
Capability-based software project scheduling with system dynamics and

heuristic search

by

Yujia Ge

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Carl K. Chang, Major Professor

Daniel Berleant
Suraj C. Kothari

Tsang Ming Jiang

Iowa State University

Ames, Iowa

2004

Copyright © Yujia Ge, 2004. All rights reserved.

ii

Graduate College
Iowa State University

This is to certify that the master's thesis of

Yujia Ge

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

iii

TABLE OF CONTENTS

LIST OF TABLES .

LIST OF FIGURES

ABSTRACT.

CHAPTER 1. lntrod uction

1.1 Objective

1.2 Scope of Our Research

1.3 Structure of This Thesis

CHAPTER 2. Related Work

2.1 Resource-Constrained Project Scheduling Problems .

2.1.1 Exact Solution Methods ..

2.1.2 Heuristic Solution Methods

2.1.3 Problems Related to Real Software Project Scheduling .

2.2 System Dynamics on Software Project Management

2.3 Cost Estimation Models .

2.4 Project Scheduling Tools .

CHAPTER 3. Previous Work and Limitations

3.1 Task-based Model ..

3.2 Timeline-Based Model

3.3 Limitations

CHAPTER 4. Overview of the Scheduling Framework . ..

v

vii

ix

1

1

2

3

4

4

4

5

6

6

7

8

10

10

11

12

13

iv

CHAPTER 5. Capability-Based Model . . .

5.1 Productivity Factors on Human Resources

5.2 Models on System Dynamics

5.2.1 Meta Model for Productivity

5.2.2 Sub Models

5.2.3 From System Meta Models to System Dynamics Simulation

5.3 Static Models

5.3.1 Employee Model

5.3.2 Task Model

5.4 Problem Definition

5.4.l Assignment Model

5.4.2 The Objective Function

5.4.3 Calculation of Fitness Function

CHAPTER 6. Scheduling with Heuristic Search

6.1 Introduction to Genetic Algorithm

6.2 Genome Representation and Operators in Capability-based Model

6.2.1 Genome Representation

6.2.2 GA operators

6.2.3 Implementation in GALib

6.3 Experimental Results of Capability-based Model

6.3.l Preliminary Parameter Setting

6.3.2 Results ..

6.3.3 Discussion .

6.4 Comparison of GA and Other Heuristic Search

6.4.1 Comparison of GA and Hill-Climbing on Timeline-based Model .

CHAPTER 7. Conclusions and Future Work

REFERENCES

ACKNOWLEDGMENTS

16

16

17

17

18

24

24

24

29

30

30

31

32

34

34

38

38

42

46

47

48

54

56

59

59

63

67

71

Table 2.1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Table 6.10

Table 6.11

v

LIST OF TABLES

Comparison between COCOMO models and dynamic cost estimation

model . 8

Personnel influences in the COCOMO II estimation model 17

A case of nominal productivity 20

Lookup table for f schedulepressure . 23

Employee model 25

An example of skill list of an employee 27

Task model 29

An example of task assignment 31

Genetic operators in SchedGenome 47

Employee properties . . . 49

Employee skill proficiency 49

Task properties 50

A near-optimal schedule from search 54

Results without considering some factors 55

Employee properties . . . 56

Employee skill proficiency 57

Task properties 5 7

A near-optimal schedule from search (soft deadline = Jan 15) 58

A near-optimal schedule from search (soft deadline = Jan 10) 58

Table 6.12

Table 6.13

Table 6.14

Table 6.15

Table 6.16

Table 6.17

vi

GA performance in a relative large problem (21 tasks, 10 employees) and

small problem (4 tasks, 3 employees) 58

Comparison between GA and HC (15 tasks, 10 employees) 60

Comparison between GA and HC (8 tasks, 7 employees) 61

Comparison between GA and HC (3 tasks, 3 employees) 61

Comparison between GA and GA with HC in a relative small problem

(3 tasks, 3 employees) . 62

Comparison between GA and GA with HC in a relative big problem (15

tasks, 10 employees) . 62

Figure 1.1

Figure 2.1

Figure 3.1

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

vii

LIST OF FIGURES

Project management process

An example of task precedence graph

Assignment in timeline-based model

Capability-based project scheduling framework

Meta model for capability-based model

Relationship between workforce and communication overhead

An example of learning curve in individual productivity

An example of system dynamics simulation (Task 1)

An example of system dynamics simulation (Task 2)

Calculation of fitness function

Main stages of genetic algorithms

Illustration of the SchedGenome representation

Illustration of ID array structure in SchedGenome

Illustration of SchedGenome mutation

Illustration of SchedGenome crossover

Illustration of list-order based crossover .

An example of test case

Comparison on crossover probability

Comparison on mutation probability

Balance on the numbers of generation and population .

2

5

11

14

18

20

22

25

26

33

36

39

40

44

45

46

48

51

52

53

viii

Figure 6.11 A schedule generated from test case .

Figure 6.12 A test case with 4 tasks

55

56

ix

ABSTRACT

Software project management, a peculiar area in project management, is concerned with

activities involved in ensuring that software is delivered on time and on schedule. Software

project management is unique because software products are perceived as intangible and flexible.

In software projects the capability of people is the most important factor to determine whether

a project will succeed or fail. During the software project management process, scheduling can

be influenced by a lot of dynamics elements such as the skills of engineers, the growth of skills

and experiences, cooperation and leadership. Our objective is to help project managers to assign

human resources automatically and realistically based on personnel/team capability.

This thesis proposes a framework for scheduling and monitoring in software project manage

ment. Based on this framework, dynamic elements in software project management, especially

personnel capability, are simulated in System Dynamics models. The genetic algorithms for

previous work (i.e., task-based model and timeline-based model) are revised to reduce the com

putation in the new model. Experiments are also reported including the procedure on tuning

GA parameters, results of several example tests, and discussion on the results. Experiments on

comparison of GA and Hill-Climbing method help us build the confidence that GA is a good

choice in software project scheduling problems.

1

CHAPTER 1. Introduction

1.1 Objective

Software project management, a peculiar area in project management, is concerned with ac

tivities involved in ensuring that software is delivered on time and on schedule. Software project

management is unique because software products are perceived as intangible and flexible. Thus,

software engineering is neither a classical engineering discipline, as is mechanical or electrical

engineering, nor does it dictate a standardized software development process. These characteris

tics make software project management very difficult to satisfy budget and schedule constraints

that are set by an organization and its stakeholders. As reported by Standish Group, only about

283 of software projects in US companies succeeded in 2000 and more than 403 were canceled

before completion [43).

In software projects, the capability of people is the most important factor to determine

whether a project will succeed or fail. During the software project management process, schedul

ing can be influenced by a lot of dynamic elements such as the skills of engineers, the growth

of skills and experiences, cooperation and leadership. Current resource-constrained scheduling

techniques mostly focus on the availability of resources instead of the capability of resources. It

is obviously not reasonable and incomplete, especially in software project management where the

capability of human resources can evolve during the execution of an established plan. Ignoring

learning and other dynamic factors during project estimation can lead to wrong execution. Our

research aims to define and explore the software project scheduling by considering the dynamics

throughout the software development life cycle.

Our objective is to help project managers assign human resources automatically and re

alistically based on personnel/team capability. We propose a framework for capability-based

2

software project scheduling to model software processes at the micro levels using the system

dynamics method. Given a certain project and available resources, heuristic search is applied as

an optimization method to obtain a near-optimal solution under the framework. In our future

work, we also try to explain how case-based methods can provide feedback to the remaining

tasks during the execution of a project for more accurate simulation.

1. 2 Scope of Our Research

Project management includes those activities of scheduling, planning and monitoring re-

sources (including human resources) to achieve specific objectives. The usual goal is to obtain a

schedule which can maximize the objective, provided that there is a way to evaluate performance.

The difference between a plan and a schedule can be considered as follows. A plan defines what

must be done and restrictions on how to do it (estimates), while a schedule specifically describes

both how and when will the task be done (temporal assignments) [48]. Although planning and

scheduling are traditionally considered as independent activities, we cannot separate them in

reality. Our research scope is mostly on scheduling, but at the same time we have to refer to

planning as well. Figure 1.1 shows the range of software project management processes and

where our research is focused.

r----~
I E~t.imate · -
I Efforts fo,r-.F-. ---1.-
1... _ras~ _ 1: ' """'1 - ~ - -

Figure 1.1 Project management process

r----~
I Project t41I ..
I Monitoring ' I

~~,~~·

Although scheduling is tedious and error-prone for software managers, software project

management receives relatively little attention in the software engineering research commu-

nity. Therefore our research emphasizes the scheduling problems of software development. Be

cause the general resource-constrained project scheduling problem lacks the characteristic of the

3

software development environment, we propose a capability-based scheduling model and apply

optimization techniques based on this model as depicted by the boxes "assign resources" and

"produce a schedule" in Figure 1.1. The other two shaded boxes "estimate efforts for tasks"

and "project monitoring" will be partially related to our model. Due to the lack of real software

project data, we use simulation to validate our algorithms.

1.3 Structure of This Thesis

The thesis is organized as follows: Chapter 2 gives a literature review over the related

research on project management. Chapter 3 describes limitations of previous work in our group,

i.e. the task-based model and timeline-based model. Chapter 4 briefly illustrates the framework

of our method. Chapter 5 describes our model in detail, including the dynamic model and the

static model. Chapter 6 focuses on the algorithm and implementation of heuristic search and

discusses experimental results. Chapter 7 gives an overall evaluation on our current research

and concludes with some future directions.

4

CHAPTER 2. Related Work

2.1 Resource-Constrained Project Scheduling Problems

In many industrial applications such as manufacturing, production planning, project man

agement and elsewhere, project scheduling problems occur with limited resource availability.

For a general resource-constrained project scheduling problem, it is described as a project with

a set of tasks, or activities. Tasks have precedence relationships. Tasks also have estimated

durations and may include various other measures such as cost. We need to assign the tasks to

some resources to meet our predefined objectives mostly as minimal makespan such that both

the precedence and resource constraints are fulfilled. The makespan is the time needed to com

plete all the tasks. An example of a task precedence graph is shown in Figure 2.1. The project

consists of 6 tasks with constraints including: the required skills to finish Task 1 are Java and

Microsoft Project; Tom's salary is higher than Mike's; Jenny works on Monday, Tuesday, and

Friday.

Resource-constrained project scheduling problem, or RCPSP, has been thoroughly studied

for more than 40 years. An overview of the different models in RCPSP is given by Brucker et al

[9]. Young et al [50] summarizes the different types of RCPSP problems, research directions, al

gorithm and heuristic approaches presented in recent years. Young also describes a new problem

definition with the objective of minimum cost.

2.1.1 Exact Solution Methods

When resource-constrained scheduling solutions were first proposed, simple models were used

with exact methods for solving problems. Exact methods try to find optimal solutions through

some intelligent exhaustive search. They include backtracking [6], branch and bound [8] or

5

Figure 2.1 An example of task precedence graph

implicit enumeration, the critical path method and its variations, and dynamic programming

[4]. Given a problem, the exact methods can find the best solution if it exists. However, when

constraints are added, the difficulty of solving a problem increases. In addition, significant

problem size greatly affects the feasibility of those methods. For example, the critical path

method was devised for finding the shortest time to complete a project given estimates of

task durations. Unfortunately, the critical path method cannot solve problems that include

restrictions on the number of resources that are available. Recent research on exact solutions

includes a tree search algorithm reported by Mingozzi [34).

2.1.2 Heuristic Solution Methods

Although heuristic methods may not find optimal solutions compared to exact methods, they

can still find good solutions with less time. In general, heuristic methods require more space.

Heuristics are rules to help make a decision given a particular situation. Heuristics in scheduling

are usually referred to as scheduling rules or dispatch rules. Heuristics could be deterministic or

stochastic. There are several common heuristic approaches to scheduling problems. Simulated

Annealing (SA), introduced by Kirkpatrick et al [29], originated from the physical annealing

process. It requires a schedule representation as well as a neighborhood operator for moving

6

from the current solution to a candidate solution. Tabu Search (TS) developed by Glover [22] is

essentially a search method for guiding known heuristic to overcome local optimality. Genetic

Algorithm (GA), inspired by the process of biological evolution, was introduced by Holland [26].

The advantage of GA is that it can handle arbitrary kinds of constraints and objectives that can

all be treated as weighted components of the fitness function. GA has been extensively applied

in scheduling problems [32], [50]. In one of the earliest published works on the application of

GAs to scheduling, Davis [15] outlines a basic scheme applied to a simplified toy problem in

flow-shop scheduling. Later different GA algorithms are applied in variations of the general

resource-constrained scheduling problems [48), [37), [24]. We focus on the application of GA to

the scheduling problem in software development in this thesis.

2.1.3 Problems Related to Real Software Project Scheduling

Researchers tend to adopt simplified models for problem solving with some exact algorithms.

However, in the real-world situations, the problem is unfortunately not simple. As we have

stated in our objective, the resource-constrained scheduling problem is not complete for software

engineering research. Current research in the general resource-constrained scheduling area still

focuses mostly on the optimization methods, such as techniques of using Genetic Algorithms

(GAs) without considering the specific situations in software development. The main problem

is that the model must be sound and applicable in the software engineering process. The

model requires the specification of a set of "essential" project information to support decisions

and optimization. It is clear that we cannot model every single element of the entire software

engineering process. We will describe our model in detail in later sections.

2.2 System Dynamics on Software Project Management

System Dynamics (SD) is a method to model a system by using feedback loops. Roberts

[39] defines SD as the application of feedback control systems principles and techniques to

managerial, organizational, and socioeconomic problems. This rigorous modeling technique

begins with levels or populations (for example, effort to finish a task), and determinants of rates

7

of flow of populations (for example, actual productivity according to resources). SD is a set of

conceptual tools that enable us to understand the structure and dynamics of complex systems

[44). It enables us to build formal computer simulations of complex systems and use them to

design more effective policies and organizational systems for the future, by effectively addressing

dynamic structures. Some simulation tools such as Vensim, Dynamo, iThink, are popular, but

most system dynamics are not widely applied in the industry.

Software process modeling is a subject of mathematical modeling in a less mature process.

Feedback mechanism may play an important role in software development. For example, schedule

pressures causing an employee to speed up work can continually affect the whole software project

development process. Additionally, some other parameters need to be updated and tracked

during the process. Therefore, the continuous feedback loops need to be modeled in a realistic

project management. Since the first application of system dynamics by Abdel-Hamid [1] on

project management, there has been some other recent extension work on system dynamics

within the realm of project management, such as the hybrid software process simulation model

[30) and system dynamics extension modules [3). Most of the research objectives are designed

so that the researcher may know the software process better. As we have a different goal and

view for our specific concerns with project management, we will use the system dynamic model

to simulate the dynamic part of project management.

2.3 Cost Estimation Models

For scheduling a software project, several cost estimation approaches are in use, such as

Putnam's SLIM model and Boehn's COCOMO, and the revision COCOMO II. Among those

traditional static cost estimation models, COCOMO (COnstructive COst MOdel), developed by

Boehm in 1981, is considered the most complete and popular model. Those empirical approaches

involve models fitted to historical data. The models are then used to predict the cost of future

projects. The main equation in COCOMO is,

Effort= a* (Size)b (2.1)

8

where a and b are empirical constants derived from the calibration of the model. It has been

formulated as a hierarchy of models as Basic COCO MO, Intermediate COCO MO, and Advanced

COCOMO. The latter one was embedded with more cost drivers due to more information learned

during later development stages.

In spite of the popularity of COCOMO and COCOMO II, we still can see the limitations of

these approaches. One report showed that the predictive accuracy of COCOMO II is only 30

percent of the actual values 52 percent of the time for "effort" [13]. Several possible ways can

be used to improve the accuracy of estimation, such as introducing more factors and adapting

the existing approaches to new development techniques.

Another approach of estimation is to model the system process using system dynamics which

we have described the techniques in Section 2.2. Table 2.1 is a comparison of COCOMO and

system dynamics stated by Roman and Carrieira [40].

Table 2.1 Comparison between COCOMO models and dynamic cost esti
mation model

Static Cost Estimation Mod- Dynamic Cost Estimation Mode ls
els {COCOMO)

Basic COCOMO RDM (Reduced Dynamic Model)
Intermediate COCOMO Abdel-Hamid and Madnick's,

Draper Laboratory, SEPS, etc

Advanced COCOMO

Although Roman and Carrieira (40] believe there are no dynamics cost estimation models to

parallel the power of advanced COCOMO, we would like to use more detailed system dynamics

to do similar work at the same level of the advanced COCOMO. Our work is not to replace the

COCOMO model, but to try to complement it at a detailed level.

2.4 Project Scheduling Tools

There are many commercial project management tools such as Microsoft Project, Symantec

Corporation's Time Line and the web-based project management tools of Rational Concepts.

None of these, however, provides automatic scheduling functionality. The only software to help

9

automatic scheduling for project management that we can find is Opensched. It reads a file

describing the project as input and produces textural descriptions of the generated project plan,

Gantt charts and network diagrams. The input includes tasks which must be accomplished,

resources (e.g., people, equipment, and facilities) which may work on tasks and work that has

already been completed. However, the model supported in Opensched is very simple.

Usually a scheduling tool needs to be consistent with the software development methodology,

such as the Rational Unified Process. Although it is not always practical to use automated

project scheduling in project management, research is still needed for improving the overall

capabilities of current tools.

10

CHAPTER 3. Previous Work and Limitations

Our previous two models, the task-based model and the timeline-based model have made a

serious attempt to model realistic software scheduling processes.

3.1 Task-based Model

The task-based model [10] is proposed as an improvement to the original model (i.e. SPMNet

[12]). It uses Genetic Algorithm as its optimization method.

The representation of the problem consists of:

1) Representation of project T PG = (V, E):

• The project is represented as a task precedence graph;

• A directed acyclic graph where the nodes represent the tasks and the edges represent the

task precedence;

• Each task is associated with an estimated effort (based on COCOMO) and the required

skills.

2) An employee database Demp with information of skills and salary.

3) An objective function.

In this model, genetic representation is an orthogonal 2D array with one dimension for tasks,

the other for employees. GA operators are adopted from GAlib [18]. In the approach, there

are two stages for scheduling the project. The first stage evaluates how the genome satisfies the

constraints while the second stage evaluates the schedule performance of the genome. For the

simplest objective function, it can be defined as: Composite objective function = Validity *

(OverLoadWeight/OverLoad+ Money Weight/CostMoney + Time Weight/CostTime).

11

Validity (validity of job assignments) is usually scored on a 0/1 basis, 0 if the assignments

are invalid, 1 if they are valid. Overload (minimum level of overtime) is the amount of time

worked beyond the individual overtime limits summed over all employees, and it is treated as a

global objective for a project. CostMoney (minimum cost) is the total labor cost of performing

the project computed using the labor rates of each resource and the hours applied to the tasks.

CostTime (minimum of time span) is the total time span required to finish the project from the

start of the first task until the end of the last. The composite objective value is the summation

of weighted component objective values.

3.2 Timeline-Based Model

time

Employee I EmployeeK

Figure 3.1 Assignment in timeline-based model

In timeline-based model [17], a timeline is introduced to improve the original model in

task-based model [10). The timeline expands the two-dimensional (task and employee) model

to a three-dimensional one which shows the effort of each employee applied to each task in

each time unit. The timeline helps capture the dynamic nature of software management, such

as re-assignment of employees, learning, scheduled vacation, unexpected leave, suspension and

resumption of tasks, and the introduction of hard, intermediate deadlines.

Genetic representation for timeline-based model is a 3D array. Figure 3.1 illustrates the

scheme for Employee-Task Assignment. The computational complexity of the timeline-based

model is sharply increased because of the introduction of time dimension compared to the origi

nal task-based model. In order to achieve realism, the elements, such as an employee's proficiency

12

scores, employees' technical experiences, task deadlines, and task penalties are considered. Mod

els related to employees were added, such as Employee Model (an employee represented by a

numerical identifier and some properties) with Employee Compensation Model, Employee Skill

List, Employee Training Model, Employee Experience Model and Availability Model. Models

related to tasks (a task represented as a numerical identifier and some properties) include Task

Estimated Effort, Task Importance Model, Skill List and Ancestor Task List, and Maximum

Headcount.

3.3 Limitations

Limitations of the task-based model [10] have already been reported in the timeline-based

model [17]. Our own previous work has not adequately dealt with specific characteristics in the

software engineering environment. The work is mostly done on general project management

scheduling, although our research focus is on software project management.

Here we want to discuss limitations of our later work, the timeline-based model. Generally

speaking, the work is unrealistic, mostly because it ignores the effect of the changing staffing

profile too often by neglecting the cost to those changes.

Problems of timeline-based scheduling are as follows:

1. Usually a task is assigned to an employee until the task is finished. It is unrealistic to

assign an employee to one task for awhile, assign him to another task, and then assign the

employee to work on the original task again.

2. The interruption cost of this scheme is not counted, which is very expensive to project

execution. Those costs include the interruption on learning and the cost of reassigning an

employee.

3. Calculating the fitness function by adjusting gained effort during execution places inac

curacy into the calculation.

4. Re-scheduling is not considered in the framework. The situation is not unusual due to

the change of employees and even tasks.

13

CHAPTER 4. Overview of the Scheduling Framework

This framework introduces a hybrid software process simulation model that combines dy

namic and static models in software project scheduling. There are four main parts in this

framework as illustrated in Figure 4.1:

(1) Heuristic search algorithms. The key algorithm to implement automatic scheduling is

heuristic search. In our work genetic algorithm is used as the major method (refer to Chapter 6).

With the information on the properties of tasks and employees from static models (part 3) as the

input, heuristic search algorithms can generate populations of possible solutions using genetic

operators. Evaluating those individuals by an objective function using the output "durations of

tasks" from system dynamics simulation (part 2), they overall evolve to be the ones with better

performance after a number of generations. Finally, a near-optimal schedule can be obtained

using heuristic search algorithms.

(2) System dynamic models and simulation. Based on system dynamics meta models of

team productivity, the capability-based system dynamics simulation is guided to calculate task

durations according to different human resources assignment. It provides the task durations

to heuristic search algorithm (part 1) as a part of input to calculate the fitness score of an

individual (refer to Chapter 5).

(3) Static models. It includes the static part of task models (task estimated effort, task

penalty model and required task skill lists, etc.) and employee models, such as the employee

payment model, the employee skill model (also has a dynamics characteristic, refer to Chapter

5), and an employee experience model.

(4) Monitoring and re-scheduling techniques. From an actual project execution, some moni

toring data can be obtained from daily records. These data can help calibrate system dynamics

Task Effort Estimation

Capability-based
System Dynamic

Simulation
Duration

System Dynamic
Meta Models

Reasoning and
Retrieving

Case-based Method for Calibrating
System Dynamic Models

14

Static Models

Task Model

Resource Model

Heuristic Search for •--------..i
Project Management

Model Calibration
According to Actual

Project Execution

Schedule

Project Monitoring
Data

Figure 4.1 Capability-based project scheduling framework

15

meta models (part 2) with more accurate parameters (refer to Chapter 7). Our assumption is

that it is more reasonable and accurate to use data from the same project or the same com

pany. Our rough idea is to use case-based techniques to store historical data as cases which can

be retrieved later. As we have not done enough work on model calibration and re-scheduling

techniques, it will be paid much more attention in our future work.

Considering the dynamics of team capability, a near-optimal schedule can be generated for

decision making in software project management. This framework also gives a possible way to

take advantage of actual project execution and use those data as feedback loops for getting more

accurate schedules.

16

CHAPTER 5. Capability-Based Model

The ability of a software organization to take on a new project depends to a large extent on

the capability, rather than, the availability of resources [35]. The personnel/team capability is

one of the most important factors in software engineering as reported by Software Engineering

Center of USC [7]. Our proposed scheduling model is based on human resources' capability with

dynamics factors.

5.1 Productivity Factors on Human Resources

As to the productivity metrics, productivity can be measured in the following ways: 1) to

use project size (usually measured as lines of code, i.e., LOC), or 2) function points, divided by

the time spent on development.

There are significant productivity differences among individual software developers. In the

first study on the subject by Sackman [42], they found dramatic differences of more than 20

to 1 in the time required by different developers to debug the same problem. Some researchers

have been studying on productivity, but not so many have studied quantitative data. One

quantitative study is on object-oriented productivity as reported in Potok [36].

By analysis of the COCOMO model, we can also see that the COCOMO II estimation model

includes cost drivers with the capabilities of human resources. Among those factors, 7 out of 22

factors in the COCOMO II model are related to personnel as listed in Table 5.1 [31].

Stevenson [45] gives a literature survey about productivity in software engineering. The

factors affecting productivity include organizational structure, office environment and hardware,

software tools, people (shortage, turnover, training, experience and innate ability), quality and

management. Usually those factors can be divided as task-typed variables and resource-typed

17

Table 5.1 Personnel influences in the COCOMO II estimation model

COCOMO II Factor COCOMO II Name Influence

Analyst experience AEXP 1.51

Language and tool experience LTEX 1.43

Programmer experience PEXP 1.40

Communications factors SITE 1.52
Personnel continuity PCON 1.59
Programmer capability PCAP 1.77
Requirements analyst cap a- ACAP 2.00
bility

variables. As our area is on software management, we focus on factors related to people here. We

propose using system dynamics model to represent the factors about an employee's capability.

5.2 Models on System Dynamics

System dynamics models are so complicated because of the introduction of hundreds of

interrelated factors. Realizing that it is difficult to model the whole system, a meta model is

introduced to help simplify the issue of the creation of complex dynamics models. A meta model

is a high-level model for system dynamics. Due to the capability-based characteristic, our meta

model for capability will focus on modeling productivity and consists of sub-models at the lower

level. We will use a simple and useful parameter that takes value 0 or 1 to control whether we

need to consider the factor or not.

5.2.1 Meta Model for Productivity

For software development, team average productivity is the key component affected by a

complex set of factors as shown in Figure 5.1.

Our model has three layers: (1) team productivity, which decides the task duration directly;

(2) individual productivity, communication overhead, and other factors, which are different

among individuals but also contribute to the team productivity; (3) experience, learning, over

working, and schedule pressure factors, which affect the individual productivity on the second

level. Figure 5.1 illustrates our meta model with the factors we are currently modeling. There

Experience Skill Fitness

Individual
Productivity

18

Team
Productivity

Communication
Overhead

Schedule
Pressure

Figure 5.1 Meta model for capability-based model

Overworking

are also other factors which affect the projects. For example, motivation is also a critical factor

to individual productivity. Here, we are not modeling more factors but simplify the models for

the purpose of illustrating our framework.

Because project management depends on the ability of managers, the determination of factor

influences is partially controlled by project managers through a control parameter. Control

parameter takes value 0 or 1 to turn the factors on or off.

5.2.2 Sub Models

While most of the factors would vary from organization to organization and from project

to project within a single organization, they would remain constant within a single project [1] .

Therefore we introduce the feedback loop to monitor the project as follows.

• Team productivity

N

Pteam = L Pi* (1 - Com0verhead(N)3) (5.1)
i=l

19

Explanation: Team productivity (Pteam) describes the relationship between productivity

in team and related factors, such as individual productivity (Pi) and communication over-

head (ComOverhead(N)). Here N is the number of employees assigned to the task. In

[1], the productivity of the software development group can be stated as the psychological

model of group productivity by Ivan Steiner. In his model:

Actual Productivity= Potential Productivity - Losses Due to Faulty Process (5.2)

where losses due to faulty process refer basically to communication and motivation losses.

Here we change it to Equation 5 .1.

• Communication overhead

!min{ Communication factor* (n - 1) 2 , 100}
ComOverhead(n) =

0

Default value: Communication factor= 0.05

n?. 1
(5.3)

n=O

Explanation: Communication is an essential component in software development, but it

is also an overhead. Within a bigger team, communication overhead among team members

is obviously increased. Abdel-Hamid [1] lists several researches to show that it is widely

held that communication overhead increases in proportion to n 2 , where n is the size of the

team as shown in Figure 5. 2.

According to the graph by Abdel-Hamid [l], Communication factor is set to 0.05 as the

default value. It can be calibrated later.

• Individual productivity

Pi = N omProductivityt * !skill * !experience * !learning * f overtime * f schedulepressure (5.4)

Explanation: Individual productivity (Pi) is affected by certain factors, such as nominal

productivity (N omProductivityt), skill fitness Uskilt), the experience factor Uexperience),

the learning factor Utearning) , the overtime factor (!overtime), and the schedule pressure

20

70

60

50

40

30

20

10

10 15 20 25 30 35 40
Total Workforce

Figure 5.2 Relationship between workforce and communication overhead

factor Uschedulepressure)· Nominal productivity represents the maximum level of software

development productivity that a certain task can be developed. Therefore, it is related to

the task-related variable which can be retrieved from cases described in detail in Chapter

7. Table 5.2 shows an example of nominal productivity which we can retrieve from the

database we set it before the simulation. It shows that if the task is within those properties

(Task Type = 2, Complexity Level = 5), then we can get that Nominal Productivity =

0.8.

Table 5.2 A case of nominal productivity

variable name value

Task Type 2
Complexity Level 5
Nominal Productivity 0.8

Other factors which are related to individual productivity will be discussed later in this

section.

• Skill Fitness
s

!skill = (L Si/10)/ S (5.5)
i=l

21

Explanation: Same as timeline-model [17), the equation for f skill is to calculate the skill

fitness of an employee to a certain task. s is the number of skills required by the task. Si

is the proficiency of skill i. For example, Task 1 needs skill 1 and skill 3. Employee 1 has

the skill 1 with a proficiency of 2 and skill 3 with a proficiency of 2. Employee 2 has skill

1 with a proficiency of 5 and skill 3 with a proficiency of 1. So Employee 2 has a higher

skill fitness (i.e., 0.3) than that of employee 1 (i.e., 0.2).

• Experience

!experience = adjustmentexperience * E(tasktypei, employeej) /10 (5.6)

Default value: adjustmentexperience = 1

Explanation: E(tasktypei, employeej) is the experience of Employee j on Tasktype i

in software development, where adjustmentexperience is a factor to adjust the experience

factor as it affects the capability dynamics.

• Learning

03 <= x <= 50%

fzearning = 1.6 * (li - 1) * X + 1.4 - 0.4 * li 503 <= X <= 753 (5.7)

li - 3.2 * (li - 1) * (1 - X) 2 703 <= X <= 1003

Explanation: Xis the percentage that a task has been finished, whereas li is the learning

property of an employee. Figure 5.3 shows an example of a learning curve with li = 1.25.

This equation is adapted from a S-curve equation.

The learning curve has been studied for many years. Only a few papers, however, mention

learning curve in Software Engineering, such as Raccoon [38]. Generally, learning curves

are patterns which describe the long-term improvement in some stable processes, such as

manufacturing and mining. Researchers have noticed that improved productivity increases

year by year in those processes. Several patterns of the learning curve model exist: (1)

The log-linear pattern of improvement: y = a(x)n; (2) Standard-B: y = a(x + b)n; (3)

22

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1'---=c:::_~~-.l.~-'-~---'-~---'-~--L-~---l-~-'----'

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of a task finished

Figure 5.3 An example of learning curve in individual productivity

DeJong: y =a+ bxn ; (4) S-Curve: y = a+ b(x +er. Each of these most popular models

applies in a different field or has a different range of applications. It is observed that the

log-linear equation can apply to a wide range of processes compared to the other three.

Other equations also exist beside these four. Although there does not exist any concrete

research to support these equations, we think they may fit in software development as a

complicated stable process. Raccoon [38] argues that the learning curve can be applied in

Software Engineering and analyzes the need to stabilize and improve the processes. In this

case, an analysis is applied to the project staffing situation and one of the conclusions is

to keep team members together on long-term projects. As a matter of fact, the definition

of learning curve is not clear in the sense of different fields. Other papers discussing

the learning curve in software process modeling indeed have different meanings, such as

Hanakawa [23]. This paper proposes a simulation model for software development and

tries to deal with software engineer's productivity efficiently. As to the problem of how

we can model the learning curve in the software development process, we need to analyze

real data and compare different models to know which one is more applicable.

• Schedule pressure

23

\

5
schedule pressure =

min{Workf lowrequired/Workflownormal, 5}

T current > Tidealf inishtime

T current :::; Tidealfinishtime

(5.8)

where

w orkfloWrequired = ef f ortremaining/ (Tidealfinishtime - T current) (5.9)

work fl OW normal = Pteam (5.10)

The lookup table for fschedulepressure is shown in Table 5.3.

Table 5.3 Lookup table for fschedulepressure

schedule pressure (x) f schedulepressure

0:::; x < 1.1 1
1.1 :::; x < 1.35 1.2
1.35:::; x < 1.75 1.4

1.75:::; x < 3.5 1.45
3.5:::; x:::; 5 1.5

Explanation: When the human resources are constant for the project, it is impossible

that people will do the job in the same rate when the deadline is near. Schedule pressure is

a factor which can illustrate this situation. Because of the complexity of a human worker's

psychology, we adopted simple relations between the schedule pressure and productivity

(Table 5.1) from Vensim documents [47]. Equation 5.8, 5.9 and 5.10 are derived from the

research by Abdel-Hamid [1] with revisions in the purpose of fitting our model.

Example: If an Employee's individual productivity is 100 LOC/day, then his productivity

is lOO*schedule pressure with the schedule pressure factor which will range from 100-200

LOC/day, 100 being without schedule pressure.

• Overworking

!overworking = overtime* fatigue productivity (5.11)

24

where overtime lookup table: (schedule pressure, overtime) = (1, 1), (1.2, 1.2), (1.5, 1.4),

(2, 1.45), (5, 1.5), and

fatigue productivity lookup table: (overtime, fatigue productivity)

(1.4, 0.75), (1.45, 0.6), (1.5, 0.3)

(1, 1) ' (1.2, 0.9),

Explanation: From Vensim [47], we adopt the relationship of overtime and fatigue pro

ductivity lookup table in the example of project8.mdl.

Example: At task 2, the calculated schedule pressure is 2. So we look up the table and

get overtime = 1.45. By looking at the fatigue productivity lookup table, we get the value

0.6. So it means the overall productivity is decreased from 1 to 0.6.

5.2.3 From System Meta Models to System Dynamics Simulation

Heuristic search provides a candidate scheduling solution from which we can perform the

capability-based system dynamics simulation.

From the framework of our model in Figure 4.1, we can know that according to every candi

date schedule, we can do the simulation to get the real task duration based on personnel/team

capability.

For example, in a candidate solution such as that shown in Table 5.7.

• Employeel is assigned to taskl and the system dynamics simulation is shown as Figure

5.4.

• Employee 1 and employe2 are assigned to task 2 and the system dynamics simulation is

shown as Figure 5.5.

5.3 Static Models

5.3.1 Employee Model

In the static model, an employee is represented by his ID and several static properties as

shown in Table 5.4.

More explanation of these properties now follows.

25

effort
reqUiredkfor -----1 ~ task is done

thetas

Work
Remaining

workflow

' (\Verage
productiVity in

team

t
experience

required ________..

workflow ~ '--·

I
~ E~~~f 1 !_ learning

~ productivity skill fitness

schedule pressure '
/ ~ . fatigue

<Ti111c> / overtime_. productivity

soft deadline

Figure 5.4 An example of system dynamics simulation (Task 1)

Table 5.4 Employee model

Property Name Type Description

Employee ID Integer a non-negative integer

Contractor Boolean True (contractor); False (not con-
tractor)

Normal salary Integer monthly salary for 1003 work load

Overwork salary Integer monthly salary for overtime load

Skill list with profi- Array a list of skills that this employee pos-
ciency level sesses

Learning factor Double factor to learning (~ 1)

Max work load Double the upper limit for the work load
of any employee; assumption: the
maximum is 2003

Available start time Integer The available starting time for an
employee

Available end time Integer the available ending time for an em-
ployee

26

initial project ___ __._
definition project is done

Task2
Remaining rate

. /kforc~ \
cormmnncatlon

overhead ----___. average productivity .
in team for task! learrung-

. Employee2 norninaf_Employee! nominal A- Empl

le~~g- - /t6vi~ sche2ducti~

Emperi~re~/~~~:~~-~~~2 :-\ ::;press.we-':'. ~;!';~~
ce-Ernp2 hard deadline max schedule

max schedule .. pressure-Empl
pressure-Ernp2

<'lime>

Figure 5.5 An example of system dynamics simulation (Task 2)

27

• Contractor or not: a contractor may not receive any training.

• Normal salary: the salary that the employees will get when they work a normal workload.

• Overwork salary: employees may be paid at a different rate when working overtime. Refer

to Section 5.3.1.1.

• Skill list: a list with the skills that an employee possesses and a corresponding proficiency

score (0-10) for each skill. 0 means the employee does not possess the skill and 10 means

they are expert on it. Table 5.5 describes an example of an employee's skill list. Refer to

Section 5.3.1.2.

Table 5.5 An example of skill list of an employee

Skill Id Skill Name Proficiency

1 c++ 3.2

2 Perl 0

3 Java 4.5

4 VB 2

• Learning factor: this factor affects the learning curve described in Section 5.2.2.

• Max work load: it represents the maximum number of hours the employee can work. For

example, 1.5 means this employee can work no more than 1.5 times his usual workload.

On the basis of 40 hours per week, he cannot work more than 60 hours per week.

• Available start time and available end time: associated with each employee are two dates:

available start time and available end time, which represent the months they first become

and then cease to be available to a project.

5.3.1.1 Employee Payment Model

Employees may be paid at a different rate when working overtime.

• Snormal and Soverwork are the salary rate when the employee works in normal work load

and overwork load, respectively.

28

• hnormal and hmax are the normal working hours and maximum working hours for an

employee, respectively.

The total payment for h hours is:

Snormal * h 0 ~ h ~ hnormal

P(h) = Snormal * hnormal + Soverwork * (h - hnormal) hnormal < h ~ hmax (5.12)

00 hmax < h

5.3.1.2 Skill Proficiency Acquiring Model

Skill proficiency can be gained by training (Section 5.3.2.2). If an employee's skill proficiency

level on a given skill is r at the beginning of the training, at the end of training the skill is updated

as,

Skillprof = min{r + (LearningFactor - 1) * t, 10} (5.13)

LearningFactor refers to the property that an employee has. t is the duration of a training

task. This equation is adopted from timeline-based model [17].

5.3.1.3 Experience Acquiring Model

Experience can be gained by doing similar tasks. If an employee's experience level on a type

of task is r at the beginning of the task, then at the end of the task, his or her experience will

change due to learning. The maximum value for experience is the same as that for proficiency,

10.0. Employee's experience of this task type after the completion of the task is updated as:

EX P(TaskType, Employee! D) = min{r + (LearningFactor - 1) * t, 10} (5.14)

LearningFactor refers to the property of the employee. t is the duration of an employee

assigned to the task.

29

5.3.2 Task Model

A task is represented as its ID and a set of properties. Table 5.6 shows those properties.

Table 5.6 Task model

Property Name Type Description

Task ID Integer the task's ID, a non-negative num-
ber

Description String description of the task

Task type Integer type of task (0-10)
Complexity level Integer (0-5) 0,1 means quite easy; 5 means

very difficult
Ideal finished time Date If a task will be finished after this

date, some penalty will be applied.
Hard deadline Date If a task cannot be finished before

this date, the schedule is invalid.
Required skill list Array skill list required for finishing this

task
Ancestors list Array a list of tasks that must precede this

task
Required Effort Double nominal effort required to finish the

task
Penalty Rate Double the penalty rate for a delayed task

These are the same as in the task-based model and, indeed, as in most scheduling models

based on activity networks. A task still has a list of required skill ID's and a list of direct

ancestor task ID's. All predecessor tasks must be completed before the task can begin.

5.3.2.1 Task Penalty Model

If a task is completed after the ideal finished time, a certain amount of penalty will be added

to the total cost.

• Tideal and Tdeadline are the ideal finished time and the hard deadline for a task, respectively.

• PenaltyRate is the cost for finishing a task after its ideal finished time.

• T is the real completion time for a task.

30

The penalty cost for a task is:

0 T < Tideal

TaskPenalty(T) = p lt R t (T T) rri < T < T. ena y a e * - ideal .L ideal - - deadline (5.15)

00 Tdeadline < T

5.3.2.2 '!raining Task

'Ifaining is considered as a special task in a project. Contractors may not receive any training.

Training tasks have some of the properties that normal tasks have, such as Task ID, Description,

and Task Type (which is 0 in this model). The differences are that the required skill list includes

the skill that the employee is being trained in. 'Ifaining tasks do not have any penalty cost or

required effort, they do have time duration.

At the end of training, the skill proficiency of the employees assigned to training will be

assessed and increased (refer to Section 5.3.1.2).

5.4 Problem Definition

For the scheduling problem under our definition, we have several assumptions:

(1) Each task has to be finished in a continuous duration.

(2) Different people can work on different tasks at the same time, but cannot do work over

their maximum overwork level.

(3) Every employee assigned to the task needs to do the work in the whole duration for a

certain task. It is not realistic for people to work on one task in one time unit and then switch

to another job on the next time unit as stated in the timeline-based model [17].

5.4.1 Assignment Model

For each task, an employee can work with a load of 03, 253, 503, 753 or 1003. One

possible task-employee assignment to the example project in Figure 2.1 is shown in Table 5.7.

This scheduling means "Employee 1 can be assigned to do task 1 with 503 commitment,

task 2 with 253 commitment, and task 4 with 253 commitment; Employee 2 does task 2 with

31

Table 5. 7 An example of task assignment

Task1 Task2 Task3 Task4 Task5 Task6
Employee 1 0.5 0.25 0 0.25 0.5 0

Employee 2 0 0.25 1 0.25 0.5 0.5

753 commitment, task 3 with 503 commitment, and task 4 with 253 commitment". Here 503

commitment means employee 1 can do 20 hours every week if he normally works 40 hours per

week. So our assignment is like a task-based model with two dimensions (task, employee).

In order to reduce the computation burden in a timeline-based model, it will also be consid-

ered as a structure in our composite genome in later GA calculations.

5.4.2 The Objective Function

The objective function is used to determine the performance for each solution of the problem.

It will be used later in Genetic Algorithm to select good individuals for the next generation.

Different objective functions are possible for software project scheduling, e.g., minimum time to

finish the project and maximum return on investment. Our main goal is to make the project

overall as less costly as possible. So our objective function includes two parts mainly:

1. Validity of a schedule

A schedule is valid by checking both the validity of employee-task assignment and the validity

of schedule on time. The criteria includes: all the skill needs of the tasks must be satisfied when

assigning certain employee to the tasks; they must satisfy the precedence relations among tasks;

all the tasks must appear in the schedule; no employee can work over maximum time limits at

any point.

2. Minimum cost

We expect to have a schedule with a minimum total labor cost for performing the project

achieved through using the cost of each resource, the duration applied to the tasks, and task

penalties. During task execution, employees' capability can change, including experience on

certain type of tasks and skill proficiency. This can affect the duration for a certain task.

These properties have been discussed earlier in this chapter. Although there are other possible

32

objectives that we may expect to achieve, we only focus on overall cost of a project at this stage.

In the future, we can model more constraints and integrate the relevant parts to the objective

function. The flexibility and power of using Genetic algorithm as an optimization technique

represents its advantage.

5.4.3 Calculation of Fitness Function

The main steps to calculate fitness score are illustrated in Figure 5.6:

1) Initialize the system by loading a task-employee assignment

2) Set the number of the time unit

3) Get the next task from a topological sorted list

4) Check whether the task can start in this time unit or not by validating that all the

precedence tasks have been finished, all the employees are available, and all the employees do

not work over limit, if not, go to 2)

5) Do system dynamics simulation for each task

6) At the end of execution of every task, calculate the cost, penalty and update the employee's

overall experience and certain skill proficiency

7) If all the tasks are finished, return the fitness score

8) Start another loop from 2)

Start

Load initial employee and task
assignments

Get topological sort of tasks

Timeunit=O

Choose next task from

33

topological sort of tasks -.....----···-·
if not all the tasks start

N I

I
N---j

y

y

y

Calculate labor_ cost

Calculate penalty

Fitness:= Fitness +
labor_cost +penalty

Adjust skill proficiencies

Adjust experience

N
I

Timeunit=Timeunit+ 1

Return Fitness
Value

·~ .. :
Do system dymqni~s •·· ···-·--······-··· ··· ·············· ······ ··· ··· ···················· ·····'

simulation . '

Figure 5.6 Calculation of fitness function

34

CHAPTER 6. Scheduling with Heuristic Search

As introduced in Section 2.1.2, heuristic search has been widely applied in resource-constrained

scheduling problems. The results of our previous work with GAs are reported [10), [17]. In this

chapter, genetic algorithms for capability-based scheduling is described, such as genome rep

resentation and operators. The experimental results are presented. Additionally, the further

result of the comparison of GAs and Hill-climbing on the timeline-based model is also reported.

6.1 Introduction to Genetic Algorithm

The main stages of genetic algorithms are shown in Figure 6.1. They begin with a group of

initial solution individuals (a candidate solution of the problem) and execute iteratively to create

better offsprings. The genetic algorithms apply genetic operators such as mutation and crossover

to evolve the solutions until meeting some stopping criteria, for example, a certain number of

generations have been generated, or the identity of the best individual has not changed for a

number of consecutive generations. There are different kinds of GA algorithm.

Steady-state genetic algorithm: This algorithm is similar to the algorithms described by De

Jong. It uses overlapping populations with a user-specifiable amount of overlap [18].

Simple genetic algorithm [21]: This algorithm uses non-overlapping populations.

Incremental genetic algorithm: This algorithm has overlapping populations with 1 or 2

children per generation.

Deme genetic algorithm: This genetic algorithm has multiple, independent populations.

Each population evolves using a steady-state genetic algorithm with some individuals migrating

from one population to another.

The three most important aspects of using genetic algorithms are: (1) definition and im-

35

plementation of the genetic representation, (2) definition and implementation of the genetic

operators, (3) definition of the objective function.

For the representation of individual genomes (collection of all chromosomes (blueprints) for

an individual), Holland [26] worked primarily with strings of bits. There are other kinds of

representation: arrays, trees, lists or any other object. Based on the representation, it is crit

ical to define genetic operators (initialization, mutation, crossover, comparison). Selection of

the parents and crossover (sometimes combined with mutation) are the construction of a child

solution from the parent solutions. The selection process should choose individuals with better

performance. A selection algorithm that gives little weight to performance will tend to search

vastly but usually will not converge quickly. A crossover operator mimics the step to produce

children inheriting certain traits of both parents. Mutation is a random process that is to ran

domly perturb some of the solutions in the population. In the absence of mutation, no child can

ever acquire parametric values that were not already present in the previous population. Other

than genetic operators, the objective function provides a measure of how good an individual is

and it can be considered for either an individual in isolation or within the context of the entire

population. The objective score is a measure used to evaluate the performance of the genome.

There are many different variations to improve performance or parallelize the algorithms in

recent research.

G As are global search methods based on the evolutionary mechanisms and as a stochastic

method, it has obvious advantages compared to random search and enumeration techniques [21],

[32]:

1) The search procedure of genetic algorithm starts from a population, instead of a single

starting point. This mechanism can help to jump off local optima, especially when applying

strategies to keep the variety of the population.

2) During search procedure, the fitness score is used to evaluate a candidate solution, so

no continuity of a function nor specific field knowledge are required compared to traditional

optimization method.

3) When the problems are not continuous with multi-modality or noise, GA can still get

36

Initialize Population

l
Calculate & Evaluate

• Fitness Value of Each
Individual

Get New Population
Set t+ 1 t=

l
Select Individuals

from Current
Population

"
Perform Genome

Crossover and
Mutation

l
Check Stopping

Criteria

I ..
Finish

Figure 6.1 Main stages of genetic algorithms

37

near-optimal or satisfied solutions with high probabilities (robustness).

4) GA has the properties of implicit parallelism (dealing with the information of about O(n3)

schemas in each generation), extendibility (easily adapted to other pro bl ems by changing the

fitness function, or integrated with other algorithms, or adding more specific field knowledge)

and scalability.

Most of research on stochastic modeling using Markov Chain proves that GA can converge to

a global optimum with an infinite population size and infinite generation number [20), [41], [46).

But it is far away from actual application with time and space constraints. The other method

to analyze GA is called "evolution dynamics", such as the building block hypothesis [21], a

keystone of Genetic Algorithm approach. Building block hypothesis [21] says short schemata

with high fitness are sampled exponentially more than other schemas and they are combined

to form strings with expected higher performance. The equation below shows the relationship

between the number of instances of a certain schema and its average fitness value:

m(H, t + 1) = m(H, t) x (J(H)/ f) (6.1)

where H is a schema, m(H, t + 1) is the number of the instances of H at time t + 1, f (H)

is the average fitness of all the instances of H at time t, f is the average fitness of the whole

population at time t. If H is a schema with high fitness, the population of its instances will

increase continually. Building block hypothesis guarantees that a problem can achieve to an

optimum after searching the whole landscape. With a pilot study of scheduling problems in the

project management, our problem involves many building blocks, that is, assigning the right

person to the right task. Our problem favors the application of genetic algorithms.

The kind of problems GA cannot solve is an interesting topic. Many papers focus on the

analysis of the relationship between the difficulty and modality of fitness landscapes [25). Some

research has explored attraction for the GA's operators. But no rigorous definition of the concept

of difficulty is available in the framework of GAs [27). Early research on characterizing difficulty

has proposed criteria as isolation, deception, and multimodality. However, research shows that

criteria of deception [49) and multimodality [25) do not work well. Another method requires

the knowledge of the whole fitness landscape and is rather time consuming. It relates to the

38

repartition of local optima around the global optimum [28].

Due to lack of any efficient and robust measure of difficulty and setting for a problem,

experiments to try different settings and compare with each other are very popular since the

early days of GAs as we did later in Section 6.3.1.

6.2 Genome Representation and Operators in Capability-based Model

6.2.1 Genome Representation

As we have seen, two dimensional array (with "Employee" enumerated along the rows, and

"Task" along the columns) is used in task-based model [10] (refer to Section 3.1), whilst timeline

based model [17] uses a genome representation of three dimensional array (refer to Section 3.2).

All the chosen encodings correspond to and are natural to each of the models respectively. The

principle that using whatever encoding is the most natural to your problem and then devising

a GA that can use that encoding has been widely accepted unless there is more theoretical

progress on GAs [32].

According to the description of our capability-based model, we take out the time-line di

mension but preserve other enhancements in our model as much as possible. We define our

solution representation SchedGenome as a composite genome with two independent structures.

It overcomes many of the complexities inherent in searches by not generating invalid solutions

and causing no loss in expressiveness.

In the search space, any solution representation (S) is a mapping to a real schedule. For

schedule, it includes two types of information: task-employee assignment and start time of tasks

(the duration of a task can be achieved by system dynamics simulation). From task-employee

assignment information, we have a one-to-one mapping from task-employee matrix to lD task

employee array. Task start time is derived by topological sort of tasks according to certain

priority list. Later, we will explain mappings in our genome representation.

Therefore, our solution representation of a schedule S = {A, L }:

• A is a lD task-employee array that stores the information of task-employee assignments;

39

• L is the priority list by which a certain topological-sort vector representing the execution

order of the tasks in the schedule can be derived.

An example solution representation with two genomes for Figure 2.1 is shown in Figure 6.2.

SchedGenome Representation

Task-Employee Assignment ID array

I 0.5 0:25 le 0.25 <th-{: I 0.5 1, ,,0.25 0.25 0.5 0.5

Task Priority List

[645321]

Figure 6.2 Illustration of the SchedGenome representation

6.2.1.1 Mapping Task-employee Assignment to ID Array

The information of a task-employee assignment is "squeezed" into lD array from original 2D

array since 2D array may be a sparse matrix when the skill match of task and employee does

not always happen. An example of the transition is shown in Figure 6.3. According to the skill

match, we construct our possible-assignment matrix by setting the element (task to employee

assignment) as 1 which is possible, otherwise 0. Then transit 2D array to lD array by uniting

all the rows in 2D array into a single row and at the same time delete the elements with value

0.

For matrix Apossible, Apossible[t][i] is set to 1 if employee i can be assigned to task t. The

elements of A 2D are stored in the lD array genome A as shown in Function Assignment2DTo1D.

Here is the pseudocode for this algorithm:

(A,Apossible) Function Assignment2DTo1D(A2D)

1. size f-- 0

2. for i f-- 1 to TaskCount

40

Task-Employee Possible-Assignment Matrix

TaskS' i, Task6
1 0
l 1

Task-Employee Assignment 2D Array

Tcisk2 Task3 Task4 Task6
0.25 0 0.25 0
0.25 0.25 0.5

Task-Employee Assignment 1 D Array

:o.s " "I 0.25 0.25 v 0.5 ' 0:25 0.25 0.5 0.5

Figure 6.3 Illustration of lD array structure in SchedGenome

3. for j f-- 1 to EmployeeCount

4. if skill matched

5. Apossible [i] [j] f-- 1

6. Size f-- Size + 1

6. A[Size] f-- A2D[i][j]

7. else

8. Apossible [i] [j] f-- 0

6.2.1.2 Mapping lD Priority List to Order of Task

The other genome is a list with information of task priority. For example, [6 4 5 2 3 1] is the

task priority list for task 1 to task 6. We can see that task 1 with priority 6 and task 3 whose

priority value is 5 has higher priority than task 2 with value 4. Then a topological sort can be

generated to satisfy task precedence relationship.

41

Given a directed acyclic graph (DAG) G = (V, E), a topological sort is an order of all the

vertex and for each (u, v) E E, u appears before v on the list. As we can see, each DAG may

have more than one topological sort. Using task order as genome directly in our scheduling

problem can generate invalid individuals. Another method, priority-based encoding, is proposed

by Gen and Cheng (19]. Using priority-based encoding one can decide a certain order of tasks

with information of tasks precedence information. When there are two tasks competing for

one position, the task with the higher priority wins. Different priority can lead to different

topological sort. Therefore, the encoding can represent all the possible topological sorts for a

DAG.

The algorithm is to generate a topological sort by priority information. For each step,

determine the set of eligible nodes; choose a node with highest priority and move it from eligible

node set to partial topological sort list; update cut information of each unsorted node for the

next iteration.

The pseudo code is as follows:

1. for i +--- 0 to (taskcount - 1)

2. pS[i] +--- 0 //the set of eligible node, i is in the set if pS[i] = 1

3. pCut[i] +--- 0 //the number of edges for vertex i on the current cut

4. for i +--- 0 to (task count - 1)

5. search for eligible nodes with pCut[i] = din(i) and set pS[i] = 1

6. if the node u has max priority value

7. i +--- index of u

8. pS[i] +--- 0

9. put u to sorted set

10. for i +--- 0 to (taskcount - 1)

11. if (u , v) EE

12. i +--- index of v

13. pCut[i] +--- pCut[i] + 1

42

6.2.1.3 Mapping From Topological Sort to Start Time of Tasks

Given a topological sort, there could be more than one way to execute tasks. In our algorithm,

we choose the earliest time that a task can start.

According to the fitness function calculation, start time of each task is determined from

topological sort as shown in Figure 5.6.

6.2.2 GA operators

With our composite genome, we need to define the genetic operators to manipulate the two

structures and need to account for the validity in the solution space. Since those two genomes

have independent structure, the operators can be defined rather easily by manipulating one

operator at one time.

6.2.2.1 Initialization

Choosing non-random initialization of the population is an important topic in scheduling.

In general, it is true that using heuristics to choose better individuals for the initial population

can lead to significantly faster convergence to a good solution. But initialization may have little

effect on the performance of the solution if the evolution time is long enough. Our initialization

operator randomly chooses any value from possible value (0, 0.25, 0.50, 0.75, 1) to be the

allele (i.e., possible settings for an aspect of an individual) of the initial population. The list is

initialized as the random order from 1 to the total number of tasks.

6.2.2.2 Comparison

The comparison operator is used to determine how one genome is different from another.

The comparator thus provides a measure of how diverse a population is. The comparator of

SchedGenome calls the comparators for each of the component genomes, then get the mean of

the two scores. For the ID array structure, given two solutions A and B, the distance between

A and B is given by Equation 6.1. ai and bi are elements of A and B.

43

n

d = 2)ai - bi) 2 (6.2)
i=l

6.2.2.3 Mutation

The offspring may be mutated by the mutation operator at a rate determined by the mutation

probability. Mutation is to modify one of the values used to encode the offspring. The function

is intended to preserve the diversity of the population, thereby expanding the search space into

regions that may contain better solutions. Mutation operators are also considered as background

operator and will not affect much on the performance as crossover operators do.

{A2,L2} Function Mutation ({A,L})

//Randomly select one of the structures for crossover

1. p f-- a random real number in the range (0,1)

2. If p < 0.5

3. A2 f-- mutationA(A) //Mutation on the lD array A

4. return { A2, L}

5. else

6. L2 f-- mutationL(L) //Mutation on the priority list L

7. return {A, L2}

According to the mutation probability, we randomly select one of the two genomes which is

going to do the mutation shown in Figure 6.4. In the lD array structure, we only change the

certain elements while the certain elements are swapped in the task priority vector.

6.2.2.4 Crossover

The crossover operator mimics the way in which bi-sexual reproduction passes along each

parent's good genes to the next generation. As to the crossover operator, the standard one-

point crossover function is good at preserving short, good quality building blocks [32]. We

choose one-point crossover for lD array.

{ Acl, Lcl}, { Ac2, Lc2} Function Crossover ({ Ap1, Lp1}, { Ap2, Lp2})

44

0.5 0.25 0.25 1@ 0.25 0.25 0.5 0.5

2 3 @16

I o.5 I 0.25 I o.z5 I © 0.25 I 1 I 0.25 I o.s I o.5 I I o.5 I 0.25 I 0.25 I o.5 I 025 I I o.25 I o.s I o.5 I

2 3 4 5 6 , L 2 3 6

Figure 6.4 Illustration of SchedGenome mutation

//Randomly select one of the structures for crossover

1. p ~ a random real number in the range [0,1)

2. If p < 0.5

3. Ac~ crossover A(Ap1, Ap2) //Crossover the lD array A

4. return {Ac, Lp1}, {Ac, Lp2}

5. else

6. Le~ crossoverL(Lp1 , Lp2) //Crossover the priority list L

7. return {Ap1, Le}, {Ap2, Le}

The crossover operator of SchedGenome invokes the crossover operator for each of the

genomes in the composite genome according to a random number as illustrated in Figure 6.5.

Mechanic simplicity facilitates relatively easy crossover on the task-employee lD array as shown

in the left part of Figure 6.5. By the crossover of the lD array structures of parents, Child 1

and Child 2 are generated according to the crossover point of Parent 1 and Parent 2. Because

the two structures of the genome representation are independent and the lD array genome is

45

derived from the possible-assignment matrix, the offsprings of the crossover operator are always

valid.

Parent 1
ID Array Crossover point

Parent 2
1 D Array Crossover point

I o.5 ·I o.25 I o.2s I o.s I 0.25 I 1, l ',,, I 025 I o.s I 0.5 I I 0 I 0.25 I 0.25 I I I I I 0.5 I 0.25 I 0;5 I 0.25 I

+
2 I 3 4 5 6 5 , I 3 6

I I

Child 1
~P<I

Child I

I o.5 I 0.25 I o.25 I o.5 I 0.251 o.s I 0.25 I o.5 I o.25 I I o.s I 0.25 I 0.25 I o.5 I 0:25 I I 0.25 I o.5 I o.5 I

2 3 4 5 6 I 2 6 4 5 3

Child2 Child2

o I o.2s I 0.25 I I 0.25 I o.5 I o.5 I o I 0.25 I o.25 I ·' l I o.5 I o.2s I o.5 I o.2s I

5 " ' 3
6 5 I• 2 r 4 j> l 3 6

Figure 6.5 Illustration of SchedGenome crossover

For the list structure, the crossover operator should keep every offspring being an enumer

ation of their parents. For example, when parents are [123456] and [124536], each child should

contain all of the elements in original list. The crossover preserves the ordering of elements by

generating a random string with the same length as its parents. Child 1 copies from Parent 1

wherever the bit string contains a "O". The remaining strings of Child 1 have the same order

46

as in Parent 2. Similarly, Child 2 copies from Parent 2 wherever the bit string contains a "1".

The remaining strings of Child 2 have the same order as in Parent 1. An example of list-order

crossover is shown in Figure 6.6.

Parent I 2 3 4 5 6

Parent 2 I 2 4 .: 5 3 6

+
Random String I 0 0 I 'O

/ ~
2 4 .··. I I , 4 3 6

Child I 3 6 Child 2 l~_l __.__2_. __.__4_· __.__5_~_3 __ 6___,

Figure 6.6 Illustration of list-order based crossover

6.2.3 Implementation in GALib

We use "Steady-state" algorithm (GASteadyStateGA) in GALib. The selection is Roulette

Wheel. 2DArrayGenome and 2DArrayAlleleGenome classes provided by GAlib are imple

mented in task-based model and a three dimensional array (GA3DArrayAlleleGenome) is used

in timeline-based model .

For our capability-based model, the task-to-employee assignment array that stores the in

formation of task-employee assignments, and a topological-sort vector representing the execu-

47

tion order of the tasks in schedule are implemented by (GA1DArrayAlleleGenome) and (GAL-

istGenome), respectively.

GA1DArrayAlleleGenome: The lD array allele genome is derived from the lD array genome

class. It shares the same behaviors, but adds the features of allele sets. The value assumed by

each element in an array allele genome depends upon the allele set specified for that element.

Our single allele set includes all the possible values (0,0.25,0.5,0.75,1) to denote the percentage

of time for an employee to be assigned a particular task.

Other than the genetic operators we defined by ourselves, we use the genetic operators

provided by GAlib which are listed in Table 6.1.

Table 6.1 Genetic operators in SchedGenome

Genetic operators GAlib methods I

Comparison G AlDArray AlleleGenome: :ElementComparator

Mutation GAlDArrayAlleleGenome::FlipMutator, GAL-
istGenome: :SwapMutator

Crossover GAlDArray AlleleGenome: :OnePointCrossover,
G AListGenome:: Ord er Crossover

The crossover operator invokes the crossover for each of the genomes in the composite

genome. Here we use the crossover operation for GAlDArrayAlleleGenome, OnePointCrossover,

while OrderCrossover is used in GAListGenome. OrderCrossover is for keeping the length of

the List genome.

6.3 Experimental Results of Capability-based Model

The case used in this section is shown in Figure 6.7. Employee properties and task properties

are listed in Table 6.2, Table 6.3, and Table 6.4, respectively. There are several parameters

that we can tune to get better results. For the preliminary parameter setting, the following 4

parameters are included:

• crossover probability

• mutation probability

48

• population size

• maximum size of generations

6.3.1 Preliminary Parameter Setting

Since genetic algorithms are non-deterministic, those factors, such as population size, genera

tion number, mutation probability and crossover probability not only influence the time required

to perform the GA algorithm but also affect the quality of the result. As to those parameters,

they should not be too problem-specific because we may use them in different problems.

Figure 6.7 An example of test case

• Crossover Probability

To tune crossover probability, we set mutation probability, population number and generation

number as 0.01, 1000, 1000 respectively. Crossover probability is set to 0.01, 0.05, 0.1, 0.4, 0.65

and 0.8 with the result shown in Figure 6.8. As can be seen from the figure, the influence of

49

Table 6.2 Employee properties

Emp Contract Basic Overwork Max Over- Initial Learning Start End
ID or Not Hourly Hourly work Per- Experi- Factor Date Date

Rate Increase centage ence

1 N 38 10 150 5 1.5 2005- 2005-
01-01 11-01

2 N 33 0 100 4 1.3 2005- 2005-
01-01 11-01

3 y 30 5 125 3 1.3 2005- 2005-
01-01 11-01

4 N 35 0 75 4 1.1 2005- 2005-
01-01 11-01

5 N 35 5 125 4 1.1 2005- 2005-
01-01 11-01

6 N 36 10 125 4 1.4 2005- 2005-
01-01 11-01

7 N 36 0 10 4 1.5 2005- 2005-
01-01 11-01

8 N 35 0 100 4 1.1 2005- 2005-
01-01 11-01

9 y 30 5 125 3 1.2 2005- 2005-
01-01 11-01

10 N 36 10 150 5 1.3 2005- 2005-
01-01 11-01

Table 6.3 Employee skill proficiency

Employee Skill 1 Skill 2 Skill 3 Skill 4 Skill 5

ID

1 4.5 4 0 5 5
2 0 0 2 0 5
3 4 4 2 0 5

4 0 4.7 3 3 0
5 4.5 4 4 0 5
6 0 4.5 4 4 0

7 4.5 5 5 0 0

8 0 0 3 4 5

9 0 0 4 5 0

10 5 4 0 3 4

50

Table 6.4 Task properties

Task Task Complexity Effort Soft Hard Penalty Skills

ID Type Level Deadline Deadline Per Day Required

1 1 3 0.25 2005-02- 2005-03- 1000 1 3
01 01

2 2 2 0.5 2005-03- 2005-04- 1000 235
01 01

3 2 5 0.8 2005-03- 2005-04- 2000 1 5
01 01

4 3 1 0.25 2005-03- 2005-04- 2000 1 2

01 01

5 4 3 0.6 0 0 0 1 3

6 2 2 0.5 0 0 0 34

7 3 5 0.3 0 0 0 2 4 5

8 2 1 0.4 0 0 0 2 3

9 5 2 0.25 0 0 0 24

10 4 4 0.5 0 0 0 45

11 4 4 0.5 0 0 0 1 3 5

12 4 4 0.25 2005-07- 2005-08- 1000 24
01 01

13 3 5 0.8 0 0 0 34

14 4 4 0.5 2005-09- 2005-10- 3000 1 2 3
01 01

15 3 4 1 0 0 0 2 3 4

16 4 4 0.5 0 0 0 45

17 4 4 0.5 0 0 0 1 3 5

18 4 4 0.25 0 0 0 24

19 3 5 0.8 0 0 0 34

20 6 4 0.5 0 0 0 1 2 5

21 7 5 1 2005-10- 2005-11- 5000 2 3 5

01 01

51

crossover probability does not seem to be that much. Later on, we will define our crossover

probability as 0.65, as our previous works did.

3

2.8

2.6

2.4

- 2.2
~
en
0
()

>-
2

Q)
c:
0

::2: 1.8

1.6

1.4

1.2

1

x 10
5

0 100 200 300 400 500 600
Number of Generations

700 800

Figure 6.8 Comparison on crossover probability

• Mutation Probability

- 0.01
- 0.05
- 0.1
- 0.4
- 0.65
- 0.8

900 1000

The influence of mutation probability on the results of the GA calculation must also be consid-

ered when tuning the algorithm.

From Figure 6.9, the comparison of results by different mutation probabilities is more mean-

ingful. It suggests that small mutation probabilities produce better results than the larger ones

do under our scenario. Such a phenomenon is not unique to this problem nor to the implementa-

tion [17]. This often occurs because higher mutation probabilities produce a greater percentage

of not-so-good offspring. As the scheduling problem has many restrictions, it is easy to pro-

2.8

2.6

2.4

- 2.2
~
1i)
0
0 2
>-
Q)
c:
0

:ii: 1.8

1.6

1.4

1.2

52

- 0.001
- 0.01
- 0.05
- 0.1
- 0.2
- 0.4

1'--~~_,_~~-'-~~~~~--'-~~~'--~~_,_~~-'-~~~~~--'-~~~

0 100 200 300 400 500 600 700 800 900 1000
Number of Generation

Figure 6.9 Comparison on mutation probability

53

duce such kind of not-so-good offsprings by random mutation. In the experiments reported

herein mutation probabilities between 0.001 and 0.05 produced the best results. Accordingly,

the default mutation probability is set to be 0.01 for the remainder of our work.

• Maximum Generation and Population Size

x 10
5

3----~~..--~~-r-~~-.--~~-.-~~~~~~~~~~~~~~~~~---.

~
0
0

2.5

2

0 1.5
~
c:
0

:::?:

0.5

- 200
- 500
- 1000
- 2000
- 5000

0'--~~...._~~-'--~~-'-~~-'--~~-'-~~-'-~~_._~~_._~~---L~~---'

0 2 3 4 5 6 7 8 9
Number of Generation * Population Size

Figure 6.10 Balance on the numbers of generation and population

10

x 10
5

Although larger population size and generation number can definitely result in better perfor-

mance overall, the balance of generation number and population size needs to take into account

computation time. From Figure 6.10, after a certain amount of time, the performance with

different parameters are close to each other. It is still reasonable to expect that those two

parameters can be set to 1000 to get good results for larger experiments.

54

6.3.2 Results

After setting all the parameters, the best result from the search algorithm is shown in Figure

6.5, and the cost of the schedule is 127 448, by considering all the factors. The Gantt chart for

this schedule is illustrated in Figure 6.11.

Table 6.5 A near-optimal schedule from search

Task Duration Start and End Date Precedences Resource
Name

Taskl 11 days Jan 1'05 - Jan 11 '05 Employee7
Task2 18 days Jan 12 '05 - Jan 29 1 '05 1 Employee3[50%] ,Employee5
Task3 24 days Jan 30 '05 - Feb 22 '05 1 Employeel ,Employee3
Task4 16 days Jan 12 '05 - Jan 27 '05 1 Employeel [50%]
Task5 21 days Feb 23 '05 - Mar 15 '05 3,4 Employee3[25%] ,Employee7(75%]
Task6 15 days Mar 17 '05 - Mar 31 '05 2,5 Employee6
Task7 22 days Feb 23 '05 - Mar 16 '05 2 Employeel [50%]
Task8 11 days Apr 3 '05 - Apr 13 '05 6 Employee7[75%]
Task9 5 days Mar 17 '05 - Mar 21 '05 4 Employeel
TasklO 12 days Mar 22 '05 - Apr 2 '05 9 Employeel
Taskll 18 days Mar 17 '05 - Apr 3 '05 7 Employee3
Task12 10 days Apr 3 '05 - Apr 12 '05 9,10 Employeel
Task13 29 days Apr 4 '05 - May 2 '05 11 Employee6,Employee9[75%]
Task14 19 days May 3 '05 - May 21 '05 7,8,9,12,13 Employee7
Task15 31 days May 3 '05 - Jun 2 '05 13 Employee6
Task16 12 days May 22 '05 - Jun 2 '05 14 Employeel
Taskl 7 23 days Jun 3 '05 - Jun 25 '05 12 Employee3[75%]
Task18 9 days Jun 3 '05 - Jun 11 '05 15 Employeel (75%]
Task19 33 days Jun 3 '05 - Jul 5 '05 15,16 Employee9
Task20 14 days Jun 26 '05 - Jul 9 '05 17 Employeel
Task21 83 days Jul 10 '05 - Sep 30 '05 17,20,19,18 Employee5

We also run tests by leaving our certain factors. From Table 6.6, we can see that without the

learning factors, the overall cost increases. The cost without communication overhead decreases

as expected. Without schedule pressure, no solution is found in this high constrained case.

Although the results shown in the table are intuitive, in more complicated situation, the result

can help analyze the influence of certain factors .

55

Jun5Jun1Jun1Jun
:

Figure 6.11 A schedule generated from test case

Table 6.6 Results without considering some factors

Cost Best Worst Average

With all the factors 127448 135356 131104
Without learning factor 149426 152072 151174

Without communication over- 125222 127478 126017
head factor

Se . Se Se Od2 Oct9

56

6.3.3 Discussion

Let us discuss the results from smaller experiments. Figure 6.12 shows a project with 4 tasks

with task properties and employee properties in Table 6.7, 6.8 and 6.9.

Programming 1

Design Documentation

Programming 2

Figure 6.12 A test case with 4 tasks

Table 6.7 Employee properties

Emp Contract Basic Overwork Max Over- Initial Learning Start End
ID or Not Hourly Hourly work Per- Experi- Factor Date Date

Rate Increase centage ence

1 N 15 0 100 4 1.25 2005- 2005-
01-01 01-15

2 N 15 0 100 5 1.15 2005- 2005-
01-01 01-15

3 y 18 0 100 5 1.45 2005- 2005-
01-01 01-15

Using same parameters from previous parameter tuning, we also get good results in this

simple example, the result from GA is shown in Table 6.10. After the soft deadline is changed

to Jan. 10 and the hard deadline is still kept at Jan. 15, we can see the result in Table 6.11

that employees are assigned to the work more to get things done more quickly. By comparing

these two results, the difference is that Employee 1 is also assigned to Task 3 and the execution

time for Task 3 decreases from 6 days to 3 days. It can decrease the penalty cost by finishing

tasks earlier. Why is not employee also assigned to Task 1 to make the project done earlier?

57

Table 6.8 Employee skill proficiency

Employee Java C++ Word

ID

1 5 3 2
2 4 4 4

3 2 5 2

Table 6.9 Task properties

Task Task Type Complexity Effort Soft Hard Penalty Skills

ID Level Dead- Deadline Per Day Required

line

1 Design 4 0.1 2005- 2005-01- 20000 Java
01-15 15 c++

Word

2 Programming 3 0.1 2005- 2005-01- 10000 Java
01-15 15 c++

3 Programming 3 0.2 2005- 2005-01- 10000 Java
01-15 15 c++

4 Documentation 3 0.2 2005- 2005-01- 10000 Word
01-15 15

Since even Employee 1 is added to the team for Task 1, the time to finish tasks can only be

decreased a little bit but not enough to decrease it from 3 days to 2 days. Therefore, Employee

2 and Employee 3 are considered as the best solution for Task 1 in this situation. Why choose

Employee 3 for Task 1 and Task 4 instead of Employee 1 when Employee 1 has higher skill

proficiency with lower salary? It is because Employee 3 has 253 higher initial experience than

Employee 1 and learning factor matters to a certain extent. From the above analysis, we can

see the correctness of our model in some aspects.

We use same parameters in those tests. Although we get similar results, Table 6.12 shows a

little different performance in different examples. In this relative big problem, the performance is

best since all the results are close while results are in a wider range in relatively simple problems.

Tuning GA parameters is not clear and our future work will focus on finding better rules to tune

GA parameters for different categories of software project scheduling situations.

58

Table 6.10 A near-optimal schedule from search (soft deadline = Jan 15)

Task Name Duration Start and End Date Precedences Resource

Design 3 days Jan 1 '05- Jan 3 '05 Employee2,
Employee3

Programming 1 5 days Jan 4 '05 - Jan 8 '05 1 Employee2
Programming 2 5 days Jan 4 '05 - Jan 8 '05 1 Employee!,

Employee3
Documentation 6 days Jan 9 '05 - Jan 14 '05 2,3 Employee2,

Employee3

Table 6.11 A near-optimal schedule from search (soft deadline = Jan 10)

Task Name Duration Start and End Date Precedences Resource
Design 3 days Jan 1 '05- Jan 3 '05 Employee2,

Employee3
Programming 1 5 days Jan 4 '05 - Jan 8 '05 1 Employee2
Programming 2 5 days Jan 4 '05 - Jan 8 '05 1 Employee!,

Employee3
Documentation 3 days Jan 9 '05 - Jan 12 '05 2,3 Employee!,

Employee2,
Employee3

Table 6.12 GA performance in a relative large problem (21 tasks, 10 em
ployees) and small problem (4 tasks, 3 employees)

Best Mean Worst

Relative big problem 127448 130311 136760
Relative simple problem 4296 5218 5914
Relative simple problem with 34248 39085 44200
more tight constraint

59

6.4 Comparison of GA and Other Heuristic Search

To evaluate the performance of GA, an experiment on exhaustive search was conducted

with the task-based model [10]. However, because the computational complexity of exhaustive

search is extremely high in software project scheduling that comparison does not really show

the performance of GA. No comparison was implemented among GA and any other heuristic

search. So no evidence has really shown the power of GA or why GA is suitable for software

project scheduling.

6.4.1 Comparison of GA and Hill-Climbing on Timeline-based Model

To evaluate the performance of a GA algorithm, the efficiency and quality of solving the

problem needs to be known. There are two major criteria:

a) the number of function evaluations

We can compare the difference between the number of function evaluations needed in different

algorithms to achieve the solution with the same quality or we can use the same number of

function evaluations and compare the quality of a solution. It can be used for comparing

different GAs or GA with other search algorithms.

b) On-line performance and off-line performance [14]

l T n

PonJine(s) = n(T + l) t; ~ f (a;, t)

1 T

Pof f-line(s) = (T + l) t; f(a*, t)

(6.3)

(6.4)

On-line performance reflects the change of the fitness values of the populations and shows the

evolution of the whole procedure. Off-line performance reflects the best individual's evolution

procedure and shows the search capability of GA.

Other than the two measures, Kallel [27] proposed some measures to characterize GA be

haviors both on a temporal and spatial GA trajectory. They are based on Hamming fitness

function for scaling.

60

A number of researches have defined certain kinds of problems that GAs work better than

other heuristic methods and the criteria to compare different problems and algorithms [33], [25].

Mostly the comparison focuses on GA and Hill-Climbing. Here we try to show the performance

of GA and hill-climbing on the timeline-based model based on the criteria of the quality of the

best solution from different algorithm.

The hill-climbing algorithm that we use is that a population of initial solutions is chosen and

the best one is chosen as the start point. By using that best one, it is mutated at a randomly

chosen single locus and the fitness is evaluated. If the mutation leads to a higher fitness, the

new one replaces the old one. The procedure continues until the optimum is found.

Usually hill-climbing algorithm is much faster than GA. However, the landscape in our

problem has many local optima which makes hill-climbing difficult to achieve the global optimum.

An attempt for such comparison has been reported in our recent work [11]. The case consists

of 15 tasks for which 10 employees were available. The employees, in turn, each possessed 5

skills to a greater or lesser extent. Each of the 5 skills was needed by at least one task and many

tasks required multiple skills. The mean cost computed by hill-climbing is 34622840 with 1000

initial individuals in the population while the mean by GA is 27635360 which outperformed the

best fitness achieved by hill-climbing as shown in Table 6.13, where lower number means lower

cost and is better. Table 6.14 shows the comparison with a smaller case of 8 tasks, 7 employees

in which GA outperforms HC dramatically, and Table 6.15 shows the comparison with a case of

3 tasks, 3 employees which do not show much difference in the two methods but the distribution

of solutions from HC is obviously bigger than GA. Although these cases are random and more

extended experiments need to be conducted, the results in general show the good performance

and robustness of GA.

Table 6.13 Comparison between GA and HC (15 tasks, 10 employees)

Best Mean Worst

Steady GA 25424896 27635360 29941800

Hill Climbing 29883000 34622840 41868400

In the early stage of the computation, because there exists many efficient, small blocks, under

61

Table 6.14 Comparison between GA and HC (8 tasks, 7 employees)

Best Mean Worst
Steady GA 6645760 8021709 9401344
Hill Climbing 9695000 13099240 17308200

Table 6.15 Comparison between GA and HC (3 tasks, 3 employees)

Best Mean Worst

Steady GA 8192 11298 15360
Hill Climbing 7428 11612 17422

crossover operators, the probability that the small blocks can be united as big blocks are high.

Therefore, the quality of the population is improved quickly. But in the later stage, when big

blocks are becoming more and more similar, the efficiency of crossover operators is becoming

much lower. At that time the quality of many individuals cannot be improved a lot. In the later

stage GA's efficiency is quite low.

By analyzing the computation procedure of GA, we can see from Figure 6.l(also refer to 6.8,

6.9, 6.10) that GA is not efficient in the later stage of computation which means it converges

very slowly.

With GA's ability on global optimization and hill-climbing's ability on local optimization,

combining GA with hill-climbing might be a good choice as a hybrid algorithm.

The tables below give the results from the experiment on two cases. Table 6.16 shows the

result of GA (mutation probability= 0.001, generation number= 1000, population size= 1000)

and GA (generation number= 500) with Hill-Climbing in a small experiment. Table 6.17 shows

the result of GA and GA with Hill-Climbing in a relative larger project scheduling problem.

Other cases are directed and show similar results.

In timeline-based model of software project scheduling, on relative smaller problems, hill

climbing is much better than GA both on time and fitness evaluations. On the other hand, GA

outperforms hill-climbing on finding good quality solutions when the problems are becoming

complicated, as is the case for many software projects, and in that case GA with hill-climbing

does not help much in optimization. Therefore, GA is generally a good choice no matter the

62

Table 6.16 Comparison between GA and GA with HC in a relative small
problem (3 tasks, 3 employees)

Best Mean Worst
Steady GA 8192 11298 15360
Steady GA(500 5286 6983 10024
generations) with
HC

Table 6.17 Comparison between GA and GA with HC in a relative big
problem (15 tasks, 10 employees)

Best Mean Worst
Steady GA 25424896 27635360 29941800
Steady GA(500 26761000 28929233 33171600
generations) with
HC

problem size and the constraints in the software project scheduling problem.

63

CHAPTER 7. Conclusions and Future Work

This thesis proposes a framework for scheduling and monitoring in software project man

agement. The genetic algorithm from previous work is improved by reducing the computation

overhead without compromising with loss of realities. Experiments on comparing GA and the

Hill-climbing method helped us determine that GA is a good method in software project schedul

ing. The automated optimization of scheduling can help a project manager for decision making

by improving the quality of scheduling in software development.

However, there are several limitations of our framework. We can see that the capability-based

scheduling framework can help make estimations and analyze the system dynamic behavior,

especially in the following situations:

• When there is a lot of information about the personnel and organizational attributes,

which can usually be obtained in the development stage;

• When the company collects project history data.

Therefore, our proposed work needs support from high quality software processes which

can limit the application of the framework. Our capability-based model should be applied in

a relatively high level of CMMI, and based on which we can do our quantitative calculation

more realistically. By complementing the function of CMMI, Personal Software Process (PSP)

and the Team Software Process (TSP) developed by Watt S. Humphrey give a way to measure

an individual's development time and quality, which helps manage the teamwork planning and

tracking thus providing more accurate data.

Another important aspect in project management is monitoring projects. Many failures of

projects are due to poor monitoring. The feedback from actual project execution is so important

64

in software project management that it can help improve estimation in later scheduling. For a

certain project or a certain company, feedback can help calibrate the data and do re-scheduling

when necessary. Although re-scheduling is very important, re-scheduling techniques are still not

adequately explored in software engineering research.

Here we will briefly discuss the problem of calibrating our model, possible techniques to

solve it and directions of our future work. Case-based reasoning (CBR) is a machine learning

technique which is based on past experience. There have been some successful applications of

CBR to cost estimation in software engineering [5], [16]. The case-based method in our system

is designed to determine the parameters in the system dynamics part and to obtain the feedback

from the real project implementation. To make these models more accurate according to certain

projects and companies, we need to calibrate the uncertain parameters in these models. There

are three different types of parameters: (1) known parameters; (2) unknown parameters; (3)

imprecise parameters. Type 2 and 3 are the parameters that we need to tune. From a series of

data, what we expect is to minimize the difference between estimated data and real data.

Illustrated by the simple example from Figure 2.1, suppose Task 1 has been finished and

other tasks not, the calibration process is as follows. According to the first schedule, Employee

1 is assigned to Task 1 and Task 2; Employee 2 is assigned to Task 2. Suppose that Task 1

has been done (scheduled duration: 4 days. actual duration: 5 days) and other tasks have

not started yet. Task 2 and Task 1 have the same properties on task type and complexity

level. Additionally, Employee 1 and Employee 2 have the same experience level. Assume that

"adjustment of experience" is the only factor that needs to be calibrated. From the difference

between the actual duration and the scheduled duration of Task 1, the factor "adjustment of

experience" is adjusted from 1 to 0.8. Assume that Task 2 is scheduled to finish in 6 days. Then

after tuning the factor, the duration for Task 2 will be rescheduled to finish in 7.5 days.

For the re-scheduling problem, we will focus on those major concerns:

• Efficient algorithm

For rescheduling, an efficient way will need to be found to favor the algorithm we have used,

such as genetic algorithms. The goal is to ensure that the cost ofrescheduling computation

65

can be as small as possible.

• Performance tradeoff

Efforts are needed to improve the rescheduling efficiency while maintaining the rescheduling

quality. We need to do the risk analysis on the change of schedule. Tradeoff analysis

between the performance gained by changing schedule and the cost required to change the

schedule must be performed.

• Time to re-schedule partially completed tasks

The appropriate time to do the re-scheduling is important. When there are some tasks that

have already started in a project, a mechanism to automatically split partially completed

projects is needed. Some method to looking ahead (for instance, to see if tasks are almost

completed) is required . Then the projects need to split into two parts: one represents the

completed part of the original project and the remaining tasks. To deal with partially

completed tasks, more considerations should be added, such as whether re-scheduling of

partially completed tasks is needed and how to do it.

Additionally, we suggest the following improvements to our work:

1. Modeling more aspects on software processes: currently we only focus on the develop

ment stage. Other stages, such as architecture design and testing can also be included in the

framework.

2. Better modeling of the progress of tasks and employees: deeper and more comprehensive

research is needed on the aspects affecting productivity, for example, learning and motivation.

However, it requires interdisciplinary research among business, computer science, and psychol

ogy.

3. Model calibration: tuning system dynamics models is extremely important for accurate

estimation. It includes the process of judging the validity of a system dynamics model, such as

face validity (to test the fit between the rate/level/feedback structure of the model and the es

sential characteristics of the real system), reference mode replication (to test whether the model

can reproduce the various reference behavior modes characterizing the system), extreme condi-

66

tion test (to test whether the model behaves reasonably under extreme conditions or extreme

policies).

4. More comprehensive experiments for comparison and tuning: more experiments should

be devised to analyze the performance of heuristic search algorithms. Rules for tuning GA

parameters are still not clear.

5. Case studies on software project management: case studies are necessary and essential

to evaluate the performance of our work. After the models have been completely established,

case studies will help customize these models when needed. Research on integration with cur

rent commercial software tools can help transfer current advanced techniques such as what our

research group developed into industrial use.

67

REFERENCES

[1) T. Abdel-Hamid, S.E. Madnick, Software Project Dynamics: An Integrated Approach,
Prentice Hall, Englewood Cliffs, NJ, 1991.

[2] C. Andersson, L. Karlsson, J. Nedstam, M. Host, and B. Nilsson, "Understanding
Software Processes through System Dynamics Simulation: A Case Study", 9th Annual
IEEE Int'l Conj. and Workshop on the Eng. of Computer-Based Systems (ECBS 2002),
Sweden, 2002, pp.41-48.

[3] M. Barros, C. Werner, and G. Travassos, "System Dynamics Extension Modules for
Software Process Modeling", Workshop on Software Process Simulation Modeling (ProSim
'03), 2003; http://prosim.pdx.edu/prosim2003/paper/prosim03_barros.pdf (Date
retrieved: June 2004).

[4] R. Bellman, Dynamics Programming, Princeton Press, Princeton, NJ, 1957.

[5) R. Bisio and F. Malabocchia, "Cost Estimation of Software Projects through Case-based
Reasoning", Proc. 1st Int'l Conj. Case Based Reasoning, Sesimbra, Portugal, 1995, pp.
11-22.

[6] M.S. Boddy and R.P. Goldman, "Empirical Results on Scheduling and Dynamic
backtracking", Proc. 3rd Int'l Symp. Artifical Intelligence, Robotics and Automation for
Space, Pasadena, CA, 1994.

[7] B. Boehm et al., Soft Cost Estimation with COCOMO II, Prentice Hall PTR, 2000.

[8) P. Brucker, B. Jurisch, and B. Sievers, A Branch and Bound Algorithm for the Job-shop
Scheduling Problem, Technical Report, Osnabrucker Schriften zur Mathemtic, Univ.
Osnabruck, 1992.

[9] P. Brucker et al., "Resource-constrained Project Scheduling: Notation, Classification,
Models, and Methods", European Journal of Operational Research, vol. 112, 1999, pp.
3-41.

[10] C. Chang, M. Christensen, and T. Zhang, "Genetic Algorithms for Project Management",
Annal of Software Eng., Kluwer Academic Publishers, vol. 11, 2001, pp. 107-139.

[11] C. Chang, Y. Di, and Y. Ge, "Time-line Based Model for Software Project Scheduling
with Genetic Algorithms", submitted to Information and Software Technology for review,
2004.

68

[12] C. Chao, SP MN et: a New Methodology for Software Management, doctoral dissertation,
Univ. Illinois at Chicago, 1995.

[13] B. Clark, S. Devnani-Chulani, and B. Boehm, "Calibrating the COCOMO II
Post-Architecture Model", Proc. 20th Int'l Conj. Software Eng. (ICSE), Kyoto, Japan,
1998, pp. 477-480.

[14] K.A. De Jong, An analysis of the behavior of a class of genetic adaptive system, doctoral
dissertation, Univ. Michigan, 1975.

[15] L. Davis, "Job Shop Scheduling with Genetic Algorithms", Proc. Int'l Conj. Genetic
Algorithms and their Applications, Pittsburgh, PA, 1995, pp.136-140.

[16] J.M. Desharnais, G.E. Wittig, G.R. Finnie, "Estimating Software Development Effort with
Case-Based Reasoning", Proc. 2nd Int'l Conj. Case Based Reasoning, Providence, RI,
1997, pp.13-22.

[17] Y. Di, Timeline Based Model For Job Scheduling with Genetic Algorithms, master's thesis,
Univ. Illinois at Chicago, 2001.

[18] GALib, "Lib: A C++ Library of Algorithm Components";
http://lancet.mit.edu/ga/(Date retrieved: June 2004).

[19] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley &
Sons, New York, NY, 2000.

[20] D.E. Goldberg, "Finite Markov Chain Analysis of Genetic Algorithm", Proc. 2nd Int'l
Conj. Genetic Algorithm (ICGA 2), San Francisco, CA, 1987, pp.1-8.

(21] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

(22] F. Glover, "Tabu Search - Part I. ORSA", Journal on Computing, vol. 1, 1989, pp.
190-206.

[23] N. Hanakawa, S. Morisaki, K. Matsumoto, "A Learning Curve Based Simulated Model for
Software Development", Proc. 20th Int'l Conj. Software Eng. (ICSE), 1998, pp. 350-259.

[24] S. Hartmann, "A Competitive Genetic Algorithm for Resource-Constrained Project
Scheduling", Naval Research Logistics, vol. 45, 1998, pp. 773-750.

(25] J. Horn and D.E. Goldberg, "Genetic Algorithms Difficulty and the Modality of Fitness
Landscapes", Foundations of Genetic Algorithms 3, L.D. Whitley and M. D. Vose, eds.,
Morgan Kaufmann, 1995, pp. 243-269.

(26] H. Holland, Adaptation in Natural and Artificial Systems, Univ. Michigan Press, Ann
Arbor, 1975.

(27] L. Kallel, "Inside GA Dynamics: Ground Basis for Comparison", Proc. 4th Conj. Parallel
Problems Solving from Nature, 1998, pp. 57-66.

(28] S.A. Kauffman, "Adaptation on Rugged Fitness Landscape", Lectures in the Sciences of
Complexity, volume I of SFI studies, Addison-Wesley, Reading, MA, 1989, pp. 619-712.

69

[29] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, "Optimization by Simulated Annealing",
Science, vol. 220, 1983, pp. 671-680.

[30] P. Lakey, "A Hybrid Software Process Simulation Model for Project Management",
Workshop on Software Process Simulation Modeling (ProSim '03),
2003;http://prosim.pdx.edu/prosim2003/paper/prosim03_lakey.pdf (Date retrieved: June
2004).

[31] S. McConnell, "Quantifying Soft Factors", Sept 2002;
http://www.stevemcconnell.com/SoftFactors.pdf (Date retrieved: June 2004).

[32] M. Mitchell, An Introduction to Genetic Algorithm, the MIT Press, Cambridge, MA, 1996.

[33] M. Mitchell, J. Holland, and S. Forrest, "When Will a Genetic Algorithm Outperform Hill
Climbing?", Advances in Neural Information Processing Systems, J. Cowan, G. Tesauro,
and J. Alspector, eds., San Francisco, CA, 1994, pp. 51-58.

[34] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco, "An Exact Algorithm for the
Resource Constrained Project Scheduling Problem Based on a New Mathematical
Formulation", Management Science, vol. 44, 1998, pp. 714-729.

[35] V. Plekhanova, "On Project Management Scheduling where Human Resource is a Critical
Variable", Proc. 6th European Workshop on Software Process Technology (EWSPT-6), in
Lecture Notes in Computer Science series, Springer-Verlag, London, UK, 1998, pp.
116-121.

[36] T. Potok, M. Vouk, A. Rindos, "Productivity Analysis of Object-oriented Software
Developed in a Commercial Environment", Software Practice and Experience, vol. 29, no.
1, 1999, pp. 833-847.

[37] E. Ramat, G. Venturini, C. Lente, M. Slimane, "Solving the Multiple Resource
Constrained Project Scheduling Problem with Hybrid Genetic Algorithm", Proc. 7th Int'l
Conj. on Genetic Algorithms, San Mateo, CA, 1997, pp. 489-496.

[38] L.B.S. Raccoon, "A Learning Curve Primer for Software Engineers", Software Engineering
Notes, vol. 21, no. 1, ACM SIGSOFT, Jan 1996, pp. 77-86.

[39] E. Roberts, "A Simple Model of R&D Project Dynamics", Managerial Application of
System Dynamics, E. Roberts, ed., MIT Press, Cambridge, MA, 1981.

[40] l.R. Roman and M.R. Carrieira, "Dynamic Estimation Model for the Early Stages of a
Software Project", Workshop on Software Process Simulation Modeling(ProSim '00),
2000;http://www.prosim.pdx.edu/prosim2000/paper /ProSimEAl 7.pdf (Date retrieved:
June 2004).

[41] G. Rudolph, "Convergence analysis of canonical genetic algorithms", IEEE trans. Neural
Networks, vol.5, no.1, 1994, pp.86-101.

[42] H. Sackman, W.J. Erikson, E.E. Grant, "Exploratory Experimental Studies Comparing
Online and Offiine Programming Performance", Communications of the ACM, vol. 11, no.
1, Jan. 1968, pp. 3-11.

70

[43] Standish group, "Extreme Chaos", survey report, 2001;
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf (Date
retrieved: Sept 2004).

[44] J. Sterman, Business Dynamics: Systems Thinking and Modeling For a Complex World,
Irwin/McGraw-Hill, Boston, MA, 2000.

[45] C. Stevenson, Software Engineering Productivity - A practical guide, Chapman & Hall
Computing, 1995.

[46] J. Suzuki, "A Markov Chain Analysis on Simple Genetic Algorithms", IEEE trans
Systems, Man and Cybernetics, vol. 25, no. 4, 1995, pp. 650-659.

[47] Vensim Software Tool, Ventana Systems, Inc., 1996-2004; http://www.vensim.com/ (Date
retrieved: June 2004).

[48] M. Wall, "A Genetic Algorithm for Resource-Constrained Scheduling", doctoral
dissertation, Massachusetts Institute of Technology, 1996.

[49] S.W. Wilson, "GA-easy does not imply steepest-ascent optimizable", Proc. 4th Int'l Conj.
Genetic Algorithms, San Diego, CA, 1991, pp. 85-89.

[50] B. Yang, J. Geunes, W.J. O'Brien, "Resource-Constrained Project Scheduling: Past Work
and New Directions", Research Report 2001-6, Dept. of Industrial and Systems
Engineering, Univ. Florida, 2001.

71

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis.

First and foremost, I am indebted to my major professor in my graduate career: Dr. Carl Chang.

I am grateful to him for his guidance, patience, and support throughout this research. He sug

gested me to improve the dynamic models of previous work and guided me to look into the

theoretical basis of GA deeper. I learned many things (research, writing, cooperation skills,

etc.) from Dr.Chang, whose vision and impeccable insights have been and will continue to be

an inspiration to me.

I would also like to thank my committee member, Dr. Tsang Ming Jiang, for his valuable

comments and suggestions such as conducting more experiments in comparison. I appreciate

Dr. Daniel Berleant and Dr. Suraj C. Kothari for their help and serving as my POS members.

I would like to thank other members in our ICSE Lab, Hsin-yi Jiang, Jinchun Xia, Tae

hyung Kim, Dingding Lu, Jialin Le and Xia Wang. Without them, this work would not have

been completed as smoothly and successfully as it has been.

Thanks also goes to Erica Bartsch, Susan Lee, and Curt Siemers for their generous help on

checking my thesis. I appreciate my family group for their kindness and bringing me so much

happy time. Thanks Feihong Wu for his valuable comments on my thesis writing.

Finally, I would also like to thank my family for the support they provided me through my

entire life and in particular, I must acknowledge my mother, Huifen He, who stays with and

takes care of me for more than 2 years in Ames. Thanks to my husband, Xin Wang, without

whose love and support, I would not have finished this thesis.

