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Magnetic field dependence of the maximum magnetic entropy change
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The maximum isothermal entropy change in a magnetic refrigerant with a second-order phase transition is
shown to depend on applied magnetic field H as follows: (−�S)max = A(H + H0)2/3 – AH

2/3
0 + BH4/3. Here A

and B are intrinsic parameters of the cooling material and H0 is an extrinsic parameter determined by the purity
and homogeneity of the sample. This theoretical prediction is confirmed by measurements on variously pure
poly- and single-crystalline samples of Gd. The Curie point of pure Gd is found to be 295(1) K; however, the
maximum of −�SM is attained at a lower temperature: The higher the quality of the sample, the closer the peak
position to 295 K. Further tests are reported for a series of melt-spun LaFe13−xSix alloys. These are found to
follow the same field dependence, despite the fact that for certain compositions (x < 1.8) they experience a phase
transition of first, rather than second, order.
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Near-room-temperature magnetic refrigeration is develop-
ing at a rapid pace, the prospects of a breakthrough into
the domain of commercial use looking more realistic than
ever.1,2 Regrettably, designing magnetic cooling devices is
still a slow and largely intuitive process, because few reliable
mathematical expressions for the magnetocaloric effect (MCE)
are known. Significant advances in this field are due to
Romanov and Silin,3 as well as Amaral et al.,4 who used
Landau’s theory of second-order phase transitions. Another
important contribution was made by Franco et al.5 within
the framework of the theory of critical phenomena. The
aim of this paper is to advance matters further in this
direction.

One of the key parameters for the evaluation of MCE is
the magnetic entropy change, �SM. In ferromagnets, −�SM,
regarded as a function of temperature T, peaks near the Curie
point TC. The height of the peak, (−�S)max, grows with
magnetic field H according to some complicated law. This
law is the subject of our work.

When dealing with the matter it is essential to distinguish
between the two paradigmatic cases in room-temperature
refrigeration, namely, between refrigerants experiencing a
first-order phase transition and those which undergo a phase
transition of second order. In the former case the growth of
(−�S)max takes place in weak to moderate magnetic fields
and is generally accompanied by hysteresis. Thereupon the
field dependence of (−�S)max should saturate; that is, for a
stronger field the peak in −�SM(T) should be broader but
hardly any higher. In the materials undergoing a second-order
transition (−�S)max was predicted to grow as H2/3 (Ref. 6).

In reality, the situation is yet more complicated. In re-
frigerants with first-order transitions (−�S)max continues to
grow in strong magnetic fields, albeit rather more slowly. No
quantitative description of (−�S)max vs H has been found so
far. Sometimes no hysteresis is observed in the temperature-
and field-induced transitions: For instance, the hysteresis
is almost absent in melt-spun and porous LaFe13−xSix

(x < 1.6), but the transitions in these materials remain clearly
of first order.7,8

With respect to materials with second-order transitions,
it turns out that no simple proportionality relation between
(−�S)max and H2/3 holds. Rather, besides a term in H2/3,
(−�S)max contains an extra term independent of H (Ref. 9).
This fact has been explained recently10 on the basis of Landau’s
theory of second-order phase transitions11 applied to spatially
inhomogeneous ferromagnets. Earlier, Romanov and Silin
used this approach to study the adiabatic temperature change.3

The idea to apply the same technique to the magnetic entropy
change was put forward by Amaral et al.4 As a result, the
following expression was obtained:10

(−�S)max = α

(
H

4b

)2/3

− α2

18b
�TC, (1)

where �TC is the width of the distribution of transition
temperatures around the mean Curie point and α and b are
positive quantities independent of T or H that enter in the
standard Landau expansion,

� = �0 + α(T − TC)M2 + bM4 − MH, (2)

where � is the thermodynamic potential and �0 is a term of
zeroth order in M, M being magnetization. It is rather obvious
that the linear relation between (−�S)max and H2/3 [Eq. (1)]
only holds over in a limited range of magnetic fields. It is
bound to fail for small H, because it does not comply with an
obvious requirement that (−�S)max must vanish in the limit
H → 0. Equally unrealistic is the prediction of an unlimited
growth as H → ∞. In fact, the magnetic entropy change has
an upper bound, which in the case of localized magnets equals
k ln(2J + 1) per magnetic atom.12 Estimates for Gd metal
show that the trend to saturation for (−�S)max vs H2/3 should
be clearly visible at μ0H ∼ 10 T (Ref. 13).

So we set out to find an expression valid for a broader range
of magnetic fields. We begin with the case H → 0 and the
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difference T – TC remaining finite. (This is to be distinguished
from the case investigated in Ref. 10: H finite, T → TC).
Minimization of the potential (2) with respect to M yields

M3 = α

2b
(TC − T )M + H

4b
. (3)

Now the solution to Eq. (3), M(H,T), is presented as an
expansion in powers of H carried to linear terms:

M =
{√

α
2b

(TC − T ) + H
4α(TC−T ) , T < TC,

H
2α(T −TC) , T > TC.

(4)

Taking the square of this expression and substituting it for
M2

fin in Eq. (6) of Ref. 10 results in

−�SM =
{√

α
8b

H√
TC−T

, T < TC,

0, T > TC,
(5)

where only terms in H are taken into account. Now Eq. (5)
should be averaged over the distribution of local Curie
points in the inhomogeneous sample. The exact form of the
distribution—not known a priori—does not appear essential
for the final result. Following Ref. 10, we make the simplest
choice by adopting a rectangular distribution of width �TC

centered about Tcntr. The result of the averaging is as follows:

〈−�SM〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
α
2b

H
�TC

(√
Tcntr + 1

2�TC − T −
√

Tcntr − 1
2�TC − T

)
, 0 < T < Tcntr − 1

2�TC,

√
α
2b

H
�TC

√
Tcntr + 1

2�TC − T , Tcntr − 1
2�TC < T < Tcntr + 1

2�TC,

0, T > Tcntr + 1
2�TC.

(6)

According to this expression, 〈−�SM〉 is a growing function of
temperature in the first interval, it decreases with temperature
in the second interval (whose width equals �TC), and is zero
at higher temperatures. Therefore, the maximum of 〈−�SM〉
is reached at T = Tcntr − 1

2�TC and is equal to

(−�S)max =
√

α

2b�TC
H. (7)

This result, valid for H→ 0, can be readily combined with
Eq. (1) in a single expression,

(−�S)max = A(H + H0)2/3 − AH
2/3
0 , (8)

where

A = α

(4b)2/3
and H0 = 21/2(α�TC)3/2

27b1/2
. (9)

Equation (8) becomes Eq. (7) if H � H0 and Eq. (1) if H 	
H0. Therefore, Eq. (8) is suitable for fitting experimental data
down to H = 0.

According to Eq. (1), the maximum entropy change grows
without limit in a strong magnetic field, ∼H2/3, which is not
possible. The growth of (−�S)max should slow down as a
sign of approaching saturation. Full saturation is, of course,
intractable within Landau’s theory, but a trend to saturation
can be allowed for by including a term in M6 in the expansion
(2). If the applied field is not too strong the arising implicit
expression [Eq. (32) of Ref. 13] can be solved by iterations,

(−�S)max = AH 2/3 + BH 4/3 + · · · . (10)

Combining this with Eq. (8), we finally get

(−�S)max = A(H + H0)2/3 − AH
2/3
0 + BH 4/3. (11)

Thus, the applicability of the simple linear relation (1) between
(−�S)max and H2/3 is limited to a finite range of magnetic
fields, kB�TC � μ0μBH � kBTC. In small fields, as the left
inequality fails, the (−�S)max vs H2/3 dependence acquires an
upward curvature. In very strong fields, the right inequality

becomes invalid, one then observes a downward curvature
in the (−�S)max vs H2/3 plots, which is a sign of incipient
saturation. In the latter case the last term in Eq. (11) may not
be neglected.

By definition, the parameters A and B are intrinsic material
constants, both being combinations of Landau’s coefficients.
As against that, H0 is an extrinsic parameter proportional to
the distribution width �TC and, thus, represents the material’s
homogeneity and/or purity. To obtain an estimate of these
parameters, the field dependence of the maximum entropy
change of a Gd single crystal and two polycrystalline Gd
samples of different purity were studied. The gadolinium
(99.8 at.% pure) used to grow the single crystal was prepared
by the Materials Preparation Center14 at the Ames Laboratory.
Single-crystal preparation was done using the recrystallization
method.15 The crystal was oriented using back reflection Laue
and a 3.5-mm-diameter rod spark cut from it. Both ends of
the rod were ground with SiC paper on a lathe to round over
the edges and produce a spheroid shape with dimensions 3.5
and 4.5 mm. A small flat was left on the ends to identify this
crystallographic direction. The other two orthogonal low-index
crystallographic directions were found and their locations were
marked. Polycrystalline cube samples with the edge length of
about 2.5 mm were prepared from commercially available
Gd metal (MaTecK GmbH) with a purity of 99.99 wt%
(sample A) and 99.9 wt% (sample B) with respect to other
rare-earth elements. The interstitial contents were determined
at the Ames Laboratory and are as follows: Sample A contains
11 at. ppm (1 wt. ppm) of N and 2930 at. ppm (298 wt.
pmm) of O; sample B contains 4780 at. ppm (365 wt. ppm)
of C in addition to 2920 at. ppm (260 wt. ppm) nitrogen and
15 000 at. ppm (1530 wt. ppm) oxygen. As one can see, sample
A at best is only 99.7 at.% pure, while sample B is less than
97.7 at.% pure. According to Rietveld refinement of x-ray
data (Co Kα radiation, not shown), the two polycrystalline Gd
samples are single phase (hcp). The lattice constants of Gd A
[a = 3.6373(3) Å and c = 5.7841(5) Å] are slightly lower than
that of Gd B [a = 3.6410(9) Å and c = 5.789(2) Å]. The trend
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FIG. 1. (Color online) Magnetic field dependence of the max-
imum negative magnetic entropy change for single- and polycrys-
talline Gd metal of various purities. The lines are fits to Eq. (11) with
the parameters listed in Table I.

is consistent with the lattice parameters of high-purity Ames
Laboratory Gd metal (99.8 at.% pure) [a = 3.6336 Å and c =
5.7810 Å].15

The magnetic entropy change has been calculated from
the isothermal magnetization curves measured in a Supercon-
ducting Quantum Interference Device (SQUID) magnetometer
in fields up to 5 T and a Physical Property Measurement
System (PPMS) extraction magnetometer up to 14 T using
the Maxwell relation. Magnetization measurements on the
Gd single crystal were performed along the [0001] direction.
Magnetization curves were corrected with an appropriate
demagnetization factor N. Neglecting the demagnetization
field leads to erroneous results: The height of �SM curves
is reduced and the peak temperature is shifted to higher
temperatures (not shown). Furthermore, after the appropriate
demagnetization correction the slopes of both sides of the �SM

peak differ by a factor close to 2, as expected in accordance
with Ref. 10, whereas without the correction the shape of the
peak is almost symmetrical.

Figure 1 shows the maximum entropy change (−�S)max

vs H2/3 dependence for the single-crystal and polycrystalline
Gd. The parameters A and B obtained from the fit of the plots
using Eq. (11) are virtually the same for the polycrystalline
Gd samples of different purities and for the single crystal

FIG. 2. (Color online) Magnetic field dependence of the
maximum negative magnetic entropy change for melt-spun (a)
LaFe13−xSix and (b) LaFe11.6Si1.4H1.6 and LaFe11Co0.8Si1.2. The lines
are fits to Eq. (11) with the parameters listed in Table I.

(Table I). As expected, the lowest H0 is observed for the
Gd single crystal, μ0H0 = 0.011(1) T. As the purity of
Gd is reduced from 99.7% to 97.7%, μ0H0 increases from
0.05(1) to 0.14(4) T, respectively. In order to estimate the
Curie temperature distribution width �TC, the left slope of the
�SM(T) peak, α2/6b, and the intercept from the linear fit of
the data of Fig. 1 to Eq. (1), α2�TC/18b, were determined
for each sample. The procedure yields �TC ≈ 0.3 K for the
Gd single crystal. For the polycrystalline samples A and B the
width of the distribution increases to �TC ≈ 4 K and �TC ≈
11 K, respectively.

Now knowing �TC, one can find the Curie point of Gd from
the position of the �SM(T) peak, Tmax. It will be recalled that
Tmax = TC − γ�TC, where γ is a numerical factor depending
on the shape of the distribution (for a rectangular distribution
γ = 1/6).10 From our results, γ ≈ 1/3 and Tmax ≈ 294 K and
291 K for 99.7% and 97.7% Gd, respectively. Thus, TC of pure
Gd is estimated to be approximately 295 K.

Independently, the Curie temperature of the Gd single
crystal was determined by the thermodynamic method16,17 and
found to be 295(1) K. This is in excellent agreement with the
TC value for a high-purity single crystal reported in Ref. 18,
presenting a comparative study of the adiabatic temperature
change �Tad for several Gd samples. Thus, depending on the
purity and homogeneity, the position of the �SM(T) peak, Tmax,

TABLE I. Parameters A, B, and H0 obtained from a fit of data in Figs. 1 and 2 using Eq. (11) and the quality of the fits χ 2, the �SM(T)
peak position Tmax, and the distribution width �TC in single-crystal Gd (SC), in polycrystalline Gd with a purity of 99.7 at.% (A) and
97.7 at.% (B), and in LaFe13−xSix-type alloys.

−A (m−1K−1 T2/3) B (m−1K−1 T4/3) μ0H0 (T) χ 2 Tmax (K) �TC (K)

Gd (SC) 35(1) 1.7(2) 0.011(1) 0.03 295 0.3
Gd (A) 34(1) 1.2(2) 0.05(1) 0.04 294 4
Gd (B) 32(2) 1.1(2) 0.14(4) 0.02 291 11

LaFe11.0Si2.0 43(2) 2.5(1) 1.1(4) 0.07 245
LaFe11.4Si1.6 48(1) 3.9(3) 0.20(1) 0.22 211
LaFe11.6Si1.4 118(4) 17.2(7) 0.33(5) 0.75 208

LaFe11.6Si1.4H1.6 124(13) 16(2) 1.2(4) 0.70 325
LaFe11Co0.8Si1.2 42.2(5) 2.14(5) 0.80(5) 0.15 280
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of polycrystalline Gd may lie as far as 4 K below the Curie
temperature of a single crystal.

The applicability of Eq. (11) is further demonstrated on
a series of melt-spun LaFe13−xSix alloys (preparation details
can be found elsewhere7) with x varying from 1.4 to 2.0. The
main phase in the melt-spun LaFe13−xSix is cubic La(Fe,Si)13

(space group Fm-3c) with a minor amount of α-Fe (15 wt%
in LaFe11.0Si2.0, 13 wt% in LaFe11.4Si1.6, and 5 wt% in
LaFe11.6Si1.4). In this family of magnetic refrigerant materials,
reducing Si content brings about a change in the magnetic
phase transition from second to first order.19 Importantly,
the first-order transition in the melt-spun7 and porous alloys
with low Si concentration is not accompanied by hysteresis,
which is ascribed to the removal of internal constraints
hindering the volume expansion.8 The absence of hysteresis is
an essential practical advantage of LaFe13−xSix : Hysteresis
would have given rise to irreversible heat release during
magnetic cycling—to the detriment of refrigeration. To us, the
lack of hysteresis is important from a different prospective,
it enables us to treat all LaFe13−xSix on the same footing, as
if the phase transition were of second order in all of them.
Figure 2(a) displays the (−�S)max vs H2/3 dependence for
three samples of LaFe13−xSix , with x = 1.4, 1.6, and 2.0. A
first-order transition is manifest in the compounds with x = 1.4
and 1.6, as a strong bending of the curve is observed already
in moderate fields. Yet Eq. (11) copes with all three data sets
presented in Fig. 2(a). In all three cases the fits agree with the
data. Figure 2(b) presents data for two further materials related
to LaFe13−xSix : a hydride LaFe11.6Si1.4H1.6 and a cosubstituted
alloy LaFe11Co0.8Si1.2. The phase transition in the former is
distinctly of first order, whereas in the latter it is thought to be

of second order. In both cases the data are fitted to Eq. (11)
successfully.

This does not mean, of course, that Eq. (11) may be expected
to apply to magnets with first-order transitions in general.
Simply, it becomes inaccurate gradually, as x in LaFe13−xSix
decreases beyond the tricritical point; see the square deviations
in Table I. (In contrast, the order of the phase transition changes
abruptly at the tricritical point.) The limitation does not detract
from the usefulness of Eq. (11). Among materials with first-
order transitions, only those close to a tricritical point (and
therefore devoid of hysteresis) have a chance of finding use in
magnetic cooling devices.

In summary, we have established the field dependence
of the maximum magnetic entropy change (−�S)max in
materials with second-order magnetic phase transitions.
The dependence of (−�S)max on H2/3 is linear in the field
range of kB�TC � μ0μBH � kBTC. The (−�S)max vs H2/3

dependence acquires an upward curvature in small fields,
whereas a downward curvature is observed on approaching
saturation. Regarding magnetic refrigerants with first-order
phase transitions, at least some of them, for example,
LaFe11.6Si1.4 and LaFe11.6Si1.4H1.6, are found to follow
the same field dependence, but the matter deserves a more
thorough study. The established field dependence provides a
tool for the evaluation of magnetic refrigerant performance
in the entire field range, which is particularly important in
calculations of cooling devices.
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