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Modeling and Designing a 
Hydrostatic Transmission With a 
Fixed-Displacement Motor 
This study develops the dynamic equations that describe the behavior of a hydrostatic 
transmission utilizing a variable-displacement axial-piston pump with a fixed-dis­
placement motor. In general, the system is noted to be a third-order system with 
dynamic contributions from the motor, the pressurized hose, and the pump. Using 
the Routh-Hurwitz criterion, the stability range of this linearized system is presented. 
Furthermore, a reasonable control-gain is discussed followed by comments regarding 
the dynamic response of the system as a whole. In particular, the varying of several 
parameters is shown to have distinct effects on the system rise-time, settling time, 
and maximum percent-overshoot. 

Introduction 
Hydrostatic transmissions are used to transmit rotating me­

chanical-power from one source to another without the use of 
gears. One advantage of such a transmission is that the transfer 
of power can be accomplished on a variable basis, i.e., the 
transmission is not constrained by a finite number of gear-
ratios. For this reason these transmissions are often referred to 
as "continuously-variable transmissions." Furthermore, hydro­
static transmissions can be used to transmit power in applica­
tions where the design of a gear train may be undesirable or 
impossible. It is often much easier to route a hydraulic hose 
through a machine than it is to establish the hard mesh of gears. 
There are also several disadvantages associated with hydrostatic 
transmissions. In particular, the transmission of power using a 
hydrostatic transmission is much less efficient than when using a 
set of gears for the same task. Second, hydrostatic transmissions 
provide a much ' 'softer'' transmission of power than a mechani­
cal gear train. When considering the use of a hydrostatic trans­
mission the dynamic contribution of the transmission must be 
considered whereas with a gear train such consideration is often 
not necessary. 

Traditional research associated with hydrostatic transmis­
sions has been conducted on a macroscopic level without a clear 
understanding of the dynamics associated with each component 
(Thoma, 1979; Merritt, 1967). Primarily, these studies have 
neglected to include the appropriate dynamics of the swash-
plate control for the variable-displacement axial-piston pump. 
Until recently, little has been known about the driving forces 
of the swash plate itself in open literature and, perhaps, Zeiger 
and Akers (1985) are to be credited for the pioneering work in 
this area. Since the work of Zeiger and Akers, other research 
regarding the dynamics and control of the swash plate has ap­
peared in the literature (Manring and Johnson, 1994; Schoenau 
et al., 1990; Kim et al., 1987; Zeiger and Akers, 1986). All of 
this work has contributed to a better understanding of the vari­
able-displacement pump and to a better understanding of the 
hydrostatic transmission as a whole. 

A linear model of the hydrostatic transmission is presented 
here. The importance of this model is that it now includes a 
better representation of the pump dynamics than previous re­
search has been able to do. Furthermore, this model does not 
require the input of empirical test-data and all modeling parame-
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ters can be deduced from the geometry of the transmission 
design. This aspect of the model is critical for a priori analysis 
and lends itself to being useful for the up-front design of the 
transmission. 

This study begins by developing the equations that describe 
the dynamics of the motor, the pressurized hose, and the pump. 
These three contributors are shown to produce a third-order 
linear system with stability limits that can be discussed using 
the Routh-Hurwitz stability criterion. Using simphfied forms of 
the model, reasonable controller-design is then discussed and 
followed by comments regarding the effects of parameter varia­
tions on the overall system-response. 

Figure 1 shows the schematic of the hydrostatic transmission 
that is modeled in this research. It should be noted that the input 
speed of the pump, Up, is constant and the output speed of the 
motor, Wm, is variable. Furthermore, the low-pressure side of 
the system, ?„, is also considered to be constant while the 
high-pressure side, P),, is modeled dynamically. In practice, this 
scenario is generally true as an auxiliary pump and a relief 
valve are typically used to maintain the constant pressure in the 
low-pressure line. Lastly, while the displacement of the motor 
is held constant, the displacement of the pump is continuously 
regulated by the pump swash-plate angle, a. 

Derivation of Dynamic Equations 

Motor Analysis. The motor shaft-speed, ojm, of the hydro­
static transmission changes as a function of the system inertia 
and the applied torque to the driving shaft. Using Newton's 
second law this relationship is written. 

loj,„ — T.I, (1) 

where T,/, is the theoretical hydraulic-torque input to the motor 
and Tload is the torque exerted on the shaft by the load that the 
motor is trying to drive. From standard handbooks it can be 
shown that 

T„ = V,„(P, - P„), (2) 

where V„, is the displacement of the motor, and Pi, and P„ are 
the pressures on the high and low-pressure sides of the motor 
respectively. For this analysis, Ta^i will be considered a con­
stant. Using Eqs. (1) and (2), the final equation describing the 
output speed of the motor is given by 

^m n ^m "o "*" ^ load 
(3) 
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Fig. 1 Hydrostatic-transmission schematic 

Hose Pressure. From the principles of mass conservation 
and the definition of the fluid bulk-modulus, the equation de­
scribing the pressure-rise rate within the system hose can be 
written as 

A = Q, (4) 

where /? is the fluid bulk-modulus, V^ is the volume of the hose, 
and Qi, is the net flow into the hose. Clearly, if we ignore all 
leakage effects the net flow into the hose may be expressed as 

Qi, = Vpi^p - V„uj„, (5) 

where Vp is the instantaneous displacement of the pump. Since 
Wp is a constant, and knowing that the displacement of the pump 
is, linearly speaking, proportional to the swash-plate angle, a, 
we can write 

V„u>„ = (6) 

where Gp is the pump-displacement gain. Using Eqs. (4) , (5) , 
and (6), the result for the pressure-rise rate within the hose 
may be expressed as 

P P 
Ph — GpOl VnWi (7) 

Pump Analysis. Figure 2 shows a diagram of forces on the 
swash plate of the variable-displacement pump as its displace­
ment is being regulated in a positive direction. The angle of the 
swash plate, a, is controlled with a hydraulic servo-system that 
is attached to the swash plate by a mechanical arm of length 
L. The forces of the servo system are resisted by a naturally-
induced torque on the swash plate, T, that results from the 
pumping action of the pump itself. Since it has previously been 
shown that the inertia of the swash plate is negligible compared 
to the stiffness of the servo system (Kim et al., 1987; Zeiger 
and Akers, 1986), the moments on the swash plate can be 

^ ^ 

Servo 

Spring 

Swash Plate 

Pivot 

Fig. 2 Diagram of forces on the swash piate 

statically summed to yield the following equation that governs 
the behavior of the swash-plate angle, a, 

0 F„L + AXP, (8) 

In Eq. (8) , Aj is the area of the pressurized servo, P^ is the 
controlled pressure within this servo, and F^p is the compressed-
spring force within the opposite servo which is open to atmo­
spheric pressure (i.e., zero gauge pressure). 

The naturally induced torque on the swash plate, T, has been 
a topic of considerable research within the past ten years. Zeiger 
and Akers (1985) were the first to develop a numerical solution 
for this torque; however, Manring and Johnson (1994) later 
derived a closed-form approximation for this same torque and 
empirically verified the results. A linearized version of this 
closed-form result is given by 

T=K,a - Kp(P,-P,). (9) 

The first term in Eq. (9) represents an inertial effect within 
the pump that tries to increase the stroke of the swash plate. 
The coefficient of this term, Ki, is given by 

Ki 
NM^UJI 

(10) 

where N is the total number of pistons within the pump, Mp is 
the mass of a single piston, r is the piston pitch-radius, and ujp 
is the constant input-speed of the pump. 

The second term in Eq. (9) represents a pressure effect within 
the pump that tries to reduce the stroke of the swash plate. This 
term is strictly a result of the pressure carry-over on the valve 
plate which is discussed at length in previous work (Manring 

N o m e n c l a t u r e 

Ap = area of a single pump-piston 
As = area of the servo 

Fsp = swash-plate spring force 
Fsp„ = reference swash-plate spring force 
Gp = pump-displacement gain 
Gs = control gain 

/ = system mass moment-of-inertia 
Ki = coefficient of inertial swash-plate 

torque 
Kp = coefficient of pressure swash-plate 

torque 
k = spring constant 
L = swash-plate arm length 

Mp = mass of a single pump-piston 

N = number of pistons within the 
pump 

Pc = control pressure 
PI, = dynamic hose-pressure 
P„ = constant hose-pressure 
QH = flow into the hose 
QI = flow into the servo 
r = pump piston-pitch radius 
T = swash-plate torque 

Tioad = torque load on the motor shaft 
y,/, = theoretical hydraulic-torque 

t - time 
tr = system rise-time 
ts - system settling-time 

Vft = hose volume 
Vm = motor volumetric-displacement 
Yp — pump volumetric-displacement 
y, = servo volume 
K„ = nominal servo-volume 
a = pump swash-plate angle 
P = fluid bulk-modulus 
7 = pump pressure carry-over angle 
e = system error 
\ = system eigenvalue 

Wm = motor shaft-speed 
Wo = desired motor shaft-speed 
u!p = pump shaft-speed 
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and Johnson, 1994). For the purposes of this research, the coef­
ficient, Kp, will simply be presented here as 

K,= 
IT: 

(11) 

where A,, is the area of a single piston within the pump, and y 
is the pressure carry-over angle on the valve plate. The pressure 
carry-over angle, 7, is a complicated quantity and generally 
requires numerical investigation for accurate prediction (though 
approximate closed-form solutions have been published). For 
the purposes of this research, 7 will be considered a constant 
with reasonable values ranging between 0 and 0.42 radian 
(24°). 

Equation (9) is a closed-form approximation of a very com­
plicated phenomenon. By using this approximation it is now 
possible to accurately investigate an entire hydrostatic transmis­
sion in a closed form. Due to the complexity of the torque 
exerted on the swash plate, previous research has required the 
use of numerical techniques for the accurate modeling of any 
system using a variable displacement axial-piston hydrostatic 
pump. The advantages of closed-form modeling are obvious 
since linear analysis techniques may be employed and a physical 
understanding of the system may be determined without numeri­
cal iterations. To verify Eq. (9) an actual pump was tested and 
the results are presented in Figs. 4 and 5. See the Appendix. 

The control pressure, Fc, of Eq. (8) is described by an equa­
tion similar to that of Eq. (4); however, the change in servo 
volume, Ws, must now be considered. The rise rate of this pres­
sure is then given by 

V. 
{Qs - V,), (12) 

where, for mathematical expediency, the servo capacitance, 
piVs^, is taken to be a constant. The net flow into the servo is 
given by g., and the instantaneous change in the volume of the 
servo is given by Vj. The pump controller is used to direct flow 
in and out of the servo in a way that is proportional to some 
detected error, say, e. In other words, the net flow into the servo 
is given by 

a = G.e, 
where G, is the designed control-gain for the pump. The instan­
taneous volume of the servo is linearly expressed as 

V, = K -t- A,La. (14) 

Using the results of Eqs. (12), (13), and (14), it can be shown 
that the control pressure within the servo is given by 

P. = J (.dt a {AsL)a. (15) 

The spring force within the opposite servo also varies with 
the swash-plate angle. In general, this force may be expressed 
as 

*^ sp -* sp -I- kha. (16) 

where F^^^ is the spring force when the swash-plate angle is 
zero and k is the spring constant. 

Substituting the results of Eqs. (9) , (15), and (16) into Eq. 
(8) , differentiating once with respect to time, using the result 
of Eq. (7) , and dividing through by /9/Vs^, the time rate-of-
change for the swash-plate angle may be expressed as 

Ml 

{A,L)^ 
Vs (Ki - kU) 

(17) 

Physically speaking, the denominator of Eq. (17) represents the 

Fig. 3 Block diagram of the hydrostatic transmission 

stiffness of the swash plate servo-mechanism. By substituting 
reasonable values into the denominator of Eq. (17), it can be 
shown that {A.Lf > (V,„(^, - kL^)/fi). This weighting of 
terms illustrates the fact that the stiffness of the swash plate 
servo-mechanism is dominated by the fluid bulk-modulus and 
that in comparison the spring and the inertial effects of the 
swash-plate torque are negligible. Therefore, neglecting the 
term that is inversely proportional to /3, a simplified form of 
Eq. (17) may be written as 

G, 
(AsL) 

Vs. Kp 

V, (A.,Ly 
(Gpa - V,„to,„). (18) 

Dynamic Transmission Model 
Generally, hydrostatic transmissions are used to provide a 

specific motor shaft-speed output, say, w^. In this case, the 
detected error of the system is given by 

e = ujo - uj,„. (19) 

Using this error definition, and Eqs. (3) , (7), and (18), the 
dynamic system of the hydrostatic transmission may be ex­
pressed as 

Ulm 

PI, 
a 

= 
0 b 0 

-d 0 / 
_ {gi - gi) 0 -(•_ 

Wm 

PH 
a 

+ 
—u 
0 
w 

(20) 

(13) where 

b = 
V G K>„ 

,?i Kp, 
V, (A.,Ly ' " 

g2 = 
(A.L) 

I = 
V, (A.L)' 

Kp, 

Po + W = g2UJo- (21) 

The block diagram for this system is shown in Fig. 3. 
The transient response of the transmission is characterized 

by the system eigenvalues. These eigenvalues are determined 
by the solution to the characteristic equation which is given as 

a^k^ + ai)\} + a\\ + ao = 0, (22) 

where 

as = /, 

' m 

a2 = 1 
GpKp 

a, = /3 
Vu 

ao = P 
Vm GpGs 

VH ( A , L ) 
(23) 

Stability Criterion. The Routh-Hurwitz stability criterion 
may now be used to discuss the stability limits of the system. 
Since the coefficients of Eq. (22) are clearly positive, the re­
maining condition to be satisfied for guaranteed stability is that 
a\a2 > aoUi. More explicitly, this condition is expressed as 
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(24) 

The stability criterion presented in Eq. (24) describes the 
interaction of the speed at which the system eliminates the 
detected error and the degree to which the controller tries to 
compensate for this error. In essence, by increasing the displace­
ment of the motor, V„, or by decreasing the volume of the hose, 
Vf,, the time rate-of-change for the motor speed and the system 
pressure increases, and tends to eliminate the detected error 
very quickly. This behavior improves the system stability. On 
the other hand, by making the control gain, G ,̂ too large the 
controller tends to overcompensate for the detected error and 
the system behaves in an unstable manner. Decreasing the servo 
volume, K„. or increasing the length of the servo linkage, L, 
has the same effect as increasing the control gain, d. 

Controller Design. For initial design purposes, it is helpful 
to have a criterion that establishes a reasonable design limit for 
the controller gain, Gj. If we temporarily ignore the inertia! 
effects of the system (i.e., set / = 0 ) , we can see from Eqs. 
(22) and (23) that the system becomes classified as a first-
order system with a single eigenvalue 

\ = (25) 

For good response, a typical design requires that the controller 
eliminate 98% of the detected error within a specified amount 
of time, say, fj. Another way of saying this is to require the 
eigenvalue of Eq. (25) to be less than -4/1/, or rather. 

4\UAd^ 
(26) 

Using the results of Eqs. (24) and (26) it can be shown that 
reasonable design limits for the control gain, Gj, are given by 

v.. V,nK, ^ ^ ^ 4 V„(A,L) 
> (js > 

V, {A,L) 
(27) 

Dynamic Response. Generally, the coefficient, a^, of the 
characteristic equation presented in Eq. (22) is much, much 
smaller than the coefficients a j , ai, and ao. This weighting of 
coefficients tends to produce solutions to Eq. (22) with a single 
real-root that lies to the far left-hand side of the real-imaginary 
plane and two complex conjugates that lie fairly close to the 
origin. Physically speaking, this scenario describes a third-order 
system that responds very much like a second-order system. By 
simply ignoring the first term in Eq. (22), the characteristic 
equation of the system can be approximated as 

ch)\} + a{K + flo = 0, 

with eigenvalues given by 

-tti ± Va? - 402^0 
A. = 

(28) 

(29) 

The coefficients fl2, ^ i , and ao are given in Eq. (23). These 
eigenvalues are comprised of a real part, 'W(\), and an imagi­
nary part, f(X), and the dimensionless damping ratio for the 
system is 

c = 
1 

m\)/ti\)f +1 
(30) 

The most important response-characteristics of this system 
are the rise time, tr, the settling time, f,. and the maximum 
percent-overshoot. The rise time is defined as the amount of 
time required for the system to first reach 100% of its steady-
state condition. To reduce the rise time, the absolute value of 

Table 1 Effects on the system reponse when varying cer­
tain parameters 

Parameter 

SI>0 
SV, > 0 
SGp > 0 
<5V„>0 
SGs > 0 
<5Z. > 0 

/, 

+ 
+ 

Inconsistent 
Inconsistent 

-
Inconsistent 

t. 

+ 
+ 
+ 
-

No effect 
-

Overshoot 

No effect 
+ 
+ 

Inconsistent 
+ 
-

the imaginary part of the system eigenvalues, ' ? ( \ ) , must be 
increased. The settling time refers to the amount of time it takes 
for the system to arrive at, and stay within, 98 percent of the 
steady-state condition. The settling time is reduced by increas­
ing the absolute value of the real part of the system eigenvalues, 
°S(X.). The maximum percent-overshoot refers to the first peak 
of overshoot after the system has arrived at, and exceeded, 100 
percent of the steady-state condition. To reduce the maximum 
percent-overshoot the damping ratio, t,, must be increased. 

Based upon a closed-form investigation of the system eigen­
values, Table 1 illustrates changes in system response-character­
istics that can be expected when various parameters are in­
creased. For instance, from Table 1 it can be seen that by 
increasing the control gain, G,, the system rise-time is reduced 
( - ) , the system settling-time is unaffected (no effect), and the 
maximum percent-overshoot is increased (-I-). Conversely, it 
should be assumed that by decreasing this same parameter an 
opposite effect would be exhibited for the rise time and the 
settling time. When a parameter variation is said to be "incon­
sistent," that means that the effect of this variation may change 
depending upon other design characteristics of the transmission 
(i.e., a consistent statement cannot be made for all transmission 
designs). 

Conclusion 

In this research, the dynamic model of a hydrostatic transmis­
sion has been derived. Based upon this model, the stability of 
the system has been discussed and shown to be a result of the 
speed at which the system tries to eliminate the detected error 
and the degree to which the controller tries to compensate for 
this error. An overcompensating control or an extremely slow-
responding system has been shown to result in an unstable 
transmission-design. Furthermore, based upon the Routh-Hur-
witz stabihty criterion and a simplified model of the transmis­
sion system, a range of reasonable design-limits for the control­
ler gain has been presented in equation (27). In this study, it was 
also recognized that two complex roots of the transmission's 
characteristic equation lie near the origin of the real-imaginary 
plane while the third root, which is real, lies to the far left of 
the same origin. This scenario describes a third-order system 
that behaves much like a second-order system. Based upon a 
second-order approximation of the characteristic equation, the 
effect of particular design variations on the system rise-time, 
settling time, and maximum percent-overshoot has been tabu­
lated in Table 1. Overall, this study has provided greater insight 
into the behavior of a hydrostatic transmission and has given 
the designer of these same machines a tool that is useful for 
analyzing the response of the transmission before it is actually 
built. 
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APPENDIX 
This appendix presents the experimental results that were 

obtained in an effort to validate Eq. (9). In the laboratory, a 
215 cc/rev variable displacement pump was instrumented and 
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Fig. 4 Torque for low swash-plate angles 
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Fig. 5 Torque for high swash-plate angles 

operated at various shaft speeds, discharge pressures, and two 
swash-plate angles. For steady-state operation, the control pres­
sure, Pc. of Eq. (8) was measured and the spring force, F,,,, 
was calculated using Eq. (16), Using these results and Eq. (8) 
the torque, T, was calculated and compared with the predicted 
results of Eq. (9). This comparison is presented in Figs. 4 and 
5 and the correlation between theoretical and experimental data 
is shown to be good. In Figs, 4 and 5, the lines with circles 
represent test data while the lines without circles represent theo­
retical expectations. A negative value of torque corresponds 
with a stroke decreasing influence while a positive value of 
torque corresponds with a stroke increasing effect. This sign 
convention is consistent with Eq. (9). Note: for a full derivation 
of Eq. (9) the reader is referred to the paper by Manring and 
Johnson (1994). 
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