ≤ α | X⃗

)
P
(
Pj ≤ α | X⃗

)
=

P
(
Pj ≤ u(Xj) ∧ α | H0j , X⃗

)
P
(
Pj ≤ α | H0j , X⃗

) ·
P
(
Pj ≤ α | H0j , X⃗

)
· P

(
H0j | X⃗

)
P
(
Pj ≤ α | X⃗

)
=

P
(
Pj ≤ u(Xj) ∧ α | H0j , X⃗

)
P
(
Pj ≤ α | H0j , X⃗

) ·
P
(
Pj ≤ α | H0j , Xj

)
· P

(
H0j | Xj

)
P
(
Pj ≤ α | Xj

) ∵ (2.9, 2.10, 2.11)

=
u(Xj) ∧ α

α
· P

(
H0j | Pj ≤ α,Xj

)
∵ (2.11, 2.12,Assumption 2.2.1)

=
u(Xj)

α
· π0|α(Xj) ∵ max

j
u(Xj) ≤ α − (⋆⋆)

From the equality (⋆⋆), the property that P(T1j | Pj ≤ α, X⃗) is constant is equivalent to

u(Xj) ∝ 1
π0|α(Xj)

, with respect to j.
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Table 2.3: Summary of statistics of V/R, S, AUC, and pAUC derived for different values of µδ

and different functions π0(·).

π0(·) µδ Label std.q(true) std.q prop.q(true,α=1) prop.q(α=1) prop.q(α=0.05) prop.q(α=cv) IHW BL AdaPT

πA0 (·) 0.15 V/R 0.050 0.045 0.050 0.045 0.045 0.046 0.040 0.046 0.043

· · S 200.812 187.972 200.812 187.395 187.654 189.628 171.705 189.404 173.166

· · AUC 0.744 0.744 0.744 0.744 0.744 0.743 0.740 0.743 0.740

· · pAUC 0.657 0.657 0.657 0.657 0.656 0.656 0.655 0.656 0.655

· 0.18 V/R 0.050 0.046 0.050 0.046 0.046 0.046 0.040 0.046 0.045

· · S 369.905 355.347 369.905 354.587 354.882 356.657 329.934 357.264 342.596

· · AUC 0.785 0.785 0.785 0.785 0.785 0.784 0.782 0.784 0.781

· · pAUC 0.697 0.697 0.697 0.697 0.697 0.697 0.696 0.697 0.696

· 0.21 V/R 0.050 0.047 0.050 0.046 0.047 0.047 0.040 0.047 0.046

· · S 547.103 533.164 547.103 532.271 532.616 534.052 500.493 535.400 518.499

· · AUC 0.818 0.818 0.818 0.818 0.818 0.818 0.816 0.817 0.815

· · pAUC 0.734 0.734 0.734 0.734 0.734 0.734 0.733 0.734 0.732

· 0.24 V/R 0.050 0.047 0.050 0.047 0.047 0.047 0.040 0.047 0.047

· · S 715.256 702.926 715.256 702.202 702.527 703.779 666.500 705.014 690.958

· · AUC 0.845 0.845 0.845 0.845 0.845 0.845 0.843 0.845 0.842

· · pAUC 0.766 0.766 0.766 0.766 0.766 0.766 0.765 0.766 0.765

πB0 (·) 0.15 V/R 0.050 0.044 0.050 0.043 0.042 0.042 0.034 0.043 0.039

· · S 297.371 273.561 316.116 280.075 302.094 311.394 270.266 283.380 283.147

· · AUC 0.744 0.744 0.768 0.756 0.787 0.795 0.785 0.776 0.754

· · pAUC 0.657 0.657 0.663 0.660 0.669 0.672 0.671 0.662 0.672

· 0.18 V/R 0.050 0.045 0.050 0.044 0.043 0.043 0.034 0.044 0.041

· · S 525.801 499.692 549.915 510.387 540.725 549.442 487.702 514.103 512.576

· · AUC 0.785 0.785 0.805 0.797 0.823 0.828 0.819 0.812 0.793

· · pAUC 0.697 0.697 0.704 0.701 0.711 0.713 0.711 0.703 0.710

· 0.21 V/R 0.050 0.046 0.050 0.045 0.044 0.044 0.034 0.045 0.043

· · S 755.219 730.937 781.826 744.888 779.586 787.204 711.465 748.779 749.066

· · AUC 0.818 0.818 0.835 0.830 0.851 0.854 0.847 0.841 0.826

· · pAUC 0.734 0.734 0.740 0.738 0.747 0.749 0.746 0.739 0.747

· 0.24 V/R 0.050 0.046 0.050 0.046 0.045 0.045 0.035 0.046 0.044

· · S 968.460 947.227 995.371 963.159 998.606 1004.795 921.456 966.355 970.972

· · AUC 0.845 0.845 0.860 0.856 0.874 0.876 0.869 0.865 0.852

· · pAUC 0.766 0.766 0.772 0.770 0.779 0.780 0.777 0.771 0.776

πC0 (·) 0.15 V/R 0.050 0.046 0.050 0.046 0.045 0.045 0.037 0.045 0.040

· · S 121.737 115.952 132.373 120.544 142.610 159.057 141.967 121.412 131.207

· · AUC 0.744 0.744 0.776 0.761 0.821 0.852 0.825 0.802 0.778

· · pAUC 0.656 0.656 0.665 0.661 0.681 0.695 0.693 0.666 0.697

· 0.18 V/R 0.050 0.046 0.049 0.046 0.045 0.045 0.037 0.046 0.042

· · S 236.360 229.391 251.640 237.423 272.098 292.350 265.758 238.449 263.901

· · AUC 0.785 0.785 0.812 0.801 0.854 0.878 0.856 0.833 0.814

· · pAUC 0.697 0.697 0.706 0.702 0.723 0.735 0.733 0.706 0.736

· 0.21 V/R 0.050 0.048 0.050 0.047 0.046 0.046 0.037 0.047 0.044

· · S 363.087 356.173 381.231 366.962 410.210 430.825 396.529 367.860 405.154

· · AUC 0.818 0.818 0.841 0.833 0.880 0.897 0.880 0.859 0.844

· · pAUC 0.734 0.734 0.742 0.739 0.760 0.771 0.768 0.742 0.770

· 0.24 V/R 0.050 0.048 0.050 0.048 0.047 0.046 0.037 0.048 0.045

· · S 486.493 480.227 505.832 492.826 540.639 560.260 520.587 493.493 538.035

· · AUC 0.845 0.845 0.865 0.859 0.899 0.913 0.898 0.880 0.868

· · pAUC 0.766 0.766 0.774 0.771 0.792 0.800 0.797 0.774 0.799
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Abstract

This paper presents a novel false discovery rate (FDR) controlling method for incorporating

gene expression data sets collected from a pilot and main study. Our approach allows a higher

p-value rejection threshold for the main study when the p-value for the pilot study is relatively

low, as determined by what we call an L-shaped rejection region. We search over a smaller set of

rejection rules than a competing independent hypothesis weighting method, which leads to an

increase in testing power for our approach. Nevertheless, a bias correction is still required when

estimating FDR due to the many rejection rules we consider. Accordingly, we propose a bias

correction method using the relationship between two types of FDR estimators. A simulation

study demonstrates that our method effectively regulates FDR and surpasses existing methods in

terms of true positive rate. At all nominal FDR levels, the proposed procedure declares more

tests to be significant than the existing methods throughout data analysis.

3.1 Introduction

Researchers conduct gene expression studies to identify genes with potentially interesting

expression patterns. Such genes, often referred to as differentially expressed (DE), may change
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mRNA abundance levels across treatments or exhibit non-null associations with a continuous

variable of interest. Typically, DE genes are identified by testing a hypothesis for each gene,

which results in a multiple testing problem. When confronted with the multiple testing problem,

researchers aim to maximize the number of true positives while controlling the number of false

positives. Researchers consider various error quantities to reach this goal. When analyzing

expression data, the most commonly used error quantity is the false discovery rate (FDR),

proposed by Benjamini and Hochberg (1995) and closely related to the expected proportion of

false positives among tests whose null hypothesis is rejected.

The most widely used method for FDR control is Storey’s (2002) q-value method, based on

the number of null or equivalently expressed (EE) genes m0, among all m genes tested for

differential expression. Modern FDR-controlling methods are based on gene-specific covariates

such as non-zero mean expression and the proportion of samples having non-zero expression,

which are described in Korthauer et al. (2019). The methods include Cai and Sun (2009), Scott

et al. (2015), Ignatiadis et al. (2016), Boca and Leek (2018), and Lei and Fithian (2018). Among

the contemporary methods, the independent hypothesis weighting (IHW) method [Ignatiadis

et al. (2016)] increases detection power by maximizing the number of declared differentially

expressed (DDE) genes when the corresponding covariate values are used to categorize the genes.

The IHW method considers nearly all possible group-specific p-value rejection thresholds. We

argue that the inference power may be increased by reducing the number of rejection threshold

combinations. In this perspective, we present a gene expression data analysis procedure involving

a pilot and main study.

We use a pilot study’s findings to refine a larger-scale main study. After collecting data from

both studies, researchers often decide whether to undertake further analysis using both data sets

or simply the data from the main study. When researchers focus on only the main study, critical

information gathered during the pilot study is lost. Inspired by these concerns and the IHW

method, we provide an approach based on two independently generated p-value vectors, Ppilot and

Pmain, obtained from the two studies. We present an FDR-controlling method in which Pmain
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serves as the main source p-value vector while Ppilot serves as a covariate variable. If the pilot

study is informative for DE genes, we expect to detect more DE genes among genes with

relatively low Ppilot. From this perspective, we propose a novel rejection rule with a negative

relationship between the main study’s p-value rejection threshold and the pilot study’s p-value.

The remainder of this paper is organized as follows. Section 3.2 details our method, including

a calibration procedure for achieving a target FDR level. In Section 3.3, we demonstrate our

method’s efficiency through simulation studies, and in Section 3.4 we illustrate our method

through data analysis. Finally, Section 3.5 assesses the proposed approach’s potential for further

development.

3.2 Method Proposal

This section describes our method and is divided into three subsections. Section 3.2.1

characterizes the gene expression data that we analyze. Although we focus on analyzing a pilot

and corresponding main study, our method is more generally applicable to gene expression data

analysis of multiple studies satisfying the outlined characteristics. Sections 3.2.2 and 3.2.3 discuss

approaches for estimating m0 and detecting DE genes, respectively. Both approaches use

independently generated p-value vectors from the two studies, denoted by Ppilot and Pmain.

3.2.1 Data Description

We present three characteristics of the gene expression data derived from pilot and main

studies. First, both data sets are independently collected. This is a natural assumption when the

studies are conducted separately with independent experimental or observational units. The

second characteristic is that the DE genes in both studies are identical, which is reasonable when

treatment factors are identical and experimental or observational units come from the same

population for both pilot and main studies. Let H i
0 and H i

A denote the collection of EE and DE

genes, respectively, in study i. For example, Hpilot
0 represents EE genes for the pilot study. The



35

second characteristic can be expressed as

Hpilot
A = Hmain

A ⇐⇒ Hpilot
0 = Hmain

0 . (3.1)

From (3.1), we define H0 = Hpilot
0 = Hmain

0 and HA = Hpilot
A = Hmain

A . When establishing the m0

estimator in Section 3.2.2, the first and second characteristics are crucial.

The third characteristic is that the testing power of the main study to detect a DE gene is

greater than that of the pilot study for the majority of genes. This is a reasonable characteristic

because the main study will naturally use more experimental or observational units than the pilot

study. Furthermore, the pilot study may give an investigator practice with laboratory protocols

that can lead to the use of improved or refined techniques in the main study, thereby reducing

error variance in the main study relative to the pilot. This third characteristic helps us decide our

rejection rule in Section 3.2.3.1.

3.2.2 Estimating m0

The total number of EE genes m0 is required when estimating FDR for a list of DDE genes.

To estimate m0, we employ a method suggested by Orr et al. (2012). The method provides a

conservative estimator of m00 =
∣∣HA

0 ∩HB
0

∣∣ for any two independent studies A and B. The

method estimates m00 using two independently generated p-value vectors from the studies. Let

Pj = (PAj , PBj) denote a p-value pair for the jth gene. Orr et al.’s (2012) m00 estimator is

defined as

m̂00 =

∑m
j=1 1

{
Pj ∈ [λA, 1]× [λB, 1])

}
(1− λA)(1− λB)

, (3.2)

where the cutoff points λA and λB are chosen by the histogram-based method of Nettleton et al.

(2006). Each cutoff point is chosen so that the histogram of p-values is approximately uniform to

the right of the cutoff point. As illustrated in Figure 3.1, Orr et al.’s (2012) estimator (3.2) can be

interpreted as a normalized count of the p-value pairs within a rectangle N with the size of the

rectangle (1− λA)(1− λB) serving as the normalizing constant. Orr et al.’s (2012) estimator is

well-matched to our data as our data sets are independently collected which is the first
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characteristic described in Section 3.2.1. Furthermore, the second characteristic, Hpilot
0 = Hmain

0 ,

allows us to use Orr et al.’s (2012) estimator when estimating m0 = |H0|. Throughout this paper,

we use m̂0 to refer to the estimator of m0 obtained using Orr et al. (2012).

Figure 3.1: Scatter plot of pB versus pA with marginal histograms in each margin and a rectangle
N defined by cutoff points λA and λB.

3.2.3 Detecting DE genes

This section describes an approach for detecting DE genes while controlling FDR at level α.

Section 3.2.3.1 begins by defining a collection of rejection rules we consider. Each rejection rule

has a one-to-one correspondence with a rejection region (RR). The rejection region is used to

define FDR estimators and aids in the comprehension of our rejection rule. In Section 3.2.3.2, two

FDR estimators are defined. Section 3.2.3.3 employs an FDR estimator to construct an optimal
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rejection region at FDR level α. However, the FDR estimator for the optimal rejection region can

be biased. Therefore, Section 3.2.3.4 presents a calibration method for correcting the bias using

the relationship between the two FDR estimators defined in Section 3.2.3.2.

3.2.3.1 L-Shape Rejection Region

To discuss our method for detecting DE genes, we need to specify the collection of rejection

rules that we consider. The following three types define all the rejection rules:

1. For a given g ∈ {1, . . . ,m}, reject all genes corresponding to indices in

DDE1
g = {j ∈ {1, . . . ,m} : Pmain, j ≤ Pmain, g}.

2. For a given g ∈ {1, . . . ,m}, reject all genes corresponding to indices in

DDE2
g = {j ∈ {1, . . . ,m} : Ppilot, j ≤ Ppilot, g, Pmain, j ≤ Pmain, g}.

3. For given g1 ̸= g2 ∈ {1, . . . ,m} (Pmain, g1 < Pmain, g2), reject all genes corresponding to

indices in DDE3
g1, g2 = DDE1

g1 ∪DDE2
g2 .

The above definition yields m(m+3)
2 = O(m2) number of distinct rejection rules almost surely,

while the IHW method considers O(mp) for p equal to the number of covariate-specific groups.

Each rejection rule provides a DDE gene list by DDE1
g , DDE2

g , and DDE3
g1, g2 , respectively. The

type 1 rejection rules are determined only by Pmain. The type 2 rejection rules use both p-value

vectors Ppilot and Pmain. Because type 3 rejection rules incorporate type 1 and 2 rejection rules,

they are constructed using data from both studies. The rejection rules established solely with

Ppilot are excluded due to the third characteristic, implying that Pmain is required to establish the

rejection rules.

We now specify rejection regions corresponding to the previously defined rejection rules. Each

rejection region enables us to estimate the FDR for a rejection rule. The rejection regions

corresponding to the previously defined rejection rules are as follows:

1. For a given g ∈ {1, . . . ,m}, the rejection region is RR1
g = {(p1, p2) ∈ [0, 1]2 : p2 ≤ Pmain, g}.
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2. For a given g ∈ {1, . . . ,m}, the rejection region is

RR2
g = {(p1, p2) ∈ [0, 1]2 : p1 ≤ Ppilot, g, p2 ≤ Pmain, g}.

3. For given g1 ̸= g2 ∈ {1, . . . ,m} (Pmain, g1 < Pmain, g2), the rejection region is

RR3
g1,g2 = RR1

g1 ∪RR2
g2 .

Due to the constraint in 3 (Pmain, g1 < Pmain, g2), no type 3 rejection region is a type 1 rejection

region and vice versus. Furthermore, the rejection rule and rejection region of all types have

one-to-one correspondence almost surely. In other words, a rejection region and a rejection rule

uniquely identify each other. All procedures are now described in terms of rejection regions due to

the equivalence. Figure 3.3 illustrates the rejection regions of all types. The p-value pairs for

DDE genes in each rejection region are colored blue. Both type 1 and 2 rejection regions have

rectangular forms. Each type 3 rejection region is formed by the union of two rectangles and has

an “L”-shape. Because most rejection regions are of type 3, we refer to the entire collection of

type 1, 2, and 3 rejection regions as L-shaped and use L to denote the entire collection.
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Figure 3.3: Scatter plots of Pmain versus Ppilot with rejection regions (yellow-colored areas) for
all three types.
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3.2.3.2 False Discovery Rate Estimators

We present two FDR estimators for an L-shaped rejection region L. Note that both

estimators are defined assuming m0 is known, but in practice m̂0 is substituted in place of m0.

Let R(L) denote the number of DDE genes corresponding to L, i.e., the number of p-value pairs

in the region L. Let V (L) denote the number of false positives associated with L. Let

Pj = (Ppilot, j , Pmain, j) denote the p-value pair for the jth gene. R(L) and V (L) then can be

expressed as
∑

j∈{1,...,m} 1(Pj ∈ L) and
∑

j∈H0
1(Pj ∈ L), respectively. Let Area(L) denote the

area of L. Let FDP(L|H0) =
V (L)

R(L)∨1 . FDR corresponding to the L can be expressed as

FDR(L) = E{FDP(L|H0)}. Moreover, the positive FDR (pFDR), which was introduced by

Storey (2003), can be expressed as pFDR(L) = E
{V (L)
R(L) | R(L) > 0

}
.

When the jth gene’s simple null hypothesis is true, expressed by j ∈ H0, and the test statistic

is continuous, the p-value follows a uniform distribution between 0 and 1. From this fact and the

first data characteristic of data independence, the following assumption is established:

Assumption 3.2.1. Pj | j ∈ H0
iid∼ Unif(0, 1)2.

Our initial estimator of FDR is based on Storey’s (2003) pFDR estimator. Because pFDR is

an upper bound of the FDR, we can use pFDR estimator as a conservative estimator of FDR. By

using Assumption 2.1 and the reasonings in Storey (2003), we define our initial FDR estimator as

F̂DR1(L | m0) =
m0 ·Area(L)
R(L) ∨ 1

. (3.3)

This estimator’s properties are not described in detail because procedures maximizing the number

of DDE genes over rejection regions L tend to underestimate FDR, as discussed by Ignatiadis

et al. (2016). To correct this potential bias, we introduce a second FDR estimator.

The second estimator is developed under the following assumption.

Assumption 3.2.2. ∀ j ̸= j′ ∈ H0, E
{

1(Pj∈L)
R(L)∨1

∣∣∣H0

}
= E

{
1(Pj′∈L)
R(L)∨1

∣∣∣H0

}
.
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Suppose I0 is a random sample of H0. From the Assumption 3.2.2, we can derive the following

property.

E
{∑

j∈H0
1(Pj ∈ L)

(R(L) ∨ 1) · |H0|

∣∣∣H0

}
= E

{∑
j∈I0 1(Pj ∈ L)

(R(L) ∨ 1) · |I0|

∣∣∣H0

}
⇐⇒ E

{ V (L)

R(L) ∨ 1

∣∣∣H0

}
= E

{∑
j∈I0 1(Pj ∈ L)

R(L) ∨ 1
· |H0|
|I0|

∣∣∣H0

}
. (3.4)

According to the property (3.4), when |H0| and |I0| are known

∑
j∈I0

1(Pj∈L)
(R(L)∨1) · |H0|

|I0| is an unbiased

predictor of FDP(L|H0), and the second FDR estimator is chosen as follows:

F̂DR2(L | m0, I0) =

∑
j∈I0 1(Pj ∈ L)

R(L) ∨ 1
· m0

|I0|
. (3.5)

The second FDR estimator (3.5) has the limitation of requiring unrealistic knowledge of I0.

Nonetheless, we demonstrate in Section 3.3 that F̂DR2(L | m0, I0) is useful for correcting the bias

of the first FDR estimator (3.3).

3.2.3.3 Optimal Rejection Region

From the L-shaped rejection regions defined in Section 3.2.3.1, we seek a region that is

optimal in the sense that the number of true positive results is maximized while FDR is bounded

above at the desired level. Initially, we consider rejection regions resulting in r DDE genes for

some fixed r ∈ {1, . . . ,m}. Because null p-value pairs are assumed to be uniformly distributed,

the larger the region, the greater the expected number of null p-value pairs falling in the region.

Therefore, to produce the fewest false positives, we seek the smallest rejection region among those

containing r p-value pairs. Because we consider rejection regions with the number of DDE genes

fixed at r, the lowest number of false positives indicates the greatest number of true positives.

From this perspective,

argmin
{
Area(L) : L ∈ L, R(L) = r

}
(3.6)

is a natural choice for our rejection region when the number of DDE genes is fixed at r. We refer

to this area minimizing region as a locally optimal rejection region. Figure 3.4 illustrates how the
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locally optimal rejection region is obtained. Notably, regardless of the number of DDE genes

between 1 and m, there is always a type 1 L-shaped rejection region (a blue-lined region in Figure

3.4), indicating that all locally optimal rejection regions are well-defined. Let L∗(r) =

argmin
{
Area(L) : L ∈ L, R(L) = r

}
for ∀ r ∈ {1, . . . ,m}, and let L∗(0) = ∅. Then, define a

collection of all locally optimal rejection regions for specified DDE genes numbering 0 to m by

L∗ = {L∗(r) : r = 0, . . . ,m}. (3.7)
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Figure 3.4: Scatter plot of Pmain versus Ppilot with a locally optimal rejection region (orange
colored region) and all types of L-shape rejection regions containing 30 p-value pairs (r = 30).

Now, let us identify the optimal rejection region among locally optimal rejection regions in L∗.

Practically, we seek a rejection region where the number of DDE genes is maximized, and the

FDR is kept below a target level a. Once F̂DR1(· | m̂0) is substituted for the FDR, we
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approximate the optimal rejection region as

L∗
a

def
= arg max

{
R(L) : L ∈ L∗, F̂DR1(L | m̂0) ≤ a

}
(3.8)

Note that L∗
a is well-defined for every a ∈ [0, 1] as L∗ contains the empty set (F̂DR1(∅ | m0) = 0

∵ Area(∅) = 0). Ideally, using L∗
α as our rejetion region would result in FDR control at level α.

However, F̂DR1(L
∗(r) | m̂0) tends to underestimate the FDR due to the area-minimizing scheme

of L∗(r). Due to the underestimation bias, we calibrate a of L∗
a to control FDR at α. The

following section describes the calibration method.

3.2.3.4 Calibration on a of L∗
a to control FDR at α

For the calibration method, a theorem is established using the relationship between

F̂DR1(L
∗
a | m̂0) and FDP(L∗

a | H0), ∀ a ∈ [0, 1]. The theorem is based on an assumption:

Assumption 3.2.3. ∀L1 ̸= L2 ∈ L, F̂DR1(L1|m̂0) ̸= F̂DR1(L2|m̂0) almost surely.

Each L-shape rejection region is defined by one or two p-value pairs. Additionally, because

p-value pairs are continuous random variables, they are almost surely distinct. As a result, the

F̂DR1(· | m̂0) values determined by the distinct p-value pairs are also almost surely distinct for all

L-shaped rejection regions. The assumption is formed from this perspective. Under the

assumption, we provide the following theorem:

Theorem 3.2.1. Let α̃ = max
{
F̂DR1(L

∗
a | m̂0) : a ∈ [0, 1], FDP(L∗

a | H0) ≤ α
}
. Then,

FDP(L∗
α̃ | H0) ≤ α almost surely..

According to the Theorem 3.2.1 which we prove in the Appendix, L∗
α̃ has an FDR that is less

than or equal to α. However, the α̃ cannot be determined because the relationship between

F̂DR1(L
∗
a | m̂0) and FDP(L∗

a | H0) is unknown. Instead, we suggest using the relationship

between Erep

{
F̂DR1(L

∗
a | m̂0,rep)

}
and Erep

{
F̂DR2(L

∗
a | m̂0,rep, I0,rep)

}
. The expectation Erep is

approximated by simulation. We repeatedly replace a randomly selected 5% of the p-value pairs

with independently generated Unif(0, 1)2 draws following the Assumption 3.2.1. Substituting a
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small fraction (5%) does not significantly alter the relationship between F̂DR1(L
∗
a | m̂0) and

FDP(L∗
a | H0). In addition, under Assumption 3.2.2, F̂DR2 is an unbiased predictor of FDP,

allowing us to substitue F̂DR2 for FDP. Note that m0 is repeatedly estimated in each simulation

run and denoted by m̂0,rep. Then, the proposed adjusted value of a is as follows:

α∗ = max
[
Erep

{
F̂DR1(L

∗
a | m̂0,rep)

}
: a ∈ [0, 1], Erep

{
F̂DR2(L

∗
a | m̂0,rep, I0,rep)

}
≤ α

]
. (3.9)

Using the value in (3.9), our DE genes detection method is established. Following the definition of

L∗
a in (3.8), all genes corresponding to the rejection region L∗

α∗ are declared as DE genes. In the

following section, our simulations demonstrate effective FDR control in practice.

3.3 Simulation Study

3.3.1 Model Description

We conduct a simulation study to assess our method’s performance, investigating independent

and normally distributed gene expression data for m = 10, 000 genes. When creating the gene

expression data, two factors, study and treatment, are considered. The study factor has levels of

pilot and main, and the treatment factor has levels of cntrl and trt. For study i and treatment j,

suppose there are ni observations. For a given π0, m1 = m× (1− π0) genes are randomly selected

as DE genes. Without loss of generality, the first m1 genes are considered DE genes, and the

treatment effects are generated from a normal distribution. In addition, gene and study-specific

variance is assumed. For each gene, the two studies’ variances are determined by the main study’s

standard deviation and the two studies’ variance ratio, generated from an inverse chi-square

distribution and a log-normal distribution. A fixed study effect of 1 is assumed across all genes.

For gene j, study s, treatment t, and observation k, the response variable is generated following
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the model below. Note that independence holds unless otherwise specified.

Yjstk ∼ N(µjst, σ
2
js), where µjst = 1(s = main) + δjt,

j ∈ {1, · · ·m}, s ∈ {pilot, main}, t ∈ {cntrl, trt}, and k ∈ {1, · · ·ns},

δj,cntrl = 0 and δj,trt = 1(j ≤ m1) ·N(µδ, σ
2
δ = 0.022),

σ2
j,pilot = Rσ2j · σ2

j,main,

σj,main ∼ Inv-χ2
5 and Rσ2j ∼ Lognormal(µR, σ

2
R = 0.12). (3.10)

Suppose that a data set following the model (3.10) is generated. For each gene, to infer the

treatment effect, we can apply a cell-means model with the two factors assuming heterogeneous

variance between the studies. Then, we can calculate the p-value testing the null hypothesis of

Hj
0 :

µ̄j·trt−µ̄j·cntrl
2 = 0, where µ̄j·t denotes a marginal mean across the study-factor levels, using the

t-test with degrees of freedom approximated by the Cochran Satterthwaite method. The p-value

vector is denoted by Pcombined. Additionally, for each study data, the p-value testing the

treatment effect is calculated using a two-sample t-test, which is the basis for our method. Each

study’s p-value vector is denoted by Ppilot and Pmain, respectively.

Table 3.1: Summary of the simulation’s model parameters.

Parameter Set π0 µδ ERσ2 npilot nmain

1 0.9 0.05, 0.07, 0.09, 0.11, 0.13 1, 1.5, 2, 2.5 20 50

2 0.9 0.05, 0.07, 0.09, 0.11, 0.13 2 10, 20, 30, 40 50

In the model (3.10), there are five model parameters π0, µδ, µR, npilot, and nmain. We set π0

and nmain to 0.9 and 50, respectively. The variables µδ, µR, and npilot are combined differently.

Increases in δjt imply an increase in testing power for both studies, and its distribution is

determined by µδ. The parameters µR and npilot are chosen to reflect the third data

characteristic, that the main study’s testing power is greater than the pilot study’s testing power

for most genes. As Rσ2j increases or npilot decreases, the testing power of the pilot study declines,

increasing the difference in testing power between the two studies. The value of µR is determined
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via a more intuitive parameter ERσ2 (because ERσ2j is constant regardless of gene, j is omitted).

Table 3.1 summarizes the five model parameters used in the simulation, which are generated with

two constraints of npilot ≤ nmain and ERσ2 ≥ 1. There are two distinct sets of scenarios in which

one is fixed to examine the effect of µR and npilot separately.

Procedure
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pilot
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AdaPT
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Figure 3.5: The FDR and TPR (%) graphs of the four procedures for scenarios of npilot = 20 and
µδ = 0.09 in the set 1.

When making inferences about DE genes, the target FDR level is set to 0.05. The

pre-specified conditions when applying our procedure are as follows: α∗ is selected from a set of

1000 evenly spaced values between 0 and 1, and Erep is calculated by 1000 times, replacing

p-value pairs. The procedure is denoted by proposed. We compare the proposed procedure to six

distinct procedures. First, the procedures that apply Storey’s (2002) q-value method with the

histogram-based π0 estimator by Nettleton et al. (2006) to Pcombined, Ppilot, and Pmain are

considered. The procedures are denoted by combined, pilot, and main, respectively, depending on

the considered data type.
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Figure 3.6: The FDR and TPR (%) graphs of the four procedures for scenarios of ERσ2 = 2 and
µδ = 0.09 in the set 2.

We also consider modern FDR-controlling methods utilizing covariate variables. Because

Ppilot can be considered a covariate variable, the modern methods are also evaluated, with Pmain

serving as the primary source p-value and Ppilot serving as a covariate variable. We choose the

methods of IHW, Boca and Leek (2018) (BL), and Lei and Fithian (2018) (AdaPT) based on the

simulation results in Korthauer et al. (2019). The methods are implemented in the R packages

IHW, swfdr, and adaptMT, respectively. Essentially, we adhere to the default package settings. For

the AdaPT method, we employ the adapt glm function with the settings described in the paper

Korthauer et al. (2019). Moreover, the target FDR for the IHW and AdaPT methods is set to the

nominal FDR level, which is 0.05 in the simulation study.

3.3.2 Simulation Results

The seven procedures are compared in terms of FDR and mean true positive rate (TPR). The

TPR indicates the proportion of true positives among all DDE genes. For each scenario, 10, 000
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data sets were generated for analysis purposes to approximate the mean values, referred to as

empirical values. Note that when a procedure declares no significant hypotheses, the false

discovery proportion is zero. Table 3.2 summarizes the simulation results. The FDR is effectively

controlled at or below 0.05 for all considered scenarios and procedures, except the combined

procedure. In particular, the proposed procedure maintains the FDR level, indicating that the

calibration method is effective.

The TPR grows in all procedures as µδ increases, given that other model parameters remain

constant. As illustrated in Figures 3.5 and 3.6, when npilot is small or ERσ2 is large, the main

procedure typically has a higher TPR value than the combined procedure. This phenomenon

supports the practice of using only the main study data. Additionally, npilot and ERσ2 have the

same influence on the TPR in opposite directions, as seen in Figures 3.5 and 3.6. Given the t-test

statistic’s reciprocal relationship between variance and sample size, the phenomena are

understandable.

In most scenarios, the proposed procedure has a higher TPR than all other procedures. As

seen in Figures 3.5 and 3.6, our procedure’s TPR line serves as the upper limit for other

procedures’ TPR lines. The proposed procedure outperforms all considered procedures,

particularly combined and main procedures. Therefore, we may conclude that the proposed

procedure combines the strengths of the combined and main procedures. In addition, all

procedures including the proposed procedure that include Ppilot as a covariate variable

demonstrate that the TPR increases as npilot increases or ERσ2 decreases, indicating that Ppilot

can be considered a useful covariate variable. In particular, the IHW procedure is the second

best, understandable in that both the proposed and IHW methods are based on maximization of

DDE genes.

3.4 Data Analysis

We evaluated the proposed method using RNA-seq data on the disease resistance of young,

healthy pigs. Lim et al. (2021) provides a comprehensive description of the study’s design and
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testing of hypotheses, which is summarized as follows. At ∼ 27 days of age, 912 F1 barrows from

15 batches were enrolled in the study. After three weeks in a healthy quarantine nursery, the

piglets were exposed to natural polymicrobial diseases found on commercial farms. In addition to

quantifying gene expression levels in blood samples from piglets, disease resilience phenotypes

such as subjective health score, treatment rate, mortality, and growth rate were also measured.

Although the paper Lim et al. (2021) tested numerous hypotheses, we focused on the association

between gene expression and concurrent growth rate using blood samples collected during periods

of quarantine nursery prior to disease exposure.

The analysis we conducted is summarized below. The gene expression in blood samples

collected during quarantine nursery was quantified using 3’mRNA sequencing with a globin block.

Using the data in Lim et al. (2021) and genes in the Ensembl database, we analyzed 10, 858 genes

with a non-zero read count for at least 80% of the samples. In addition, we employed log-scale

read counts normalized and adjusted for nuisance factors according to Lim et al. (2021). We

followed the inference procedure outlined in Lim et al. (2021) except for separating the data into

two profiling periods. The same inference procedure was conducted for each profiling period,

summarized as follows. The growth rate of a pig was used as a common dependent variable. A

p-value was calculated for each gene to determine whether the adjusted log2 transformed read

count has a slope coefficient of zero. In total, we generated 10, 858 p-value pairs.

Figure 3.7 illustrates the density of the p-value pairs. A density greater than 1 indicates that

the region contains more p-value pairs than expected. When the p-value of profiling period 2 is

low, the observed density exceeds the expected value, indicating that profiling period 2 has many

low p-values. In contrast, the p-values for profiling period 1 contain fewer low values. When the

p-value of the first profiling period is less than 0.25, there are more low p-values in the second

period, exhibiting the L-shaped rejection region. Numerous low p-values may be indicative of a

strong testing power. According to the third data characteristic, we determine that the p-value of

profiling period 2 has the main study’s feature. As a result, we apply our approach to the data by
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Figure 3.7: Density plot of the p-value of the second profiling period p2 against the p-value of the
first profiling period p1.

considering the first profiling period as the pilot study and the second profiling period as the main

study. In other words, we consider the p-value from the second profiling period as a covariate.

The seven procedures described in Section 3.3 are applied to the p-value pairs. For the

proposed procedure, Erep is calculated by 10,000 times, replacing p-value pairs. We considered the

p-values obtained in Lim et al. (2021) as the combined procedure. Table 3.1 summarizes the

number of significant tests at various nominal FDR levels. For each nominal FDR level, the target

FDR level is modified when implementing the IHW, AdaPT, and proposed procedure. The pilot

procedure declared only a few tests significant across all nominal FDR levels. Once more, it can

be stated that the testing power of the first profiling period is lower than that of the second

profiling period. The proposed procedure consistently declares more tests as significant than other

procedures, including combined and main procedures. As illustrated in Figure 3.8, the proposed

procedure provides a larger L-shaped rejection region as the target FDR level increases.

Regardless of the target FDR level, the main p-value rejection threshold changes when the
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Figure 3.8: The proposed method is applied to the p-value pairs using different nominal FDR
levels, and the chosen L-shaped rejection regions are visualized in the four scatterplots of the p-
value pairs with a vertical axis limit of 0.1. The rejection regions correspond to nominal FDR levels
of 0.01, 0.05, 0.1, and 0.2, from left to right.

covariate p-value is approximately 0.2. By examing Figure 3.7, we can see that our approach can

be understood to increase the inference power by focusing our rejection region on the region where

the density of the p-value pair is high. In contrast, in most instances, modern FDR-controlling

procedures, like IHW, BL, and AdaPT, declare fewer tests as significant than the main procedure.

3.5 Discussion

Even though the proposed method offers substantial improvements over existing methods,

there is still potential for improvement. First, our method provides a DDE gene list for a specified

FDR level, which is a disadvantage compared to the existing methods that provide adjusted

p-values or q-values. This may not be a major concern if we only want the DDE gene list for a

given FDR level, but there is space for improvement in this area. Next, the proposed rejection

region can be further generalized, and we can consider a sigmoid function to define the region.

Additional research is required for the type of rejection region. At the same time, we should

explore the covariate suited for such rejection regions. We hope our paper may inspire other

scholars and be implemented in various fields.
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3.8 Appendix

Lemma : L∗
F̂DR1(L∗

a|m̂0)
= L∗

a almost surely.

Proof. Let L̃a indicate a collection of all L-shape rejection regions holding a constraint of

F̂DR1(· | m̂0) ≤ a. By definition of L∗
a, the best L-shape rejection region L∗

a also holds the

constraint F̂DR1(L
∗
a | m̂0) ≤ a. As a result, we can show that L̃

F̂DR1(L∗
a|m̂0)

⊆ L̃a. From the

definition of L̃
F̂DR1(L∗

a|m̂0)
and an obvious fact of F̂DR1(L

∗
a | m̂0) ≤ F̂DR1(L

∗
a | m̂0), we can show

that L∗
a ∈ L̃

F̂DR1(L∗
a|m̂0)

. Because the best rejection region L∗
a for a larger set L̃a is also included

in the smaller set L̃
F̂DR1(L∗

a|m̂0)
, L∗

a is still the best rejection region in L̃
F̂DR1(L∗

a|m̂0)
, in perspective

of DDE genes number and F̂DR1. By combining the previous result with the Assumption 3.2.3,

we can conclude that L∗
F̂DR1(L∗

a|m̂0)
= L∗

a almost surely.

Theorem : Let α̃ = max
{
F̂DR1(L

∗
a | m̂0) : a ∈ [0, 1], FDP(L∗

a | H0) ≤ α
}
. Then,

FDP(L∗
α̃ | H0) ≤ α almost surely..

Proof. Define Fα =
{
F̂DR1(L

∗
a | m̂0) : a ∈ [0, 1], FDP(L∗

a | H0) ≤ α
}
. From the definition of α̃, α̃

can be expressed as max(Fα). Because Fα is not an empty set (0 ∈ Fα ∵ L∗
0 = ∅), α̃ =

F̂DR1(L
∗
ã | m̂0) for some ã ∈ [0, 1] such that FDP(L∗

ã | H0) ≤ α. From the Assumption 3.2.3, L∗
ã

satisfying F̂DR1(· | m̂0) = α̃ is uniquely determined almost surely. Without loss of generality, we

can select a ã such that α̃ = F̂DR1(L
∗
ã | m̂0). From the lemma and the fact that

α̃ = F̂DR1(L
∗
ã | m̂0), we can show that L∗

α̃ = L∗
ã almost surely. Because FDP(L∗

ã | H0) ≤ α and

L∗
α̃ = L∗

ã almost surely, we can conclude that FDP(L∗
α̃ | H0) ≤ α almost surely.
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Table 3.2: The empirical TPR (%) with corresponding empirical FDR (%) in parentheses of the
seven procedures for all scenarios of set 1 and 2.

µδ ERσ2 npilot proposed combined main pilot IHW BL AdaPT

0.05 1.00 20 6.4 (4.76) 6.04 (4.89) 4.83 (4.68) 0.29 (4.44) 5.79 (4.28) 4.91 (4.7) 5.19 (3.75)
· 1.50 20 5.66 (4.73) 3.11 (4.98) 4.83 (4.68) 0.07 (4.25) 5.27 (4.4) 4.89 (4.72) 3.68 (3.6)
· 2.00 20 5.31 (4.69) 1.69 (4.99) 4.83 (4.68) 0.03 (4.46) 5.03 (4.43) 4.88 (4.73) 2.81 (3.38)
· 2.50 20 5.13 (4.71) 0.98 (5.05) 4.83 (4.68) 0.02 (4.48) 4.91 (4.46) 4.87 (4.73) 2.28 (3.22)

0.07 1.00 20 16.33 (4.76) 15.78 (4.88) 13.4 (4.77) 1.53 (4.61) 15.35 (4.2) 13.64 (4.78) 14.12 (4.23)
· 1.50 20 14.97 (4.71) 9.77 (4.92) 13.4 (4.77) 0.42 (4.43) 14.32 (4.3) 13.57 (4.8) 11.57 (4.21)
· 2.00 20 14.35 (4.74) 6.25 (4.99) 13.4 (4.77) 0.15 (4.52) 13.83 (4.39) 13.53 (4.8) 10.14 (4.18)
· 2.50 20 13.98 (4.71) 4.11 (5) 13.4 (4.77) 0.07 (4.59) 13.56 (4.4) 13.51 (4.8) 9.32 (4.19)

0.09 1.00 20 28.71 (4.78) 28.02 (4.91) 24.81 (4.79) 5 (4.67) 27.4 (4.06) 25.25 (4.8) 25.83 (4.46)
· 1.50 20 26.95 (4.75) 19.66 (4.92) 24.81 (4.79) 1.7 (4.73) 26.06 (4.27) 25.12 (4.81) 22.58 (4.53)
· 2.00 20 26.11 (4.75) 14.11 (4.93) 24.81 (4.79) 0.66 (4.64) 25.42 (4.35) 25.05 (4.82) 20.8 (4.52)
· 2.50 20 25.66 (4.75) 10.33 (4.93) 24.81 (4.79) 0.3 (4.59) 25.07 (4.41) 25 (4.83) 19.78 (4.52)

0.11 1.00 20 40.64 (4.83) 39.91 (4.93) 36.4 (4.86) 10.74 (4.78) 39.1 (4.03) 37 (4.88) 37.47 (4.59)
· 1.50 20 38.75 (4.82) 30.51 (4.92) 36.4 (4.86) 4.68 (4.67) 37.65 (4.22) 36.82 (4.88) 33.93 (4.64)
· 2.00 20 37.85 (4.81) 23.71 (4.94) 36.4 (4.86) 2.17 (4.71) 36.97 (4.33) 36.73 (4.89) 32.13 (4.68)
· 2.50 20 37.34 (4.8) 18.62 (4.94) 36.4 (4.86) 1.07 (4.64) 36.57 (4.38) 36.66 (4.9) 31.17 (4.67)

0.13 1.00 20 50.83 (4.86) 50.13 (4.95) 46.65 (4.89) 17.93 (4.8) 49.11 (3.96) 47.34 (4.91) 47.58 (4.68)
· 1.50 20 48.97 (4.85) 40.62 (4.97) 46.65 (4.89) 9.28 (4.77) 47.72 (4.19) 47.15 (4.92) 44.05 (4.72)
· 2.00 20 48.09 (4.83) 33.32 (4.94) 46.65 (4.89) 5.04 (4.7) 47.07 (4.29) 47.03 (4.93) 42.21 (4.74)
· 2.50 20 47.6 (4.84) 27.6 (4.95) 46.65 (4.89) 2.85 (4.66) 46.7 (4.35) 46.96 (4.93) 41.44 (4.77)

0.05 2.00 10 4.87 (4.7) 0.15 (7.95) 4.83 (4.68) 0 (4.59) 4.76 (4.49) 4.87 (4.74) 1.48 (2.83)
· 2.00 20 5.31 (4.69) 1.69 (4.99) 4.83 (4.68) 0.03 (4.46) 5.03 (4.43) 4.88 (4.73) 2.81 (3.38)
· 2.00 30 5.86 (4.7) 4.15 (4.79) 4.83 (4.68) 0.15 (4.5) 5.41 (4.4) 4.9 (4.72) 4.14 (3.64)
· 2.00 40 6.45 (4.78) 6.52 (4.75) 4.83 (4.68) 0.42 (4.5) 5.82 (4.3) 4.91 (4.71) 5.27 (3.75)

0.07 2.00 10 13.51 (4.7) 0.78 (6.7) 13.4 (4.77) 0.01 (4.52) 13.23 (4.48) 13.47 (4.82) 8.3 (4.13)
· 2.00 20 14.35 (4.74) 6.25 (4.99) 13.4 (4.77) 0.15 (4.52) 13.83 (4.39) 13.53 (4.8) 10.14 (4.18)
· 2.00 30 15.36 (4.74) 11.93 (4.84) 13.4 (4.77) 0.8 (4.63) 14.59 (4.31) 13.59 (4.79) 12.26 (4.22)
· 2.00 40 16.43 (4.75) 16.58 (4.78) 13.4 (4.77) 2.07 (4.71) 15.38 (4.19) 13.64 (4.78) 14.28 (4.24)

0.09 2.00 10 25.02 (4.73) 2.95 (5.98) 24.81 (4.79) 0.03 (4.67) 24.61 (4.46) 24.94 (4.83) 18.98 (4.55)
· 2.00 20 26.11 (4.75) 14.11 (4.93) 24.81 (4.79) 0.66 (4.64) 25.42 (4.35) 25.05 (4.82) 20.8 (4.52)
· 2.00 30 27.43 (4.75) 22.79 (4.83) 24.81 (4.79) 2.9 (4.68) 26.43 (4.2) 25.16 (4.81) 23.47 (4.49)
· 2.00 40 28.83 (4.79) 28.98 (4.85) 24.81 (4.79) 6.09 (4.7) 27.45 (4.07) 25.26 (4.8) 25.96 (4.47)

0.11 2.00 10 36.63 (4.79) 7.23 (5.68) 36.4 (4.86) 0.08 (4.86) 36.05 (4.45) 36.56 (4.9) 30.95 (4.73)
· 2.00 20 37.85 (4.81) 23.71 (4.94) 36.4 (4.86) 2.17 (4.71) 36.97 (4.33) 36.73 (4.89) 32.13 (4.68)
· 2.00 30 39.27 (4.82) 34.08 (4.89) 36.4 (4.86) 6.93 (4.72) 38.05 (4.17) 36.87 (4.88) 34.86 (4.63)
· 2.00 40 40.78 (4.84) 40.87 (4.88) 36.4 (4.86) 12.32 (4.75) 39.15 (4.01) 37.01 (4.88) 37.57 (4.59)

0.13 2.00 10 46.89 (4.83) 13.24 (5.45) 46.65 (4.89) 0.23 (4.7) 46.21 (4.42) 46.84 (4.93) 41.67 (4.79)
· 2.00 20 48.09 (4.83) 33.32 (4.94) 46.65 (4.89) 5.04 (4.7) 47.07 (4.29) 47.03 (4.93) 42.21 (4.74)
· 2.00 30 49.49 (4.84) 44.26 (4.91) 46.65 (4.89) 12.58 (4.75) 48.09 (4.12) 47.21 (4.92) 45.01 (4.71)
· 2.00 40 50.93 (4.84) 51.02 (4.91) 46.65 (4.89) 19.79 (4.82) 49.16 (3.96) 47.35 (4.92) 47.7 (4.68)
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Table 3.3: The number of tests declared to be significant for different nominal FDR levels and
procedures.

nominal FDR proposed combined main pilot IHW BL AdaPT

0.01 188 126 181 0 177 182 0

0.05 314 254 298 0 290 297 308

0.10 450 429 419 0 391 424 413

0.20 894 852 707 3 565 704 648
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Abstract

The Random Forest (RF) method is a well-known machine learning algorithm for prediction.

The performance of the method depends on the values of a few tuning parameters. This paper

suggests a unique case-specific tuning algorithm for RF regression. We provide a simple example

to demonstrate that the values of the tuning parameters that lead to the best of the predictor

domain. Thus, case-specific tuning can be advantageous. A simulation study reveals that our

strategy for case-specific tuning may be a good alternative to existing approaches for selecting

tuning parameter values, especially when the signal-to-noise ratio is relatively high. In addition,

in real data analysis, our approach provides competitive results compared to existing methods.

4.1 Introduction

Since the RF method was proposed by Breiman (2001), it has been heavily used in practice to

make predictions and extensively studied in statistics and machine learning literature. Several

articles, such as Boulesteix et al. (2012), Biau and Scornet (2016), and Probst and Boulesteix

(2017), have reviewed the RF method.

According to Lin and Jeon (2006), the RF method can be viewed as an adaptive

nearest-neighbors method. The RF prediction of the response value as a function of a predictor

vector is simply a weighted average of the response values in the training data set. The weights
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on the training response values are determined by the proximity of each predictor vector’s value

in the training data set to the value of the predictor vector targeted for prediction. The biggest

weights are assigned to training response values whose predictor vector values are in close

proximity to the target value. The RF algorithm automatically accounts for the underlying

relationship between the predictor vector and the response while determining the proximity

weights. Predictor variables that are only weakly associated or unassociated with the response

play little to no role in determining the proximity weights, while predictor variables strongly

associated with the response have a large impact on the RF assessment of proximity. Several

authors have described RF proximity weighting and used it for various purposes. For example, see

Meinshausen (2006). Xu et al. (2016), Zhang et al. (2019), and Friedberg̊a et al. (2020)

To implement the RF method in actual data analysis, specifying the values of several tuning

parameters is necessary. From the statistical point of view, the two most interesting tuning

parameters are, arguably, mtry and nodesize. These tuning parameters are interesting because

the best values to choose, in terms of minimizing mean squared prediction error (MSPE), depend

on unknowns specific to a given data set. The values of the tuning parameters mtry and nodesize

tradeoff variance and bias of the RF predictor by their impact on RF proximity weights. Large

values of mtry and small values of nodesize tend to concentrate weights on the response values of

a few nearby cases, thereby reducing bias at the cost of larger predictor variance. Small values of

mtry and large values of nodesize, on the other hand, tend to place positive weights more widely

and uniformly over the training response values, potentially introducing bias in exchange for a

reduction in predictor variance.

Cross-validation is perhaps one of the most common strategies for selecting values of mtry and

nodesize to minimize MSPE. For random forests and other methods relying on bootstrap

aggregation (i.e., bagging) cross-validation is carried out conveniently and efficiently by

minimizing the sum of the squared out-of-bag (OOB) prediction errors over a grid of tuning

parameter value choices. For readers unfamiliar with OOB prediction, the idea is as follows. The

RF algorithm starts by selecting B bootstrap samples from the training data set. The RF
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prediction for a target predictor vector is obtained by averaging the predictions of B random

trees, each constructed using one of the B bootstrap samples. According to Breiman (2001), the

OOB prediction of the ith response value is obtained by averaging the predictions from the

random trees built from the bootstrap samples that exclude the ith training case. Because the i

training case is excluded from a bootstrap sample with probability (n−1
n )n ≈ e−1 ≈ 0.368, there

will be, with high probability, a subforest of trees built without knowledge of ith training case

from which the OOB prediction is obtained. The OOB prediction error is the difference between

the ith response value and its OOB prediction. It is straightforward to obtain each OOB

prediction error for a variety of tuning parameter values.

In this paper, we point out that the best values for mtry and nodesize may depend on the

target value of the predictor vector. Thus, it may be advantageous to choose the values of mtry

and nodesize in a case-specific way. When the target for prediction lies in a region of the

predictor vector domain where the true underlying mean function is relatively flat, assigning

positive weights to many nearby observations is likely to reduce MSPE by diminishing predictor

variance without introducing substantial bias. On the other hand, if the target value lies in a

region of the predictor domain where the true underlying mean function changes relatively

quickly, weights may need to be more concentrated on a small number of nearby cases to avoid

introducing substantial bias at the cost of higher prediction variance. One illustrative example is

provided in Figure 4.1. When X1 is less than 0.75, the mean function is flat, whereas when X1 is

greater than 0.75, the mean function changes relatively quickly. Therefore, when X1 is relatively

small, selecting the tuning parameter in the direction of reducing the predictor’s variance will

help reduce MSPE. When considering the bias-variance tradeoff associated with nodesize, the

predictor’s variance can be diminished when nodesize is large. Consequently, when X1 belongs to

the first four interval groups (defined on the horizontal axis of the second panel of Figure 4.1),

MSPE is smaller when nodesize is 20 than when nodesize is 1. In contrast, the converse occurs

when X1 belongs to the fifth interval group.
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Figure 4.1: The data generating model is Y = µ(X1) + ϵ, with five i.i.d. predictor variables from
U(0,1), where µ(X1) is illustrated in the graph above. RF is implemented using the specified values
of nodesize and mtry, and MSPE is computed for five intervals defined by X1 values. The MSPE
values are depicted in the graph below.

Rather than finding the values of mtry and nodesize that minimize the sum of all squared

OOB prediction errors, our idea for case-specific tuning of random forests relies on minimizing a

weighted sum of squared OOB prediction errors. We use RF proximity weights to pay the most

attention to the OOB prediction errors of cases that are in closest proximity to the target value of

the predictor vector. In this way, we use the observed data to infer whether the target lies in a

region of the predictor domain where averaging over response values of many nearest cases is

advantageous or whether the complexity of the mean function in the target region requires a more

refined and narrow focus on only a relatively few of the nearest cases to improve MSPE.
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The remainder of this paper is organized as follows. Section 4.2 describes the RF algorithm,

its tuning parameters, and our novel tuning algorithm. Section 4.3 and 4.4 demonstrate the

effectiveness of our approach through a simulation study and data analysis, respectively. Section

4.5 examines our approach’s development potential.

4.2 Method Proposal

4.2.1 Random Forest Prediction

The following describes the classic RF algorithm, proposed by Breiman (2001). Let

ZZZ = {Zi = (Xi, Yi) : i = 1, . . . , n} represent training data set, where Xi and Yi are ith

p-dimensional predictor vector value and response variable value, respectively. RF generates B

bootstrap samples from ZZZ. For a tuning parameter vector λλλ, a random regression tree is

constructed for the bth bootstrap sample ZZZb. A set of split rules outlined below determines the

regression tree. Each tree node is specified by a hyperrectangle sequentially defined by the split

rules, and the initial node’s hyperrectangle is set to p-dimensional Euclidean space. For a given

node, a split rule is applied to the subset of the observations in ZZZb whose predictor vector

observations fall within the hyperrectangle if the number of observations in the subset exceeds the

nodesize. If the number of observations in the subset is less than or equal to the nodesize, the

node is considered a terminal node and is not split further. The split rule is described as follows.

Initially, mtry candidate variables are selected at random. For each candidate variable, the split

rule is selected that minimizes the sum of squared deviations of each response variable value from

its subnode mean response. As the node’s split rule, the rule with the minimum sum of squared

deviations across candidate variables is selected. The hyperrectangle for the next two nodes is

created by dividing the hyperrectangle of the current node using the split rule.

Following the construction of the random regression tree using the bth bootstrap sample, the

tree is used to predict the response at a target point X0. A terminal node is first identified

relative to the target point following the set of split rules. Then, the tree prediction is obtained

by averaging the response values of training observations in the terminal node. Let T (X0 : ZZZb,λλλ)
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denote the tree prediction using bth bootstrap sample at a target point X0 with tuning parameter

value λλλ. The RF prediction at X0 is

Ŷ λλλ(X0) =

∑B
b=1 T (X0 : ZZZb,λλλ)

B
(4.1)

=

∑n
i=1Wi(X0 : ZZZ1, . . . ,ZZZB,λλλ)× Yi

n
, (4.2)

where
{
Wi(X0 : ZZZ1, . . . ,ZZZB,λλλ)

}n

i=1
are nonnegative proximity weights that sum to 1. As

described in Lin and Jeon (2006), the proximity weight Wi(X0 : ZZZ1, . . . ,ZZZB,λλλ) in (4.2) can be

employed as a measure of the proximity between X0 and Xi.

4.2.2 Tuning Parameters

According to Probst et al. (2019), RF method contains several hyperparameters that can be

regarded as tuning parameters. Most hyperparameters are utilized when generating random trees.

The hyperparameters include the number of randomly selected candidate variables (mtry), the

maximum number of observations per a terminal node (nodesize), the sampling procedure

including sample size for producing bootstrap samples, and the number of random trees. Xu et al.

(2016) successfully improves prediction by adjusting the sampling procedure for each target point.

Even though nodesize and mtry are considered tuning parameters in this paper, our method is

still valid when a different combination of hyperparameters determines the tuning parameter.

4.2.3 Standard Tuning Algorithm

To assess RF’s predictive performance, cross-validation is a suitable method, which is a

time-consuming process, especially when dealing with large data sets. As an alternative, to assess

RF performance, OOB predictions are typically employed. The OOB prediction Ŷ λλλ
(i) for ith

training data Zi, is the prediction only of the trees built without Zi in their corresponding

bootstrap sample. Let Obi be 1 if the ith training observation is left out of the bth bootstrap

sample and 0 otherwise. The OOB prediction is expressed as

Ŷ λλλ
(i) =

∑B
b=1Obi × T (Xi : ZZZb,λλλ)∑B

b=1Obi

. (4.3)
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and the OOB prediction error is defined as Yi − Ŷ λλλ
(i). Average squared OOB prediction error

(ASOOBPE) is defined as

∑n
i=1{Yi−Ŷ λλλ

(i)
}2

n . The standard RF tuning algorithm selects tuning

parameter values λλλ that minimizes ASOOBPE among a set of candidate choices for λλλ.

4.2.4 Case-Specific Tuning Algorithm

The standard RF tuning algorithm chooses a vector of tuning parameter values λλλ∗ that

minimizes OOB ASPE and uses the λλλ∗ when predicting responses at any target point. Our

case-specific tuning (CST) algorithm recommends a case-specific tuning parameter λλλ∗(X0) when

predicting the response at a target point X0, employing weighted average squared OOB prediction

error (WASOOBPE) with proximity weights. The following describes the CST algorithm.

Case-Specific Tuning Algorithm

1. For a target point X0, generate proximity weights {Wi(X0 : ZZZ1, . . . ,ZZZB,λλλ1)}ni=1, using a

predetermined tuning parameter λλλ1.

2. Choose a tuning parameter λλλ∗(X0) minimizing a weighted average squared OOB prediction

error with the weights generated in step 1:

λλλ∗(X0) = argminλλλ2

∑n
i=1Wi(X0 : ZZZ1, . . . ,ZZZB,λλλ1)× {Yi − Ŷ λλλ2

(i) }
2.

3. Use the tuning parameter λλλ∗(X0) for the RF prediction at X0.

The tuning parameter λλλ1 in step 1 can either be set to default value or be selected by

cross-validation, minimizing test error. Typical default values of mtry and nodesize in the RF

regression are max{1, ⌊p/3⌋} and 5, respectively.

Alternatively, the CST algorithm can be implemented by replacing the proximity weights with

typical kernel weights. However, we present the CST algorithm with proximity weights for the

following two reasons. First, while implementing RF, we normally include a large number of

covariate variables, and therefore typical kernel weights may suffer from high-dimensionality

problems. According to Friedberg̊a et al. (2020), proximity weights can alleviate problems
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regarding high dimensionality, compared to typical kernel weights. In addition, the classic tuning

algorithm also generates random trees to evaluate the prediction error for different tuning

parameter combinations. Since the generated random trees can be used to calculate proximity

weights, our method can be implemented efficiently.

4.3 Simulation Study

Table 4.1: A description of the five simulation scenario-building mean functions. Each function
is made up of a combination of linear and nonlinear components. In particular, Friedman (1991)
introduced the third model for the p = 10 case, which has been utilized in multiple publications
[e.g., Friedberg̊a et al. (2020), Xu et al. (2016).]

Model ID (j) µj(·)

1 10X1i + 10X2i + 5X3iX4i

2 8 sin(2πX1i) + 6X2i + 3X3i + 2X2iX3i

3 10 sin(πX1iX2i) + 20 (X3i − 0.5)2 + 10X4i + 5X5i

4 log
{
1 + e20(X1i−0.5)

}
+ 1

X2iX3i+0.1 + 5X4i

5 e2X1iX2i+1.5X3i

To evaluate our method’s performance, we conduct a simulation study. The data model is

based on the additive error model Yi = µ(Xi) + ϵi. Xi and ϵi are independently generated from

U(0, 1)p and N(0, σ2
ϵ ), respectively, for each observation i. We set p equal to 10 and select σϵ from

{0.1, 1, 10}. We consider five mean functions µ(·), provided in Table 4.1. Each simulation scenario

is defined by a combination of µ(·) and σϵ. For each scenario, 1000 simulation runs were

conducted. The model generates 1000 training observations and 100 test observations in each run

independently. The test data are utilized to assess a procedure’s prediction error. In detail,

MSPE is computed using the test data and then averaged over the 1000 simulation runs for a

given procedure, referred to as MSPE.
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We compare seven comparable tuning procedures for RF, including two from our method.

When implementing all procedures, the number of random trees is fixed to 500. Regarding our

method, we employ a grid search strategy while selecting tuning parameter values for λλλ1 in step 1

and λλλ2 in step 2. Inspired by randomForestSRC R package, mtry and nodesize values are selected

from {1, 2, . . . , p} and {1, 2, . . . , 9, 10, 20, . . . , 100}, respectively. λλλ1 is determined through 10-fold

cross-validation or its default value stated in Section 4.2.4. Depending on whether cross-validation

is employed, the two procedures are referred to as CST.RF and cv.CST.RF. The descriptions and

abbreviations of the remaining five procedures are provided in Table 4.2. Essentially, the

procedures are implemented according to each package’s default configuration. When

implementing case-specific RF method (CS.RF), nodesize is set to 10 in the RF to create

bootstrap sampling probabilities, while other tuning parameter settings use the RF’s default

values. See Xu et al. (2016) for details.

Table 4.2: This table contains the seven procedures’ abbreviations, used R packages, used functions
in the package, and brief descriptions. The tuneRanger method combines all useful features of the
ranger, mlrMBO, and mlr R packages, where mlrMBO package is built on sequential model-based
optimization. Details can be found at Probst et al. (2019).

Name R Package Used Function Brief Description

default randomForest randomForest node size = 5 & mtry = max{1, ⌊p/3⌋}

CS.RF randomForest · For each data point, case-specific RF is applied.

tuneRF randomForest tuneRF & randomForest node size = 5 & mtry minimizing ASOOBPE

tune.rfsrc randomForestSRC tune & rfsrc node size & mtry minimizing ASOOBPE

tuneRanger tuneRanger makeRegrTask & tuneRanger All useful features of several R packages are implemented.

(cv.)CST.RF randomForestSRC · For each data point, CST-algorithm is applied.

The simulation results are summarized in Table 4.5. The following analysis is focused on the

tuning algorithms for mtry and nodesize. In terms of MSPE, when the error variance is relatively

small (σϵ = 0.1 or 1), alternative approaches are usually superior to the default procedure.

Therefore, we may conclude that tuning nodesize and mtry is advantageous when the error

variance appears small. At the same time, in the scenarios (σϵ = 0.1 or 1), our methods

outperform other procedures. This effect appears to result from the fact that when the variance is
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smaller, the proximity weight identifies the nearest data point more precisely. As illustrated in

Figure 4.2, cv.CST.RF procedure consistently provides the minimum prediction error in the least

error variance scenarios. Almost every value on the x- and y-axes of the scatterplots is negative,

leading us to conclude that the tuning algorithms outperform the default approach in most

simulation runs. In addition, the greater number of dots in the top left corner suggests that the

cv.CST.RF procedure consistently outperforms alternative tuning approaches. When the error

variance is rather large (σϵ = 10), tuneRanger has the minimum prediction error compared to all

other procedures. Regardless of the scenarios, tuneRanger and our method work well.

Additionally, cv.CST.RF consistently outperforms CST.RF, although the difference in MSPE is

not as substantial. Thus, our method with a default setting is also a good alternative.

4.4 Data Analysis

Table 4.3: Summary of preprocessed data sets that we analyzed. All data sets were obtained from
the UCI machine learning repository (https://archive.ics.uci.edu). For each data set, observations
with missing values and predictor variables with many levels were excluded from our analysis.
The response variable was chosen based on the repository’s descriptions. We analyzed the energy
efficiency data using two distinct response variables and treat these as separate data sets.

Data set Data name # of observations # of predictors Response variable

1 Airfoil self-noise 1503 5 Scaled sound pressure level

2 Auto MPG 392 7 mpg

3 Concrete compressive strength 1030 8 Concrete compressive strength

4 Energy efficiency 768 8 Y1

5 Energy efficiency 768 8 Y2

6 Forest fires 517 11 log(area+1)

7 QSAR aquatic toxicity 546 8 LC50

8 QSAR bioconcentration 779 9 Bioconcentration Factor in log units

9 QSAR fish toxicity 908 6 LC50

10 Yacht hydrodynamics 308 6 Residuary resistance per unit weight

We conduct real data analysis on ten data sets from the UCI repository, as described in Table

4.3. To preserve generality, most data sets in the repository with more than five predictor

variables and approximately 1500 observations or fewer were considered. The following explains
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how we analyzed each data set. Each data set is randomly separated into a training set and a test

set to assess prediction error, with the training set approximately four times bigger than the test

set. The seven procedures described in Section 4.3 are implemented using the training set. The

test set is subsequently used to evaluate prediction error. Consequently, MSPE values are

computed to evaluate each procedure’s performance, where MSPE is defined as the mean squared

error in prediction for an average of over 1000 random training and test set partitions.

According to the data analysis results in Table 4.4, we can conclude that the tuneRanger

method and our methods are superior to all other procedures. Additionally, the MSPE and

average rank performance of tuneRanger and our methods are comparable. Upon closer

inspection, the results vary depending on the data type. Therefore, we believe that both methods

are suitable for use in practice. According to average rank, cv.CST.RF beats CST.RF, while the

difference across all data sets seems insignificant. If there is a time constraint, CST.RF is a

suitable alternative to cv.CST.RF. Lastly, the superior performance of the default approach in

data sets 8 and 9 demonstrates that there is no single optimal tuning strategy.

Table 4.4: Summary of the MSPE values derived from the analysis of data sets 1 through 10.
Additionally, the rank is computed using the MSPE value for each data set, displayed between
parentheses next to the MSPE value. The procedure with the lowest MSPE is the one with the
lowest rank. The average rank is displayed between parentheses next to each procedure’s name.

Data set default (5) CS.RF (5.8) tuneRF (4) tune.rfsrc (4.9) tuneRanger (3) CST.RF (2.8) cv.CST.RF (2.5)

1 12.96663 (7) 3.87302 (6) 3.57957 (5) 3.41309 (4) 3.25631 (2) 3.24823 (1) 3.25875 (3)

2 7.71837 (5) 7.93895 (7) 7.66451 (3) 7.69696 (4) 7.74673 (6) 7.59487 (1) 7.60856 (2)

3 30.05015 (7) 25.5282 (5) 24.65954 (4) 26.38998 (6) 22.23771 (1) 23.16951 (3) 22.96185 (2)

4 1.24491 (7) 0.25351 (5) 0.27688 (6) 0.25125 (4) 0.23019 (3) 0.22606 (1) 0.22824 (2)

5 3.40837 (7) 2.88359 (3) 3.03665 (5) 2.93579 (4) 3.03731 (6) 2.83769 (2) 2.74709 (1)

6 2.11759 (6) 2.34238 (7) 2.09236 (5) 2.02909 (3) 1.98835 (2) 2.07024 (4) 1.9877 (1)

7 1.21683 (2) 1.26301 (6) 1.21928 (3) 1.27071 (7) 1.21662 (1) 1.25141 (5) 1.2321 (4)

8 0.47946 (1) 0.50923 (6) 0.48185 (2) 0.51784 (7) 0.48337 (3) 0.49994 (5) 0.49326 (4)

9 0.77004 (1) 0.83569 (7) 0.77007 (2) 0.79886 (6) 0.77304 (3) 0.79086 (5) 0.78749 (4)

10 16.39026 (7) 1.22974 (6) 1.20511 (5) 1.19234 (4) 1.18749 (3) 1.14365 (1) 1.15099 (2)
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Table 4.5: MSPE values derived for different models and values of σϵ. For each scenario, the
smallest MSPE is in bold font.

Model ID σϵ default CS.RF tune.rfsrc tuneRF tuneRanger CST.RF cv.CST.RF

1 0.1 0.98102 0.74114 0.57640 0.50929 0.46241 0.45886 0.43631

· 1 1.98977 1.91859 1.65325 1.55738 1.55673 1.52995 1.52354

· 10 104.43360 112.00949 106.87260 104.31740 102.55088 104.96307 103.89444

2 0.1 2.07559 0.95094 0.56988 0.55675 0.51447 0.50965 0.47081

· 1 3.08743 2.18807 1.70351 1.67047 1.65557 1.64016 1.62609

· 10 105.77790 113.65692 108.49098 106.08697 103.98705 106.49796 105.32098

3 0.1 3.11834 3.29546 2.85259 2.71925 2.61802 2.56033 2.52681

· 1 4.12401 4.41952 3.89942 3.74910 3.68509 3.60569 3.58591

· 10 106.60905 114.53857 109.25835 106.70038 105.48454 107.51734 106.80550

4 0.1 1.13538 1.06260 0.64415 0.63631 0.61954 0.58357 0.55720

· 1 2.16040 2.27861 1.74242 1.71388 1.72399 1.67577 1.67032

· 10 105.58647 113.17093 108.24301 105.49766 103.84140 106.11952 105.11590

5 0.1 1.08306 0.75013 0.32088 0.35890 0.36625 0.30934 0.30315

· 1 2.11382 1.98602 1.43523 1.45624 1.48277 1.41810 1.42018

· 10 105.19142 112.14874 106.55931 105.14231 104.01971 104.87568 104.43176

4.5 Discussion

This paper presents the CST algorithm as a viable alternative to the existing RF tuning

approaches. However, the approach has significant room for improvement. The parameter domain

of tuning parameter values should be reduced for two reasons. First, because grid search

strategies are typically slow, restricting the parameter domain will accelerate the algorithm. The

second reason is depicted in Figure 4.1. The figure demonstrates that it is advantageous to use

unique tuning parameter values for each target point. There is a further noteworthy observation.

Only two of the four-parameter vectors minimize the sum of squared prediction errors in at least

one predictor domain. In other words, when implementing the CST algorithm, we may not

require all tuning parameter vectors. Therefore, a moderately reduced parameter domain may

improve the CST algorithm in terms of minimizing prediction error.
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It would be intriguing to evaluate suitable prediction intervals for our method. We may

employ Zhang et al.’s (2019) prediction interval utilizing the distribution of OOB prediction

errors to our method. We also want to investigate whether the case-specific tuning algorithm is

useful for classification problems. In addition, it could be interesting to determine whether our

strategy is useful for bias correction of other nonparametric methods.
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Figure 4.2: Scatterplot showing log2-transformed MSPE ratios for a given procedure and
cv.CST.RF procedure, in which the scenario of σϵ = 0.1. Each point represents a simulation
run, and the MSPE ratio is calculated by dividing the MSPE of a procedure by the MSPE of the
default procedure. The red line indicates that the y and x axis values are identical.
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CHAPTER 5. GENERAL CONCLUSIONS

5.1 Summary

In the dissertation, three topics are covered. The first two topics are RNA-seq analysis

methods incorporating covariates in distinct inference circumstances. The method described in

Chapter 2, which employs a gene-specific covariate such as gene length, is a generally applicable

approach. We have demonstrated through simulation that the rejection rule that includes the

simple information of a low p-value can effectively boost the inference power. The method in

Chapter 3 is another RNA-seq analysis method for a more particular circumstance compared to

the first method. Simulations indicated that the inference power could be improved by effectively

reducing the number of rejection rules when the data include both a pilot study and the main

study. Chapter 4 covered the final topic of the RF’s case-specific tuning algorithm. Despite the

simplicity of the approach, we demonstrated that the prediction error could be lowered practically

through simulations and data analysis.

5.2 Future Work

I am planning to conduct more research on topics related to this dissertation. Regarding the

first topic, I wish to study rejection rules based on various conditional null probabilities.

Incorporating informative conditions of promising hypotheses into the conditional null probability

may increase the power of inference. We can also consider a method based on a more generalized

mixture model. Next, multiple research topics can be derived from the second topic of this

dissertation. By incorporating p-value as a covariate, we developed a novel method, while its

applicability is limited. I want to investigate additional covariates having a unique functional

relationship with p-value thresholds that may apply to a wider range of circumstances. Then,

methods that accommodate the specific relationship can be devised. Alternately, the covariate
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required by our method can be obtained from p-value vectors derived from experiments with

comparable experimental designs. It may be essential to appropriately handle missing p-values,

which is a potentially intriguing statistical question. Lastly, I would like to apply the case-specific

tuning philosophy to various machine learning methods.
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