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ABSTRACT 

Software project management, a peculiar area in project management, is concerned with 

activities involved in ensuring that software is delivered on time and on schedule. Software 

project management is unique because software products are perceived as intangible and flexible. 

In software projects the capability of people is the most important factor to determine whether 

a project will succeed or fail. During the software project management process, scheduling can 

be influenced by a lot of dynamics elements such as the skills of engineers, the growth of skills 

and experiences, cooperation and leadership. Our objective is to help project managers to assign 

human resources automatically and realistically based on personnel/team capability. 

This thesis proposes a framework for scheduling and monitoring in software project manage­

ment. Based on this framework, dynamic elements in software project management, especially 

personnel capability, are simulated in System Dynamics models. The genetic algorithms for 

previous work (i.e., task-based model and timeline-based model) are revised to reduce the com­

putation in the new model. Experiments are also reported including the procedure on tuning 

GA parameters, results of several example tests, and discussion on the results. Experiments on 

comparison of GA and Hill-Climbing method help us build the confidence that GA is a good 

choice in software project scheduling problems. 
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CHAPTER 1. Introduction 

1.1 Objective 

Software project management, a peculiar area in project management, is concerned with ac­

tivities involved in ensuring that software is delivered on time and on schedule. Software project 

management is unique because software products are perceived as intangible and flexible. Thus, 

software engineering is neither a classical engineering discipline, as is mechanical or electrical 

engineering, nor does it dictate a standardized software development process. These characteris­

tics make software project management very difficult to satisfy budget and schedule constraints 

that are set by an organization and its stakeholders. As reported by Standish Group, only about 

283 of software projects in US companies succeeded in 2000 and more than 403 were canceled 

before completion [43). 

In software projects, the capability of people is the most important factor to determine 

whether a project will succeed or fail. During the software project management process, schedul­

ing can be influenced by a lot of dynamic elements such as the skills of engineers, the growth 

of skills and experiences, cooperation and leadership. Current resource-constrained scheduling 

techniques mostly focus on the availability of resources instead of the capability of resources. It 

is obviously not reasonable and incomplete, especially in software project management where the 

capability of human resources can evolve during the execution of an established plan. Ignoring 

learning and other dynamic factors during project estimation can lead to wrong execution. Our 

research aims to define and explore the software project scheduling by considering the dynamics 

throughout the software development life cycle. 

Our objective is to help project managers assign human resources automatically and re­

alistically based on personnel/team capability. We propose a framework for capability-based 
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software project scheduling to model software processes at the micro levels using the system 

dynamics method. Given a certain project and available resources, heuristic search is applied as 

an optimization method to obtain a near-optimal solution under the framework. In our future 

work, we also try to explain how case-based methods can provide feedback to the remaining 

tasks during the execution of a project for more accurate simulation. 

1. 2 Scope of Our Research 

Project management includes those activities of scheduling, planning and monitoring re-

sources (including human resources) to achieve specific objectives. The usual goal is to obtain a 

schedule which can maximize the objective, provided that there is a way to evaluate performance. 

The difference between a plan and a schedule can be considered as follows. A plan defines what 

must be done and restrictions on how to do it (estimates), while a schedule specifically describes 

both how and when will the task be done (temporal assignments) [48]. Although planning and 

scheduling are traditionally considered as independent activities, we cannot separate them in 

reality. Our research scope is mostly on scheduling, but at the same time we have to refer to 

planning as well. Figure 1.1 shows the range of software project management processes and 

where our research is focused. 

r----~ 
I E~t.imate · -
I Efforts fo,r-.F-. ---1.-
1... _ras~ _ 1: ' """'1 - ~ - -

Figure 1.1 Project management process 

r----~ 
I Project t41I .. 
I Monitoring ' I 

~~,~~· 

Although scheduling is tedious and error-prone for software managers, software project 

management receives relatively little attention in the software engineering research commu-

nity. Therefore our research emphasizes the scheduling problems of software development. Be­

cause the general resource-constrained project scheduling problem lacks the characteristic of the 
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software development environment, we propose a capability-based scheduling model and apply 

optimization techniques based on this model as depicted by the boxes "assign resources" and 

"produce a schedule" in Figure 1.1. The other two shaded boxes "estimate efforts for tasks" 

and "project monitoring" will be partially related to our model. Due to the lack of real software 

project data, we use simulation to validate our algorithms. 

1.3 Structure of This Thesis 

The thesis is organized as follows: Chapter 2 gives a literature review over the related 

research on project management. Chapter 3 describes limitations of previous work in our group, 

i.e. the task-based model and timeline-based model. Chapter 4 briefly illustrates the framework 

of our method. Chapter 5 describes our model in detail, including the dynamic model and the 

static model. Chapter 6 focuses on the algorithm and implementation of heuristic search and 

discusses experimental results. Chapter 7 gives an overall evaluation on our current research 

and concludes with some future directions. 
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CHAPTER 2. Related Work 

2.1 Resource-Constrained Project Scheduling Problems 

In many industrial applications such as manufacturing, production planning, project man­

agement and elsewhere, project scheduling problems occur with limited resource availability. 

For a general resource-constrained project scheduling problem, it is described as a project with 

a set of tasks, or activities. Tasks have precedence relationships. Tasks also have estimated 

durations and may include various other measures such as cost. We need to assign the tasks to 

some resources to meet our predefined objectives mostly as minimal makespan such that both 

the precedence and resource constraints are fulfilled. The makespan is the time needed to com­

plete all the tasks. An example of a task precedence graph is shown in Figure 2.1. The project 

consists of 6 tasks with constraints including: the required skills to finish Task 1 are Java and 

Microsoft Project; Tom's salary is higher than Mike's; Jenny works on Monday, Tuesday, and 

Friday. 

Resource-constrained project scheduling problem, or RCPSP, has been thoroughly studied 

for more than 40 years. An overview of the different models in RCPSP is given by Brucker et al 

[9]. Young et al [50] summarizes the different types of RCPSP problems, research directions, al­

gorithm and heuristic approaches presented in recent years. Young also describes a new problem 

definition with the objective of minimum cost. 

2.1.1 Exact Solution Methods 

When resource-constrained scheduling solutions were first proposed, simple models were used 

with exact methods for solving problems. Exact methods try to find optimal solutions through 

some intelligent exhaustive search. They include backtracking [6], branch and bound [8] or 
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Figure 2.1 An example of task precedence graph 

implicit enumeration, the critical path method and its variations, and dynamic programming 

[4]. Given a problem, the exact methods can find the best solution if it exists. However, when 

constraints are added, the difficulty of solving a problem increases. In addition, significant 

problem size greatly affects the feasibility of those methods. For example, the critical path 

method was devised for finding the shortest time to complete a project given estimates of 

task durations. Unfortunately, the critical path method cannot solve problems that include 

restrictions on the number of resources that are available. Recent research on exact solutions 

includes a tree search algorithm reported by Mingozzi [34). 

2.1.2 Heuristic Solution Methods 

Although heuristic methods may not find optimal solutions compared to exact methods, they 

can still find good solutions with less time. In general, heuristic methods require more space. 

Heuristics are rules to help make a decision given a particular situation. Heuristics in scheduling 

are usually referred to as scheduling rules or dispatch rules. Heuristics could be deterministic or 

stochastic. There are several common heuristic approaches to scheduling problems. Simulated 

Annealing (SA), introduced by Kirkpatrick et al [29], originated from the physical annealing 

process. It requires a schedule representation as well as a neighborhood operator for moving 
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from the current solution to a candidate solution. Tabu Search (TS) developed by Glover [22] is 

essentially a search method for guiding known heuristic to overcome local optimality. Genetic 

Algorithm (GA), inspired by the process of biological evolution, was introduced by Holland [26]. 

The advantage of GA is that it can handle arbitrary kinds of constraints and objectives that can 

all be treated as weighted components of the fitness function. GA has been extensively applied 

in scheduling problems [32], [50]. In one of the earliest published works on the application of 

GAs to scheduling, Davis [15] outlines a basic scheme applied to a simplified toy problem in 

flow-shop scheduling. Later different GA algorithms are applied in variations of the general 

resource-constrained scheduling problems [48), [37), [24]. We focus on the application of GA to 

the scheduling problem in software development in this thesis. 

2.1.3 Problems Related to Real Software Project Scheduling 

Researchers tend to adopt simplified models for problem solving with some exact algorithms. 

However, in the real-world situations, the problem is unfortunately not simple. As we have 

stated in our objective, the resource-constrained scheduling problem is not complete for software 

engineering research. Current research in the general resource-constrained scheduling area still 

focuses mostly on the optimization methods, such as techniques of using Genetic Algorithms 

(GAs) without considering the specific situations in software development. The main problem 

is that the model must be sound and applicable in the software engineering process. The 

model requires the specification of a set of "essential" project information to support decisions 

and optimization. It is clear that we cannot model every single element of the entire software 

engineering process. We will describe our model in detail in later sections. 

2.2 System Dynamics on Software Project Management 

System Dynamics (SD) is a method to model a system by using feedback loops. Roberts 

[39] defines SD as the application of feedback control systems principles and techniques to 

managerial, organizational, and socioeconomic problems. This rigorous modeling technique 

begins with levels or populations (for example, effort to finish a task), and determinants of rates 
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of flow of populations (for example, actual productivity according to resources). SD is a set of 

conceptual tools that enable us to understand the structure and dynamics of complex systems 

[44). It enables us to build formal computer simulations of complex systems and use them to 

design more effective policies and organizational systems for the future, by effectively addressing 

dynamic structures. Some simulation tools such as Vensim, Dynamo, iThink, are popular, but 

most system dynamics are not widely applied in the industry. 

Software process modeling is a subject of mathematical modeling in a less mature process. 

Feedback mechanism may play an important role in software development. For example, schedule 

pressures causing an employee to speed up work can continually affect the whole software project 

development process. Additionally, some other parameters need to be updated and tracked 

during the process. Therefore, the continuous feedback loops need to be modeled in a realistic 

project management. Since the first application of system dynamics by Abdel-Hamid [1] on 

project management, there has been some other recent extension work on system dynamics 

within the realm of project management, such as the hybrid software process simulation model 

[30) and system dynamics extension modules [3). Most of the research objectives are designed 

so that the researcher may know the software process better. As we have a different goal and 

view for our specific concerns with project management, we will use the system dynamic model 

to simulate the dynamic part of project management. 

2.3 Cost Estimation Models 

For scheduling a software project, several cost estimation approaches are in use, such as 

Putnam's SLIM model and Boehn's COCOMO, and the revision COCOMO II. Among those 

traditional static cost estimation models, COCOMO (COnstructive COst MOdel), developed by 

Boehm in 1981, is considered the most complete and popular model. Those empirical approaches 

involve models fitted to historical data. The models are then used to predict the cost of future 

projects. The main equation in COCOMO is, 

Effort= a* (Size)b (2.1) 
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where a and b are empirical constants derived from the calibration of the model. It has been 

formulated as a hierarchy of models as Basic COCO MO, Intermediate COCO MO, and Advanced 

COCOMO. The latter one was embedded with more cost drivers due to more information learned 

during later development stages. 

In spite of the popularity of COCOMO and COCOMO II, we still can see the limitations of 

these approaches. One report showed that the predictive accuracy of COCOMO II is only 30 

percent of the actual values 52 percent of the time for "effort" [13]. Several possible ways can 

be used to improve the accuracy of estimation, such as introducing more factors and adapting 

the existing approaches to new development techniques. 

Another approach of estimation is to model the system process using system dynamics which 

we have described the techniques in Section 2.2. Table 2.1 is a comparison of COCOMO and 

system dynamics stated by Roman and Carrieira [40]. 

Table 2.1 Comparison between COCOMO models and dynamic cost esti­
mation model 

Static Cost Estimation Mod- Dynamic Cost Estimation Mode ls 
els {COCOMO) 

Basic COCOMO RDM (Reduced Dynamic Model) 
Intermediate COCOMO Abdel-Hamid and Madnick's, 

Draper Laboratory, SEPS, etc 

Advanced COCOMO 

Although Roman and Carrieira (40] believe there are no dynamics cost estimation models to 

parallel the power of advanced COCOMO, we would like to use more detailed system dynamics 

to do similar work at the same level of the advanced COCOMO. Our work is not to replace the 

COCOMO model, but to try to complement it at a detailed level. 

2.4 Project Scheduling Tools 

There are many commercial project management tools such as Microsoft Project, Symantec 

Corporation's Time Line and the web-based project management tools of Rational Concepts. 

None of these, however, provides automatic scheduling functionality. The only software to help 
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automatic scheduling for project management that we can find is Opensched. It reads a file 

describing the project as input and produces textural descriptions of the generated project plan, 

Gantt charts and network diagrams. The input includes tasks which must be accomplished, 

resources (e.g., people, equipment, and facilities) which may work on tasks and work that has 

already been completed. However, the model supported in Opensched is very simple. 

Usually a scheduling tool needs to be consistent with the software development methodology, 

such as the Rational Unified Process. Although it is not always practical to use automated 

project scheduling in project management, research is still needed for improving the overall 

capabilities of current tools. 
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CHAPTER 3. Previous Work and Limitations 

Our previous two models, the task-based model and the timeline-based model have made a 

serious attempt to model realistic software scheduling processes. 

3.1 Task-based Model 

The task-based model [10] is proposed as an improvement to the original model (i.e. SPMNet 

[12]). It uses Genetic Algorithm as its optimization method. 

The representation of the problem consists of: 

1) Representation of project T PG = (V, E): 

• The project is represented as a task precedence graph; 

• A directed acyclic graph where the nodes represent the tasks and the edges represent the 

task precedence; 

• Each task is associated with an estimated effort (based on COCOMO) and the required 

skills. 

2) An employee database Demp with information of skills and salary. 

3) An objective function. 

In this model, genetic representation is an orthogonal 2D array with one dimension for tasks, 

the other for employees. GA operators are adopted from GAlib [18]. In the approach, there 

are two stages for scheduling the project. The first stage evaluates how the genome satisfies the 

constraints while the second stage evaluates the schedule performance of the genome. For the 

simplest objective function, it can be defined as: Composite objective function = Validity * 

(OverLoadWeight/OverLoad+ Money Weight/CostMoney + Time Weight/CostTime). 
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Validity (validity of job assignments) is usually scored on a 0/1 basis, 0 if the assignments 

are invalid, 1 if they are valid. Overload (minimum level of overtime) is the amount of time 

worked beyond the individual overtime limits summed over all employees, and it is treated as a 

global objective for a project. CostMoney (minimum cost) is the total labor cost of performing 

the project computed using the labor rates of each resource and the hours applied to the tasks. 

CostTime (minimum of time span) is the total time span required to finish the project from the 

start of the first task until the end of the last. The composite objective value is the summation 

of weighted component objective values. 

3.2 Timeline-Based Model 

time 

Employee I EmployeeK 

Figure 3.1 Assignment in timeline-based model 

In timeline-based model [17], a timeline is introduced to improve the original model in 

task-based model [10). The timeline expands the two-dimensional (task and employee) model 

to a three-dimensional one which shows the effort of each employee applied to each task in 

each time unit. The timeline helps capture the dynamic nature of software management, such 

as re-assignment of employees, learning, scheduled vacation, unexpected leave, suspension and 

resumption of tasks, and the introduction of hard, intermediate deadlines. 

Genetic representation for timeline-based model is a 3D array. Figure 3.1 illustrates the 

scheme for Employee-Task Assignment. The computational complexity of the timeline-based 

model is sharply increased because of the introduction of time dimension compared to the origi­

nal task-based model. In order to achieve realism, the elements, such as an employee's proficiency 
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scores, employees' technical experiences, task deadlines, and task penalties are considered. Mod­

els related to employees were added, such as Employee Model (an employee represented by a 

numerical identifier and some properties) with Employee Compensation Model, Employee Skill 

List, Employee Training Model, Employee Experience Model and Availability Model. Models 

related to tasks (a task represented as a numerical identifier and some properties) include Task 

Estimated Effort, Task Importance Model, Skill List and Ancestor Task List, and Maximum 

Headcount. 

3.3 Limitations 

Limitations of the task-based model [10] have already been reported in the timeline-based 

model [17]. Our own previous work has not adequately dealt with specific characteristics in the 

software engineering environment. The work is mostly done on general project management 

scheduling, although our research focus is on software project management. 

Here we want to discuss limitations of our later work, the timeline-based model. Generally 

speaking, the work is unrealistic, mostly because it ignores the effect of the changing staffing 

profile too often by neglecting the cost to those changes. 

Problems of timeline-based scheduling are as follows: 

1. Usually a task is assigned to an employee until the task is finished. It is unrealistic to 

assign an employee to one task for awhile, assign him to another task, and then assign the 

employee to work on the original task again. 

2. The interruption cost of this scheme is not counted, which is very expensive to project 

execution. Those costs include the interruption on learning and the cost of reassigning an 

employee. 

3. Calculating the fitness function by adjusting gained effort during execution places inac­

curacy into the calculation. 

4. Re-scheduling is not considered in the framework. The situation is not unusual due to 

the change of employees and even tasks. 



13 

CHAPTER 4. Overview of the Scheduling Framework 

This framework introduces a hybrid software process simulation model that combines dy­

namic and static models in software project scheduling. There are four main parts in this 

framework as illustrated in Figure 4.1: 

(1) Heuristic search algorithms. The key algorithm to implement automatic scheduling is 

heuristic search. In our work genetic algorithm is used as the major method (refer to Chapter 6). 

With the information on the properties of tasks and employees from static models (part 3) as the 

input, heuristic search algorithms can generate populations of possible solutions using genetic 

operators. Evaluating those individuals by an objective function using the output "durations of 

tasks" from system dynamics simulation (part 2), they overall evolve to be the ones with better 

performance after a number of generations. Finally, a near-optimal schedule can be obtained 

using heuristic search algorithms. 

(2) System dynamic models and simulation. Based on system dynamics meta models of 

team productivity, the capability-based system dynamics simulation is guided to calculate task 

durations according to different human resources assignment. It provides the task durations 

to heuristic search algorithm (part 1) as a part of input to calculate the fitness score of an 

individual (refer to Chapter 5). 

(3) Static models. It includes the static part of task models (task estimated effort, task 

penalty model and required task skill lists, etc.) and employee models, such as the employee 

payment model, the employee skill model (also has a dynamics characteristic, refer to Chapter 

5), and an employee experience model. 

( 4) Monitoring and re-scheduling techniques. From an actual project execution, some moni­

toring data can be obtained from daily records. These data can help calibrate system dynamics 
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Figure 4.1 Capability-based project scheduling framework 
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meta models (part 2) with more accurate parameters (refer to Chapter 7). Our assumption is 

that it is more reasonable and accurate to use data from the same project or the same com­

pany. Our rough idea is to use case-based techniques to store historical data as cases which can 

be retrieved later. As we have not done enough work on model calibration and re-scheduling 

techniques, it will be paid much more attention in our future work. 

Considering the dynamics of team capability, a near-optimal schedule can be generated for 

decision making in software project management. This framework also gives a possible way to 

take advantage of actual project execution and use those data as feedback loops for getting more 

accurate schedules. 
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CHAPTER 5. Capability-Based Model 

The ability of a software organization to take on a new project depends to a large extent on 

the capability, rather than, the availability of resources [35]. The personnel/team capability is 

one of the most important factors in software engineering as reported by Software Engineering 

Center of USC [7]. Our proposed scheduling model is based on human resources' capability with 

dynamics factors. 

5.1 Productivity Factors on Human Resources 

As to the productivity metrics, productivity can be measured in the following ways: 1) to 

use project size (usually measured as lines of code, i.e., LOC), or 2) function points, divided by 

the time spent on development. 

There are significant productivity differences among individual software developers. In the 

first study on the subject by Sackman [42], they found dramatic differences of more than 20 

to 1 in the time required by different developers to debug the same problem. Some researchers 

have been studying on productivity, but not so many have studied quantitative data. One 

quantitative study is on object-oriented productivity as reported in Potok [36]. 

By analysis of the COCOMO model, we can also see that the COCOMO II estimation model 

includes cost drivers with the capabilities of human resources. Among those factors, 7 out of 22 

factors in the COCOMO II model are related to personnel as listed in Table 5.1 [31]. 

Stevenson [45] gives a literature survey about productivity in software engineering. The 

factors affecting productivity include organizational structure, office environment and hardware, 

software tools, people (shortage, turnover, training, experience and innate ability), quality and 

management. Usually those factors can be divided as task-typed variables and resource-typed 
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Table 5.1 Personnel influences in the COCOMO II estimation model 

COCOMO II Factor COCOMO II Name Influence 

Analyst experience AEXP 1.51 

Language and tool experience LTEX 1.43 

Programmer experience PEXP 1.40 

Communications factors SITE 1.52 
Personnel continuity PCON 1.59 
Programmer capability PCAP 1.77 
Requirements analyst cap a- ACAP 2.00 
bility 

variables. As our area is on software management, we focus on factors related to people here. We 

propose using system dynamics model to represent the factors about an employee's capability. 

5.2 Models on System Dynamics 

System dynamics models are so complicated because of the introduction of hundreds of 

interrelated factors. Realizing that it is difficult to model the whole system, a meta model is 

introduced to help simplify the issue of the creation of complex dynamics models. A meta model 

is a high-level model for system dynamics. Due to the capability-based characteristic, our meta 

model for capability will focus on modeling productivity and consists of sub-models at the lower 

level. We will use a simple and useful parameter that takes value 0 or 1 to control whether we 

need to consider the factor or not. 

5.2.1 Meta Model for Productivity 

For software development, team average productivity is the key component affected by a 

complex set of factors as shown in Figure 5.1. 

Our model has three layers: (1) team productivity, which decides the task duration directly; 

(2) individual productivity, communication overhead, and other factors, which are different 

among individuals but also contribute to the team productivity; (3) experience, learning, over­

working, and schedule pressure factors, which affect the individual productivity on the second 

level. Figure 5.1 illustrates our meta model with the factors we are currently modeling. There 
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Figure 5.1 Meta model for capability-based model 

Overworking 

are also other factors which affect the projects. For example, motivation is also a critical factor 

to individual productivity. Here, we are not modeling more factors but simplify the models for 

the purpose of illustrating our framework. 

Because project management depends on the ability of managers, the determination of factor 

influences is partially controlled by project managers through a control parameter. Control 

parameter takes value 0 or 1 to turn the factors on or off. 

5.2.2 Sub Models 

While most of the factors would vary from organization to organization and from project 

to project within a single organization, they would remain constant within a single project [1] . 

Therefore we introduce the feedback loop to monitor the project as follows. 

• Team productivity 

N 

Pteam = L Pi* (1 - Com0verhead(N)3) (5.1) 
i=l 
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Explanation: Team productivity (Pteam) describes the relationship between productivity 

in team and related factors, such as individual productivity (Pi) and communication over-

head (ComOverhead(N)). Here N is the number of employees assigned to the task. In 

[1], the productivity of the software development group can be stated as the psychological 

model of group productivity by Ivan Steiner. In his model: 

Actual Productivity= Potential Productivity - Losses Due to Faulty Process (5.2) 

where losses due to faulty process refer basically to communication and motivation losses. 

Here we change it to Equation 5 .1. 

• Communication overhead 

!min{ Communication factor* (n - 1) 2 , 100} 
ComOverhead(n) = 

0 

Default value: Communication factor= 0.05 

n?. 1 
(5.3) 

n=O 

Explanation: Communication is an essential component in software development, but it 

is also an overhead. Within a bigger team, communication overhead among team members 

is obviously increased. Abdel-Hamid [1] lists several researches to show that it is widely 

held that communication overhead increases in proportion to n 2 , where n is the size of the 

team as shown in Figure 5. 2. 

According to the graph by Abdel-Hamid [l], Communication factor is set to 0.05 as the 

default value. It can be calibrated later. 

• Individual productivity 

Pi = N omProductivityt * !skill * !experience * !learning * f overtime * f schedulepressure (5.4) 

Explanation: Individual productivity (Pi) is affected by certain factors, such as nominal 

productivity (N omProductivityt), skill fitness Uskilt), the experience factor Uexperience), 

the learning factor Utearning ) , the overtime factor (!overtime), and the schedule pressure 
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Figure 5.2 Relationship between workforce and communication overhead 

factor Uschedulepressure)· Nominal productivity represents the maximum level of software 

development productivity that a certain task can be developed. Therefore, it is related to 

the task-related variable which can be retrieved from cases described in detail in Chapter 

7. Table 5.2 shows an example of nominal productivity which we can retrieve from the 

database we set it before the simulation. It shows that if the task is within those properties 

(Task Type = 2, Complexity Level = 5), then we can get that Nominal Productivity = 

0.8. 

Table 5.2 A case of nominal productivity 

variable name value 

Task Type 2 
Complexity Level 5 
Nominal Productivity 0.8 

Other factors which are related to individual productivity will be discussed later in this 

section. 

• Skill Fitness 
s 

!skill = (L Si/10)/ S (5.5) 
i=l 
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Explanation: Same as timeline-model [17), the equation for f skill is to calculate the skill 

fitness of an employee to a certain task. s is the number of skills required by the task. Si 

is the proficiency of skill i. For example, Task 1 needs skill 1 and skill 3. Employee 1 has 

the skill 1 with a proficiency of 2 and skill 3 with a proficiency of 2. Employee 2 has skill 

1 with a proficiency of 5 and skill 3 with a proficiency of 1. So Employee 2 has a higher 

skill fitness (i.e., 0.3) than that of employee 1 (i.e., 0.2). 

• Experience 

!experience = adjustmentexperience * E(tasktypei, employeej) /10 (5.6) 

Default value: adjustmentexperience = 1 

Explanation: E(tasktypei, employeej) is the experience of Employee j on Tasktype i 

in software development, where adjustmentexperience is a factor to adjust the experience 

factor as it affects the capability dynamics. 

• Learning 

03 <= x <= 50% 

fzearning = 1.6 * (li - 1) * X + 1.4 - 0.4 * li 503 <= X <= 753 (5.7) 

li - 3.2 * (li - 1) * (1 - X) 2 703 <= X <= 1003 

Explanation: Xis the percentage that a task has been finished, whereas li is the learning 

property of an employee. Figure 5.3 shows an example of a learning curve with li = 1.25. 

This equation is adapted from a S-curve equation. 

The learning curve has been studied for many years. Only a few papers, however, mention 

learning curve in Software Engineering, such as Raccoon [38]. Generally, learning curves 

are patterns which describe the long-term improvement in some stable processes, such as 

manufacturing and mining. Researchers have noticed that improved productivity increases 

year by year in those processes. Several patterns of the learning curve model exist: (1) 

The log-linear pattern of improvement: y = a(x)n; (2) Standard-B: y = a(x + b)n; (3) 
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Figure 5.3 An example of learning curve in individual productivity 

DeJong: y =a+ bxn ; ( 4) S-Curve: y = a+ b(x +er. Each of these most popular models 

applies in a different field or has a different range of applications. It is observed that the 

log-linear equation can apply to a wide range of processes compared to the other three. 

Other equations also exist beside these four. Although there does not exist any concrete 

research to support these equations, we think they may fit in software development as a 

complicated stable process. Raccoon [38] argues that the learning curve can be applied in 

Software Engineering and analyzes the need to stabilize and improve the processes. In this 

case, an analysis is applied to the project staffing situation and one of the conclusions is 

to keep team members together on long-term projects. As a matter of fact, the definition 

of learning curve is not clear in the sense of different fields. Other papers discussing 

the learning curve in software process modeling indeed have different meanings, such as 

Hanakawa [23]. This paper proposes a simulation model for software development and 

tries to deal with software engineer's productivity efficiently. As to the problem of how 

we can model the learning curve in the software development process, we need to analyze 

real data and compare different models to know which one is more applicable. 

• Schedule pressure 
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\

5 
schedule pressure = 

min{Workf lowrequired/Workflownormal, 5} 

T current > Tidealf inishtime 

T current :::; Tidealfinishtime 

(5.8) 

where 

w orkfloWrequired = ef f ortremaining/ (Tidealfinishtime - T current) (5.9) 

work fl OW normal = Pteam (5.10) 

The lookup table for fschedulepressure is shown in Table 5.3. 

Table 5.3 Lookup table for fschedulepressure 

schedule pressure ( x) f schedulepressure 

0:::; x < 1.1 1 
1.1 :::; x < 1.35 1.2 
1.35:::; x < 1.75 1.4 

1.75:::; x < 3.5 1.45 
3.5:::; x:::; 5 1.5 

Explanation: When the human resources are constant for the project, it is impossible 

that people will do the job in the same rate when the deadline is near. Schedule pressure is 

a factor which can illustrate this situation. Because of the complexity of a human worker's 

psychology, we adopted simple relations between the schedule pressure and productivity 

(Table 5.1) from Vensim documents [47]. Equation 5.8, 5.9 and 5.10 are derived from the 

research by Abdel-Hamid [1] with revisions in the purpose of fitting our model. 

Example: If an Employee's individual productivity is 100 LOC/day, then his productivity 

is lOO*schedule pressure with the schedule pressure factor which will range from 100-200 

LOC/day, 100 being without schedule pressure. 

• Overworking 

!overworking = overtime* fatigue productivity (5.11) 
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where overtime lookup table: (schedule pressure, overtime) = (1, 1), (1.2, 1.2), (1.5, 1.4), 

(2, 1.45), (5, 1.5), and 

fatigue productivity lookup table: (overtime, fatigue productivity) 

(1.4, 0.75), (1.45, 0.6), (1.5, 0.3) 

(1, 1) ' (1.2, 0.9), 

Explanation: From Vensim [47], we adopt the relationship of overtime and fatigue pro­

ductivity lookup table in the example of project8.mdl. 

Example: At task 2, the calculated schedule pressure is 2. So we look up the table and 

get overtime = 1.45. By looking at the fatigue productivity lookup table, we get the value 

0.6. So it means the overall productivity is decreased from 1 to 0.6. 

5.2.3 From System Meta Models to System Dynamics Simulation 

Heuristic search provides a candidate scheduling solution from which we can perform the 

capability-based system dynamics simulation. 

From the framework of our model in Figure 4.1, we can know that according to every candi­

date schedule, we can do the simulation to get the real task duration based on personnel/team 

capability. 

For example, in a candidate solution such as that shown in Table 5.7. 

• Employeel is assigned to taskl and the system dynamics simulation is shown as Figure 

5.4. 

• Employee 1 and employe2 are assigned to task 2 and the system dynamics simulation is 

shown as Figure 5.5. 

5.3 Static Models 

5.3.1 Employee Model 

In the static model, an employee is represented by his ID and several static properties as 

shown in Table 5.4. 

More explanation of these properties now follows. 
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Figure 5.4 An example of system dynamics simulation (Task 1) 

Table 5.4 Employee model 

Property Name Type Description 

Employee ID Integer a non-negative integer 

Contractor Boolean True (contractor); False (not con-
tractor) 

Normal salary Integer monthly salary for 1003 work load 

Overwork salary Integer monthly salary for overtime load 

Skill list with profi- Array a list of skills that this employee pos-
ciency level sesses 

Learning factor Double factor to learning ( ~ 1) 

Max work load Double the upper limit for the work load 
of any employee; assumption: the 
maximum is 2003 

Available start time Integer The available starting time for an 
employee 

Available end time Integer the available ending time for an em-
ployee 
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• Contractor or not: a contractor may not receive any training. 

• Normal salary: the salary that the employees will get when they work a normal workload. 

• Overwork salary: employees may be paid at a different rate when working overtime. Refer 

to Section 5.3.1.1. 

• Skill list: a list with the skills that an employee possesses and a corresponding proficiency 

score (0-10) for each skill. 0 means the employee does not possess the skill and 10 means 

they are expert on it. Table 5.5 describes an example of an employee's skill list. Refer to 

Section 5.3.1.2. 

Table 5.5 An example of skill list of an employee 

Skill Id Skill Name Proficiency 

1 c++ 3.2 

2 Perl 0 

3 Java 4.5 

4 VB 2 

• Learning factor: this factor affects the learning curve described in Section 5.2.2. 

• Max work load: it represents the maximum number of hours the employee can work. For 

example, 1.5 means this employee can work no more than 1.5 times his usual workload. 

On the basis of 40 hours per week, he cannot work more than 60 hours per week. 

• Available start time and available end time: associated with each employee are two dates: 

available start time and available end time, which represent the months they first become 

and then cease to be available to a project. 

5.3.1.1 Employee Payment Model 

Employees may be paid at a different rate when working overtime. 

• Snormal and Soverwork are the salary rate when the employee works in normal work load 

and overwork load, respectively. 
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• hnormal and hmax are the normal working hours and maximum working hours for an 

employee, respectively. 

The total payment for h hours is: 

Snormal * h 0 ~ h ~ hnormal 

P(h) = Snormal * hnormal + Soverwork * (h - hnormal) hnormal < h ~ hmax (5.12) 

00 hmax < h 

5.3.1.2 Skill Proficiency Acquiring Model 

Skill proficiency can be gained by training (Section 5.3.2.2). If an employee's skill proficiency 

level on a given skill is r at the beginning of the training, at the end of training the skill is updated 

as, 

Skillprof = min{r + (LearningFactor - 1) * t, 10} (5.13) 

LearningFactor refers to the property that an employee has. t is the duration of a training 

task. This equation is adopted from timeline-based model [17]. 

5.3.1.3 Experience Acquiring Model 

Experience can be gained by doing similar tasks. If an employee's experience level on a type 

of task is r at the beginning of the task, then at the end of the task, his or her experience will 

change due to learning. The maximum value for experience is the same as that for proficiency, 

10.0. Employee's experience of this task type after the completion of the task is updated as: 

EX P(TaskType, Employee! D) = min{r + (LearningFactor - 1) * t, 10} (5.14) 

LearningFactor refers to the property of the employee. t is the duration of an employee 

assigned to the task. 
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5.3.2 Task Model 

A task is represented as its ID and a set of properties. Table 5.6 shows those properties. 

Table 5.6 Task model 

Property Name Type Description 

Task ID Integer the task's ID, a non-negative num-
ber 

Description String description of the task 

Task type Integer type of task (0-10) 
Complexity level Integer (0-5) 0,1 means quite easy; 5 means 

very difficult 
Ideal finished time Date If a task will be finished after this 

date, some penalty will be applied. 
Hard deadline Date If a task cannot be finished before 

this date, the schedule is invalid. 
Required skill list Array skill list required for finishing this 

task 
Ancestors list Array a list of tasks that must precede this 

task 
Required Effort Double nominal effort required to finish the 

task 
Penalty Rate Double the penalty rate for a delayed task 

These are the same as in the task-based model and, indeed, as in most scheduling models 

based on activity networks. A task still has a list of required skill ID's and a list of direct 

ancestor task ID's. All predecessor tasks must be completed before the task can begin. 

5.3.2.1 Task Penalty Model 

If a task is completed after the ideal finished time, a certain amount of penalty will be added 

to the total cost. 

• Tideal and Tdeadline are the ideal finished time and the hard deadline for a task, respectively. 

• PenaltyRate is the cost for finishing a task after its ideal finished time. 

• T is the real completion time for a task. 
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The penalty cost for a task is: 

0 T < Tideal 

TaskPenalty(T) = p lt R t (T T ) rri < T < T. ena y a e * - ideal .L ideal - - deadline (5.15) 

00 Tdeadline < T 

5.3.2.2 '!raining Task 

'Ifaining is considered as a special task in a project. Contractors may not receive any training. 

Training tasks have some of the properties that normal tasks have, such as Task ID, Description, 

and Task Type (which is 0 in this model). The differences are that the required skill list includes 

the skill that the employee is being trained in. 'Ifaining tasks do not have any penalty cost or 

required effort, they do have time duration. 

At the end of training, the skill proficiency of the employees assigned to training will be 

assessed and increased (refer to Section 5.3.1.2). 

5.4 Problem Definition 

For the scheduling problem under our definition, we have several assumptions: 

(1) Each task has to be finished in a continuous duration. 

(2) Different people can work on different tasks at the same time, but cannot do work over 

their maximum overwork level. 

(3) Every employee assigned to the task needs to do the work in the whole duration for a 

certain task. It is not realistic for people to work on one task in one time unit and then switch 

to another job on the next time unit as stated in the timeline-based model [17]. 

5.4.1 Assignment Model 

For each task, an employee can work with a load of 03, 253, 503, 753 or 1003. One 

possible task-employee assignment to the example project in Figure 2.1 is shown in Table 5.7. 

This scheduling means "Employee 1 can be assigned to do task 1 with 503 commitment, 

task 2 with 253 commitment, and task 4 with 253 commitment; Employee 2 does task 2 with 
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Table 5. 7 An example of task assignment 

Task1 Task2 Task3 Task4 Task5 Task6 
Employee 1 0.5 0.25 0 0.25 0.5 0 

Employee 2 0 0.25 1 0.25 0.5 0.5 

753 commitment, task 3 with 503 commitment, and task 4 with 253 commitment". Here 503 

commitment means employee 1 can do 20 hours every week if he normally works 40 hours per 

week. So our assignment is like a task-based model with two dimensions (task, employee). 

In order to reduce the computation burden in a timeline-based model, it will also be consid-

ered as a structure in our composite genome in later GA calculations. 

5.4.2 The Objective Function 

The objective function is used to determine the performance for each solution of the problem. 

It will be used later in Genetic Algorithm to select good individuals for the next generation. 

Different objective functions are possible for software project scheduling, e.g., minimum time to 

finish the project and maximum return on investment. Our main goal is to make the project 

overall as less costly as possible. So our objective function includes two parts mainly: 

1. Validity of a schedule 

A schedule is valid by checking both the validity of employee-task assignment and the validity 

of schedule on time. The criteria includes: all the skill needs of the tasks must be satisfied when 

assigning certain employee to the tasks; they must satisfy the precedence relations among tasks; 

all the tasks must appear in the schedule; no employee can work over maximum time limits at 

any point. 

2. Minimum cost 

We expect to have a schedule with a minimum total labor cost for performing the project 

achieved through using the cost of each resource, the duration applied to the tasks, and task 

penalties. During task execution, employees' capability can change, including experience on 

certain type of tasks and skill proficiency. This can affect the duration for a certain task. 

These properties have been discussed earlier in this chapter. Although there are other possible 
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objectives that we may expect to achieve, we only focus on overall cost of a project at this stage. 

In the future, we can model more constraints and integrate the relevant parts to the objective 

function. The flexibility and power of using Genetic algorithm as an optimization technique 

represents its advantage. 

5.4.3 Calculation of Fitness Function 

The main steps to calculate fitness score are illustrated in Figure 5.6: 

1) Initialize the system by loading a task-employee assignment 

2) Set the number of the time unit 

3) Get the next task from a topological sorted list 

4) Check whether the task can start in this time unit or not by validating that all the 

precedence tasks have been finished, all the employees are available, and all the employees do 

not work over limit, if not, go to 2) 

5) Do system dynamics simulation for each task 

6) At the end of execution of every task, calculate the cost, penalty and update the employee's 

overall experience and certain skill proficiency 

7) If all the tasks are finished, return the fitness score 

8) Start another loop from 2) 
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Figure 5.6 Calculation of fitness function 
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CHAPTER 6. Scheduling with Heuristic Search 

As introduced in Section 2.1.2, heuristic search has been widely applied in resource-constrained 

scheduling problems. The results of our previous work with GAs are reported [10), [17]. In this 

chapter, genetic algorithms for capability-based scheduling is described, such as genome rep­

resentation and operators. The experimental results are presented. Additionally, the further 

result of the comparison of GAs and Hill-climbing on the timeline-based model is also reported. 

6.1 Introduction to Genetic Algorithm 

The main stages of genetic algorithms are shown in Figure 6.1. They begin with a group of 

initial solution individuals (a candidate solution of the problem) and execute iteratively to create 

better offsprings. The genetic algorithms apply genetic operators such as mutation and crossover 

to evolve the solutions until meeting some stopping criteria, for example, a certain number of 

generations have been generated, or the identity of the best individual has not changed for a 

number of consecutive generations. There are different kinds of GA algorithm. 

Steady-state genetic algorithm: This algorithm is similar to the algorithms described by De 

Jong. It uses overlapping populations with a user-specifiable amount of overlap [18]. 

Simple genetic algorithm [21]: This algorithm uses non-overlapping populations. 

Incremental genetic algorithm: This algorithm has overlapping populations with 1 or 2 

children per generation. 

Deme genetic algorithm: This genetic algorithm has multiple, independent populations. 

Each population evolves using a steady-state genetic algorithm with some individuals migrating 

from one population to another. 

The three most important aspects of using genetic algorithms are: (1) definition and im-
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plementation of the genetic representation, (2) definition and implementation of the genetic 

operators, (3) definition of the objective function. 

For the representation of individual genomes (collection of all chromosomes (blueprints) for 

an individual), Holland [26] worked primarily with strings of bits. There are other kinds of 

representation: arrays, trees, lists or any other object. Based on the representation, it is crit­

ical to define genetic operators (initialization, mutation, crossover, comparison). Selection of 

the parents and crossover (sometimes combined with mutation) are the construction of a child 

solution from the parent solutions. The selection process should choose individuals with better 

performance. A selection algorithm that gives little weight to performance will tend to search 

vastly but usually will not converge quickly. A crossover operator mimics the step to produce 

children inheriting certain traits of both parents. Mutation is a random process that is to ran­

domly perturb some of the solutions in the population. In the absence of mutation, no child can 

ever acquire parametric values that were not already present in the previous population. Other 

than genetic operators, the objective function provides a measure of how good an individual is 

and it can be considered for either an individual in isolation or within the context of the entire 

population. The objective score is a measure used to evaluate the performance of the genome. 

There are many different variations to improve performance or parallelize the algorithms in 

recent research. 

G As are global search methods based on the evolutionary mechanisms and as a stochastic 

method, it has obvious advantages compared to random search and enumeration techniques [21], 

[32]: 

1) The search procedure of genetic algorithm starts from a population, instead of a single 

starting point. This mechanism can help to jump off local optima, especially when applying 

strategies to keep the variety of the population. 

2) During search procedure, the fitness score is used to evaluate a candidate solution, so 

no continuity of a function nor specific field knowledge are required compared to traditional 

optimization method. 

3) When the problems are not continuous with multi-modality or noise, GA can still get 
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near-optimal or satisfied solutions with high probabilities (robustness). 

4) GA has the properties of implicit parallelism (dealing with the information of about O(n3) 

schemas in each generation), extendibility (easily adapted to other pro bl ems by changing the 

fitness function, or integrated with other algorithms, or adding more specific field knowledge) 

and scalability. 

Most of research on stochastic modeling using Markov Chain proves that GA can converge to 

a global optimum with an infinite population size and infinite generation number [20), [41], [46). 

But it is far away from actual application with time and space constraints. The other method 

to analyze GA is called "evolution dynamics", such as the building block hypothesis [21], a 

keystone of Genetic Algorithm approach. Building block hypothesis [21] says short schemata 

with high fitness are sampled exponentially more than other schemas and they are combined 

to form strings with expected higher performance. The equation below shows the relationship 

between the number of instances of a certain schema and its average fitness value: 

m(H, t + 1) = m(H, t) x (J(H)/ f) (6.1) 

where H is a schema, m(H, t + 1) is the number of the instances of H at time t + 1, f (H) 

is the average fitness of all the instances of H at time t, f is the average fitness of the whole 

population at time t. If H is a schema with high fitness, the population of its instances will 

increase continually. Building block hypothesis guarantees that a problem can achieve to an 

optimum after searching the whole landscape. With a pilot study of scheduling problems in the 

project management, our problem involves many building blocks, that is, assigning the right 

person to the right task. Our problem favors the application of genetic algorithms. 

The kind of problems GA cannot solve is an interesting topic. Many papers focus on the 

analysis of the relationship between the difficulty and modality of fitness landscapes [25). Some 

research has explored attraction for the GA's operators. But no rigorous definition of the concept 

of difficulty is available in the framework of GAs [27). Early research on characterizing difficulty 

has proposed criteria as isolation, deception, and multimodality. However, research shows that 

criteria of deception [49) and multimodality [25) do not work well. Another method requires 

the knowledge of the whole fitness landscape and is rather time consuming. It relates to the 
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repartition of local optima around the global optimum [28]. 

Due to lack of any efficient and robust measure of difficulty and setting for a problem, 

experiments to try different settings and compare with each other are very popular since the 

early days of GAs as we did later in Section 6.3.1. 

6.2 Genome Representation and Operators in Capability-based Model 

6.2.1 Genome Representation 

As we have seen, two dimensional array (with "Employee" enumerated along the rows, and 

"Task" along the columns) is used in task-based model [10] (refer to Section 3.1), whilst timeline­

based model [17] uses a genome representation of three dimensional array (refer to Section 3.2). 

All the chosen encodings correspond to and are natural to each of the models respectively. The 

principle that using whatever encoding is the most natural to your problem and then devising 

a GA that can use that encoding has been widely accepted unless there is more theoretical 

progress on GAs [32]. 

According to the description of our capability-based model, we take out the time-line di­

mension but preserve other enhancements in our model as much as possible. We define our 

solution representation SchedGenome as a composite genome with two independent structures. 

It overcomes many of the complexities inherent in searches by not generating invalid solutions 

and causing no loss in expressiveness. 

In the search space, any solution representation (S) is a mapping to a real schedule. For 

schedule, it includes two types of information: task-employee assignment and start time of tasks 

(the duration of a task can be achieved by system dynamics simulation). From task-employee 

assignment information, we have a one-to-one mapping from task-employee matrix to lD task­

employee array. Task start time is derived by topological sort of tasks according to certain 

priority list. Later, we will explain mappings in our genome representation. 

Therefore, our solution representation of a schedule S = {A, L }: 

• A is a lD task-employee array that stores the information of task-employee assignments; 
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• L is the priority list by which a certain topological-sort vector representing the execution 

order of the tasks in the schedule can be derived. 

An example solution representation with two genomes for Figure 2.1 is shown in Figure 6.2. 

SchedGenome Representation 

Task-Employee Assignment ID array 

I 0.5 0:25 le 0.25 <th-{: I 0.5 1, ,,0.25 0.25 0.5 0.5 

Task Priority List 

[645321] 

Figure 6.2 Illustration of the SchedGenome representation 

6.2.1.1 Mapping Task-employee Assignment to ID Array 

The information of a task-employee assignment is "squeezed" into lD array from original 2D 

array since 2D array may be a sparse matrix when the skill match of task and employee does 

not always happen. An example of the transition is shown in Figure 6.3. According to the skill 

match, we construct our possible-assignment matrix by setting the element (task to employee 

assignment) as 1 which is possible, otherwise 0. Then transit 2D array to lD array by uniting 

all the rows in 2D array into a single row and at the same time delete the elements with value 

0. 

For matrix Apossible, Apossible[t][i] is set to 1 if employee i can be assigned to task t. The 

elements of A 2D are stored in the lD array genome A as shown in Function Assignment2DTo1D. 

Here is the pseudocode for this algorithm: 

(A,Apossible) Function Assignment2DTo1D(A2D ) 

1. size f-- 0 

2. for i f-- 1 to TaskCount 
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Task-Employee Possible-Assignment Matrix 

TaskS' i, Task6 
1 0 
l 1 

Task-Employee Assignment 2D Array 

Tcisk2 Task3 Task4 Task6 
0.25 0 0.25 0 
0.25 0.25 0.5 

Task-Employee Assignment 1 D Array 

:o.s " "I 0.25 0.25 v 0.5 ' 0:25 0.25 0.5 0.5 

Figure 6.3 Illustration of lD array structure in SchedGenome 

3. for j f-- 1 to EmployeeCount 

4. if skill matched 

5. Apossible [i] [j] f-- 1 

6. Size f-- Size + 1 

6. A[Size] f-- A2D[i][j] 

7. else 

8. Apossible [i] [j] f-- 0 

6.2.1.2 Mapping lD Priority List to Order of Task 

The other genome is a list with information of task priority. For example, [6 4 5 2 3 1] is the 

task priority list for task 1 to task 6. We can see that task 1 with priority 6 and task 3 whose 

priority value is 5 has higher priority than task 2 with value 4. Then a topological sort can be 

generated to satisfy task precedence relationship. 
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Given a directed acyclic graph (DAG) G = (V, E), a topological sort is an order of all the 

vertex and for each (u, v) E E, u appears before v on the list. As we can see, each DAG may 

have more than one topological sort. Using task order as genome directly in our scheduling 

problem can generate invalid individuals. Another method, priority-based encoding, is proposed 

by Gen and Cheng (19]. Using priority-based encoding one can decide a certain order of tasks 

with information of tasks precedence information. When there are two tasks competing for 

one position, the task with the higher priority wins. Different priority can lead to different 

topological sort. Therefore, the encoding can represent all the possible topological sorts for a 

DAG. 

The algorithm is to generate a topological sort by priority information. For each step, 

determine the set of eligible nodes; choose a node with highest priority and move it from eligible 

node set to partial topological sort list; update cut information of each unsorted node for the 

next iteration. 

The pseudo code is as follows: 

1. for i +--- 0 to (taskcount - 1) 

2. pS[i] +--- 0 //the set of eligible node, i is in the set if pS[i] = 1 

3. pCut[i] +--- 0 //the number of edges for vertex i on the current cut 

4. for i +--- 0 to (task count - 1) 

5. search for eligible nodes with pCut[i] = din(i) and set pS[i] = 1 

6. if the node u has max priority value 

7. i +--- index of u 

8. pS[i] +--- 0 

9. put u to sorted set 

10. for i +--- 0 to (taskcount - 1) 

11. if (u , v) EE 

12. i +--- index of v 

13. pCut[i] +--- pCut[i] + 1 
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6.2.1.3 Mapping From Topological Sort to Start Time of Tasks 

Given a topological sort, there could be more than one way to execute tasks. In our algorithm, 

we choose the earliest time that a task can start. 

According to the fitness function calculation, start time of each task is determined from 

topological sort as shown in Figure 5.6. 

6.2.2 GA operators 

With our composite genome, we need to define the genetic operators to manipulate the two 

structures and need to account for the validity in the solution space. Since those two genomes 

have independent structure, the operators can be defined rather easily by manipulating one 

operator at one time. 

6.2.2.1 Initialization 

Choosing non-random initialization of the population is an important topic in scheduling. 

In general, it is true that using heuristics to choose better individuals for the initial population 

can lead to significantly faster convergence to a good solution. But initialization may have little 

effect on the performance of the solution if the evolution time is long enough. Our initialization 

operator randomly chooses any value from possible value (0, 0.25, 0.50, 0.75, 1) to be the 

allele (i.e., possible settings for an aspect of an individual) of the initial population. The list is 

initialized as the random order from 1 to the total number of tasks. 

6.2.2.2 Comparison 

The comparison operator is used to determine how one genome is different from another. 

The comparator thus provides a measure of how diverse a population is. The comparator of 

SchedGenome calls the comparators for each of the component genomes, then get the mean of 

the two scores. For the ID array structure, given two solutions A and B, the distance between 

A and B is given by Equation 6.1. ai and bi are elements of A and B. 
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n 

d = 2)ai - bi) 2 (6.2) 
i=l 

6.2.2.3 Mutation 

The offspring may be mutated by the mutation operator at a rate determined by the mutation 

probability. Mutation is to modify one of the values used to encode the offspring. The function 

is intended to preserve the diversity of the population, thereby expanding the search space into 

regions that may contain better solutions. Mutation operators are also considered as background 

operator and will not affect much on the performance as crossover operators do. 

{A2,L2} Function Mutation ( {A,L}) 

//Randomly select one of the structures for crossover 

1. p f-- a random real number in the range (0,1) 

2. If p < 0.5 

3. A2 f-- mutationA(A) //Mutation on the lD array A 

4. return { A2, L} 

5. else 

6. L2 f-- mutationL(L) //Mutation on the priority list L 

7. return {A, L2} 

According to the mutation probability, we randomly select one of the two genomes which is 

going to do the mutation shown in Figure 6.4. In the lD array structure, we only change the 

certain elements while the certain elements are swapped in the task priority vector. 

6.2.2.4 Crossover 

The crossover operator mimics the way in which bi-sexual reproduction passes along each 

parent's good genes to the next generation. As to the crossover operator, the standard one-

point crossover function is good at preserving short, good quality building blocks [32]. We 

choose one-point crossover for lD array. 

{ Acl, Lcl}, { Ac2, Lc2} Function Crossover ( { Ap1, Lp1}, { Ap2, Lp2}) 
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0.5 0.25 0.25 1@ 0.25 0.25 0.5 0.5 

2 3 @16 

I o.5 I 0.25 I o.z5 I © 0.25 I 1 I 0.25 I o.s I o.5 I I o.5 I 0.25 I 0.25 I o.5 I 025 I I o.25 I o.s I o.5 I 

2 3 4 5 6 , L 2 3 6 

Figure 6.4 Illustration of SchedGenome mutation 

//Randomly select one of the structures for crossover 

1. p ~ a random real number in the range [0,1) 

2. If p < 0.5 

3. Ac~ crossover A(Ap1, Ap2) //Crossover the lD array A 

4. return {Ac, Lp1}, {Ac, Lp2} 

5. else 

6. Le~ crossoverL(Lp1 , Lp2) //Crossover the priority list L 

7. return {Ap1, Le}, {Ap2, Le} 

The crossover operator of SchedGenome invokes the crossover operator for each of the 

genomes in the composite genome according to a random number as illustrated in Figure 6.5. 

Mechanic simplicity facilitates relatively easy crossover on the task-employee lD array as shown 

in the left part of Figure 6.5. By the crossover of the lD array structures of parents, Child 1 

and Child 2 are generated according to the crossover point of Parent 1 and Parent 2. Because 

the two structures of the genome representation are independent and the lD array genome is 
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derived from the possible-assignment matrix, the offsprings of the crossover operator are always 

valid. 

Parent 1 
ID Array Crossover point 

Parent 2 
1 D Array Crossover point 

I o.5 ·I o.25 I o.2s I o.s I 0.25 I 1, l ',,, I 025 I o.s I 0.5 I I 0 I 0.25 I 0.25 I I I I I 0.5 I 0.25 I 0;5 I 0.25 I 

+ 
2 I 3 4 5 6 5 , I 3 6 

I I 

Child 1 
~P<I 

Child I 

I o.5 I 0.25 I o.25 I o.5 I 0.251 o.s I 0.25 I o.5 I o.25 I I o.s I 0.25 I 0.25 I o.5 I 0:25 I I 0.25 I o.5 I o.5 I 

2 3 4 5 6 I 2 6 4 5 3 

Child2 Child2 

o I o.2s I 0.25 I I 0.25 I o.5 I o.5 I o I 0.25 I o.25 I ·' l I o.5 I o.2s I o.5 I o.2s I 

5 " ' 3 
6 5 I• 2 r 4 j> l 3 6 

Figure 6.5 Illustration of SchedGenome crossover 

For the list structure, the crossover operator should keep every offspring being an enumer­

ation of their parents. For example, when parents are [123456] and [124536], each child should 

contain all of the elements in original list. The crossover preserves the ordering of elements by 

generating a random string with the same length as its parents. Child 1 copies from Parent 1 

wherever the bit string contains a "O". The remaining strings of Child 1 have the same order 
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as in Parent 2. Similarly, Child 2 copies from Parent 2 wherever the bit string contains a "1". 

The remaining strings of Child 2 have the same order as in Parent 1. An example of list-order 

crossover is shown in Figure 6.6. 

Parent I 2 3 4 5 6 

Parent 2 I 2 4 .: 5 3 6 

+ 
Random String I 0 0 I 'O 

/ ~ 
2 4 .··. I I , 4 3 6 

Child I 3 6 Child 2 l~_l __.__2_. __.__4_· __.__5_~_3 __ 6___, 

Figure 6.6 Illustration of list-order based crossover 

6.2.3 Implementation in GALib 

We use "Steady-state" algorithm (GASteadyStateGA) in GALib. The selection is Roulette 

Wheel. 2DArrayGenome and 2DArrayAlleleGenome classes provided by GAlib are imple­

mented in task-based model and a three dimensional array ( GA3DArrayAlleleGenome) is used 

in timeline-based model . 

For our capability-based model, the task-to-employee assignment array that stores the in­

formation of task-employee assignments, and a topological-sort vector representing the execu-



47 

tion order of the tasks in schedule are implemented by ( GA1DArrayAlleleGenome) and (GAL-

istGenome), respectively. 

GA1DArrayAlleleGenome: The lD array allele genome is derived from the lD array genome 

class. It shares the same behaviors, but adds the features of allele sets. The value assumed by 

each element in an array allele genome depends upon the allele set specified for that element. 

Our single allele set includes all the possible values (0,0.25,0.5,0.75,1) to denote the percentage 

of time for an employee to be assigned a particular task. 

Other than the genetic operators we defined by ourselves, we use the genetic operators 

provided by GAlib which are listed in Table 6.1. 

Table 6.1 Genetic operators in SchedGenome 

Genetic operators GAlib methods I 

Comparison G AlDArray AlleleGenome: :ElementComparator 

Mutation GAlDArrayAlleleGenome::FlipMutator, GAL-
istGenome: :SwapMutator 

Crossover GAlDArray AlleleGenome: :OnePointCrossover, 
G AListGenome:: Ord er Crossover 

The crossover operator invokes the crossover for each of the genomes in the composite 

genome. Here we use the crossover operation for GAlDArrayAlleleGenome, OnePointCrossover, 

while OrderCrossover is used in GAListGenome. OrderCrossover is for keeping the length of 

the List genome. 

6.3 Experimental Results of Capability-based Model 

The case used in this section is shown in Figure 6.7. Employee properties and task properties 

are listed in Table 6.2, Table 6.3, and Table 6.4, respectively. There are several parameters 

that we can tune to get better results. For the preliminary parameter setting, the following 4 

parameters are included: 

• crossover probability 

• mutation probability 
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• population size 

• maximum size of generations 

6.3.1 Preliminary Parameter Setting 

Since genetic algorithms are non-deterministic, those factors, such as population size, genera­

tion number, mutation probability and crossover probability not only influence the time required 

to perform the GA algorithm but also affect the quality of the result. As to those parameters, 

they should not be too problem-specific because we may use them in different problems. 

Figure 6.7 An example of test case 

• Crossover Probability 

To tune crossover probability, we set mutation probability, population number and generation 

number as 0.01, 1000, 1000 respectively. Crossover probability is set to 0.01, 0.05, 0.1, 0.4, 0.65 

and 0.8 with the result shown in Figure 6.8. As can be seen from the figure, the influence of 
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Table 6.2 Employee properties 

Emp Contract Basic Overwork Max Over- Initial Learning Start End 
ID or Not Hourly Hourly work Per- Experi- Factor Date Date 

Rate Increase centage ence 

1 N 38 10 150 5 1.5 2005- 2005-
01-01 11-01 

2 N 33 0 100 4 1.3 2005- 2005-
01-01 11-01 

3 y 30 5 125 3 1.3 2005- 2005-
01-01 11-01 

4 N 35 0 75 4 1.1 2005- 2005-
01-01 11-01 

5 N 35 5 125 4 1.1 2005- 2005-
01-01 11-01 

6 N 36 10 125 4 1.4 2005- 2005-
01-01 11-01 

7 N 36 0 10 4 1.5 2005- 2005-
01-01 11-01 

8 N 35 0 100 4 1.1 2005- 2005-
01-01 11-01 

9 y 30 5 125 3 1.2 2005- 2005-
01-01 11-01 

10 N 36 10 150 5 1.3 2005- 2005-
01-01 11-01 

Table 6.3 Employee skill proficiency 

Employee Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 

ID 

1 4.5 4 0 5 5 
2 0 0 2 0 5 
3 4 4 2 0 5 

4 0 4.7 3 3 0 
5 4.5 4 4 0 5 
6 0 4.5 4 4 0 

7 4.5 5 5 0 0 

8 0 0 3 4 5 

9 0 0 4 5 0 

10 5 4 0 3 4 
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Table 6.4 Task properties 

Task Task Complexity Effort Soft Hard Penalty Skills 

ID Type Level Deadline Deadline Per Day Required 

1 1 3 0.25 2005-02- 2005-03- 1000 1 3 
01 01 

2 2 2 0.5 2005-03- 2005-04- 1000 235 
01 01 

3 2 5 0.8 2005-03- 2005-04- 2000 1 5 
01 01 

4 3 1 0.25 2005-03- 2005-04- 2000 1 2 

01 01 

5 4 3 0.6 0 0 0 1 3 

6 2 2 0.5 0 0 0 34 

7 3 5 0.3 0 0 0 2 4 5 

8 2 1 0.4 0 0 0 2 3 

9 5 2 0.25 0 0 0 24 

10 4 4 0.5 0 0 0 45 

11 4 4 0.5 0 0 0 1 3 5 

12 4 4 0.25 2005-07- 2005-08- 1000 24 
01 01 

13 3 5 0.8 0 0 0 34 

14 4 4 0.5 2005-09- 2005-10- 3000 1 2 3 
01 01 

15 3 4 1 0 0 0 2 3 4 

16 4 4 0.5 0 0 0 45 

17 4 4 0.5 0 0 0 1 3 5 

18 4 4 0.25 0 0 0 24 

19 3 5 0.8 0 0 0 34 

20 6 4 0.5 0 0 0 1 2 5 

21 7 5 1 2005-10- 2005-11- 5000 2 3 5 

01 01 
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crossover probability does not seem to be that much. Later on, we will define our crossover 

probability as 0.65, as our previous works did. 
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Figure 6.8 Comparison on crossover probability 

• Mutation Probability 

- 0.01 
- 0.05 
- 0.1 
- 0.4 
- 0.65 
- 0.8 

900 1000 

The influence of mutation probability on the results of the GA calculation must also be consid-

ered when tuning the algorithm. 

From Figure 6.9, the comparison of results by different mutation probabilities is more mean-

ingful. It suggests that small mutation probabilities produce better results than the larger ones 

do under our scenario. Such a phenomenon is not unique to this problem nor to the implementa-

tion [17]. This often occurs because higher mutation probabilities produce a greater percentage 

of not-so-good offspring. As the scheduling problem has many restrictions, it is easy to pro-
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Figure 6.9 Comparison on mutation probability 
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duce such kind of not-so-good offsprings by random mutation. In the experiments reported 

herein mutation probabilities between 0.001 and 0.05 produced the best results. Accordingly, 

the default mutation probability is set to be 0.01 for the remainder of our work. 

• Maximum Generation and Population Size 
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Figure 6.10 Balance on the numbers of generation and population 
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Although larger population size and generation number can definitely result in better perfor-

mance overall, the balance of generation number and population size needs to take into account 

computation time. From Figure 6.10, after a certain amount of time, the performance with 

different parameters are close to each other. It is still reasonable to expect that those two 

parameters can be set to 1000 to get good results for larger experiments. 
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6.3.2 Results 

After setting all the parameters, the best result from the search algorithm is shown in Figure 

6.5, and the cost of the schedule is 127 448, by considering all the factors. The Gantt chart for 

this schedule is illustrated in Figure 6.11. 

Table 6.5 A near-optimal schedule from search 

Task Duration Start and End Date Precedences Resource 
Name 

Taskl 11 days Jan 1'05 - Jan 11 '05 Employee7 
Task2 18 days Jan 12 '05 - Jan 29 1 '05 1 Employee3[50%] ,Employee5 
Task3 24 days Jan 30 '05 - Feb 22 '05 1 Employeel ,Employee3 
Task4 16 days Jan 12 '05 - Jan 27 '05 1 Employeel [50%] 
Task5 21 days Feb 23 '05 - Mar 15 '05 3,4 Employee3[25%] ,Employee7(75%] 
Task6 15 days Mar 17 '05 - Mar 31 '05 2,5 Employee6 
Task7 22 days Feb 23 '05 - Mar 16 '05 2 Employeel [50%] 
Task8 11 days Apr 3 '05 - Apr 13 '05 6 Employee7[75%] 
Task9 5 days Mar 17 '05 - Mar 21 '05 4 Employeel 
TasklO 12 days Mar 22 '05 - Apr 2 '05 9 Employeel 
Taskll 18 days Mar 17 '05 - Apr 3 '05 7 Employee3 
Task12 10 days Apr 3 '05 - Apr 12 '05 9,10 Employeel 
Task13 29 days Apr 4 '05 - May 2 '05 11 Employee6,Employee9[75%] 
Task14 19 days May 3 '05 - May 21 '05 7,8,9,12,13 Employee7 
Task15 31 days May 3 '05 - Jun 2 '05 13 Employee6 
Task16 12 days May 22 '05 - Jun 2 '05 14 Employeel 
Taskl 7 23 days Jun 3 '05 - Jun 25 '05 12 Employee3[75%] 
Task18 9 days Jun 3 '05 - Jun 11 '05 15 Employeel (75%] 
Task19 33 days Jun 3 '05 - Jul 5 '05 15,16 Employee9 
Task20 14 days Jun 26 '05 - Jul 9 '05 17 Employeel 
Task21 83 days Jul 10 '05 - Sep 30 '05 17,20,19,18 Employee5 

We also run tests by leaving our certain factors. From Table 6.6, we can see that without the 

learning factors, the overall cost increases. The cost without communication overhead decreases 

as expected. Without schedule pressure, no solution is found in this high constrained case. 

Although the results shown in the table are intuitive, in more complicated situation, the result 

can help analyze the influence of certain factors . 
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: 

Figure 6.11 A schedule generated from test case 

Table 6.6 Results without considering some factors 

Cost Best Worst Average 

With all the factors 127448 135356 131104 
Without learning factor 149426 152072 151174 

Without communication over- 125222 127478 126017 
head factor 

Se . Se Se Od2 Oct9 
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6.3.3 Discussion 

Let us discuss the results from smaller experiments. Figure 6.12 shows a project with 4 tasks 

with task properties and employee properties in Table 6.7, 6.8 and 6.9. 

Programming 1 

Design Documentation 

Programming 2 

Figure 6.12 A test case with 4 tasks 

Table 6.7 Employee properties 

Emp Contract Basic Overwork Max Over- Initial Learning Start End 
ID or Not Hourly Hourly work Per- Experi- Factor Date Date 

Rate Increase centage ence 

1 N 15 0 100 4 1.25 2005- 2005-
01-01 01-15 

2 N 15 0 100 5 1.15 2005- 2005-
01-01 01-15 

3 y 18 0 100 5 1.45 2005- 2005-
01-01 01-15 

Using same parameters from previous parameter tuning, we also get good results in this 

simple example, the result from GA is shown in Table 6.10. After the soft deadline is changed 

to Jan. 10 and the hard deadline is still kept at Jan. 15, we can see the result in Table 6.11 

that employees are assigned to the work more to get things done more quickly. By comparing 

these two results, the difference is that Employee 1 is also assigned to Task 3 and the execution 

time for Task 3 decreases from 6 days to 3 days. It can decrease the penalty cost by finishing 

tasks earlier. Why is not employee also assigned to Task 1 to make the project done earlier? 
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Table 6.8 Employee skill proficiency 

Employee Java C++ Word 

ID 

1 5 3 2 
2 4 4 4 

3 2 5 2 

Table 6.9 Task properties 

Task Task Type Complexity Effort Soft Hard Penalty Skills 

ID Level Dead- Deadline Per Day Required 

line 

1 Design 4 0.1 2005- 2005-01- 20000 Java 
01-15 15 c++ 

Word 

2 Programming 3 0.1 2005- 2005-01- 10000 Java 
01-15 15 c++ 

3 Programming 3 0.2 2005- 2005-01- 10000 Java 
01-15 15 c++ 

4 Documentation 3 0.2 2005- 2005-01- 10000 Word 
01-15 15 

Since even Employee 1 is added to the team for Task 1, the time to finish tasks can only be 

decreased a little bit but not enough to decrease it from 3 days to 2 days. Therefore, Employee 

2 and Employee 3 are considered as the best solution for Task 1 in this situation. Why choose 

Employee 3 for Task 1 and Task 4 instead of Employee 1 when Employee 1 has higher skill 

proficiency with lower salary? It is because Employee 3 has 253 higher initial experience than 

Employee 1 and learning factor matters to a certain extent. From the above analysis, we can 

see the correctness of our model in some aspects. 

We use same parameters in those tests. Although we get similar results, Table 6.12 shows a 

little different performance in different examples. In this relative big problem, the performance is 

best since all the results are close while results are in a wider range in relatively simple problems. 

Tuning GA parameters is not clear and our future work will focus on finding better rules to tune 

GA parameters for different categories of software project scheduling situations. 
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Table 6.10 A near-optimal schedule from search (soft deadline = Jan 15) 

Task Name Duration Start and End Date Precedences Resource 

Design 3 days Jan 1 '05- Jan 3 '05 Employee2, 
Employee3 

Programming 1 5 days Jan 4 '05 - Jan 8 '05 1 Employee2 
Programming 2 5 days Jan 4 '05 - Jan 8 '05 1 Employee!, 

Employee3 
Documentation 6 days Jan 9 '05 - Jan 14 '05 2,3 Employee2, 

Employee3 

Table 6.11 A near-optimal schedule from search (soft deadline = Jan 10) 

Task Name Duration Start and End Date Precedences Resource 
Design 3 days Jan 1 '05- Jan 3 '05 Employee2, 

Employee3 
Programming 1 5 days Jan 4 '05 - Jan 8 '05 1 Employee2 
Programming 2 5 days Jan 4 '05 - Jan 8 '05 1 Employee!, 

Employee3 
Documentation 3 days Jan 9 '05 - Jan 12 '05 2,3 Employee!, 

Employee2, 
Employee3 

Table 6.12 GA performance in a relative large problem (21 tasks, 10 em­
ployees) and small problem (4 tasks, 3 employees) 

Best Mean Worst 

Relative big problem 127448 130311 136760 
Relative simple problem 4296 5218 5914 
Relative simple problem with 34248 39085 44200 
more tight constraint 
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6.4 Comparison of GA and Other Heuristic Search 

To evaluate the performance of GA, an experiment on exhaustive search was conducted 

with the task-based model [10]. However, because the computational complexity of exhaustive 

search is extremely high in software project scheduling that comparison does not really show 

the performance of GA. No comparison was implemented among GA and any other heuristic 

search. So no evidence has really shown the power of GA or why GA is suitable for software 

project scheduling. 

6.4.1 Comparison of GA and Hill-Climbing on Timeline-based Model 

To evaluate the performance of a GA algorithm, the efficiency and quality of solving the 

problem needs to be known. There are two major criteria: 

a) the number of function evaluations 

We can compare the difference between the number of function evaluations needed in different 

algorithms to achieve the solution with the same quality or we can use the same number of 

function evaluations and compare the quality of a solution. It can be used for comparing 

different GAs or GA with other search algorithms. 

b) On-line performance and off-line performance [14] 

l T n 

PonJine(s) = n(T + l) t; ~ f (a;, t) 

1 T 

Pof f-line(s) = (T + l) t; f(a*, t) 

(6.3) 

(6.4) 

On-line performance reflects the change of the fitness values of the populations and shows the 

evolution of the whole procedure. Off-line performance reflects the best individual's evolution 

procedure and shows the search capability of GA. 

Other than the two measures, Kallel [27] proposed some measures to characterize GA be­

haviors both on a temporal and spatial GA trajectory. They are based on Hamming fitness 

function for scaling. 
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A number of researches have defined certain kinds of problems that GAs work better than 

other heuristic methods and the criteria to compare different problems and algorithms [33], [25]. 

Mostly the comparison focuses on GA and Hill-Climbing. Here we try to show the performance 

of GA and hill-climbing on the timeline-based model based on the criteria of the quality of the 

best solution from different algorithm. 

The hill-climbing algorithm that we use is that a population of initial solutions is chosen and 

the best one is chosen as the start point. By using that best one, it is mutated at a randomly 

chosen single locus and the fitness is evaluated. If the mutation leads to a higher fitness, the 

new one replaces the old one. The procedure continues until the optimum is found. 

Usually hill-climbing algorithm is much faster than GA. However, the landscape in our 

problem has many local optima which makes hill-climbing difficult to achieve the global optimum. 

An attempt for such comparison has been reported in our recent work [11]. The case consists 

of 15 tasks for which 10 employees were available. The employees, in turn, each possessed 5 

skills to a greater or lesser extent. Each of the 5 skills was needed by at least one task and many 

tasks required multiple skills. The mean cost computed by hill-climbing is 34622840 with 1000 

initial individuals in the population while the mean by GA is 27635360 which outperformed the 

best fitness achieved by hill-climbing as shown in Table 6.13, where lower number means lower 

cost and is better. Table 6.14 shows the comparison with a smaller case of 8 tasks, 7 employees 

in which GA outperforms HC dramatically, and Table 6.15 shows the comparison with a case of 

3 tasks, 3 employees which do not show much difference in the two methods but the distribution 

of solutions from HC is obviously bigger than GA. Although these cases are random and more 

extended experiments need to be conducted, the results in general show the good performance 

and robustness of GA. 

Table 6.13 Comparison between GA and HC (15 tasks, 10 employees) 

Best Mean Worst 

Steady GA 25424896 27635360 29941800 

Hill Climbing 29883000 34622840 41868400 

In the early stage of the computation, because there exists many efficient, small blocks, under 
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Table 6.14 Comparison between GA and HC (8 tasks, 7 employees) 

Best Mean Worst 
Steady GA 6645760 8021709 9401344 
Hill Climbing 9695000 13099240 17308200 

Table 6.15 Comparison between GA and HC (3 tasks, 3 employees) 

Best Mean Worst 

Steady GA 8192 11298 15360 
Hill Climbing 7428 11612 17422 

crossover operators, the probability that the small blocks can be united as big blocks are high. 

Therefore, the quality of the population is improved quickly. But in the later stage, when big 

blocks are becoming more and more similar, the efficiency of crossover operators is becoming 

much lower. At that time the quality of many individuals cannot be improved a lot. In the later 

stage GA's efficiency is quite low. 

By analyzing the computation procedure of GA, we can see from Figure 6.l(also refer to 6.8, 

6.9, 6.10) that GA is not efficient in the later stage of computation which means it converges 

very slowly. 

With GA's ability on global optimization and hill-climbing's ability on local optimization, 

combining GA with hill-climbing might be a good choice as a hybrid algorithm. 

The tables below give the results from the experiment on two cases. Table 6.16 shows the 

result of GA (mutation probability= 0.001, generation number= 1000, population size= 1000) 

and GA (generation number= 500) with Hill-Climbing in a small experiment. Table 6.17 shows 

the result of GA and GA with Hill-Climbing in a relative larger project scheduling problem. 

Other cases are directed and show similar results. 

In timeline-based model of software project scheduling, on relative smaller problems, hill­

climbing is much better than GA both on time and fitness evaluations. On the other hand, GA 

outperforms hill-climbing on finding good quality solutions when the problems are becoming 

complicated, as is the case for many software projects, and in that case GA with hill-climbing 

does not help much in optimization. Therefore, GA is generally a good choice no matter the 
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Table 6.16 Comparison between GA and GA with HC in a relative small 
problem (3 tasks, 3 employees) 

Best Mean Worst 
Steady GA 8192 11298 15360 
Steady GA(500 5286 6983 10024 
generations) with 
HC 

Table 6.17 Comparison between GA and GA with HC in a relative big 
problem (15 tasks, 10 employees) 

Best Mean Worst 
Steady GA 25424896 27635360 29941800 
Steady GA(500 26761000 28929233 33171600 
generations) with 
HC 

problem size and the constraints in the software project scheduling problem. 
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CHAPTER 7. Conclusions and Future Work 

This thesis proposes a framework for scheduling and monitoring in software project man­

agement. The genetic algorithm from previous work is improved by reducing the computation 

overhead without compromising with loss of realities. Experiments on comparing GA and the 

Hill-climbing method helped us determine that GA is a good method in software project schedul­

ing. The automated optimization of scheduling can help a project manager for decision making 

by improving the quality of scheduling in software development. 

However, there are several limitations of our framework. We can see that the capability-based 

scheduling framework can help make estimations and analyze the system dynamic behavior, 

especially in the following situations: 

• When there is a lot of information about the personnel and organizational attributes, 

which can usually be obtained in the development stage; 

• When the company collects project history data. 

Therefore, our proposed work needs support from high quality software processes which 

can limit the application of the framework. Our capability-based model should be applied in 

a relatively high level of CMMI, and based on which we can do our quantitative calculation 

more realistically. By complementing the function of CMMI, Personal Software Process (PSP) 

and the Team Software Process (TSP) developed by Watt S. Humphrey give a way to measure 

an individual's development time and quality, which helps manage the teamwork planning and 

tracking thus providing more accurate data. 

Another important aspect in project management is monitoring projects. Many failures of 

projects are due to poor monitoring. The feedback from actual project execution is so important 
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in software project management that it can help improve estimation in later scheduling. For a 

certain project or a certain company, feedback can help calibrate the data and do re-scheduling 

when necessary. Although re-scheduling is very important, re-scheduling techniques are still not 

adequately explored in software engineering research. 

Here we will briefly discuss the problem of calibrating our model, possible techniques to 

solve it and directions of our future work. Case-based reasoning (CBR) is a machine learning 

technique which is based on past experience. There have been some successful applications of 

CBR to cost estimation in software engineering [5], [16]. The case-based method in our system 

is designed to determine the parameters in the system dynamics part and to obtain the feedback 

from the real project implementation. To make these models more accurate according to certain 

projects and companies, we need to calibrate the uncertain parameters in these models. There 

are three different types of parameters: (1) known parameters; (2) unknown parameters; (3) 

imprecise parameters. Type 2 and 3 are the parameters that we need to tune. From a series of 

data, what we expect is to minimize the difference between estimated data and real data. 

Illustrated by the simple example from Figure 2.1, suppose Task 1 has been finished and 

other tasks not, the calibration process is as follows. According to the first schedule, Employee 

1 is assigned to Task 1 and Task 2; Employee 2 is assigned to Task 2. Suppose that Task 1 

has been done (scheduled duration: 4 days. actual duration: 5 days) and other tasks have 

not started yet. Task 2 and Task 1 have the same properties on task type and complexity 

level. Additionally, Employee 1 and Employee 2 have the same experience level. Assume that 

"adjustment of experience" is the only factor that needs to be calibrated. From the difference 

between the actual duration and the scheduled duration of Task 1, the factor "adjustment of 

experience" is adjusted from 1 to 0.8. Assume that Task 2 is scheduled to finish in 6 days. Then 

after tuning the factor, the duration for Task 2 will be rescheduled to finish in 7.5 days. 

For the re-scheduling problem, we will focus on those major concerns: 

• Efficient algorithm 

For rescheduling, an efficient way will need to be found to favor the algorithm we have used, 

such as genetic algorithms. The goal is to ensure that the cost ofrescheduling computation 
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can be as small as possible. 

• Performance tradeoff 

Efforts are needed to improve the rescheduling efficiency while maintaining the rescheduling 

quality. We need to do the risk analysis on the change of schedule. Tradeoff analysis 

between the performance gained by changing schedule and the cost required to change the 

schedule must be performed. 

• Time to re-schedule partially completed tasks 

The appropriate time to do the re-scheduling is important. When there are some tasks that 

have already started in a project, a mechanism to automatically split partially completed 

projects is needed. Some method to looking ahead (for instance, to see if tasks are almost 

completed) is required . Then the projects need to split into two parts: one represents the 

completed part of the original project and the remaining tasks. To deal with partially 

completed tasks, more considerations should be added, such as whether re-scheduling of 

partially completed tasks is needed and how to do it. 

Additionally, we suggest the following improvements to our work: 

1. Modeling more aspects on software processes: currently we only focus on the develop­

ment stage. Other stages, such as architecture design and testing can also be included in the 

framework. 

2. Better modeling of the progress of tasks and employees: deeper and more comprehensive 

research is needed on the aspects affecting productivity, for example, learning and motivation. 

However, it requires interdisciplinary research among business, computer science, and psychol­

ogy. 

3. Model calibration: tuning system dynamics models is extremely important for accurate 

estimation. It includes the process of judging the validity of a system dynamics model, such as 

face validity (to test the fit between the rate/level/feedback structure of the model and the es­

sential characteristics of the real system), reference mode replication (to test whether the model 

can reproduce the various reference behavior modes characterizing the system), extreme condi-
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tion test (to test whether the model behaves reasonably under extreme conditions or extreme 

policies). 

4. More comprehensive experiments for comparison and tuning: more experiments should 

be devised to analyze the performance of heuristic search algorithms. Rules for tuning GA 

parameters are still not clear. 

5. Case studies on software project management: case studies are necessary and essential 

to evaluate the performance of our work. After the models have been completely established, 

case studies will help customize these models when needed. Research on integration with cur­

rent commercial software tools can help transfer current advanced techniques such as what our 

research group developed into industrial use. 
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