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Theoretical model for prediction of high-strength metallic glasses
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A method for predicting the ideal strength of metallic glasses based on materials properties—without fitting
parameters—is presented, and its accuracy demonstrated for multiple alloys. The theoretical basis for these pre-
dictions is the stress-activated transformation of short-range ordered atomic structures into flowing amorphous
interfaces with the properties of a supercooled liquid. Our theory for pure metals is extended through a regular
solution model in which the enthalpy of fusion is mollified by approximate changes in coordination number
between the solid and liquid phases. Additional parameters come from empirical material properties such as
density, heat of fusion, and melting temperature.
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I. INTRODUCTION

Since the first report of glass-forming alloys in 1960 by
Klement et al. [1], much has been learned about their ex-
traordinary mechanical properties [2] and unique processing
requirements [3]. However, fundamental questions remain
about the nature of their strength and deformation mecha-
nisms. These materials exhibit high mechanical strength at
temperatures below their glass transition, above which viscous
and delocalized flow can readily occur and lead to rapid soft-
ening. At lower temperatures, defects like voids and pores can
curtail their strength by promoting premature failure through
crack formation and fracture, a phenomenon that is associ-
ated with limited ductility. When fracture is avoided, these
alloys show a purely elastic mechanical response up to ex-
tremely high stresses, and plastic deformation that is localized
to what are called shear transformation zones (STZs) [2].
Here, we link this onset of plastic deformation to structural
characteristics and materials properties exclusively, without
fitting parameters. The present approach builds upon seminal
work by Argon [4] and Spaepen [5], who treated inhomo-
geneous flow in metallic glasses as an activated process. A
limiting factor in their models was the inability to accurately
define the activation volume for the transition from locked
and disordered solid to flowing states. We present a different
description of inhomogeneous flow activation that accurately
predicts the temperature-dependent strength of amorphous
alloys by defining the specific free energy for plasticity as a
function of materials properties.
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Metallic glasses have been shown to have both short-
and medium-range order (SRO and MRO)—conventionally
associated with interatomic distances less than 0.5 nm, and
between 0.5 and 2.0 nm, respectively [6]—through x-ray and
electron diffraction measurements [7–19]. A truly random
structure should have properties similar to those of a vis-
cous liquid, but the properties of metallic glasses (MGs) at
temperatures below their glass transition show fundamental
differences from the liquid state. The densities of MGs are
only slightly lower than the corresponding crystalline config-
urations of the same alloys [20–22], and this implies both
efficient packing and the existence of SRO/MRO [23,24].
While it was initially believed that amorphous solid metals
possess a liquidlike random structure [1], calculations based
on this underpredict the densities of MGs [25]. The efficient
cluster-packing (ECP) model [23,26] established a framework
for describing the structure of MGs that reconciles the seem-
ingly contradictory combination of high density and efficient
packing with the absence of long-range order. In the ECP
model, the structure of metallic glasses is described as gen-
erally consisting of a face-centered cubic (fcc) close-packed
lattice, but rather than having individual atoms at lattice
points, the motif consists of multiatom clusters, with a larger
solute atom surrounded by smaller solvent atoms [23–26]. The
difference in atomic radii leads to an average bond density or
coordination number (CN) that is typically higher than that
in crystal lattices; CNs in MGs are in the range CN = 8–20
[24], while the closest-packed ordered structures, fcc crystals,
have CN = 12. As we discuss below, the higher CNs are an
important factor for understanding the unusually high strength
of metallic glasses.

II. THEORY, RESULTS, AND DISCUSSION

As in our previous work on pure metals [27], we start
with the assumption that the strength of MGs is related to
the energy required to transform the glass from an efficiently
packed solid state of atomic clusters to a randomly packed,
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liquidlike configuration. Specifically, we relate the strength of
MGs to the stress required to activate inhomogeneous flow
below the glass transition temperature (Tg). This calculation
requires only empirical material properties and a quantitative
estimate of the (efficient) packing fraction of the material.

We base the activation of flow for glassy alloys on the
free energy difference between short-range ordered solid and
liquid (i.e., flowing) states, �Gflow = �Gord − �Gdis, where
�Gord and �Gdis are the energies of the ordered and disor-
dered states, respectively. Similar to a regular solution model,
the activation energy for flow is approximated as the value for
an ideal solution with a correction based on the enthalpy of
mixing, �Hmix. The activation energy for the ideal mixture
is a rule-of-mixtures combination of the pure elemental con-
stituents. In Eq. (1) we show the free energy change for an
ideal solution at a temperature, T , where for each elemental
constituent i (1,2,3 …), Xi is the atomic or molar fraction, Tm,i

is melting temperature, and Li is the heat of fusion.

�Gflow,ideal(T ) =
N∑

i=1,2,...

XiLi

(
1 − T

Tm,i

)
. (1)

The correction to this ideal mixture is then the difference in
the heats of mixing of the ordered (�Hmix,ord ) and disordered
(�Hmix,dis ) solutions, such that

�Gflow = �Gord − �Gdis = �Gflow,ideal

+ (�Hmix,ord − �Hmix,dis ). (2)

We determine the mixing enthalpies using the method de-
scribed in Takeuchi and Inoue [28] that is based on the work of
Miedema and co-workers [29–31]. To calculate the difference
in ordered and disordered mixing enthalpies, we first consider
the quasichemical theory of solutions [32, pp. 236ff.], where
the enthalpy of mixing is proportional to the coordination
number of atoms. This implies that the enthalpies of mixing
will be different in the ordered and disordered states, with
the overall effect being a mollified �Hmix because of the
different coordination numbers between these states, zord and
zdis, respectively. We make the simplifying assumption that the
regular solution model can be applied to both the glassy (clus-
tered SRO) and random (disordered) states such that �Hmix is
exclusively a function of composition, with negligible differ-
ence in the frequency of bond type; i.e., for elements A and
B the fraction of A-A, B-B, and A-B bonds remains about the
same in both the ordered/glassy and disordered/flowing states.
This is not strictly true, and results in an underprediction of the
impact of �Hmix on strength, as the number of unlike bonds
is higher in cluster-based SRO glasses. However, this allows
for the tractable simplification that �Hmix can be written as
a function of a constant C, based on constituent bond ener-
gies, multiplied by the corresponding coordination number
in each state. Assuming the bond energies are the same in
the two states, �Hmix,ord = zordC and �Hmix,dis = zdisC. Then,
noting that �Hmix,dis = �Hmix, i.e., the mixing enthalpy from
Takeuchi and Inoue [28] for a random solution, we arrive at a

final expression for �Gflow,

�Gflow =
N∑

i=1,2,...

[
XiLi

(
1 − T

Tm,i

)]
+

(
1 − zord

zdis

)
�Hmix.

(3)
The use of a regular solution model implies that the en-

tropies are similar for the glassy and flowing states. However,
the ordered cluster cells will have inherently lower config-
urational entropy than a random close-packed or liquidlike
mixture [32, pp. 240–243], so this approximation is not
strictly correct. Despite this error, we show that strength pre-
dictions are still reasonably accurate.

As in our earlier work [27], the strength of metallic glasses
is defined using an activated model for inhomogeneous flow
where the strain rate is written as

ε̇am = ε̇tot exp

(
−�Gflow − τV ∗

kBT

)
. (4)

Here, ε̇tot and ε̇am correspond to the total applied strain rate
and the strain rate transmitted to the flowing regions, respec-
tively, kB is the Boltzmann constant, τ is the shear strength,
and V ∗ is the activation volume. With MGs, unlike crystalline
metals, intragranular deformation mechanisms are inactive
and deformation is assumed to be limited to shear-activated
flow via the formation of an amorphous or randomly packed
interface. This is a possible explanation for the creation of
STZs, which have been shown to have lower density than the
parent material, i.e., closer to that of a liquid [33]. Thus, it is
possible to make the simplifying assumption that ε̇am

ε̇tot

∼= 1, as
all plastic strain is accommodated by shear-activated flow, re-
ducing Eq. (4) to the simple expression τ (T ) ∼= �Gflow(T )

V ∗ . For
the rule-of-mixtures term we take the activation volume V ∗ for
each elemental constituent to be the ratio of the corresponding
elemental liquid density (at their melting temperature), ρi, and
molar mass, Mi; for the mixture term, it is similarly the ratio
of alloy density, ρmix, and molar mass, Mmix; i.e., V ∗

i = Mi
ρi

and

V ∗
mix = Mmix

ρmix
. Earlier work on the strength of crystalline metals

[27] required a value for grain size in the strength calculation.
For metallic glasses, we replace grain size with cluster cell
size, dcell, which can be approximated as having a consistent
value of about 2 nm, explained in detail below. Combining
expressions, we arrive at a complete expression for the shear
stress required to activate flow,

τ (T ) =
N∑

i=1,2,...

[
Xi

(
Li

ρi

Mi

)(
1 − T

Tm,i

)(
dcell − δi

dcell

)3]

+
( zdis − zord

zdis

)(
�Hmix

ρmix

Mmix

)(
dcell − δmix

dcell

)3

. (5)

This expression requires values for δi and δmix, the thick-
ness of the amorphization or shear layer for elementally pure
and alloyed systems, respectively. Both for pure metals and
for alloys, glassy or ordered, the shear layer thickness is ex-
pected to be equivalent to the thickness of a high angle (low
coordination) grain boundary, or approximately twice the size
of the average atomic diameter, i.e., δi = 2di and δmix = 2dmix

[27,34].
The atomic diameters, di, are taken from Pauling [35] for

fully coordinated structures, and the average diameter of an
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FIG. 1. Two-dimensional diagram of an efficiently packed clusters cell, how these can be packed with random orientations, and an idealized
and annotated diagram of the parameters and length scales.

atom in a glassy alloy, dmix, is calculated based on known alloy
density and packing fraction following Eq. (6),

dmix = 2

[
3

4π

(
Mmix fp

ρmixNAv

)]1/3

. (6)

In the case where these are unknown, we estimate a value
using a rule-of-mixtures for the fully coordinated constituent
elements. In Eq. (6), fp is the packing fraction, approximated
as 0.74 for close-packed atom clusters [26], and Nav is Avo-
gadro’s number, used to convert density from a molar to per
atom basis.

As a substitute for grain size (in the similar calculations for
polycrystalline metals), we consider the size and periodicity of
ordered domains in the glass. The basis for this consideration
is that shear-activated flow across a series of ordered domains
only requires rearrangement of a fraction of atoms, those that
are highly coordinated compared to a liquid or amorphous
state. For polycrystalline pure metals, the reasoning was that
disordered grain boundaries reduce the energy cost of activat-
ing flow. For metallic glasses, this calculation must similarly
account for the space between cluster cells wherein atoms
already have a near random coordination. In this case, the
value for the “equivalent grain size” is approximated as the
size of a close-packed fcc cluster unit cell.

The approximate size of a cluster can be estimated using a
simple approach based on the dimensions of fully coordinated
(crystalline) metal atoms. Pauling [35] provides values for
these, with an average radius of ratom = 164 pm. The average
radius of a cluster is then the sum of the radius of one solvent
atom (at the cluster center) and the radius of one solute atom
(which forms a shell surrounding the central, solute atom), so
that rclust

∼= 2ratom = 328 pm. The approximate diameter of a
cluster dclust = 656 pm, which is also the separation between

close-packed clusters, agrees with the estimated value from
high-resolution electron diffraction experiments for a binary
Cu64Zr36 metallic glass of ∼0.6 nm [19]. As illustrated in
Fig. 1, metallic glasses consist of unit cells of efficiently
packed clusters that tend towards fcc packing [24,26], with
an approximate cluster lattice parameter, aclust = √

2dclust =√
2(656 pm) ∼= 928 pm. This average value for the cluster

cell lattice parameter is close to that from more complicated
calculations that estimated the lattice parameter for 200 bulk
metallic glass alloys to be 980 ± 133 pm [26]. The unit cells
are themselves randomly oriented, disrupting long-range or-
der [23]. We must consider the cell size (i.e., equivalent grain
size) for metallic glasses to be between the two-dimensional
and three-dimensional packing of randomly oriented cubic
unit cells, with a lower bound of slightly offset cubic cells,
dcell,min = √

3aclust
∼= 1.6 nm, and an upper bound of the di-

agonal distance of the fcc cell, dcell,max = √
3aclust + dclust

∼=
2.2 nm. This range agrees with measured crystallite sizes for
Cu-Zr alloys that exhibited a transition to glassy behavior for
grain sizes in the range 1–3 nm [36]. While more accurate
estimates (with more accurate accounting of alloying effects)
may improve the accuracy of predictions, the average value
of dcell

∼= 2 nm produces generally accurate results. These
approximations also ignore factors that can be non-negligible
[26], including the effects of coordination number on atom
size.

Equation (5) also requires values for the coordination
numbers of both the short-range ordered (zord) and random-
packed/liquidlike (zdis) states. For the disordered state, we
use the average coordination number for pure liquid metals
near their melting temperature, 10.5 ± 1.2 [37,38]. The co-
ordination number of efficiently packed atom cluster cells
is more difficult to accurately determine. Analytic models,
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FIG. 2. (Left column) Survey of temperature-dependent shear
strengths for multiple metallic glasses (sources: [43–49]) and (right
column) with shear strengths normalized by room-temperature shear
moduli and temperature normalized by corresponding glass transi-
tion temperatures; μ is the room-temperature shear modulus.

like the efficient cluster-packing model, have been used to
describe the structure and properties (including coordination
number) of binary alloys [26]. However, values for ternary
and higher-order alloys, which constitute the majority of ex-
perimental data on MGs, have so far only been tractable using
computational methods such as molecular dynamics and ab
initio simulations [36,39,40]. A method for calculating the
coordination number for binary solvent-solute atom clusters
(zclust,i j ) based on the ratio (Ri j) of atomic radii, was proposed
by Egami [41] and later refined by Miracle et al. [42],

zclust,i j = 4π
(
1 −

√
3

2

)
(Ri j + 1)

1 − √
Ri j (Ri j + 2)

. (7)

Similarly, we estimate the average coordination number
for the efficiently packed atomic cluster cells, corresponding

to the SRO/MRO solid state (zord), using a compositionally
weighted average of the binary elemental pairs,

zord =
∑
i �= j

(xi + x j )zc,i− j . (8)

All necessary parameters are shown in Table I, including
the calculated coordination numbers. The estimated coordina-
tion numbers agree well for the few instances where values
were available; for example, pairwise-correlation functions
and Voronoi tessellation were used to determine the coor-
dination number distribution for Zr41.2Ti13.8Cu12.5Ni10Be22.5

(vitreloy 1) [39], with an average value zord
∼= 15 that is com-

parable to the value z ∼= 15.8 from Eqs. (7) and (8).
We now compare temperature-dependent flow strength pre-

dictions from Eq. (5) to measured values for multiple metallic
glasses in Fig. 2, both in absolute and normalized form, and
find good agreement for alloys that exhibit a range of strengths
and glass transition temperatures. In all cases, the predicted
temperature dependence is accurate, and we note that the tem-
perature dependence is fully defined by the rule-of-mixtures
component in the activation energy (i.e., there is no tempera-
ture dependence in the mixing terms).

In Fig. 3(a), we show the correlation between room-
temperature shear strengths and shear moduli, established by
Johnson and Samwer [50]. Overlaid on this is a comparison
with the rule-of-mixtures energy density (J/m3) from Eq. (1)
normalized by the elemental atomic activation volumes. In
this figure we have excluded the carbon-rich alloys from
Johnson and Samwer [50] as the heat of fusion and melting
temperature for nonmetals like carbon require additional con-
siderations that are beyond the scope of this work.

Calculated room-temperature strengths with the regular
solution model (for the metallic glasses listed in Table I) are
compared to measured values in Fig. 3(b). Although there is
good agreement, we note that there are multiple reasons why
the measured strengths could be different than those predicted.
Notably, the presence of defects that lead to crack initiation
would result in strengths lower than those predicted. This is
evident in the large spread in reported failure strengths in
Fig. 2. An underestimation of coordination number, as would
occur with partial crystallinity, would also result in a strength
underprediction. For example, Choi-Yim et al. [52] reported
about 2% crystalline phases in experiments with Ni-Nb-Sn,
and these values correspond to the points with the largest
prediction error (with measured strengths 2.0–2.3 GPa) in
Fig. 1(b).

Given the good agreement with the geometry-independent
energy density [Fig. 3(a)], the accurate prediction of
temperature-dependent strength serves as a post facto justifi-
cation of the assumptions about the ordered cell size, which
is the parameter with the highest probable error. These re-
sults also suggest that, when structural disorder is properly
characterized, the limiting strength of alloys can be gener-
ally predicted by elemental properties and mixing enthalpies.
While we have previously shown that the strength of some
dilute binary alloys (i.e., Ni-W [27] and Sm-Co [53]) can
be accurately predicted using the ideal solution approach, it
remains to be seen whether these ideas can be practically
extended to alloys with higher chemical complexity, such as
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FIG. 3. (a) Comparison of measured strengths and free energy density as a function of shear modulus for metallic glass data from Johnson
and Samwer (circles) [50], and (b) comparison of measured and predicted strengths also including high-entropy metallic glasses from Chen
et al. (triangles) [51].

TABLE I. Summary of measured and calculated properties for metallic glasses at room temperature.

ρRT μRT Tg M Hmix
a zord τY,meas τY,Eq.(5) Error

Alloy (g/cm3) (GPa) (K) (kg/mol) (kJ/mol) (−) (GPa) (GPa) (%) Refs.

Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 5.9 34 618 0.060 −32.9 15.8 1.07 0.87 19 [43,59,60]
Zr48Nb8Ni12Cu14Be18 6.7 34 620 0.069 −31.1 15.8 1.13 0.88 22 [60]
Zr55Ti5Cu20Ni10Al10 6.6 31 625 0.074 −30.9 14.9 0.94 0.65 31 [60]
Zr57.5Nb5Cu15.4Ni12Al10 6.5 31 663 0.077 −30.8 14.9 0.91 0.64 30 [60]
Zr55Al19Co19Cu7 6.2 38 733 0.071 −39.1 15.1 1.27 0.83 35 [50]
Pd40Cu30Ni10P20 9.3 35 593 0.074 −26.8 13.3 0.99 0.92 8 [61]
Pd40Cu30Ni10P20 9.3 33 593 0.074 −26.8 13.3 0.99 0.92 8 [62]
Pd40Cu30Ni10P20 9.3 36 595 0.074 −26.8 13.3 1.01 0.92 9 [61]
Pd60Cu20P20 9.8 32 604 0.083 −27.9 13.4 0.98 0.85 13 [60]
Pd40Cu40P20 9.3 33 548 0.074 −29.2 13.3 1.01 0.93 8 [60]
Ni45Ti20Zr25Al10 6.4 40 791 0.062 -46.8 14.9 1.37 1.09 20 [63]
Ni40Ti17Zr28Al10Cu5 6.5 47 862 0.063 −44.0 14.7 1.50 1.00 33 [63]
Ni60Nb40 9.0 54 885 0.073 −29.4 15.0 1.50 1.36 9 [64,65]
Ni60Nb35Sn5 8.6 66 885 0.074 −26.6 15.2 2.22 1.28 42 [52]
Ni60Nb35Sn5 8.6 66 885 0.074 −26.6 15.2 1.47 1.28 13 [52]
Ni60Sn6Nb27.2Ta6.8 9.2 59 875 0.080 −26.5 14.8 2.02 1.24 39 [50]
Ni60Sn6Nb20.4Ta13.6 9.8 60 882 0.086 −26.7 14.8 2.07 1.25 40 [50]
Cu64Zr36 8.1 34 787 0.074 −21.9 16.2 1.15 0.74 36 [66]
Cu46Zr54 7.6 30 696 0.079 −22.2 16.2 0.81 0.64 21 [67]
Cu46Zr42Al7Y5 7.2 31 713 0.074 −25.8 15.6 0.92 0.70 25 [68]
Pd77.5Si16.5Cu6.0 10.4 35 550 0.091 −21.4 13.3 0.87 0.92 -7 [69]
Pt60Ni15P25 15.7 34 488 0.134 −27.2 13.7 0.81 1.00 −23 [70]
Pt57.5Cu14.7Ni5P22.8 15.2 33 490 0.132 −27.0 13.5 0.84 0.95 −14 [71,72]
Pd64Ni16P20 10.1 33 452 0.084 −23.1 13.6 0.89 0.85 5 [69]
Mg65Cu25Gd10 4.0 19 428 0.047 −6.8 16.0 0.57 0.30 47 [50]
La55Al25Cu10Ni5Co5 6.0 16 430 0.095 −29.4 17.4 0.49 0.52 −6 [60,73]
Ce70Al10Ni10Cu10 6.7 12 359 0.113 −21.7 17.4 0.38 0.36 3 [74]
Cu50Hf43Al7 11.0 42 774 0.110 −20.3 15.0 1.27 0.73 43 [50]
Cu57.5Hf27.5Ti15 9.9 37 729 0.093 −14.6 15.0 1.12 0.67 40 [50]
Au49.5Ag5.5Pd2.3Cu26.9Si16.3 11.6 27 405 0.128 −11.7 13.6 0.69 0.68 2 [75]
Au55Cu25Si20 12.2 25 348 0.130 −11.9 13.9 0.58 0.73 −27 [75]

aHeat of mixing determined using the method described in Takeuchi and Inoue [28], based on Boom, De Boer, and Miedema [29,30].
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high-entropy or complex-concentrated alloys, which are solid
solution crystalline compounds with high concentrations of
multiple elements [54,55].

III. SUMMARY AND CONCLUSIONS

Work by Inoue, Johnson, and others established alloy de-
sign criteria for metallic glasses. Building on this foundation,
our work provides a means to predict which glasses are likely
to be high strength. In this case, geometric considerations
are likely unnecessary, as a simple calculation of the free
energy of an ideal solution is sufficient. Combining this with
computationally rapid assessments of ductility via the Pugh
ratio (i.e., the ratio of shear and bulk moduli) [56,57], this
work provides a framework for the discovery and optimization
of metallic glasses.

It is likely that this framework can be extended to a
broader set of alloys, including high-configurational en-
tropy multi-principal-element alloys (solid solutions without a

majority elemental constituent) and intermetallic compounds
(like those used to impart high strength and temperature resis-
tance in superalloys [55,58]). The link between coordination
number, formation free energy, and ultimate strength may re-
duce the computational cost in the search for thermally stable
alloys with desirable mechanical properties.
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