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Abstract

Identifying functionally-cohesive gene communities from large data sets of expression data for individual genes
is a key approach to understanding the molecular components of biological processes. Here, we compare the
accuracy of twelve different approaches to infer gene co-expression networks and then find gene communities
within the networks. Among the approaches used are ones involving a recently developed clustering method that
identifies communities by maximizing Generalized Modularity Density (Qg). RNA-Seq data from 691 samples
of S. cerevisiae (yeast) are analyzed. These data have been obtained from organisms grown under diverse
environmental and developmental conditions and encompass varied mutant lines. To assess the accuracy of
different approaches, we introduce a statistical measure, the Average Adjusted Rand Index (AARI) score,
which compares their results to Gene Ontology (GO) term associations. Inferring gene networks using the
Context Likelihood of Relatedness (CLR) and subsequently clustering by maximizing Generalized Modularity
Density is found to identify the most significant functional communities. Also, to quantify the extent to which
the identified communities are biologically relevant, a GO term enrichment analysis is performed. The results
indicate that many of the communities found by maximizing Generalized Modularity Density are enriched
in genes with known biological functions. Furthermore, some of the communities contain genes of unknown
function, enabling inference of potentially novel functional interactions involving these genes. Furthermore,
some genes are species-specific orphan genes; assignment of these orphan genes to communities enriched in a
particular biological process provides a method to infer the biological process in which they are involved. We
focus on a few communities that are highly significantly enriched in a particular biological process, and develop
experimentally-testable predictions about the orphan genes in these communities.

Author summary

Finding gene communities that are of biological relevance from expression profiles of individual genes is a crit-
ical approach to understanding biological processes and their molecular components. Various computational
methods have been developed to infer underlying metabolic and regulatory networks and to identify functional
communities of genes. Which network inference and clustering methods works best to achieve this goal has
largely remained an open question. Here, using genome-wide transcriptomic data for S. cerevisiae, we system-
atically compare the effectiveness of several commonly used network inference and clustering methods. We rank
these methods by comparing the clusters obtained by different methods to Gene Ontology (GO) terms. We
find that inferring gene networks using a method known as the Context Likelihood of Relatedness (CLR) and
subsequently clustering by maximizing Generalized Modularity Density identifies the most significant functional
communities.

Introduction

Despite the recent surge in abundance of genome-wide biological data and computational capacity, functional
annotation of genes still remains a challenging task [1, 2, 3]. Gene metabolic and regulatory networks contain
information about interactions among particular genes. Gene communities, also referred to as “clusters” or,
when derived from very large diverse data, “regulons”, are groups of coexpressed genes. A community of genes
that displays similar expression patterns across a very wide range of experimental conditions is likely to contain
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co-regulated genes and genes participating in the same biological process; thus identifying gene communities is
extremely important to understand their functions [5, 6, 7, 4, 8, 9]. Network-based analyses of gene expression
have led to hypotheses on the roles of genes of completely unknown function, which were later experimentally-
verified [15, 10, 11, 12, 13, 14].

The first step to finding communities of related genes from gene expression data is to infer a network from
the data in which the genes are nodes, and the strengths of the links between pairs of genes are imputed
based on some measure of the co-expression of genes. A variety of approaches have been used to infer gene
networks based on correlations, such as Pearson’s or Spearman’s correlations, of RNA abundance [15, 16,
17, 4]. Pearson’s and Spearman’s Correlations distinguish positive and negative gene interactions, providing
important biological information. However, these measures miss non-linear relationships among gene expression.
Information-theoretic methods that use Mutual Information (MI) between gene pairs as a similarity measure
have been used to capture these non-linear variations, which can help uncover strong pairwise relationships
between genes that are not detected by linear measures [18]. Context Likelihood of Relatedness (CLR), an
algorithm for unsupervised network inference [19, 20], uses the distribution of the MI of two genes combined
with the value of the MI [18] between these two genes to compute a Relatedness [19] score (see Materials and
Methods).

Once a network is created from expression data, a network clustering algorithm can be used to find struc-
ture within the network by grouping strongly-connected genes together into communities. Several methods
for finding optimal clustering have been developed, each with a somewhat different underlying notion about
communities [21, 4, 22]. Even in cases where a community is mathematically well-defined, most commonly-used
algorithms to find the optimal clustering are stochastic, i.e., each individual realization of that algorithm finds
a slightly different network partition. Here we consider four promising clustering methods: Markov Cluster Al-
gorithm (MCL) [22], and three modularity-based approaches [23, 29, 30]. Each of these methods of partitioning
has its pros and cons.

MCL [22] is a widely used method for finding communities in a network; it identifies these communities by
a steady-state distribution of simulated random flows in the network. MCL is scalable and fast. However, it
requires the specification of external parameters (inflation, expansion). A proper choice of these parameters
is important for the algorithm to converge. There is no definite way to select these parameters to ensure
convergence. Other limitations of MCL include unknown convergence time and its unsuitability for application
to networks with large diameters [22], where the diameter of a network is the longest of all shortest paths
between pairs of nodes. MCL has provided a powerful approach to infer the biological function of novel genes,
which have later been experimentally confirmed [4, 31, 12].

Modularity (Q) [23] is a measure used to quantify community structure in a network. For a given network
partition into communities, Modularity is defined as the difference between the fraction of links inside commu-
nities and the expected fraction if links were distributed randomly according to a null model. The partition
that has the maximum Modularity value corresponds to “the” community structure. However, finding the
exact maximum Modularity partition is a computationally challenging, NP-complete problem [24]. Thus, for
large networks, such as those analyzed in this paper, it is necessary to use computational algorithms that find
approximate solutions that complete in a time that scales as a polynomial in network size. Fortunately, fast,
“polynomial-time” algorithms have been developed that can reliably find partitions with Modularity values close
to the maximum in networks of up to tens of thousands of nodes [25, 26, 27]. Despite its usefulness, detecting
communities by maximizing Modularity has limitations. In particular, small communities in some large net-
works can not be found with the approach. This issue is known as the “resolution limit problem” [28]. Recently,
two new measures, Excess Modularity Density (Qx) [29] and Generalized Modularity Density (Qg) [30], have
been proposed to overcome this issue. Identifying the community structure of a network with partitions that
these modularity density measures significantly mitigates the resolution limit problem. Also, the fast algorithms
cited above for finding partitions that maximize Modularity can be adapted to maximize these two modularity
density measures.

The goal of this paper is to compare the accuracy of commonly used and the newly developed network infer-
ence and clustering methods in detecting gene communities that represent specific biological functions. As a case
study, we apply the methods to analyze expression data from a model species, Saccharomyces cerevisiae (yeast).
RNA abundance profiles generated from raw RNA-Seq data representing the expression of 6692 annotated genes
across 691 runs from 44 studies are analyzed, including samples representing a wide range of developmental
conditions, strains, growth media, and times [32]. These data are used to construct gene co-expression networks
using (a) Pearson’s pairwise correlations, (b) mutual information (MI), and (c) CLR approaches. Then, we use
four community detection methods to find communities of interest within the different inferred networks: (i)
Markov Clustering (MCL), (ii) maximizing Modularity, (iii) maximizing Excess Modularity Density, and (iv)
maximizing Generalized Modularity Density. The clusters found by each of these methods are compared to the
S. cerevisiae Gene Ontology (GO) leaf terms, i.e. GO terms having no children [33]. The statistical overrepre-
sentation of genes in the clusters is determined using the hypergeomteric test. By comparing gene communities
identified by each method with the GO term assigned to each gene, we find that communities found by maxi-
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mizing Generalized Modularity Density are the most accurate, regardless of which network inference method is
used.

Materials and Methods

RNA-Seq processing pipeline

The R package SRAmetadb was used to query the NCBI-SRA (National Center for Biotechnology Information-
Sequence Read Archive) database for publicly available S. cerevisiae RNA-Seq runs using the filters: taxon ID
= 4932, platform = illumina, and layout = paired. Results with library strategy miRNA-seq, ncRNA-seq, or
RIP-seq were filtered out, leaving 691 RNA-Seq samples [32] (see Supplemental Material for full metadata). The
SRA toolkit was used to download the raw RNA-seq data from the NCBI-SRA database. We used kallisto [34]
to quantify the expression of all Saccharomyces Genome Database (SGD) annotated genes (6,692; annota-
tion version R64-1-1) downloaded from ftp://ftp.ensembl.org/pub/release-90/fasta/saccharomyces_

cerevisiae/cdna/Saccharomyces_cerevisiae.R64-1-1.cdna.all.fa.gz. To correct for library size effects,
we used the Trimmed Mean of M values (TMM) normalization from the edgeR (R package) [35] to normal-
ize data between samples followed by Transcripts Per Million (TPM) normalization within each sample. The
code/scripts are available at https://bioconductor.org/packages/release/bioc/html/edgeR.html.

Network inference methods

Network inference involves finding the similarity or relation between the expression profiles for each pair of
genes and assigning a score that acts as the link weight between that pair of genes. We used three different
measures to allocate weights between genes.
(a) Pearson’s correlation R(X,Y ) between genes X and Y was calculated using the expression profiles of X and
Y .

R(X,Y ) =
cov(X,Y )

σXσY
. (1)

Here cov(X,Y ) is the covariance between the expression profiles of gene X and Y, and σX and σY are their
corresponding standard deviations.
(b) Mutual information (MI) between genes X and Y defined as follows

MI(X,Y ) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
, (2)

where p(xi, yj) is the joint probability that gene X has expression level xi and gene Y has expression level
yj . p(xi) and p(yj) denote the marginal probabilities of gene X having expression level xi and gene Y having
expression level yj respectively. These probabilities are computed from the original expression profiles using a
B-spline smoothing and discretization method. Here, we used the open uniform knot vector with the 10 bins
and a spline order of 3 [18]. The mutual information itself is used to define a weighted network where links are
weighted by MI(X,Y ).
(c) Context Likelihood of Relatedness (CLR) which calculates relatedness f(X,Y ) by comparing this mutual
information between gene pair X and Y, to the marginal distributions of mutual information for X and Y
respectively, which provides a third measure to construct the network. In other words, MI(X,Y ) is compared
to the distribution of MI between gene X(or Y ) and all other genes {MI(X,Y );∀Y (orX)}. A Z-score is then
calculated using:

Zk =
MI(X,Y )− µk

σk
(3)

where µk and σk are the mean and standard deviation of the corresponding distribution. The subscript k
refers to either gene X or gene Y . Negative Z-scores are set to be zero. Then the final relatedness value is
defined as:

f(X,Y ) =
√
Z2
X + Z2

Y (4)

These inferred scores (R, MI, f) can be used as the link weight to connect the corresponding gene pairs.
This, however, gives rise to a very dense network with a large number of low-weight links. All three measures
can independently be used to infer the gene regulatory network. The observed non-trivial dependencies between
these measures for S. cerevisiae are plotted in Supplementary Fig. S1.

It is often helpful to discard weaker (low-weight) links by choosing a reasonable threshold for discard; weights
for the remaining links can be maintained or set to 1 thus creating a binary network [20]. As a final step, we
refined each of the three networks by discarding weaker links from the network. The thresholds for different
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measures are chosen around a value at which the network begins to fall apart and also keeping in mind that
the largest connected component of the network after the threshold is applied is of similar size for the network
obtained by different measures (Supplementary Fig. S2).

Community detection methods

We use four different methods for finding communities in the network. The first method, Markov Cluster
Algorithm (MCL), computes communities by using steady-state probabilities of a random walk process on the
network [22]. Since the communities in a network are characterized by regions of high link density, typically a
random walker spends more time within the same community and visits across communities are less frequent.
We choose the inflation and expansion parameters as 2. This leads to a steady-state probability distribution
which is used to assign communities.

The other three methods we use are based on the detection of modular structures in a network by finding the
partition that maximizes a particular measure. Calculating this partition is a computationally challenging task
and thus requires efficient computational algorithms [25, 20, 26, 27]. We use the popular modularity measure
Q [23], which is defined as

Q =
∑
c∈C

[
mc

m
−
(

2mc + ec
2m

)2
]

(5)

Here mc is sum of link weights in community c, ec is the weight sum of external links of c, and m is the
total weight of all links in the network.

A notable drawback of modularity is the “resolution limit” (RL) problem [28], which prevents it from
detecting small communities in a large network. To enable small clusters to be inferred we have partitioned
by maximizing the Excess Modularity Density (Qx) [29] measure, which largely mitigates the RL problem of
modularity. The measure, Qx, for a weighted network can be written as

Qx =
∑
c∈C

[
mc

m
p′c −

(
2mc + ec

2m

)2

p′ 2c

]
. (6)

Here mc is sum of link weights in community c, ec is the weight sum of external links of c, and m is the
total weight of all links in the network. p′c = 2mc

nc(nc−1) −
2m

N(N−1) measures the excess density of links inside c,

where nc is the number of nodes in c and N is the network size.
Finally, we partition by maximizinng Generalized Modularity Density Qg [30], which was recently developed

to eliminate the RL problem, allowing detection of communities at any desired resolution. Thus, the measure
Qg is particularly desirable for studying hierarchical community structure in biological networks, and identifying
functional gene communities that are hidden in other modularity approaches because of their small size. The
Generalized Modularity Density measure is defined as

Qg =
∑
c∈C

[
mc

m
−
(

2mc + ec
2m

)2
]
pχc . (7)

where χ is an exponent that controls the granularity of the clusters, and pc = 2mc

nc(nc−1) is the link density of

community c. In the limit χ = 0, this metric reduces to modularity Q and larger values of χ result in more
fine-grained clusters. For this research, we choose χ = 1 such that the link density factor is linear.

We used a variant of the algorithm prescribed in [26] to detect communities by maximizing Qx [29].
Maximization of Q and Qg was performed by the Reduced Network Extremal Ensemble Learning (RenEEL)
scheme [27, 30].

Average Adjusted Rand Index (AARI)

Several methods exist for comparing network partitions. Adjusted Rand Index (ARI) [36], a variant of Rand
Index [37] that has been adjusted for random chance, is a popular method for comparing the similarity of two
non-overlapping partitions of a network. In contrast, Omega Index [38] compares two overlapping partitions
but is less useful in comparing a partition with overlapping communities with one in which all communities
are non-overlapping. Therefore, we selected ARI to compare the relative efficacy of various gene expression
network partitions to the “ground truth” GO term associations [33]. In our case, the gene communities that
we detect are non-overlapping (each gene has only one community membership). In contrast, the grouping of
genes given by GO term associations is an overlapping partition because a gene can have multiple GO term
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associations. We define a measure to compare such partitions. First, we turn the overlapping GO term partition
into a multiple non-overlapping partitions by considering each node belonging to one GO term at a time. For
a small example network with overlapping partition, the procedure is visualized in Fig. 1. We then compare
the original non-overlapping partition to every extracted non-overlapping GO term partition one by one and
compute the ARI. Ideally, we would like to average over all of the individual ARIs to compute an average ARI.

This is computationally infeasible because of the huge number of non-overlapping partitions that can be
extracted from a partition even with moderate overlap. The exact number of possible non-overlapping partitions
is given by

∏
i αi, where for every gene i, αi represents the number of GO terms that it is associated with. To

meet this challenge, we randomly select a finite but sufficiently large ensemble of NS non-overlapping GO term
partitions from the original overlapping GO term partition. We then use the average ARI over this ensemble
to compare the non-overlapping gene communities with GO term associations.

AARI ≡ 〈ARI〉 =

NS∑
j=1

ARIj
NS

(8)

where NS is the number of partitions in the ensemble and ARIj is the ARI with respect to a given sample.
For a large enough NS , the distribution of ARI converges and according to the Central Limit Theorem [39],
the AARI over the ensemble 〈ARI〉 provides a good approximation for average overall implicit partitions. A
summary of these steps is shown in Fig. 2.

GO term enrichment

For the assessment of Gene Ontology term enrichment in communities, we considered leaf GO terms only [33].
Leaf GO terms are not further subdivided, and thus they correspond to the most specific biological functions.
The enrichment analysis uses the hypergeometric test that computes the p-value for overrepresentation. The
p-values are adjusted by applying the Benjamini-Hochberg correction [41] for multiple testing. The p-value for
the hypergeometric test is given by

p =

min(m,n)∑
ki=k

(
m
ki

)(
N−m
n−ki

)(
N
n

) .

Here, n is the number of genes in the community, m is the number of genes in the GO term, k is the number
of genes common between the community and the GO term, and N is the total number of genes. We used the
open source tool Ontologizer [40] for this purpose.

Results

Network inference

We use three different inference methods: Pearson correlation (R), Mutual Information (MI), and Relatedness
(f), to construct weighted networks from the gene expression data. Each network consists of weighted links
given by the specific measure R, MI, or f . Threshold values are chosen to create a similar-sized largest
connected network for each inference method: 0.7 for Pearson correlation network, 0.26 for Mutual Information
network, and 3.0 for Relatedness network (red dashed lines in Supplementary Fig. S2). The Weights below the
threshold are set to 0 and the weights above the thresholds are retained except when applying MCL. For MCL,
we construct binary networks, where these weights are set to 1 above the threshold and 0 below the threshold.

Gene communities

We used four community detection methods to detect community structure in each network. These methods
are MCL, and community detection by Q, Qx, and Qg. Each network inference approach combined with
a different community detection method results in a different partition of genes into communities, i.e., four
different community detection methods and three different networks, yielding twelve sets of communities.

To determine which combination of network inference method and community detection method is more
relevant biologically, we compare our results to the Gene Ontology terms. Specifically, we compare all twelve
partitions to the structure of GO terms using the AARI (Fig. 3 (a)). First, we observe that all community
detection methods show improved performance when applied to Relatedness network constructed by the CLR
method. Other network inference methods showed similar and relatively low performance. Second, we find that
the results from the Relatedness network combined with Generalized Modularity Density (denoted by Qg(f))
shows a better match (higher AARI) with the GO terms than other methods (although closely followed by
Qx(f)). We also show the overall distribution of ARI when using the Relatedness network in Fig 3(b) to show
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Figure 1: Extracting non-overlapping partitions from an overlapping partition. A simple example
of a network consisting of 8 nodes (labeled 1 through 8). The three communities, represented by the colored
blobs, are labeled as C1, C2, C3. The initial overlapping partition (center) of this example network, in which
node 3 and node 6 each belong to two communities, is used to construct four non-overlapping partitions by
allowing each node to be a member of only one community. Each of the four possible extracted non-overlapping
partitions (periphery) is indicated by an arrow.

that Qg consistently outperforms Q,Qx and MCL. See Supplementary Material for a complete list of genes and
their community membership as assigned by Qg applied to the Relatedness network.

GO-term enrichment

The comparison of four clustering methods on networks inferred using three inference methods revealed that
the best community inference was obtained by using Generalized Modularity Density Qg on the Relatedness
network. Further, we focus on communities of S. cerevisiae obtained by this method.

Table 1 shows the ten communities with the most significant (smallest p-values) GO-term enrichment.
Communities were obtained by applying metric Qg to the Relatedness network. Table 2 shows the top ten
matches of the same enrichment analysis for communities that contain orphan genes. Orphan genes are genes
encoding species-specific proteins. They are present across eukaryotics and prokaryotics, and are thought to
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Figure 2: Steps to compute the AARI score. A co-expression network is inferred from the gene expression
data by a network inference method. This inferred network is partitioned into non-overlapping communities
using a community detection algorithm. Finally, the resultant partition is compared with each partition con-
tained in the ensemble of non-overlapping partitions extracted from the overlapping gene-GO term associations.
ARIs are calculated for each partition, and then the average ARI is computed.

play an important role in speciation [42, 43, 44, 45, 46]. The functions of the vast majority of orphan genes
remain unknown. Of those orphan genes that have been researched, many are implicated in defense and
offense/predation, either as secreted molecules, or as interactors of internal defense responses [43, 46, 47, 49].

Orphans provide a disruptive force in evolution and may be expressed sparsely and in distinct patterns from
those of other genes [46, 43]. However, identifying orphans that are community members provides an avenue
towards building inferences about their function. The three communities CLR detected that contained multiple
orphan genes are: Cluster 1, structure and assembly of the cytochrome C oxidase subunit of mitochondrial
aerobic respiration, and intron splicing of cytochrome C oxidase mitochondrially-encoded genes [50]; Cluster 34,
intermediate metabolism; Cluster 66, multivesicular body sorting associated with ubiquitin-mediated protein
catabolism. A detailed enrichment analysis is included in the Supplemental Material.
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Figure 3: Comparison of GO term associations and gene communities identified by different net-
work inference and community detection methods. (a) Average Adjusted Rand Index (AARI) scores for
1000 realizations comparing GO-terms and communities found by applying modularity Q, excess modularity
density Qx, Markov Clustering (MCL), and Generalized Modularity Density Qg to networks determined by Re-
latedness (f), Mutual Information (MI), and Pearson correlation (R). A higher ARI indicates a better match.
Error bars show one standard deviation interval around the mean. (b) The distribution of ARI scores of gene
communities and GO terms over 1000 realizations identified by Modularity Q, Excess Modularity density Qx,
MCL, and Generalized Modularity Density Qg.
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community GO terms genes in genes in genes in p-value orphans

community GO term common

5 structural constituent of ribosome 191 220 129 1.10E-152 0
70 RNA-DNA hybrid ribonuclease activity 55 48 40 2.66E-80 0
70 DNA-directed DNA polymerase activity 55 61 40 4.15E-73 0
70 ATP binding 55 664 42 8.45E-29 0
27 endonucleolytic cleavage in ITS1 to 181 43 25 2.34E-26 0

separate SSU-rRNA from 5.8S rRNA and
LSU-rRNA from tricistronic rRNA

transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
27 endonucleolytic cleavage to generate 181 32 22 1.56E-25 0

mature 5’-end of SSU-rRNA from
(SSU-rRNA, 5.8S rRNA, LSU-rRNA)

27 endonucleolytic cleavage in 5’-ETS 181 31 21 3.74E-24 0
of tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
5 rRNA export from nucleus 191 18 15 3.05E-19 0

112 structural constituent of ribosome 17 220 15 8.06E-19 0
1 cytochrome-c oxidase activity 19 20 8 7.28E-15 9

Table 1: GO term enrichment of gene communities containing orphan genes, as identified from RNA-Seq data
by creating a gene expression matrix by Context Likelihood of Relatedness and clustered using Generalized
Modularity Density. The ten most significant associations are shown.

community GO term genes in genes in genes in p-value orphans

community GO term common

1 cytochrome-c oxidase activity 19 20 8 7.28E-15 9
1 heme binding 19 27 5 9.74E-08 9
1 Group I intron splicing 19 12 4 2.04E-07 9
1 mitochondrial electron transport, 19 14 3 2.68E-05 9

cytochrome c to oxygen
34 carnitine O-acetyltransferase activity 187 3 3 0.0010 5
1 proton-transporting ATP synthase 19 17 2 0.0027 9

activity, rotational mechanism
34 fructose 2,6-bisphosphate 187 4 3 0.0032 5

metabolic process
1 homing of group II introns 19 1 1 0.0062 9
1 movement of group I intron 19 1 1 0.0062 9
66 protein targeting to vacuole 15 22 3 0.0074 6

involved in ubiquitin-dependent
protein catabolic process via the

multivesicular body sorting pathway

Table 2: GO term enrichment of gene communities containing orphan genes, as identified from RNA-Seq data
by creating a gene expression matrix by Context Likelihood of Relatedness and Generalized Modularity Density.
Ten most significant associations are shown.
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Discussion

A variety of methods for network inference and clustering have been applied to gene expression data. Most
have their own advantages and drawbacks, depending on the specific problem at hand and the data type. A
previous study using a CLR method demonstrated its effectiveness in inferring known gene interactions [19];
the CLR algorithm performed better than several other approaches in inferring regulatory interactions among
genes in microarray expression data from the prokaryote, E. coli. Thus, we used this approach in inferring
the co-expression network of S. cerevisiae genes, along with Pearson correlation and Mutual Information. To
our knowledge, it had not yet been applied to a eukaryotic organism, which have a considerably more complex
regulatory and metabolic network properties [51]. It also had not been applied to RNA-Seq data. The key
advantage of RNA-Seq data is that it enables insight into the accumulation of all transcripts, whereas many
transcripts are not represented on microarray chips [52]. Thus, even the levels and patterns of accumulation
of unannotated transcripts can be monitored and associated with particular biological processes. However,
RNA-Seq determinations are influenced by the sequencing depth, the method of library preparation, and other
technical artifacts [53].

Here, we compare commonly-used methods for inferring functional gene communities from RNA-Seq expres-
sion data [32] from the model eukaryote, S. cerevisiae. First, using the expression profiles of S. cerevisiae genes,
we obtained three different weighted co-expression networks, each by employing a distinct method for assigning
link-weights between pairs for genes. Accurate inference of the co-expression network is an important step since
the downstream analyses depend on the structure of this network. Among the three methods (See Materials
and Methods), CLR [19] is shown to perform better at inferring regulatory interactions than others. In E.
coli, the CLR methods is shown to enhance the average precision by 36% relative to the next-best performing
algorithm [19]. In our study, we also observe it to be a better network inference algorithm.

We then applied four different community detection algorithms to identify functional modules in each of the
inferred co-expression networks. Three of these algorithms are based on maximizing modularity (Q) and two
modularity density measures (Qx and Qg) that were recently introduced [29, 30] to mitigate the resolution limit
problem of modularity [28]. MCL is a widely used random-walk based community detection algorithm, which
we also included for comparison. A careful evaluation of these clustering methods revealed that generalized
modularity density Qg had the best performance while modularity Q performed worse than the other three
algorithms. This is because modularity discovers large clusters that do not correlate with specific GO-terms,
which, in contrast, are relatively small. While MCL showed performance gain over Q, the two modularity
density methods significantly higher performance with the Generalized Modularity Density (Qg) outperforming
all other methods. This can be attributed to the fact that Qg assigns relatively higher weights to denser
communities. Although Qx, which also introduced weights that are functions of internal link density of a
community, as pointed out in [30], it shows resolution problems in very sparse networks. On the other hand,
Qg is resolution-limit free and robust to variability in network structures.

Further, the performance of each method is assessed by evaluating the similarity between GO term asso-
ciations and the detected gene communities, using the Average Adjusted Rand Index (AARI). The GO term
associations of genes overlap (even the leaf GO-terms) and the methods considered in this paper detect non-
overlapping communities. Thus, using ARI score (or other similarity measures of the type) could be deceptive.
Thus, to fairly assess the communities, we introduced an average ARI score that is computed over an ensemble
of standard ARI scores obtained by randomly sampling non-overlapping GO associations (see Materials and
methods). While we use the average of ARI scores to assess the similarity of overlapping clusters because it is
intuitively easier to interpret, other measures that quantify similarity between two non-overlapping partitions
(such as Normalized Mutual Information [54] could also be used, and averaging any such measure over the
prescribed ensemble could be carried out in a similar fashion.

Conclusion

We systematically evaluated twelve different combinations of network construction and clustering approaches.
Our investigation empirically shows that the Relatedness network obtained by CLR combined with community
detection using the Generalized Modularity Density Qg metric outperforms other methods. A focused analysis
reveals that communities containing orphan genes have highly significant associations with biological processes,
as determined by GO term analysis. This promising approach to identifying gene communities can enrich our
understanding of the roles of orphan genes and other genes of unknown function, and infer their relationship
with other genes.
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Gene-communities-Qg(f).xlsx
Enrichment-Qg(f).xlsx

Data and code availability: All data used in this study are publicly available and have been appropriately
cited. The codes to construct networks and to perform clustering are available at: https://github.com/

prameshsingh/yeast-clustering.
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