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Abstract. We propose a novel type of neural networks for structural control, which

comprises an adaptive input space. This feature is purposefully designed for sequential

input selection during adaptive identi�cation and control of nonlinear systems, which allows

the input space to be organized dynamically, while the excitation is occurring. The neural

network has the main advantages of 1) automating the input selection process for time

series that are not known a priori; 2) adapting the representation to nonstationarities; and

3) using limited observations. The algorithm designed for the adaptive input space assumes

local quasi-stationarity of the time series, and embeds local maps sequentially in a delay

vector using the embedding theorem. The input space of the representation, which in our

case is a wavelet neural network, is subsequently updated. We demonstrate that the neural

net has the potential to signi�cantly improve convergence of a black-box model in adaptive

tracking of a nonlinear system. Its performance is further assessed in a full-scale simulation

of an existing civil structure subjected to nonstationary excitations (wind and earthquakes),

and shows the superiority of the proposed method.
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1. Introduction

An e�ective mitigation strategy for structural systems subjected to natural (e.g., wind

and earthquake loads) and manmade (e.g., blast) hazards is to include semi-active and

active structural control mechanisms. Despite the advancements of this technology, broad

implementation of those control mechanisms for e�ective structural hazard mitigation is

rare [1]. This is due to a lack of acceptability, impeded by the lack of applicability of

control schemes [2, 3, 4]. Realistically, control solutions applied to civil structures need

to rely on low power actuation and robust controllers [5, 6, 7]. To address the control

problem, several semi-active control devices capable of large damping forces using limited

power have been proposed in the literature [8, 9, 10]. On the controller perspective, the

�eld of civil engineering provides numerous challenges which are inherent to the size of the

controlled plant [11, 12, 13]: 1) the dynamics of civil structures contains large parametric

and non-parametric uncertainties; 2) controllers only have access to limited measurements;

3) testing and training of controllers is di�cult due to the unavailability of input-output data

sets; and 4) controllers have an immediate performance requirement upon the occurrence of

natural hazards. The structural control problem is analogous to a child learning his or her

motor functions, trying di�erence balances until stability is attained. Given these control

challenges, a solution is to implement sequential adaptive controllers. These controllers

have the advantage of adapting to parametric and non-parametric uncertainties, and can

be trained while an excitation is occurring, without pre-training. The issue of limited

measurements and immediate performance requirements can be addressed in the controller

design.

Numerous control solutions have been proposed to control uncertain systems, including

robust controllers [14, 15, 9, 16], fuzzy logic [17, 18, 19], and neural networks [20, 21, 22].

Among these solutions, neural networks have notably gained signi�cant popularity due to

their universal approximation capability [23, 24], and are promising self-contained solutions

for sequential adaptive control. There exists several applications of sequential adaptive

neurocontrollers to the �eld of structural control. For instance, Zhou et al. [25] used adaptive

fuzzy control for a nonlinear base isolation system equipped with a magnetorheological (MR)

damper. Lee et al. [26] developed a semi-active neurocontroller for a base-isolation system

controlled with an MR damper, where the neural network was updated using a cost function.

Lee et al. [27] described an adaptive modal neurocontroller for a structure equipped with an

MR damper. Suresh et al. [28] proposed an adaptive mapping scheme that uses Gaussian

radial functions to control base-isolation of nonlinear buildings equipped with an actuator.

La�amme & Connor [29] presented an inverse neurocontroller, which nodes sequentially

adapt to achieve optimal semi-active control, using a sliding controller and adaptive learning

rates. A modi�ed version of the controller [30] includes an enhanced robustness in the

adaptation laws and uses wavelets instead of Gaussian radial functions for a better functional
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localization.

Often, the adaptive controller representations discussed in the literature assume an

hyperspace in which the representation is de�ned, overlooking the input space selection

procedure. Input selection for intelligent controllers is a fundamental design task which

may in�uence computation time, adaptation speed, e�ects of the curse of dimensionality,

understanding of the representation, and model complexity [31, 32, 33, 34]. Some methods

have been proposed for input selection, including the �lter methods, where the input selection

is independent of the black-box model [35], the wrapper methods, where the results from the

black-box model are used to rank and select the inputs [36], and the embedding methods,

where selected inputs are used for adapting the representation [37]. There exist applications

of these methods to neural networks with the speci�c goal of automating the process of

input selection [38, 39, 34, 40, 41]. However, those methods are traditionally applied o�ine,

necessitating pre-training of control algorithms to evaluate the performance of each input

space at attaining a given performance objective.

The embedding method is the foremost applicable input selection technique to sequential

adaptive control. Several popular algorithms for embedding dynamic systems have emerged

from the celebrated Takens embedding theorem [42]. The theorem states that the phase-

space of an autonomous system can be reconstructed topologically using a vector formed with

a number of delayed measurements from a single state. In other words, there exists a set of

inputs from limited observations that can represent the system dynamics. The embedding

theorem has been extended to a general class of nonautonomous systems with deterministic

forcing [43], state-dependent forcing [44], and stochastic forcing [45]. Applications of the

embedding theorem to the �eld of structural engineering are limited; they appear to be

unique to structural health monitoring [46, 47, 48].

Nevertheless, the delay embedding theorem has been applied in many �elds for model

prediction, system identi�cation, and control. More speci�cally, Cao et al. [49] introduced

wavelet neural networks (WNN) with embedded inputs for chaotic time series prediction.

Principe et al. [50] used local nonlinear embedding maps with a self-organizing mapping

neural network, with application to system identi�cation and control. Plagianakos & Tzanaki

[51] used a neural network to predict an earthquake excitation selecting inputs based on the

embedding theorem. Walker et al. [52] utilized the same strategy to design a radial-basis

model for modeling of an electronic circuit with dynamic e�ects. Zolock & Greif [53] used

a neural network a delay vector embedding for inputs to predict wheel/rail responses of

rail vehicles. Remark that all of those applications used the embedding theorem with prior

training, by pre-processing the underlying time series.

This paper proposes a sequential adaptive solution for selecting the input space. This

creates a novel type of neural network for identi�cation and control of unknown systems for

which pre-training is not available. The adaptive neural network is a single-layer wavelet

neural network (WNN), using a self-organizing mapping architecture for its hidden layer [54].
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Similar to the hidden layer, the input layer also has the capacity to add and prune nodes.

The proposed algorithm that selects the input space is termed Self-Organizing Inputs (SOI)

algorithm, and is based on Takens embedding theorem. The SOI algorithm determines,

at each time step, the input variables that capture the essential dynamics of the system,

and uses the information to smoothly adapt the input space. As it will be demonstrated,

the proposed SOI-WNN is promising at identi�cation and control of unknown systems, and

has the substantial bene�ts of 1) automating the input selection process for time series

that are not known a priori; 2) adapting the representation to nonstationarities; and 3)

using limited observations. Examples of applications include uncertain systems evolving in

unknown environments, such as civil structures and control of wind turbine blades. Here,

the SOI-WNN is applied to semi-active control of a civil structure subjected to unknown

and nonstationary excitations (wind and earthquakes).

The paper is organized as follows. Section 2 describes the general controller architecture,

with an emphasis on the WNN that will be utilized with the SOI algorithm. Section 3

presents the novel SOI algorithm, where we discuss the algorithm used for the sequential

selection and organization of the input space, along with its implications on the hidden

layer. Section 4 derives the adaptation rules and shows stability of the control rule. Section

5 discusses selection of the non-adaptive parameters for the proposed neurocontroller to

guide future applications. Section 6 veri�es the SOI-WNN behavior on tracking of a low-

dimensional synthetic example. Section 7 simulates the SOI-WNN on a full-scale structure

equipped with semi-active dampers, and subjected to wind and earthquake excitations.

Section 8 discusses the results and their implications, and concludes the paper.

2. Controller Architecture

The controller representation is constructed using a single-layer feedforward WNN, selected

due to its quick and universal approximation capability [24, 30]. The WNN is used with an

automatic organization of the input space executed by the SOI algorithm, which constitutes

the proposed SOI-WNN controller. The general architecture of the resulting SOI-WNN is

described in this section, derived for nonlinear and nonautonomous controlled system of the

type:

x(k + 1) = fx(x(k), u(k), k)

u(k + 1) = fu(y(k), u(k), k)

y(k) = fy(x(k), u(k), k)

(1)

where x denotes the state, u the input, y the observation, f the nonlinear functions, and k

the discrete time steps.

Figure 1 shows a representation of the controller for speci�c applications to semi-active

structural control. The structure is subjected to an external forcing (excitation) and forces
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Figure 1: Block diagram of the closed-loop control system.

from the control devices. The dynamic states y and the control forces u are fed in the

adaptive SOI-WNN under the input vector ζ to obtain the neurocontrol force un. A sliding

controller modi�es un to account for the large region of force unreachability arising from

the semi-active device, and the resulting force usl is used to determine the voltage v in the

control device, which governs the �nal control force u.

The single-layer feedforward WNN is composed of mexican hat wavelets φ:

φ(ζ) =

(
1− ‖ζ − µ‖

2

σ2

)
exp−

‖ζ−µ‖2

σ2 (2)

where ζ is the input vector, µ and σ are the centers and bandwidths of the functions

respectively, and ‖ · ‖2 is the 2-norm. Figure 2a illustrates the single-layer WNN, where the

input space is fed in h wavelets φ, and the ith neurocontroller output un,i is constructed from

the summation of the weighted nodal magnitudes:

un,i =
h∑
j

γj,iφj(ζ) (3)

Figure 2b shows the representation of the two-dimensional mexican hat wavelet:

y(x, ẋ) = 2

[
1−

(
(x1 − 0.1)2

0.12
+

(x2 − 0.05)2

0.052

)]
exp

−
(

(x1−0.1)2

0.12
+

(x2−0.05)2

0.052

)
(4)

with center µ = [0.1, 0.05], bandwidth σ = [0.1, 0.05], and weight γ = 2. Note that the role

of the SOI algorithm (described in the next section) is to de�nes the size of the input vector

ζ along with its content.

The neural output in (3) is taken as optimal. In an adaptive mechanism, the neuro-

output is an estimated force ûn:

ûn,i =
h∑
j

γ̂j,iφ̂j(ζ) (5)
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(a) (b)

Figure 2: a) Wavelet neural network; and b) mexican hat wavelet with weight γ, center µ,

and bandwidths σ1, σ2, in function of the input space ζ = ζ1, ζ2.

where the hat denotes an estimation. Also, in semi-active control, the control force (5) is

further modi�ed by a sliding controller to account for the large force unreachability of the

control devices. Consider the following force adaptation regions for the sliding controller:

Cd = {|ũi| ≤ αdub | αd ∈ [0, 1], ub, ũ ∈ R}
Ct = {|ũi| ≤ αtub | αt ∈ [0, 1], ub, ũ ∈ R}
C = {|ũi| ≤ ub | ub, ũ ∈ R}

(6)

where C is the bounded set of neuro-outputs, Cd is con�ned within the device reachability,

Ct, is the transition region between Cd and C , such that C ⊃ Ct ⊃ Cd, ub is a bound on the

admissible error ũi:

ũi = usl,i − u (7)

and αd, αt are used-de�ned constants with αd ≤ αt. The control law (its stability is shown

in Section 4) is modi�ed with respect to the adaptation region:

usl,i = (1−mb,i) (un,i − βsat (si/Ψ))−mb,iumaxsat (si/Ψ) (8)

where the term mb,iumaxsat (si/Ψ) is the sliding component used to bring the system back

inside Cd, umax is the maximum force output, sat is the saturation function with the scaling

parameter Ψ for the sliding surface si = PX representing a weighted error of the regulatory
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control problem, P is a user-de�ned vector to be discussed later, X is the state vector, β is

a positive constant, and mb,i takes the value:

mb,i = 0 if ũ ∈ Cd
mb,i = 1/(1 + exp−b1(|ũ|−(αt+αd)ub/2)) if ũ ∈ Ct − Cd
mb,i = 1 if ũ ∈ C − Ct

(9)

where b1 is a positive constant, and mb,i for ũ ∈ Ct − Cd is a sigmoid function. A voltage vi
is selected to reach usl,i:

vi = Vmax if |usl,i| > |ui| and sgn(usl,i) = sgn (ui)

vi = 0 otherwise
(10)

where Vmax is the maximum voltage input, and sgn is the signum (or sign) function:

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(11)

The SOI-WNN is designed to be self-organizing and self-adaptive. Self-organizing refers

to the capacity of the SOI-WNN to organize its internal architecture. Self-adapting refers the

capacity of the SOI-WNN to adapt internal parameters, such as nodal weights, centers, and

bandwidths. The self-organizing and self-adapting features of the SOI-WNN are described

in the next sections.

3. Self-Organizing Feature

The SOI-WNN is designed to self-organize both its input space and its hidden layer. The

self-organization of the input space is executed by the SOI algorithm, which is the central

feature of this paper. The SOI algorithm is thoroughly presented in the upcoming subsection.

The hidden layer is organized following Kohonen self-organizing mapping (SOM) theory [54],

and is summarized in the subsequent subsection.

3.1. Input Space

The proposed SOI algorithm has been designed for sequentially organizing the input space

of the WNN. The algorithm parameterizes the unknown dynamic system using the time

series response of a single observation based on Takens embedding theorem. Subsequently,

the dimension of the input space is adapted smoothly, along with the time lag between

observations, using the assumption that the new inputs represent the essential dynamics

of the unknown system. The objective is to obtain a more e�cient representation for

the dynamic system by selecting, at each time step, the inputs that contain a su�cient

representation of the current system states.
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Takens embedding theorem is applicable to reconstruct the state-space of an autonomous

dynamic system. The theorem states that the phase-space of the dynamic system in a

topological space M can be reconstructed from a vector ν, termed delay vector, of dimension

d, built from the observations y(k) = fy(x(k)) delayed by a time factor τ :

ν(k) = [y(k) y(k − τ) y(k − 2τ) . . . y(k − (d− 1)τ)]

= Φ(x(k))
(12)

where Φ : M → Rd, τ = a∆t, with ∆t being the sampling rate and a is a positive integer.

Figure 3 illustrates the principle. Time series measurements (�gure 3b) of a single state are

taken from an unknown system (�gure 3a). Those measurements are used to reconstruct a

topologically equivalent (di�eomorphic) representation (�gure 3c) using ν. In other words,

a one-to-one map exists between the reconstructed and the unknown systems.

Figure 3: Illustration of Takens embedding theorem. a) Phase-space of the unknown system

to be reconstructed (here a 2-dimensional representation of a Du�ng system y = h(x1, x2, x3);

b) time series measurements y are taken from a single state (y(x1) = x1 of the unknown

system; and c) the unknown system phase-space can be di�eomorphically reconstructed, here

in a 2-dimensional phase-space constructed from y with a time delay τ .

Consider an autonomous form of fx in (1): x(k + 1) = fx(x). The function can be

represented by f̃x:

f̃x = Φ ◦ fx ◦ Φ−1 (13)
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where ◦ denotes function composition. Applying (12) to (13):

f̃x(ν(k)) = Φ ◦ fx ◦ Φ−1(ν(k))

= Φ ◦ fx ◦ Φ−1 (Φ(x(k)))

= Φ ◦ fx(x(k))

= Φ(x(k + 1))

= ν(k + 1)

(14)

demonstrates that the future delay vector ν(k+ 1) can be predicted using the current delay

vector ν(k), or in other words, the future observation y(k+1) of the state x can be predicted

from a topologically equivalent phase-space constructed with Φ(x(k + 1)), given that ν is

formed with an appropriate time delay τ and embedding dimension d. The choice for τ

and d will be discussed later. Remark that the algorithm is not concerned about predicting

observations; (14) is used to show that a delay vector can contain enough information to

predict a dynamic system, or to represent the essential dynamics. Thus, the algorithm takes

the delay vector ν that would parameterize the reconstructed phase-space, and sequentially

adapts the WNN input space ζ(τζ , dζ), smoothly, to reach the required delay vector ν(k),

using:

τζ(k + 1) = τζ(k) + sgn(τ(k + 1)− τζ(k))

dζ(k + 1) = dζ(k) + sgn(d(k + 1)− dζ(k))
(15)

where subscript ζ indicates that the parameters are used for populating the input vector ζ.

Additionally, when dζ is modi�ed (dζ(k + 1) 6= dζ(k)), the modi�ed wavelet bandwidths σj
are adapted smoothly using:

σmod − (σmod − σj)mc,j(k) (16)

where σmod is a vector of large constants, σj is the target bandwidths when a dimension is

added or the bandwidths to be removed when a dimension is decreased, and mc,j(k) takes

the values:

mc,j(k) =
1

1 + exp−c1(k−kmod−c2)
if dζ is increased

mc,j(k) =
exp−c1(k−kmod−c2)

1 + exp−c1(k−kmod−c2)
if dζ is decreased

(17)

where c1, c2 are positive constants, and kmod is the time step at which dζ has been modi�ed.

A dimension is removed from the representation once the bandwidths fall beyond a threshold.

Remark that (15) restrains the changes in the input space parameters to unity, which ensures

robustness of the representation, as y(k − τ) ' y(k − τ ± 1) and new dimensions are added

smoothly using (17).

9



Despite that the theory discussed above applies to autonomous systems, the embedding

theorem has been extended to non-autonomous stationary systems, where it can be shown

that the delay vector needs to also include the system inputs u [45]:

ν(k) = [y(k) y(k − τ) y(k − 2τ) . . . y(k − (d− 1)τ) u(k) u(k − τ) u(k − 2τ)

. . . u(k − (d− 1)τ)]

= Φ(x(k), u(k))

(18)

where Φ : M → R2d.

Here, the dynamic system of interest (1) is nonstationary due to the adaptive control

rule and the nature of the excitation. To cope with the problem of nonstationarity, the state

dynamics fx is taken as a series of maps of dimension n, where each map is assumed to be

quasi-stationary. This assumption of local quasi-stationarity will be veri�ed later. A sliding

window of size n is used, which returns the observations y on the local dynamics at step k:

y(k) = [y(k) y(k − 1) y(k − 2) . . . y(k − (n− 1))] (19)

It follows that the delay vector is allowed to be nonstationary.

The embedding theorem is applicable given that ν is constructed using appropriate

values for τ and d. The SOI algorithm uses conventional techniques for the determination

of these parameters. The time delay τ is computed at each time step using the mutual

information (MI) method based on Shannon's information theory [55], and the embedding

dimension is selected using the false nearest neighbor (FNN) method using the algorithm

presented in [56]. The applications of these methods in discrete time steps are summarized

in what follows.

3.1.1. Mutual Information Test The objective of the MI test is to �nd an appropriate time

delay τ for representing the essential dynamics of a system. Take the 2-dimensional system

from �gure 3 for instance. If one tries to reconstruct the phase space using y(k) and y(k−τ),

a small value for τ will collapse the phase-space to a 45 degree line. Qualitatively, τ needs to

be augmented to unfold the phase-space until enough information from the dynamics can be

extracted. If τ is too high, the phase-space would have unfolded too much, and information

will be lost. Figure 4 illustrates the principle for the unknown system represented in �gure

3. The phase-space unfolds between τ = 0.5 sec and τ = 1.4 sec, and starts folding over

itself at τ = 2 sec.

The MI test is a technique based on Shannon's information theory to quantitatively

select τ . The test measures the average information gained from a new measurement, or

how well can the estimation on the outputs ŷ(k + τ) be computed given the measurements

y(τ). A high probability of estimating ŷ from y signi�es that little new information is
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(a) (b) (c)

Figure 4: Unfolding the state-space in function of τ . a) τ = 0.5 sec; b) τ = 1.4 sec; and c)

τ = 2 sec.

contained in the measurements, or that τ should be increased. Fraser and Swinney [55]

presented the theory for MI test in terms of discrete probabilities:

MI(ŷ,y) = −
n∑
i=1

pŷi log2 pŷi −
n∑
j=1

pyj log2 pyj +
n∑
i=1

n∑
j=1

pŷiyj log2 pŷiyj (20)

where ŷ and y are two sets of n observations. The �rst local minima of the MI test gives the

optimal time delay, while subsequent minima correspond to a system that has exceedingly

unfolded. The computation of (20) is conducted in the SOI algorithm by classifying the last

n observations in a pre-de�ned number of bins MIbin.

3.1.2. False Nearest Neighbor Test The objective of the FNN test is to determine whether

the phase-space of a dynamic system is represented in su�cient dimensions. To determine

if a dimension is acceptable, the distances between Euclidean neighbors are computed in

a given dimension d, and the distances between the same neighbors recomputed in a new

space of dimension d + 1. If a Euclidean distance increases too much, a false neighbor is

detected. Therefore, dimensions are added until the number of false neighbors falls below a

threshold. Note that this technique is di�cult to apply in dynamic systems with forcing, as

there exists numerous crossings in the phase-space; detected false neighbors could actually

be true neighbors [47]. In that case, the threshold for the number of false neighbors is

augmented.

The application of the FNN test [56] consists of computing the nearest rth neighbors in

the phase-space from a point y(m), 1 ≤ m ≤ n, in dimensions d and d+1, giving the distance

matrices Rd(m, r) and Rd+1(m, r) between neighbors y(m) and y(r)(m). False neighbors are

detected if: ∣∣∣∣R2
d+1(m, r)−R2

d(m, r)

R2
d(m, r)

∣∣∣∣ > Rtol (21)
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Figure 5: Block diagram of the proposed SOI-WNN.

where Rtol is a threshold. The authors in [56] also added a second condition to ensure that

nearest neighbors are su�ciently close to each other:

Rd+1(m)

RA

> RA,tol (22)

with:

R2
A =

1

n

n∑
m=1

(y(m)− ȳ)2

where ȳ is the arithmetic average of y, and RA,tol is a threshold. An embedding dimension

d is found when the number of false neighbors fall below the threshold Rnum.

3.1.3. SOI Algorithm The proposed SOI algorithm sequentially:

(i) applies (20) on the last n observations in the search space [τ(k− 1)− 1, τ(k− 1) + 1] to

�nd τ(k).

(ii) applies (21) and (22) using τ(k) on the last n observations in the search space

[d(k − 1)− 1, d(k − 1) + 1] to �nd d(k).

(iii) adapts the input vector ζ(k) using (15).

Figure 5 summarizes the SOI algorithm integrated to the WNN, which is the proposed

SOI-WNN. In the �gure, the SOI algorithm selects values of τ and d using the MI and FNN

methods on the last n state and input observations from the sliding window. In the case where

the excitation is not observable, the delay vector may be constructed by overembedding the

state observation y [57]. A delay vector ν is constructed and becomes the objective input

space. The actual input space ζ of the WNN is adapted smoothly based on ν, and a new

forcing u is computed.
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3.2. Hidden Layer

The hidden layer is organized sequentially following Kohonen's SOM theory [54]. A new

node is added if:

‖ζ − µ‖2 ≥ dmin and

s ≥ sall
(23)

where dmin and sall are the thresholds for the minimum nodal distance to the closest node

and minimum allowable error, respectively. Once a node is added, the parameters of the

new node j are set to:

γj = s, |γj| ≤ ub

µj = ζ

σj = λ‖ζ − µ‖2 ≤ 2

dj logσmod
log

(
|ub|Ct
λ

) (24)

where λ is the network resolution. The inequalities represent bounds on the parameters to

prevent the addition of nodes with unrealistic functions [58], where dj is the dimension of

the jth wavelet.

Lastly, nodes can be pruned from the network. A node is pruned if its relative weight

with respect to the largest nodal weight falls bellow the threshold γmin for a given number

of consecutive time steps γnum.

4. Self-Adapting Feature

The SOI-WNN parameters from (5) are continuously adapted toward optimality. Given the

nonstationary excitation and the integration of semi-active devices in the closed-loop system,

the adaptive control rule is not expected to converge. This section derives the parameter

adaptation rules. For clarity, the derivation is specialized for a scalar force output (a single

control device). The adaptation rules can be easily extended to several control devices using

matrix notation. Nevertheless, it might be useful in applications to consider decentralized

controllers, for which the scalar notation applies. The derivation shown in this section is

adapted from [30].

Consider an estimated neurocontrol force ûn:

ûn = γ̂T φ̂ (25)

with the control rule (8) rewritten here in a scalar version and in terms of (25):

usl = (1−mb)
(
ûn − β · sat

( s

Ψ

))
−mbumaxsat

( s

Ψ

)
(26)

Using the control rule (8) in the state-space representation:
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Ẋ = AX +Buu+Bgag +Bww (27)

with:

A =

[
O I

−M−1K −M−1C

]
X =

[
x

ẋ

]

Bu =

[
O

−M−1F

]
Bg =

[
O

−E

]
Bw =

[
O

−M−1H

]
where A ∈ R2dof×2dof is the state-space matrix, B is the control force incidence vector with

subscripts u, g, and w referring to actuation, ground excitation, and wind inputs respectively,

with Bu ∈ R2dof×a, Bg ∈ R2dof×1, Bw ∈ R2dof×2dof , u ∈ Ra×1 is the control force input,

ag is the scalar ground excitation input, and w ∈ R2dof×1 is the wind excitation input,

X ∈ R2dof×1 is the state vector, x ∈ Rdof×1 is the displacement vector, ẋ ∈ Rdof×1 is the

velocity vector, dof is the number of degrees-of-freedom, a is the number of control devices

(a = 1 in this section), I ∈ Rdof×dof is the identity matrix, 0 are compatible zero matrices,

M ∈ Rdof×dof ,C ∈ Rdof×dof , andK ∈ Rdof×dof are the mass, damping, and sti�ness matrices

respectively, F ∈ Rdof×a is the control forces location matrix, E ∈ Rdof×1 is a vector of ones,

H ∈ Rdof×dof is the wind excitations location matrix, and using the control force error (7)

rearranged in terms of estimated forces:

u = usl − ũ+ ε (28)

where ε is the force estimation error, the state error ė between the actual states X and

desired states Xd is written:

ė = Ẋ − Ẋd

= Ae+Bu(usl − ũ+ ε− u)

= Ae+Bu

(
(1−mb)

(
ûn − β · sat

( s

Ψ

))
−mbumaxsat

( s

Ψ

)
− ũ + ε− γTφ

) (29)

Take the following Lyapunov candidate comprising the sliding surface [59]:

V =
1

2
[s2 + γ̃TΓ−1γ γ̃ + φ̃

T
Γ−1φ φ̃] (30)

where Γ−1γ and Γ−1φ are positive de�nite diagonal matrices representing learning parameters,

and the tilde denotes the error between the estimated and real values (γ̃ = γ̂−γ; φ̃ = φ̂−φ).

It follows that (30) is positive de�nite and contains all time varying parameters. Neglecting
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the higher order term and specializing for the case where s > Ψ, the time derivative of (30)

is:

V̇ = sPAe+ sPB(γ̂T φ̃+ γ̃T φ̂−mbγ̂
T φ̂) + γ̃TΓ−1γ ˙̂γ + φ̃

T
Γ−1φ

˙̂
φ+ γ̃TΓ−1γ γ̃

+ φ̃
T
Γ−1φ φ̃+ sPBε− sPBũ− (1−mb)|s|PBk − sPBmbumaxsat

( s

Φ

)
= eTP TPAe+ φ̃

T
(

(1−mb)γ̂
TBTP T s+ Γ−1φ

˙̂
φ
)

+ γ̃T
(

(1−mb)φ̂
T
BTP T s+ Γ−1γ ˙̂γ

)
− sPB(ũ− ε)− (1−mb)|s|PBk

+ ξ̃
T
Γ̇
−1
ξ ξ̃ − φ̃

T
Γ−1φ φ̇− sPBmbumaxsat

( s

Φ

)
(31)

with:

ξ̃ =

[
γ̃

φ̃

]
,Γξ =

[
Γγ 0

0 Γφ

]
The tilde denotes the error between the optimal and estimated parameters, and ξ

represents aggregation of parameters γ and φ. By choosing the following adaptation laws:

˙̂γ = −(1−mc)(Γγφ̂)BTP T s

˙̂
φ = −(1−mc)(Γφγ̂)BTP T s

Γ̇
−1

= −s2I

(32)

where I is an identity matrix to populate Γ̇
−1
, equation (31) becomes:

V̇ = eTP TPAe− sPB(ũ− ε)− (1−mb)|s|PBk − ξ̃
T

(s2I)ξ̃ − φ̃TΓ−1φ φ̇

−sPBmbusl
(33)

Choosing k = ub, where ub is a known bound (also positive) on ũ, (33) can be rewritten

as:

V̇ = eTP TPAe− sPB(ũ− ε)− (1−mb)|s|PBk − ξ̃
T

(s2I)ξ̃ − φ̃TΓ−1φ φ̇

−sPBmbumaxsat
( s

Φ

) (34)

Using (9), (34) can be rewritten:

V̇ = eTP TPAe− sPB(ũ− ε)− |s|PBub − ξ̃
T

(s2I)ξ̃ − φ̃TΓ−1φ φ̇ if ũ ∈ Cd
V̇ = eTP TPAe− sPB(ũ− ε)− |s|PBumax − ξ̃

T
(s2I)ξ̃ − φ̃TΓ−1φ φ̇ if ũ ∈ C − Ct

(35)

The �rst term in (35) is negative semi-de�nite as the state-space matrix A is inherently

stable for civil structures. The third term is bigger than the second term for ũ ∈ Cd and is as
negative as possible for ũ ∈ C − Ct, and the fourth term is negative de�nite. The last term

in (35) is not necessarily negative-de�nite, and represents the trade-o� in using adaptive
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wavelets. Assuming that this last term is smaller than the addition of the �rst four terms

(in absolute value), the error will converge to zero [60].

One can note that the adaptation rules (32) are in function of the unknown matrix B.

However, it can be assumed that the magnitude of B can be roughly evaluated and that

its signs (directions of applied forces) are known. Thus, BTP T can be incorporated in the

learning rate, and the adaptation rules can be written in discrete form:

α̂j(t+ 1) = α̂j(t)−∆(1−mb)Γαj φ̂jsgn(BTP T)s

µ̂j,k(t+ 1) = µ̂j,k(t)−∆(1−mb)Γµj,k α̂j

·

(
1

σ4
j

exp

−‖ν−µj‖
2

σ2
j

(
4σ2

j (νk − µj,k)− 2‖ν − µj‖2(νk − µk)
))

sgn(BTP T)s

σ̂j(t+ 1) = σ̂j(t)−∆(1−mb)Γσj α̂j

·

(
1

σ5
j

exp

−|ν−µj‖
2

σ2
j (4σ2

j‖ν − µj‖2 − 2‖ν − µj‖4)

)
sgn(BTP T)s

(36)

where subscript k is the dimension of the neuron. (36) is the discrete adaptation law used

for the simulations.

5. Parameters Selection

Parameter selection is a fundamental task in designing neural networks. In structural control,

it is not uncommon that non-adaptive parameters are tuned until performance satisfaction

is attained. To remain consistent with the proposed application of the controller, one cannot

rely on this parameter tuning opportunity. The aim of this section is to provide a discussion

on the choice of parameters for the neural network, with the objective to give guidance in

the controller design based on limited knowledge of a structure.

Table 1 lists the SOI-WNN main non-adaptive parameters selected for the full-scale

simulation presented in Section 7, divided between network objects (inputs, hidden layer,

outputs, and adaptation rules). The list is non-exhaustive, but the parameters left out have

either little consequences on the performance of the SOI-WNN, or are typically easy to

determine. Examples include initial parameters for new nodes and sigmoid functions. To

discuss the selection of parameters listed in Table 1, a sensitivity analysis [7] was conducted

by subjecting the model of the full-scale structure described in Section 7 to a harmonic

excitation tuned at the fundamental frequency. Simulations were ran over 120 sec at a

sampling rate of 50 Hz. This section summarizes the main �ndings.

5.1. Inputs

The user-de�ned parameters related to the input space are associated with the SOI algorithm.

The number of bins were selected to be high enough to give good precision in �nding τζ ,
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Table 1: List of non-adaptive parameters for 1350 kN MFDs.

NN object parameter class parameter value assigned

inputs

lag (τ) # bins (MI test) 20

dimension (d)
Rtol 15

RA,tol 2

window size n 100

dynamic states y,u y(ẍi),ui

hidden layer

min. nodal distance1 η 0.025

min. error1 ‖Px‖min 0.025

network resolution λ 100‖Px‖min

pruning
% weight 2%

# �ags 50

outputs SMC

C 1/6 ub
Ct 50% ub kN

ub 2umax

adaptation

BP error
P (wind) parabolic

P (earthquake) constant

adaptation weights1
Γµ 0.001

Γσ 0.1

Γγ 1000
1for inputs normalized to a magnitude of 10−1

but low enough to prevent computation time from dramatically increasing. Value around

20 showed to perform well. The distance measures for the FNN tests, Rtol and RA,tol, are

more di�cult to evaluate, due to the numerous crossings that exist in the phase-space. The

thresholds were arbitrarily assigned using high values to account for these crossings. The

selection of the window size n can have dramatic consequences on the network performance

and computation time. The size n = 100 performed well for all of the simulations. The

sensitivity of the window size n will be discussed and demonstrated in Section 6.

The dynamic states selected for constructing the ith delay vector are the accelerations

and the force inputs at �oor i. The multivariate observations are scaled to a

comparable magnitude (10−1) to prevent some states from having higher importance in

the representation. Scaling multivariate representations to comparable magnitudes lead to

numerically more stable representations with improved convergence [61].
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5.2. Hidden Layer

In the hidden layer, the minimum nodal distance η, minimum errors e = ‖Px‖min, and

network resolution λ have a direct consequence on the network size and performance.

The sensitivity analysis has been performed for the normalized inputs, and the SOI-WNN

performance showed to be stable around the selected values, with a limited impact on

the network density (size). Pruning parameters did not show to in�uence the network

performance. Those parameters are used to give the controller the capacity to forget control

rules, useful for nonstationary systems and impulsive excitations.

5.3. Outputs

The outputs of the SOI-WNN are the required forces sent to the control devices. The main

non-adaptive parameters are related to the sliding controller and consist of the adaptation

regions C and Ct. For the simulation, C has been designed to allow an error on ũ of 1/6 ub,

and Ct to allow an error on ũ of 1/2 ub, with ub equal to twice the damper maximum force,

since the force ranges over ±umax.

The sensitivity analyzes performed on C and Ct show that low values for C increase

performance, but at the cost of adaptation speed, as expected. The value 1/6 ub appears to

be an appropriate trade-o�. The mitigation performance rapidly increases with increasing

Ct to stabilize after 1/2 ub.

5.4. Adaptation

Decreasing parabolic weights (with increasing height) for the sliding surface P are

recommended in the case of wind excitations, due to the decreasing control reachability

of semi-active control devices. In the case of earthquake excitations, constant sliding

surface weights are preferred over parabolic, due to the increasing importance of mitigating

interstorey displacements. The matrix P is divided between displacement weights (subscript

disp) and velocity weights (subscript vel):

∆P = [∆dispP disp|∆velP vel] (37)

where ∆ is a scalar weight on each sub-matrix, and values within the sub-matrices are taken

as Pi,j ∈ [−1, 1] at the ith device location for local measurements (positive value for the

top �oor and of opposite sign for the bottom �oor to create an interstorey state), and zero

otherwise. Consequently, ∆ becomes control weights, and can be user-de�ned depending

on the mitigation goals. For the wind simulation, ∆disp = 10 and ∆vel = 1, and for the

earthquake simulations, ∆disp = ∆vel = 1000. Remark that the earthquake control weights

are orders of magnitude higher than the weights utilized for wind mitigation. This enforces

a quick adaptation of the controller by overcompensating learning rates, as the adaptation

parameters Γ are directly coupled to the choice of ∆. During the learning stage, control laws
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learned during impulse excitations will create nodes in a sparse region of the representation.

These nodes are quickly pruned by the adaptive laws, allowing the controller to forget what

could be unrealistic control rules. For the learning rates, sensitivity analyzes showed that

values Γu = 0.001,Γσ = 0.1,Γγ = 1000 led to good performance with respect to mitigation

and network resolution.

6. Synthetic Example

The proposed SOI-WNN is simulated for tracking the sinusoidal reference signal y∗(t) =

0.02 sin t from the following nonlinear equation:

y(x, ẋ, u) =

[
1−

(
(x− 0.1)2

0.12
+

(ẋ− 0.05)2

0.052

)]
exp

−
(

(x−0.1)2

0.12
+

(ẋ−0.05)2

0.052

)
+u (38)

where the excitation input is x = 0.2 sin 5t, and u is the control input. We have

selected this low-dimensional arbitrary example, a particle traveling on a wavelet, because

of the stationarity of the excitation and reference signals, which isolates the source of

nonstationarity in the adaptive representation. In addition, the stationarity of both signals

allows us to pre-process their time series using the embedding theorems in order to determine

the �xed inputs that would appropriately represent their dynamics. Lastly, by using a

periodic excitation, it is possible to let the neurocontroller converge to a given control rule.

Note that the simulations in the next section uses nonstationary excitations.

A delay is induced in the actuator using the following dynamics: u̇act = −η(uact − un),

where η is a voltage delay taken as η = 20 s−1 to be consistent with the actuator dynamics

taken in [62]. A sliding window size of n = 100 time steps is selected. The choice of n will be

discussed later in this section. The SOI algorithm is compared against three cases of �xed

neural inputs built using:

• τ = 31 and d = 2, which are parameters obtained from pre-processing the time series of

the excitation signal, without forcing (u = 0).

• τ = 8 and d = 2, which are parameters obtained from pre-processing the time series of

the reference signal.

• τ = 31 and d = 8, which are the optimal �xed input parameters obtained within the

search space τ = [1, 40] and d = [1, 10] while simulating the system with forcing.

Note that values obtained for τ are coincidentally the same for the �rst and third case,

and that a dimension of 2 was expected for the �rst and sec case due to the low complexity

of both signals. The large embedding dimension for the third scenario can be explained by

a more complex phase-space that counts several crossings once the system (38) includes the

forcing u.
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Figure 6 shows the time series response of the SOI algorithm versus the optimal �xed

parameters. The SOI algorithm (blue straight line) results in a quicker convergence and

better tracking results than the optimal �xed-input WNN (black dot-dash line). This is due

to the dynamics of the control rule changing with time, for which adapting the input space

results in a more e�cient representation, as hypothesized. Table 2 shows the RMS error

for the four input strategies over a tracking time of 20 sec, along with the average network

size (number of hidden nodes). Results from the overall time series show that the SOI gives

good performance relative to the �xed input cases, and preserved a lean network size, with

a substantial di�erence compared with the optimal �xed-input strategy τ = 31, d = 8. The

RMS error taken after 5 sec indicates that its convergence is signi�cantly better. Using the

same synthetic example, the next subsections investigate the e�ect of the sliding window

size, evaluate the assumption of quasi-stationarity of local, attempt to sequentially identify

�xed inputs, and study the performance of the SOI algorithm under noise.
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Figure 6: Time series responses. The SOI-WNN (blue straight line) converges more rapidly

than the optimal �xed-input WNN (black dot-dash line).

Table 2: RMS error of the controller for various input strategies (×10−5)

τ = 31 τ = 8 τ = 31

SOI d = 2 d = 2 d = 8

over 20 sec 18.9 21.3 23.4 21.1

after 5 sec 3.07 13.2 16.4 12.1

average network size 23.8 25.3 18.6 55.9

6.1. Sliding Window Size

Figure 7 shows the RMS error after 5 sec for various values of the sliding window size n, along

with the average computation speed per time step. The performance of the algorithm remains
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approximately constant for values greater than 45 time steps, with a slight degradation for

larger window sizes. Computation speed is a�ected negatively for small window sizes, because

the controller fails at e�ectively converging. Once the window size is greater than 45, the

computation time augments linearly with increasing n. Note that the computation speed

remains under the sampling rate of 100 Hz for 45 ≤ n ≤ 125. Simulations were conducted

in MATLAB with an Intel i7-2600 3.4 GHz CPU.
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Figure 7: RMS error of the SOI algorithm after 5 sec of simulation, along with the average

computation speed per time step for various sliding window sizes

.

6.2. Quasi-Stationarity of Local Maps

To verify the main assumption of quasi-stationarity of local maps, a time-series stationarity

index is constructed by determining the change in the control rule within a map. If the

change is minimal, then we can write (1) in a stationary way using u(k+ 1) ≈ fu(y(k), u(k)).

The observations at step k are taken, and the control force using the control rule at step

k − n computed. The stationarity index is built comparing u(k − n) and u(k), and counts

the number of local maps that remained under a given percentage change threshold. Figure

8 graphs the stationarity index as a function of the percentage of change allowed between

u(k−n) and u(k), over various time ranges. Results show that 43% of the maps have a change

less than 5% over the entire simulation (last 20 sec), which increases to 88% for the last 1

sec. If a change of 10% is allowed, 64% of maps show to be quasi-stationary over the entire

simulation, and 91% over the last 5 sec. Results show that the level of quasi-stationarity

increases signi�cantly with the convergence of the black-box model. It is estimated that

levels of stationary maps above 85% under 10% allowable change satisfy quasi-stationarity,

which is met for the last 10 sec of the simulation.
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Figure 8: Stationarity index of local maps for the last 1, 5, 10, 15, and 20 sec of the simulation.

6.3. Identi�cation of Fixed Inputs

In order to identify �xed (static) inputs for the representation, the SOI algorithm is switched

o� once the error metric stays below a threshold for a pre-de�ned number of steps. For this

task, the capacity of the network to prune nodes has been relaxed, as we expect needing

a denser network to construct an accurate representation of the global dynamics. Figure 9

shows the evolution of the input parameters over time, depicting the self-organizing nature

of the input space. The inputs become static after 20 sec, identifying the parameters τ = 12

and d = 2. This compares well with the pre-processed values of the controlled time-series

aforementioned to be τ = 8 and d = 2, as the phase-space of the sinusoidal target only

marginally unfolds between both time delays. The value for d is signi�cantly lower than for

the optimal �xed inputs strategy (d = 8), because the SOI algorithm computes the optimal

d based only on the last n observations.
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Figure 9: Identi�cation of �xed τ and d for a global representation.
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Figure 10: RMS error with respect to noise, after 5 sec (x10−5).

6.4. Noise

Here, various levels of Gaussian noise have been induced in the observations to study the

performance under noise. Figure 10 shows the RMS error for noise ranging from 0% to 25%.

The SOI-WNN is capable to signi�cantly outperform any optimal �xed-input strategies for

noise under 5%. However, above that level, the relative performance of the algorithm reduces

quickly, with a tendency to perform similarly to the �xed-input strategies.

7. Full-Scale Simulation

The proposed control algorithm is simulated on a tower located in downtown Boston,

Massachusetts, and its performance evaluated for wind and earthquake excitations. This

section describes the simulation and shows the results.

7.1. Simulated Structure

The simulated structure is a 39-story o�ce tower located in downtown Boston,

Massachussets. It was built in 1990 with a viscous damping system to mitigate excessive

wind vibrations caused by a nearby tower. The design strategy and performance evaluation

for the viscous damping system is documented in [63]. The tower comprises two viscous

dampers in each direction (X- and Y- direction) every other �oor, between �oor 5 and 33,

for a total of 60 viscous dampers. Figure 11 shows an elevation view of the structure in

both directions along with the location of the dampers. Table 3 lists the viscous damper

properties. Table 4 compares the fundamental periods of the models with the values reported

in [63] from the results of a wind tunnel test.
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                         (a)                                                               (b)

Figure 11: Elevation view of the simulated structure : a) X-direction; and b) Y-direction.

Table 3: Con�guration of Viscous Dampers (2 dampers per direction per �oor)

capacity (kN) number of dampers

X-direction Y-direction X-direction Y-direction

below 26th �oor 1350 90 22 22

above 26th �oor 900 45 8 8

Table 4: Fundamental periods and comparison with values reported in [63] from a wind

tunnel testing.

period

mode model reported in [63] di�erence

shape direction (sec) (sec) (%)

1 X 5.28 5.26 +0.38

2 Y 5.00 5.00 0.00

3 θ 3.63 3.65 -0.55

4 X 2.16 1.92 -12.5

5 Y 2.07 1.82 -13.7

6 θ 2.01 1.71 -17.5
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7.2. Semi-Active Control Device

In the simulations, the viscous dampers are replaced by variable friction dampers of similar

capacity, termed Modi�ed Frictions Devices (MFD) [10]. The semi-active device consists of

a drum brake mechanism installed in parallel with a viscous and a sti�ness element. The

drum brake is equipped with a linear actuator, which force is substantially ampli�ed by the

brake self-energizing mechanism. The device can theoretically output a damping force range

0-1350 using a few linear actuators operating on batteries. The MFD was designed to mimic

the dynamics of an MR damper. Figure 12 exhibits the idealized dynamics of a 200 kN MFD

over various levels of voltage.

               (a)                             (b)

Figure 12: dynamics of the MFD under a 7.62 mm amplitude sinusoidal excitation of 0.5

Hz: a) force-displacement; and b) force-velocity [10].

7.3. Performance Criteria

The performance of the SOI-WNN is assessed relative to a benchmark linear quadratic

regulator (LQR) designed with full parametric knowledge and using full state feedback. In

addition, the SOI-WNN is compared against a WNN controller with �xed-inputs (FI-WNN)

that have been optimized a priori, and against the passive-on (ON) case where the device is

ideally assumed to operate on maximum voltage. Remark that the LQR controller is designed

assuming linearity in the control force. Such design is common in structural control, as the

dynamic of civil structures is inherently stable; semi-active systems do not have the capacity

to destabilize the controlled plant.

Under the SOI-WNN and FI-WNN, each of the devices is decentrally controlled by a

single WNN using local measurements. The only available inputs to the SOI-WNN and
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FI-WNN are the acceleration, interstorey displacement, and interstorey velocity of the �oor

at which the controlled device is installed, in addition to the damping force of the device.

The SOI uses the time series of the acceleration to determine the delay vector ν and to

subsequently adapt the input space ζ using data from the acceleration and force states. The

interstorey displacements and velocities are used for the sliding controller to compute the

sliding surface s.

Four control objectives are utilized to evaluate the performance of the controller: 1) the

maximum acceleration of the 37th �oor (J1), which corresponds to the highest occupied �oor

and corresponds with the main control objective in [63]; 2) the maximum �oor acceleration

(J2); 3) the maximum interstorey displacement (J3); and the average improvement on voltage

consumption over the LQR strategy (J4).

7.4. Results - Wind Excitation

To assess the performance of the SOI-WNN at wind mitigation, a nonstationary wind

excitation has been selected to match the acceleration results from a wind tunnel test as

described in [63]. The performance of the SOI-WNN is compared against 3 �xed-input

strategies optimized over the search space τ = [1, 40] and d = [1, 10]:

• τ = 16, d = 2, the optimized performance for J1.

• τ = 4, d = 7, the optimized performance for J2.

• τ = 40, d = 2, the optimized performance for J3.

The index J4 is excluded from the list above because minimizing the index would trivially

result in no voltage input. Table 5 shows the relative wind mitigation performance of each

controllers with respect to the LQR control strategy. The SOI-WNN outperformed the LQR

controller under performance indices J1 and J2, and performed similarly for inter-storey

displacement mitigation (J3) consuming approximatively 6% more voltage on average (J4).

In addition, the SOI-WNN outperforms all of the pre-optimized �xed-input strategies using

substantially less voltage (J4). The passive-on case was not e�ective at mitigating wind

acceleration.

7.5. Results - Earthquake Excitations

To assess the performance at impulse-type excitations, 30 di�erent earthquakes of di�erent

types and epicentral distances have been simulated. They are listed in Table 6. The

excitations have been scaled to 0.12 g to be consistent with the Massachusetts building

code.

Table 7 shows the relative earthquake mitigation performance of each controllers with

respect to the LQR control strategy. For ease of comparison, the results have been averaged

by epicentral distance as it is generally correlated with the level of impulse.
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Table 5: Relative wind mitigation performance (J1-J3) and average improvement on voltage

consumption over the LQR strategy (J4)

�xed-input (FI) strategies

τ = 16 τ = 4 τ = 40

SOI d = 2 d = 7 d = 2 ON

J1 4.23 -1.41 -12.5 -3.80 -12.8

J2 8.52 0.92 2.36 -0.13 -21.3

J3 0.13 -11.7 -12.0 -5.27 -10.9

J4 -5.95 -32.6 -21.9 -34.0 -138

Here, the SOI-WNN performed similarly to the LQR controller in most cases at

acceleration mitigation (J1 and J2) for epicentral distances ranging 0 to 70 km (excluding at-

fault). In the case of inter-storey mitigation (J3), the SOI-WNN generally performed better

than the LQR in the ranges of 10-50 km. When compared with the FI-WNN, performances

are slightly better but comparable for the SOI-WNN. The passive-on case exhibits good

mitigation performance for far-�eld earthquakes in the rage of 50-300 km away from the

epicenter.

8. Discussion & Conclusion

A novel neurocontroller has been presented for semi-active control of civil structures. The

controller is an adaptive wavelet neural network, for which the novel feature is a self-adapting

input space using the SOI algorithm. The SOI-WNN can sequentially update its input space

based on limited and local measurements, while an excitation is occurring, which leads to a

more e�ective representation due to the system nonstationarities.

The synthetic example from Section 6 demonstrated that the SOI algorithm was a

powerful feature. For the example, the SOI algorithm resulted in being the best input option

to achieve a quick rate of convergence compared against optimized �xed input strategies.

This high performance was attained with a good level of stability and acceptable computation

time with respect to the sliding window size, and the SOI-WNN was substantially better

than any �xed-input strategies over the provided search space for noise levels between 0-5%.

Based on the great performance on the low-dimensional synthetic example, the SOI-WNN

has been simulated on a full-scale structure equipped with (nonlinear) semi-active control

devices, subjected to wind and earthquake excitations.

Results from the wind excitation (Table 5) showed that the SOI-WNN was capable of

achieving, at least, the same level of performance as the LQR controller, if not better. It also

outperformed all of the �xed-input strategies optimized over the provided search space, using

less power. Such high performance is similar to the synthetic example, and may be explained
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Table 6: List of the 30 earthquakes simulated

Angle Distance Mag.

Location Year (deg) (km) (RS)

Big Bear City, CA 2003 90 49.3 4.92

Chi-Chi, Taiwan 1999 0 59 7.62

Coalinga, CA 1983 0 30.3 6.36

Coyote Lake, CA 1979 230 10.2 5.74

Denali, Alaska 2002 90 263.6 7.9

Dinar, Turkey 1995 90 at fault 6.4

Duzce, Turkey 1999 90 8 7.14

Erzican, Turkey 1992 90 at fault 6.69

Friuli, Italy 1976 0 49.1 6.5

Gilroy, CA 2002 50 108.1 4.9

Imperial Valley, CA 1940 180 13 7

Irpinia, Italy 1980 0 22.5 6.9

Kern County, CA 1952 111 56 7.36

Kobe, Japan 1995 90 7.1 6.9

Kocaeli, Turkey 1999 0 68.1 7.51

Loma Prieta, CA 1989 170 72.1 6.93

Mammoth Lakes, CA 1980 0 14.3 5.69

Manjil, Iran 1990 66 50 7.37

Michoacan, Mexico 1985 180 250 8.1

Nahanni, Canada 1985 240 at fault 6.76

New Zealand 1987 40 68.7 6.6

Norcia, Italy 1979 90 31.4 5.9

Northridge, CA 1994 90 17.3 6.69

Parkeld, CA 1966 85 9.6 6.19

San Fernando, CA 1971 164 at fault 6.61

San Salvador, El Savador 1986 180 3.7 5.8

San Francisco, CA 1957 10 9.6 5.28

Spitak, Armenia 1988 0 24 6.77

Tabas, Iran 1978 0 1.8 7.35

Victoria, Mexico 1980 45 13.8 6.33

by the low-dimensional response of the structure when subjected to wind excitations, despite

of their nonstationary nature.

From such high performance on controlling low dimensional dynamic systems, it

could have been hypothesized that the performance of the SOI-WNN would be di�erent
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Table 7: Relative earthquake mitigation performance (J1-J3) and average improvement on

voltage consumption over the LQR strategy (J4)

Distance J1 J2 J3 J4

(km) SOI FI ON SOI FI ON SOI FI ON SOI FI ON

at fault -5.97 -4.14 -5.20 -4.29 -2.86 2.37 -8.73 -10.8 -17.4 13.2 6.63 -62.0

]0-10[ -1.30 -2.09 -1.17 -0.11 -0.52 -3.21 -0.20 -0.56 -7.88 5.01 2.57 -85.8

[10-20[ -0.51 -1.69 -1.36 0.71 0.24 0.95 9.84 10.12 -22.4 -6.78 -12.8 -86.4

[20-50[ -0.30 -0.15 -10.5 -2.51 -3.97 -10.5 1.90 1.03 -45.9 8.82 5.56 -88.5

[50-70[ -0.55 -1.07 1.31 -2.95 -3.10 1.84 -10.4 -10.9 -0.49 15.8 11.2 -82.7

[70-300[ -4.84 -4.06 0.43 -1.90 -4.39 3.72 -8.00 -9.77 2.68 20.0 19.9 -62.5

for impulse-type excitations. Simulating the controller to earthquake excitations is an

ultimate performance test, because the controller must successfully mitigate an impulse-type

excitation without pre-training. In other words, the controller is required to directly learn

a control rule lying in a sparse hyperspace. Simulation results (Table 7) show that the SOI-

WNN performed similarly to an LQR controller at acceleration and displacement reduction

(J1-J3), except for earthquakes at fault (very high impulse) or far-�eld, but mitigation from

the SOI-WNN was typically attained using less voltage (J4). Comparisons against �xed

input strategies showed similar vibration reduction capabilities (J1-J3), but here again the

SOI-WNN consumed less voltage (J4). Thus, the SOI-WNN was more e�ective at vibration

mitigation than the FI-WNN.

It follows that the proposed controller is a promising method for semi-active structural

control. It has substantial bene�ts compared against other adaptive control approaches: 1)

the input selection process is automated for time series that are not known a priori; 2) the

representation is adapted to nonstationarities; and 3) it uses limited observations.
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