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Abstract
Propensity score weighting adjustment is commonly used to handle unit nonresponse. When the

response mechanism is nonignorable in the sense that the response probability depends directly
on the study variable, a followup sample is commonly used to obtain an unbiased estimator using
the framework of two-phase sampling, where the follow-up sample is assumed to respond com-
pletely. In practice, the followup sample is also subject to missingness. We consider propensity
score weighting adjustment for nonignorable nonresponse when there are several follow-ups and
the final follow-up sample is also subject to missingness. We propose two methods, one using cali-
bration weighting and the other using a conditional likelihood using a so-called reverse conditional
probability. Both methods provides consistent estimates under correct specification of the response
model. A limited simulation study is used to compare the estimators. The proposed methods are
applied to the real data example in a Korean household survey of employment.
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1. Introduction

Propensity score weighting method is a popular tool for handling unit nonresponse in sur-
vey sampling. Many surveys use the propensity score weighting method to reduce non-
response bias (Fuller et al., 1994; Rizzo et al., 1996). If the responses are ignorable in
the sense of Rubin (1976), then the propensity scores can be estimated consistently and
the resulting propensity-score-adjusted (PSA) estimator is easily constructed. Kott (2006),
Kim and Kim (2007), and Kim and Riddles (2012) has investigated some statistical prop-
erties of the PSA estimators under MAR case. If the responses are not ignorable, however,
estimation of the propensity scores is complicated and often requires additional surrogate
variables (Chen, Leung, and Qin, 2008) or instrumental variables (Kott and Chang, 2010)
to estimate the model parameters consistently. Generally speaking, parameter estimation
in the nonignorable response model can be subject to the identifiability problem and often
requires additional assumptions (Wang et al, 2012).

Another way of handling nonignorable response model is to use followup samples to
obtain further observations. Deming (1953) used two-phase sampling theory (Neyman
1938; Hansen and Hurwitz 1946) to obtain a followup sample in the nonrespondents’ stra-
tum and obtained a design-unbiased two-phase sampling estimator where the followup sam-
ple is treated as a second-phase sample in the two-phase sampling setup, assuming that the
followup sample does not suffer from unit nonresponse. Proctor (1977) used a multinomial
distribution to model differential response rate in the followup sample. Drew and Fuller
(1980, 1981) extended the work of Proctor (1977) and developed a maximum likelihood
estimation method for categorical response variable. Alho (1990) extended the approach of
Drew and Fuller to the case of continuous response variable by adopting a logistic regres-
sion model for the response probability. Wood et al. (2006) used a fully parametric model
to apply the EM algorithm.

In practice, we often have nonnegligible nonresponse even after several followup at-
tempts. In the example of Korean Labor force survey discussed in Section 6, followup
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attempts were made up to four times. After the fourth attempt, there are still about 10%
nonrespondents in the sample. This paper, motivated by the Korean labor force survey
example, proposed two estimation methods for handling nonresponse even after several
followups. The proposed methods can be directly applicable to complex sampling setup.
Up to the knowledge of the authors, the existing methods do not fully address nonresponse
with several followup under complex sampling, with the exception of Drew and Fuller
(1981) who only covered categorical survey items. Because we have several attempts, it
turns out that we can not only estimate the model parameters consistently but also perform
model diagnostics from the observed data.

Section 2 presents the basic setup. In Section 3, the first proposed method, based on the
generalized method of moments technique for calibration weighting, is discussed. In Sec-
tion 4, the second proposed method, based on conditional likelihood function, is presented.
In Section 5, the proposed methods are compared in a limited simulation study. Real data
application using Korean labor force survey is presented in Section 6. Concluding remarks
are made in Section 7.

2. Basic setup

Let U = {1, 2, · · · , N} be the set of the finite population with known size N and A(⊂ U)
be the original sample obtained from a probability sampling design. Let yi be the study
variable that can be obtained from the survey. Let di is the sampling weight assigned to
unit i in the sample so that the resulting estimator

Ŷd =
∑
i∈A

diyi

is unbiased for the total Y =
∑N
i=1 yi. We assume that the sampling weights satisfy∑

i∈A di = N .
Now, suppose that the original sample is not fully observed and there are several fol-

lowups to increase the number of respondents. LetA1(⊂ A) be the set of initial respondents
who provided answers to the surveys at the initial contact. Suppose that there are T − 1
followups made to those who remain nonrespondents in the survey. LetA2(⊂ A) be the set
of respondents who provided answers to the surveys at the time of first followup. By defi-
nition, A2 contains those already provided answers in the initial contact. Thus, A1 ⊂ A2.
Similarly, we can define A3 be the set of respondents who provided answers at the time of
second followup. Continuing the process, we can define A1, · · · , AT such that

A1 ⊂ · · · ⊂ AT .

Followup can be also called call-back. Suppose that there are T attempts (or T − 1 fol-
lowups) to obtain the survey response yi and let δit be the response indicator function for
yi at the t-th attempt. If δiT = 0, then the unit never responds and it is called hardcore
nonresponse (Drew and Fuller, 1980). Using the definition of At, we can write δit = 1 if
i ∈ At and δit = 0 otherwise.

When the study variable y is categorical variable with K categories, Drew and Fuller
(1980) proposed using a multinomial distribution with T × K + 1 cells where the cell
probabilities are defined by

πtk = γ(1− pk)t−1pkfk

π0 = (1− γ) + γ
K∑
k=1

(1− pk)T fk
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where pk is the response probability for category K , fk is the population proportion such
that

∑K
k=1 fk = 1 and 1− γ is a proportion of hard-core nonrespondents. Thus, πtk means

the response probability that an individual in category k will respond at the t-th contact
and π0 is the probability that an individual will not have responded after T trials. Under
simple random sampling, the maximum likelihood estimator of the parameter can be easily
obtained by maximizing the log-likelihood

logL =
T∑
t=1

K∑
k=1

ntk log πtk + n0 log π0

where ntk is the number of elements in the k-th category responding on the t-th contact and
n0 is the number of individual who did not respond up to T -th contact. Drew and Fuller
(1981) further extended the results to complex survey sampling.

Alho (1990) considered the same problem with continuous y variable under simple
random sampling. Alho (1990) defined pit to be the conditional probability of δit = 1,
conditional on yi and δi,t−1 = 0, and used the logistic regression model

pit = P (δi,t = 1|δi,t−1 = 0, xi, yi) =
exp (αt + xiφ1 + yiφ2)

1 + exp (αt + xiφ1 + yiφ2)
, t = 1, 2, · · · , T,

(1)
for the conditional response probability where δi0 ≡ 0.

To estimate the parameters in (1), Alho (1990) also assumed that (δi1, δi2−δi1, · · · , δiT−
δi,T−1, 1−δiT ) follows from a multinomial distribution with parameter (πi1, πi2, · · · , πiT , 1−∑T
t=1 πit) where πit = Pr (δi,t−1 = 0, δit = 1 | xi, yi) . Thus, we can write πit = pit

∏t−1
k=1(1−

pik). Under this setup, Alho (1990) considered maximizing the following conditional like-
lihood.

L(φ) =
∏
δiT=1

T∏
t=2

{Pr (δi1 = 1 | xi, yi, δiT = 1)}δi1 ×

{Pr (δit = 1 | xi, yi, δi,t−1 = 0, δiT = 1)}δit

=
∏
δiT=1

(
πi1

1− πi,T+1

)δi1 T∏
t=2

(
πit

1− πi,T+1

)δit−δi,t−1

(2)

where πi,T+1 = 1 −
∑T
t=1 πit. To avoid the non-identifiability problem, Alho (1990)

imposed ∑
i∈A/At−1

δit exp (−αt − φ1xi − φ2yi) = n− (n1 + · · ·+ nt), (3)

for t = 1, 2, · · · , T . Note that (3) computes αt given φ.
Alho’s method used

∑T
t=1 π̂it = 1 − π̂i,T+1 to compute the propensity score-adjusted

(PS) estimator

θ̂PS =
1

n

n∑
i=1

δiT
(1− π̂i,T+1)

yi. (4)

Alho did not discuss variance estimation of the PS estimator in (4). Furthermore, Alho’s
method does not make use of auxiliary variable xi in the nonrespondents and so there is
still room for improvement.

3. Calibration weighting method

In this section, we propose an approach based on calibration weighting to estimate the
model parameters in the conditional response model. Under the conditional response prob-
ability model in (1), we can compute π̃it = Pr(δit = 1 | xi, yi) by π̃it =

∑t
j=1 πij =
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∑t
j=1{pij

∏j−1
k=1(1 − pik)}. Thus, if yi were observed, the model parameters (αt, φ1, φ2)

in the conditional response model (1) could be estimated by solving

∑
i∈A

diδit
1

π̃it
(1, xi, yi) =

∑
i∈A

di(1, xi, yi), (5)

for (αt, φ1, φ2), t = 1, 2, · · · , T , where di is the sampling weight of unit i and. The equa-
tion (5) is often called calibration equation since the PSA estimator applied to (1, xi, yi)
leads to the full sample estimator. When the response mechanism is ignorable (φ2 = 0),
calibration equation approach is quite intuitive and is quite popular in the propensity score
weighting literature (Folsom, 1991; Iannacchione et al. 1991; Fuller et al., 1994; Kott,
2006; Kim and Riddles, 2012).

However, computing π̃it in (5) is somewhat complicated and the calibration equation is
not easy to solve. Thus, instead of solving (5), one can use

∑
i∈A

diδi,t−1(1, xi, yi) +
∑
i∈A

di(1− δi,t−1)
δit
pit

(1, xi, yi) =
∑
i∈A

di(1, xi, yi) (6)

for t = 1, 2, · · · , T . Note that solving (6) is easier than solving (5) as (6) is a simple
function of (αt, φ1, φ2). In practice, neither (5) nor (6) can be used because the right side
on the equality in (5) cannot be evaluated when yi is missing for δiT = 0.

To estimate the parameters, we can use the generalized method of moment (GMM) in a
set of calibration equations that identifies the model parameters and also for the population
parameters (X,Y ). The calibration equations can be written as

∑
i∈A

diδi,t−1(1, xi, yi) +
∑
i∈A

di(1− δi,t−1)
δit
pit

(1, xi, yi) = (N,X, Y ), (7)

for t = 1, 2, · · · , T , and ∑
i∈A

di(1, xi) = (N,X) (8)

where (α1, · · · , αT , φ1, φ2) and (X,Y ) are the unknown parameters to be determined.
Thus, we have p + q parameters (p = dim(x) and q = dim(y)) with (p + q)(T − 1)
equations. When T > 1, we have more equations than parameters and so we can apply the
generalized method of moment (GMM) technique to compute the estimates. If we impose
restrictions ∑

i∈A
diδi,t−1 +

∑
i∈A

di(1− δi,t−1)
δit
pit

= N, t = 1, 2, · · · , T, (9)

then the resulting GMM estimation becomes a constrained GMM estimation.
Writing η = (α1, · · · , αT , φ1, φ2, X, Y ), the GMM estimate can be obtained by mini-

mizing

Q = ÛT (η)
[
V̂ {Û(η)}

]−1
Û(η) (10)

subject to (9), where Û(η) is the system of equations defined in (7) and (8) and V̂ {Û(η)} is
a design-consistent variance estimator of Û(η) for fixed value of η. Computational details
of the constrained GMM are presented in Appendix A. Once the parameter φ is estimated
from the GMM method, our final PS estimator is computed by

ŶPS =
∑
i∈A

di
δiT

(1− π̂i,T+1)
yi. (11)
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For variance estimation, we propose using a replication method, such as the jackknife.
Let η̂ be the solution to the constrained GMM estimation. Under complete response, the
replication variance estimator of ŶHT =

∑
i∈A diyi can be constructed by

V̂ (ŶHT ) =
L∑
k=1

ck
(
Ŷ

(k)
HT − ŶHT

)2
where L is the size of the replication, ck is the replication factor that is determined by
the replication method, and Ŷ (k)

HT =
∑
i∈A d

(k)
i yi is the k-replicate of ŶHT computed by

Ŷ
(k)
HT =

∑
i∈A d

(k)
i yi for some replication weights d(k)i . See Chapter 4 of Fuller (2009) for

more details.
Now, to construct the replication variance estimator of the PS estimator in (4), we first

compute the replicate of η̂, denoted by η̂(k), from the same constrained GMM method using
d
(k)
i instead of di in Û(η). Once η̂(k) are obtained, the replication variance estimator of the

PS estimator is computed by

V̂ (ŶPS) =
L∑
k=1

ck
(
Ŷ

(k)
PS − ŶPS

)2
where

Ŷ
(k)
PS =

∑
i∈A

d
(k)
i

δiT

(1− π̂(k)i,T+1)
yi

and π̂(k)i,T+1 = π̂i,T+1(η̂
(k)). Because ŶPS is a smooth function of η̂, consistency of the

replication variance estimator follows from the standard arguments.

4. Conditional maximum likelihood method

We now consider an alternative approach of computing the parameters in the propensity
score model. The basic idea is to maximize the conditional likelihood among the set of
respondents, those with δi,T = 1, where the response probability is reversed in the sense
that, instead of the original probability in (1), the conditional probability of δi,t−1 = 1 given
that δi,t = 1 is considered. The conditional likelihood was also considered by Tang et al
(2003) and Pfeffermann and Sikov (2011) for the special case of T = 1, i.e. no followup.

The alternative approach based on conditional likelihood consists of two steps. In the
first step, the reverse conditional probability qit = Pr (δit = 1 | δi,t+1 = 1, xi, yi) is de-
rived from the assumed response model. The reverse conditional probability is the condi-
tional probability of response at time t given that it belongs toAt+1. The reverse conditional
probability can be derived from a Bayes formula. That is, we can obtain

qit = Oit/(1 +Oit) (12)

where

Oit ≡
P (δit = 1 | xi, yi, δi,t+1 = 1)

P (δit = 0 | xi, yi, δi,t+1 = 1)

=
P (δit = 1, δi,t+1 = 1 | xi, yi)
P (δit = 0, δi,t+1 = 1 | xi, yi)

=
P (δi,t+1 = 1 | xi, yi, δi,t = 1)

P (δi,t+1 = 1 | xi, yi, δi,t = 0)

P (δit = 1 | xi, yi)
P (δit = 0 | xi, yi)

=
1

pi,t+1

π̃it
1− π̃it
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and π̃it =
∑t
j=1{pij

∏j−1
k=1(1 − pik)}. Thus, we can express qit as a function of α∗t =

(α1, · · · , αt) and φ in (1).
In the second step, the parameter estimate is obtained by maximizing the conditional

likelihood based on the reverse conditional probability. The conditional likelihood to be
maximized at time t is

Lt(α
∗
t , φ) =

∏
i∈At+1

qδitit (1− qit)1−δit ,

where qit is a function of α∗t = (α1, · · · , αt) and φ in (1). For the samples obtained from
unequal probability sampling design, we can consider maximizing the pseudo conditional
log-likelihood function given by

l(α, φ) =
T−1∑
t=1

∑
i∈A

diδi,t+1 {δit log(qit) + (1− δit) log(1− qit)} . (13)

To incorporate the observed auxiliary information outside At, we add the following con-
straint ∑

i∈A
di(1− δi,t−1)

δiT
p̂it

=
∑
i∈A

di(1− δi,t−1), t = 1, 2, · · · , T (14)

∑
i∈A

di
δiT

(1− π̂i,T+1)
xi =

∑
i∈A

dixi. (15)

Incorporating the constraints into the PS estimation is equivalent to finding the solution that
is the stationary point of the following Lagrangian function

L(α, φ, λ) = l(α, φ) + λT g(α, φ) (16)

where g(α, φ) are the constraint functions in (14) and (15). Once the parameters are es-
timated, we can use ŶPS in (11) to estimate the total Y . Computational details and the
asymptotic normality of the resulting constrained pseudo maximum likelihood estimator
are discussed in Appendix B.

Instead of deriving the reverse conditional probability qit from the original response
probability pit in (1), one can directly assume a model for qit = Pr (δit = 1 | δi,t+1 = 1, xi, yi).
In this case, because yi are observed when δi,t+1 = 1, we can directly estimate the parame-
ters from the maximum likelihood method. For example, we can directly construct a model

Pr (δit = 1 | δi,t+1 = 1, xi, yi) =
exp(α∗t + φ∗1xi + φ∗2yi)

1 + exp(α∗t + φ∗1xi + φ∗2yi)
:= qit(α

∗
t , φ
∗
1, φ
∗
2) (17)

for t = 1, 2 · · · , T , where it is understood that δi,T+1 = 1 for all i ∈ A. In this case, the
maximum likelihood for φ∗ is obtained by maximizing the pseudo log-likelihood (13). To
incorporate the observed auxiliary information of xi outside AT , we can impose additional
constraint ∑

i∈A
di
δi,T
qiT

(1, xi) =
∑
i∈A

di (1, xi) . (18)

There are several advantages of using a direct model for qit such as (17). First, the
computation is easy and straightforward. Second, because we always observe (xi, yi) for
δi,T = 1, model is easy to verify from the sample. That is, we can use the model diagnostic
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tools from the observed sample directly. Third, modeling itself is also flexible. Instead of
assuming equal coefficient (φ∗1, φ

∗
2) in (17), we can build a more general model

Pr (δit = 1 | δi,t+1 = 1, xi, yi) =
exp(α∗t + φ∗1txi + φ∗2tyi)

1 + exp(α∗t + φ∗1txi + φ∗2tyi)
:= qit(α

∗
t , φ
∗
1t, φ

∗
2t)

(19)
for t = 1, 2 · · · , T − 1. Once a consistent estimator for (φ1t, φ2t) are constructed for
t = 1, · · · , T − 1, we can perform a hypothesis testing for

H0 : (φ1t, φ2t) = (φ1, φ2) .

If the null hypothesis cannot be rejected, then we can use model (17) for constructing the
PS estimator. If the null hypothesis is rejected, then one may consider a model such as(

φ̂1t
φ̂2t

)
=

(
β10 β11
β20 β21

)(
1
t

)
+

(
u1
u2

)

and predict (φ̂1T , φ̂2T ) = (β̂10 + β̂11T, β̂20 + β̂21T ) to obtain the PS estimator using
q̂iT = qi(φ̂1T , φ̂2T ). See Section 6 for illustration of the pre-test estimation.

5. Simulation study

We perform a simulation study from an artificial finite population of sizeN = 10, 000 with
x ∼ N(0, 1/4) and u ∼ N(0, 1/4) where x, u are independent. In addition, we construct
yi = xi + ui with xi − 1 ≤ yi ≤ xi + 1. That is, yi follows from a truncated normal
distribution. From the finite population, we selected B = 2, 000 independent Monte Carlo
samples {(xi, yi), i = 1, 2 · · · , n} of size n = 400 using the simple random sampling.

From each sample, we applied two callbacks to obtain the followup samples. In each
trial we have the same response probability, up to the intercept term αt,

pit = g(αt + 0.2xi + 0.5yi)

where αt is determined to satisfy the desired response rate and g(x) = exp(x)/{1 +
exp(x)}. Note that the response model is essentially the same model considered in Alho
(1990). The overall response rate is about 38.2% for t = 1 and 72.6% for t = 2.

From the sample generated above, we computed four estimators of θ = E(Y ): full
sample estimator assuming no nonresponse, Alho’s estimator (Alho), conditional maxi-
mum likelihood estimator (CMLE), and the calibration estimator (CAL). Table 1 presents
the performance of the three estimators with followup samples. All the estimators have neg-
ligible biases but both CMLE and CAL are more efficient than Alho’s estimator because
they use extra auxiliary information (xi) observed throughout the sample. The CMLE is
slightly more efficient than the CAL estimator because the maximum likelihood estimator
is generally more efficient than the method-of-moment estimator under the correct para-
metric model.

Variance estimators of calibration and conditional maximum likelihood methods were
also computed. For calibration, we used the replication method discussed in Section 3
while we used the linearization method to compute the variance estimate for the conditional
maximum likelihood method. Both methods show negligible biases in the simulation, less
than 7 percent of the relative biases in absolute values.
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Table 1: Monte Carlo biases, variances, and mean squared errors (MSE) of the point esti-
mators.

Estimator Bias Variance MSE
Full Sample 0.0000 0.0011 0.0011
Alho 0.0059 0.0032 0.0033
CMLE 0.0044 0.0021 0.0021
CAL 0.0031 0.0024 0.0024

Table 2: Response and nonresponse in 2009 Korean LALF survey

status T=1 T=2 T=3 T=4 No reponse
Employment 81,685 46,926 28,124 15,992

Unemployment 1,509 948 597 352 32350

Not in LF 57882 32308 19086 10790

6. Application

The proposed methods were applied to the 2009 Korean Local-Area labor force (KLALF)
survey. The KLALF is a large-scale labor force survey to get improved local-area level
estimates. In the 2009 KLALF data, 157,205 sample households were contacted up to four
followup. Table 2 displays the realized number of respondents for each of the follow-up
attempts.

Table 3 shows the result of estimated φt for t=1,2,3 using logistic regression reverse
propensity model

P (δit = 1|δi,t+1 = 1, yi) =
exp(αt + φtyi)

1 + exp(αt + φtyi)
(20)

where yi = 1 if unemployed and yi = 0 otherwise. Because of the monotone (decreasing)
structure of the missing data, yi are observed when δt+1 = 1 and the parameters in (20)
can be easily obtained by the maximum likelihood method. From the estimation results in
Table 3, we concluded that φt is constant over follow-ups. Thus, we can safely assume that
the reverse propensity model is

P (δit = 1|δi,t+1 = 1, yi) =
exp(αt + φyi)

1 + exp(αt + φyi)
. (21)

We are interested in estimating three parameters θ1, θ2 and θ3, which denote the pro-
portion of employment, unemployment and not in labor force, respectively. Note that
θ3 = 1−θ1−θ2 and so we report the result for θ1 and θ2 only. Under the assumed response
model (21), we obtained five different estimates. The first one is the naive estimator that
is computed by the simple mean of the respondents without making any adjustment. The
other estimates are computed using Drew and Fuller (1980) method, Alho (1990) method
and our two proposed methods. In computing Alho’s method, we use the conditional proba-
bility model (1). We applied variance estimation method discussed in Section 3 and Section
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Table 3: Estimated φt in model (20)

φ̂t 95% C.I. for φt
t=1 -0.112 (-0.191,-0.031)
t=2 -0.112 (-0.200,-0.025)
t=3 -0.110 (-0.219,-0.002)

Table 4: Estimated parameters for labor force in Korean LALF

Parameter Method Estimates S.E(×10−3)
Naive 0.5831 9.37
Alho 0.5829 9.28

θ1 Drew & Fuller 0.5847 10.06
CMLE 0.5829 9.30

Calibration 0.5830 9.33
Naive 0.0115 2.11
Alho 0.0119 2.70

θ2 Drew & Fuller 0.0119 2.44
CMLE 0.0119 2.31

Calibration 0.0117 2.46

4 for the conditional maximum likelihood method and the calibration method. In comput-
ing Alho’s method, we use the conditional probability model (1). For Drew and Fuller’s
model, we used an EM algorithm to parameter estimates for In Table 4, the four meth-
ods (excluding Naive method) produce slightly increased estimates for unemployment rate,
which implies that the missing rate is higher for unemployed people, which is also verified
from the result in Table 3. The CMLE shows the smallest estimated standard error among
the methods considered.

7. Concluding remarks

We have considered the problem of parameter estimation under nonignorable nonresponse
when the followup sample is also subject to missingness. Under the conditional response
model (1), we can use a constrained maximum likelihood likelihood method to improve
the efficiency by incorporating the auxiliary information, as discussed in Section 4, or use
a calibration weighting method based on the constrained generalized method of moment
method, as discussed in Section 3. Both methods effectively incorporate the auxiliary infor-
mation available throughout the sample and provide consistent propensity-score-adjusted
estimator under the conditional response model pit = Pr (δi,t = 1 | δi,t−1 = 0, xi, yi). The
price to pay is the computational complexity associated with the constrained optimization.

In large-scale survey data, computational complexity can be an issue and in this case a
simple approximation can be used by employing a parametric model for the reverse con-
ditional probability qit = Pr (δi,t = 1 | δi,t+1 = 1, xi, yi). The approach based on the
reverse conditional probability simplifies the computation and enables model diagnostics.
For example, in the Korean Labor force data example in Section 6, the reverse propensity
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model is used to test whether the slope remains the same over the followup attempts. Such
approach seems to be useful for the official surveys where the survey participation is no
longer mandatory.

Appendix

A. Computation for Constrained GMM

We now discuss the computation for GMM method in Section 3. Let X =
∑N
i=1 xi and

Y =
∑N
i=1 yi. Writing θ̂t(x) =

∑
i∈A di{δi,t−1 + (1 − δi,t−1)δitp−1it }xi, the calibration

equation can be expressed as(
θ̂t(1), θ̂t(x), θ̂t(y)

)
= (N,X, Y ), t = 1, 2, · · · , T

and (
θ̂HT (1), θ̂HT (x)

)
= (N,X).

Thus, writing η = (N,X, Y, α1, · · · , αT , φ1, φ2), we have

U(η) =


U1(η)
UHT (η)
Ux(η)
Uy(η)


where

U1(η)′ =
[
θ̂1(1)−N, · · · , θ̂T (1)−N

]
UHT (η)′ =

[
θ̂HT (1)−N, θ̂HT (x)−X

]
Ux(η)′ =

[
θ̂1(x)−X, · · · , θ̂T (x)−X

]
Uy(η)′ =

[
θ̂1(y)− Y, · · · , θ̂T (y)− Y

]
.

The variance-covariance matrix of U(η) are easily computed for fixed value of the param-
eter η by ignoring the randomness of δ’s. The optimal value of η minimizing the Q-term
can be obtained by minimizing

Q = U(η)′ {V (U)}−1 U(η) (A.1)

with respect to η.
However, the solution η̂ may not satisfy U1(η̂) = 0 and UHT (η̂) = 0. We should

impose the restriction U1(η̂) = 0 and UHT (η̂) = 0 into the GMM estimation. To discuss
the constrained GMM, write (A.1) as

Q =

(
Ua(η)′

Ub(η)′

){
Vaa Vab
Vba Vbb

}−1(
Ua(η)
Ub(η)

)
(A.2)

where

Ua(η) =

[
U1(η)
UHT (η)

]

Ub(η) =

[
Ux(η)
Uy(η)

]
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and obtain
Q = Qa +Qb

where
Qa = Ua(η)′ {Vaa}−1 Ua(η) (A.3)

and

Qb =
(
Ub − VbaV −1aa Ua

)′ {
Vbb − VbaV −1aa Vab

}−1 (
Ub − VbaV −1aa U1

)
. (A.4)

Thus, the constrained GMM with constraint Ua(η̂) = 0 is equivalent to minimizing

Q∗b(ηb) = Ub(ηb)
′
{
Vbb − VbaV −1aa Vab

}−1
Ub(ηb)

where ηb is the subvector of η excluding α1, · · · , αT and X.
We now discuss how to compute the variance-covariance matrix V (U) in (A.1). Let an

design-unbiased estimator of θ̂HT (y) =
∑
i∈A diyi be of the form V̂ =

∑
i∈A

∑
j∈A ∆ijyiyj .

To estimate the variance estimator of θ̂t(x) =
∑
i∈A diηit, where ηit = δit+(1−δi,t−1)δitxi/pit,

the naive variance estimator

V̂naive,t =
∑
i∈A

∑
j∈A

∆ijηitηjt

can be constructed, where ∆ij = (πij − πiπj)/(πijπiπj). To see the unbiasedness of the
naive variance estimator, note that

E
{
V̂naive,t

}
= E

∑
i∈A

∑
j∈A

∆ijE (ηitηjt | At−1)


= E

∑
i∈A

∑
j∈A

∆ijE (ηit | At−1)E (ηjt | At−1)


+E

∑
i∈A

∑
j∈A

∆ijCov (ηit, ηjt | At−1)


= E

∑
i∈A

∑
j∈A

∆ijxixj

+ E

{∑
i∈A

∆iiV (ηit | At−1)
}

= V

(∑
i∈A

dixi

)
+ E

{∑
i∈A

(
1− πi
π2i

)
(1− δi,t−1)(p−1it − 1)x2i

}
.

On the other hand, the variance of θ̂t(x) is

V
(
θ̂t(x)

)
= V

{
E
(
θ̂t(x) | At−1

)}
+ E

{
V
(
θ̂t(x) | At−1

)}
= V

(∑
i∈A

dixi

)
+ E

{∑
i∈A

π−2i (1− δi,t−1) (p−1it − 1)x2i

}
.

Thus, ignoring the finite population correction term, the naive variance estimator is unbi-
ased.
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B. Constrained maximum likelihood method

Let θ ∈ Θ = {(α, φ); g(α, φ) = 0}. The solution θ̂ which maximizes (13) under con-
straints (14) and (15) is obtained by solving the following augmented Lagrangian function
with additional parameters λ,

L(θ, λ) = l(θ) + λT g(θ)

where l(θ) is defined in (13) and g(θ) corresponds the constraints in (14) and (15). Also the
solution of this equation is equivalent to solve simultaneous non-linear equationsU2(θ, λ) =
0, which is called Karush-Kuhn-Tucker(KKT) conditions (Boyd and Vandenberghe, 2004),
where

U2(θ, λ) =

[
g(θ)
S(θ) + ∂g(θ)/∂θTλ

]

where S(θ) is a score function for (13) such that

S(θ) =
T−1∑
t=2

∑
i∈A

hitdiδi,t+1(δit − qit(θ))

hit = (1 +Oit)
−1∂logit(Oit)/∂θ.

If n1 is the number of parameters for θ and n2 is the number of constraints for g(θ), then we
have n1+n2 equations and n1+n2 parameters for θ and λ in U2(θ, λ). Thus, U2(θ, λ) = 0
has an exact solution and ∂U2(θ, λ)/∂(θ, λ) is invertible under suitable assumptions.

Let η = (θ, λ) and define

U(η, Y ) ≡
[
U1(η, Y )
U2(η)

]
U1(η, Y ) = Ŷcmle(η)− Y

where Y is population total and

Ŷcmle(η) =
∑
i∈A

di
{
δiT (1− πi,T+1(θ))

−1
}
yi.

Under some regularity conditions, by the Talyor linearization, the optimal estimator Ŷopt
can be written,

Ŷopt = Ŷcmle(η0) +
∂U1(η0)

∂η
(η̂ − η0) + op(n

−1/2) (B.1)

U2(θ̂
∗) = U2(η0) +

∂U2(η0)

∂η
(η̂ − η0) + op(n

−1/2) (B.2)

Since the columns of ∂U2(η)/∂η are linearly independent, ∂U2(η0)/∂η is invertible and,
by substituting (B.2) to (B.1),

Ŷopt = Ŷcmle(η0)−
∂U1(η0)

∂η

[
∂U2(η0)

∂η

]−1
U2(η̂) + op(n

−1/2). (B.3)

and the asymptotic normality can follow by the standard argument.
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