
Soft Error Mitigation Schemes for High
Performance and Aggressive Designs

Naga Durga Prasad Avirneni, Viswanathan Subramanian, and Arun K. Somani
Dependable Computing and Networking Laboratory

Iowa State University, Ames, IA, USA
{avirneni,visu,arun}@iastate.edu, Ph: +1 (515) 294-0442

Abstract—In this paper, we address the issue of soft errors in
random logic and develop solutions that provide fault tolerance
capabilities without logic duplication. First, we present a circuit
level soft error mitigation technique which allows systems to
operate without the performance overhead of soft error detection
and correction circuitry. This is achieved by sampling data using
our Soft Error Mitigation (SEM) register cell, which uses a
distributed and temporal voting scheme for soft error detection
and correction. Next, we present a scheme to concurrently detect
and correct soft and timing errors using a Soft and Timing Error
Mitigation (STEM) register cell, which offers soft error protection
in aggressive designs that allow overclocking. Timing annotated
gate level simulations, using 45nm libraries, of a pipelined adder-
multiplier circuit and five-stage DLX processor show that both
of our techniques achieve near 100% fault coverage. For DLX
processor, even under severe fault injection campaigns, SEM
achieves an average performance improvement of 26.58% over
a temporal Triple Modular Redundancy (TMR) voter based
register cell, while STEM outperforms SEM by 27.42%.

Index Terms— Soft error, dependable and adaptive systems,
overclocking

I. INTRODUCTION

The threat of soft error induced system failure is becoming
more prominent in modern computing systems implemented
in deep sub micron process technologies. In the past, single
event upsets (SEUs) were a major concern only in space
applications, creating hard threats like loss of control, resulting
in catastrophic failures. An SEU is induced when a high energy
particle, either from cosmic radiations or decaying radioactive
materials, strikes the silicon substrate. If enough charge is
deposited by the strike, it causes a bit flip in the memory
cell or a transient pulse in the combinational logic. The latter
is referred to as a Single Event Transient (SET). Radiation
induced SET pulses have widths in the range of 500ps to
900ps in the 90nm process, as compared to 400ps to 700ps in
the 130nm process [1]. As a result, terrestrial applications also
require fault tolerant techniques to ensure their dependability.

Much of the previous work has concentrated on how to
protect memories from soft errors, as they occupy a significant
portion of on-chip area. Shivakumar, et. al. [2] show that,
problem of soft error in combinational circuits is becoming
comparable to that of unprotected memory elements in cur-
rent and future technologies. Recently, techniques have been
proposed to make combinational logic immune to soft errors,
as they threaten the usefulness of technological advancements.

Providing fault tolerance capabilities for random and com-
plex logic is expensive, both in terms of area and power.
Techniques such as, duplication and comparison, and triple
modular redundancy (TMR) and majority voting have been
proposed to mitigate soft error rate (SER) in logic circuits [3].
These approaches incur performance overhead, even during
error free operation. Also at this juncture, when static power
is comparable to dynamic power, logic replication is not a
viable alternative.

Increasing system wide integration force designers to adopt
worst-case design methodologies while designing individual
system components. With these design practices, safety mar-
gins are added to address parameter variations, which include
intra-die and inter-die process variations, and environmental
variations, which include temperature and voltage variations
[4]. These additional guard bands are becoming non-negligible
in nanometer technologies. Designers conservatively add these
safety margins to salvage chips from timing failures and
shortened lifetime. Most systems are characterized to operate
safely within vendor specified operating frequency. When they
are operated beyond this rated frequency, timing errors and
system failure may happen.

Overclocking as a means to improve performance is gaining
popularity among high-performance enthusiasts [5]. Circuits
exhibit worst case delay only when their longest delay paths
are sensitized by the inputs. However, these worst case delay
inducing inputs and operating conditions are rare, leading to
room for performance improvement that overclockers exploit
[6]. Overclocking without guaranteeing functional correctness
leads to unpredictable system behavior and loss of data.
Aggressive, but reliable, design methodologies employ rele-
vant timing error detection and recovery schemes to prevent
erroneous data from being used [7]. In [8], it has been shown
that operating frequency can be increased beyond worst case
limit, allowing systems to operate at optimal clock frequency,
by adapting to the current set of instructions and environmental
conditions. Moreover, many systems operate at a overclocked
frequency, which is 15-20% higher than worst case frequency,
without increasing the error rate beyond 1% [9].

In this paper, we address the issue of soft errors in random
logic and develop solutions that provide fault tolerance capa-
bilities without logic duplication. We propose two techniques
that have low area and performance overhead. Our first tech-
nique, SEM, replaces register elements in a circuit with Soft



Error Mitigation (SEM) register cells. Our second technique,
STEM, concurrently detects and corrects soft and timing errors
using Soft and Timing Error Mitigation (STEM) register
cells. STEM cells support reliable overclocking. Both tech-
niques employ distributed and temporal voting schemes with
in-situ error detection and fast recovery. For error detection
and correction, our temporal sampling mechanisms sample
data at three different time intervals. In both SEM and STEM
techniques, we support circuit level speculation. We allow data
to move forward speculatively, and if an error happens we void
the computation and redo it.

For our initial experimental study, we integrated our data
sampling mechanisms into a two stage pipeline consisting of
an adder and a multiplier. In these experiments, we measured
the amount of fault masking that occurs on the faults injected
into pipeline logic and performance improvement. In order
to fully understand the performance improvement and fault
coverage that our scheme can provide to a microprocessor, we
also experimented with three micro-benchmarks on a pipelined
five-stage DLX processor. We report performance and fault
coverage results for both SEM and STEM techniques over the
baseline TMR technique.

The remainder of this paper is organized as follows. In
Section II, we describe our soft error mitigation technique
and recovery mechanism. Section III describes how both
timing error and soft error are concurrently detected and
corrected. Section IV, we discuss the issues in designing a
pipeline system with our proposed soft/timing error mitigation
technique. We present our results in Section V. Section VI
concludes the paper.

II. SOFT ERROR MITIGATION

Prior soft error mitigation techniques at the circuit level
are either based on temporal redundancy, spatial redundancy
or a combination of both. All these techniques strive to
achieve high degree of fault coverage, whilst degrading or
trading performance, silicon area and other resources. For
example, in [3], a specific design of a voting mechanism
based on temporal triple modular redundancy is discussed,
which mitigates all single event upsets. However, the overhead
incurred is very high, as the operating frequency of a system
built with such fault mitigation scheme must include the delays
of combinational logic blocks, phase shifts of the clocks and
the delay incurred by the voter. In this section, we present
a variant of this scheme, and show that with a combination
of local and global recovery, we can remove the additional
overhead imposed on the system operating frequency by the
fault mitigation scheme.

The intent of our scheme is to make systems operate at
frequencies same as that of non fault tolerant designs, by
unloading the fault mitigation overhead from the worst case
timing delay estimation. To keep the overhead of error detec-
tion and recovery off the critical path, we present the following
redundancy organization using our Soft Error Mitigation,
SEM, cells. Figure 1 (a) shows a gate-level embodiment of
a SEM cell.

Error

Benign

DataIn DataOut

CLK1

LBkup

Q1

Q3

Q3

Q2

>

R1

CLK2

CLK3

>

>

T1

T2

T3

T

CLK1

Φ1

Φ2
CLK3

CLK2R2

R3

(a) (b)

Fig. 1. SEM Cell

TABLE I
POSSIBLE SOFT ERROR SCENARIOS

CASE R1 R2 R3 ERROR BENIGN RECOVERY
I

√ √ √
0 0 No Recovery required

II ×
√ √

1 0 Load R2 or R3 into R1

III
√

×
√

1 1 No Recovery required
IV

√ √
× 0 1 No Recovery required

A. TIMING CONSTRAINTS :

Figure 1 (b) shows the timing relationship between the clock
signals and the data sampling intervals. Clock signals, CLK1,
CLK2 and CLK3, have the same frequency, but they are out-
of-phase by an amount governed by the timing constraints,
explained below. Contamination delay (TCD) is the minimum
amount of time beginning from when the input to a logic
becomes stable and valid to the time that the output of that
logic begins to change. Propagation delay (TPD) refers to the
maximum delay of the circuit, under worst case conditions.
TPW is the soft error/noise pulse width.

Φ1 = T2 − T1 ≥ TPW (1)

Φ2 = T3 − T2 ≥ TPW (2)

Equations (1) and (2) ensure that registers R1, R2 and R3

are not corrupted by the same soft error. Since the system
is running with CLK1, data is forwarded to later stages
after latching in register R1, and later stages can start the
computation speculatively after this time period. Short paths
present in the combinational circuit can corrupt the data before
it gets latched in registers R2 and R3. Consequently, it is
required to constrain short paths so that relevant data registered
in R1 is also latched in registers R2 and R3 during no
error scenarios. Equation (3) ensures that this condition is
met by increasing the contamination delay above the desired
combined phase shift values, given by Φ1 and Φ2. Equation
(4) makes sure that temporal sampling happens only after
the computation by the combinational logic is completed.
This technique is capable of detecting all SEUs happening on
registers, and all SETs having pulse duration less than TPW .

TCD ≥ Φ1 + Φ2 (3)

T ≥ TPD (4)



B. SOFT ERROR DETECTION AND RECOVERY :

Table I presents the possible soft error scenarios that a SEM
technique is capable of detecting and recovering from. The
table also lists the corresponding recovery mechanism used.
Once the data is latched in registers R1, R2 and R3, they are
compared with each other as shown in Figure 1 to produce
Error and Benign signals. This comparison operation will
complete the voting process required to mitigate soft errors.
Below, we explain the recovery mechanism used in case of an
error situation.

• CASE I : No soft error occurs. Data latched in all three
registers are correct. Both Error and Benign signals
stay low, and no recovery mechanism is triggered. System
operation continues without any interruption.

• CASE II : A soft error corrupts the data latched in
register R1. Error signal goes high after the data is
latched in R2. Since the next stage speculatively uses the
data forwarded from R1, re-computation is required next
cycle to ensure functional correctness. The data stored
in registers R2 and R3 are unaffected by the soft error.
During the next cycle, value stored in R2 or R3 is loaded
back into register R1 with the help of the control signal
Load Backup, completing the local recovery process.
Figure 1 shows R3 being loaded into R1. Global recovery
in the form of stall signal sent to all other SEM cells,
unaffected by soft error, is initiated and completed in one
cycle.

• CASE III : A soft error corrupts the data latched in
register R2. Both the signals, Error and Benign, go
high once temporal data sampling is completed. This is
a false positive scenario. No recovery is required as data
forwarded to next stage is correct. System operation is
not interrupted.

• CASE IV : This represents a case where register R3 is
corrupted with a soft error. In this case Error signal stays
low, while Benign signal is asserted high. No recovery
and interruption is required in this case too, as Benign
signal is high.

As we can see, SEM cell detects and recovers from all
possible soft error scenarios. This scheme is well suited for
fast transient pulses. Since fast transients typically correspond
to soft errors with high strike rate probabilities, SEM cells
have near 100% transient fault mitigation capability. On error
detection, a single cycle system stall is all that is required
for complete recovery. As can be seen, our scheme does not
trigger error recovery for false positive scenarios. Also, since
the data latched in R1 is speculatively used, by the succeeding
stages, as soon as it is available, the error detection overhead
is removed from normal system operation. This is also a
low overhead solution, as it shuns the need for system to
checkpoint at regular time intervals. Thus, we enable systems
to mitigate soft errors, using SEM cells, without any loss of
performance, compared to a non fault tolerant design.

III. SOFT ERROR MITIGATION IN AGGRESSIVE DESIGNS

Aggressive designs are based on the philosophy that it is
possible to go beyond worst case limits to achieve best perfor-
mance by not avoiding, but detecting and correcting a modest
number of timing errors. In this section, we further investigate
our SEM cell design and explain how it can be modified for
soft error mitigation in aggressive designs, which uses reliable
overclocking technique for improving system performance.
The proposed Soft and Timing Error Mitigation, STEM, cell is
similar to the SEM cell in area complexity. However, the error
detection and recovery mechanism is significantly different to
address the requirements of concurrent soft and timing error
mitigation.

Error

Panic

DataIn
DataOut

Load_Panic

CLK1

Load_Backup

>

R
1

>
R
2

Q1

Q3

Q2

>
R
3

CLK3

CLK2

Q3

Q3

Q2

Fig. 2. STEM Cell

A. ERROR DETECTION :

Figure 2 shows a gate-level embodiment of a STEM cell,
which acts as a on-line-fault monitor for soft and timing error
mitigation. The working of a STEM cell is as follows:

Once the data is latched in registers R1 and R2, they
are compared with each other. This comparison operation
completes the timing error detection process, since R2 is
timing safe [8], [10]. But in the presence of soft errors, this
comparison operation presents an ambiguous situation, as it is
not possible to distinguish which one of these two registers is
corrupted by an erroneous value. Also, value in R2 is not to
be trusted during the error recovery process.

If the comparison between R1 and R2 flags a mismatch,
register R3 is shielded from the incoming data value, and
its content is used to recover the system state. This is done
because any soft error that happens after comparing R1 and
R2 has the potential to corrupt R3 and push the systems
into an unrecoverable state. Only when there is no mismatch
between registers R1 and R2, register R3 is allowed to latch
the data safely. However, we have not yet ascertained whether
R3 is free from soft error. Therefore, we perform another
comparison operation to complete the error detection process.
After register R3 is updated, we compare it with register R2,
to detect any error happening in register R3. If there is no
mismatch, register R3 is trusted for error recovery purposes.
If they mismatch that represents a case where register R3 is
corrupted by a soft error. At this point, it is possible to say
that data latched in registers R1 and R2 are uncorrupted. The



P
C

IF
/
ID

ID
/
E

X
E

IF ID EXE MEM

E
X

E
/
M

E
M

M
E

M
/
W

B

WB

B
u

ff
e

rClock
Control

Error

CLK_1P
CLK_1G

CLK_2G

CLK_3G

CLK_2P

CLK_3P

Load_Backup

Clock
Generator

Error Rate

ErrorErrorError

Load_Panic

Fig. 3. Pipeline Design with STEM Cells

system is stalled for one cycle for flushing out the erroneous
value from R3, and loading either R1 or R2 value into R3.

B. TIMING CONSTRAINTS :

As is the case with SEM cells, STEM cells also require
strict timing constraints, to detect and correct soft and timing
errors. STEM cells must satisfy Equations (1), (2) and (3).
Equation (4) is modified as shown in Equation (5) for STEM
cells. Equations (1) and (2) ensure that registers present in
a STEM cell are not corrupted by the same SET. Equations
(3) and (5) ensure that data latched in registers R2 and R3

are timing correct, i.e. free from timing errors. The timing
relationships shown in Figure 1 (b) still holds, with the caveat
that Φ1 also includes the extent of overclocking that is possible
every cycle.

T + φ1 ≥ TPD (5)

C. ERROR RECOVERY :

Table II lists all possible error scenarios with corresponding
recovery mechanisms. In the table, NE represents No Error; SE
represents Soft Error and TE represents Timing Error. In the
following discussion, we explain the various possible events
that take place in the STEM cell, and the associated recovery
mechanism that is used in case of an error. It employs either
a single cycle or three cycle fast local recovery based on the
values of Error and Panic signals, shown in Figure 2.

TABLE II
POSSIBLE ERROR SCENARIOS

CASE R1 R2 R3 ERROR PANIC RECOVERY
I NE NE NE 0 0 No Recovery
II SE NE NE 1 0 Load R3 into R1, R2

III NE SE NE 1 0 Load R3 into R1, R2

IV NE NE SE 0 1 Load R2 into R3

V TE NE NE 1 0 Load R3 into R1, R2

VI TE SE NE 1 0 Load R3 into R1, R2

• CASE I: No error case. Both signals, Error and Panic,
stay low. System moves forward without any interruption

• CASE II, III, V, VI : This represents a case where one
of the registers R1 or R2 is corrupted. In this case,
Error = 1 and Panic = 0. In this scenario R3 is not
updated, and the system recovers by loading R3 in to R1

and R2 triggering re-computation. A three cycle global
recovery process is initiated, which includes: one cycle
stall for loading data back into the registers R1 and R2,
and two cycles for re-computation. This two cycle re-
computation is required, as the error might have occurred
because of overclocking, and this error will repeat in R1,
if sufficient time is not given for re-computation. This
prevents recurrent system failures.

• CASE IV : Only R3 is corrupted. In this case, Error = 0
and Panic = 1. No re-computation is required. However,
it is necessary to flush the erroneous data from R3, to
facilitate error recovery in subsequent cycles. As data
in only R3 is corrupted, “golden” data present in R2

is loaded in to R3. This requires a single cycle system
stall, during which erroneous STEM cells perform a local
correction.

As is seen, STEM cell detects and recovers from all possible
soft and timing error scenarios, wherein the soft error is only
of type SET. Our technique leads to silent data corruption, if
an SEU happens in R3. However, since register R3 is only
used as a checkpointing register, a corrupted R3 value may
lead to failure, only if an error occurs in R1 or R2 in the
next cycle. The possibility of a system failure using our fault
tolerance scheme is heavily mitigated. For Case VI, we expect
that a TE or SE affects several STEM cells, and the possibility
of all cells having a TE in R1 and SE in R2 is insiginificant.
Hence, we hope one of the STEM cells will have the error
signal triggered, preventing R3 of all STEM cells from being
loaded. If Error = 1, then we do not look at Panic signal.

IV. PIPELINE DESIGN

The basic step in using SEM or STEM cells in a pipeline is
to replace all pipeline registers with one of them. Input clocks
are to be constrained in a way, so as to provide fault tolerance
capabilities to the pipeline from soft error and timing error, if
STEM is the cell of choice. In this section, our discussion is
based on the use of STEM cells in place of pipeline registers.
Using SEM cells follow straight forward.

Figure 3 illustrates how STEM cells are integrated into a
processor pipeline. The figure depicts the data and control flow
for a five-stage pipeline processor. To the last stage of the
pipeline, which is writeback (WB), an extra write buffer, is



added. This is to ensure that data written to the register file
or memory is always free from timing errors. Every pipeline
stage register is replaced with STEM cells, except for the write
buffer registers. All error signals from a pipeline stage are
logically OR-ed to generate the stage error for that pipeline
stage. Global error signal is generated from all pipeline stage
error signals, by combining them using another ”OR” function.
Here, we explain the pipeline operation for Error = 1 and
Panic = 0 (Case II, III, V, VI), as this is the most complicated
case. Once an error is detected in any one of the pipeline
stages, global error is asserted, and in every stage of the
pipeline, registers R3 of the STEM cells are not updated with
the incoming data. In the next clock cycle, load backup is
asserted, and in each STEM cell, content of register R3 is
loaded into corresponding R1 and R2 registers. After this,
clock to the pipeline is stalled for two cycles, completing the
error recovery process.

A key factor that limits frequency scaling is error rate. As
frequency is scaled up, the number of input combinations
that result in delays greater than the new clock period also
increases. The impact of error rate on frequency scaling is
analyzed as below:

Let twc denote the worst case clock period. Let tov denote
the clock period after overclocking the circuit. Let n be the
number of cycles needed to recover from an error. Let us
assume that a particular application takes N clock cycles
to execute, under normal conditions. Let tdiff be the time
difference between the original clock period and the new clock
period. Then the total execution time is reduced by tdiff ×N ,
if there is no error. Let us assume that the application runs
at an overclocked frequency of period tov with an error
rate k%. To achieve any performance improvement at this
frequency, Equation (6) must be satisfied. It states that even
after accounting for error penalty, execution time required is
still less than the worst case frequency operation.

N × tov + n×N × k × tov < N × twc (6)

k <
(twc − tov)
n× tov

(7)

For STEM cells, an error can happen in five different
scenarios, as mentioned in Table II, and also error penalty
paid is not the same for all the cases. If we assume all
these error scenarios are equally likely, then the average error
penalty paid in cycles is: n = 4×3+1×1

5 = 2.6. According
to Equation (7), for a frequency increase of 15%, the error
rate must not be higher than 5.76%, for STEM cells to yield
no performance improvement. For error rates less than 1%, a
frequency increase of 2.6% is enough for STEM cells to have
a performance improvement over non fault tolerant designs.

V. EXPERIMENTAL RESULTS

In this section, we present our results based on the exper-
iments conducted on a two stage arithmetic pipeline and a
five stage DLX in-order pipeline processor, where pipeline

registers are augmented with our fault detection and correction
circuitry. Arithmetic pipeline performs a 64-bit addition in
the first stage and a 32-bit multiplication in the second stage.
Adder output is fed to the multiplier as multiplicand and mul-
tiplier. RTL level models are developed and are synthesized
using 45nm OSU standard cell library [11]. Timing-annotated
gate level simulations are then carried out by extracting
timing information in standard delay format(SDF), and back
annotating them on the design. From the static timing analysis
reports, we estimated the value of worst-case frequency, TMax

= 9ns. Pulses of varying width ranging from 500ps to 900ps
are injected in the pipeline. Each cycle results are checked for
correctness after the computation is done to ensure that the
recovery mechanism works. Whenever recovery is activated,
occurrence of an error is logged. All our experiments are
performed for a set error rate target of 1% over 10000 cycles.

0

20

40

60

80

100

120

140

160

180

TMR SEM STEM(NOOC) STEM(DYNOC) STEM(MAXOC)

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Fig. 4. Normalized Arithmetic Pipeline Execution time

During run time, the number of errors that happened during
a sampling interval is communicated to the clock controlling
unit at the end of each interval. The clock controlling unit
makes a decision based on the error rate, during the previous
sampling interval, and set target error rate. We considered a
linear control scheme for clock frequency switching between
worst-case frequency, TMax and highest frequency, TMin. For
our design, TMin is set at 7ns. This range is divided into 32
steps, and if the error rate is less than 1%, clock frequency is
increased by one step size, otherwise it is decreased by one
step size. We initialized the pipeline with different seeds, and
the fault injection results are presented in Table III for three
different runs. We ran our experiments for 3ms duration.

We configured the arithmetic pipeline designed with STEM
cells to operate in three different modes. They are no over-
clocking (NOOC), wherein TMax = 9ns and TMin = 9ns,
maximum overclocking (MAXOC), wherein TMax = 7ns
and TMin = 7ns, and dynamic overclocking (DYNOC),
wherein TMax = 9ns and TMin = 7ns. For TMR system,
worst-case frequency, TMax, is set at 11ns. Performance
improvements offered by both SEM scheme and different
modes of STEM is shown in Figure 4. From this, we can
see that dynamic overclocking(DYNOC) mode offers 49%
over TMR while maximally overclocked (MAXOC) mode
offers 55%. Performance of no overclocking (NOOC) mode is
comparable to that of SEM and SEM offers 23% performance



TABLE III
FAULT INJECTION RESULTS FOR ARITHMETIC PIPELINE

STEM(MAXOC) STEM(DYNOC) STEM(NOOC) SEM TMR
TE Transient Faults TE Transient Faults Transient Faults Transient Faults Transient Faults

Injected Detected Injected Detected Injected Detected Injected Detected Injected Detected
RUN1 14 2031 432 14 2033 421 2030 325 2031 334 2026 256
RUN2 14 2031 450 12 2033 414 2025 315 2028 323 2026 268
RUN3 14 2031 449 15 2032 424 2025 307 2030 311 2034 273

improvement over TMR. From Table III, we can see that fault
masking rate is high in TMR design when compared with SEM
and STEM designs. This is because, its operating frequency
includes the phase shifts of the clocks and voter delay. Hence,
TMR operates with longer clock period compared to SEM
and STEM, resulting in more SET pulses attenuating before
the latching window.

We also simulated three different micro benchmarks to eval-
uate the performance improvement and fault coverage of both
SEM and STEM on a five stage in-order pipelined processor.
This processor, implemented in 45nm technology, is based
on the DLX instruction set architecture. First application,
RandGen, calculates a simple random number generation to
give a number between 0 and 255. The MatrixMult application
multiplies two 50x50 integer matrices and the BubbleSort
program implements bubble sort algorithm on 5,000 half-word
variables. Here, we followed the same fault injection strategy
and clock control used for two stage arithmetic pipeline. For
each benchmark, processor state has been checked to verify
the correctness of the computed results after simulation.

0

20

40

60

80

100

120

MatrixMult BubbleSort RandGen

N
o

rm
al

iz
e

d
 R

u
n

 T
im

e

TMR

SEM

STEM

Fig. 5. DLX Execution time for various benchmarks

From timing reports, the worst case frequency, TMax, is
estimated as 6ns. Contamination delay is increased by 2ns
and the system operates at 4ns (optimal frequency). Area
overhead incurred is less than 5% for the processor because
significant area consumption of the system comes from the
memory system. The results for the three different benchmarks
are presented in Figure 5, showing relative execution times for
conventional TMR, SEM and STEM schemes. From this, we
found that SEM offers 26.58% performance improvement over
TMR and STEM offers 27.42% over SEM.

VI. CONCLUSIONS

In this work, we developed two efficient soft error mitigation
schemes, which remove the error detection and correction
overhead from the circuit critical path. One of our schemes is
capable of tolerating timing errors as well. Both the schemes
tolerate fast transient noise pulses, which is the principal
characteristic of SETs. Our schemes have no significant per-
formance overhead during error free operation. One of the
salient features of our approach lies in the capability to trigger
recovery immediately on error detection, without requiring any
check pointing. In the future, we will implement our fault
mitigation schemes in complex pipelined systems, and evaluate
the fault coverage and performance for more representative
benchmarks.

ACKNOWLEDGMENT

The research reported in this paper is partially supported
by NSF grant number 0311061, Information Infrastructure
Institute (iCUBE) and the Jerry R. Junkins Endowment at Iowa
State University.

REFERENCES

[1] B. Narasimham et al., “Characterization of digital single event transient
pulse-widths in 130-nm and 90-nm cmos technologies,” Nuclear Science,
IEEE Transactions on, vol. 54, no. 6, pp. 2506–2511, Dec. 2007.

[2] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in DSN, June 2002, pp. 389–398.

[3] D. Mavis and P. Eaton, “Soft error rate mitigation techniques for modern
microcircuits,” Reliability Physics Symposium Proceedings, 2002. 40th
Annual, pp. 216–225, 2002.

[4] S. R. Nassif, “Modeling and forecasting of manufacturing variations,”
in ASP-DAC, January 2001, pp. 145–149.

[5] B. Colwell, “The zen of overclocking,” IEEE Compututer, vol. 37, no. 3,
pp. 9–12, March 2004.

[6] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and
challenges for better than worst-case design,” in ASP-DAC, vol. 1,
January 2005, pp. 2–7.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in IEEE Micro, 2003,
pp. 7–18.

[8] V. Subramanian, M. Bezdek, N. D. Avirneni, and A. Somani, “Su-
perscalar processor performance enhancement through reliable dynamic
clock frequency tuning,” in DSN, June 2007, pp. 196–205.

[9] V. Subramanian and A. Somani, “Conjoined pipeline: Enhancing hard-
ware reliability and performance through organized pipeline redundany,”
in PRDC, Dec 2008.

[10] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge, “A self-tuning dvs processor using delay-error detection
and correction,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp.
792–804, April 2006.

[11] J. S. et al, “FreePDK: An Open-Source Variation-Aware Design Kit,”
in Proc. of the 2007 IEEE Intl Conference on Microelectronic Systems
Education, 2007, pp. 173–174.

View publication statsView publication stats

https://www.researchgate.net/publication/228689261



