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INTRODUCTION 

An imperfect diffusion bond between two dissimilar materials may be modeled by an 
interface with an array of interface cracks. The analytical treatment of the reflection and 
transmission of elastic waves by an array of interface cracks provides the prerequisite for 
nondestructive characterization of the diffusion bond by ultrasonic techniques. This paper 
is to develop approximate solutions for the reflection and transmission coefficients from an 
array of interface cracks. 

It is assumed in this paper that the interface cracks are uniformly distributed along 
the interface. The distribution is characterized by the crack distribution density. By the 
use of a differential self-consistent scheme in conjunction with the backscattering signal 
strength formula [1], the multiple scattering problem from a distribution of interface 
cracks is reduced to finding the crack opening displacement of a single interface crack. 
Once this single scatterer problem is solved (numerically), the effective reflection and 
transmission coefficients are obtained by solving a simple differential equation. Finally, 
applications of the results to nondestructive evaluation of diffusion bonds are discussed. 

Reflection and transmission of elastic waves by an array of cracks in a homogeneous 
solid have been studied extensively, e.g., see [2]-[4]. 

PROBLEM STATEMENT 

Consider an isotropic, linearly elastic bimaterial of infinite extent. A Cartesian 
coordinate system (xl' x2' X3 ) is chosen such that the interface is given by x2 = O. For 
convenience, we call the material in the upper half-space material 1, the one in the lower 

half space material 2. Let Ai' !li be the Lame constants and Pi be the mass density, where 
the subscript i = 1,2 corresponds to the materials with which these constants are 
associated. It is assumed that the interface contains an array of cracks of average length 
2a as shown in Fig. 1. The density of crack distribution can be represented by 

c=aNjL, (1) 

where N is the number of cracks within distance 2L. 
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Fig. 1 An array of interface cracks . 

Next, let a plane, longitudinal, time-hannonic wave travel in the direction of the 
positive x2 axis from x2 = - 00. Assume the wave has an amplitude factor Uo and frequency 

ro. If the steady state term exp( -irot), which is common to all field variables, is omitted, 
the displacement field generated by this plane wave in material 1 can be written as 

in s: ('k(l») 
Ui = Uo U i2 exp I L X2 ' (2) 

where 0ij is the Kronecker delta and kil ) is the longitudinal wavenumber in material 1. 

Because of the interaction between the incident wave and the interface cracks, the 
wave field near the interface is very complicated. However, for reasonably low 
frequencies, the field far from the interface will be dominated by longitudinal plane waves 
[2]. Therefore, the total displacement field may be written as 

(3) 

where R and T are termed the effective reflection and transmission coefficients, 
respectively. Their dependence on the interface cracks distribution is explicitly indicated 
in (3) by denoting them as functions of c, although R and T also depend on frequencies. 

The total displacement field given by (3) implies that the cracked interface may be 
treated effectively as a perfect interface with an effective reflection coefficient that 
depends on the crack distribution. The objective of this paper is to find Rand T in terms 
of c and the incident frequency. 

BACKSCA TIERING AMPLITUDE 

Backscattering from the cracked interface contains two components. One is from 
the cracks, the other is from the interface. In this section, the signal strength fonnula 
derived by Auld [1] will be used to obtain the backscattering from a perfect interface and 
from a single crack on the interface, respectively. 
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Backscatterin& SiWal Stren&th Fonnulas 

For a two transducer system, Auld [1] has derived a steady-state reciprocal relation 
which can be applied to flaw detection and characterization. Transducer I with power P 
produces the incident field. Transducer II is the receiver. The ratio of received electrical 

signal strength over incident signal strength is denoted by r. Auld's fonnula gives the 

change of r due to scattering by an imperfection: 

or = [(Err)flaw -(En)noflaw]/(Ej)flaw, 

where EJ and En are the strengths of the electrical signals in transducer I and II, 
respectively. For backscattering, (4) is simplified to 

(4) 

(5) 

where S is an arbitrary surface which surrounds the scatterer and nj is the nonnal of the 

surface defined positive inward. The quantities cr~y and u}JJ are the stress and 

displacement fields induced by the exciting transducer I with power P in the absence of the 

scatterer, while cr1P and Ui2J are the stresse and displacement fields in the presence of the 

scatterer. One may also call cr~y and u}JJ the incident fields and call crUJ and u?) the total 

fields. 

When the scatterer is a traction-free crack, (5) can be further simplified to 

where !1uk is the crack opening displacement defined by 

and A ± indicate the illuminated and un-illuminated crack faces, respectively. 

In what follows, (5) and (6) will be used to calculate the backscattering from the 
interface and from an interface crack. 

Backscatterin& from the Interface 

(6) 

(7) 

In this section, we consider a perfect interface with reflection coefficient R. For the 
incident wave given in (2), the relevant displacement and stresses on the interface are: 

I 'd fi ld (I) ill (I) in 'k(l) (~ 2 ) nCI ent Ie s: u2 = u2 = Uo ' cr22 = cr22 = I L Uo 1\.1 + III (8) 

Total fields: (9) 

If the entire lower half-space is considered as a scatterer, the backscattering from the 
lower half-space can be calculated through (5). For practical purposes, let us assume that 
the incident beam has a bounded cross-section. Let (-L,L) denote the insonified region on 
the interface by the incident beam. Then, (5) becomes 
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of, =- iro JL (a22u;" -a~;~)dx, 
4P -L 

Making use of (8) - (9) in (10) yields 

Of, =~( ~;)4i(A., +2~,)kl')RL] , 

where, again, L is the half-length of the insonified region by the incident beam on the 
interface. 

Backscatterin~ from an Interface Crack 

(10) 

(11) 

Consider a single crack on the interface. When the incident wave u;" is given by (2), 

the total wave field can be decomposed into three components. For example, the stress 
field in material 1 (x2 < 0) can be written as 

(12) 

wherea~ is the stresses induced by the incident wave,aij is the reflected wave from the 

interface in the absence of the crack, and aij is the scattered field from the crack in the 

absence of the interface. 

To obtain the backscattering from the crack only, we choose the incident field in (6) 
to be 

(13) 

The pertinent component on the crack surface is thus given by 

(14) 

When the incident wave is given by (13), the principle of linear superposition allows us to 

write the corresponding crack opening displacement f,ui as 

where f,vi is the crack opening displacement of an interface crack due to the incident 
displacement wave of unit amplitude. 

Substitution of (14) and (15) into (6) yields the backscattering from an interface 
crack 

where 

(15) 

(16) 

(17) 

is the crack opening area due to an incident displacement wave of unit amplitude. From 
the definition, it is clear that V is independent of the crack length a. However, V is a 
function of frequency. 
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In general, V must be obtained numerically. In this paper, a system of two singular 

integral equations are derived for the dislocation density Ii 

1 11 fj(~) 11 . Pfj(x)+- -):d~+ Kim(x,~)Im(~)d~=gi(x), )=1,2 
1t -1 x-" -1 

(18) 

where the dislocation density is related to the crack opening displacement by 

(19) 

In (18), P is the second Dundur's bimaterial constant and K jm is a regular kernel. The 

integral equation is solved by using the Jacobi polynomial technique [5]. Once the integral 

equation is solved for the dislocation density I j , the crack opening displacement .1vi can 

be obtained from (19). Consequently, the crack opening area V is obtained as a function 
offrequency from (17). 

DIFFERENTIAL SELF-CONSISTENT SCHEME 

Differential self-consistent scheme (DSCS) has been used extensively in the area of 
micromechanics of composite materials. In this section, the DSCS is used to derive a 
differential equation for the effective reflection coefficient R(c) defined in (3). 

The DSCS is based on the notion of incremental construction of the back scattering 
amplitude by adding one crack at a time to the interface. Suppose that at a given crack 
density c, the interface is treated as a perfect one with effective reflection coefficient R(c). 
The back scattering amplitude from this effectively perfect interface can be obtained from 
(11). The fundamental assumption ofDSCS is that when an additional crack is added to 
the interface, the change in back scattering due to this addition is the backscattering from a 
single interface crack. This procedure results in an initial value problem for the effective 
reflection coefficient R 

To accomplish the DSCS procedure, let us consider three problems: 

Problem 1: Assume the interface has a crack density c = aN/(L - a). 

For this problem, if the cracked interface is treated as a perfect interface with 
effective reflection coefficient R(c), the backscattering from the effectively perfect 
interface can be calculated from (11) 

or1 (c) = u~( ~:)[ 4i(A1 +21l1)k2)R(c)L] (20) 

Problem 2: Assume the interface has a crack density c1 = a(N+ 1)/L. 

Again, if the cracked interface is treated as a perfect interface with effective 
reflection coefficient R(c1 ), the back scattering from the effectively perfect interface also 
can be calculated from (11) 

(21) 

Problem 3: Assume a crack oflength 2a is located on the interface having effective 
reflection coefficient R(c), where c = aN/(L - a). 
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It is conceivable that the total backscattering-in this problem contains two 
components. One is from the crack, the other is from the effective interface. The 
component from the interface crack is given by (16) 

Of2 (c) = u~( -!~ )0.1 +2/l1){ikf)a[1-R(c)fv} . 

The component from the effective interface with effective reflection coefficient R(c) is 
given by (20). Therefore, the total backscattering in Problem 3 is the sum of (20) and 
(22). 

(22) 

On the other hand, let us consider an interface having crack density aN/L, i.e., there 
are N cracks in the region [-L, L]. If we want to add an additional crack of length 2a to 
this region, we must rearrange the existing N cracks so that a region of length 2a becomes 
available to accommodate the new crack. Therefore, after the addition, the actual region 
occupied by the previous N cracks is reduced to (2L - 2a). This means that the crack 
density outside the newly added crack is aN/(L - a) instead of the original aN/L. 
However, the actual crack density in [-L, L] becomes a(N+ l)/L after the addition. This 
observation indicates that Problem 3 can be equivalently stated as the consequence of 
adding one more crack to an interface with crack density aN /L. Since both Problem 2 and 
Problem 3 have the same crack density a(N+l)/L, they should have the same 
backscattering amplitude. 

Based on the reasoning above, the DSCS states that the backscattering amplitude 
from Problem 2 is the sum of those from Problem 1 and Problem 3, namely, 

Substituting (20) - (22) into (23) yields 

4R(c\)L=4R(c)+a[1-R(c)fV , 

or 

R(cl)-R(c) _ a[l-R(c)fV 

c1 -c 4L(c1 -c) 

Since 

a 

L(cl-c) l-c 

it follows from (25) that 

R(cl)-R(c) = [l-R(c)fV 
c\ -c 4(1-c) 

In the limit c2 ~ c, (26) becomes 

dR = [1-R(c)]2V 

dc 4(1-c) 

(23) 

(24) 

(25) 

(26) 

(27) 

which is a first order differential equation for the reflection coefficient R as a function of 
the crack density c. 
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An initial condition is required to uniquely detennine R(c) from (27). Since c is the 
crack density, or the percentage of area that is cracked, it is obvious that c = 0 means no 
crack on the interface. In this case, the interface is truly a perfect one and the reflection 
coefficient R from a perfect interface is well know [6] 

(28) 

With (28), the differential equation (27) can be solved to yield a unique solution 

R(c)=I- 4(l-Ro) 
4 - V(I- Ro)Jn(I- c) 

(29) 

This gives the reflection coefficient as a function of crack density c. The frequency 
dependence of R comes from V, the crack opening area as defined by (19). 

To obtain the transmission coefficient T(c), continuity conditions at the interface 
must be used. For a perfect interface, displacement and traction must be continuous at the 
interface. For cracked interfaces, displacement is no longer continuous. However, 
continuity of traction still holds, which, in this case, yields 

k(2) 

T(c) = PI ~I) [1- R(c)] 
P2kL 

(30) 

Note that c may vary from 0 to 1. c = 0 means no crack and c = 1 means fully 
cracked interface, i.e., separation. In the fully cracked case (c = 1), we expect R(1) = 1 
and T(I) = O. It is interesting to notice that the solutions given by (29) - (30) do satisfy 
these limiting conditions exactly, although they are approximate solutions. 

As an example, the amplitude of R for a Cu/AI interface is plotted in Fig. 2 vs. non­
dimensional wavenumber kra for various values of crack density. 
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Fig. 2 Amplitude of the effective reflection coefficient for a Cu/AI interface vs. frequency, 
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Fig. 3 Amplitude of the effective reflection coefficient vs. crack density. 

APPLICATIONS TO NONDESTRUCfIVE EVALUATION OF INTERFACES 

The solutions obtained in the previous section can be used to evaluate interface 
strength. For example, one of the important parameter in determine the remaining bond 
strength is the remaining bond area. When the debond are modeled by interface cracks, 
the remaining bond area is directly related to the crack density c defined in this paper. 

For example, using Fig. 2, another plot can be generated for the Cui Al interface, see 
Fig. 3. To evaluate the bond between Al and Cu, a pulse-echo test can be performed to 

measure the reflection coefficient R. Once R is known for a given frequency, the crack 
density (debond area) can be easily obtained from Fig. 3. 
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