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ABSTRACT

The area of computing is seeing parallelism increasingly being incorporated at various lev-

els: from the lowest levels of vector processing units following Single Instruction Multiple Data

(SIMD) processing, Simultaneous Multi- threading (SMT) architectures, and multi/many-cores

with thread-level shared memory and SIMT parallelism, to the higher levels of distributed mem-

ory parallelism as in supercomputers and clusters, and scaling them to large distributed systems

as server farms and clouds. All together these form a large hierarchy of parallelism. Developing

high-performance parallel algorithms and efficient software tools, which make use of the avail-

able parallelism, is inevitable in order to harness the raw computational power these emerging

systems have to offer. In the work presented in this thesis, we develop architecture-aware

parallel techniques on such emerging paradigms in parallel computing, specifically, parallelism

offered by the emerging multi- and many-core architectures, as well as the emerging area of

cloud computing, to target large scientific applications.

First, we develop efficient parallel algorithms to compute optimal pairwise alignments of

genomic sequences on heterogeneous multi-core processors, and demonstrate them on the IBM

Cell Broadband Engine. Then, we develop parallel techniques for scheduling all-pairs compu-

tations on heterogeneous systems, including clusters of Cell processors, and NVIDIA graphics

processors. We compare the performance of our strategies on Cell, GPU and Intel Nehalem

multi- core processors. Further, we apply our algorithms to specific applications taken from the

areas of systems biology, fluid dynamics and materials science: pairwise Mutual Information

computations for reconstruction of gene regulatory networks; pairwise Lp-norm distance com-

putations for coherent structures discovery in the design of flapping-wing Micro Air Vehicles,

and construction of stochastic models for a set of properties of heterogeneous materials.

Lastly, in the area of cloud computing, we propose and develop an abstract framework

to enable computations in parallel on large tree structures, to facilitate easy development

of a class of scientific applications based on trees. Our framework, in the style of Google’s

MapReduce paradigm, is based on two generic user-defined functions through which a user

writes an application. We implement our framework as a generic programming library for a

large cluster of homogeneous multi-core processor, and demonstrate its applicability through

two applications: all-k-nearest neighbors computations, and Fast Multipole Method (FMM)

based simulations.
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CHAPTER 1. INTRODUCTION

The work presented in this dissertation is on the development of parallel algorithms and

mapping techniques as a step towards addressing the demands created by the emergence of

parallelism at almost every level of computing since the recent past. We explore emerging areas

in the domain of parallel computing, including the multi- and many-core architectures, and

cloud computing. We first develop methods to efficiently solve the problems of pairwise genomic

alignments and generalized pairwise computations on emerging architectures, in the context of

scientific applications drawn from multiple areas, including computational genomics, systems

biology and materials science. We further develop an abstraction for performing computations

on large tree structures, as a framework in cloud computing, targeting a class of applications

taken from computational science, but not limited to them.

While describing the work in this dissertation, we assume reader’s familiarity with computer

science, in terms of algorithm design and analysis, and a basic knowledge of the working of

a parallel computing system, as well as software development. We begin by first describing

the notion of emerging paradigms in parallel computing. In this chapter, in order to build a

foundation towards the work described in subsequent chapters, we give an introduction and

overview of the emerging platforms we target in our work.

1.1 Emerging Paradigms in Parallel Computing

During the past few years, the field of parallel processing has transformed from parallel

computers being a facility for a select few researchers to parallelism becoming a fundamental

part of almost every computing device around us today. Parallelism is being increasingly in-

corporated at various levels: For instance, the lowest level of software parallelism is provided

at the bit-level by vector processing units that follow the Single-Instruction Multiple-Data

(SIMD) techniques. A single processor may be based on Simultaneous Multi-threading (SMT)

architectures, or may consist of more than one computing core (multi- and many-cores) provid-

ing thread-level shared memory and Single-Instruction Multiple-Thread (SIMT) parallelism.

Many processors may be connected together through an interconnection network to form a

distributed memory parallel system, such as supercomputers and clusters. At the highest lev-

els, many such computing resources spanning over large geographical areas may be connected

to form a massively parallel system, such as server farms and clouds. All these put together
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form a hierarchy of parallelism available at various levels. Though some of these systems, like

supercomputers and clusters, have been there for a few decades, the others, like multi- and

many-core processors, and cloud-based computing, have emerged recently and have gained

prominence. These systems are broadly referred to as emerging paradigms in the area of par-

allel computing. Development of efficient parallel algorithms and software tools which make

use of the available parallelism is inevitable for developing high-performance applications on

these systems.

We broadly group our target emerging paradigms into emerging architectures, consisting of

processors offering parallelism at the low-levels (SIMD, and thread-level), and cloud computing,

offering a high-level of distributed parallelism. We describe these next, in Sections 1.2 and 1.3,

respectively.

1.2 Emerging Architectures

A multi-core processor consists of two or more number of computational cores, which

execute simultaneously, in parallel. The term “multi-core” is generally used for processors

with the number of cores in the order of tens (e.g., quad-core, octo-core), and “many-core”

for processors with larger number of cores, going into hundreds. Such processors could be

either homogeneous, consisting of only identical cores (e.g. Intel Nehalem processors), or

heterogeneous, consisting of more than one type of cores (e.g. IBM Cell processors). Some

processors are specialized, like the graphics processors (e.g. NVIDIA Quadro GPUs). These

specialized processors generally work as co-processors, where they are attached to general-

purpose processors, which run the OS, manage the system, and off-load specific computations

to the specialized processors, thereby making the whole system as heterogeneous. In our work,

we focus on two classes of such architectures: heterogeneous multi-core Cell processors, and

many-core graphics processors.

1.2.1 The Cell Processor

The Sony-Toshiba-IBM (STI) Cell Broadband Engine (CBE) [27, 25] is a nine-core het-

erogeneous processor, primarily designed to target high-performance parallel processing in

graphics, multimedia, and gaming applications. It was first released as the main processor in

the Sony PlayStation 3 gaming console. This processor consists of one general-purpose 64-bit

Power architecture based core, with two-way simultaneous multi-threading (SMT), called the

PowerPC Processing Element (PPE), and eight SIMD based co-processing cores called Syn-

ergistic Processing Elements (SPEs), which are the main power-horse of the Cell processor.

These components on the chip are internally connected through a high-bandwidth bus called

the Element Interconnect Bus (EIB), with a theoretical peak bandwidth of 204.8 Gb/s. The

EIB also connects the chip to external system memory and I/O devices. All the cores run at
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a clock frequency of 3.2 GHz. A conceptual block diagram of the CBE is shown in Figure 1.1.

PPE

I/O
controller

Memory
controller

PPU L1

L2

EIB

SPE0 SPE1 SPE2 SPE3

SPE7 SPE6 SPE5 SPE4

Figure 1.1: Block diagram of the Cell Broadband Engine showing the PowerPC Processing

Element (PPE), the eight Synergistic Processing Elements (SPEs), the Element Interconnect

Bus (EIB), and the data paths. The PPE consists of a PowerPC Processing Unit (PPU),

an L1-cache and an L2-cache. The memory controller and I/O controller provide interface to

off-chip system memory, and I/O devices, respectively.

The PPE contains a 64-bit general purpose register set, a 64-bit floating point register set,

and a 128-bit vector register set. This main core is designed to run the operating system and

manage the devices. Each SPE consists of a Synergistic Processing Unit (SPU) along with a

memory flow controller (MFC) which acts as an interface between the SPU and the EIB. The

SPU has a processing unit and a Local Store (LS) of 256 KB. Programs running on an SPE

reside in its LS and perform computation on the data present in the LS. Each SPU contains

128 general purpose 128-bit vector registers, making it a SIMD processing unit. SPEs do not

have direct access to the system’s main memory, and to enable data flow between the main

memory and the LS of a SPE, explicit DMA transfers need to be carried out. Each core runs

its own individual thread. A block diagram of an SPE is shown in Figure 1.2. Each SPE

has two instruction pipelines – even and odd, providing instruction level parallelism: Certain

instructions, like floating point operations, integer operations, logical and byte instructions,

are scheduled to the even pipeline, and other instructions, like load and store, branching

operations, are scheduled to the odd pipeline.

The Cell BE has been the main processor in Sony PlayStation 3. On this system, six SPEs

are available for computations and can be used for scientific computing [21]. The IBM QS20,

and QS22 with PowerXCell 8i processors, Cell blades provide two 3.2 GHz Cell processors,

based on the SMP (Symmetric Multi-Processing) architecture. The EIB is extended across the

two Cell processors through a high speed coherent interface, which enables a transparent access

to a total of 16 SPEs by the programs running on the Cell blade. Due to their physical locations,

the on-chip communication latency between two components of a single Cell processor is lower

than the off-chip communication between two components on the two separate processors on

a Cell blade.
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Figure 1.2: Block diagram of a Synergistic Processing Element of the Cell processor, showing

the 128-bit register set, 256 KB Local Store, even and odd instruction pipelines, and the DMA

I/O controller with the memory management unit (MMU). The DMA I/O provides an interface

to the Element Interconnect Bus (EIB).

1.2.1.1 Challenges on the Cell Processor

The SPEs are designed for compute intensive processing in parallel, while the PPE takes

care of the management. There are numerous constraints and restrictions which make develop-

ment of optimized applications on the Cell processor quite challenging. The SPEs are designed

for SIMD computation and do not comparatively perform well on scalar data. A major limiting

factor is the small Local Store of 256 KB where the SPE code and all data has to reside along

with stack and heap memory used during execution. This calls for implementations which

use as little memory as possible on the SPEs. Moreover, no memory protection is provided

and the developer needs to take care of the memory management. Data are transferred from

the main memory through DMA transfers explicitly. DMA transfers of only 1, 2, 4, 8, 16 or

multiples of 16 bytes are allowed, and the source and destination address of the data being

transferred should be aligned at 16-byte boundary for 16 byte or larger data size, and naturally

aligned for smaller sizes. Optimal performance is achieved when DMA transfers are multiples

of 128 byte sized and aligned to the cache line, which is 128 byte boundaries. Further, DMA

transfer latency from the main memory of the system is high, and to achieve efficiency on this

processor, such transfers should be minimized. These DMA transfers are non-blocking, and a

performance improvement can be realized by overlapping computations with DMA transfers

while using double buffering.

1.2.2 Graphics Processors

Graphics Processing Units (GPUs) are massively parallel multi-threaded architectures, pro-

viding hundreds of cores. They are, therefore, aptly referred to as many-core processors. They

are specialized processors, primarily designed to perform compute-intensive graphics render-
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ing, off-loaded from the system’s main CPU. Their highly parallel architecture makes them

more powerful for a range of complex processing than a general-purpose CPU, and hence,

GPUs have been increasingly employed in performing intensive computations for problems

taken from numerous areas of computing, and not just graphics, in a technique commonly

termed as General-Purpose Computing on Graphics Processing Units (GPGPU).

GPUs are developed by a number of companies, mainly NVIDIA, Intel, and AMD/ATI.

In the rest of the discussion, we will assume NVIDIA GPU architecture [72, 84], although

the GPUs manufactured by other companies are not very different conceptually. The compu-

tational cores on a GPU are grouped into a hierarchy. A particular NVIDIA GPU consists

of a number of Streaming Multiprocessors (SM), also referred to as simply multiprocessors.

Each such multiprocessor is made up of a number of scalar computing cores, called Streaming

Processors (SPs). A GPU system is equipped with an off-chip memory, which can be directly

accessed by all threads running on the GPU. Each SM has a small shared memory, which can

be accessed only by threads running on the particular SM.

GPUs are primarily designed for graphics processing, and are therefore, very restrictive in

terms of offered operations and programmability. NVIDIA developed a computational model

unifying the GPU architecture with general-purpose programming concepts, called Compute

Unified Device Architecture, or CUDA [32]. It also provides an API for easy programma-

bility of the NVIDIA GPUs. Apart from the CUDA API, many other APIs also exist, such

as OpenCL [56], Microsoft’s DirectCompute [30], and BrookGPU [75], and they all provide

integration with the CUDA API.

CUDA enables fine-grained and scalable parallelism by defining the computational paral-

lelism in terms of tasks and threads. A computational problem is divided into coarse-grained

tasks, called CUDA thread blocks, each further divided into fine-grained threads. Threads in

a thread block may cooperate with each other to compute the corresponding task. A CUDA

kernel is a computational function which is executed in parallel by the CUDA threads. A

kernel defines the thread blocks, forming a one or two-dimensional grid. Each thread block

is defined as a one, two or three-dimensional array of threads. A kernel defines the computa-

tion of such a thread, and all the threads perform the computation in parallel, following the

Single-Instruction Multiple-Thread (SIMT) architecture.

CUDA maps the kernel grid onto the GPU as follows: scheduling granularity is at the level

of thread blocks, where each thread block is scheduled to one SM. A conceptual diagram of the

CUDA architecture mapping on to the GPU is shown in Fig. 1.3. A particular SM may have

multiple thread blocks assigned to it simultaneously, as permitted by the resources available

on the SM. The execution of a thread block is assumed to be independent of all other thread

blocks, and may be executed in any order.

As we mentioned above, the system memory space is defined as a hierarchy: The off-chip

device memory is accessible by every thread in a grid, the shared memory available on each
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Figure 1.3: A conceptual block diagram of the CUDA architecture mapping to a GPU. On

the left is a GPU architecture, with multiprocessors (SM), each containing scalar processors

(SPs) and shared memory. All the multiprocessors have access to the off-chip device memory.

On the right is the CUDA architecture, where a kernel is decomposed as a grid, containing

CUDA thread blocks. An example mapping (center arrows) of the thread blocks onto the SMs

is shown, where, all thread blocks in each of the row in the grid are mapped to one SM.

SM is accessible by all threads in a particular thread block executing on that SM, and has the

lifetime of the corresponding thread block. The shared memory is partitioned among all the

thread blocks assigned to the SM. Threads in a block are scheduled for execution on an SM

as warps, which are groups of 32 threads. A set of registers available on an SM is partitioned

among all the warps on the SM. The shared memory, being on-chip, and physically very close

to the computing cores in an SM, have a low latency, but are small in size (16 KB in most

GPUs). The device memory is large, but being off-chip, has a high access latency. Compared

to the access latency of the main memory in a general-purpose CPU, that of the device memory

on GPU is higher due to lack of any caches on the chip.

1.2.2.1 Challenges on a GPU

Being a specialized architecture, with massive SIMT parallelism, graphics processors pose

numerous challenges in order to harness their computational power. Since threads are scheduled

on an SM as warps, having multiple warps scheduled on an SM is beneficial for performance

since it hides instruction and memory latencies during the execution. Thread blocks defined as

a multiple of the warp-size minimize resource wastage, and also, if there are p SMs on a GPU,

we want the total number of thread blocks in the grid to be in excess of p to take advantage

of the parallelism. A large number of thread blocks also ensures a better load balance among

the SMs. We term the total number of thread blocks in a grid as degree of parallelism. The

amount of shared memory usage by a kernel puts a constraint on the number of thread blocks

that can be scheduled on an SM simultaneously, since the shared memory is partitioned among

the corresponding thread blocks. A similar constraint is also established due to the limited

number of registers available on an SM, which are partitioned among the corresponding warps.
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Contiguous memory accesses by threads in a warp from the device memory enables memory

coalescing, reducing the memory transactions to be carried out, and thereby, improving the

performance. Moreover, since the access latency to the device memory is high, the limited

amount of shared memory needs to be effectively used to minimize memory access from the

device memory. CUDA also puts forth limitations on the maximum thread block size that can

be created: A maximum of 512 threads are allowed in a block.

1.2.3 Algorithms and Applications on Emerging Architectures

The emerging heterogeneous and homogeneous multi/many-core architectures provide a

wide variety of architectural features which make them suitable for high-performance comput-

ing. Even though the graphics processors generally offer the highest theoretical computational

power, due to their specialized design, they are more suited to highly parallel stream process-

ing, and may not perform well with certain coarse-grained parallel computations where the

Cell processor, or general-purpose CPUs will perform better. GPUs are designed to be used

as a co-processing device where the host CPU and the GPU share the computational loads,

depending on which tasks are better suited to either processor, as a heterogeneous comput-

ing system. Similarly even though being a stand-alone processor, the Cell BE may also be

integrated with a CPU, or even a GPU, to share the computations. Roadrunner [13], a super-

computer which topped the top500 list [105] in June 2008 as world’s first petaflop system is

built on such a heterogeneous/hybrid design, where the PowerXCell 8i processors are attached

to dual-core AMD Opteron processors.

These emerging multi/many-core architectures are increasingly being used for high perfor-

mance computing. The Cell Broadband Engine and graphics processors, due to their unique

designs and high computational power, have been the main target for general purpose com-

puting to accelerate computations in various scientific applications [69, 25, 84].

Algorithms have been developed on these architectures for various fundamental problems,

for example sorting [50, 76, 96], number crunching problems like fast fourier transforms [9,

53], random number generators [11, 63], and irregular problems like list ranking [10, 87].

Researchers have also targeted accelerating specific applications on the Cell BE and graphics

processors, taken from numerous areas of computing, for instance, pattern matching [97], video

encoding/decoding [12], financial modeling [2], and bioinformatics [91].

There has been a significant interest in porting bioinformatics applications to the Cell

and GPUs. Sachdeva et al. [91] evaluated the performance of a basic porting of FASTA and

ClustalW applications on to the Cell platform. ClustalW is a multiple sequence alignment

application which leverages on using pairwise sequence alignment algorithms, such as local

alignment, multiple times. An architecture-aware implementation of this application, tuned

to the Cell processor, was developed by Vandierendonck et al. [108]. Farrar [43] developed

a Cell-based SIMD vectorized implementation of the Smith-Waterman [103] local sequence
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alignment algorithm. Manavski et al. [78] implemented this local alignment algorithm on

GPUs. Blagojevic et al. [19] and Charalambous et al. [24] implemented RAxML on the Cell

and graphics processor, respectively, an application for inferring large phylogenetic trees. Many

other researchers have also implemented parallel algorithms for sequence alignments on these

architectures [112, 113, 3, 68].

In our work, we look at the fundamental problem of pairwise genomic alignments, and

develop efficient parallel algorithms for an architecture like the Cell processor. Apart from this,

we also look at certain other applications involving pairwise computations, taken from systems

biology, fluid dynamics and systems biology. There has also been some interest in executing

pairwise computations on the emerging architectures. Arora et al. [6] demonstrate the all-pairs

N -body computational kernels on various multi-core platforms, including the Cell processor

and NVIDIA graphics processors. Acceleration of the pairwise distance matrix computation

employed in multiple sequence alignment algorithms was demonstrated on the Cell processor

by Wirawan et al. [114]. Also, Barrachina et al. [15] explored graphics processors for matrix

multiplication on dense matrices, and Bell et al. [23] for sparse matrices.

1.2.4 Contributions on the Emerging Architectures Paradigm

On the platform of emerging architectures, we develop efficient parallel techniques for

various kinds of pairwise computations on the multi- and many-core processors. First, we

develop a hybrid parallel algorithm on the Cell platform to compute an optimal alignment

of two input genomic sequences (Chapter 2). This algorithm is built upon the wavefront

communication scheme which was first proposed by Edmiston et al. [40], and a parallel-prefix

based pairwise sequence alignment algorithm proposed by Aluru et al. [5]. This algorithm

works in linear space, in the light of the limited on-chip memories on the cores of the Cell

processor. We apply our algorithm to various genomic alignments – global/local, spliced and

syntenic.

Next, we look at the abstract problem of pairwise computations for a number of input

entities (Chapter 3). We develop methods to efficiently schedule such pairwise computations

on the Cell processor and graphics processors. On the Cell processor, our scheme optimizes

the performance by minimizing the total number of DMA transfers required. We apply our

implementation on the Cell to applications taken from the areas of systems biology, materials

science and fluid dynamics. We develop a software library, TINGe-CBE, for inference of genome-

wide gene regulatory networks from microarray data, on the Cell platform. Next, we develop

a generalized all-pairs computations library, libpnorm, with in-built Lp-norm distance metric

computational kernel for all-pairs computations. Such computations are applied in materials

science, to construct stochastic models of properties for a given set of heterogeneous media,

and in fluid dynamics to discover coherent structures in the design of flapping-wing Micro Air

Vehicles.
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On graphics processors, we develop an efficient scheme to perform such pairwise compu-

tations, where the shared memory on the SMs is employed to reduce the number of accesses

to the device memory. We implement our scheme as a generalized library, libpairwise, on the

GPU platform. We use it to conduct an in-depth analysis of the effects on the performance

based on a choice of various parameters used in our scheme, and demonstrate how to choose

these parameters to maximize the performance. Furthermore, we compare the performance of

our schemes on the Cell and graphics processors, with multi-core parallelizations on a general-

purpose CPU.

1.3 Parallel Processing with Cloud Computing

A cloud represents a set of computing resources, which are provided to a user in an ab-

stract manner. Conceptually, cloud computing is considered as a paradigm shift towards the

server-client system, where all the details of the computing resources and system management

are abstracted away from the user. A user does not need to have any knowledge of the system

infrastructure details, and parallelism involved in the cloud. One of the main motivations

behind such a computing paradigm is simplicity. It involves development of broadly applicable

high level abstractions as a means to deliver easy programmability and cyber resources to the

user, while hiding complexities of system architecture, parallelism and algorithms, heterogene-

ity, and fault-tolerance. A cloud-based system provides a very simple interface to the user,

which is general enough to enable realization of many different applications while providing

some performance guarantees. With this interface (also called application programming inter-

face, or API), a user writes an application with minimal complexity. A cloud may provide any

kind of computing resource, ranging from a sequential processor to a large parallel cluster of

high-performance processors, possibly distributed across the planet. This concept is visualized

in Figure 1.4.

The continuing explosive growth in raw data in virtually every sphere of human activity

necessitates large scale data-intensive and compute-intensive processing. While such processing

often requires the use of distributed/parallel systems to handle memory, storage and run-time

needs, developing applications from scratch for such platforms is expensive and cumbersome

enough to prevent their widespread use. A cloud computing based framework is helpful in

addressing this problem since an application writer (user) needs to focus only on the crux of the

computations and does not need to worry about the system details. However, a major challenge

in designing such a cloud computing framework for scientific computing is the abstraction of

the computational patterns in the targeted applications. Following data-parallel computing

model, the processing on a given set of input data can be defined as independent computations

which can be performed in parallel. Google’s MapReduce paradigm [37] is one such example,

and its recent prominence has renewed interest in development of such abstractions. In the

following we describe the MapReduce paradigm in brief.
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Figure 1.4: A conceptual diagram of Cloud computing. The computing, storage and man-

agement resources reside in a cloud, and a user is oblivious to the details of the system

infrastructure and algorithms. The users make use of the resources through an application

programming interface (API) provided by the cloud. The API is very simple for the users to

write their applications without the knowledge of the internal parallelism and complexities in

the cloud.

1.3.1 MapReduce Paradigm

Google’s MapReduce paradigm [37], first proposed in 2004, borrows the concepts of map

and reduce functions which are commonly used in functional programming. This framework

provides two functions: Map and Reduce, for a user to define in order to realize an application.

Both these functions are defined on data represented as key-value pairs. Map takes such data

from one domain and maps to data in another intermediate domain:

map(k1, v1) −→ list(k2, v2),

where a data entity (k1, v1) is mapped to a set of data entities as list(k2, v2). The subscripts

1 and 2 for the data represent different domains. Reduce function takes a set of data from the

intermediate domain, corresponding to the same keys, and generates a set of values in another

domain:

reduce(k2, list(v2)) −→ list(v3).

Once these two functions are defined by a user, the system executes them in a massively parallel

manner. With these two simple functions, the MapReduce framework provides a versatile way

to solve numerous data-parallel applications through innovative use of these user-specified
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Map and Reduce functions. Since its introduction, apart from its use internally at Google,

applications of MapReduce framework are being investigated in multiple fields (for example,

see [106] and the NSF Cluster Exploratory (CluE) program [45]).

1.3.2 Applications on MapReduce

Major large-scale MapReduce framework based system implementations include the im-

plementation used at Google [37], and the open-source Apache Hadoop project [18]. Various

other implementations of MapReduce also exist, such as Phoenix [86] – a shared-memory

implementation, Mars [60] – an implementation on graphics processors, and an implementa-

tion on the Cell BE platform [36]. QtConcurrent [1] is another implementation of MapRe-

duce as a C++ template library for the shared-memory platform. BashReduce [46] provides

MapReduce written as bash scripting. The MapReduce framework is used in a wide range of

data-parallel applications, such as distributed grep, distributed sort, web link-graph/link-list

reversal, inverted-index construction, and document clustering.

Researchers have also adapted and enhanced the basic MapReduce framework to address

more specific data processing domains, like relational data queries [115], machine learning on

multi-cores [26], and .NET-based distributed computing [66]. Such functional style program-

ming models with high level abstractions are important for the success of cloud computing, as

the goal is to provide vast computing and storage resources to the user without knowledge of

architecture, parallelism or data location within the cloud.

1.3.3 Contributions on the Cloud Computing Paradigm

Despite its success, MapReduce can only abstract independent data-parallel processing

of individual data entities, where data dependencies are not involved. Numerous data and

compute intensive applications do not fit this simple model. A particularly important class

of applications outside the scope of MapReduce framework involve trees – a diverse class of

data structures pervasively used in nearly all areas of computing. Tree-based applications

involving large-scale data-intensive processing need to be carried out on distributed/parallel

computers and/or storage systems. Moreover the processing of data at a particular node of

the tree may require the data from some other nodes in the tree, creating data dependencies.

Structured documents represented using markup languages, such as SGML and its derivatives

such as XML, have a tree based representation. Vast amounts of archives of such documents

need sophisticated query processing, and can be efficiently performed by exploiting their tree

structure. Skillicorn [102] models operations on such structured text using parameterized tree

homomorphism functions on binary trees. Spatial trees [92] have applications in geometric

modeling, graphics and image processing [35]. Data-intensive tree-based applications abound

in high-performance scientific computing, both for maintaining and mining scientific data sets
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such as the Sloan Digital Sky Survey [104], and in applications such as N -body simulations [111,

39, 14], molecular dynamics [20], and computational electromagnetics [59].

Tree-based data and compute intensive applications require significant programming effort

by the user, particularly when dealing with large trees in a distributed/parallel environment.

A MapReduce style abstraction for tree structures can be beneficial, albeit more challenging

due to the variety of tree data structures and algorithmic techniques designed for trees. In

our work, we propose a general framework for computations on tree structures in Chapter 4.

Our framework involves two user-specified functions that can be crafted in numerous ways

to realize widely used operations on tree structures. These functions are based on the fun-

damental parent-children relationships common to all tree data structures, while relegating

storage schema, algorithms, parallelism and concurrency issues to the framework. We report

on a detailed implementation of the framework, as a generic programming library – TreeWorks,

and demonstrate its applicability by developing two applications – all k-nearest neighbors and

Fast Multipole Method (FMM) based simulations – by merely defining the two user-specified

functions of the framework in various ways, and let the framework handle the rest.
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CHAPTER 2. GENOMIC ALIGNMENTS ON HETEROGENEOUS

MULTI-CORE PROCESSORS

Genomic alignments, as a means to uncover evolutionary relationships among organisms,

are a fundamental tool in computational biology. In this chapter, we present a comprehensive

study of developing parallel algorithms for genomic alignments on the Cell, exploiting its

thread and data level parallelism. First, we develop a parallel implementation on the Cell

that computes optimal alignments and adopts Hirschberg’s linear space technique. The former

is essential as merely computing optimal alignment scores is not useful, while the latter is

needed to permit alignments of longer sequences. We then present Cell implementations of

two advanced alignment techniques – spliced alignments and syntenic alignments. Spliced

alignments are useful in aligning mRNA sequences with corresponding genomic sequences to

uncover the gene structure. Syntenic alignments are used to discover conserved exons and other

sequences between long genomic sequences from different organisms. We present experimental

results for these three types of alignments on 16 SPE cores of the IBM QS20 dual-Cell blade

system.

2.1 Genomic Alignments

Alignment algorithms enable discovery of evolutionary relationships among biological se-

quences, and arise in many contexts and applications in computational biology. Over the past

two decades, a number of alignment algorithms have been developed to elucidate different types

of sequence relationships of interest. The most common types of alignments are the global align-

ments [82] which correspond to aligning sequences in their entirety, and local alignments [103]

which correspond to aligning sequences that each contain a substring which are highly simi-

lar. Some applications require more complex alignment strategies. One such example is when

aligning an mRNA sequence transcribed from a eukaryotic gene with the corresponding ge-

nomic sequence to infer the gene structure [51]. A gene consists of alternating regions called

exons and introns, while the transcribed mRNA corresponds to a concatenated sequence of the

exons. This requires identifying a partition of the mRNA sequence into consecutive substrings

(the exons) which align to the same number of ordered, non-overlapping, non-consecutive sub-

strings of the gene, a problem known as spliced alignment. Another important problem is

that of syntenic alignment [65], for aligning two sequences that contain conserved substrings
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Figure 2.1: Genomic alignments: the thick portions of sequences S1 and S2 show the segments

which are aligned. (a) Global Alignment: Both sequences are aligned in their entirety. (b) Local

Alignment: A substring from each sequence are aligned. (c) Spliced Alignment: Ordered series

of substrings of one sequence are aligned to the entire second sequence. (d) Syntenic Alignment:

Ordered series of substrings of one sequence are aligned with ordered series of substrings on

the second sequence. For (b), (c) and (d), the goal includes finding the aligning regions such

that the score of the resulting alignment, as given by a score function, is maximized. Both

the number and boundaries of aligning regions are unknown and need to be inferred by the

algorithm. Only the sequences S1 and S2 are the input for each alignment problem.

that occur in the same order (such as genes with conserved exons from different organisms, or

long syntenic regions between genomes of two organisms). An illustration of global alignment,

spliced alignment and syntenic alignment is shown in Figure 2.1.

These alignment problems can be solved using dynamic programming, and a number of

algorithms exist to do so [82, 103, 51, 65]. The computation time required by these algorithms

is proportional to the product of the lengths of the two input sequences1. The dynamic

programming algorithms use a constant number of dynamic programming tables of quadratic

size. To enable alignment between larger sequences, Hirschberg’s space saving strategy [62]

can be applied in conjunction with most of these algorithms to obtain linear space complexity.

Several algorithms have also been developed to solve these problems in parallel [90, 42, 5,

40, 47]. Some of these parallelize the computations within a single processor utilizing its

vector processing units and SIMD-style instructions [90, 42]. Other algorithms deal with

parallelization across multiple processors. Of these, the two most prominent parallelization

strategies are the diagonal wavefront parallelization by Edmiston et al. [40], and the row-wise

parallel prefix based parallelization algorithm by Aluru et al. [5, 47].

As we mentioned in the introduction, recently many researchers have ported various bioin-

1Although [51] presents an algorithm with cubic complexity, the spliced alignment problem can be treated
as a special case of syntenic alignment and solved in quadratic time, as will be shown later; also, the original
Smith-Waterman algorithm [103] has cubic complexity, but it is widely known that this can be implemented in
quadratic time, for example see [4].
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formatics applications to the Cell platform [91, 19, 108, 112, 3]. Many of these applications deal

with pairwise genomic alignments [91, 112, 3]. These current methods for sequence alignments

on the Cell are restricted to the basic Smith-Waterman algorithm [103] for local alignments.

Some researchers have also implemented the local alignment algorithm in parallel using Ed-

miston’s wavefront pattern on the Cell [113, 3]. All of these implementations compute only

the optimal score of the alignment in parallel, and not an actual alignment. Scoring is merely

a measure to assess the alignment quality, and an actual alignment with the optimal score is

what is needed. While most Cell implementations have ignored this issue, Aji et al. [3] also pro-

duce an actual alignment. However, they use the standard sequential traceback algorithm to

produce an optimal alignment, and use the multi-core processing units only for the purpose of

computing the dynamic programming table. All these current implementations have quadratic

memory usage since they store the whole dynamic programming table in the memory. Because

of this, most of these are limited to small input sequence sizes. Our aim in this work is to

develop a Cell implementation for sequence alignments to overcome all these limitations: We

develop a hybrid parallel genomic sequence alignment algorithm combining the parallelization

strategies from Aluru et al. [5] and Edmiston et al. [40] in order to efficiently use the power of

the Cell processor and describe it in Section 2.2. We also provide a communication complexity

model for the Cell to show that this hybrid scheme results in fewer number of DMA transfers;

We incorporate Hirschberg’s space-saving technique [62, 81] to compute alignments in linear

space, which is important in light of limited memory available per SPE and the high costs of

data transfers to/from the main memory; We produce actual alignments using our approach,

which is important to gain more biological insight into the genomic sequences begin aligned;

In addition to the basic global/local alignment, we apply this scheme to the more advanced

spliced and syntenic alignment problems in Sections 2.3 and 2.4, and analyze their scaling to

two Cell processors on the IBM QS20 Cell blade.

2.2 Global/Local Alignment

Consider two sequences S1 = a1a2 . . . am and S2 = b1b2 . . . bn over the alphabet Σ, and let

‘−’ denote the gap character. A global alignment of the two sequences is a 2×N matrix, where

N ≥ max(m,n), such that each row represents one of the sequences with gaps inserted in

certain positions and no column contains gaps in both sequences. The alignment is scored as

follows: a function, score : Σ× Σ→ R, prescribes the score for any column in the alignment

that does not contain a gap. Scores of columns involving gaps are determined by an affine

gap penalty function: for a maximal consecutive sequence of k gaps, a penalty of h + gk is

applied. Thus, the first gap in a maximal sequence is charged h + g, while the rest of the

gaps are charged g each. When h = 0, the scoring function is called a constant gap penalty

function. The score of the alignment is the sum of scores over all the columns. Affine gap

penalty functions are commonly used so that a sequence of gaps is assigned less penalty than
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treating them as individual gaps – this is because a mutation affecting a short substring is

more likely than several individual point mutations.

The global alignment problem with affine gap penalty function can be solved by using three

(m+ 1)× (n+ 1) sized dynamic programming tables, denoted C, D (for deletion) and I (for

insertion) in the following. An element [i, j] in a table is used to store the optimal score of an

alignment between a1a2 . . . ai and b1b2 . . . bj with the following restrictions on the last column

of the alignment: ai is matched with bj in C, a gap is matched with bj in D, and ai is matched

with a gap in I. The tables can be computed using the following recursive equations, which

can be applied row by row, column by column, or antidiagonal by antidiagonal (also called

minor diagonal) once the top row and leftmost column of each table are initialized:

C[i, j] = score(ai, bj) + max


C[i− 1, j − 1]

D[i− 1, j − 1]

I[i− 1, j − 1]

(2.1)

D[i, j] = max


C[i, j − 1]− (h+ g)

D[i, j − 1]− g
I[i, j − 1]− (h+ g)

(2.2)

I[i, j] = max


C[i− 1, j]− (h+ g)

D[i− 1, j]− (h+ g)

I[i− 1, j]− g
(2.3)

After the tables are computed, the maximum of the scores in the bottom right entries of

the three tables gives the optimal alignment score. By keeping track of a pointer from each

entry to one of the entries that resulted in the maximum while computing its score, an optimal

alignment can be constructed by retracing the pointers from bottom right to the top left corner.

2.2.1 Reducing Memory Usage

The algorithm takes O(mn) time and O(mn) space. The space can be reduced to O(m+n)

using Hirschberg’s technique [62, 81]. This method is a recursive technique to compute the

alignments and the scores. The recursion is based on the fact that if the optimal alignment is

divided into two, the resulting parts will each be the optimal alignments of the corresponding

segments of the sequences. The basic technique is given in Algorithm 1.

In this scheme, one of the input sequences is divided into two halves, and tables are com-

puted for each half aligned with the other input sequence. This is done in the normal top down

and left to right fashion for the upper half and in a reverse bottom up and right to left manner

(aligning the reverses of the input sequences) for the lower half. Since for computation of the

entry (i, j), only the entries in previous row i− 1 and previous column j − 1 are required, it is

sufficient to store a linear array for the last computed row. Once the middle two rows are ob-
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Algorithm 1: space saving align(S′1, S
′
2) – Computing an optimal alignment of

two sequences, S′1 and S′2 of lengths m′ and n′, respectively, in linear space using
Hirschberg’s recursive space saving technique.

m′ ← length(S′1);1

n′ ← length(S′2);2

return if m′ = 0 and n′ = 0;3

S′′1 ← substring S′1[0 · · · m
′

2 − 1];4

rev S′′1 ← reverse of substring S′1[
m′

2 · · ·m′ − 1];5

rev S′2 ← reverse of S′2;6

compute alignment scores for S′′1 and S′2, storing only the last computed row, to7

obtain the middle row m′

2 − 1;

compute alignment scores for rev S′′1 and rev S′2, storing only the last computed8

row, to obtain the middle row m′

2 ;

scan the scores in the obtained rows m′

2 − 1 and m′

2 , to find an optimal score, and9

store the corresponding alignment information;

i← position in the rows corresponding to an optimal score;10

space saving align(S′′1 , S
′
2[0 · · · i− 1]);11

space saving align(S′1[
m′

2 · · ·m′ − 1], S′2[i · · ·n′ − 1]);12

tained from the corresponding two halves, they are combined to obtain the optimal alignment

score, dividing the second sequence at the appropriate place where the optimal alignment path

crosses these middle rows. Care needs to be taken to handle the gap continuations across the

division, and the possibility of multiple optimal alignment paths. The problem is hence divided

into two subproblems and this is repeated recursively for each subproblem. An illustration of

recursion using this scheme is shown in Figure 2.2.

2.2.2 Space-Efficient Global Alignment on CBE

Our parallel alignment algorithm on the CBE [93, 94] is a combination of the wavefront

communication pattern of the algorithm by Edmiston et al. [40], with the parallel-prefix based

space-saving parallel algorithm by Aluru et al. [5]. Both algorithms compute an optimal

alignment of the input sequences. In the wavefront method, each table is divided into a p× p
matrix of blocks where p is the number of processors. Each processor is assigned a column

of blocks. The blocks are collectively computed one antidiagonal at a time (see Figure 2.3).

All blocks on an antidiagonal can be computed simultaneously as they depend only on blocks

on the previous two antidiagonals. Because of block assignment to processors, each processor

only needs to receive the last column of a block (plus an additional element) from the previous

processor.

The parallel prefix based algorithm computes each row of the tables in parallel. One of the
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Optimal
Alignment Path

Figure 2.2: Hirschberg’s sequential recursive space saving scheme. The whole problem is

recursively divided into subproblems around an optimal alignment path, while using linear

space. The middle two rows are enlarged for the first recursion showing an example of an

optimal alignment path crossing them (not shown for subsequent divisions). The four bold

arrows show the direction of computations for the two halves.

sequences is provided to all the processors and the other is equally divided among them —

each processor hence receives a block of columns. The intersections of the optimal alignment

path with the last column in each block (called special columns) define the segment of the first

sequence to be used within a particular processor independently of other blocks. These are

computed row-wise using parallel prefix operations. The idea is visualized in Figure 2.4. Once

the problem is divided among the processors, each processor performs a sequential alignment on

its local segments of sequences using Hirschberg’s technique, and the results from all processors

are concatenated to yield the actual alignment.

To derive an efficient parallel implementation on the Cell, we combine the wavefront tech-

nique with the space-saving special columns technique of the parallel prefix based approach to

obtain a hybrid parallel algorithm. In the wavefront scheme, each computing unit works on

a block of the tables independently, communicating the last column(s) to the next processor

when done and then starts computation on the next block; the parallel prefix approach requires

the computing units to communicate a single element when computing each row. Short but

frequent communications for each row increase channel stalls in the SPEs which is reduced to

one bulk communication per block in the wavefront scheme. Each communication leads to a

synchronization point and, to make most use of parallelism, such points should be minimized.

Moreover, the block size can be optimized for DMA transfer which makes it a better choice for

the Cell Broadband Engine. A more detailed communication complexity analysis for the Cell

processor is given in the next subsection. Our implementation provides efficient space usage

along with traceback capability. Adopting the space-saving method is particularly important

for the CBE, as each SPE has access to only 256 KB of local store memory. Thus, our imple-

mentation significantly extends the scale of alignments compared to previous works on CBE
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SPE0 SPE1 SPE2 SPE3 SPE4

Figure 2.3: Block division in wavefront technique. Each processor is assigned a column of

blocks, as indicated by the processor label inside each block. Block computations follow diag-

onal wavefront pattern (the blocks in the same shade of gray are computed simultaneously in

parallel). The shaded rightmost column of each computation block of the table needs to be

sent to the next processor for computing its assigned block in the next iteration.

which require storing the entire matrix.

We partition each dynamic programming table into blocks of size r × n
p . The number of

rows in a block, r, is chosen so as to optimize DMA transfers (a multiple of 128 bytes). Each

row of blocks contains as many blocks as SPEs. Each column of blocks is assigned to a single

SPE. We modify the parallel space-saving algorithm [5] to incorporate the wavefront technique

and store only the last columns (special columns) for each SPE block. This enables the use

of double buffering in moving input column sequence and overlapping of DMA transfers with

block computations. Each SPE transfers portions of the second sequence allotted to it by the

PPE. For each computation block, it transfers blocks of first sequence using double buffering

and performs the table computations in linear space, while storing all of the last column.

Once done, it transfers the recently computed block of last column data to the next SPE and

continues computation on the next block. This scheme for SPE q (with total of p SPEs) is shown

as pseudo-code in Algorithm 2. This part of the algorithm is called the problem decomposition

phase. Once the special columns are computed containing pointers to the previous special

columns as described in [5], the segments of the first sequence are found which are to be

aligned to the segments of the second sequence on the corresponding SPEs. This is followed

by the sequential version of Hirschberg’s space-saving technique based algorithm, where each

SPE simultaneously computes optimal alignments for its local subproblem. On completion,

each SPE writes its portion of alignment to the main memory through DMA transfers, which

are then concatenated to obtain the overall alignment.
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SPE0 SPE1 SPE2 SPE3 SPE4

Optimal
Alignment Path

Figure 2.4: Block division in the parallel prefix based technique. The second sequence is divided

into vertical blocks, which are assigned to different processors Pi. Special columns constitute

the shaded rightmost column of each vertical block and the dotted circles show intersection

of an optimal alignment path with the special columns, which are used for problem division.

The shaded rectangles around the optimal alignment path represent the subdivisions of the

problem for each processor.

2.2.3 Analyzing Communication Complexity on the Cell BE

In this section, we provide an analysis of the algorithm complexity on the Cell Broadband

Engine. Since the computational complexity is the same for the standard wavefront method,

the parallel prefix based method, and our hybrid scheme, we only focus on communication,

which arises from DMA transfers between different components on the Cell processor. Our

hybrid algorithm performs the same number of DMA transfers as current wavefront implemen-

tations, all of which use quadratic space and cannot compute the alignment itself in parallel.

Thus, we provide linear space usage and parallel computation of alignment on SPEs without

incurring any additional DMA transfers. While this is achieved by borrowing these features

from the parallel prefix based algorithm, we show that a direct Cell implementation of that

algorithm is inferior and causes an increase in the number of DMA transfers.

Bader et al. [9] have given a complexity model for the Cell processor in which the algorithmic

complexity is represented with three terms: the computation complexity, number of DMA

transfers, and number of branching operations in the SPEs. They only consider the number

of DMA transfers to measure the communication complexity. We provide a more detailed

communication complexity analysis by taking into account various latencies for DMA transfers.

Based on the communication network analysis for the Cell processor given in [73], we model

the communication complexity with the number of DMA transfers, their latencies, and the

size of data being transferred. We do not consider mailboxes and signal notifications as their

latencies are almost constant since they involve only a small constant number of bytes, and

are very small when compared to DMA transfer latencies.



21

Algorithm 2: Problem decomposition phase of the parallel space-saving algo-
rithm for SPE q. BLOCKSIZE is equal to the number of rows r in a block.

m′ ← length(S′1);1

n′ ← length(S′2);2

start DMA transfer of S′2, the allocated S2 segment for SPE q;3

num blocks← m′

BLOCKSIZE
;4

start DMA transfer of curr block, the substring S′1[0 · · · BLOCKSIZE− 1];5

for k ← 1 to num blocks− 1 do6

if q 6= 0 then7

receive signal from SPE q − 18

end9

start DMA transfer of next block, the next BLOCKSIZE characters of S′1;10

wait for completion of curr block transfer;11

for i← 1 to BLOCKSIZE do12

compute entries of row i for three tables re-using single row buffer;13

special col[i]← last entry in row i;14

end15

if q 6= p− 1 then16

DMA transfer last computed block of special col to next SPE q + 1;17

signal the next SPE q + 1 that its first column has been written;18

end19

curr block ← next block;20

end21

wait for completion of curr block transfer;22

perform linear space table computation on curr block storing the last column in23

special col array;

DMA transfer last block of computed special col to next SPE;24

On the Cell processor, there are four basic types of explicit DMA transfers based on the

source and destination of the data being transferred. All transfers are stated from the perspec-

tive of an SPE. SPEs use specific commands to transfer data through DMA. There are two

sets of such commands: gets – transfer data into the SPE’s local store (LS); puts – transfer

data out from the SPE’s local store. This gives us the four types of DMA transfers:

1. from the LS of an SPE to the main memory (puts),

2. to the LS of an SPE from the main memory (gets),

3. from the LS of an SPE to the LS of another SPE (puts), and,

4. to the LS of an SPE from the LS of another SPE (gets).
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The gets and puts commands for transfers to/from an SPE’s LS from/to the LS of another

SPE have approximately the same latencies, so we only consider the puts commands for inter-

SPE data transfers.

We use some basic observations taken from [73] to describe our model. The latency for

the process of DMA transfer, initiated by an SPE, can be broadly divided into two phases:

(1) flow-through latency (τ), which includes the process starting from the DMA command

issue by the SPE till the bus request is sent to the Element Interconnect Bus (EIB) – this is

typically 30 to 50 cycles; (2) transfer latency (µ), when the data is actually transferred through

the EIB. The latencies for puts to main memory and puts to local store are almost the same.

This is because the puts command is considered complete when the data is transferred to the

memory interface controller (MIC) on the Cell processor and does not include the latency to

transfer it all the way to the main memory. The latencies for gets from main memory are

higher since it includes the off-chip data transfer latency from the main memory to the MIC,

and the latency to transfer data from MIC to the LS of the SPE. We denote these latencies as

follows:

1. τl – flow-through latency for puts and gets to/from LS and puts to main memory.

2. µl – transfer latency for puts and gets to/from LS and puts to main memory.

3. τm – flow-through latency for gets from main memory.

4. µm – transfer latency for gets from main memory.

Therefore, the total time required for one DMA transfer of b bytes from the main memory to

the local store of an SPE is τm + bµm, and the time of DMA transfer of b bytes from local

store of one SPE to local store of another SPE is τl + bµl.

We now use this model to analyze the communication complexity of our hybrid scheme.

Initially we divide the second sequence (of length n) equally among all p processing units (the

number of SPEs), giving substrings of length n
p to each SPE. Next we divide the first sequence

into segments of size B, to obtain blocks of sizes B × n
p . Therefore, a single SPE has m

B such

blocks, where m is the length of the first sequence. After the computation of one such block,

the SPE transfers the last column data of this block, of size O(B) bytes, to the next SPE

through one DMA transfer. Time taken by a single such DMA transfer is τl +Bµl. Each SPE

performs m
B number of such DMA transfers. Therefore, the total communication complexity

for these DMA transfers for our scheme using wavefront communication is O
(
m
B τl +mµl

)
.

If the parallel prefix based method is directly used, each computing unit is assigned a ver-

tical block of size m× n
p . A single element of O(1) bytes is transferred to the next computing

unit during the computation of each row. The number of such DMA transfers required for this

method is equal to the number of rows, which is m. One such DMA transfer takes O (τl + µl)

time. In addition to this, for each row the parallel prefix primitive is carried out to compute
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the table entries which in total take O (m(τl + µl) log p) time. Hence, total communication

complexity for DMA transfers in this parallel strategy is O ((τl + µl)m log p). The communica-

tion complexity for both methods to transfer input sequences from main memory to the local

stores of SPEs, and to transfer final alignment from local stores to the main memory, is the

same, equal to O
(
τm + τl + (np +m)(µm + µl)

)
. Our hybrid scheme therefore has a better

overall communication complexity, owing to fewer number of DMA transfers compared to the

parallel prefix based approach.

We make further gains on the DMA transfer time in our hybrid scheme with the following

two strategies: First, we overlap the DMA transfer of the blocks of first sequence with the

computation of previous block as described in Algorithm 2. Second, we have the freedom to

choose the transfer block size to optimize DMA transfers. We choose this size to be 128, as

DMA transfers of 128 bytes, or even multiple of 128 bytes, aligned to the 128 byte boundary,

achieve peak performance on the Cell processor.

2.2.4 Optimizing for efficient usage of SPE hardware and memory

SPEs are vector processing units with 128 bit vectors. Our implementation is vectorized

as follows to take advantage of this level of parallelism. In the problem decomposition phase,

each of the table entries contains a score value along with a pointer to previous special column

comprising of the table number and row number. Using arrays of vectors, all this data for

one table entry is stored into a vector. To minimize space usage, single dimensional arrays

vEntry[], representing a single row of the tables, are re-used while computing each row within

a block. The table entry for column j during computation of a particular row i is represented

as the vector:

vEntry[j] =
〈
score(i,j), tblNum(i,j), rowNum(i,j)

〉
(2.4)

Here, score(i,j) represents the alignment score corresponding to the table entry [i, j], and

the two entries tblNum(i,j) and rowNum(i,j) are respectively the table number and the row

number, representing the pointer to the previous special column. Hence, there are three such

vector arrays, corresponding to the tables C, D and I for global alignment. Subsequent to

problem decomposition phase, each processor runs Hirschberg’s space saving technique based

algorithm sequentially on its assigned local segments of the input sequences. During this phase,

only the scores in each entry of the tables need to be stored. Hence, the vector construction

is different – each entry in a particular vector corresponds to the score in each of the three

different tables. Such a vector for column j, during computation of row i, is defined as:

vTables[j] = 〈C[i, j], D[i, j], I[i, j]〉 (2.5)

where C[i, j], D[i, j] and I[i, j] represent the alignment scores for the respective tables. To use

linear space, a single row is stored at a time in the vector array vTables, and is then re-used
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for each row. This results in a single array for all the three tables. This way of vectorizing

helps in using various efficient SPE intrinsics for computation of the entries.

Since the vector buffers for table computation used in the two phases are constructed

differently, we use dynamic memory management to minimize memory usage when integrating

the two phases. The linear space sequential algorithm used in the second phase is a recursive

algorithm. Due to small local storage on each SPE, recursive implementations on the Cell are

not recommended, but in our case we re-use the same row buffer for table calculations during

recursion and limit the extra memory required within each step of recursion so that the stack

does not grow rapidly. As mentioned previously, the lengths of sequences are split into two in

each recursive call, which makes the number of recursive calls linear in the order of sequence

lengths. Actual alignments are obtained in parallel on all the SPEs during the recursion as

described in Myers and Miller’s algorithm [81].

The local store space usage for table computations (apart from space needed for input

sequences and output alignment) on a single SPE during the problem decomposition phase

is
(
m+ n

p

)
· t · ct bytes, where t is the number of dynamic programming tables used (three

in the case of global or local alignment), and ct is the number of bytes needed to represent a

single element of a single table (this comprises of score, tblNum and rowNum as mentioned

previously). The computation space usage during second phase is lower:
(
n
p · t · c′t

)
bytes,

where c′t is number of bytes required to store a single table entry (here it is just the score).

Due to small local store of 256 KB, this puts a limit on the maximum input sequence lengths.

Note that a different implementation can be designed with the tables residing in the main

memory and SPEs used for computing tiles of it in parallel, the tile size being a function

of collective available memory on the SPEs. Such a solution will be slower due to frequent

DMA transfers to the main memory involved when shifting computations from tile to tile,

while accommodating significantly large sequences. Our focus in this paper is to develop a

parallel implementation incorporating Hirschberg’s linear space strategy to increase the sizes

of problems that can be solved using the collective SPE memory. Our scheme should be

sufficient for most global/local/spliced alignments as the sequences are unlikely to exceed a

few thousand bases.

SPEs have two pipelines – even and odd. Different instructions go to different pipelines;

arithmetic, logical, byte operations etc. go to the even pipeline, and load/store, shuffle, branch

etc. go to the odd pipeline, giving instruction level parallelism. To make maximum use of this

dual issue, the instructions need to be scheduled properly. We used the spu-timing tool, which

provides a static analysis of the pipeline usage, to optimize for instruction level parallelism.

This static analysis shows cycles for each assembly instruction and identifies stalls. Stalls due

to dependency can be minimized by interleaving statements and moving dependent statements

apart in the code with the help of this information.
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2.2.5 Performance Results and Discussions

The implementation was done using the IBM Cell SDK 3.0, and run on the QS20 Cell Blade

to obtain the performance results. A QS20 Cell blade contains two cell processors connected

by an extension of the EIB through a coherent interface. This provides us with a total of 16

SPEs on the blade (8 SPEs on each Cell processor). We present performance results for the

implementation on the Cell blade to analyze speedups and scaling for up to 16 SPEs. The

implementation was compiled with O3 level of optimization.

We tested performance scaling of our global alignment implementation with varying num-

ber of SPEs. The run-times obtained are shown in Figure 2.5 for up to 16 SPEs along with the

speedups. The speedups shown are obtained by comparing the parallel Cell implementation

with (1) the parallel implementation running on a single SPE on the Cell processor, (2) a

sequential implementation of the space-saving global alignment algorithm for a single SPE on

the Cell processor (to completely eliminate the parallel decomposition phase), and, (3) a se-

quential implementation run on a desktop with a 3.2 GHz Pentium 4 processor (note that this

implementation is not optimized for the Pentium 4 processor, but is a generic sequential im-

plementation optimized by the compiler). When run on one SPE, the parallel implementation

obviously performs worse than the serial implementation, as it includes the additional problem

decomposition phase which computes the whole table to merely return the entire problem as

the subproblem to solve sequentially. This is used to study the scaling of the algorithm, and

we obtain a speedup of 11.25 on 16 SPEs. When compared to the sequential implementations,

we obtain a speedup of almost 8 over a single SPE, and a speedup of more than 6.5 over the

Pentium 4 processor.

It can be seen clearly in the run-time/speedup graph (Figure 2.5) that the run-times only

show a marginal improvement as the number of SPEs is increased from 8 to 12, as opposed

to the near linear scaling exhibited below 8 and beyond 12. The latency for data transfer

from one Cell processor to the other Cell processor on the blade (off-chip communication)

is much higher than any data transfer between components on a single processor (on-chip

communication). On using more than 8 SPEs, both the processors on the Cell blade are used

and data needs to be transferred from one processor to the other. Due to the higher off-chip

communication latency, the run-time using 9 SPEs is similar (or even worse in case of other

alignment problems discussed in later sections) to the run-time using 8 SPEs. A trade-off is

created with the off-chip communication time and computation time on the two processors.

When amount of computation exceeds the communication time, the run-time further starts to

decrease, thereby increasing the speedups as seen in Figure 2.5 for more than 12 SPEs. To

assess the absolute performance of the Cell implementation, we use the number of cells in the

dynamic programming tables updated per second (CUPS). Note that the problem does not

require any floating point operations, therefore the traditional GFlop metric could not be used.

In Figure 2.5 we show the performance with varying number of SPEs using the CUPS measure
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Figure 2.5: Execution times (left) and speedup (middle) of global alignment implementation

with input sizes m=n=2,000 base pairs. For comparison, the execution times are also shown

for a sequential implementation on one SPE and on Pentium 4 processor. Speedups shown

are relative, and absolute w.r.t. sequential implementations on one SPE and a Pentium 4

processor. Both these sequential implementations do not contain the problem decomposition

phase. The corresponding Cell Updates Per Second (right) for increasing number of SPEs

and is given in MCUPS (106 CUPS). CUPS for one SPE shown is obtained with the parallel

implementation running on a single SPE.

for the global alignment. With 16 SPEs we achieve almost 700 MCUPS.

Wirawan et al. [112, 113] use the same measure to evaluate the performance of their im-

plementation on the Cell. For sequences with sizes m = n = 2, 000, they obtain 2809 MCUPS

using the IBM Full System Simulator for 8 SPEs. The lower performance of our implementation

is attributed to the differences in the problems being addressed. Wirawan et al. perform local

alignments with Smith-Waterman technique using quadratic space. Moreover, they compute

the optimal alignment score and not the actual alignment. Due to the recursive nature of the

space-saving technique used in our implementation in order to obtain a linear space solution,

the computation time increases considerably. Furthermore, obtaining an actual alignment for

the sequences requires other computations not classified as cell updates, which only reflect

effort in computing table entries. Aji et al. [3] demonstrate wavefront based alignment on the

Cell processor and obtain speedups of about 20 compared to a 2.8 Ghz dual-core Intel pro-

cessor. They implement the basic Smith-Waterman local alignment algorithm and compute

the whole dynamic programming tables with quadratic memory usage. A sequential traceback
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is performed by the PPE after the matrix computations are completed by the SPEs. Due to

differences in the algorithms, a direct comparison of their speedups with our results is not

valid. The actual run-times of their implementation are comparable to ours (after extrapolat-

ing the results to the same input sequence sizes). It should also be noted that Hirschberg’s

space-saving technique increases the run-time by roughly a factor of two.

Huang [64] describes how to perform space-saving local alignment by using space-saving

global alignment as a building block. This technique can be used in conjunction with our algo-

rithm to derive a space-saving local alignment on the Cell that produces an optimal alignment.

2.3 Spliced Alignment on CBE

During the synthesis of a protein, mRNA is formed by transcription from the corresponding

gene, followed by removal of the introns and splicing together of the exons. In order to identify

genes on a genomic sequence, or to infer gene structure, one can align processed products

(mRNA, EST, cDNA etc.) to the genomic sequence. To solve this spliced alignment problem,

we describe a solution similar to the one for global alignments. While Gelfand et al.’s algorithm

requires O(m2n+mn2) run-time, we derive an O(mn) algorithm as a special case of Huang’s

O(mn) time syntenic alignment algorithm [65] by disallowing unaligned regions in one of the

sequences. This algorithm uses the three tables as before along with a fourth table H which

represents those regions of the gene sequence which are excluded from the aligned regions (i.e.

they correspond to introns or other unaligned regions). A large penalty d is used in table H to

prevent short spurious substrings in the larger sequence from aligning with the other sequence.

Intuitively, a sequence of contiguous gaps with penalty greater than the threshold d is replaced

by a path in the table H. The four tables are computed as follows:

C[i, j] = score(ai, bj) + max


C[i− 1, j − 1]

D[i− 1, j − 1]

I[i− 1, j − 1]

H[i− 1, j − 1]

(2.6)

D[i, j] = max


C[i, j − 1]− (h+ g)

D[i, j − 1]− g
I[i, j − 1]− (h+ g)

H[i, j − 1]− (h+ g)

(2.7)

I[i, j] = max


C[i− 1, j]− (h+ g)

D[i− 1, j]− (h+ g)

I[i− 1, j]− g
H[i− 1, j]− (h+ g)

(2.8)
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H[i, j] = max


C[i− 1, j]− d
D[i− 1, j]− d
H[i− 1, j]

(2.9)

We follow the same techniques as described for parallel global alignment in Section 2.2 to

parallelize the spliced alignment algorithm on the Cell. Algorithm 2 is used to compute the

special columns for the four tables. For the problem decomposition phase, the SIMD vectors

used on the SPE for each of the tables are the same as given by Equation 2.4. There will be

four such arrays — one for each of the tables C, D, I and H. Due to the presence of the fourth

array, memory usage for this problem is higher than for the global alignment problem. The

table arrays for the second phase are vectorized using the following structure for column j and

a particular row i:

vTables[j] = 〈C[i, j], D[i, j], I[i, j], H[i, j]〉 (2.10)

2.3.1 Performance Results and Discussions

We tested our spliced alignment implementation on the QS20 Cell blade. Figure 2.6 shows

the run times and speedups obtained from a synthetic data set on varying number of SPEs

on the Cell blade. Speedup obtained is almost 10. When compared to the space saving

sequential algorithms running on a single SPE and the Pentium 4 processor, the obtained

speedups are 6 and 7 respectively. We also obtained performance results for aligning the

phytoene synthase gene from Lycopersicum (tomato) with the mRNA corresponding to this

gene’s transcription. The algorithm correctly predicted the intron-exon junctions, as verified

against the GenBank entry of the gene. The run-times and speedups for this input data are

also shown in Figure 2.6. In these graphs we see that the run-times initially increase when the

number of SPEs is increased to more than 8. As mentioned earlier, this is due to the off-chip

communication latency because when using more than 8 SPEs, both the Cell processors on

the QS20 blade are used. Also note that this phenomenon tends to decrease with larger input

sequence sizes since the trade-off between computations and communications leans in favor,

due to a higher degree of overlap. The difference in speedups in the two data sets (left and

right in Figure 2.6) is mainly attributable to the different input sizes (the artificial data size is

larger than the biological data). Moreover, the synthetic data set is random, which results in a

more uniform problem decomposition among the SPEs, while in the actual biological data the

problem sizes for each SPEs may be quite different due to presence of larger unaligned regions.

In Figure 2.7, we show the CUPS performance of the spliced alignment implementation

on the Cell Blade with varying number of SPEs. We obtain almost 450 MCUPS for the

synthetic sequences with m = n = 1, 400 base pairs, and 470 MCUPS for the biological data

set (m = 1, 790mn = 870 base pairs). We further demonstrate the performance improvement
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Figure 2.6: The execution times (left) of the spliced alignment implementation and the re-

spective speedups (right) on various number of SPEs for a synthetic input data of size

m = n = 1, 400 base pairs (top), and phytoene synthase gene from Lycopersicum with its

mRNA sequence, of size m = 1, 790, n = 870 base pairs (bottom). The speedups are ob-

tained by comparison with (1) parallel implementation running on one SPE, (2) sequential

implementation for a single SPE, and (3) sequential implementation on a Pentium 4 desktop.

with increase in data set size in the right panel of Figure 2.7. The performance obtained is

almost 665 MCUPS for synthetic input size of m = n = 2, 400 base pairs and 755 MCUPS for

input size of m = n = 2, 600 base pairs.

2.4 Syntenic Alignment on CBE

Another type of alignment used to compare sequences with intermittent similarities is

syntenic alignment. This is a generalization of spliced alignment allowing unaligned regions

in both the sequences. This is used to discover an ordered list of similar regions separated by

dissimilar regions which do not form part of the final alignments. This technique is applicable

to comparison of two genes with conserved exons, such as counterpart genes from different

organisms. A dynamic programming algorithm for this has been developed by Huang [65].

Similar to spliced alignment, a large penalty d is used to prevent alignment of short substrings.

This dynamic programming algorithm also has four tables, but with an extension in the table

H that both sequences can have substrings excluded from aligning. Table definitions for C, D

and I remain the same as for spliced alignment. Definition of table H is modified as follows:
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Figure 2.7: Processor performance of spliced alignment in MCUPS for synthetic data with

m = n = 1, 400bp and for phytoene synthase gene from Lycopersicum and its mRNA sequence

with m = 1, 790, n = 870bp (left), and synthetic data with m = n = 2, 400bp and m = n =

2, 600bp (right). The CUPS shown for one SPE is obtained using the parallel implementation

running on a single SPE.

H[i, j] = max



C[i− 1, j]− d
D[i− 1, j]− d
C[i, j − 1]− d
I[i, j − 1]− d
H[i− 1, j]

H[i, j − 1]

(2.11)

A parallel algorithm for solving the syntenic alignment problem is described in [47], which

is similar to the parallel global alignment algorithm described in Section 2.2. Algorithm 2 is

used in this case with adaptation to compute the modified table H. Table H can derive scores

either from an entry in previous row, or a previous column. This directionality information is

important to retrieve the alignment and needs to be stored explicitly. Another way to view this

extra information is to split the table H into two, Hh and Hv, where they have the restrictions

of alignment paths going only horizontally or only vertically, respectively. Because of this

overhead, space requirement in syntenic alignment implementation is even larger. We follow

the same scheme of vector construction for table entries as Equations 2.4 and 2.10.

2.4.1 Performance Results and Discussions

We tested our syntenic alignment implementation on the Cell using both synthetic data and

alignment of a copy of the phytoene synthase gene from Lycopersicum (tomato) and Zea mays

(maize). To verify the results, we used pairwise BLAST [44] of the two sequences to identify

all valid local alignments. An ordered list of these local alignments (no crisscrossing pairs of

alignments were found by BLAST in this case) is found by our syntenic alignment program,

as expected. Note that in general, syntenic alignment cannot be replaced by merely finding all
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local alignments because the local alignments collectively might place a single base in multiple

alignments, or might generate crisscrossing alignments. However, when the local alignments

are disjoint and are ordered, the syntenic alignment should be consistent with ordered local

alignments, which we used to verify the accuracy of our program.

The run-times and speedups of the syntenic alignment implementation running on QS20

Cell blade are shown in Figure 2.8. As for the previous alignment implementations, the

speedups for syntenic alignment are obtained by comparison with the parallel implementa-

tion running on a single SPE, and the sequential implementations on one SPE, and on a

Pentium 4 desktop. The performance results for syntenic alignment of a copy of the phytoene

synthase gene from Lycopersicum (tomato) and Zea mays (maize) are shown in the right panel

of Figure 2.8. The speedup is better for the biological data mainly due to its larger size than

the synthetic data-set. In this case also we can see that the run-times initially increase when

more than 8 SPEs are used due to off-chip communication, and then start to decrease.
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Figure 2.8: The execution times in milliseconds (left) and speedups (right) of syntenic align-

ment running on Cell blade for a synthetic input data with m = n = 1, 400bp (top),

and for phytoene synthase gene from Lycopersicum (tomato) and Zea mays (maize), with

m = 1, 790, n = 1, 580bp (bottom). Speedups are computed w.r.t. (1) the parallel algorithm

running on one SPE, (2) a sequential algorithm on single SPE, and (3) a sequential algorithm

on a Pentium 4 desktop.

In Figure 2.9, we show the graphs obtained for CUPS performance of the syntenic alignment

implementation for the synthetic and biological data sets. For the synthetic data set, we obtain
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almost 550 MCUPS and for biological data set, we obtain more than 800 MCUPS.
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Figure 2.9: Performance in MCUPS is shown for synthetic data with m = n = 1, 400bp (left),

and phytoene synthase gene from Lycopersicum and Zea mays of lengths m = 1, 790 and

n = 1, 580 (right). CUPS for one SPE is obtained from parallel implementation.

All the three alignment algorithms run in time proportional to the product of the lengths

of the input sequences. This fact is supported by the scaling graphs shown in Figure 2.10. It

shows the linear scaling of run-times of the algorithms with varying product of input sequence

sizes.
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Figure 2.10: Scaling of the three alignment implementations with increase in input data size.

x-axis is the product of lengths m and n of the two input sequences. This shows that run-time

of our implementations scales linearly with m× n as expected.

2.5 Ending Notes

To conclude, in this chapter we presented parallel algorithms on the Cell Broadband Engine

for a number of pairwise genomic alignment problems. We built upon previously known parallel

genomic alignment algorithms and adapted a combination of them for implementation on the
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Cell. We further improved performance by overlapping DMA transfers with computation,

reducing channel stalls using block based wavefront parallelism, and selecting block sizes for

optimal DMA transfer. A fully vectorized implementation is done for the SPEs, along with

optimizations including double buffering and loop unrolling. Our work advances the state of

the art by showing how to obtain the actual alignments, apply space-saving techniques, and

solve a wider range of alignment problems. We verified the biological accuracy of the alignment

methods using sequences with known structure from GenBank. Our implementations provide

a speedup of almost 8 on global alignments, 7 for spliced alignments, and more than 6 on

syntenic alignments on a range of data tested while using 16 SPEs of the QS20 Cell blade.

We also show the cell updates per second and scaling of our implementations for 16 SPEs on

the Cell blade. It should be noted that these speedups are measured against the respective

implementations of the sequential algorithms, not the parallel implementation running on one

SPE.
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CHAPTER 3. PAIRWISE COMPUTATIONS ON MULTI- AND

MANY-CORE PROCESSORS

Direct computation of all pairwise distances or interactions is a fundamental problem that

arises in many application areas including particle or atomistic simulations, fluid dynamics,

computational electromagnetics, materials science, genomics and systems biology, and clus-

tering and data mining. In this chapter, we present methods for performing such pairwise

computations efficiently in parallel on Cell processors. This problem is particularly challeng-

ing on the Cell processor due to the small sized Local Stores of the Synergistic Processing

Elements, the main computational cores of the processor. We present techniques for different

variants of this problem including those with large number of entities or when the dimension-

ality of the information per entity is large, over a single Cell blade and across a cluster of Cell

blades. We demonstrate our methods in the context of multiple applications drawn from fluid

dynamics, materials science and systems biology, and present detailed experimental results.

3.1 Pairwise Computations

Pairwise computations occur in numerous and diverse applications across many areas. In

many-body simulations and molecular dynamics, computation of pairwise gravitational or elec-

trostatic forces is needed to study system evolution [61]. A similar scenario occurs in com-

putational electromagnetics except that the field is sampled in multiple directions, turning

this into a vector computation [59]. In the radiosity method in computer graphics, a scene is

divided into patches and the reflection and refraction of light between every pair of patches

is of interest to compute the equilibrium light energy distribution [57]. In systems biology,

correlations between pairs of genes are sought based on their expression levels over a large set

of observations [118]. Clustering algorithms typically use a distance metric and use all pair

distances to guide the clustering process [17]. While the details vary, all of these applications

involve pairwise computations between n entities, each of which is described by a d-dimensional

vector.

All-pair computations have a complexity of O(n2f(d)), with f(d) being of the order of O(d)

in many applications. While d is typically 3 for many scientific computing applications, there

are applications where d can be fairly large, to the tune of thousands or tens of thousands.

Typically n is large, making acceleration of pairwise computations critical in many applications.
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The application itself may be run on a parallel system, in which case accelerators can be used

to speed up the part of the pairwise computation matrix that is assigned to a processor.

Note that pairwise computations are not often used in their direct form, particularly in

scientific computing. Algorithmic strategies abound which restrict the pairwise computations

to “neighborhoods”, and are important to effectively scale to large problem sizes. For instance,

the Fast Multipole Method organizes particles/atoms into a hierarchy of clusters and approx-

imates the field computations at various levels so that pairwise computations are restricted

to those between sets of entities in each leaf node, and the entities in spatially neighboring

leaf nodes [109]. While we fully assume that such algorithmic strategies should be used when-

ever available, the run-time is still often dominated by the pairwise computations that are

required to be computed. Thus, without loss of generality, we can study scheduling of pairwise

computations, while noting that the same can be used in conjunction with clever algorithms

that reduce run-time complexity. In high dimensional applications, the curse of dimensionality

takes over and all pairwise computations work faster than algorithms that attempt to reduce

asymptotic complexity as a function of n. For example, nearest neighbors can be computed

in O(dn2) time through pairwise distance computations or O(2dn log n) time through a clever

algorithm. While the latter clearly wins in low dimensions (such as three), it is hard to beat

the naive method in high dimensions.

In this chapter, we consider the problem of scheduling pairwise computations on the Cell

processor and graphics processors. The problem can be considered in its native form with-

out loss of generality. In general, one could be carrying out limited pairwise computations

in conjunction with a complexity reducing algorithm, or accelerating the per node pairwise

computations in a parallel system. Such problems have been studied on parallel systems be-

fore, for example, see [61] for many-body simulations. There is considerable recent interest

in executing pairwise computations on Cell processors [6, 118, 114, 117] as well as graphics

processors [15, 23]. These work are carried out in the context of a specific application that

the authors are trying to solve. Given the ubiquity of applications where such computations

occur, it is useful to consider this problem in its abstract form, and develop common algorith-

mic strategies to extract maximum performance as a function of n and d. These algorithms

can then be packaged into libraries to enable easy coding of applications, ideally removing the

need for architecture-specific programming by the application scientist, while helping to real-

ize optimized performance. This is particularly useful as programming on the Cell processor

involves painstaking low level details, but the collective capability of the Cell accelerators is

the overwhelming dominator in the performance of supercomputers with such accelerators [13].

Furthermore, on graphics processors as well, significant effort needs to be put in to engineer

the code to achieve high efficiency.

In Section 3.2, we propose a tiling approach for the Cell processor to decompose pairwise

computations into sufficiently small subproblems each of which can be solved in parallel on the
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Synergistic Processing Elements (SPEs) of a Cell processor, within the constraints of available

memory. We consider both symmetric and asymmetric cases of the problem, depending on

whether the pairwise computations are within the same set of entities, or across two different

sets of entities. We infer the order of tile computations to minimize DMA transfers and

derive analytical equations to characterize the DMA transfers as a function of the rectangular

layout of each tile. Minimizing the DMA transfers optimizes the code performance. We

further consider problems of high dimensionality, where vectors corresponding to even a pair

of entities is too large to fit in an SPE memory. We also extend this scheme at a higher level

to schedule the computations across a cluster of Cell processors. In Section 3.3, we provide

detailed experimental results in the context of applications that correspond to each of the

above cases. We then propose an efficient method for graphics processors in Section 3.4. This

scheme is also based on a hierarchical decomposition of the output computations and input

vectors. We conduct an in-depth analysis of the effects various decomposition parameter values

have on the performance, and derive conclusions on how to optimally choose these parameters

given a particular GPU architecture. Further, we compare our implementations on the Cell

processor, graphics processors in Section 3.5, and also contrast it with implementations on

homogeneous multi-core CPUs using parallelizations with OpenMP [83] and Intel Threading

Building Blocks [29].

3.1.1 Problem Definition: Generalized Pairwise Computations

The basic problem we consider can be generalized as follows: Given input matrices M1 and

M2 of sizes n1×d and n2×d, respectively, we want to compute matrix D of size n1×n2, where

an entry D[i, j] = F(M1[i, 0 · · · (d−1)],M2[j, 0 · · · (d−1)]). Here, F represents a computational

kernel function, and Mk[i, 0 · · · (d − 1)], k ∈ {1, 2}, represents a d-dimensional vector. n1 and

n2 are the number of such d-dimensional vectors in the two input matrices, respectively. This

is illustrated in Figure 3.1 and a pseudo-code is given in Algorithm 3.

In general, n1, n2 and d can be arbitrary, and F can be any binary function, F : Rd×Rd →
R. Computing D requires n1 · n2 evaluations of the function F . In the case when M1 = M2,

and either F is symmetric, i.e. F(a, b) = F(b, a), or F(a, b) is a trivial function of F(b, a),

Algorithm 3: The double loop in computations of all-pairs information output
matrix D using the input matrices M1 and M2.

for i← 0 to n1 − 1 do1

for j ← 0 to n2 − 1 do2

D[i, j]← F(M1[i, 0 · · · (d− 1)],M2[j, 0 · · · (d− 1)]);3

end4

end5
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Figure 3.1: Generalized all-pairs computations: Two input matrices, each containing d-

dimensional vectors. Output D is constructed by applying computational kernel function

F on each pair of vectors (i, j) taken from M1 and M2.

e.g. F(a, b) = −F(b, a), it is sufficient to perform only
(
n
2

)
computations of F in D (upper

or lower triangle). In many applications, the computational complexity of F is O(d), making

the overall computational complexity of constructing output matrix D as O(n1n2d) = O(n2d),

assuming n1 and n2 to be of the same order.

3.2 Scheduling Pairwise Computations on Cell Processors

The above problem is trivially implementable on general purpose processors, however, it

becomes challenging with architectures like the Cell processor where the main computational

cores have a limited local memory (256 KB), and all memory transfers must be orchestrated

explicitly by a programmer. To address this, we propose a scheduling approach based on

decomposition of both the matrix D and the input vectors such that the total number of

memory transfers performed is minimized1 [95]. Note that the total number of computations

is fixed for a particular problem instance, hence, this is the only way to improve its performance.

3.2.1 The Basic Scheduling Scheme

The Cell processor [69, 25] consists of a general purpose PowerPC Processing Element

(PPE), and Synergistic Processing Elements (SPEs) that are the computational workhorse.

The number of SPEs available may vary between different hardware, for instance, six in Sony

Playstation 3 gaming consoles, and eight or sixteen in IBM QS server blades. For generality

we assume that the number of available SPEs is ps. The SPEs communicate with each other

and with the PPE, and can access the main memory, through a high bandwidth Element

Interconnect Bus (EIB) using direct memory access (DMA) requests. To compute the matrix

1The work on the Cell processor presented in this section was done in collaboration with Jaroslaw Zola.
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D, we decompose it into tiles, which are further divided into ps×ps blocks of sizes wr×wc, each

corresponding to a submatrix of D. Such a decomposition is necessary due to limited memory

of the SPEs, and for now we assume that an SPE can store w = wr +wc input vectors, where

wr, wc ≥ 1. Processing of a tile proceeds in ps iterations. In each iteration, an SPE is assigned

a block, and its task is to evaluate the function F for each position in the corresponding

submatrix. To do so, it requires the wr row vectors from the input matrix M1, and wc column

vectors from the input matrix M2, accordingly. Note that the same input row vectors are

needed by an SPE throughout all iterations. Hence, after transferring these vectors from the

main memory at the beginning of the first iteration, the SPE retains them in its Local Store

(LS) for all the subsequent iterations. The input column vectors, on the other hand, differ

for each block assigned to the SPE, and therefore, after being initially downloaded from the

main memory, are shifted between the SPEs at the end of every iteration. This decomposition

scheme is illustrated in Fig. 3.2.
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Figure 3.2: An example of decomposition of one tile of matrix D for ps = 5 SPEs with wr = 3

and wc = 3. For each block, the iteration number in which it will be processed is marked.

3.2.2 Tiling

The above approach requires two questions to be answered:

(1) what should be the size of a block, and

(2) what order should we choose to compute the resulting tiles?

As we already mentioned, we answer both these questions so as to minimize the overall number

of DMAs. Explicit DMA transfers are required to move data from the main memory to SPE,

and between two SPEs, with the maximum size of a single transfer B being 16 KB. Note

that a tile represents a set of row and column input vectors that can be collectively stored

on the SPEs. To begin computation of a tile, these vectors need to be transferred from the

main memory to the SPEs, if they are not already present on the SPEs. Once loaded, parallel

SPE computation within each tile requires DMA transfers only among the SPEs, which are
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significantly faster. Consequently, the only way to reduce the number of DMA transfers as

computation is shifted from tile to tile, is to reuse the vectors for the previous tile as much

as possible. Observe that two adjacent tiles may share the same row vectors, or the same

column vectors, but not both. Hence, a tile ordering that reuses max(wr, wc) vectors as much

as possible optimizes the number of DMA transfers. A snake-like traversal order of the tiles

achieves this, where a row-wise traversal is used if wc ≤ wr, and a column-wise traversal is

used otherwise. Figure 3.3 depicts the tile traversal order for DMA transfer optimization for

both symmetric and general case, with ps = 2 and wc ≤ wr.

SPU0

SPU1

SPU1

SPU0

wr

padding

tile

n

n

}

}wc

Figure 3.3: Tile decomposition of the output matrix D with ps = 2 when D is symmetric (left)

and in the general case (right). The order in which the tiles are processed is marked for the

row-wise traversal.

3.2.3 Determining Tile Size

To access the main memory, SPEs use explicit DMA transfers. Although such transfers

can be seen as extremely fast one-sided communication operations, in most cases they need

to be followed by a mailbox message or signal notification. Each such synchronization may

generate some overhead which partially can be hidden by multi-buffering techniques. There

are three sources of DMA transfers that occur while processing a tile of the matrix D: (i)

fetching of input vectors from the main memory to the LS – this communication is initiated

by an SPE based on the effective addresses obtained from the PPE and is completely one-

sided, (ii) sending of the output data from an SPE to the main memory – here the SPE writes

to the effective address and then notifies PPE through a mailbox message to initiate further

processing by PPE, (iii) shifting of column vectors between SPEs – each SPE writes to the
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LS of its neighboring SPE and uses signal notifications to synchronize the entire process. A

single DMA transfer is limited to size B, and transfers of larger size are handled by DMA lists

which break down the transfer into multiple DMA requests. Because EIB is a high bandwidth

bidirectional bus, it is advantageous to transfer maximal sized data through one request, over a

number of small sized transfers (even though EIB supports variable length packets). Given the

above, we investigate the choice of wr and wc to minimize the total number of DMA transfers

provided that the row-wise traversal is used.

Let Mem denote the total available memory in the LS of an SPE (expressed in bytes).

When processing a single block, we use double buffering for the output data, and to implement

the shifting of column vectors, we need an additional buffer to store wc column vectors. Hence,

we can find the maximum size of a block that can fit into the LS of an SPE using the following

equation:

Mem = (2 · wc + wr) · d · ci + 2 · wc · wr · co, (3.1)

where an input element is encoded with ci bytes and output with co bytes. For a given wr and

wc, the matrix D is partitioned into nr × nc tiles, where nr =
⌈

n
ps·wr

⌉
and nc =

⌈
n

ps·wc

⌉
. Note

that the tiles are processed in a sequential order. To load the input vectors for a tile from the

main memory, the number of DMA transfers (as a function of d) for an SPE can be expressed

as

Lrt(d) =

⌈
ci · wr · d

B

⌉
(3.2)

for rows, and similarly

Lct(d) =

⌈
ci · wc · d

B

⌉
(3.3)

for columns. Then the total number of row vector transfers is:

Lr(d) = nr · Lrt(d), (3.4)

and the number of column vector transfers, following the row-wise snake-like traversal, is:

Lc(d) = (nc · nr − nr + 1) · Lct(d). (3.5)

Within a tile, an SPE performs column vector shifting ps − 1 times, resulting in

Lst(d) =

⌈
ci · wc · d

B

⌉
· (ps − 1) (3.6)

number of DMA transfers. This gives a total of

Ls(d) = nr · nc · Lst(d) (3.7)

transfers for column vector shifting. Finally, an SPE must store a computed block of D to the
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main memory which requires

Lot(d) =
⌈co · wr · wc

B

⌉
· ps (3.8)

transfers in a tile, resulting in a total of

Lo(d) = nr · nc · Lot(d) (3.9)

output transfers. Therefore, the overall number of DMA transfers to compute the output D,

for an SPE, is the following sum:

L(d) = Lr(d) + Lc(d) + Ls(d) + Lo(d). (3.10)

In Figure 3.4 the number of DMA transfers as a function of parameter wr, for the case when

Mem = 200 KB, n = 1000, d = 1500, and ps = 8, is shown.
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Figure 3.4: The total number of DMA transfers as a function of wr. Y-axis is in log-scale.

It can be seen that by properly choosing wr and wc, we can reduce the number of DMA

transfers by more than one order of magnitude. Thus, optimizing the choice of wr and wc

significantly contributes to the performance of our strategy.

There is a small difference between the general case and the case when output matrix D is

symmetric. Because in the latter we need to generate only the lower (or upper) triangular part

of D, the number of DMAs for all components, except of row vector transfers, will change.

Moreover, some of the blocks will fall on the main diagonal, and consequently, the computa-

tional load for the corresponding SPEs will be either uneven, or a part of the computations will

be done unnecessarily. If the extra work is avoided, the time taken to compute a tile would be

the same since some SPEs will be computing while the others will be idle, and to optimize this

would require reassignment of the blocks to be computed among the SPEs to guarantee a max-

imum possible load balance. Alternatively, following our same basic scheduling scheme within

a tile, the amount of extra computations performed may be minimized by setting wr = wc

to obtain square blocks. We implement the latter option, presented as the symmetric case in
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Figure 3.3.

3.2.4 Extending to Higher Dimensions

Thus far we have assumed that at least two vectors can fit into the LS of an SPE. In

some applications, for instance, in constructing stochastic models for a set of properties of

given microstructure samples of random heterogeneous media [49], this assumption does not

hold due to high dimensionality of the data. In such applications, not even a single input

vector may fit in the LS of an SPE, necessitating further decomposition of the input data. To

address this, we extend the decomposition presented in the previous sections to the dimension

of the input vectors. We decompose the input vectors into slices, each vector slice containing

ds dimensions. Each vector is therefore decomposed into a total of
⌈

d
ds

⌉
slices. We then

process the slices one after another, following the above output decomposition schemes, each

slice processing resulting in partial results in D, which may be aggregated at the end. This is

depicted in Figure 3.5.

ds
ds d

ds

d′
s...

Figure 3.5: Decomposition of vectors of dimension d into slices, each of dimensions ds. The

last slice consists of d′s(≤ ds) dimensions.

Such decomposition will be valid only if the function F consists of associative operations

that can be carried out independently. Consider, for example, the scalar product of two vectors

a = 〈a0, · · · , ad−1〉 and b = 〈b0, · · · , bd−1〉,

F(a, b) =
d−1∑
i=0

ai · bi (3.11)

=

d d
ds
e∑

j=1

min(d,ds·j)−1∑
i=ds·(j−1)

ai · bi

 . (3.12)
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Another example of such a decomposable computational kernel is the Lp-norm distance (also

called the Minkowski distance) metric that we use for similarity computations in microstruc-

tures, or coherent structures discovery in fluid dynamics (see Section 3.3). The Lp-norm

distance between vectors a and b is

F(a, b) =

(
d−1∑
i=0

|ai − bi|p
) 1

p

(3.13)

=


⌈

d
ds

⌉∑
j=1

min(d,ds·j)−1∑
i=ds·(j−1)

|ai − bi|p



1
p

. (3.14)

We observe that in many cases, the function F will be trivially decomposable, for instance

Spearman’s rank correlation [22], and in some others it may require complex algorithmic

strategies, possibly with auxiliary storage. This applies, for instance, to compute the Pearson

correlations, or Mutual Informations using B-spline estimator [34] or kernel estimators [79].

Furthermore, reduction operations may be required to accumulate the results obtained from

the computations of each slice. Nevertheless, our approach is applicable to many real-life

problems.

The described slicing scheme results in a total of
⌈

d
ds

⌉
slices, where the number of dimen-

sions in the first
⌊

d
ds

⌋
slices is ds, and the dimension of the last slice is d′s =

(
d− ds ·

⌊
d
ds

⌋)
.

Each slice can be independently processed following the tiling procedure described in the pre-

vious subsection. Observe that the input vector slices from one slice cannot be reused in

processing any other slice, obviating any possibility of reducing the number of DMAs when

switching from one slice to another. Consequently, the overall number of DMA transfers re-

quired for all the slices is:

L′(ds) =

⌊
d

ds

⌋
· L(ds) + L(d′s), (3.15)

which raises the question of finding ds. One of the restrictions the Cell architecture puts on a

programmer is that the DMA transfer sizes have to be in multiples of 128 bytes, and aligned

to the cache line size, which is 128 bytes as well. This requirement forms a natural constraint

on the choice of ds, so we define a set of possible values for ds to be

M =

{
dx : dx ∈

[
128

ci
, dmax

]
∧ (dx · ci)%128 = 0

}
, (3.16)

where dmax is the maximal size of a vector slice that can fit in the LS of an SPE, which can

be computed from Equation (3.1). Finally, to find the particular value ds, we minimize the

function L′(dx):

ds = argmin
dx∈M

(
L′(dx)

)
. (3.17)
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3.2.5 Parallelizing Across Multiple Cell Processors

When n is too large for all the input data to fit on a single processor, it must be distributed

across multiple processors in a cluster. In this subsection we extend our pairwise computations

scheme to parallelize it across multiple Cell processors. Let us assume that p is the number

of Cell processors available for use. We first partition D into p × p blocks of submatrices

Di,j (0 ≤ i, j < p), of size n
p × n

p each. This algorithm proceeds in dp+1
2 e iterations. In each

iteration, a PPE is assigned a submatrix. Its task is to compute the distance values for each

position in the submatrix. To do so, it requires the input vectors of all the rows or columns

in the submatrix assigned to it. Consider the case where the same input set of vectors are

present in the column and row vectors in D, making it symmetric. The blocks on the main

diagonal obtained after the partitioning, the same vectors represent both rows and columns.

For other blocks, the row genes and column genes are distinct. We need to compute only half

of it, i.e., as Di,j = DT
j,i only one of them needs to be computed. We call a set of p·(p+1)

2

submatrices containing only one of Di,j or Dj,i for each pair (i, j), to be the complete set

of unique submatrices. The assignment of submatrices to PPE processors is as follows: In

iteration i, PPE with rank j is assigned the submatrix Dj,(j+i) mod p (see Figure 3.6 for an

illustration). It is easy to argue that this scheme computes all unique submatrices.
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Figure 3.6: An example of partitioning of matrix D for 6 PPEs. For each block the iteration

number in which it will be processed is marked.

Note that the same row vectors are needed by a PPE throughout all iterations. To begin

with, the n vectors are assigned to the p PPEs in a block decomposition. These serve as input

vectors for both row and column genes during iteration 0. Each processor retains the same set

of row vectors in subsequent iterations. The column vectors are shifted upwards at the end of

each iteration, i.e., PPE with rank j sends its column vectors to PPE with rank (j − 1 + p)

mod p.

The assignment of submatrices to processors creates the same workload with the following

exceptions: In iteration 0, the submatrices assigned are diagonal, for which we only need the
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lower (or upper) triangular part. As all PPEs are dealing with diagonal submatrices in the

same iteration, it simply means that this iteration will take roughly half the compute time as

others. The other exception may occur during the last iteration. To see this, consider that

the PPEs collectively compute p submatrices in each iteration. The total number of unique

submatrices is p·(p+1)
2 . The following two cases are possible:

1. p is odd. In this case, the number of iterations is dp+1
2 e = p+1

2 . The total number

of submatrices computed is p·(p+1)
2 , which is the same as the total number of unique

submatrices. Since the algorithm guarantees that all unique submatrices are computed,

each unique submatrix is computed only once.

2. p is even. In this case, the number of iterations is dp+1
2 e = p

2 + 1, causing the total

number of submatrices computed to be p ·
(p
2 + 1

)
, which is p

2 more than the number of

unique submatrices. It is easy to show that this occurs because in the last iteration, half

the PPEs are assigned submatrices that are transpose counterparts of the submatrices

assigned to the other half (marked with darker color in Figure 3.6).

When p is even, we can optimize the computational cost by recognizing this exception

during the last iteration, and having each PPE compute only half of the submatrix assigned

to it so that the PPE which has the transpose counterpart computes the other half. This will

save half an iteration, significant only if p is small. For large p, one could ignore this cost

and run the last iteration similar to others, which is the approach we have taken. However,

as the number of Cell processors in the cluster in our experiments is small, one could observe

a noticeable effect for even values of p, hence we follow the half matrix computations in our

implementation.

3.3 Applications with Pairwise Computations on Cell Processors

We have implemented our scheduling approach in a software library libpnorm, designed

for the Cell architecture to accelerate pairwise computations of Lp-norm for arbitrary p and

for vectors of arbitrary dimension d. Next, we used the flexibility offered by the library to

implement a Cell-enabled version of TINGe – a parallel gene network inference framework [118]

that we developed to analyze large scale microarray data. In both the cases, the use of Cell

processors was dictated by the computational demand of real-life applications, that we briefly

describe in the following subsections.

3.3.1 Lp-norm Computations

Pairwise computations using the Lp-norm distance metric occur in many applications.

Two particular cases we are interested in come from the areas of fluid dynamics, and materials

science. In recent years Micro Air Vehicles (MAVs) are gaining more and more attention,
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mostly due to the interest in their possible military applications [67]. One of the key factors

in the design of such devices is aerodynamics of their flapping-wings. Computational fluid

dynamics simulations of MAVs provide raw data about the fluid pressures, created due to the

wing movement, at various points in the space around the wings [110]. The Lp-norm distance

metric is employed in the analysis of this data to identify coherent structures by obtaining the

change in the fluid pressure at various points with time. A time snapshot of the simulation

gives a vector in d dimensions, where each dimension represents a point in space, and hundreds

or thousands of such snapshots are taken to form a matrix M with n d-dimensional vectors.

Matrix D is generated by computing Lp-norm distances between all
(
n
2

)
pairs of vectors.

Another interesting application relates Lp-norm with the construction of stochastic models

of a given set of properties of a set of microstructure samples, obtained from heterogeneous

media [48, 49]. Here, Lp-norm distances are computed between pairs of microstructure samples,

where a sample contributes to one vector in d dimensions, and each dimension represents a

pixel in the image of that sample. In this case d is dependent on the image resolution and can

easily be tens of thousands, while n is of the order of a thousand.

We developed a software library, libpnorm, on the Cell platform that combines our schedul-

ing scheme with an efficient kernel to compute Lp-norm using SPU SIMD instructions. In

Figure 3.7 we present a code snippet showing a basic use of the library.

#include <pnorm.h>

// set p, n, d
// allocate memory for D and M
// ...

// initialize the library
pnorm_init_cbe(PNORM_SPE_AUTO, SINGLE);

// compute D, symmetric case
pnorm_sym_cbe(p, n, d, M, D);

// D is ready, finalize or compute more
pnorm_finalize_cbe();

Figure 3.7: A snippet of code demonstrating example use of the libpnorm library.

The library provides an intuitive C/C++ interface and hides all complexities of the Cell

architecture from a user. Initialization of the SPE threads, thread’s context management and

finalization are handled by the pnorm init cbe(...) and pnorm finalize cbe() functions,

while the main processing and scheduling are handled by pnorm sym cbe(...) for the sym-

metric case, and pnorm nonsym cbe(...) for the general case. Our software supports both,

single and double precision computations and can use any specified number of SPE cores. The

library is implemented using the latest IBM Cell SDK [28] and makes a heavy use of the SIMD
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Math Library to efficiently handle arithmetic operations. Finally, it applies double-buffering to

hide DMA transfer overheads from writing output data to the main memory. One important

property of libpnorm is its extensibility and flexibility. Although, initially it was designed to

handle Lp-norm computations, an end-user may write a customized computational kernel and

a reduction function, that will substitute, at the compilation and linking level, the default

code. This extends the applicability of our library. For instance, we used this feature to port

our systems biology software to the Cell platform (see following subsections).

We used libpnorm to process data that comes from the above-mentioned applications. Here

we present two examples, one in which multiple input vectors can be stored in the LS of an SPE,

and one where the length of vectors is too large, requiring slicing. To assess the performance

our library, we measure and report execution times as a function of the number of SPE cores

used.

3.3.2 Lp-norm Performance Results

In the first experiment we processed a data set with n1=n2=998 time snapshots obtained

from simulation of a flapping-wing MAV, each containing d=5,419 points. We used this data

set to obtain execution timings for both, symmetric and general case, with single and double

precision. For all our experiments, we utilized IBM QS22 Cell blades located at Georgia

Institute of Technology. One such blade is equipped with 16 GB of RAM, and two Cell

processors that can share the SPEs, i.e. one PPE core can use up to 16 SPE cores. Results of

this experiment are summarized in Table 3.1 and Figure 3.8.

Table 3.1: Execution times in seconds using single and double precision for the data set with

n1=n2=998 and d=5,419. The timings are shown for both, when D is symmetric and the

general case.

Symmetric General

No. SPEs Single Double Single Double

1 49.88 166.49 99.4 327.17

2 25.22 83.08 50.07 164.1

4 12.92 42.17 25.47 83.09

6 8.82 28.49 17.27 56.01

8 6.71 21.5 13.08 42.15

10 5.58 17.46 10.62 34.36

12 4.63 14.9 8.9 28.67

14 4.04 12.91 7.7 24.71

16 3.58 11.39 7.2 21.75

For the second experiment, we used a data set with n1=n2=1,000 microstructure samples

from random heterogeneous media, each with d=40,000 pixels. In this case the input vectors
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Figure 3.8: Relative speedups for the symmetric (left) and general (right) cases for the data

set with n1=n2=998 and d=5,419.

were decomposed into 3 slices. The results from this experiment are summarized in Table 3.2

and Figure 3.9.

Table 3.2: Execution times in seconds using single and double precision for the data set with

n1=n2=1,000 and d=40,000. Timings for both the cases, when D is symmetric, and the general

case are shown.

Symmetric General

No. SPEs Single Double Single Double

1 378.34 1222.72 761.32 2448.18

2 189.32 611.49 382.66 1224.83

4 95.91 308.18 194.53 617.09

6 64.77 207.27 132.51 415.75

8 48.67 155.62 100.78 313.39

10 39.46 125.61 82.44 253.16

12 33.49 106.63 70.89 215.01

14 28.98 91.85 61.69 185.47

16 25.51 81.02 54.94 163.65

The above performance results show that our method scales well with the number of SPEs,

obtaining relative speedups of more than 14, when using 16 SPEs, in all the cases. The

execution times for double precision are more than three times those for single precision.

This is, in part, because with double precision, the memory usage for each vector doubles,

resulting in nearly twice the number of DMA transfers required, compared to single precision.

Furthermore, the final aggregation of the results computed by the SPEs, i.e. summing up the

output from the SPEs from all the slices and computing the p-th root for each entry in D, is

performed on the PPE, which provides efficient vector operations for single precision in the

SIMD math library, but due to hardware limitations does not support efficient double precision
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Figure 3.9: Relative speedups for the symmetric (left) and general (right) cases for the data

set with n1=n2=1,000 and d=40,000.

computations (i.e. they are handled by the standard C math library). It can also be seen that

the execution times for the symmetric cases are nearly half of that for the corresponding general

cases, as expected, since only the lower triangular part of D is computed in the former. This

confirms that the overhead due to extra work performed for blocks on the diagonal is not

significant. Finally, the execution times for the two different sized data sets scale as expected

with O(n2d) which is the computational complexity of computing pairwise Lp-norms.

3.3.3 Mutual Information Computations

Mutual information (MI) is arguably the best measure of correlation between random

variables [33]. Many of its prominent applications are in the area of computational and systems

biology, where it is used, for instance, for microarray data clustering [85], biological network

querying [107], and in phylogenetics [74]. In the last few years, several methods for gene

network reconstruction that employ “all-pairs-correlation” kernel have been proposed (e.g.

ARACNe [16], TINGe [116], CLR [41]). All these tools require that in the first stage, a

distance matrix based on MI is constructed. This process has been consistently shown to be

the most dominating part of these methods. Motivated by the need to reconstruct whole gene

regulatory networks, that involve interactions between tens of thousands of genes, we developed

TINGe – the first parallel software that can handle genome level data consisting of thousands

of microarray expression measurements. TINGe consists of three stages [116] where in the first

stage MI between all pairs of gene expression profile vectors must be computed (expression

of a gene is considered to be a random variable). Because this part of our method consumes

more than 95% of the total execution time, after developing a generic parallel version, we

extended it to a Cell-specialized version in which the MI computations are accelerated on the

Cell processor.

Formally, mutual information between random variables X and Y is defined using entropy
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as:

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (3.18)

This definition can be directly used only if the marginal and joint probability distributions of

X and Y are known. This is hardly ever the case, therefore, in practice MI is estimated based

on random variables observation vectors. Several different MI estimators have been proposed

(for instance, see [71]), however, in our own research we found the B-spline approach [34] to

be computationally efficient while providing very good accuracy of the estimation. In this

approach, to obtain MI directly from Eq. (3.18), probability distributions are approximated by

classifying observations of random variables into q categories, where each observation can be

assigned simultaneously to k categories with different weights. To obtain the weights, B-spline

functions of order k are used. For an observation, a B-spline function Bqk returns a vector

of size q with k positive weights that indicate to which categories the observation should be

assigned to. Given two vectors a and b, each with d observations of a random variable, joint

probability of each pair of categories is obtained using the following equation:

P (qu, qv) =
1

d

d−1∑
i=0

(
Bqk(ai)× Bqk(bi)

)
. (3.19)

The resulting matrix P is further plugged into entropy calculations in Eq. (3.18) to obtain

the corresponding estimate of MI. Hence, in this case, the function F consists of non-trivial

computations, which, nevertheless, can be effectively accelerated on the Cell processor, and we

demonstrate this next.

3.3.4 MI Performance Results

As previously mentioned, we used libpnorm with MI function, to implement our scheme

for pairwise computations as a part of the TINGe kernel. In the pilot experiment we used the

resulting software to analyze two microarray data sets with n1=n2=512 genes, and d=911 and

d=2,996 observations, respectively, on the IBM QS20 Cell blade. In this case, due to precision

requirements, we focus only on double precision. Moreover, because MI is a symmetric measure,

we consider only computing the lower triangular part of output matrix D. Results of this

experiment are summarized in Figure 3.10.

The main goal of porting TINGe to the Cell architecture is to accelerate the execution of

large experiments in which hundreds of bootstrap runs, each of which is equally costly as one

basic run of the algorithm, is required. Therefore, to enable construction of very large gene

networks we developed a parallel code which employs MPI to harness the power of multiple

Cell blades connected via a network, using the scheme described earlier to parallelize the

computations across a cluster of Cell processors.

In our next experiment, to demonstrate our parallel implementation across a cluster of Cell
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Figure 3.10: Execution time (left) and relative speedups (right) with respect to Pentium D,

single PPE core, and a single SPE core as a function of number of SPEs for the data set with

n1=n2=512 genes and d=911 observations (top) and d=2,996 observations (bottom).

processors, we used two data sets consisting of n1=n2=2,048 genes with d=911 and d=2,996

microarray experiments, respectively. We executed the parallel TINGe implementation for

Bluegene/L from [116] to compare against our implementation on the Cell cluster, using the

same number of cores on both systems. In Figure 3.11 we show results of the executions on

the two systems as a function of the number of cores used. We consider two granularities for

a single Cell blade – one PPE using all 16 SPEs, and two PPEs using 8 SPEs each.

Several observations can be made from these results. As expected, the Cell cluster outper-

forms the BG/L system. Computation time with 64 SPE cores on the Cell cluster is the same

as that with 128 PPC440 cores on BG/L, which shows a factor of 2 performance gain. Although

it is more than the theoretical expectation of 230/179 ≈ 1.28, this is not surprising taking into

account more efficient and flexible vector units provided on the SPEs. Because communication

requirements of TINGe are not significant compared to computations, and number of nodes in

the Cell cluster is very small, better interconnect in BG/L does not play an important role.

Similar performance gains have been obtained by the Folding@Home project using distributed

network of Playstation 3 [77]. Another observation is that with small and even number of

processors, the extra computations performed become significant. This can be seen clearly in
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Figure 3.11: Execution times to compute matrix D as a function of number of cores used for

IBM Blue Gene/L system and Cell cluster, where each PPE uses 8 SPEs (Cell 8 SPE) and 16

SPEs (Cell 16 SPE), for the data set with n1=n2=2,048 genes, and d=911 observations (left)

and d=2,996 observations (right).

Figure 3.12 where we compare speedups of the two different Cell blade configurations. Al-

though we maintain nearly linear speedup, whenever number of processes p is even (e.g. at 32,

64, 96, 128), we see decreased efficiency. Obviously this effect will be marginal for larger p, or

it can be addressed as mentioned in Section 3.2.5.
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Figure 3.12: Speedups with respect to a single blade (Cell 16 SPE) and a single Cell processor

(Cell 8 SPE) as a function of number of SPEs for the data set with n1=n2=2,048 genes, and

d=911 observations (left) and d=2,996 observations (right). Linear speedups have been marked

for reference.

With this implementation, we used the largest available microarray data to reconstruct the

whole genome network of a model plant Arabidopsis thaliana. The data we analyzed consists

of n1=n2=15,328 microarray probes that cover more than 70% of all genes in Arabidopsis, and

for each probe it provides d=3,137 observations. A single run to process this data set using

8 QS20 Cell blades took 2 hours and 25 minutes. It is interesting to contrast this result with

results obtained on a conventional supercomputer such as the IBM BlueGene/L (BG/L). Both
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Table 3.3: Comparison of gene network construction of A. thaliana on Cell cluster and BG/L.

TD is the time to compute matrix D.

System Total [s] TD [s] I/O [s] Other [s]

Cell Cluster (128 cores) 8621 8514 35 72

BG/L (128 cores) 19672 19585 68 19

BG/L (256 cores) 9991 9907 67 17

BG/L (1024 cores) 2567 2481 67 19

systems are based on the same underlying PowerPC architecture, however, a single node of

BG/L has weaker floating point capability. Keeping this in mind, the BG/L version of TINGe

reconstructed the network in 45 minutes using 2,048 cores, and it took 5 hours and 25 minutes

when only 128 cores were used. These results are summarized in Table 3.3. This shows, that

the Cell based cluster can be a viable, in terms of cost and performance, alternative for solving

real-world applications involving large data.

As seen in these experiments, our approach scales nearly linearly with the number of SPEs,

and when all available SPE cores are used it achieves 80% efficiency. Although it is less than

the efficiency we obtained in Lp-norm computations we should explain that estimating MI

is considerably more difficult to SIMDize. Consequently, utilization of both SPE pipelines is

lower which affects the overall performance.

3.4 Pairwise Computations on Graphics Processors

Graphics processors, as we described in Chapter 1, provide multiple levels of parallelism, as

well as a memory hierarchy – from a large but slow off-chip device memory to fast but small on-

chip shared memory. Each multiprocessor (SM) has a small shared memory (∼16 KB) which

is shared by all the threads assigned to that multiprocessor, and the use of shared memory

needs to be implemented explicitly. A clever use of the shared memory is the key to obtain

high performance on such GPUs. In the following present an efficient and architecture-aware

strategies on GPUs for the generalized pairwise computation problem.

We develop our schemes for pairwise computations based on the NVIDIA GPGPU and

their CUDA programming model [32]. The computation of each entry D[i, j] in the all-pairs

problem is independent of the computation of other entries. This independence works towards

an advantage of making efficient use of the fine-grained parallelism offered by GPUs. Therefore,

to compute the matrix D on a GPU, a naive straight-forward decomposition of D into tiles

will work well (Fig. 3.13), similar to our scheme on the Cell processor. Each tile represents a

sub-matrix Dtile of D, containing r rows and c columns. A CUDA thread block is responsible

for computing all entries in a tile. For this case, we define a thread block to be of the same

size as a tile, r× c, where each entry in the tile is computed by a separate thread in the thread
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tile

Figure 3.13: Computations in D are decomposed into tiles, each tile representing a sub-matrix

with r rows and c columns.

block.

Although this naive decomposition takes advantage of the high degree of parallelism offered

by GPUs, it is not efficient. For the computation of each entry D[i, j], a thread reads the two

input vectors M1[i, 0 · · · (d− 1)] and M2[j, 0 · · · (d− 1)] directly from the high latency off-chip

device memory. A vector from M1 (M2) is read n2 (n1) times from the device memory. In

the following, we present techniques to enhance this basic tile decomposition, by making use

of the memory hierarchy to obtain an efficient implementation on a GPU.

3.4.1 Efficient All-pairs Computations on a GPU

To compute D efficiently on a GPU, we need to make use of the fast on-chip shared memory.

For now, let us assume that the dimensions of the input vectors d is small enough to enable

multiple vectors to fit in the small shared memory available on an SM. We will relax this

assumption later. To compute a tile, we require r row input vectors and c column input

vectors. Therefore, first, the threads in a thread block collectively load these row and column

vectors into the shared memory. The size of the required row vectors is r × d. To efficiently

load them into the shared memory by the corresponding r × c threads, each thread loads a

single dimension of one of the vectors, thereby collectively loading r × c block of data at a

time. When d > c, ddc e number of such loads are performed (Fig. 3.14).

Once the row and column vectors corresponding to a tile, Dtile are loaded into the shared

memory, a thread (i, j) computes a single entry Dtile[i, j]. A row (column) vector is, hence,

reused from the shared memory by all the threads responsible to compute the corresponding

row (column) in Dtile. Note that since the life time of the shared memory is the same as that

of the corresponding block, we can no longer reuse these vectors further for computations of

other tiles.

To enable added reuse of vectors (either rows or columns) already loaded in the shared

memory, we introduce a further decomposition: A tile is decomposed into s subtiles, where the

size of a subtile is r × c, resulting in the size of a tile to be (r · s)× c. A CUDA thread block
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Figure 3.14: Loading of input vectors corresponding to a tile into the shared memory is per-

formed simultaneously by threads in a block. Shown here is scheme for loading r row vectors

from the input matrix M1, in chunks of c dimensions at a time, where each thread loads a

single dimension. Thread (i, j) loads the element (i, j) in the block. A total of ddc e transfers is

performed by each thread. Similar scheme if followed for loading the c column vectors.

(of size r× c) is responsible to compute a whole tile, one subtile after another. This way, once

the column vectors are loaded into the shared memory at the beginning of the processing of

a tile, the same are reused for all subsequent subtiles in the tile, while only row vectors need

to be loaded. Note that only one dimensional subtiling is beneficial since when moving from

one subtile to the next, at most either row or column vectors remain the same, not both. This

subtiling scheme is demonstrated in Fig. 3.15. Subtiling enables further reuse of vectors at

the cost of bringing sequentiality in the processing, since the same thread block computes all

subtiles in a tile one after other.

subtile

Figure 3.15: Decomposition of a tile into subtiles to enable further reuse of column vectors

once they are loaded into the shared memory. A tile is computed by the corresponding CUDA

thread block, one subtile at a time. Shown here is a single tile. With s subtiles, there are r · s
rows in a tile.

3.4.2 Generalizing to Higher Dimensions

In the above we assumed that d is small enough for multiple vectors to fit in the shared

memory on an SM. For the cases when d is too large for the vectors to fit as a whole in

the shared memory, in the way similar to our scheme on the Cell processor (Section 3.2.4),
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we decompose the input vectors into slices, each vector slice containing ds dimensions. This

results in a total of d d
ds
e slices of the input vectors. We process each slice, one after the other,

following the tiling and subtiling scheme described above. Note that processing of a slice is

independent of all other slices, obviating the need to look for the possibility of reusing vectors

between slices. Processing of each slice generates partial results in D. These can be then

aggregated, if needed, after all partial results are available (Fig. 3.16).

...

...

Figure 3.16: Decomposition of input vectors in M1 into slices (left), each containing ds dimen-

sions. Similar decomposition is done for vectors in M2. Partial results of the output matrix

are generated from each slice computation (right). Corresponding slice numbers are indicated

above. Final D is obtained by a reduction of the partial results.

We again point out that this slicing decomposition will be valid only if the function F con-

sists of associative operations that can be carried out independently, as mentioned previously

with the Cell processor in Section 3.2.4 (e.g Lp-norm distance metric in Eq. 3.14, and scalar

product in Eq. 3.12).

3.5 Analyzing the Performance on GPU

Decomposition of input vectors and output computations into slices, tiles and subtiles,

raises the question of choosing optimal values for the various parameters: r, c, s and ds, to

obtain higher performance. In this section, we address this question, leveraging on the various

architectural features and constraints that a generic NVIDIA GPU puts forth. In the following,

we conduct experiments on a 2.0 GHz quadcore Intel Xeon (Nehalem based) system equipped

with NVIDIA Quadro FX 5800 graphics processor. This GPU consists of 30 SMs, each with 8

SPs, giving a total of 240 SPs. Each SM provides 16 KB of on-chip shared memory and 16 K

registers, which are shared among the threads residing in the SM. This GPU card has 4 GB

off-chip DDR3 device memory. The CUDA compute capability of this device is 1.3, and has

CUDA driver 3.0 installed.
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We implemented our generalized all-pairs computations using CUDA as a generic library,

libpairwise, to accelerate such computations. This library provides an intuitive C/C++ inter-

face while hiding all complexities of the GPU implementation, and supports both single and

double precision computations. We implemented the Lp-norm distance metric (Eq. 3.14) as a

computational kernel with our general all-pairs computation scheme, although our library is

not limited to this and other computational kernels can be easily implemented to replace the

Lp-norm kernel.

3.5.1 Features and Constraints

As described previously, in the CUDA programming model, computations on a thread

block are performed independently of all other thread blocks in the grid, and each thread

block is assigned to a SM for execution. Following the Single-Instruction Multiple-Threads

(SIMT) architecture, an SM manages and executes threads from a block in groups called

warps. Having multiple warps scheduled on an SM is beneficial for performance since it hides

instruction and memory latencies during the execution. Furthermore, if there are p SM on a

GPU, we want the total number of thread blocks in the grid to be in excess of p. A large

number of thread blocks ensures a better load balance among the SMs. Therefore, we term

the total number of thread blocks in the grid as concurrency, P . Following our tile and subtile

decomposition scheme, a tile is assigned to one thread block, hence, the concurrency would be:

P =
⌈ n1
r · s

⌉
·
⌈n2
c

⌉
(3.20)

For the purpose of analysis below, and simplicity, let us represent P as n2

r·s·c (assuming O(n1) =

O(n2) = O(n)).

The limited amount of on-chip shared memory, Mem, available on an SM is divided among

all the thread blocks assigned to that SM. Shared memory usage for a single tile is (r + c) ·
ds · bi, where bi is the size used to encode a single input dimension. The amount of shared

memory usage puts a constraint on the number of thread blocks that can be scheduled on

an SM simultaneously. The maximum number of thread blocks that can be scheduled on

an SM is, therefore, approximately equal to
⌊

Mem
(r+c)·ds·bi

⌋
= O( m

(r+c)·ds ). A similar constraint

is also established by the number of registers on an SM, which are partitioned among the

corresponding warps.

Contiguous memory accesses by threads in a warp from the device memory enables memory

coalescing, reducing the memory transactions to be carried out, and thereby, improving the

performance. When vector slices are loaded into the shared memory, for a single vector slice, c

dimensions are loaded by c threads at once. Since this memory access is contiguous (following

row-wise storage of input matrices), these accesses are coalesced. Therefore, a larger c enables

further performance improvement. CUDA also puts forth limitations on the maximum thread
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block size that can be created: A maximum of 512 threads are allowed in a block, disallowing

large values for r and c.

The number of SMs on a chip vary with various NVIDIA GPUs. Their number has generally

increased over the various generations of NVIDIA GPUs. The number of SPs per SM have

remained the same in the past, but they are also increasing in the future (NVIDIA Fermi

architecture has 32 SPs per SM [31]). Furthermore, the size of on-chip memory available

per SM have also been increasing. Taking into account these trends in GPU architecture

development, based on our experiments, we analyze the effect of varying the parameter values

on performance, and address the question of optimizing performance with a good choice of

these parameters. In the following, we represent the four parameters as a 4-tuple: 〈c, r, s, ds〉.

3.5.2 Varying Thread Block / Subtile size r × c

A proper choice of a thread block size, and its dimensions are essential to obtain high

performance on GPUs. The amount of concurrency, as described above, can be increased by

decreasing c and r. Scheduling enough warps to a SM ensures better resource usage by hiding

instruction latencies. On the other hand, a better reuse of input vectors loaded into the shared

memory is achieved by increasing c and r, thereby reducing device memory access latency.

Therefore, we need to find a balanced values for the thread block sizes.

To analyze the effects varying the number of rows and columns in a block have on the

performance, we use our implementation to conduct the following experiments: In the first set

of experiments, we obtain the performance for varying c while keeping other parameter values

constant. To gain a better insight, we define a small set of different parameter configurations

(e.g. 〈c, 8, 4, 50〉), where for each configuration, c is variable while others are kept constant. In

our set of configurations, we use different values of the other parameters to see the effect of

each of them, while the remaining two are constant. We used three data sets, with varying n

and d: 996×5,419, 1,000×40,000, and 2,000×5,419. The variations in runtime for this set of

experiments are shown on the left side in Figure 3.17.

Low values of c (< 8) perform the worst due to two main factors: number of warps in a

thread block is small, and the device memory accesses cannot be efficiently coalesced in a warp.

For each of the configurations, we see a bump at certain c values (e.g. c=13 for 〈c, 16, 4, 50〉).
This is because the shared memory usage per block limits the number of blocks scheduled on

an SM, and these bumps show such transition points. The configuration 〈c, 4, 4, 50〉 performs

the worst among the three configurations with different r values: For low c, the number of

threads in a block are not enough to fill in a warp size thereby wasting resources, while for

higher c, the row vector re-usage r is small compared to others.

Among the three configurations with different s values, 〈c, 16, 4, 50〉 performs good overall,

while 〈c, 16, 1, 50〉 performs good for small c values since the column vectors reuse does not play

an important role. Furthermore, when n is larger (Fig. 3.17 bottom), 〈c, 16, 63, 50〉 has a higher



59

 100

 1000

 10000

 0  5  10  15  20  25  30

Ti
m

e 
[m

s]

c

[c,16,4,50]
[c,8,4,50]
[c,4,4,50]

[c,16,1,50]

[c,16,63,50]
[c,16,4,10]

[c,16,4,100]

 100

 1000

 10000

 0  5  10  15  20  25  30

Ti
m

e 
[m

s]

r

[8,r,4,50]
[16,r,4,50]

[4,r,4,50]
[8,r,1,50]

[8,r,63,50]
[8,r,4,10]

[8,r,4,100]

 1000

 10000

 100000

 0  5  10  15  20  25  30

Ti
m

e 
[m

s]

c

[c,16,4,50]
[c,8,4,50]
[c,4,4,50]

[c,16,1,50]

[c,16,63,50]
[c,16,4,10]

[c,16,4,100]

 1000

 10000

 100000

 0  5  10  15  20  25  30

Ti
m

e 
[m

s]

r

[8,r,4,50]
[16,r,4,50]

[4,r,4,50]
[8,r,1,50]

[8,r,63,50]
[8,r,4,10]

[8,r,4,100]

 1000

 10000

 100000

 0  5  10  15  20  25  30

Ti
m

e 
[m

s]

c

[c,16,4,50]
[c,8,4,50]
[c,4,4,50]

[c,16,1,50]

[c,16,63,50]
[c,16,4,10]

[c,16,4,100]

 1000

 10000

 100000

 0  5  10  15  20  25  30

Ti
m

e 
[m

s]

r

[8,r,4,50]
[16,r,4,50]

[4,r,4,50]
[8,r,1,50]

[8,r,63,50]
[8,r,4,10]

[8,r,4,100]

Figure 3.17: Varying c values (left) and r values (right) for various parameter configurations.

Y-axis is in log-scale for clarity. Input sizes are n1=n2=996, d=5,419 (top), n1=n2=1,000,

d=40,000 (middle), and, n1=n2=2,000, d=5,419 (bottom).
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performance for large c. This shows that as long as there is enough overall concurrency, larger

c values (≥ 16) benefit more when s is also large. A similar trend is seen for the three different

slice size configurations. Therefore, taking all these factors together, when enough shared

memory is available and there is enough concurrency (larger n), a larger c value contributes

to a better performance.

A balanced value for r is also essential to the performance. We conduct experiments for

varying r values, and the corresponding graphs are shown on the right side in Fig. 3.17. In

general, we observe similar trend as before for c. The cases when c > r tend to perform better

(e.g. the three configurations for different c: 〈4, r, 4, 50〉, 〈8, r, 4, 50〉 and 〈16, r, 4, 50〉), because

c vectors are reused for all the subtiles in a tile, while r vectors are reloaded for each subtile.

The configurations 〈8, r, 4, 50〉 and 〈8, r, 1, 50〉 perform similar for r > 16 because with larger

r, the latencies involved in loading r row vectors balance the gain from the reuse of smaller

c vectors. These observations also reinforce our previous statement that for better reuse of

column vectors, c > r is helpful. Not shown in the figures, we also confirmed that 〈16, 1, 63, 50〉
outperforms 〈8, 1, 63, 50〉 by a factor of 1.5. Overall, we see that 〈16, r, 4, 50〉 performs the best,

due to a larger c.

From these experiments, we observe that a proper choice of c and r can improve the perfor-

mance by over an order of magnitude. Once we have this, further performance improvement

tuning can be done by a choice of the remaining two parameters: s and ds, which we discuss

next.

3.5.3 Number of Subtiles s in a Tile

A large s value contributes to more reuse of the same column vectors in a tile. On the

other hand, the subtiles are processed one after the other in a sequential manner, and a larger

s also increases the tile size. This reduces concurrency in the computations. Further, with less

concurrency, and larger tile sizes, load balance among various SMs on the GPU also suffers.

Hence, a balancing value for s is desirable for an optimal performance. We conduct experiments

with varying values of s for a set of different configurations. The corresponding graphs are

shown on the left side in Figure 3.18. Note that varying s does not alter the amount of shared

memory and register usage.

In the graphs we see that for certain values of s, there are bumps where the performance

is higher compared to immediate smaller s values. These bumps occur when the grid size

is reduced by one due to the increasing tile sizes, thereby reducing resource wastage. For a

particular grid size, the performance gradually decreases owing to increased resource wastage.

For the data with n=996 and 1,000, s=63 corresponds to a single tile spanning all the rows.

For the configuration with small c, 〈4, 16, s, 50〉, there is no performance improvement beyond

s = 3, this is because the reuse of c vectors is very low. For the configurations where block

sizes are small (〈8, 4, s, 50〉), there is a much significant improvement when s increases from 1
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Figure 3.18: Varying s values (left) and ds values (right) for various parameter configura-

tions. Input sizes are n1=n2=996, d=5,419 (top), n1=n2=1,000, d=40,000 (middle), and,

n1=n2=2,000, d=5,419 (bottom).
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to 2, because the overall number of input vector loads from the device memory is much higher

and each block has less data to be reused, making s > 1 more beneficial in hiding the memory

latencies.

Notice that when the number of input vectors is increased (Fig. 3.18 bottom), the graphs

flatten out. This is because, increasing s reduces the concurrency. Hence, for a larger input

on the same GPU architecture, a larger s value will still ensure enough concurrency, while

increasing column vector reuse.

3.5.4 Input Vectors Slice Size ds

The size of a vector slice determines how many total slices need to be processed. Each slice

generates partial results which are stored into the device memory. Hence, a large number of

slices (small ds) contributes to a reduced performance due to larger number of writes to the

high latency device memory. On the other hand, a large value of ds increases resource usage on

the SMs, reducing the number of warps that can be scheduled simultaneously. Hence, the value

of ds should also be carefully chosen to maximize performance. Results of our experiments

with varying values of ds for a set of configurations is shown in Fig. 3.18.

For all the configurations, we notice a periodic pattern in the execution times – they

gradually decrease, and then bump up before again decreasing. These bumps are created

because the input vector slices are loaded c dimensions at a time simultaneously by the thread

block, requiring a total of ddsc e loads by each thread. When ds value increases, it decreases the

number of idle threads for the last transfer (and also, reduces memory coalescing) till the whole

thread block contributes to the collective memory loading. Increasing it further increases the

number of transfers, resulting in a sudden decrease in performance.

We also note that when ds is large, the configurations with small c and large r perform the

worst. This is because with increasing ds, the amount of input data loaded from device memory

increases. Hence, a large r results in higher latencies, which overshadows the gain from reuse

of small number of c column vectors. In these experiments, we see that an intermediate value

of ds (∼50) has the best performance for most configurations on this graphics processor.

3.5.5 Choosing the Parameter Values

Based on the extensive experiments performed, we see that for the NVIDIA Quadro FX

5800 graphics processor, best performance is obtained when the block sizes are chosen to be

c=16, and r=8 or 12, the number of subtiles s is in the range of 3 to 7, and slice dimension

ds is ∼50. From the above analysis, we derive some useful conclusions on how to choose the

values of the parameters to ensure high performance for the generalized all-pairs computations

given any other GPU architecture. A large value of c is beneficial, given that there is enough

concurrency in the computations, and the shared memory and register resources are enough. In

general, both c and r should be large, with c > r. This enables more reuse of input vectors from
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the shared memory. Also, c should preferably be a multiple of 16 (half warp-size) to ensure

saturated and coalesced memory accesses. If a GPU architecture provides a large number of

SMs, more concurrency is needed which would require decreasing c and r for a given problem

size. On the other hand, if the problem size is increased, for a given number of SMs, enough

concurrency is ensured, letting us increase the values of c and r. Furthermore, with larger

shared memory and register resources, increasing the block size will benefit from it.

Optimal values for c and r are the most essential to obtain high performance. Once a

block size is chosen, further performance improvement is achieved by a good choice of the

other two parameters: s and ds. Again, to ensure enough concurrency, s should be kept small.

If the problem size is increased, or number of SMs is decreased, increasing s would improve

performance. As a general hand rule, s should be kept on the lower side as long as it is greater

than 1. The choice of s is independent of shared memory and register resources available.

Given ample shared memory and registers per SM, the degree of concurrency is not affected

by ds. Also, as seen from the same behavior in the graphs in Fig. 3.18, changing input size (d

and n) does not affect the choice of ds. For a small shared memory size, a smaller ds ensures

enough warps can be scheduled on an SM. Hence, if the shared memory size is increased,

increasing ds would achieve better performance.

3.6 Performance of Pairwise Computations on Various Processors

In this section, we compare the performance of the generalized all-pairs computation imple-

mentations on various multi/many-core architectures. We use our schemes described previously

on GPUs and the Cell processor. For the GPU implementation, we use the configuration with

c=16, r=8, s=4 and ds=50. Further, we implement two multi-core parallelizations of the

all-pairs computations on general purpose multi-core CPUs. In the first, we use OpenMP

(OMP) [83] with C++ to parallelize the outermost loop in the computation of D, which iter-

ates over all the input vectors from the matrix M1. In the second multi-core implementation,

we employ Intel Threading Building Blocks (TBB) [29, 88]. Here, we use the two-dimensional

iteration space class tbb::blocked range2d to define the range of computations in output

matrix D, which is used by the tbb::parallel for routine to parallelize the computations.

In all the four implementations, we use the Lp-norm distance as the computational kernel.

We demonstrate the performance results on the following three platforms:

1. GPU: NVIDIA Quadro FX 5800, 4 GB DDR3 device memory, CUDA 3.0. This has 30

multiprocessors, each with 8 CUDA cores, totaling to 240 CUDA cores.

2. Cell: IBM QS22 Cell blade, equipped with dual PowerXCell 8i 3.2 GHz processors, 4 GB

DDR2 main memory, with Cell SDK 3.1. Once such blade provides a total of 16 SPE

cores.
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Table 3.4: Execution times in seconds using single precision Lp-norm computations on data

sets with d=5,419. Comparison is shown among the Cell, GPU, OpenMP and Intel TBB

implementations. For reference, sequential execution times on a single core of an Intel Xeon

processor are also shown.

n1 = n2 Cell GPU Xeon-OMP Xeon-TBB Xeon-Seq. (1 Core)

1,000 7.21 0.42 11.60 19.22 150.61

2,000 27.19 1.62 46.11 75.20 579.88

3,000 61.75 3.69 104.24 172.54 1314.99

4,000 107.92 6.65 184.59 336.44 2319.69

5,000 170.85 10.49 288.53 472.59 3627.48

6,000 243.62 15.25 415.39 693.75 5239.29

Table 3.5: Execution times in seconds using single precision Lp-norm computations on data

sets with d=40,000. Comparison is shown among the Cell, GPU, OpenMP and Intel TBB

implementations. For reference, sequential execution times on a single core of an Intel Xeon

processor are also shown.

n1 = n2 Cell GPU Xeon-OMP Xeon-TBB Xeon-Seq. (1 Core)

1,000 54.74 3.02 84.32 139.08 1083.07

2,000 216.63 11.95 337.28 581.28 4322.70

3,000 484.27 27.16 756.67 1245.63 9739.02

4,000 864.22 48.62 1344.92 2216.40 17263.86

5,000 1356.70 76.33 2101.17 3514.31 27227.10

6,000 1949.71 111.11 3027.57 5006.19 38891.90

3. Xeon: Intel Nehalem based dual-quadcore Xeon (E5504) 2 GHz processors, 12 GB DDR3

main memory. This provides a total of 8 cores. We use this platform to execute both

OpenMP and Intel TBB implementations.

3.6.1 Single Precision Performance Results

The performance results of the four implementations with single precision Lp-norm com-

putational kernel, on data sets with varying number of input vectors n1=n2=n is shown in

Table 3.4 for d=5,419 and in Table 3.5 for d=40,000.

In Fig. 3.19 we show the corresponding speedups obtained by each of the four parallelized

implementation with respect to a single-precision sequential implementation executing on a

single core of the Intel Xeon processor.

Our GPU and Cell implementations outperform the straight-forward CPU parallelizations

with OpenMP and Intel TBB. Furthermore, the GPU implementation outperforms the Cell

implementation by a factor of 16 to 18. The Cell blade provides a theoretical main memory
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Figure 3.19: Single precision performance speedups for Cell, GPU, OpenMP on Xeon and TBB

on Xeon implementations, with respect to a sequential implementation running on a single core

of Intel Xeon processor. Y-axis is in log-scale for clarity.

bandwidth equal to 25.6 GB/s, while the GPU used provides 102 GB/s. The effect of this can

be seen when we compare the speedups of GPU implementation over the Cell implementation

for the two values of d. In the case when d=40,000, we obtain a gain of around 18, while it is

around 16 for d=5,419. Compared to a sequential implementation executing on a single core

of Intel Xeon processor, the GPU implementation achieves a speedup of around 350, while the

Cell implementation achieves a speedup of 20, as seen in Figure 3.19.

We also note that OpenMP parallelization outperforms the Intel TBB parallelization for

these single precision results. This is expected because OpenMP works best with paralleliz-

ing large and predictable data parallel problems with independent computations in for-loops,

which is the case with the generalized all-pairs computations. Intel TBB is best for paralleliz-

ing problems with less structured or consistent parallelism, which goes beyond the capability

of OpenMP. Furthermore, Intel TBB is generally more scalable for a large number of compu-

tations because it defines parallelism in terms of tasks and not threads, as is the case with

OpenMP. OpenMP parallelization is performed by the compiler, hence the choice of the com-

piler is crucial. We used the Intel 11.1 version compilers for our tests. Intel TBB does not

need any special compiler support. Other researchers have also compared the performance of

scientific applications with OpenMP parallelization versus Intel TBB, for example see [70].

3.6.2 Double Precision Performance Results

The performance results with double precision Lp-norm computational kernel, on data sets

with varying number of vectors n1=n2=n is shown in Table 3.6 for d=5,419 and in Table 3.7

for d=40,000. The corresponding speedups of the four implementations, when compared to

a double-precision sequential implementation executing on a single core of the Intel Xeon

processor is shown in Fig. 3.20.

As with single precision, the GPU implementation outperform both the CPU based par-
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Table 3.6: Execution times in seconds using double precision Lp-norm computations, on data

sets with d=5,419. Comparison is shown among the Cell, GPU, OpenMP and Intel TBB

implementations. For reference, sequential execution times on a single core of an Intel Xeon

processor are also shown.

n1 = n2 Cell GPU Xeon-OMP Xeon-TBB Xeon-Seq. (1 Core)

1,000 21.75 1.73 21.30 20.73 151.62

2,000 86.19 6.89 84.98 87.47 607.97

3,000 194.33 15.45 192.39 178.23 1368.50

4,000 344.41 27.43 339.67 319.99 2420.33

5,000 536.45 42.90 530.59 514.57 3797.05

6,000 770.58 62.12 764.17 722.40 5463.46

Table 3.7: Execution times in seconds using double precision Lp-norm computations, on data

sets with d=40,000. Comparison is shown among the Cell, GPU, OpenMP and Intel TBB

implementations. For reference, sequential execution times on a single core of an Intel Xeon

processor are also shown.

n1 = n2 Cell GPU Xeon-OMP Xeon-TBB Xeon-Seq. (1 Core)

1,000 162.76 12.73 156.62 147.57 1127.64

2,000 639.71 50.57 625.25 583.31 4504.30

3,000 1455.87 113.47 1405.45 1415.03 10142.00

4,000 2574.52 201.51 2497.58 2311.87 17971.66

5,000 4039.97 315.15 3902.14 3766.18 28907.76

6,000 5794.40 454.16 5620.04 5763.62 41603.43

allelizations. An interesting observation here is that the factor of improvement the GPU

implementation provides over the Cell implementation is around 12, which is less than that

for single precision we saw earlier. This is because the support of double precision on GPU

is not as good as single precision. Each SM on a GPU provides a single 64-bit FPU, making

double precision performance much lower. Furthermore, the GPU implementation achieves a

speedup of around 90, and the Cell implementation around 7 (Figure 3.20). We also note that

the performance of Cell implementation is similar to that of the other CPU implementations.

With double precision, the memory requirements grow, and less number of vectors can be

stored in the LS of an SPE on the Cell processor, requiring more number of memory transfers.

Intel Xeon CPUs provide a full double precision support, and their large caches (8 Mb L3,

256 KB L2 per core, and 32 KB L1 per core), play to their benefit with such memory intensive

computations.
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Figure 3.20: Double precision performance speedups for Cell, GPU, OpenMP on Xeon and

TBB on Xeon implementations, with respect to a sequential implementation running on a

single core of Intel Xeon processor. Y-axis is in log-scale for clarity.

3.7 End Notes

In this chapter we presented efficient and scalable frameworks to orchestrate pairwise com-

putations on the Cell architecture and graphics processors. We demonstrated their applicabil-

ity and efficiency in several important real-life problems drawn from fluid dynamics, materials

science and systems biology. We implemented our scheduling approaches for Cell and GPUs

in the form of software libraries that provide intuitive and flexible application programming

interface for C and C++ languages. The performance results show that these emerging archi-

tectures provide an excellent platform for accelerating compute-intensive applications through

multiple levels of parallelization. GPUs, with their massively parallel fine-grained many-core

design, are the most suited for problems such as the pairwise computations we tackled in

our work, where the computations can be decomposed into smaller independent tasks, with

further parallelization within each task. Cell processors, and any architecture in the future

similar to the Cell, are although efficient in carrying out such computations, they can be used

to implement solutions of problems where GPUs fail to achieve the performance, such as prob-

lems with coarse-grained parallelism, and those requiring frequent synchronizations since each

computing core (SPE) on the Cell processor can communicate with each other efficiently, op-

posed to the communication through high latency off-chip device memory on GPUs for threads

from separate thread blocks. Furthermore, Cell processors are more power efficient than any

graphics processors, or general-purpose multi-core CPUs. Our Cell based strategies can be

used in other similar emerging architectures, for instance, the upcoming Intel Larrabee [98]

high-performance processor.
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CHAPTER 4. AN ABSTRACT FRAMEWORK FOR TREES ON

CLOUDS

The continuing explosive growth in raw data in virtually every sphere of human activity,

and the emergence of cloud computing and Google’s MapReduce paradigm is renewing interest

in the development of broadly applicable high level abstractions as a means to deliver easy

programmability and cyber resources to the user, while hiding complexities of system archi-

tecture, parallelism and algorithms, heterogeneity, and fault-tolerance. In this chapter, we

present a high-level framework for computations on tree structures. Despite the diversity and

types of tree structures, and the algorithmic ways in which they are utilized, our abstraction

provides sufficient generality to be broadly applicable. We show how certain frequently used

operations on tree structures can be cast in terms of our framework. We further demonstrate

the applicability of our framework by solving two scientific applications – k-nearest neighbors

and fast multipole method (FMM) based simulations – by merely using our framework in mul-

tiple ways. We developed a generic programming based implementation of the framework using

C++ and MPI as a library, TreeWorks, and demonstrate its performance on the aforementioned

applications using homogeneous multi-core clusters.

We describe our proposed framework in Section 4.1 and show how some frequently used

tree operations can be cast into our framework in Section 4.2. In Section 4.3, we describe the

parallel algorithms which we use to build our framework in a distributed memory multipro-

cessor environment, and describe our implementation of the framework using C++ and MPI

in Section 4.4. We present the application of our framework to solve two scientific problems:

all-k-nearest neighbors computations and FMM based simulations in Section 4.5, and provide

the corresponding performance results.

4.1 The Proposed Framework

Consider a rooted tree where the user can access application-specific information at the

nodes, and navigate the tree topology using parent-child links. The representation and storage

of the tree is oblivious to the user, perhaps stored in a distributed fashion. As our goal is to

support data- and compute-intensive applications on large-trees, we focus on providing multi-

ple concurrent computations through our framework, supported behind-the-scene by parallel

algorithms for their efficient execution.
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Information stored at each node in the tree consists of two components: tree topology

information and application-specific information. Tree topology information consists of links

to parent and children, ordering of children (if any), level of the node in the tree, etc. In the

following, nodes of the tree are denoted by u, v, w etc. We represent the application-specific

information stored at node u by 〈Xu〉. Tree topology information is hidden from the user,

while the data type of Xu is user-defined. We use arrow type “ 7−→” to represent a function

provided by the framework for the user to use, and arrow type “−→” to represent a function to

be defined by the user. Our framework consists of a key operation, treeCompute, to perform

computations at each node in the tree.

4.1.1 Tree Compute

The treeCompute operation is applied at every node in the tree to compute new information

at the node:

treeCompute(u) 7−→ u′ (4.1)

where, u′ = 〈X ′u〉 represents the update to node u. In updating node u, a set of other nodes

may need to be considered. The user specifies how to identify such a list of nodes with respect

to u, termed the compute-set at u, represented by CS(u), through the function generate.

The update u′ is computed by combining values in u and each node in CS(u), through the

user-specified function combine.

4.1.1.1 Generate function

The generate function takes a node u as input, and returns a tuple 〈CS(u), DEPENDENCY〉,
where CS(u) = list(v) is the compute-set at u and DEPENDENCY is a flag that indicates if

dependencies among the compute-sets at various nodes need to be taken into account.

generate(u) −→ 〈CS(u), DEPENDENCY〉 (4.2)

A typical generate function starts from node a u, makes use of parent and children

functions provided by the framework (parent(u) 7−→ v, v is parent of u, and children(u) 7−→
list(v), list(v) is list of children of u) to navigate parts of the tree as necessary, and uses some

criteria to select nodes to be placed in CS(u). The user can use list iterators to iterate through

any intermediate list of nodes, and apply conditions on their inclusion in the final compute-set.

The framework applies the function at each node in the tree to generate the compute-sets at

all the nodes.

Note that when compute-sets at all the nodes of the tree are taken together, cascading

data dependencies may be created in updating the nodes. For example, node v may be in

CS(u), and node w may be in CS(v). In some applications, the dependencies need not be

considered – i.e., only the old values at nodes in the compute-set are used in the update. In
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case of the above example, this translates to computing update to u using v, and update to

v using w simultaneously; i.e., all new updates can be simultaneously computed from all old

values. In some other applications, the dependencies indicate the order in which the updates

are achieved. Going back to the example, this translates to first computing update to v using

w and other nodes in compute-set at v, and then using the updated v in computing update

to u. The user controls whether respecting such dependencies is needed using the DEPENDENCY

flag. It is assumed that in case the flag is set to TRUE, the dependencies do not form a cycle.

4.1.1.2 Combine function

The combine function is needed to specify at a node u how to combine information from

all the nodes in CS(u) to compute its updated value. However, from the point of view of

facilitating parallel algorithms to drive the framework, requiring that the entire compute-set

be processed using a user-specified sequential function turns out to be overly restrictive. Hence,

we allow for the update to be carried out in stages, requiring the combine function to specify

how to combine the value from a node v ∈ CS(u) with the current intermediate value at u.

combine(u, v) −→ u′ (4.3)

The combine function is applied to each node in CS(u) in some arbitrary order. Therefore,

this function needs to be commutative and associative. Once the entire list is processed, the

update to u is obtained. This is performed at each node in the tree. Concurrency is exploited

both in updating multiple nodes in the tree, and within the computation of update to a node,

while taking dependencies into account if the DEPENDENCY flag is set.

4.2 Casting Tree Operations into the Framework

In this section we describe how to easily realize some frequently used tree operations using

our framework by defining the two functions generate and combine in different ways.

4.2.1 Local Computations

The simplest compute operation that can be performed on a tree is local computations on

each node of the tree without any interactions with other nodes. The treeCompute can be

used for such a purpose by simply defining the generate function to return the node itself,

and the computations in the combine function:

generate(u) : return 〈u, FALSE〉
combine(u, u) : return compute(u)
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4.2.2 Upward Tree Accumulation

Upward tree accumulation is defined as aggregation of data at each node of a tree from

all its descendants. Rather than directly computing the aggregation at an internal node from

all leaves in its subtree, which is wasteful, it is computed from the aggregate values at its

children. To do so, the aggregate value at a child must be computed before using it to compute

the aggregate value at the parent. To implement this operation, define the compute-set of a

node to be its children, and the DEPENDENCY flag set to TRUE in the generate function. The

combine function defines the cumulative aggregation operation, represented by ⊕ below, from

each child node:

generate(u) : return 〈children(u), TRUE〉
combine(u, v) : return (Xu ⊕Xv)

4.2.3 Downward Tree Accumulation

In contrast to upward tree accumulation, a downward tree accumulation is defined as the

aggregation of data for each node of a tree from all its ancestors. This is achieved by taking

the aggregate values at the parent of a node and combining it with the values at the node. In

order to implement this operation, the generate function is defined to return the parent node

and DEPENDENCY as TRUE, while the data aggregation operation, ⊕, is defined in the combine

function:

generate(u) : return 〈parent(u), TRUE〉
combine(u, v) : return (Xu ⊕Xv)

4.2.4 Nodes within a Distance Range

Consider a hierarchical spatial tree data structure where each node corresponds to a box

in Rd. Suppose we need to perform computations at each node of the tree using all nodes at

the same level which are within a distance range [d1, d2] from the center of the node, where

0 ≤ d1 < d2. This operation and its variants occur in many scientific computations. For

instance, this can be used to compute interactions with boxes that are just the right distance

away, as carried out typically in N -body simulations. Or, it can be used to delineate spherical

regions for cutoff potential, by setting d1 = 0, in applications such as molecular dynamics.

Let Su denote the “spherical shell” representing the space in between spheres of radius

d1 and d2 centered at the center of the region represented by u. The generate(u) function

needs to return the nodes which are at the same level as u and intersect with Su. One way

to compute this is by moving up the ancestral chain of u using the parent function until a
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node whose region fully contains Su is found. Descendants of this node are explored using the

children function to determine nodes at the level of u whose regions intersect with Su.

generate(u) :

1: list1 ← NULL, list2 ← NULL

2: curr ← u, node list← NULL

3: while curr does not fully contain Su & curr 6= root do

4: curr ← parent(curr)

5: end while

6: add curr to list1

7: while levels of nodes in list1 is not same as u do

8: for all v ∈ list1 do

9: c list← children(v)

10: for all w ∈ c list do

11: if w and Su intersect then

12: if w is a leaf node then

13: add w to node list

14: else

15: add w to list2

16: end if

17: end if

18: end for

19: end for

20: list1 ← list2, list2 ← NULL

21: end while

22: add nodes from list1 to node list

23: return 〈node list, FALSE〉

4.3 Algorithms for Building the Framework

In this section, we discuss the algorithms behind the proposed framework in a distributed

multiprocessor environment. As our goal is to enable computations on large trees, we mainly

focus on efficiently supporting the treeCompute framework in parallel. We leverage the con-

siderable existing work on parallel tree methods for this purpose, and point out interesting

issues arising from the need to match the semantics of user-specified functions to correspond-

ing parallel algorithms.

As demonstrated earlier through several examples, treeCompute enables very different

problems on tree structures to be expressed within the same framework. While such an ex-

pressive power is elegant and useful, optimal parallel algorithms are typically unique to the
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particular problem at hand, and in fact may not even be applicable to other problems. For

example, an efficient parallel algorithm for upward tree accumulation typically uses raking

of leaves and compressing of chains in the tree to operate in logarithmic number of parallel

steps [52, 101]. A downward accumulation algorithm often requires using the upward accu-

mulation algorithm to rake and compress the tree to a single node while keeping track of the

topological changes, and then reverses them to achieve downward accumulation [101]. An op-

timal parallel algorithm specific to computing partial far-field in N -body methods is presented

in [100]. Similarly, different parallel algorithms may exist even for the same problem depend-

ing on the type of tree being used – for instance, nearest neighbor problems have been solved

on k-d trees, octrees, compressed octrees, and trees specific to solving such problems in high

dimensions.

An interesting challenge in implementing the treeCompute framework is how to identify

different types of generate functions, and match the parallel algorithm to be used by the

framework to the problem at hand. Note that this is a harder problem than implementing

Google’s MapReduce, where an algorithm that is independent of Map and Reduce can be

easily designed, even if not optimal for every case. We address this problem for treeCompute

as follows: We identify specific cases which helps in deploying optimal parallel algorithms

particular to these cases. We achieve this by generating compute-sets at all nodes and com-

paring them with predetermined cases to see if there is a fit. More importantly, we present

two algorithms that span most cases – one that works for any general generate function when

DEPENDENCY is set to FALSE, and another that works for a specific class of generate functions

when DEPENDENCY is set to TRUE. Both algorithms require enumerating compute-sets initially,

and they are constructed by applying the generate function to each node.

When executing generate, calls to parent and children functions may return nodes that

are either local to the same processor or remote. Communication is performed when needed

to obtain the remote nodes. In the simpler case when DEPENDENCY flag is set to FALSE, the

combine function is then applied iteratively on each compute-set to update the corresponding

node since only the old values at the nodes are needed for the computations.

Consider the case when the DEPENDENCY flag is set to TRUE. In this case, all compute-sets

cannot be processed concurrently as dependencies need to be respected. At the same time,

concurrency should be utilized to the extent possible for an efficient execution. In what follows,

we capture certain classes of generate functions by transforming the problem to either upward

or downward accumulations on a dependency forest. In the simple cases of the compute-set of

all nodes being either its parent, or all its children, the dependency forest is the same as the

tree under consideration. To construct the dependency forest in the general case, we need to

satisfy two conditions: uniqueness of parent, and absence of cycles. To satisfy uniqueness of

parent, we require either of the following:

1. Each node is present in at most one compute-set.
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2. Each node has at most one node in its compute-set.

And to satisfy the condition of absence of cycles, we require either one of the following for any

node u and all nodes v ∈ CS(u):

1. level(u) > level(v),

2. level(u) < level(v).

Under these restrictions, the algorithm for treeCompute in this case works as follows: We

first generate a forest consisting of one or more trees depicting dependencies as parent-child

relationships – depending on the two cases for uniqueness of parent conditions, if v ∈ CS(u),

then in case 1, u is made the parent of v, and in case 2, v is made the parent of u. With this

transformation, treeCompute reduces to either computing upward accumulation (in the first

case), or computing downward accumulation (in the latter case) on all trees in the dependency

forest.

4.4 Implementation of the Framework

We implemented the proposed framework in the form of a generic programming C++

library, TreeWorks, that can be run efficiently on homogeneous parallel architectures including

MPPs, clusters and multi-cores. We have used the MPI-2 standard to develop the framework

and tested with both MPICH2 and Open MPI implementations of this standard. For users’

programming convenience, the library exploits the C++ notions of concept and model [8] such

that it abstracts the basic elements of the framework from their implementation.

4.4.1 Generic Programming, Concept and Model

The idea behind the area of generic programming [89] is to separate algorithms from data

structures and data types, and to provide the most general formulation and the most efficient

implementation. Based on this, the provided algorithms work on any given data type which

meets the specified requirements, while guaranteeing optimal performance. The set of require-

ments specified for a certain data type or data structure is termed as concept, and a data type

which meets the requirements in a given concept is termed as model of that concept [8].

In implementing TreeWorks, we take the approach of generic programming. It satisfies the

need to keep our framework general enough to enable implementation of numerous applications,

with user defined data structures and data types. Furthermore, generic programming puts

emphasis on both generality and efficiency, which makes it suitable for developing generalized

frameworks for high-performance computing [55]. We represent the user defined generate and

combine functions as a set of semantic and syntactic requirements that can be implemented

(modeled) by the user in any form (e.g. as a C function or C++ object function). This resulting
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code can be plugged through a uniform interface into any implementation of treeCompute,

which further hides implementation details.

4.4.2 Concept Definitions for the Framework

In this section, we define the concepts of various components of TreeWorks, to facilitate

its implementation. In the following, following the C++ style concept definition, we list the

members of a component, its return type and a short description. Some definitions are based

on the standard C++ namespace.

4.4.2.1 TreeNode Container

The concept of TreeNode defines the requirements for the data type to represent a node if

the tree.

Member Return Type Description

value type The type of application specific

data stored in a node.

index type A type used to represent the

identifier, or global index to a

node in the tree.

children iterator A model of the

std::ForwardIterator for

the children of a node.

value() value type Method to provide access to the

application specific data.

parent() index type Method to returns the parent of

a tree node.

children() std::pair<c begin,c end> Method to returns the begin and

end pair of children iterators of a

node. c begin and c end are of

type children iterator.

4.4.2.2 BaseTree Container

The BaseTree is a representation of the tree under consideration. Its concept definition

specifies the basic properties and requirements of a tree.
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Member Return Type Description

tree node A model of TreeNode.

index type Same as tree node::index type.

value type Same as tree node::value type.

iterator An iterator to iterate through the nodes of the

tree which are local to a processor.

const iterator A constant iterator to iterate through the nodes

of the tree which are local to a processor.

size() unsigned long Method to returns the size (number of nodes) of

the tree.

begin() iterator Method to return an iterator pointing to the first

node of the part of the tree local to a processor.

end() iterator Method to return an iterator pointing to the end

of the part of the tree local to a processor.

operator[i] TreeNode Method to returns a copy of the i-th node of the

tree. i is of type index type.

4.4.2.3 Generate Function

The generate function defines, for a node u, the set of nodes in the tree which form the

desired compute-set. This compute-set is then used to perform computations at u.

Member Return Type Description

generate(t,u,out) bool Method to generate the compute-set of a node

u in the tree t, and store it in the output itera-

tor out. The expression returns the DEPENDENCY

flag. t is a model of BaseTree, and u is a model

of TreeNode.

4.4.2.4 Combine Function

The combine function is defined by the user. It specifies the operations performed on given

nodes u and v of the tree.

Member Return Type Description

combine(u,v) TreeNode This method operates on nodes u and v of the type

TreeNode to return an updated node u′.

4.4.2.5 TreeCompute Function

The treeCompute function, as given in Eq. 4.1, is invoked on each node of the tree. It

takes definitions of the generate and combine functions.
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Member Return Type Description

treeCompute(t,gen,com) bool This function is invoked to perform com-

putations at each node of the tree t. t

is of type BaseTree. gen is a model of

generate function. com is a model of

combine function. It returns TRUE on suc-

cess, and FALSE otherwise.

4.4.3 Implementation Details

Our current implementation includes the class of spatial trees – octrees and compressed

octrees. The parallel construction algorithm from [58] is employed to construct the trees in

parallel. A post processing step follows the tree construction to ready the data structures

to enable efficient execution of the various algorithms for compute operations. This includes

computing the levels of the nodes, equipping structures for tree-accumulation operations and

preparing the data structure for one-sided communications (discussed later in the following).

The information in the nodes of the trees, defined by the concept TreeNode, are accessed

by the user through some accessor functions. This includes the parent and children func-

tions mentioned earlier. Iterators are provided to facilitate iterating through the list of chil-

dren of a node (based on TreeNode::children iterator), and the tree nodes (based on

BaseTree::iterator and BaseTree::const iterator). The framework defines a global in-

dexing of the tree nodes (based on BaseTree::index type), which consists of the processor

location and offset within the processor where the node is located. The user uses this indexing

to access the desired nodes without the need to know about the underlying parallelism.

There are numerous ways in which a user can define the generate function. Conditions

may be applied to the nodes in an intermediate list of nodes generated by the user for their

inclusion in the final compute-set, or for traversal through the parent and child links. There-

fore, the pattern of communication required to fetch remote nodes from other processors is not

known to the framework in advance. This prevents the use of any collective communications

among the processors for node fetching, making one-sided communications necessary. In our

implementation we use the one-sided Remote Memory Access (RMA) operations defined by

the MPI-2 standard [80]. The communications required in the generate function to fetch

remote nodes are performed using passive target MPI Get operations. Any such communi-

cation involved in obtaining a node is hidden from the user: a call to t[index] (based on

BaseTree::operator[i]), where t is a handle to the tree and index is the global index of

the required node, accesses and returns the requested node locally if available, or performs an

RMA communication otherwise.

Optimal parallel algorithms for typical operations performed on trees are used for the

computations (e.g. tree accumulations [52, 101]). The algorithmic strategies described in the
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previous subsection for the compute algorithm detection are first applied on the nodes local to

the processor, followed by a global communication to obtain a consensus on the detected cases.

A failure of consensus is reported back to the user as an error. This overhead of obtaining

consensus is minimal and involves a single scan of the local nodes and one global all-gather

communication. Employing the best known algorithms for computations on the tree guarantee

efficient performance.

In the library TreeWorks, the C++ mechanisms of template specializations and partial

specializations are employed to select the best algorithm for the given parallel architecture, and

a set of standard algorithms is provided. A few predefined generate functions, which minimize

or eliminate the communication required for certain special cases, are also provided for use when

the user knows the pattern in advance. These functions provide a further improvement in the

performance in these special cases.

4.5 Sample Applications and Performance

In this section, we provide two detailed case studies of developing applications using the

proposed framework – computing k-nearest neighbors, and Fast Multipole Method (FMM)

based simulations. In both of these applications, we use algorithms based on the octree data

structure. Note that our framework provides operations on tree data structures, but does not

provide a method to construct them. This is because the tree data structures are varied and

one construction algorithm cannot cover them all – for instance, binary search trees, octrees,

compressed octrees, k-d trees, fair split trees etc. each have their own semantics and efficient

parallel construction algorithms which cannot all be folded into one generic tree construction

procedure. To overcome this, one can augment the tree framework with a library of parallel

construction algorithms for various data structures. In our case, we developed a parallel octree

implementation to support both the applications we demonstrate. We provide performance

results of our framework in the context of these applications.

4.5.1 Finding All k-Nearest Neighbors (k-NN)

Given n points, the all k-nearest-neighbors problem is to compute the k nearest neighbors

of each point. For simplicity, we consider the three dimensional problem and a standard

octree-based algorithm. Although the method easily generalizes to higher dimensions, many

algorithms designed for efficiency in lower dimensions quickly lose their performance edge

over straightforward all-pairwise distance computations, a shortcoming popularly known as

the “curse of dimensionality”. Nevertheless, many important scientific applications fall in the

category of three dimensions, for which the octree and k-d tree based algorithms are efficient.

Consider n points in three-dimensional space, with an octree built on the set of points.

Each node in the octree represents a cubical region and without loss of generality, suppose
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each leaf u of the tree contains a single data point, Xu.point. The application specific data for

each node contains these points and the results to be computed – the k nearest neighbors and

distances to them, stored in lists Xu.nn and Xu.dist, respectively. We propose the following

approach for computing all k nearest neighbors using our framework. To find the k nearest

neighbors of the point in a leaf u, we only need to explore a set of leaf nodes in a region around

u, enough to contain at least k points. This set is constructed by a top-down traversal, refining

the granularity of regions under consideration. At a particular node v, let P be a set of nodes

which are to be explored. Let dk be the kth smallest of the largest distances between each

node in P and v. The idea is to recursively explore the children of only those nodes in P which

have regions lying within a distance dk from v, while other nodes are discarded. A new set to

be explored further, A, is thus constructed from P . We implement this algorithm to construct

these sets of neighborhood nodes for each leaf using the generate function as given below.

The dependencies among the compute-sets of various nodes are not required to be respected

with this approach. The distance function returns the smallest distance between two nodes

and size returns the size of the region represented by a node.

generate(u) :

1: curr ← u, P ← NULL, A← NULL

2: if u is leaf node then

3: while curr 6= root do

4: curr ← parent(curr)

5: end while

6: add curr to P

7: loop

8: for all w ∈ P do

9: compute largest distance between curr and w

10: end for

11: if |P | < k then

12: dk ←∞
13: else

14: dk ← kth smallest distance

15: end if

16: for all w ∈ P do

17: remove w from P

18: if distance(curr, w) < dk then

19: if size(curr) > size(w) then

20: add w to A

21: else

22: add children(w) to P
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23: end if

24: end if

25: end for

26: break from loop if curr = u

27: curr ← child of curr which is u’s ancestor

28: P ← A, A← NULL

29: end loop

30: end if

31: return 〈A, FALSE〉
Here, note that the root of the tree is found by traversing the parent links from the leaf nodes,

instead of using it directly. This is because the generate function is expected to be written

using parent and children functions only. The combine function is then defined as following

to compute the nearest neighbors from the data points in the obtained compute-set of the leaf

nodes. The results are hence obtained in Xu, for each u.

combine(u, v) :

1: temp← distance(Xu.point,Xv.point)

2: if temp < Xu.dk then

3: add Xv.point to Xu.nn

4: add temp to Xu.dist

5: X.dk ← kth smallest distance in Xu.dist

6: discard points in Xu.nn with distance larger than dk

7: end if

8: return u

By simply writing the above generate and combine functions, the proposed tree framework

is utilized to solve the k nearest neighbor problem in parallel. Note that these functions simply

specify the logic behind the algorithm, and in particular the user is not concerned with how

parallelism is achieved. As the reader can readily observe, writing these two functions is a

much simpler task than a full blown direct parallel algorithm implementation for the k nearest

neighbor problem.

4.5.2 Performance Results of k-NN Implementation

We obtained performance results of the all k-nearest neighbor application implemented

using our framework as given in the previous subsection. All the tests were executed on a

cluster of dual quadcore 2.2 GHz AMD Opterons, each node thus providing 8 cores. Each core

runs its own MPI process. The code was compiled and executed using MPICH2-1.1.1p1. For

this application, we used two data sets consisting of data points in 3-dimensional space: one

with 2.5 million data points, resulting in a tree containing 3.61 million nodes, and another
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Table 4.1: Execution times in seconds [s] for the k-nearest neighbor computations implemented

using our framework, with varying number of processes.

No. Processes 8 16 32 64 128 256 512

2.5M points 3617.10 2394.89 1918.16 1274.50 817.54 521.40 226.69

5M points 6795.65 3717.80 3051.08 2337.37 1667.29 584.23 465.29
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Figure 4.1: Execution time (top) and relative speedups (bottom) for k-NN application on data

set with 2.5 million data points (resulting in a tree with 3.61 million nodes). The speedups are

shown relative to 8 processes. For clarity, both x and y axes are in log-scale in both graphs.

with 5 million points, resulting in a tree containing 7.12 million nodes. The execution times

obtained on the two data sets are summarized in Table 4.1. These are obtained for varying

number of processes. The corresponding relative speedups obtained on the two data sets is

shown in Figure 4.1.

The above results show a reasonable performance and scaling of this application with our

framework, but far from optimal. For instance, as the number of cores is increased by a factor

of 64 from 8 to 512, the relative speedup increased by about 16. This is because the generate

function in this case does not adhere to a simple structure, and is communication intensive,

particularly in terms of accessing nodes at the top of the tree structure. This is due to the

top-down traversal of the tree starting from the root, to create intermediate list of nodes to be

explored further, for each leaf node in the tree. The key advantage here is obtaining respectable

performance with very little effort – the two generate and combine functions specified here

are all the code that was written to compute k-nearest neighbors in parallel.

Also, note that the above algorithm for computing all k nearest neighbors is not optimal,

although it is convenient to implement – creating a trade-off between optimality and conve-

nience. Parallelism through our framework is achieved with this approach since each leaf node

is treated independently, and all the processors involved perform the computations simulta-

neously, demonstrated by the speedup seen in the performance results. It should be noted

the proposed algorithm does not conform to the strategy used by the fastest sequential algo-
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rithm [99]. The optimal sequential algorithm in [99] realizes further savings by computing for

each node (box) in the tree, the set of nodes at the same level whose boxes contain the k nearest

neighbors for the box under consideration. Following the convention used in this paper, call

this set of boxes the compute-set. When computing the compute-set for a node, the optimal

sequential algorithm draws from the compute-set of the parent, and refines it, rather than start

from the root. This strategy results in optimal O(kn log n) sequential run-time. However, an

optimal parallel algorithm using octrees that is reflective of this strategy is unknown. It is

therefore unclear whether an optimal parallel algorithm based on this strategy is possible, and

if such an algorithm is invented, whether it will fit in our framework.

4.5.3 Fast Multipole Method based Simulations

The Fast Multipole Method (FMM) is a widely used numerical method for solving a range

of scientific applications, and is among the most studied numerical methods during the past

two decades. It is applied to compute the mutual force field or potential in a system of n

interacting entities (particles, atoms, radiating sources etc.) in O(n) or O(n log n) time, and

has applications in gravitational many-body simulations, computation of atomistic force fields,

and computational electromagnetics (for example, see [54] and [59]). Fast algorithms for the

FMM use an octree or compressed octree to approximate the field at various hierarchical

subdivisions within the simulation domain.

We present here a rudimentary implementation of an FMM based simulation for compu-

tational electromagnetics using our framework. The algorithmic strategy is taken from [59],

which we describe only at a high level here. The input consists of a set of radiation sources,

and a set of observation points at which the electromagnetic field is desired. These two sets

of points can overlap, or be identical – i.e., each point is the location of a radiation source

as well as the location of an observation point at which we wish to determine the collective

electromagnetic field. The algorithm relies on an octree constructed for the set of points, with

leaf box sizes bounded by a multiple of the radiation wavelength. Each source is represented

by a set of basis functions. The electromagnetic field radiating out or into a box is sampled

by using a number of sample points that is proportional to the surface area of the box. Each

iteration of the algorithm consists of the following six steps:

1. compute the field emanating from the leaf boxes directly from the basis functions of the

sources within the leaf box,

2. compute the field emanating from each box in the tree using fields from its child sub

boxes in a procedure known as interpolation,

3. compute the incoming field due to sources within a distance range in a procedure known

as translation,
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4. compute total incoming field, far-field, for each box using a top-down tree accumulation

in a procedure known as anterpolation,

5. compute near-field for each leaf node using its neighbor-list, and

6. compute the final force-fields at each of the observation points in the leaf nodes by

summing the near-field with

far-field evaluated at the point. Let the electromagnetic field radiated out of a node u be

denoted by Xu.φ (specified as values at all the sample points), translated incoming field by

Xu.ψ
′, and the total incoming field by Xu.ψ. These form the application specific values at

each node. Below we describe how each of the six steps in the algorithm can be achieved by

using our treeCompute framework and merely specifying the generate and combine functions

to derive a parallel execution of each step.

4.5.3.1 Field Computations at Leaf Nodes

The field at each leaf node is computed directly from the sources within the leaf box. As

these are local computations, the generate function is specified so that it returns the node

itself as described in Section 4.2.1. The combine function defines the field computations as

given below. This is followed by a call to treeCompute function to perform the computations.

combine(u, v) :

1: if u is a leaf node then

2: compute Xu.φ

3: end if

4: return u

4.5.3.2 Computing Outgoing Field or Interpolations

This is simply an upward accumulation as characterized in Section 4.2.2. The generate

function is defined to return the children of a node and the DEPENDENCY flag is set to true. The

combine function is defined to compute the outgoing field as given below, followed by a call to

the treeCompute function.

combine(u, v) :

1: temp← interpolate Xv.φ to u

2: Xu.φ← Xu.φ+ temp

3: return u

4.5.3.3 Computing Translations

For each node u, its interaction-list is defined as the list of children of the neighbors of u’s

parent node that are not adjacent to u. This can be specified easily by writing the generate
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function as follows:

generate(u) :

1: list1 ← NULL, list2 ← NULL

2: curr ← parent(u)

3: R← rectangular region slightly larger than curr

4: while curr does not fully contain R & curr 6= root do

5: curr ← parent(curr)

6: end while

7: add curr to list1

8: while levels of nodes in list1 < level(u)− 1 do

9: for all v ∈ list1 do

10: c list← children(v)

11: for all w ∈ c list do

12: if w and R intersect then

13: add w to list2

14: end if

15: end for

16: end for

17: list1 ← list2, list2 ← NULL

18: end while

19: for all v ∈ list1 do

20: c list← children(v)

21: for all w ∈ c list do

22: if w and u are not adjacent then

23: add w to list2

24: end if

25: end for

26: end for

27: return 〈list2, FALSE〉
The following combine function then computes the translations.

combine(u, v) :

1: temp← translate Xv.φ to incoming field at u

2: Xu.ψ
′ ← Xu.ψ

′ + temp

3: return u

4.5.3.4 Computing Total Far-fields or Anterpolations

This is an application of downward tree accumulation where the dependencies need to be

adhered to – use the generate function as defined in Section 4.2.3, and the combine as follows:
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combine(u, v) :

1: temp← interpolate Xv.ψ
′ to u

2: Xu.ψ ← Xu.ψ
′ + temp

3: return u

4.5.3.5 Computing Nearfields

To compute the nearfields, the neighboring nodes of the leaf nodes are required. Therefore,

generate function can be defined in the same way as in Step 4.5.3.3 to compute the neighbors

of u, except for two differences – the compute-set is computed only for leaf nodes, and node

w is added to list2 in line 23 only if w and u are adjacent. Once this set of neighbors is

constructed for a leaf node, the combine function is defined to compute the near field:

combine(u, v) :

1: for all sources p in v do

2: compute field due to p at every observation point in u

3: end for

4: aggregate the field at every observation point in u

5: return u

4.5.3.6 Computing the Total Fields at the Observation Points

Once all the nearfields and farfields are available, the total fields are computed for each

observation point at the leaf nodes locally. For this, specify the generate function to return

the node itself, and the compute function as below.

combine(u, v) :

1: for all observation points p in u do

2: compute the field at p due to all sources in u

3: add the near and far fields to obtain the final force field for p

4: end for

5: return u

4.5.4 Performance Results of FMM Implementation

In the following we present performance results of this implementation of FMM using our

framework as described above. The tests were executed on a cluster of dual quadcore 2.2 GHz

AMD Opterons. MPICH2-1.1.1p1 was used for this purpose. We used two data sets for this

application: one with 1 million source and observation points represented by an octree with

1.44 million nodes, and another with 2.5 million source and observation points represented by

an octree with 3.61 million nodes.
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Table 4.2: Execution times in seconds [s], on the input data set with 1 million points (1.44M

nodes in the octree), for the five different steps in the FMM simulation implemented using our

framework, with varying number of processes.

No. Processes Local Interpolations Translations Anterpolations Nearfield

1 1997.75 9315.31 50706.35 10113.65 13801.95

2 999.41 4662.04 25619.73 5060.51 7035.08

4 499.73 2332.65 12863.08 2530.44 3554.79

8 250.39 1167.41 6486.37 1267.11 1817.02

16 125.38 584.45 3291.38 633.13 923.34

32 62.73 292.70 1674.72 317.27 479.38

64 31.46 147.34 858.28 159.19 242.31

128 15.77 75.86 452.69 81.03 135.60

256 8.15 41.83 245.89 41.86 71.99

512 4.42 25.05 132.35 24.77 41.92

Table 4.3: Execution times in seconds [s], on the input data set with 2.5 million points (3.61M

nodes in the octree), for the five different steps in the FMM simulation implemented using our

framework, with varying number of processes.

No. Processes Local Interpolations Translations Anterpolations Nearfield

8 626.16 2914.34 20943.60 3221.24 3397.73

16 314.02 1459.06 10474.93 1583.15 1735.28

32 157.10 732.28 5270.03 792.01 873.20

64 78.63 366.53 2672.09 397.23 444.59

128 39.45 186.02 1367.71 199.96 233.30

256 23.43 101.12 740.47 107.55 130.27

512 10.14 54.39 373.26 54.03 66.93

The execution times obtained on the two data sets are summarized in Tables 4.2 and 4.3,

respectively. The five steps of the FMM algorithm: (1) field computations at leaf nodes,

(2) interpolations, (3) translations, (4) anterpolations, and (5) near-field computations, are

shown separately to present the performance of each of the generate and combine function

pairs corresponding to them. The corresponding relative speedups obtained on the two data

sets are shown in Figure 4.2.

For each of the steps in the FMM algorithm, the implementations using our framework

scales almost perfectly. The generate functions for interpolations and anterpolation incur a

small number of remote node fetching communications, while those for partial far-field and

near-field computations are more communication intensive. Those for the local computations

have no such communications involved. In all the cases we see linear scaling.
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Figure 4.2: Relative speedups of FMM application on data set with 1 million source and

observation points (left) resulting in an octree with 1.44 million nodes, and 2.5 million points

(right) resulting in an octree with 3.61 million nodes. Performance of the five steps are shown

separately. For clarity, both X and Y axes are in log-scale.

4.6 End Notes

The proposed framework for operating on trees, in a spirit similar to MapReduce, relies on

a minimal number of user-specified functions, and keeps complex issues of system, data distri-

bution, concurrency and fault-tolerance oblivious to the user. There are two major limitations

in our framework. The framework we provide facilitates operations and computations on trees

but does not provide a mechanism to construct the underlying tree. The second limitation is

that we do not provide a way to update the topological structure of the tree. The rationale for

not providing them is that it is hard to envision a single unifying algorithm that would work for

constructing any tree data structure. The framework can be used as is in applications where

the tree preexists – such as a B-tree in a database. If tree construction is desired, the frame-

work can be augmented with a library of tree construction functions, one for each type of tree,

using optimal algorithms specifically designed for this purpose. Our current implementation

provides the construction of compressed octree and octrees.

To summarize, in this chapter, we proposed a general framework for computations on

tree structures. This framework provides an easy to use programming paradigm, in a style

similar to Google’s MapReduce programming model. The user implements the logic behind

the application through two primitives, generate and combine, for the computations. With

this the implementation complexity of applications by the users is greatly reduced. Moreover,

the parallelism is hidden from the user. We adapt existing efficient parallel algorithms for

computations on trees, e.g. tree accumulations, in our implementation of this framework. We

cast several frequently used tree operations into our framework, and then demonstrated its ease

of use through implementing two case studies – k-nearest neighbor computations, and FMM-

based simulations – using our framework. Through these performance results we show that
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our framework implementation scales well on large clusters, obtaining near perfect speedups

in most cases. We expect that this framework can be utilized to implement several other

applications on large trees with much less programming effort than previously possible.
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CHAPTER 5. CONCLUSIONS AND OPEN PROBLEMS

In this dissertation, we targeted the emerging paradigms of multi- and many-core architec-

tures, and abstractions for cloud computing, to develop high-performance parallel techniques,

with application to scientific computing. We developed architecture-aware parallel algorithms

to compute pairwise genomic sequence alignments on the Cell processor in linear amount of

memory. We then developed schemes, based on decomposition of the input data and output

computations, to efficiently schedule all-pairs computations on the Cell processor and graph-

ics processors, and implemented them as libraries TINGe-CBE, libpnorm and libpairwise. We

showed that a clever choice of the decomposition parameters – tile and block sizes on the Cell

processor, and tile, subtile sizes, number of subtiles and slice size on the graphics processors

– can improve the performance of computations by over an order of magnitude. We also

compared the performance of our schemes for all-pairs computations on the Cell, GPU and

multi-core CPUs. Further, we developed an abstract framework, and a generic programming

library TreeWorks based on this framework, to facilitate computations on tree structures with

simplified application writing. We demonstrated that this framework enables realization of a

number of operations on a tree, based on a clever crafting of the two user-defined functions

generate and combine, while hiding all system details and parallel algorithms.

We conclude this dissertation with a list of a number of open problems and ideas as potential

scopes towards furthering the research presented in this thesis in the area of high-performance

and parallel computing:

5.1 Genomic Alignments on Emerging Architectures

Our hybrid algorithm, and implementations tuned to the Cell processor, enable genomic

alignments on a single Cell processor or single Cell blade within the memory constraints of the

SPEs. In some biological applications, one may need to align larger sequences with more than

5,000 base pairs each, as well as to align non-genomic sequences, such as amino acid sequences.

Our algorithm can be extended to work with larger sequences, by bringing in the use of the

main system memory: The alignment problem is first decomposed into subproblems which can

be solved at once on a single Cell blade, while writing intermediate computational results to

the main memory when needed. The solution is straightforward when using quadratic O(mn)

memory, but is not trivial when a linear space O(m+n) usage is sought, requiring development
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of efficient algorithms. To go a step further, another level in the hierarchy can be added, where

the problem is solved in parallel on a cluster of such processors.

5.2 Pairwise Computations on Emerging Architectures

Using our schemes, we developed libraries to perform the all-pairs computations on the

Cell processor and GPUs, with specific kernel computation functions (Mutual Information,

and Lp-norm distance metric). Even though a user can implement their own kernel functions

to work with out libraries, these libraries themselves can be extended to incorporate a larger

set of efficiently implemented kernel functions to target many other scientific applications.

Our schemes for scheduling pairwise computations is for the general case when all pairwise

computations need to be performed. In certain applications, selective pairwise computations

is required. This can be viewed as a given graph G(V,E), where an edge between nodes u

and v, (u, v) ∈ E only if these a pairwise computation between these two nodes is needed.

When the number of edges, |E| = O(n2), then performing the all-pairs computations using

our schemes would be the most efficient. But in the case when the connectivity in the graph is

sparse, new efficient algorithms and software techniques need to be developed to perform these

computations on the emerging architectures. An approach towards solving this problem would

bring in parallel graph partitioning algorithms: The input graph is decomposed into subgraphs,

which are distributed across available computational units on a parallel architecture as tasks,

and communication/cooperation between these tasks is needed only for the edges between the

corresponding subgraphs assigned to separate computational units.

5.3 Abstract Framework for Trees on Clouds

We developed a basic prototype implementation of our framework for Trees, on a cluster of

multi-core processors, as a generic programming software library for users’ convenience. The

performance of our library can be further enhanced in a number if ways. Some of these are

discussed in the following.

Sophisticated caching techniques can be incorporated on the processors, in order to cache

the data obtained from nodes residing on other processors. This would improve the perfor-

mance by reducing the communication when the same remotely residing node needs to be ac-

cessed multiple times. Predictive pre-fetching of nodes residing on remote processors/systems

would also enable a performance improvement and provide areas for hiding communication

latencies. For example, when the parent of a node is needed to be fetched from a remote

processor, this technique could fetch the neighboring nodes of this parent (its parent, children,

and siblings) in addition. Replication techniques can also be employed to maintain more than

one copy of the nodes in the high levels of the trees. This would improve the performance by
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reducing communication congestion, because in many tree operations the root node and nodes

at higher levels are accessed frequently by large number of nodes in the lower levels.

When deploying such a framework on a large cluster, with thousands of computing nodes,

fault-tolerance needs to be incorporated to guarantee the completion of computations. One ap-

proach to incorporate fault-tolerance in our framework implementation is to follow the master-

slave technique with check-pointing, similar to the implementation in Google’s Map Reduce

infrastructure. Although the master-slave technique enables simple implementation of fault-

tolerance, it reduces the scalability of the system, requiring either multiple master nodes to

share the load, or development of sophisticated scalable fault-tolerance techniques.

Efficient algorithms and techniques are also required to implement our framework on other

architectures, such as graphics processors and heterogeneous multi-core processors, and clusters

of such processors. Since the generate and combine functions are data-parallel, a massively

parallel architecture like GPU is well suited for its implementation, where each thread computes

these functions on a unique set of data entities.

The design of our tree framework allows easy extensibility, and more functionality, such

as tree-search and tree-traversals can be incorporated. The problem of tree-search can be

incorporated as a multi-search on the tree [38, 7], where a set of search items, K, are given,

and the corresponding set of tree nodes is sought, where each node in the output is the result

of search of a input search item. A way to abstract search on a tree is to provide a user

defined select function. This function takes a tree node v and a search item K as input, and

generates a list of children nodes of v, each representing a path where the search for K should

descend to. Tree-search requires development of parallel algorithms to perform multisearch on

a distributed tree data structure.

5.4 Abstract Framework for Graphs on Clouds

Apart from the above enhancements and extensions of the tree framework, such a pro-

gramming paradigm has a huge potential to further enable computational abstraction and

simplification, in the terms of ease of development, for a user to write applications. A natural

extension of this framework is to generalize the data structure from the specialized tree struc-

ture to a graph. In a given graph, to perform computations at any node u, data from a set of

other nodes in the graph may be required. This is conceptually same to our definition of the

abstract tree framework. The two functions, generate and combine, can be applied to any

graph structure. The difference would lie in the traversal of the graph by a user to construct

the compute-set of a node, where instead of the parent and children links, a set of neighbor

links need to be considered. This generalization is even more challenging to implement due

to the further complexities brought in by general graphs, requiring the framework be able to

handle a large set of computational patterns, corresponding to the vast variety of graphs. An

approach to address the generalization is to consider sub-types of graphs at a time. Certain
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structured graph types would be simpler to handle. Tree is one such structured sub-type. A

grid, or a general lattice structure, is another sub-type where each node has a pre-defined num-

ber of neighboring nodes and their corresponding relative positions. Computations on such

structures occur in numerous scientific applications, such as linear system solvers used in fluid

dynamics. Parallel algorithms to perform computations on such graphs, when dependencies

are present, need to be developed to enable implementation of such a general framework.

“Think different, think parallel!”
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