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The development of a sensor to measure internal temperature 
distributions of hot bodies would significantly improve the productivity 
and quality of materials processing. The American Iron and Steel 
Institute (AISI) and the National Bureau of Standards have initiated a 
joint research program to develop such a sensor for steels capable of 
generating internal temperature maps with BO°C accuracy and 20 mm 
spatial resolution. Numerous applications exist for such a sensor 
during the processing of steel (and other metals); two of particular 
importance are in the control of continuous casting and slab reheating l • 

The approach under development is based upon the strong, almost 
linear, dependence of ultrasonic velocity upon temperature2. This 
velocity-temperature dependence was measured in our laboratory for 304 
stainless steel and the results are plotted in figure 1. In this case, a 
1°C temperature shift changes the longitudinal velocity by - 0.68 ms-l. 
This is a large change given the great precision of modern ultrasonic 
techiques. A single velocity value, when used with a calibration curve 
of velocity versus temperature, would yield the average temperature 
along the ultrasonic ray path. To produce two-dimensional temperature 
maps, we exploit the tomographic approach originally developed as a 
medical imaging modality with x-rays and ultrasound. 

There are a number of important differences, however, between medical 
tomography and the proposed application. In medical ultrasonic tomography, 
diagnostically significant changes in the elastic modulus of tissue are 
typically larger than the changes in elastic modulus of steel arising 
due to temperature. Also, the speed of sound in water, the relevant 
velocity in medical ultrasonic tomography, is less than one third the 
velocity in steel. Thus, the time resolution for the temperature problem 
must be at least three times better than in previous techniques. Moreover, 
due to time constraints and the complexity of making parallel measurements, 
the number of ultrasonic measurements is severely limited compared to 
medical tomography. 
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Temperature dependence of longitudinal velocity in 304 stainless 
steel. 

We see that the application of tomography to temperature distribution 
measurement is in some ways a more difficult problem than that of medical 
tomography. However, the temperature measurement problem has an important 
factor in its favor--the availability of a priori heat-flow information. 
The well understood thermal diffusion process and independent surface 
temperature values constitute a priori information that serves to limit 
the range of admissible solutions to the inverse reconstruction problem. 
This paper shows how a priori information can be exploited in formulating 
reconstruction algorithms for the imaging of internal temperature distri
butions. 

TIME-OF-FLIGHT TOMOGRAPHY 

The time-of-flight (TOF) of an ultrasonic pulse along a path through 
an object is the line integral of the reciprocal sound velocity along 
that ray path. The path length divided by the TOF is the average velocity 
along the path, and in conjunction with calibration curves such as that 
of figure 1, this could be used to compute the average temperature along 
that path. For some applications, average temperature alone may consti
tute sufficient information. If many TOF measurements are acquired over 
multiple paths, a tomographic approach can be employed to reconstruct 
a cross-sectional image of the sound velocity (and hence temperature) 
within the sample. 

In principle, at least as many TOF measurements as pixels are 
required to compute a tomogram. In practice, errors in the TOF and path 
length measurement combine with inherent ill-conditioning in the inversion 
process to require considerable measurement redundancy (factors of 3-10 
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or more), in which case least squares techniques may be exploited to best 
estimate the temperature field. A priori information can be used to 
reduce this dependency on redundant information. 

The most important a priori constraint is the assumption of 
symmetrical heat flow, which is often reasonable in bodies of simple 
geometric shape (e.g., circular or rectangular cross-section). Knowledge 
that the temperature field is symmetrical drastically reduces the number 
of unknowns characterizing the temperature field, and thus reduces the 
number of required measurements by a comparable amount. Furthermore, heat 
flow is well modeled by the thermal conduction equation (a diffusion 
equation). Because temperature is a solution to this equation, it is, in 
effect, being subjected to a low pass spatial filter whose spatial
frequency cutoff decreases in proportion to the square root of the cooling 
time. Stated another way, rapid spatial temperature fluctuations 
disappear with time due to thermal diffusion. This limit on the spatial 
frequency bandwidth (smoothness) of the temperature field implies the 
existence of a limit on the density of data sampling (number of TOF 
measurements) needed to recover the temperature distribution. Compared 
to medical tomography, far coarser spatial resolution is adequate to 
reconstruct the internal temperature field. 

CYLINDRICAL BAR GEOMETRIES 

Consider the problem of reconstructing a circular cross-sectional map 
of the temperature through a cylinder. If heat diffuses uniformly through 
the surface, the temperature is radially symmetric, i.e. the unknown 
temperature may be represented by a one-dimensional function of radius, 
T( r). 

Between the temperatures of phase transformations, the velocity
temperature relation of most materials is approximately linear and may be 
expressed: 

T(r) = To + b (v(r) - vo) (1 ) 

where To. vo and b are experimentally determined constants. Our objec
tive is to use TOF data to reconstruct the radial velocity profile, v(r), 
from which we then compute the temperature profile. T(r). 

The simplest set of TOF measurements to obtain is from a single 
omnidirectional ultrasonic source at one point on the cylinder and 
multiple receivers around the circumference (this would be referred to 
as a single "fan beam" measurement in the terminology of medical x-ray 
tomography). as illustrated in figure 2. Let Tm denote the measured 
TOF over a path Lm where M is the number of paths. Then we can write: 

T = m J dl 
L v(r) 
m 

m = 1. 2 ••• M. (2) 

In practice. M will be small because of the limited time ava-ilable and 
the experimental complexity of making many simultaneous measurements. 

Numerous techniques exist for tomographic reconstruction. However. 
to reconstruct the radial velocity profile we use a "series expansion" 
algorithmJ. since we find it both a natural approach in terms of 
imposing constraints and effective in reducing the number of unknowns 
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(pixels) to an absolute mlnlmum. This, as we have already emphasized, 
reduces the number of measurements and improves the numerical condition
ing of the problem. This approach is also amenable to the utilization of 
a priori information. 

The series expansion technique consists of expanding the unknown 
temperature profile (i.e. the reciprocal velocity) in a suitable set of N 
basis functions $n(r): 

1 
v(r) 

(3) 

where {$n(r)} is a basis set orthogonal on the interior of a 
circle of radius R (the radius of the cylinder). The number of basis 
functions, N, must be kept small, and is determined by the permitted 
error between the actual and reconstructed profile and by the choice of 
basis set. 

Inserting (3) into (2) and interchanging orders of summation and 
integration gives: 

m=1,2, ... ,M (4) 

where 

(5) 

Once the basis functions $n(r) are chosen, the matrix elements 
~n can be numerically computed and stored. Our problem then reduces 
to solving the linear system (4) for the unknown coefficients an' where 
the Tm are measured. Upon solving (4) for an, (3) gives the recon
struction of the reciprocal velocity l/v(r), and thus T(r) using (1). 
To mitigate the effect of measurements errors, many more TOF measurements 
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Cylindrical cross-section with ray paths diverging from a 
single ultrasonic source. The temperature distribution is 
assumed to have cylindrical symmetry. 
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(M) than unknowns (N) are desirable. In this case, (4) will be 
overdetermined, and it is natural to compute the pseudoinverse (the 
minimum-norm least mean-square-error solution) of (4). This most simply 
can be achieved by writing (4) in matrix form: 

T = ~ (6) 

where t is an M by N matrix (M > N), a is the N-component coefficient 
vector and T is the M-component-measurement vector. Minimizing the 
mean-square-=-error E = e Te , where e = ta - T, results in the pseudo-
inverse of (6),givenby: - -

~ = (tTt)-ltT.!,. (7) 

where T denotes transpose. 

In our work, two candidate basis sets {~n}' Bessel functions 
and "ring functions," were studied. Both are orthogonal in the sense that 

R 
6 ~n(r)~m(r)rdr = Nn6nm 

where Nn is a normalization constant. They are defined as follows: 

i) Bessel function basis: 

(8a) 

where JO(.) is the zero-order Bessel function and kn is the n-th 
root of JO(kR) = O. 

ii) Ring function basis: 

where 

{ 
1 for rn-l ~ r ~ rn 

o otherwise 

and rn = Rn/N, n = 0, 1, ••• ,N. 

(8b) 

The Bessel basis is a particularly interesting choice because Bessel 
functions are smooth over the circular domain, and we recall that the 
solution to the thermal conductivity equa\ion in a cylindrical geometry 
is also given by a Bessel function series. This suggests that the 
Bessel basis is a natural choice for the temperature reconstruction 
problem with circular symmetry and that the approximation (3) may even 
provide a good fit when truncated after the first few terms. This is 
because the higher-order terms in the series solution to the conductivity 
equation are exponentially damped with time. As a result, after a 
relatively short cooling time, the temperature profile increasingly 
resembles a single Bessel function, in which case only one term in (3) 
may be sufficient to approximate the profile. 
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The ring basis on the other hand provides a discrete or "staircase" 
approximation to the temperature profile, and thus does not provide the 
characteristic smooth temperature profile expected. 

Using actual TOF measurements, the above tomographic scheme has been 
used to reconstruct temperature profiles through a 6 in. diameter stain
less steel cylinder initially heated to 400°C. The results, and the 
experimental techniques employed, are reported in [3]. 

RECTANGULAR BAR GEOMETRIES 

When the temperature distribution is bounded by a rectangle, the 
tomographic reconstruction problem can sometimes be greatly simplified. 
To illustrate this, consider, for simplicity, a temperature distribution 
on a square cross-section (defined by -a < x < a and -a < y < a). A 
major simplification arises when the two-dimensional temperature field, 
T(x,y,t), factors into the product of two one-dimensional solutions to 
the heat flow equation: 

T(x,y,t) = f(x,t).f(y,t) (9) 

In general, the function T(x,y,t) can be shown to be factorable in this 
way under the following conditions: 

(i) The initial temperature distribution is factorable (the simplest 
example is a uniform initial temperature): 

T(x,y,O) = f(x,O).f(y,O) 

(ii) The boundary conditions are homogeneous and constant over each 
face (length 2a) of the square boundary. That is, the boundary condi
tions must be expressible as: 

aT + 8 T - 0, x = ±a, t > 0 ax -- X -ax 

a aT+ST= 0, y = ta, t > 0 , y- - y ay 

where ax, ay, Sx, Sy are constants. 

When equation (9) holds, the dimensionality of the problem is 
reduced from two to one. This represents a significant simplification of 
the reconstruction problem, because it can be shown that only a single 
set of TOF measurements (a single projection) along parallel paths (in, 
say, the x-direction; see Fig. 3) is sufficient to recover the function 
f(x,t), and hence T(x,y,t). This should be contrasted to the general 
problem encountered, for example, in medical tomography in which hundreds 
of projections are required at small angular increments over 180°. 

There are many obvious practical cases in which the above criteria 
for factorabi1ity are satisfied. However, less obvious is the fact that 
even initially unfactorab1e distributions often, with time, evolve to a 
form where only small approximations are involved to achieve factorabi1ity. 
This is because the lowest order term in the series-expansion solution to 
the heat flow equation is of the form ~(x) .~(y) and this term rapidly 
cQmes to dominate because of the exponential damping (with time) of the 
hlgher order terms. 
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Under the assumption that the two-dimensional temperature is factorable, 
our approach is to solve the equation: 

a d 
T(Ym) = J ( x) , 

-a v x ,Ym 
m=l, 2, ••• M, 

where the velocity is of the form 

v(x,y) = aT(x,y) + 6 

= af(x) of(y) + 6 

and a and 6 are known constants. Thus we have 

dx :: T (y ) 
af(x)f(Ym)+6 m 

where T(Ym) denotes the TOF measurements and :r(Ym) symbolizes the 
integral quantity in (10). 

(10) 

From the solution to the heat flow equation, f(x) has the following 
general form (where, for brevity, we have suppressed the t-dependence in f) 

co 

f(x) = L cne-~t cpn(x) 
n=l 

( 11) 

where the coefficients cn are determined by the initial conditions, 
an are parameters depending on the thermal conductivity and the 
boundary conditions (e.g., heat transfer coefficient), and cpn(x) are 
the eigenfunctions of the heat flow equation and depend on the problem 
geometry and boundary conditions. 
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Our approach to solving (10) is first to approximate f(x) with a 
truncated expansion of the form (11), where N terms are retained, i.e., 

f(x) ~ f(x) ( 12) 

Our objective is to determine the N unknown coefficients an from the M 
measurements T(Ym). Inserting (12) into (10), the mean square error E, 
defined below, is obtained as a function of the coefficients an: 

M 
E(a1, ••• ,an) = ~ [T(Ym) - T(Ym)]2 

m=l 
( 13) 

where T are measurements and T is defined in (10). The least-mean-square 
solution is obtained by minimizing E with respect to the an and substi
~uting th~se ~alues into (12). The reconstructed temperature is then 
T(x,y) = f(x)f(y). Iterative techniques can be used in the minimization of 
(13) • 

The above results were derived assuming a square cross section. A 
similar approach can be applied to the case of a rectangular cross section 
for which the temperature factors as follows: T(x,y) = f(x).g(y). This 
case requires, in general, two perpendicular projections, e.g., TOF 
measured over paths parallel to both the x and y axes. If, however, the 
heat transfer coefficient is known on the boundary, it is not difficult 
to show that the rectangular cross section can be transformed by a rescal
ing into a square cross section, in which case the foregoing algorithm 
(using one projection) is directly applicable. 

SIMULATED RECONSTRUCTIONS 

The above algorithm was tested on computer-simulated TOF data with 
randomly distributed errors added. The solution to the two-dimensional 
thermal conduction equation was first computed for an object with square 
cross section (6 in. on a side) assuming an initially uniform temperature 
of 400°C and cooling into a constant ambient temperature of 25°C. The 
thermal conductivity of 304 stainless steel was used and a heat transfer 
coefficient of 300 watt/oC-m2 was assumed. The 2-D temperature distribu
tions were computed at cooling times of 1, 2 and 5 minutes. At each of 
these times, 15 simulated TOF values were calculated along parallel 
paths through the existing temperature distribution assuming a known, linear 
velocity-temperature relation (with slope -0.68 m-sec- 1/oC). Time-of-flight 
errors uniformly distributed between ±0.05 microsec were added to the 
15 simulated TOF values. (This error is of the order of the precision of 
actual laboratory measurements made previously.) These corrupted values 
were then substituted into (13) and a minimization algorithm applied to 
obtain the coefficients an. 

For the case of 1 and 2 minute cooling times, we found that an 
optimum number (N) of coefficients was about 4. This is the number used 
in the reconstructions shown in figures 4a and 4b, where the dotted lines 
indicate the true temperature profile and the solid line is the recon
struction. This small number reflects the fact that the temperature 
after 1 and 2 minutes is already quite smooth, i.e., only the lowest few 
Fourier components dominate in defining the distribution. For N larger 
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Profiles of the true (dashed line) and reconstructed (solid 
line) temperature through the center of a block of 6 inch 
cross section. Assuming an initially uniform temperature of 
400°C, reconstructions were computed from simulated noisy TOF 
data measured at cooling times of (a) 1 minute, (b) 2 minutes, 
and (c) 5 minutes. In (a) and (b), the asymmetry in the solid 
line is due to the random errors added to the simulated TOF 
data. 
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than 4, no noticeable improvement in the reconstructed distribution was 
observed. Although the true distribution is symmetrical, the 
asymmetry of the reconstructed temperature in figures 4a and 4b (solid 
line) is a result of the random errors added to the simulated 
TOFmeasurements. In the final simulation (Fig. 4c), in which the 
cooling time is 5 minutes, only a single coefficient was used in the 
reconstruction (N=l); no improvement was noted for larger N. Thus, after 
5 minutes of cooling, the lowest order Fourier coefficient in the 
temperature distribution clearly dominates. 

The above simulations demonstrate that quite accurate tomographic 
reconstructions are feasible in a rectangular geometry, with a relatively 
small number of measurements, when factorability of the temperature 
distribution is assumed. The assumption of factorability represents a 
powerful constraint upon the solution, and is a good illustration of the 
use of a priori heat flow information to simplify the tomographic 
reconstruction problem. The factorability constraint has at least two 
important consequences: first, as noted earlier, it significantly reduces 
the number of measurements and, second, by greatly reducing the number of 
degrees of freedom that characterize the temperature distribution, it 
improves the numerical conditioning of the inversion process. This last 
point is also important because numerical ill-conditioning gives rise to 
the amplification of measurement errors in the inversion process, and 
thus can degrade, sometimes severely, the accuracy of the reconstructed 
tempe ra tu re. 
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