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ABSTRACT

Graphs are a standard tool for deriving a flexible abstraction of interactions among entities and

are extensively employed in a myriad variety of domains from various disciplines, including

bioinformatics, biochemistry, social sciences, and neurobiology. These, and many more ubiquitous

domains, can be modeled as graphs (also called networks), which capture interactions (i.e., edges)

and discrete entities (i.e., vertices). Understanding the underlying structure of complex networks

is a typical data-mining task. Widespread research works have shown that the small subgraphs

(also known as motifs or graphlets) frequency distribution is an effective tool to analyze complex

networks. Graph motifs such as triangle (a cycle of size three), diamond (two triangles with one

vertex in common), butterfly (a (2,2)-biclique), and k-clique (for k ≤ 6) are indeed regarded as

building blocks to understand the true structure of an underlying network. Indeed, graph motifs

resemble cohesion and furnish analytic insights into the heart of real-world networks.

Due to the surge of data, further fueled by inevitable combinatorial explosion, counting motifs

turns out to be a challenging task in large-scale networks. A possible approach to cope with the

ever-increasing cost of counting in large graphs is to approximate the number of motifs through a

sampling mechanism. The mainstream existing approximation approaches provide an estimation

of motif count with a considerable reduction in runtime, tailoring these methods to accomplish

counting in planetary-scale networks. The demand for approximate approaches is further

nurtured by its numerous real-world applications, which do not require an exact count of motifs

while an accurate but faster approximation will suffice. Consequently, several approximation

approaches have been designed to estimate triangle and butterfly count, many in static graphs,

and far fewer in streaming network, which the network is dynamically changed upon receiving

edge insertions/deletions. The main focus of this dissertation is approximate approaches in static

and streaming networks for graph motif counting, more specifically triangle and butterfly



x

counting. We discussed several randomized algorithms and presented the empirical evaluations for

several algorithms. We compared the runtime and accuracy of existing work for triangle counting

in static and streaming networks in great detail. Further, we described our approximation

algorithms for butterfly counting. The experiments for butterfly counting shows that our

algorithms outperform the existing methods in terms of runtime and accuracy.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Graphs are a standard tool for deriving a flexible abstraction of interactions among entities and

are extensively employed in a myriad variety of domains from various disciplines, including

bioinformatics, biochemistry, social sciences, and neurobiology. These, and many more ubiquitous

domains, can be modeled as graphs (also called networks) which capture interactions (i.e., edges)

and discrete entities (i.e., vertices). Understanding the underlying structure of complex networks

is a typical data-mining task. Widespread research works such as [16, 21, 73] have shown that the

small subgraphs (also known as motifs or graphlets) frequency distribution is an effective tool to

analyze complex networks. Graphlets such as triangle (a cycle of size three) [7], diamond [13],

butterfly [76, 102], (α, β)-core biclique [57], 4-vertex subgraphs [43], and k-clique [42] are indeed

regarded as building blocks which resemble cohesion and furnish analytic insights into the heart of

real-world networks. For this reason, finding and counting graphlets are among the most

important and widely-used network analysis procedures for providing significant statistics to

characterize the local properties of underlying networks. In the following, we list two real-world

applications of graphlet counting.

• Graphlet counting for aerial image category recognition: Aerial image category

recognition is an essential aspect of image recognition, with numerous applications, such as

scene annotation, urban studies, landscape studies for drought monitoring, video

surveillance, and robotics path planning [107], to identify scene components in aerial

images. For example, an accurate scene annotation system should be able to distinguish a

parking lot in an aerial image from other, similar areas, such as the landing area of an

airport. The high number of components and complex spatial interactions among the

components make the category detection a prohibitively time-consuming task. An aerial
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image can be viewed as a set of components linked by geospatial interactions. An aerial

image comprises millions of pixels that are interpreted as local features. The high number of

pixels makes the computational complexity for category recognition intractable. The

components of an aerial image, along with their interactions, can be interpreted as a large

network. Therefore, one can apply graph mining algorithms to discover the categories of

components. As shown in [107], graphlets are extracted from the underlying network after

converting an aerial image to a network. The graphlets reflect the geometric property and

color/texture distribution of components of an aerial image. The similarity between two

components (e.g., roads, parking lots, houses) can be measured by comparing the graphlets

count, thereby leading to the entity recognition in an aerial image with millions of pixels.

• Graphlet counting in online advertising and recommendation systems: Graphlet

counting in bipartite networks is highly applied in advertising and online recommendations.

Online shopping networks such as Amazon resemble bipartite networks, where customers

form one partition, and products form the other. In these networks, a customer and an item

are two types of vertices and interact with each other (i.e., they are connected by an edge) if

the customer purchases the item. The ranking functions that are fundamentally based on

the number of graphlets, such as butterflies, could be used to enhance recommendation

systems for purposes of suggesting the right goods to customers. Indeed, the ranking

functions use graphlet counts to show the similarity between customers’ interests.

Therefore, their purchases can be recommended to their peers. A reliable recommendation

system enhances the quality of the recommendation and expands economic activities and

e-commerce transactions in an online shopping platform. This promotes the economic

growth of businesses that sell their products online through the host merchandising

networks.

Due to the surge of data, further fueled by inevitable combinatorial explosion, counting graphlets

turns out to be a challenging task in large-scale networks. A practical exact algorithm [80] for

counting triangles, as the smallest nontrivial graphlet in a unipartite network, can handle only
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medium-size graphs with millions of edges and take time complexity O(m3/2), where m is the

number of edges. It stands to reason that sequential exact methods cannot truly cope with

web-scale networks with billions of edges. In recent years, researchers have designed an

assortment of parallel approaches with varying capabilities, which generally process multiple

computational tasks concurrently, to improve the performance of the counting process. Believe it

or not, the deployment of a massive parallelism in exact methods fails to handle real-life networks,

growing exponentially in scale. In addition, parallel computing on graphs suffers from a range of

inherent challenges, including irregular graph structures, unbalanced computational sub-tasks,

poor data locality, high latency connections, and memory access overhead; thereby, highly

challenging for large-scale graph processing. [58] discusses the foregoing pitfalls with more details.

One possibility to cope with the ever-increasing cost of counting in large graphs is to approximate

the number of graphlets through a sampling mechanism. The mainstream existing approximation

approaches provide an estimation of graphlet count with a considerable reduction in runtime,

tailoring these methods to accomplish counting in planetary-scale networks. The demand for

approximate approaches is further nurtured by its numerous real-world applications, which do not

require an exact count of graphlets while an accurate estimation using a faster estimator will

suffice. Consequently, several approximation approaches have been designed to estimate triangle

and butterfly count, many in static graphs, and far fewer in streaming networks, i.e., the network

that are dynamically changed upon receiving edge insertions/deletions. In this vein, we mainly

focused on counting two basic, yet non-trivial graphlets: triangles and butterflies.

Triangle (a cycle of size 3 or a 3-clique) is formed by three vertices which are fully connect.

Triangle is considered the most basic yet non-trivial graphlet in unipartite networks which is

formed by . The number of triangles in a network is used to measure important triadic metrics

such as transitivity degree and clustering coefficient. The quantity is also targeted for discovering

thematic structures in the Web [29] and has application in spam detection, graph classification

[100], and community detection. We described existing work using parallel exact and approximate
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methods, randomized algorithms, and algorithms for streaming networks. We conducted extensive

empirical evaluation to compare the most efficient triangle estimators in static network.

For butterfly counting, we consider bipartite (affiliation) networks, an important type of network

for many applications [19, 54]. For example, relationships between authors and papers can be

modeled as a bipartite graph, where authors form one vertex partition, papers form the other

vertex partition, and an author has an edge to each paper that she published. Other examples

include user-product relations, word-document affiliations, and actor-movie networks. Bipartite

graphs can represent hypergraphs that capture many-to-many relations among entities. A

hypergraph H = (VH , EH) with vertex set VH and edge set EH , where each hyper-edge h ∈ EH is a

set of vertices, can be represented as a bipartite graph with vertex set VH ∪ EH with one partition

for VH and another for EH , and an edge from a vertex v ∈ VH to an edge h ∈ EH if v is a part of h

in H. For example, a hypergraph corresponding to an author-paper relation where each paper is

associated with a set of authors can be represented using a bipartite graph with one partition for

authors and one for papers.

A common approach to handle a bipartite network is to reduce it to a unipartite co-occurrence

network by a projection [62, 63]. A projection selects a vertex partition as the set of entities and

creates a unipartite network whose vertex set is the set of all entities, and two entities are

connected if they share an affiliation in the bipartite network. In the author-paper network, a

projection on the authors creates a unipartite co-authorship network. However, such a projection

causes the number of edges in the graph to explode, artificially boosts the number of triangles and

clustering coefficients and results in information loss. For instance, we observed up to 4 orders of

magnitude increase in size when the bipartite network between wikipedia articles and their

editors in French is projected onto a unipartite network of articles – the number of edges goes

from 22M to more than 200B. As a result, it is preferable to analyze bipartite networks directly.

While there is extensive work on graphlet counting in unipartite networks, these do not apply to

bipartite networks. Graphlets in bipartite networks are very different from graphlets in a

unipartite network. The most commonly studied graphlets in a unipartite network are cliques of
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Figure 1.1: A triangle in graph G.

small sizes, but a bipartite graph does not have any cliques with more than two vertices, not even

a triangle! Instead, natural graphlets in a bipartite network are bicliques of small size.

The most basic graphlet that models cohesion in a bipartite network is a complete 2× 2 biclique,

also known as a butterfly [6, 78] or a rectangle [101]. Although there have been attempts at

defining other cohesive graphlets in bipartite networks, such as the complete 3× 3 biclique [19]

and 4-path [64], the butterfly remains the smallest unit of cohesion and has been used in defining

basic metrics such as the clustering coefficient in a bipartite graph [56, 75]. In particular, it is the

smallest subgraph that has multiple vertices on each side with multiple common neighbors. It can

be considered to play the same role in bipartite networks as the triangle did in unipartite

networks – a building block for community structure [6]. Notice that the rectangle counting

algorithms for the unipartite graphs are not suitable for the butterfly counting in the bipartite

graphs because algorithms for unipartite graphs assume edges between any two vertices in

unipartite graphs which is not true in the case of bipartite graph. We view butterfly counting as a

first, but important step towards general methods for graphlet counting and analysis of bipartite

affiliation networks. We described and extensively evaluated static and streaming butterfly

counting methods which can accurately estimate the number of butterflies in a given large

bipartite network.

1.2 Preliminaries

First, we introduce the notations for both static and streaming methods for triangle counting. In

static networks, we consider simple, unweighted, and undirected graph G = (V, E), with n = |V|
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vertices labeled 1, 2, · · · , n and m = |E| edges. For every vertex v ∈ V, Γv = {u|(v, u) ∈ E} denotes

the set of vertices adjacent to v (i.e., neighbors of v), and dv = |Γv| denotes the degree of v. dmax

denotes the maximum degree of a vertex in the graph. In addition, when we refer to a wedge, we

mean a path of length two, and W shows the number of wedges. A triangle is a ternary

relationship among three distinct vertices such that each possible edge among them exists in the

graph (see Figure 1.1). Triangle is indeed a 3-clique or a 3-cycle (a cycle of size three). Figure 1.1

shows an example of a triangle in a graph. We define T (G) = {δ(1), δ(2), · · · , δ(∆)} as the set of all

triangles in G, where δ(i) is the ith triangle (the order of triangles can be arbitrary) and ∆(G) as

the number of triangles in G, i.e., ∆(G) = |T (G)|. For simplicity, when it is clear from context, we

suppress notation G. In addition, given an edge e ∈ E , ∆(e) denotes the number of triangles in G

which edge e is a part of. Similarly, ∀v ∈ V,∆(v) indicates the number of triangles which vertex v

is a part of. We define κ as the number of unordered pairs of distinct triangles that share an edge.

The existing static algorithms aim to compute ∆(G).

As a static bipartite graph, we consider simple, unweighted, bipartite graphs, where there are no

self-loops or multiple edges between vertices. Let G = (V, E) be a simple bipartite graph with

n = |V| vertices and m = |E| edges. Vertex set V is partitioned into two sets L and R such that

V = L ∪R and L ∩R =Ø. The edge set E ⊆ L×R. In addition,

Γ2
v = {w|(w, u) ∈ E ∧ w 6= v, ∀ u ∈ Γv} is the set of vertices that are exactly in distance 2 from v,

i.e., neighbors of the neighbors of v (excluding v itself). A biclique is a complete bipartite

subgraph, and is parameterized by the number of vertices in each partition; for integers α, β, an

α× β biclique in a bipartite graph is a complete subgraph with α vertices in L and β vertices in

R. A butterfly in G is a 2× 2 biclique and consists of four vertices {a, b, x, y} ⊂ V where a, b ∈ L

and x, y ∈ R such that edges (a, x), (a, y), (b, x), and (b, y) all exist in E . Let ./ (G) denote the

number of butterflies in G (we use notation ./ when G is clear from the context). For vertex

v ∈ V, let ./v denote the number of butterflies that contain v. Similarly, for edge e ∈ E , let ./e

denote the number of butterflies containing e (See Figure 1.2). We aim to compute ./ (G) for a

static graph G.
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Table 1.1: Notations

G = (V, E) Simple graph with vertices V and edges E .

V = L ∪R In bipartite networks, V is partitioned into L and R s.t. L ∩R =Ø.

Γv Set of vertices adjacent to v, i.e., {u|(v, u) ∈ E}.

dv Degree of vertex v, i.e., |Γv|.

n,m,W Number of vertices (|V|), edges (|E|), and wedges (
∑
v∈V

(
v
2

)
).

dmax Maximum degree of a vertex in the graph.

Γ2
v Distance-2 neighbors of v (excluding itself).

./ (G) (or ./) Number of butterflies in graph G.

./v(e) Number of butterflies that contain vertex v (edge e).

∆(G) Number of triangles in G.

∆ (v) Local number of triangles which vertex v is a part of.

∆ (e) Local number of triangles which edge e is a part of.

κ Number of (unordered) pairs of triangles in G that share an edge.

S A sequence or a stream of edges.

R Reservoir to keep a summary of the stream.

M Size of reservoir, i.e., |R|.

A bipartite graph stream is a sequence of edges S = 〈e1, •〉, 〈e2, •〉, · · · where ei is the ith edge

and • ∈ {+,−}, which indicates whether an edge is inserted or deleted from the stream. For

t > 0, let St denote the first t edges of the stream and let Gt = (Vt, E t) denote the graph formed

by the first t edges. Let ./t (G) denote the number of all butterflies in Gt. In insertion-only

streams, we suppress • because edges are always inserted to the stream. Note that, we are given a

reservoir R to keep the summary of the graph which is used to estimate the number of butterflies

at any time t.

Infinite Window: For any t > 0 and a stream S, the goal is to continuously maintain (an

estimate of) ./t, the number of butterflies in the graph Gt, as t increases.

Sliding Window: For a window size parameter W , a sequence based sliding window is defined

as the set of W most recent edges. For t ≥W , when edge et is observed, the sliding window

consists of edges et −W + 1, et −W + 2, · · · , et. For t < W , the window consists of the entire

stream so far. The goal is to continuously maintain an estimate of the number of butterflies in the

graph defined by the sliding window. We also consider time-based sliding window, a
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Figure 1.2: Four butterflies in graph G. The number of per-vertex and per-edge butterflies are

shown for some vertices/edges.

generalization of sequence-based window, defined as the set of edges whose timestamps are the

most recent. In a time-based window, the window size does not correspond to a specific number

of edges, but instead to a range of timestamps.

We summarize the notations in Table 1.1. When estimating the number of triangles and

butterflies, we look for provable guarantees on the estimates computed using the following notion

of randomized approximation. For parameters ε, δ ∈ [0, 1], an (ε, δ)− approximation of a number

Z is a random variable Ẑ such that Pr[|Ẑ − Z| > εZ] ≤ δ.

1.3 Contribution

1.3.1 Triangle Counting in Static Networks

One possibility to cope with the ever-increasing cost of counting in large graphs is to approximate

the number of triangles through a sampling mechanism. The mainstream existing approximation

approaches provide an estimation of triangle count with a considerable reduction in runtime,

tailoring these methods to accomplish counting in planetary-scale networks. The demand for

approximate approaches is additionally nurtured by numerous real-world applications, which do

not require an exact count of triangles while an accurate estimation using a faster estimator will

suffice. In return, several approximation approaches have been designed to estimate triangle

count in static networks. Here, we list our contributions for triangle counting in static networks.

• Theoretical comparison: We discussed the accuracy, runtime, and space utilization of

the most efficient estimator in detail. We computed variance and showed the unbiased

expectations of estimators. Static estimators are divided into two subsections based on their
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sampling approaches: 1) One-shot 2) Local sampling approximation. In Table 3.2, we

provided the upper bounds on the variance of static estimators using one-shot approaches.

• Framework: We implemented several existing methods in a framework, which includes the

most efficient triangle counting methods.1 We provided a user-friendly interface that shows

the progress of executions and will output the runtime and estimates of triangle count along

with other useful statistics. Researchers will be able to run their experiments on different

networks, and the size of output files (i.e., the number of checkpoints for recording

estimates, runtime, etc.) can be determined beforehand. Also, it is possible to add a new

method to the existing library with minimal effort. The library is publicly available, which

makes it easy for further contribution from the research community.

• Extensive experiments: We presented experimental results of existing triangle counting

methods in static networks. The runtime, the accuracy, and the throughput of estimators

are depicted in experimental sections. Based on the results, we carried out a thorough

comparison between the performance of estimators. We used real-world networks with

billions of edges and hundreds of trillions of triangles. In addition, we discussed and

proposed the state-of-the-art in various scenarios based on our experimental evaluations

backed up with theoretical guarantees.

1.3.2 Butterfly Counting in Static and Streaming Networks

We present efficient algorithms to accurately estimate the number of butterflies in a bipartite

static and streaming networks. Our algorithms are simple to implement, backed up by theoretical

guarantees, and have good practical performance. We introduce randomized algorithms to find

the approximate number of butterflies in a static network by sampling. Our static algorithms are

able to derive accurate estimates with error as low as 1% within a few seconds, are much faster

than the exact algorithms, and have an insignificant memory print. Further ahead, we present

highly accurate, memory efficient algorithms for approximating butterflies in an insertion-only

1https://github.com/beginner1010/Triangle-Counting
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graph stream. The streaming algorithms use a fixed size memory which is much smaller than the

size of entire stream and continuously maintains an estimation of butterfly count upon arriving

edges. In this section, we included the randomized algorithms in static networks from our prior

work [76] and also our streaming algorithms of [77] for insertion-only streams. The

implementation of algorithms for butterfly counting in static and streaming bipartite networks are

publicly available.2

• Algorithms for static bipartite networks: In static networks, we assume that the

entire network can be stored in memory. The goal here is to approximate the global

butterfly count of the input graph. We present two types of randomized algorithms:

– One-shot sparsification: This approach assumes that the entire graph is available

for processing. it thins down the graph to a much smaller sparsified graph through

choosing each edge of the original graph with a certain randomized procedure. Exact

butterfly counting is then applied on the sparsified graph to estimate the number of

butterflies in the original graph. We present two such algorithms – ESpar and

ClrSpar.

– Local sampling: These methods, on the other hand, can work under limited access to

the input graph. They randomly sample small subgraphs local to an element of the

graph and use them to compute an estimate. This is in contrast to sparsification,

which needs a global view of the graph. We investigate sampling of subgraphs localized

around a vertex (VSamp), edge (ESamp), and a wedge (WSamp). Sampling

algorithms are especially useful when there is a rate-limited API that provides random

samples, such as the GNIP framework for Twitter [1] and the Graph API of

Facebook [2]. In the rest of this report, when we say “sampling algorithms”, we

mean local sampling algorithms.

– Experiments on real-world static networks: We present results of an evaluation

of our algorithms on large real-world networks. These results show that the algorithms

2https://github.com/beginner1010/ButterflyCounting
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can handle massive graphs with hundreds of millions of edges and trillions of

butterflies. Our most efficient sampling algorithm, which we call ESamp

+Fast-eBFC, gives estimates with a relative error less than 1 percent within 5

seconds, even for large graphs with trillions of butterflies. We observed a similar

behavior with our best one-shot sparsification algorithm, ESpar, which typically yields

estimates with error less than 1 percent, within 4 secs.

• Algorithms for graph streams: In a streaming setting, edges arrive over time as a

sequence of updates. Mainly, there are two scenarios: 1) insertion-only streams where edges

are only inserted to the graph 2) fully dynamic setting where the stream is in the presence

of both edge deletion and insertion. Here, we present accurate, memory efficient algorithms

for insertion-only streams. In addition, we present sliding window algorithms in network

streams to estimate the number of butterflies in time- and sequence-based window of the

stream.

– Infinite window insertion-only: We present small-memory algorithms for

estimating the number of butterflies within an infinite window consisting of all edges

seen so far in the stream. The memory used by our algorithms is no more than a given

parameter M. We first present an algorithm Fleet1 that is based on adaptive random

sampling from the edge stream so that as more edges are seen, the sampling

probability decreases so as to fit within available memory. We prove that the estimator

returned by Fleet1 is unbiased and derive concentration bounds showing that the

estimator is close to the actual value with a high probability if the memory used is

large enough. We present two enhancements to Fleet1, leading to algorithms Fleet2

and Fleet3, which provide better memory-accuracy trade offs in practice.

– Infinite window fully-dynamic: In a more general and challenging scenario, edges

can be deleted from the input stream. While the mainstream algorithms are designed

for graphlet counting in insertion-only streams, there are only few algorithms to handle
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fully-dynamic streams. We present memory-efficient algorithms to count butterflies in

fully-dynamic streams. We also showed the expectation return values of the algorithms

are unbiased.

– Sliding window insertion-only streaming: In stream data mining, the scope of

aggregation often needs to be restricted to include edges that have arrived within a

recent window. To handle such cases, we present extensions of Fleet to the sliding

window model [12, 20, 32]. We consider two types of sliding windows: 1) For a

sequence-based window, defined as the set of W most recent edges in the stream for a

window size parameter w, we present an algorithm FleetSSW. 2) For a time-based

window, defined as stream elements whose timestamps are greater than (c− w), where

c is the current time and w is the window size, we present an algorithm FleetTSW.

Both algorithms use a bounded memory that does not increase with the number of

edges in the window. Our algorithm for a time-based window is flexible to receive the

window size as a parameter during the query and does not need to know the window

size in advance.

– Experiments on real-world graph streams: We experimentally evaluate Fleet

on real-world graph streams. Results show that our algorithms are effectively able to

handle large graph streams. For instance, on network Bag-pubmed (see Table 5.1) with

approximately 500M edges and 40T butterflies, our algorithms achieve estimates with

an error of less than 1% using a memory of 600K edges. Our methods present different

trade-offs between memory, estimation accuracy, and runtime, making them applicable

in real-world applications with different requirements and significantly outperform

prior works on subgraph counting from graph streams.



13

CHAPTER 2. EXISTING WORK AND RESEARCH PROBLEM

In this section, we introduce and motivate the graphlet counting problem in massive networks.

The literature is rich in triangle counting methods in various settings, such as exact methods,

parallel methods, randomized methods in static networks, and streaming algorithms. However,

bipartite networks are triangle free. We developed several methods for butterfly counting. Note

that butterflies are the smallest non-trivial motif in bipartite networks. In the following, we

introduce the existing work for graphlet counting including triangles and butterflies.

2.1 Triangles

The literature is rich for computing triangle count, including matrix-based, parallel, and

randomized approaches. Several works for enumerating the triangles of a network have been

designed. The I/O-efficient algorithms include the work of Chiba and Nishizeki [23], which

enumerate triangles with time complexity O (mα (G)), where m is the number of edges and α (.) is

the arboricity of the graph.1 Shank and Wagner [80] developed an exact O
(
nc2

max

)
algorithm,

where n is the number of vertices and cmax is maximum core number of vertices in the graph. The

other enumeration methods include in-memory methods [53, 79, 84], in the external-memory

model [26, 61], and in parallel/distributed settings [33, 68, 69, 91]. In the following we list prior

exact triangle counting methods using single-core machines, parallel methods, and approximation

methods, including main-memory, streaming, and sub-linear algorithms.

2.1.1 Exact methods on single-core machines

Coppersmith and Winograd in 1990 [24] designed an exact algorithm using matrix multiplication

with O
(
n1.41

)
time complexity. This method is still recognized as the fastest exact algorithm.

1Arboricity number of a graph is defined as the minimum number of spanning forests to cover all edges of the

graph.
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However, it requires O
(
n2
)

space; hence, poorly scales in practice when a network contains

millions of vertices. Prior to this work, Itai and Rodeh [41] presented an exact algorithm with

time complexity O
(
m1.5

)
. While this method has a higher asymptotic time bound than of [24], it

is efficient in space utilization and better scales in real-world networks, given that a high degree of

sparsity is a commonplace property of mainstream real-world networks.

2.1.2 Exact Parallel Approaches

One practical solution for computing triangle counting faster than exact methods is leveraging

parallel/distributed platforms. These platforms enable fast computation in massive networks with

hundreds of trillions of triangles. Parallel shared-memory methods with multi core machines,

shared-nothing platforms such as MapReduce, and Graphical Processing Units (GPUs)-based

methods are arguably the three most prominent approaches to tackling triangle computation in

very large networks.

Parallel methods using shared-memory models: In a multi-core shared memory model, a

shared memory is utilized to store the input graph such that the memory is globally available to

multiple threads, and threads can work on triangle computation in parallel. Shared memory

approaches are of high interest in industry and research community because, today, a single

multi-core machine can support hundreds of cores and several terabytes of fast memory.

Green et al. [35] developed two parallel vertex- and edge-centric triangle counting algorithms with

a reasonable balanced workload among threads. The edge-centric algorithm theoretically has a

better load balancing while it requires more memory space than the vertex-centric algorithm

requires. Green et al. showed that due a higher overhead, computational complexity, and

synchronization cost, edge-centric approach has lower performance in practice. Shun and

Tangwongsan [91] designed a parallel shared-memory algorithm, which consists of two main steps:

1) Vertices are ordered in parallel based on their degrees to improve the performance of memory

access and to reduce the number of cache misses. 2) Set intersection is performed on the ordered

adjacency lists to count the number of triangles in parallel. Tom et al. [96] introduced
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OpenMP-based shared-memory triangle counting methods, using lists and hash-maps to enhance

cache utilization and to reduce the overall computation cost. While the list- and map-based

algorithms considerably achieve a better runtime than of [91], they still suffer from a high

message communication overhead, affecting the overall runtime drastically.

In general, the discussed methods above suffer from some drawbacks, which are mainly caused by

the shared-memory nature of the methods. Specifically, imbalanced workload, inefficient memory

utilization, the high overhead of communications are the main challenges of shared-memory

approaches. Kanewala et al. [47] designed a generic distributed, shared-memory parallel

framework to tackle the mentioned issues. In their work, vertices are blocked and partitioned

based on their degrees to reduce remote communication messages. In addition, blocking

strategies, such as block aggregation, were deployed to reduce the number of small messages,

which can cause nontrivial overheads. Donato et al. [28] introduced an OpenMP-based algorithm

that is a variation of the sequential forward algorithm of [80]. They designed data preparation

strategies equipped with a cache-efficient data structure, which is composed of two Compressed

Sparse Row (CSR) matrices for maintaining upper and lower triangles of the adjacency matrix.

Parallel methods using shared-nothing models: Data distribution and parallelization arise

as practical solutions for triangle computation in massive graphs. In a shared-nothing model, the

parallel algorithm is reposnsible to split and dispers the input graph among commodity,

independent processors, where processors do not share memory nor they interact with each other.

Generally, triangle counting for a graph partition, driven to a processor, is performed locally.

Ultimately, the output of processors are combined and aggregated to compute the final answer.

Here, we discuss counting methods based on shared-nothing models such as MapReduce

frameworks and Message Passing Interfaces (MPIs). MapReduce, as a de-facto standard tool in

the shared-nothing environment, enables the distribution and processing of massive input data

through three main phases: Map, Shuffle, and Reduce. Map converts data into pairs of entries,

and Shuffle directs the generated pairs to corresponding reducer machines2, based on a

2Machines in phase Reduce
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user-defined hash function. In both phases Map and Reduce, machines of the MapReduce cluster

work independently in parallel on counting triangles. Suri and Vassilvitskii [93] designed a

vertex-centric method for counting the number of triangles using MapReduce. The algorithm has

two phases. First, wedges (path of length 2) are generated by pivoting on vertices in parallel.

Second, it counts wedges, generated in the first phase, which form a triangle (i.e., closed with an

additional edge) such that wedges are distributed among different machines. Park and Chung [67]

designed Triangle Type Partition (TTP), which is a MapReduce algorithm and is based on a

graph partitioning technique. Each triangle of a graph is classified into one of three types, based

on the number of partitions which its vertices are part of. This classification sensibly reduces

duplication in triangle counting and leads to a higher throughput than its prior works.

There are also parallel triangle counting methods using MPI. Arifuzzaman et al. [9] introduced a

parallel MPI-based algorithm, based on a vertex-centric algorithm for counting triangles. It

employs an overlapping partitioning scheme for workload balancing among individual threads.

This algorithm can efficiently process sparse networks. However, since the partitions might have

overlaps, they can grow as large as the size of the entire network when the network has vertices

with high degrees. Arifuzzaman et al. [10] made a further improvement in runtime through

designing a space-efficient MPI-based algorithm, which employs a non-overlapping partitioning

and achieves 25x speedup over their prior work. Tom and Karypis [95] introduced a distributed

memory MPI-based algorithm, following their prior shared-memory algorithm [96]. Vertices are

ordered based on their degrees and the input graph is stored using CSR format as a preprocessing

step in this method. Then, a 2D decomposition of adjacency matrix is performed to cyclically

distribute blocks of the input matrix among processors. The 2D decomposition extends the

degree of parallelism and reduces the overall communication overhead. In addition, there are

parallel hybrid triangle counting methods such as [3, 47], which are based on both shared-memory

and distributed schemes to leverage the benefits of both platforms.

Parallel methods with GPU implementation: Modern GPUs, consisting of tens of

multiprocessor cores, provide massive parallelism in order to deliver high throughput. Here, we
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explore GPU-based triangle counting methods and indicate that GPU implementations are

extremely fast and well suited for counting triangles in large graphs which can contain tens of

billions of edges.

Green et al. [36] introduced a scalable GPU implementation for triangle counting with a

multi-level parallelism. In the work of Green et al. [36], first, vertices of the graph are distributed

among multiprocessors on GPU. Then, a path method based on merge path [34], which is a

highly efficient GPU merging algorithm for set intersection, is performed on sub-tasks in

individual threads. Further ahead, Polak [72] designed a triangle counting method using Compute

Unified Device Architecture (CUDA3) programming model on multiple GPUs, which is basically

the GPU version of the sequential forward algorithm, due to Schank and Wagner [80]. In this

work, edges which are originated by the endpoint with a higher degree (in tiebreak with a higher

ID) are filtered out. Then, the common neighbors of each remaining edge is computed in parallel

for counting triangles. Another parallel vertex-centric algorithm for CUDA is developed by Bisson

and Fatica [17]. Bitmaps are used to represent adjacency lists of a graph, and the lists are stored

in a shared memory to accelerate the process of triangle counting in this method.

Further, Wang et al. [103] introduced GPU triangle counting methods to mitigate a high memory

usage, required by prior work. Their method is based on three techniques: 1) Triangle counting

using subgraph matching which uses a filtering-and-joining procedure using Gunrock

programming model [105]. 2) Triangle counting using set intersection which adapts the forward

algorithm of Schank and Wagner [80] for GPU implementation. 3) Triangle counting using matrix

multiplication, inspired by the work of Azad et al. [11]. Their empirical evaluation shows that, in

most cases, set intersection technique obtains a better performance than other methods. Recently,

Hu et al. [40] designed TriCore, a GPU-based approach, which uses a binary search-based

intersection method for counting the number triangles that an edge is part of. TriCore partition

the input graph among GPUs and exploits a workload management for obtaining a better load

balancing. In [39], Hu et al. further improved the runtime of their prior work, i.e., TriCore,

3CUDA, developed by NVIDIA, is a programming interface for parallel computing on GPUs.
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through a better balanced workload of the input graph partitions and higher cache efficiency of

data, stored in CPU memory, for a faster processing.

However, the aforementioned approaches such as merge-path and binary-search based methods

suffer from unbalanced workload distribution, high time complexities, excessive pre-processing

overheads, high memory usage, and costly memory accesses. Recently, H-Index, developed by

Pandey et al. [66], resolves the drawbacks and inefficiencies through a hash-indexing mechanism

and a friendly memory access design. H-Index employs hash-indexing for bucketing adjacency

lists into buckets. Each entry of a longer adjacency list (i.e., the adjacency list of the endpoint

with a higher degree) is hashed to the corresponding buckets. This process helps accelerate

searching through the common neighbors of the two endpoints of an edge. Also, it provides a

memory friendly storage format for GPUs which results in a high memory throughput.

Remarkably, H-Index stands out from its prior works by achieving 141 billion Traversed Edge Per

Second (TEPS) rate on graph Protein K-mer V2a with 64 GPUs.

2.1.3 Approximation Approaches

On an abstract level, approximation methods through sampling mechanisms have been proposed

to cope with the increasing size of input graphs. In many real-world scenarios that an exact count

is not necessarily required, a faster yet accurate estimator is highly preferable. It is worth noting

that while there are numerous approximation algorithms for static and streaming graphs, there

are far fewer sub-linear methods. Sub-linear triangle counting, including [30, 81, 106],

approximate the number of triangles while require reading a small fraction of the entire input.

Note that streaming and static randomized algorithms require to read the entire graph or stream,

which may be time-consuming when the size of input graph is large. Here, we briefly discuss

existing methods for static and streaming algorithms. We extensively evaluate and analyze

state-of-the-arts of these two types of approximation methods in the next sections.

Approximation methods for static graphs: State-of-the-art sampling method, when the

entire graph can be store in the main memory, is known as wedge sampling [83, 99]. [83] estimates
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the triangle count by uniformly sampling wedges (a path of length two). Either the sampled

wedge does not form a triangle or it does, the estimate is updated proportionately to keep the

estimation of triangle count unbiased. The accuracy of this method is further improved by [98]

due to Turk and Turkoglu. They narrowed down the sample search of candidate wedges through a

global degeneracy ordering in vertices. Their estimator has a lower variance as the size of the

sample search is smaller, hence a lower variance of the estimator.

In addition, the research community developed parallel approximation algorithms for static

graphs. Rahman and Al Hasan [74] presented an approximation counting, based on edge-centric

approach, for multicore machines. Kolda et al. [48] presented a wedge sampling counting method

based on a MapReduce implementation. The MapReduce framework yields fast and accurate

estimators and are enabled to deal with massive graphs, containing billions of edges.

Approximation methods for graph streams: In streaming model, edges of graph arrive from

a stream and a limited memory budget (also called reservoir) is available for processing. This

model is advantageous when the size of stream is huge and the entire graph cannot fit in the main

memory. Some edges might be evicted from the memory to keep memory usage below the given

limited budget. [14, 25, 45, 50, 60] presented one- and multi-pass streaming algorithms where the

size of reservoir is not fixed and depends on the structure of graph. Pavan et al. [70] and Jha et

al. [44] developed one-pass algorithms, which use a fixed-size reservoir for sampling edges from an

insertion-only stream. Lim and Kang [55] presented one-pass algorithms using a fixed probability

but not a fixed reservoir size. Their work is further improved by Stefani et al. [92]. They

presented a suite of one-pass streaming algorithms using fixed-size reservoirs. In addition, they

introduced an algorithm to handle fully dynamic streams, i.e., when both insertion and deletion

of edges can occur over the stream. The estimators update the triangle count when an edge is

inserted or deleted from the reservoir to maintain the estimations unbiased. Shin [86] improved

the accuracy of estimates through a 2-layered reservoir where recent edges have a greater

likelihood to get sampled and kept in the reservoir. They empirically verified that at any time

stamp of a stream recent edges of real-world networks are more likely to form triangles than older
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ones. In addition, Wang et al. [104] designed a one-pass streaming algorithm to handle edge

duplicates in a graph stream.

There are also works on parallel and distributed streaming algorithms. The main aim in these

algorithms is to enhance both runtime and accuracy through leveraging the benefits of parallelism

and distributed memory. These algorithms were first studied by Pavan et al. [94], where they

designed a parallel, shared-memory algorithm for estimating the triangle count in the entire input

stream. Moreover, Shin et al. [90] designed a fast and accurate distributed algorithm in a

shared-nothing scheme, which significantly improves their prior parallel and distributed method

[87].

2.2 Bipartite Graphlets

Modeling the smallest unit of cohesion enables a principled way to analyze networks. While the

literature is quite rich with the studies on counting triangles and small cliques in unipartite

graphs [5, 21, 42, 43, 70, 71, 83, 94], these works are not applicable to bipartite networks. To the

best of our knowledge, Borgatti and Everett [19] are the first to consider cohesive structures in

bipartite networks to analyze social networks. They proposed to use the 3× 3 biclique as the

smallest cohesive structure, motivated by the fact that a triangle in a unipartite graph has three

vertices, and the same should be considered for both vertex sets of the bipartite graph. Opsahl

also proposed a similar approach to define the clustering coefficient in affiliation networks [64].

Robins and Alexander argued that the smallest structure with multiple vertices on both vertex

sets is a better model for measuring cohesion in bipartite networks [75], as also discussed in a

later work [56]. They used the ratio of the number of 2× 2 bicliques (butterflies) to the number of

3-paths (a path of three edges) to define the clustering coefficient in bipartite graphs. The

butterfly is also adopted in a recent work by Aksoy et al. [6] to generate bipartite graphs with

community structure. Butterfly counting is also applicable to the study of graphical codes

(Halford and Chugg [38]). The numbers of cycles of length g, g + 2, and g + 4 in bipartite graphs,
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where g is the girth4, characterize the decoding complexity – note that the butterfly is the

simplest non-trivial cycle in a bipartite graph.

2.3 Butterflies

Recently, several algorithms are designed for exact butterfly counting in large graphs. Wang et al.

[101], presented exact algorithms for butterfly counting in static graphs that outperform generic

matrix multiplication based methods [8]. Wang et al. [102] introduced a vertex priority based

which is considered as exact state-of-the-art and is built upon the exact algorithm of [76]. In

vertex priority approach, a global ranking is applied to all vertices based on their degrees in the

graph. Similarly to the exact algorithm of [76], wedges are processed for counting butterflies such

that among three vertices of each wedge, the middle vertex of a vertex has the lowest rank.

Therefore, the time complexity of the method is reduced to

min{∑u∈U(G) deg(u)2,
∑

v∈L(G) deg(v)2}. Further ahead, Shi and Shun [85] presented several

parallel algorithms for global and local butterfly counting. The core of the proposed framework,

ParButterfly, is mainly relied on wedge counting. More specifically, wedges are built on the fly

through their middle vertex, which is considered as building block for counting butterflies. Wedge

aggregation step is performed in parallel to speedup the overall process. Moreover, a global

ranking is applied to vertices to avoid any duplication in counting. The approximation parallel

version of ParButterfly is built upon the randomized algorithms of [76]. We [76] presented

exact and suite of randomized algorithms for butterfly counting on static bipartite graphs and

further developed methods for butterfly counting in stream settings [77], where edge insertion is

allowed.

2.4 Other Graphlets in Graphs

Recent works on counting 4-vertex [4] and 5-vertex subgraphs [71] have focused on exact counting

and are not designed for streaming graphs. Because a butterfly is a 4-cycle, prior works on

4length of the shortest cycle in a graph
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counting 4-cycles in any graph stream [15, 18, 22, 46, 59] can be also applied to a bipartite graph

stream, and we compare with such prior work. Note that these algorithms do not use the

additional structure in a bipartite graph (absence of edges between vertices in the same partition)

and are thus naturally disadvantageous for bipartite streams. Bordino et al. [18] present

three-pass algorithms for counting 4-cycles, while we focus on single-pass streaming algorithms.

Buriol et al. [22] consider 3× 3 biclique counting from a stream. They assume the incidence

stream model, where edges in the graph stream are presented in a specific order such that all

edges incident to a given vertex arrive together, whereas we assume the more general model where

edges can arrive in an arbitrary order. Bera and Chakrabarti [15] present algorithms for counting

4-cycles in a graph using two passes through the stream. The work of Ahmed et al. Other works

include Manjunath et al. [59] and Kane et al. [46] for subgraph counting based on graph sketches.

2.5 Research Problem

The main focus of this dissertation is to count the number of the most basic yet non-trivial

graphlets such as triangles in unipartite networks and butterflies, i.e., 2× 2 bicliques, in bipartite

networks. For both triangles and butterflies we consider two types of networks: 1) Static

networks, where the entire network is available at once, and the goal is to count the total number

of a specific graphlet. 2) Network streams, when a sequence of edges appear at a time, and the

goal is to maintain graphlet count at any time upon addition/deletion of edges.
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CHAPTER 3. TRIANGLE COUNTING IN STATIC NETWORKS

In this section, we theoretically and empirically discuss two types of randomized algorithms for

finding the approximate number of triangles through various sampling mechanisms. We provide

in-depth analyses of the variances along with experimental comparisons on their accuracy and

runtime. We also demonstrate that these efficient approximation algorithms are notably faster

than exact computation. Moreover, we show that state-of-the-art methods yield accurate

estimates as low as 1% error in only a few seconds.

3.1 One-shot Sparsification Algorithms

In one-shot sparsification algorithms, the input graph is downsized through a sampling step.

Then, an exact triangle counting algorithm is applied on the sparsified graph, and the exact count

is scaled up to estimate the actual number of triangles in the original graph. Here, we present two

of such algorithms: DoulionSpar due to Tsourakakis et al. [97] and ClrSpar due to Pagh and

Tsourakakis [65].

3.1.1 Doulion Sparsification

In DoulionSpar, the input graph G is first narrowed down into a smaller graph G′ through the

independently sampling of each edge using a fixed probability p. Then, the number of triangles in

G′ is computed and scaled up to derive an estimate of ∆(G). This is faster than working with the

original graph G since the number of edges in G′ can be much smaller. DoulionSpar is shown in

Algorithm 1.

Lemma 1. Let YDSpar denote the output of DoulionSpar, given input graph G and probability

p. Then, E [YDSpar] = ∆. Then, the variance of DoulionSpar is

Var [YDSpar] = ∆
(
p−3 − 1

)
+ κ

(
p−1 − 1

)
.
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Algorithm 1: DoulionSpar

Input: A graph G = (V, E), parameter p, 0 < p < 1.

1 Construct sparsified graph G′ = (V, E ′) by retaining each edge e ∈ E independently with

probability p.

2 αDSpar ← ∆(G′) // exact counting in G′
3 return αDSpar · p−3 // scale up the count by p−3

Proof. For i = 1, · · · ,∆, let Xi denote a Bernoulli random variable such that Xi is 1 if ith triangle

exists in the sampled graph G′ = (V ′, E ′), and 0 otherwise. Let αDSpar =
∑∆

i=1Xi as defined in

Line 2 of Algorithm 1. With linearity of expectation, we know

E [αDSpar] =
∑

E [Xi] =
∑

Pr [Xi = 1]. Because each single edge is sampled independently with

fixed probability p, a triangle appears in sampled graph G′ with probability p3, i.e.,

Pr [Xi = 1] = p3. Hence, E [YDSpar] = p−3 · E [αDSpar] = p−3 ·∑Pr [Xi = 1] = ∆.

Here, we compute the variance of DoulionSpar. Two distinct triangles i and j share at most

one edge which accounts for the covariances of random variables Xi and Xj , i.e., Cov [XiXj ].

Hence, the computation of Var [YDSpar] leads to:

Var [YDSpar] = Var

[
p−3 ·

∆∑
i=1

Xi

]

= p−6

 ∆∑
i=1

(
E [Xi]− E [Xi]

2
)

+
∑
i 6=j

Cov [XiXj ]


= p−6

∆ ·
(
p3 − p6

)
+
∑
i 6=j

Cov [XiXj ]


To compute Cov [XiXj ] of two distinct triangles i and j, we consider two cases: 1) Triangles i and

j share no edge. The probability of both i and j are sampled in G′ is p6, i.e., E [XiXj ] = p6. Thus,

Cov [XiXj ] = E [XiXj ]− E [Xi]E [Xj ] = p6 − p6 = 0. 2) Triangles i and j have an edge in

common. The probability that both i and j appear in G′ is p5, i.e., E [XiXj ] = p5. Hence,

Cov [XiXj ] = E [XiXj ]−E [Xi]E [Xj ] = p5− p6, and Var [YDSpar] = ∆
(
p−3 − 1

)
+κ

(
p−2 − 1

)
.

The proof of Theorem 1 reveals that pairs of triangles with edges in common impact the variance.

If such pairs of triangles are more in a particular graph, the variance of DoulionSpar will be

higher.
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Figure 3.1: Sampling procedure in ClrSpar for C = 2. Edges with monochromatic endpoints are

sampled and construct G′.

Algorithm 2: ClrSpar

Input: A graph G = (V, E), number of colors C.

1 Let f : V → {1, · · · ,C} // map to random colors

2 Construct G′ = (V, E ′) such that E ′ ← {(u, v) ∈ E|f(v) = f(u)}
3 αCSpar ← ∆(G′)
4 return αCSpar · p−2 where p = 1/C

3.1.2 Colorful Sparsification

ClrSpar samples edges and constructs a smaller sparsified graph, as in DoulionSpar, while

unlike DoulionSpar sampled edges have dependencies such that there is a greater likelihood to

capture triangles in ClrSpar. The algorithm assigns one of C colors to every vertex in G

uniformly at random and then downsizes graph G by keeping the edges whose endpoints have the

same color (see Figure 3.1 for the sampling procedure in ClrSpar when C = 2). Ultimately, an

exact counting is performed on the sparsified graph, and a derandomized factor is used to derive

an unbiased estimate in the original graph. Algorithm 2 presents a description of ClrSpar. Note

that the expected number of sampled edges is mp, the same as in DoulionSpar, while the

scaling-up factor of ClrSpar is p−2, which is smaller than of DoulionSpar
(
p−3
)
. This fact

implies that for the same sampling probability p and roughly the same size of sampled edges,

ClrSpar can capture more triangles from the original graph.
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Algorithm 3: Impr-ESpar

Input: A graph G = (V, E), parameter p, 0 < p < 1.

1 Construct sparsified graph G′ = (V, E ′) by sampling each edge e ∈ E independently with

probability p.

2 αIMSpar ← 0

3 for each sampled edge (v, u) ∈ E ′ do

4 if dv > du then Swap(v, u)

5 Randomly select vertex x ∈ (Γv \ {u}).
6 if {v, u, x} ∈ T (G) then // forms a triangle

7 αIMSpar ← αIMSpar + dv − 1

8 end

9 end

10 return αIMSpar/(3 · p)

Lemma 2. Let YCSpar denote the output of ClrSpar, given input graph G and C colors (here

p = 1/C). Then, E [YCSpar] = ∆. Then, the variance of ClrSpar is

Var [YCSpar] = ∆
(
p−2 − 1

)
+ κ

(
p−1 − 1

)
.

Proof. E [YCSpar] and Var [YCSpar] can be derived through a pretty much the same approach as the

analyses of Theorem 1.

3.1.3 Improved Edge Sparsification

Impr-ESpar due to Turk and Turkoglu [99] comprises two separate sampling steps. First,

Impr-ESpar sparsifies the input graph similar to algorithm DoulionSpar through sampling

each edge independently with a fixed probability p. Then, it randomly samples wedges (i.e., two

adjacent edges) whose one of edges is already selected with probability p in the previous sampling

step. Finally, the estimator is updated if the sampled wedge is closed (i.e., it erects a triangle).

Algorithm 3 describes Impr-ESpar in detail.
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Lemma 3. Let YIMSpar denote the output of Impr-ESpar, given input graph G and fixed

probability p. Then, E [YIMSpar] = ∆. The variance of Impr-ESpar is:

Var [YIMSpar] = p

 ∑
e=(v,u)∈E
dv≤du

dv ·∆ (e)− 3

− p2 (3∆ + κ)

Proof. Note that here we only present a proof of the expectation. For a thorough analysis on the

variance of Impr-ESpar, see Lemma 2 of [99].

For every three vertices v, u, w ∈ V such that v ≤ u and {v, u, w} ∈ T (G) (i.e., v, u and w form a

triangle in G), let Svuw be a random variable where Svuw is v − 1 if edge e = (v, u) is sampled

with probability p and vertex w is randomly selected from Γv \ {u} (Line 5 of Algorithm 3),

otherwise the random variable is 0. Hence,

E [Svuw = v − 1] = Pr [(v, u) ∈ E ′] · Pr [{v, u, w} ∈ T (G)|(v, u) ∈ E ′] = p. We compute αIMSpar

(defined in Algorithm 3) as follows:

αIMSpar =
∑

e=(v,u)∈E
v≤u

∑
w∈Γv

Svuw = 3 ·∆

Note that factor 3 appears in the result of αIMSpar as every single triangle is counted by 3 distinct

edges from the first summation. With linearity of expectation, we get

E [αIMSpar] =
∑

(v,u)

∑
w E [Svuw] = 3 · p ·∆. Thus,

E [YIMSpar] =
E [αIMSpar]

3p
= ∆

which completes the proof.

3.1.4 Approximation by Local Sampling

In this section, we present two methods that estimate ∆(G) through sampling small substructures

from the input graph. The intuition in such approaches is that a particular subgraph is sampled,

and then an estimation is derived. Since the subgraph is typically smaller than the original graph,
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Algorithm 4: WSamp (single iteration)

Input: A graph G = (V, E)

1 W ←∑
v∈V

(
dv
2

)
2 Select a vertex v ∈ V with probability

(
dv
2

)
/W .

3 Randomly select two distinct vertices x, y ∈ Γv.

4 if {v, x, y} ∈ T (G) then αWSamp ← 1

5 else αWSamp ← 0

6 return αWSamp ·W/3

it is less expensive to perform an exact computation. The sampling process is repeated multiple

times, and estimates are averaged to improve the accuracy Here, we present two method based on

wedge (path of length two) sampling: WSamp due to Seshadhri [82] and Impr-WSamp due to

Turk and Turkoglu [98].

3.1.5 Vanilla Wedge Sampling

Here, we present WSamp due to Seshadhri et al. [82] which is a wedge sampling approach and is

known as an efficient sampling scheme for triangle counting. WSamp samples a wedge uniformly

at random from G and then examines if the sampled wedge is closed (i.e., forms a triangle). To be

more specific, WSamp samples a vertex v with probability Wv/W , where Wv =
(
dv
2

)
and

W =
∑

u∈V
(
du
2

)
. Then, a pair of neighbors of v is selected uniformly at random which means

vertex v coupled with the two sampled neighbors form a wedge. If the sampled wedge is closed

(i.e., it is a part of a triangle), the estimator is updated accordingly. Remind that the sampling

process is repeated multiple times, and averaged, to enhance the accuracy of estimates.

Algorithm 4 presents a single iteration of WSamp.

Lemma 4. Let YWSamp denote the output of WSamp, given graph G. Then, E [YWSamp] = ∆ and

Var [YWSamp] = ∆
(
W
3 − 1

)
− 2
(

∆
2

)
.

Proof. Consider that the triangles in G are labeled from 1 to ∆ (G). Let Xi denote a Bernoulli

random variable such that Xi is 1 if ith triangle includes the sampled wedge (sampled in Line 3 of

Algorithm 4), and Xi is 0 otherwise. First, we show that each wedge is sampled uniformly at

random, and then verifies that the expectation is unbiased and equals ∆ (G).
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Algorithm 5: Impr-WSamp (single iteration)

Input: A graph G = (V, E)

1 Compute d∗v, ∀v ∈ V. // degenercy number

2 Γ∗v = {u| (v, u) ∈ E ∧ rank (v) < rank (u)} and d∗v = |Γ∗v|, ∀v ∈ V.

3 W ∗ ←∑
v∈V

(
d∗v
2

)
4 Select a vertex v ∈ V with probability

(
d∗v
2

)
/W ∗.

5 Randomly select two distinct vertices x, y ∈ Γ∗v.

6 if {v, x, y} ∈ T (G) then αWSamp ← 1

7 else αWSamp ← 0

8 return αWSamp ·W ∗

Consider a wedge w = {v, x, y} such that x, y ∈ Γv. The probability that wedge w is sampled in

Line 3 equals
((

dv
2

)
/W
)
·
(

1/
(
dv
2

))
= 1/W , where W =

∑
v∈V

(
dv
2

)
, i.e., each wedge is sampled

uniformly at random. Hence, we get Pr [Xi] = 3/W since each triangle is made up by three

wedges.

Let αWSamp =
∑∆

i=1Xi, as defined in Algorithm 4. Then, E [αWSamp] =
∑

E [Xi] = (3∆) /W .

Thus, E [YWSamp] = E [αWSamp] · (W/3) = ∆.

Here, we show the analysis on the variance of WSamp.

Var [YWSamp] = Var

[
W

3

∆∑
i=1

Xi

]
=
W 2

9
Var

[
∆∑
i=1

Xi

]

=
W 2

9

∆

(
3

W
− 9

W 2

)
+
∑
i 6=j

Cov [XiXj ]


Given two distinct triangles i and j, we show that Cov [XiXj ] is always negative. It is obvious

that the probability that two distinct triangles i and j are discovered in each iteration of WSamp

is 0, which leads to E [XiXj ] = 0. It is because a sampled wedge can be part of at most one

triangle, Thus, Cov [XiXj ] = E [XiXj ]− E [Xi]E [Xj ] = 0− 9/W 2. By further simplification, we

derive Var [YWSamp] = ∆
(
W
3 − 1

)
− 2
(

∆
2

)
which completes the proof.

WSamp achieves a high accuracy while it is much faster than exact computation as it requires to

sample only a small fraction of wedges in graphs with trillions of triangles.
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Table 3.1: Properties of static graphs. n, m, W , W ∗, κ, and ∆ denote the number of vertices,

edges, wedges, ordered wedges, number of pairs of triangles with a common edge, and number of

triangles respectively.1

Graphs n m W W ∗ κ ∆

DBLP 1.2M 5.1M 203M 96M 421M 11M

Journal 5.2M 48M 7.5B 2.4B 87B 310M

Orkut 3M 117M 45B 17B 67B 627M

Wiki 12M 288M 2.1T 386B 8.9T 11B

Twitter 31M 675M 107T 15T 119T 21B

3.1.6 Improved Wedge Sampling

Turk and Turkoglu in [98] improved the accuracy of WSamp through sampling wedges from a

smaller sample space. Indeed, a global degeneracy ordering (called greedy ordering in [98]) is

applied on vertices such that every single triangle can be captured through sampling only one of

its three wedges, whereas in WSamp (that there is no ordering) a triangle can be found through

sampling any of the three wedges. Indeed, Impr-WSamp narrows down the sample space,

compared to WSamp, which leads to a lower variance and a better accuracy.

Here, we discuss the details of Impr-WSamp and the differences with WSamp. Let ϑ (v) denote

the degeneracy number for vertex v, then for two distinct vertices v and u, we have

rank (v) < rank (u) if ϑ (v) < ϑ (u) or ϑ (v) = ϑ (u) and v < u. Given this ranking on vertices,

Impr-WSamp converts input graph G into a directed graph G′ such that there is an edge from

vertex v to u in G′ if edge (v, u) exists in the original graph and rank (v) < rank (u). It is easy to

verify that the directed graph is also acyclic (i.e., triangle free), which indicates that every three

vertices of a triangle in the original graph is indeed a directed wedge (i.e., a directed path of

length two) in G′.

Impr-WSamp has two main differences: 1) Vertices are ordered based on their degeneracy

number. 2) The probability that is assigned to every vertex (i.e., in Line 2 of Algorithm 4) is

1W ∗ is defined in the description of algorithm Impr-WSamp.
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changed and equals to
(
d∗v
2

)
/W ∗, where ∀v ∈ V, d∗v denote the degeneracy number of vertex v and

W ∗ =
∑

v∈V
(
d∗v
2

)
.

Lemma 5. Let YIWSamp denote the output of Impr-WSamp. Then, E [YIWSamp] = ∆ and

Var [YIWSamp] = ∆
(
W ∗

3 − 1
)
− 2
(

∆
2

)
.

Proof. The proof of expectation and variance of Impr-WSamp is similar to the proof of

Theorem 4, and the only difference is that we need to replace W ∗ with W in our computation.

3.2 Experiments on Static Algorithms

We experimentally evaluate the runtime and accuracy performance of both one-shot and local

sampling algorithms on various real-world networks from several domains such as social and web

networks.

Networks, metrics, and experimental setup: Here, we describe the details of real-world

networks, selected from publically available network repository [52]. Table 3.1 summarizes the

characteristics of graphs. We converted all of the static graphs to simple, undirected by removing

multiple edges and edge directions (if graph was directed). We shrunk graph Twitter by

considering its first 675M edges.2 We implemented the approximation algorithms for both static

and streaming graphs in C++. The source codes are compiled with g++ using -Ofast as the

optimization level. Our source codes are publically available on Github repository.3 We run the

experiments on a machined equipped with a 2.0 GHZ 8-Core Intel E5 4620 and 1TB memory.

Let the true value of triangle count be x > 0. Then, the relative error percent is defined as

100× |x− x̂|/x. When we use Error(%) to represent the results, we indeed refer to relative error

percent. Moreover, we report the variance of one-shot algorithms, which is computed as

mentioned in the description of algorithms.

Comparing one-shot approaches: Here, we compare one-shot algorithms DoulionSpar,

ClrSpar, and Impr-ESpar. A common property of one-shot algorithms is the fixed probability

2We used larger graphs in the next section for streaming algorithms.
3https://github.com/beginner1010/Triangle-Counting
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Table 3.2: Variances of DoulionSpar, ClrSpar, Impr-ESpar, for p = 0.1.

Graphs
DoulionSpar ClrSpar Impr-ESpar

Var [YDSpar] Var [YCSpar] Var [YIMSpar]

DBLP 53.3× 109 4.9× 109 130 × 106

Journal 89.6× 1012 817× 109 22.8 × 109

Orkut 7.2× 1012 666× 109 69.4 × 109

Wiki 900× 1012 81.9× 1012 2.2 × 1012

Twitter 11× 1015 1.07× 1015 83 × 1012

p, which controls the likelihood of an edge being included from the original in the sparsified

graph. It is rational to choose a small value, say less than 0.1, as the fixed probability p, in order

to sample fewer edges in the sparsified graph. Therefore, counting triangles in a sparsified graph

is expected to be computationally less expensive. We report both runtime and accuracy for

various values of probability p in Figures 3.3 and 3.5. In addition, for a better comparison

between algorithms DoulionSpar, ClrSpar, and Impr-ESpar, we report the variance of each

algorithm for different graphs in Table 3.2.

The results of accuracy are consistent with the variance of estimators. Algorithms DoulionSpar

and ClrSpar have a higher variance in different algorithms, which leads to a higher error

percent. In all graphs, Impr-ESpar can achieve less than 1% error by a sampling probability as

small as 0.008. However, DoulionSpar and ClrSpar end up with a higher error percent when

such a low sampling probability is employed (for example DoulionSpar yielded 52% error in

DBLP when the sampling probability is 0.008). In all algorithms, the accuracy and sampling

probability are directly related to each other, i.e., when the sampling probability is higher, the

accuracy of estimators is improved. The reason is that more edges are sampled with a higher

sampling rate, and the scaling-up factor is smaller, which leads to a lower variance and a higher

accuracy. Figure 3.5 reports the runtime of algorithms. Impr-ESpar is significantly faster, up

to a factor of 177, than the two other one-shot algorithms, i.e., DoulionSpar and ClrSpar,

which take similar runtimes on different graphs. In addition, when the sampling rate increases,

the runtimes of DoulionSpar and ClrSpar increase substantially while the changes in the
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Figure 3.3: Accuracy of one-shot algorithms for different sampling probabilities. Impr-ESpar

performs better than both DoulionSpar and ClrSpar, yielding < 1% relative error with sampling

probability 0.008 for all graphs.

runtime of Impr-ESpar is negligible. Impr-ESpar is a faster estimator as it applies two

sampling steps. More specifically, Impr-ESpar runs a sampling procedure to estimate the local

triangle count of each sampled edge, unlike DoulionSpar and ClrSpar which apply an exact

algorithm on the sparsified graph. To sum up, we can unquestionably conclude that Impr-ESpar

is a better one-shot algorithm than both DoulionSpar and ClrSpar, as it is a faster and highly

accurate estimator.

Comparing local sampling approaches: We compare the performance of WSamp and

Impr-WSamp. WSamp immediately starts producing estimates of triangles based on sampled

wedges while Impr-WSamp requires to rank vertices based on their degrees. Theoretically

speaking, Theorem 5 and Table 3.3 show that Impr-WSamp is expected to yield better accuracy
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Figure 3.5: Time performance of one-shot algorithms for different sampling probabilities. Impr-

ESpar is faster than DoulionSpar and ClrSpar with a speedup factor of 17 in graph Twitter.

than WSamp since it lowers the variance by narrowing down the sample space (More specifically,

Impr-WSamp narrows down the number of candidate wedges through ranking vertices in a

pre-processing step). However, Figure 3.7 shows that the pre-processing step could be

computationally expensive which wipes out the benefits of obtaining a low-variance estimator.

For example, Figure 3.6e shows that Impr-WSamp requires 2489 seconds for ranking vertices of

Twitter before starting the sampling step while WSamp achieves less than 1% error in 9 seconds

in the same graph. Note that the required time for the pre-processing step is directly related to

the size of input graph. Therefore, the pre-processing step in Impr-WSamp could be quite

time-consuming for large graphs with millions of edges while WSamp quickly obtains < 1% error,

as shown in Figure 3.7.
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Figure 3.7: Accuracy of local sampling algorithms, running in 3.000× 103 seconds. WSamp per-

forms better than Impr-WSamp, due to the high preprocessing step of Impr-WSamp for vertex

ranking, shown by the blue box. WSamp yields < 1% relative error within at most 9 seconds for

all graphs. Impr-WSamp requires 8, 82, 252, 594, 2516 seconds, including the preprocessing step,

to achieve < 1% relative error in graphs DBLP, Journal, Orkut, Wiki, and Twitter respectively.

One-shot or local sampling approaches? Here, we compare the accuracy and runtime of best

one-shot estimator, i.e., Impr-ESpar, and the best local sampling estimator, i.e., WSamp.

One-shot algorithms have three main drawbacks compared to local sampling algorithms: 1) The

memory consumption of algorithm Impr-ESpar is O(mp) to store the sparsified graph, where p

is the fixed sampling probability and is larger than of WSamp, whose memory consumption is

O(dmax), where dmax denotes the maximum degree of the input graph. With such a low memory

complexity, WSamp is enabled to scale to larger graphs while Impr-ESpar requires memory

linearly in the size of the input graph. 2) Impr-ESpar need to determine parameter p, prior to

the sampling step, whereas WSamp immediately starts the sampling procedure without any prior

knowledge about the graph. If p is too large, more edges will be sampled, and counting triangles

in the sparsified graph could be time-consuming. On the other hand, if p is too small, the
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Table 3.3: Standard deviations of estimators on several graphs. For each method, the standard

deviation is shown in the left column, and the Err, the ratio between the (theoretical) standard

deviation and the number of triangles (i.e., ∆), is shown in the right column.

Graphs
WSamp Impr-WSamp

Err(%)
√

Var [YWSamp] Err(%)
√

Var [YIWSamp]

DBLP 25.6× 106 119.5 15.4× 106 32

Journal 826× 106 165.7 390× 106 25.7

Orkut 3× 109 382 1.8× 109 188.7

Wiki 90× 109 678 36× 109 216.4

Twitter 880× 109 3966.3 329× 109 1421.5

accuracy is low. 3) Impr-ESpar assume that the entire graph is stored and accessible while

WSamp needs access to a small portion of the input graph. Therefore, WSamp is more favorable

when the entire graph is not available in memory. Overall, local sampling methods consume less

memory and handle more restrictive settings which leads to attaining a broad application in

real-world scenarios than one-shot sampling methods.



37

CHAPTER 4. BUTTERFLY COUNTING IN STATIC BIPARTITE

NETWORKS

We present randomized algorithms for counting butterflies in a static bipartite network. We

assume that the entire graph resides in memory. Our randomized algorithms are highly accurate

and fast. More specifically, the algorithms obtain butterfly count in 5 seconds with relative error

1% in graphs with hundreds of millions of edges. Here, we discuss randomized algorithms [76] in

detail which estimate the number of triangles based on two main approaches: 1) Local sampling

2) One-shot sparsification.

4.1 Approximation by Local Sampling

In this section, we present approaches to approximating ./ (G) using random sampling. The

intuition behind sampling is to examine a randomly sampled subgraph of G and compute the

number of butterflies in the subgraph to derive an estimate of ./ (G). Since the subgraph is

typically much smaller than G, it is less expensive to perform an exact computation. The size of

the chosen subgraph, the cost of computing on it, and the accuracy of the estimate vary according

to the method by which we choose the random subgraph. This sampling process can be repeated

multiple times, and averaged, in order to get a better accuracy.

We consider three natural sampling methods: vertex sampling (VSamp), edge sampling

(ESamp), and wedge sampling (WSamp). In VSamp, the subgraph is chosen by first choosing a

vertex uniformly at random, followed by the induced subgraph on the distance-2 neighborhood of

the vertex. In ESamp, a random edge is chosen, followed by the induced subgraph on the union

of the immediate neighborhoods of the two endpoints of the edge. In WSamp, a random wedge

(path of length two) is chosen, followed by the induced subgraph on the intersection of the

immediate neighborhoods of the two endpoints of the wedge. While the methods themselves are
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Figure 4.2: A pair of butterflies in G can be of one of the above five types.

simple, the analysis of their accuracy involves having to deal carefully with the interactions of

different butterflies being sampled together.

4.1.1 Vertex Sampling (Algorithm VSamp)

The idea in VSamp is to sample a random vertex v and count the number of butterflies that

contain v – this is accomplished by counting the number of butterflies in the induced subgraph

consisting of the distance-2 neighborhood of v in the graph. We show that the algorithm,

described in Algorithm 6, yields an unbiased estimate of ./ (G), and also analyze the variance of

the estimate. The variance is reduced by taking the mean of multiple independent runs of the

estimator.

Let YV denote the return value of Algorithm 6. Let pV denote the number of pairs of butterflies

in G that share a single vertex.

Algorithm 6: VSamp (single iteration)

Input: A bipartite graph G = (V, E)

Output: An estimate of ./ (G)

1 Choose a vertex v from V uniformly at random.

2 ./v← vBFC (v,G) // local counting [76]

3 return ./v ·n/4
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Lemma 1. E [YV ] = ./, and Var [YV ] ≤ n
4 (./ +pV )

Proof. Consider that the butterflies in G are numbered from 1 to ./. Let X = ./v, the number of

butterflies that contain the vertex v, which is sampled uniformly. For i = 1, . . . , ./, let Xi be an

indicator random variable equal to 1 if the ith butterfly includes the vertex v. We have

X =
∑./

i=1Xi. Since each butterfly has four vertices, E [Xi] = Pr [Xi = 1] = 4/n. Thus

E [X] =
∑./

i=1 E [Xi] =
∑./

i=1 Pr [Xi = 1] = 4./
n . Since YV = X · n4 , we have E [YV ] = ./.

For the variance of YV , we consider the joint probabilities of different butterflies being sampled

together. The set of all pairs of butterflies are partitioned into different types as follows. This

partitioning will help not only with analyzing this algorithm, but also in subsequent sampling

algorithms. A pair of butterflies is said to be of type:

• 0v if they share zero vertices (Figure 4.1a)

• 1v if they share one vertex (Figure 4.1b)

• 2v if they share two vertices but no edge (Figure 4.1c)

• 1e if they share two vertices and exactly one edge (Figure 4.1d)

• 1w if they share three vertices and two edges i.e. share a wedge (Figure 4.1e)

It can be verified that every pair of distinct butterflies must be one of the above types

{0v, 1v, 2v, 1e, 1w}, and other combinations such as three vertices and more than two edges are

not possible. For each type t ∈ {0v, 1v, 2v, 1e, 1w}, let pt denote the number of pairs of butterflies

of that type. Thus p0v + p1v + p2v + p1e + p1w =
(
./
2

)
. Let pV = p1v + p2v + p1e + p1w be the

number of pairs of butterflies that share at least one vertex.

Var [YV ] = Var

[
n

4

./∑
i=1

Xi

]
=
n2

16
Var

[
./∑
i=1

Xi

]

=
n2

16

 ./∑
i=1

Var [Xi] +
∑
i6=j

Cov [Xi, Xj ]


=
n2

16

./ ( 4

n
− 16

n2

)
+
∑
i 6=j

(E [XiXj ]− E [Xi]E [Xj ])


Consider the different types of butterfly pairs (i, j):
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• Type 0v, there is zero probability of i and j being counted within ./v, hence E [XiXj ] = 0,

Cov [Xi, Xj ] = −16/n2

• Type 1v, E[XiXj ] = Pr[Xi = 1] Pr[Xj = 1|Xi = 1] = (4/n)(1/4) = 1/n.

Cov [Xi, Xj ] = 1/n− 16/n2.

• Type 2v, E[XiXj ] = (4/n)(1/2) = 2/n. Cov [Xi, Xj ] = 2/n− 16/n2

• Type 1e, E[XiXj ] = (4/n)(1/2) = 2/n. Cov [Xi, Xj ] = 2/n− 16/n2

• Type 1w, E[XiXj ] = (4/n)(3/4) = 3/n. Cov [Xi, Xj ] = 3/n− 16/n2.

By adding up the different contributions, we arrive:

Let Z be the average of α = 8n
ε2./

(
1 + pV

./

)
independent instances of YV . Using

Var[Z] = Var[YV ]/α and Chebyshev’s inequality:

Pr [|Z− ./ | ≥ ε ./] ≤ Var[Z]

ε2 ./2
=

Var[YV ]

αε2 ./2
≤ n(./ +pV )

4αε2 ./2
=

1

32

We can turn the above estimator into an (ε, δ) estimator by taking the median of O(log(1/δ))

estimators, using standard methods.

Lemma 2. There is an algorithm that uses Õ
(
n
./

(
1 + pV

./

))
iterations 1 of VSamp (Algorithm 6)

and yields an (ε, δ)-estimator of ./ (G) using expected time Õ
(
m∆
./

(
1 + pV

./

))
. Expected additional

space is O
(
m∆
n

)
.

Proof. An iteration of VSamp samples a vertex v and calls vBFC of [76] for local butterfly

counting once, which takes O(|Γ2
v|) time. Hence, the expected runtime of an iteration is

O
(
E
[
|Γ2
v|
])

, where the expectation is taken over a uniform random choice of a vertex. We note

that |Γ2
v| ≤ dv ∆ where dv is v’s degree and ∆ is the maximum degree in the graph. Thus

E
[
|Γ2
v|
]
≤∑v∈V

1
ndv∆ = ∆

n

∑
v∈V dv = m∆

n . The space of VSamp is same with vBFC of [76];

O(|Γ2
v|) for handling vertex v. The expected value is O(m∆

n ).

1We use the notation Õ(f) to suppress the factor log(1/δ)

ε2
, i.e. mean O

(
f · log(1/δ)

ε2

)
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Algorithm 7: ESamp (single iteration)

Input: A bipartite graph G = (V, E)

Output: An estimate of ./ (G)

1 Choose an edge e from E uniformly at random.

2 ./e← eBFC (e,G) // local counting

3 using eBFC of [76]

4 return ./e · m/4

4.1.2 Edge Sampling (Algorithm ESamp)

In this algorithm, the idea is to sample a random edge and count the number of butterflies that

contain this edge, using eBFC of [76]. We present ESamp in Algorithm 7, and state its

properties.

Lemma 3. Let Y denote the return value of Algorithm 7. Then, E [Y ] =./.

Proof. Consider that the butterflies in G are numbered from 1 to ./. Let X denote ./e, when edge

e is chosen randomly from E. For i = 1, . . . , ./, let Xi be an indicator random variable equal to 1

if edge e is contained in butterfly i, and 0 otherwise. We have X =
∑./

i=1Xi. Since each butterfly

has exactly four edges in E, we have Pr [Xi = 1] = 4/m.

E [X] =
./∑
i=1

E [Xi] =
./∑
i=1

Pr [Xi = 1] =
4 ./

m

Since Y = X · m4 , it follows that E [Y ] =./.

Let pE be the number of pairs of butterflies that share at least one edge. Then, pE = p1e + p1w.

Lemma 4. Var [Y ] ≤ m
4 (./ +pE)

Proof. Proceeding similar to proof of Lemma 1:

Var [Y ] = Var

[
m

4

./∑
i=1

Xi

]
=
m2

16
Var

[
./∑
i=1

Xi

]

=
m2

16

 ./∑
i=1

Var [Xi] +
∑
i6=j

Cov [Xi, Xj ]


=
m2

16

./ ( 4

m
− 16

m2

)
+
∑
i6=j

(E [XiXj ]− E [Xi]E [Xj ])


For a pair of butterflies (i, j) of
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• Type 0v, 1v, or 2v: there is zero probability of i and j being counted within ./e, and hence

E [XiXj ] = 0. Cov [Xi, Xj ] = −16/m2

• Type 1e: E [XiXj ] = Pr[Xi = 1] Pr[Xj = 1|Xi = 1] = (4/m)(1/4) = 1/m.

Cov [Xi, Xj ] = 1/m− 16/m2

• Type 1w, E [XiXj ] = Pr[Xi = 1] Pr[Xj = 1|Xi = 1] = (4/m)(2/4) = 2/m.

Cov [Xi, Xj ] = 2/m− 16/m2

Var[Y ] =
m2

16

[
./

(
4

m
− 16

m2

)
− p0v

16

m2
− p1v

16

m2

− p2v
16

m2
+ p1e

(
1

m
− 16

m2

)
+ p1w

(
2

m
− 16

m2

)]
≤ m2

16

[
4

m
(./ +p1e + p1w)−

(
./

2

)
16

m2

]
=
m

4
(./ +p1e + p1w)−

(
./

2

)
≤ m

4
(./ +pE)

Let Z be the average of α = (8m (1 + pE/./))/(ε
2 ./) independent instances of Y . Using

Chebyshev’s inequality:

Pr [|Z− ./ | ≥ ε ./] ≤ Var[Z]

ε2 ./2
=

Var[Y ]

αε2 ./2
≤ m(./ +pE)

4αε2 ./2
=

1

32

Lemma 5. There is an algorithm that uses Õ
(
m
./

(
1 + pE

./

))
iterations of Algorithm 8 and yields

an (ε, δ)-estimator of ./ (G) using time Õ
(
m2∆
n./

(
1 + pE

./

))
. The additional space complexity is

O(m∆/n).

Proof. Each iteration of the ESamp algorithm counts ./e for a randomly chosen e. Similar to the

analysis of VSamp, the expected time of an iteration is O(m∆/n). Hence, the runtime follows.

The space complexity is the space taken by Algorithm eBFC of [76], which is O(m∆/n).

4.1.2.1 Wedge Sampling (Algorithm WSamp)

In WSamp, we first choose a random “wedge“, a path of length two in the graph. This already

yields three vertices that can belong to a potential butterfly. Then we count the number of
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Algorithm 8: WSamp (single iteration)

Input: A bipartite graph G = (V, E)

Output: An estimate of ./ (G)

1 ∧ ←∑
u∈V

(
du
2

)
// number of wedges

2 Choose a vertex u ∈ V with probability
(
du
2

)
/∧

3 Choose two distinct vertices v, w ∈ Γu uniformly at random

4 β ← |Γv ∩ Γw| − 1 // # butterflies that has (u, v, w)

5 return β · ∧/4

butterflies that contain this wedge by finding the intersection of the neighborhoods of the two

endpoints of the wedge. Algorithm 8 describes the WSamp algorithm. Let YW denote the return

value of Algorithm 8.

Lemma 6. The wedge (x, y, z) in lines 2 and 3 of Algorithm 8 is chosen uniformly at random

from the set of all wedges in G.

Proof. In order to choose the wedge (x, y, z), vertex y must be chosen in step (2), followed by

vertices x and z in step (3). The probability is
(dy2 )
h · 1

(dy2 )
= 1/h, showing that a wedge is sampled

uniformly at random.

Lemma 7. Let Y denote the return value of Algorithm 8. Then, E [Y ] =./

Proof. Consider that the butterflies in G = (V, E) are numbered from 1 to ./. Suppose that ∧ is

the number of wedges in G. For i = 1, . . . , ./, let Xi be an indicator random variable equal to 1 if

the ith butterfly includes wedge w. Let X denote β, the number of butterflies that contain the

sampled wedge (x, y, z). We have X =
∑./

i=1Xi. Since each butterfly has four wedges in G, we

have Pr [Xi = 1] = 4/∧. The rest of the proof is similar to that of Lemma 1.

Lemma 8. Var [Y ] ≤ ∧4 (./ +p1w)

Proof.

Var [Y ] = Var

[
∧
4

./∑
i=1

Xi

]
=
∧2
16

Var

[
./∑
i=1

Xi

]

=
∧2
16

./ ( 4

∧ −
16

∧2
)

+
∑
i 6=j

(E [XiXj ]− E [Xi]E [Xj ])


For a pair of butterflies (i, j) of
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• Type 0v, 1v, 2v, or 1e, there is zero probability of i and j being counted together, and hence

E [XiXj ] = 0. We have Cov [Xi, Xj ] = −16/∧2

• Type 1w, E[XiXj ] = Pr[Xi = 1] Pr[Xj = 1|Xi = 1] = (4/∧)(1/4) = 1/∧. Therefore,

Cov [Xi, Xj ] = 1/∧ − 16/∧2.

Var [Y ] =
∧2

16

[
./

(
4

∧ −
16

∧2

)
− p0v

16

∧2
− p1v

16

∧2

− p2v
16

∧2
− p1e

16

∧2
+ p1w

(
1

∧ −
16

∧2

)]
≤ ∧

2

16

[
4

∧ (./ +p1w)−
(
./

2

)
16

∧2

]
=
∧
4

(./ +p1w)−
(
./

2

)
≤ ∧

4
(./ +p1w)

Let Z be the average of α = (8∧ (1 + p1w/./))/(ε
2 ./) independent instances of Y . Using

Chebyshev’s inequality, we arrive that Z is an (ε, 1/32)-estimator of ./ (G).

Lemma 9. There is an algorithm that uses Õ
( ∧
./

(
1 + p1w

./

))
iterations of Algorithm 8 and yields

an (ε, δ)-estimator of ./ (G) using time Õ
(

(∆+logn)∧
./

(
1 + p1w

./

))
and space O(n).

Proof. We first consider the runtime of Algorithm 8. At first glance, it looks like Steps (1) and (2)

take O(n) time. This can be reduced to O(log n) using a pre-computation step of time O(n),

which precomputes the value of h, and also stores the values of
(
dv
2

)
for different vertices v in an

array A[1 . . . n] of length n. We consider another array B[1 . . . n], where each element

B[j] =
∑j

i=1A[i]. When WSamp is called, a random number r in the range {1, 2, . . . , h} is first

generated, and Step (2) is accomplished through finding the smallest j such that B[j] ≥ r. Since

array B is sorted in increasing order, this can be done in time O(log n) using a binary search.

Steps (3) and (4) of Algorithm 8 can be performed in O(∆) time – Step (4), for example, through

storing all elements of Γx in a hash set, and repeatedly querying for elements of Γy in this hash

set, for a total of O(dy) = O(∆) time. The additional space required by this algorithm, in

addition to the stored graph itself, is O(n), for random sampling.
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Table 4.1: Standard deviations of estimators on large graphs. For each method, the theoretical upper bound on
the standard deviation is shown in the left column, and the “error”, the ratio between the (theoretical) standard
deviation and the number of butterflies, is shown in the second column.

VSamp ESamp WSamp√
(./+pV )n

4
error %

√
(./+pE)m

4
error %

√
(./+p1w)h

4
error %

Deli 2.8× 1013 494.9 2.1× 1012 38.3 7.7× 1011 13.6

Journal 2.3× 1015 708.56 2.1× 1013 6.4 1.4× 1014 99.3

Orkut 5× 1015 223.6 2× 1014 9.2 2.9× 1014 13.3

Web 6.8× 1016 3431.5 8.2× 1013 4.1 4.3× 1016 2194.8

Wiki 1.3× 1016 6823.6 3.8× 1013 19 1.4× 1015 703.4

4.1.3 Accuracy and Runtime of Sampling

Accuracy of a single iteration: In order to understand the relation between the three

sampling algorithms, we compare the variance of the estimates retuned by these algorithms. Note

that each of them returns an unbiased estimate of the number of butterflies. The standard

deviations (square root of variances) of VSamp, ESamp, and WSamp for different graphs are

estimated and summarized in Table 4.1. The results show that the variances of VSamp and

WSamp are much higher than the variance of ESamp. Note that these are estimates of an upper

bound on the variances, and the actual variances could be (much) smaller.

The variance of VSamp is proportional to npV where pV is the number of pairs of butterflies that

share a vertex and n is the number of vertices. The variance of ESamp is proportional to mpE

where pE is the number of pairs of butterflies that share an edge and m is the number of edges.

Note that typically ./ � pV , pE and hence ./ +pV ≈ pV and ./ +pE ≈ pE . If two butterflies

share an edge, they certainly share a vertex, hence pE ≤ pV . Since it is possible that two

butterflies share a vertex but do not share an edge, pE could be much smaller than pV . It turns

out that in most of these graphs, pE was much smaller than pV . On the other hand, the number

of vertices in a graph (n) is comparable to the number of edges (m). Typically m < 10n, and only

in one case (Orkut), we have m ≈ 30n. Thus, npV � mpE for the graphs we consider. As a
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Figure 4.4: Relative error as a function of runtime, for sampling algorithms. ESamp with Fast-

eBFC yields < 1% relative error within 5 seconds for all networks.

result, the variance of VSamp is much larger than the variance of ESamp, which is reflected

clearly in Table 4.1.

Comparing ESamp with WSamp, we note that the variance of WSamp is proportional to ∧ · p1w,

where ∧ is the number of wedges in the graph (O(
∑

v d
2
v)) and p1w is the number of pairs of

butterflies that share a wedge. The variance of ESamp is proportional to mpE . p1w ≤ pE since

each pair of butterflies that shares a wedge also shares an edge. At the same time, we see that ∧

is substantially greater than m. Overall, there is no clear winner among WSamp and ESamp in

theory, but ESamp seems to have the smaller variance on real-world networks, typically,

sometimes much smaller, as in graph Wiki.

Runtime per iteration: The performance of a sampling algorithm depends not only on the

variance of an estimator, but also on how quickly an estimator can be computed. Figure 4.5

shows the time taken to compute a single estimator using different sampling algorithms for the

five largest networks. We note that ESamp (which calls eBFC) requires the largest amount of
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Figure 4.5: Average time per iteration of sampling. For ESamp with Fast-eBFC, the time is

shown for 1000 iterations of Fast-eBFC (Algorithm 9).

time per sampling step, among all estimators. This decreases the overall accuracy of ESamp,

despite its smaller variance.

4.1.4 Faster Edge Sampling using Fast-eBFC

Since ESamp had a low variance, but a high runtime per iteration, we tried to achieve different

tradeoffs with respect to runtimes and accuracy, which led to our next algorithm Fast-eBFC, a

faster variant of butterfly counting per edge (eBFC). Like ESamp, we first sample a random edge

from the graph, but instead of exactly counting the number of butterflies that contain the

sampled edge, which leads to (relatively) expensive iterations, Fast-eBFC only estimates the

number of butterflies per edge, through a further sampling step (replacing eBFC in Line 2 of

ESamp (Algorithm 7)). For an edge (u, v) this estimation is performed by randomly choosing one

neighbor each of u and of v, and checking if the four vertices form a butterfly. Algorithm 9

presents a single iteration of Fast-eBFC. This procedure is repeated a few times for a given edge,

to improve the accuracy of the estimate. In our implementation we repeated it 1000 times for

each sampled edge, and it was still significantly faster than eBFC (Figure 4.5). We use it instead

of the eBFC algorithm in ESamp. While the estimate from each iteration is less accurate than in

ESamp, more iterations are possible within the same time. Fast-eBFC (with 1000 repetitions)

is faster than eBFC by 15x-357x, when used in ESamp. Overall, in large graphs, this leads to an

improvement in accuracy over eBFC in ESamp. Let YFE denote the return value of Algorithm 9.

Lemma 10. E [YFE ] =./e and Var [YFE ] ≤./e (du · dv).
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Algorithm 9: Fast-eBFC (replaces eBFC in ESamp)

Input: An edge e = (v, u) ∈ E in G = (V, E)

Output: An estimate of ./e
1 Choose a vertex w (6= v) from Γu uniformly at random

2 Choose a vertex x ( 6= u) from Γv uniformly at random

3 if (u, v, w, x) forms a butterfly then β ← 1

4 else β ← 0

5 return β · du · dv

Proof. Consider that the butterflies include the edge e = (u, v) are numbered from 1 to ./e. For

i = 1, . . . , ./e, let Xi be an indicator random variable. Xi is equal 1 if the ith butterfly contains

both sampled neighbors v′ and u′, otherwise 0. Let X =
∑./e

i=1Xi. Since vertex v′ and u′ are

chosen with probability 1/dv and 1/du respectively, Pr [Xi = 1] = 1/(dv · du). Then,

E [X] =

./e∑
i=1

E [Xi] =

./e∑
i=1

Pr [Xi = 1] =
./e

dv · du

YFE = X · dv · du follows that E [YFE ] =./e.

Lemma 11. Var [YFE ] ≤./e (dv · du)

Proof.

Var [YFE ] = Var

[
(dv · du)

./e∑
i=1

Xi

]
= (dv · du)2 Var

[
./e∑
i=1

Xi

]

= (dv · du)2

[
./e∑
i=1

[
1

dv · du
− 1

(dv · du)2

]
−
(
./e
2

)]

≤ ./e ·dv · du

Let Z be the average of α = 32(du · dv)/(ε2 ./e) independent instances of YFE . Using Chebyshev’s

inequality, we arrive that Z is an (ε, 1/32)-estimator of ./e.

Fast wedge sampling: We also experimented with a faster version of WSamp, where the

number of butterflies containing a wedge was estimated using sampling. But this did not give

good results, partly because the time for each iteration of WSamp was already relatively small.

For example, in Deli, after 5 secs, WSamp have less than 2% error while Fast Wedge Sampling
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ended up with 29% error after 10 secs. In Web also the error percentage of Fast Wedge Sampling

is 60% higher than of WSamp.

4.1.5 Comparing Sampling-based Approaches

We compare the sampling algorithms VSamp, ESamp + eBFC, ESamp + Fast-eBFC, and

WSamp. A sampling algorithm immediately starts producing estimates that get better as more

iterations are executed. We record the number of iterations and relative percent error of sampling

algorithms up to 60 seconds. Figure 4.4 shows the relative percent error with respect to the

runtime for five large bipartite graphs. We report the median error of the 30 trials of sampling

methods for each data point.

Our experiments show that VSamp performs poorly when compared with ESamp and

WSamp under the same time budget – this is along expected lines, based on our analysis of the

variance. The accuracy of ESamp and WSamp are comparable, with ESamp being slightly

better. Note that ESamp has a better variance, while WSamp has faster iterations. For instance,

on the Wiki network, 1000 iters of WSamp yields 51% error in 0.13 secs, whereas 1000 iters of

ESamp yields 29% error in 33 seconds. Across all the graphs, ESamp using Fast-eBFC , which

combines the benefits of faster iterations with a good variance, yields the best results, and is

superior to all other sampling methods; it leads to less than 1% relative error within 5

seconds.

4.2 Approximation by One-shot Sparsification

We present methods for estimating ./ (G) using one-shot sparsification – where we thin down the

input graph into a smaller graph through a global sampling step. The number of butterflies in the

sparsified graph is used to estimate ./ (G). Unlike algorithms such as ESamp and WSamp, which

work on a small subgraph constructed around a single randomly sampled edge or a wedge,

sparsification methods put each edge in the graph into the sample with a certain probability. We

consider two approaches to sparsification (1) ESpar in Section 4.2.1, where edges are chosen
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Figure 4.7: Accuracy (on left y-axis) and runtime performance (on right y-axis) of sparsification

algorithms for different probabilities (on x-axis). ESpar performs better than ClrSpar, and yields

< 1% relative error within 4 seconds for all networks.

independently of each other and (2) ClrSpar in Section 4.2.2, based on a sampling method where

different edges are not independently chosen, but dense regions appear with higher probability in

the sample – based on a similar idea in the context of triangle counting due to Pagh and

Tsourakakis [65].

4.2.1 Edge Sparsification (Algorithm ESpar)

In ESpar, the input graph G is sparsified by independently retaining each edge in G in the

sampled graph G′, with a probability p. The number of butterflies in G′, obtained using

ExactBFC, is used to construct an estimate of ./ (G), after applying a scaling factor. This is

much faster than working with the original graph G since the number of edges in G′ can be much

smaller. The ESpar algorithm is described in Algorithm 10.

Lemma 12. Let YES denote the output of ESpar on input graph G. Then E [YES ] =./ (G). If

p > max

(
4

√
24
./ ,
√

24∆
./ ,

24∆2

./

)
, then Var [YES ] ≤./2 /8.
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Proof. For i = 1, · · · , ./, let Xi be a random variable indicating the ith butterfly, s.t. Xi is 1 if the

ith butterfly exists in the sampled graph (VG , E ′) and 0 otherwise. Let β be as defined in the

algorithm. Clearly, β =
∑./

i=1Xi. We have E [β] =
∑

E [Xi] =
∑

Pr [Xi = 1]. Since different

edges are sampled independently, we have Pr [Xi = 1] = p4. Hence,

E [YES ] = p−4E [β] = p−4
∑./

i=1 p
4 =./.

The random variables Xis corresponding to different butterflies are not independent of each other,

since butterflies may share edges. Accounting for the covariances of Xi, Xj pairs leads to:

Var[YES ] = Var

[
p−4

./∑
i=1

Xi

]

= p−8

 ./∑
i=1

(E[Xi]− E2[Xi]) +
∑
i 6=j

Cov [Xi ∧Xj ]


= p−8

./ (p4 − p8) +
∑
i 6=j

(E[XiXj ]− E[Xi]E[Xj ])


Let p0e, p1e, and p1w respectively denote the number of pairs of butterflies that share zero edges,

one edge, and one wedge (two edges). Note that these three cases account for all pairs of distinct

butterflies, since it is not possible for two distinct butterflies to share three or more edges.

Proceeding with a calculation similar to ones in Section 4.1, we get:

Var[YES ] = p−8
[
./ (p4 − p8) + p1e(p

7 − p8) + p1w(p6 − p8)
]

≤ ./ p−4 + p1wp
−2 + p1ep

−1

By Chebyshev’s inequality we have Pr[|YES− ./ | ≥ ε ./] ≤ Var[YES ]
ε2E2[YES ]

. We need to find the

probability p such that Var[YES ] = o(E2[YES ]) which results in E[YES ] =./ with probability

1− o(1). Thus,

Algorithm 10: ESpar: Edge Sparsification

Input: A bipartite graph G = (V, E), parameter p, 0 < p < 1

1 Construct E ′ by including each edge e ∈ E independently with probability p

2 β ← ExactBFC(V, E ′) // exact global counting

3 return β × p−4
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Algorithm 11: ClrSpar

Input: Bipartite graph G = (V, E), number of colors N

1 Let f : V → {1, . . . , N}// map to random colors

2 E ′ ← {(u, v) ∈ EG |f(u) = f(v)}
3 β ← ExactBFC (V, E ′) // exact global counting

4 return β · p−3 where p = 1/N

E2[YES ]� Var[YES ]

./2 � ./ p−4 + p1wp
−2 + p1ep

−1 − (./ +p1w + p1e)

./2 � ./ p−4 + p1wp
−2 + p1ep

−1

We know that p > max

(
4

√
24
./ ,
√

24∆
./ ,

24∆2

./

)
. Using Observation 1, this implies that:

p > max
(

4

√
24
./ ,
√

24p1w
./ , 24p1e

./2

)
, we get:

Var [YES ] ≤ ./ · ./
24

+ p1w ·
./2

24p1w
+ p1e ·

./2

24p1e
=
./2

8

Observation 1. p2v ≤ ./ dmax
2, p1e ≤ ./ dmax

2, and p1w ≤ ./ dmax.

Using Chebyshev’s inequality and standard methods, the estimator YES can be repeated

O(log(1/δ)/ε2) times to get an (ε, δ) estimator of ./ (G).

4.2.2 Colorful Sparsification (Algorithm ClrSpar)

The idea in ClrSpar is to sample edges at a rate of p, as in ESpar, but add dependencies

between the sampling of different edges, such that there is a greater likelihood that a dense

structure, such as the butterfly, is preserved in the sampled graph. The algorithm randomly

assigns one of N colors to vertices, and sample only those edges whose endpoints have the same

color. The ClrSpar algorithm for approximate butterfly counting is presented in Algorithm 11.

We developed this method due to the following reason. Suppose p = 1/N . Though the expected

number of edges in the sampled graph is mp, the same as in ESpar, it can be seen that the

expected number of butterflies in the sampled graph is equal to p3 ./, which is higher than in the
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case of ESpar (p4 ./). Thus, for a sampled graph of roughly the same size, we expect to find

more butterflies in the sampled graph. Note however that this does not directly imply a lower

variance of the estimator due to ClrSpar.

Lemma 13. Let Y be the output of ClrSpar on input G, and p = 1/N . E [Y ] = ./ (G). If

p > max
(

3

√
32
./ ,
√

32dmax
./ , 32dmax

2

./

)
, then Var [Y ] ≤./2 /8.

Proof. For each butterfly i = 1, 2, . . . , ./ (G) in G, let Xi be a random variable such that Xi = 1 if

the ith butterfly is monochromatic, i.e. all its vertices have been assigned the same color by the

function f , and Xi = 0 otherwise. Clearly, the set of butterflies that are preserved in E ′ are the

monochromatic butterflies. Let β be as defined in the algorithm. It follows that β =
∑./

i=1Xi,

and Y = p−3 ·∑./
i=1Xi. 4 Note that E [Xi] = Pr [Xi = 1] = p3. To see this, consider the vertices of

butterfly i in any order. It is only required that the colors of the second, third, and fourth

vertices in the butterfly match that of the first vertex. Since vertices are assigned colors uniformly

and independently, this event has probability p3. Using linearity of expectation,

E [Y ] = p3
∑./

i=1 E [Xi] =./.

For its variance, using the same argument in Algorithm 10, we have:

Var [Y ] = p−6

./ (p3 − p6) +
∑
i 6=j

(E[XiXj ]− E[Xi]E[Xj ])



For a pair of butterflies (i, j) of.

• Type 0v or 1v: E [XiXj ]− E [Xi]E [Xj ] = p6 − p6 = 0

• Type 2v: E [XiXj ]− E [Xi]E [Xj ] = p5 − p6

• Type 1e: E [XiXj ]− E [Xi]E [Xj ] = p5 − p6

• Type 1w: E [XiXj ]− E [Xi]E [Xj ] = p4 − p6
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Therefore, we have

Var[Y ] = p−6
[
./ (p3 − p6) + p2v(p

5 − p6)

+ p1e(p
5 − p6) + p1w(p4 − p6)

]
= ./ p−3 + p1wp

−2 + p1ep
−1 + p2vp

−1

− (./ +p1w + p1e + p2v)

≤ ./ p−3 + p1wp
−2 + p1ep

−1 + p2vp
−1

Using Observation 1, p > max

(
3

√
32
./ ,
√

32dmax
./ , 32dmax

2

./

)
implies

p > max
(

3

√
32
./ ,
√

32p1w
./ , 32p1e

./2
, 32p2v
./2

)
. Hence,

Var [Y ] ≤ ./ p−3 + p1wp
−2 + p1ep

−1 + p2vp
−1

≤ ./ · ./
32

+ p1w ·
./2

32p1w
+ p1e ·

./2

32p1e
+ p2v ·

./2

32p2v
=
./2

8

4.2.3 Comparison of Sparsification Algorithms

The parameter p controls the probability of an edge being included in the sparsified graph. As p

increases, we expect the accuracy as well as the runtime to increase. The relative accuracies of

the two methods depends on the variances of the estimators. We estimated the variances using

our analysis, and Table 4.2 presents the results. We observe that the variance of ESpar is

predicted to be much lower than that of ClrSpar. To understand this, we begin with

Lemmas 12 and 13 which show expressions bounding the variances in terms of p1w, p1e, and p2v,

also summarized in Table 4.2. The difference in the variance between ClrSpar and

Table 4.2: Upper bounds on ESpar & ClrSpar variances, p=0.1.

Graph
Algorithm ESpar

./ p−4 + p1wp
−2 + p1ep

−1

ClrSpar

./ p−3 + p1wp
−2 + p1ep

−1 + p2vp
−1

Deli 4.047× 1015 9.163× 1020

Journal 1.413× 1019 2.042× 1025

Orkut 5.576× 1019 8.514× 1025

Web 7.760× 1020 4.692× 1027

Wiki 1.303× 1020 3.062× 1026
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Table 4.3: Time (in seconds) to obtain 1% relative percent error for the best sampling and sparsi-

fication algorithms.

ESamp (with Fast-eBFC) ESpar

Deli 3.4 2.1

Journal 5.0 1.7

Orkut 3.4 3.4

Web 4.1 3.9

Wiki 4.8 2.3

ESpar boils down to (./ p−3 + p2vp
−1− ./ p−4). In our experiments, we found that p2v, the

number of pairs of butterflies that share two vertices without sharing an edge, was very high,

much larger than p1e, p1w, and ./. This explains why the variance of ESpar was higher.

This observation about variance is consistent with our experimental results. In Figure 4.7, we

report the relative percent error as well as the runtime as the sampling probability p increases.

Results show that ESpar obtains less than one percent error when 5 percent of edges are

sampled. However, as shown in Figures 4.6b, 4.6d and 4.6e, ClrSpar requires a larger sampling

probability to achieve a reasonable accuracy.

4.2.4 Sampling or Sparsification?

The accuracy of the best sampling algorithm, ESamp with Fast-eBFC, is compared with the

best sparsification algorithm, ESpar, in Table 4.3. Overall, two algorithms take similar times to

reach a 1% error on all graphs we considered, in the range of 1.7-5 sec, with ESpar achieving this

accuracy faster than ESamp with Fast-eBFC.

However, ESpar has other downsides when compared with ESamp. First, the memory

consumption of ESpar is O(mp) where p is a parameter, and is larger than ESamp with

Fast-eBFC, whose memory consumption is O(∆). As a result, we expect the memory of

ESpar to be linearly in the size of the graph, showing that it may be easier for ESamp to scale to

graphs of even larger sizes. Next, ESpar needs to decide on a sampling parameter p to balance

between accuracy and runtime. If p is too large, then the runtime is high, and if p is too small,
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then the accuracy is low. Finally, one-shot sparsification algorithms assume that the entire graph

is available whereas the ESamp needs access to only a subgraph of the graph. Thus if one has to

pay for data about the graph, or if the data about edges is hard to obtain, then sampling may be

the better alternative.

Overall, local sampling algorithms can find a larger application space in real-world. If the entire

graph is available, and memory is not a bottleneck, it may be better to go with ESpar. For more

restrictive scenarios, ESamp combined with Fast-eBFC is the better option.
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CHAPTER 5. BUTTERFLY COUNTING IN BIPARTITE NETWORK

STREAMS

We present streaming algorithms for estimating the number of butterflies over an infinite window,

i.e., all edges seen so far, for insertion-only and fully-dynamic graph streams. Our randomized

algorithms [77] maintain an unbiased estimate of the number of butterflies using a bounded

memory of M , and provide a trade-off between memory used and the accuracy of the estimate.

Besides these, we present streaming algorithms in sliding sequence-based and time-based windows

to estimate the number of butterflies in a given window.

5.1 Algorithms for Insertion-only Streams

Here, we consider space-efficient single-pass estimation of the number of butterflies from

insertion-only bipartite stream such that each edge represents a connection between entities in

two different partitions. In insertion-only models, edges of a stream are only added to the stream

at a time. The estimators hold an unbiased estimation of butterfly count at any moment of the

stream while they require a limited memory budget, which is considerably smaller than the size of

the entire stream.

5.1.1 Adaptive Sampling: Fleet1

We use random sampling from the stream of edges. An initial attempt uses Bernoulli Sampling

(Bern) with parameter p, 0 < p ≤ 1. Each arriving edge is sampled into a reservoir with

probability p. The number of butterflies among the sampled edges is incrementally maintained,

and is multiplied by the appropriate normalization factor, to estimate the number of butterflies in

the stream. The disadvantage of Bern is that it requires setting parameter p to the “right
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value”, which depends on the input itself. If p is too small, the error in estimation can be large,

and if p is too large, then the reservoir size can be very large.

Our first algorithm, Fleet1, solves this problem by adaptively setting p throughout the

computation, so as to keep the memory bounded by M . Initially, p is set to 1, and all edges are

sampled into the reservoir. When the size of the reservoir exceeds M , Fleet1 sub-samples by

retaining each edge in the current reservoir with a probability γ. Further edges are sampled with

probability γ. When the size of the reservoir again exceeds M , the same process is repeated, and

further edges are sampled with probability γ2, and so on. The size of the reservoir never exceeds

M edges, and is at least γM , with high probability, except during the initial stages of the stream.

Fleet1 also continuously maintains the number of butterflies among sampled edges. When an

estimate is desired, the number of butterflies among the sampled edges is returned, after

multiplying by the appropriate normalization factor.

Details are presented in Algorithm 12. Each time the reservoir is sub-sampled, Fleet1 uses an

(exact) algorithm to compute ξ(R), the number of butterflies in the reservoir using prior methods

designed for a static graph, such as[76, 102]. Fleet1 also uses an algorithm eBFC(e, E) to count

the number of butterflies that contain edge e in the graph induced by edge set E. This can be

achieved using prior work such as [76]. For the purposes of the current discussion, the reader can

assume that parameter γ is set to 1/2 – the main advantages of our algorithm, including bounded

sample size and provable accuracy still hold. A modest tradeoff between accuracy and runtime

can be obtained by setting γ to other values between 1/2 and 1, as we discuss further in

Section 5.4.3. Lemma 14 shows that Fleet1 maintains an unbiased estimate of the butterfly

count after observing each edge. Let Y t
Fleet1 denote the estimate of ξt returned by Algorithm 12

(Line 12) at time t.

Lemma 14. E[Y t
Fleet1] = ξt

Proof. Suppose the butterflies in ./t are numbered from 1 to ξt. Let Xt
i (1 ≤ i ≤ ξt) be a random

variable equal to 1 if all edges of the ith butterfly appear in R, and 0 otherwise. Let

Xt =
∑ξt

i=1X
t
i . From Line 11 of Algorithm 12, we have Y t

Fleet1 = Xt
(
pt
)−4

. When t ≤M , all
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Algorithm 12: Fleet1 (S, M): Adaptive sampling

Input: Edge stream S, max. reservoir size M, resampling parameter γ (default value of γ = 0.5)
Output: Estimate of ξt, the number of butterflies at t

1 p← 1,R ← ∅, t← 0, β ← 0
2 for each edge e in S do
3 t← t+ 1
4 while |R| ≥ M do
5 p← γp
6 for each edge e ∈ R do
7 Keep e in R with prob. γ and discard with prob. 1− γ
8 β ← p−4 × ξ(R) // # of butterflies in R
9 if coin (p) is Head then

10 R ← R∪ {e}
11 β ← β + p−4 × eBFC(e,R)

12 Y tFleet1 ← β

edges of the stream are sampled, and Xt = ξt. When t > M , each edge appears in R with

probability pt. Note that pt itself is a random variable equal to the sampling probability of an

incoming edge at time t. To compute E[Y t
Fleet1], we first condition on pt and then remove the

conditioning.

Since there are four edges in a butterfly, E
[
Xt
i

∣∣ pt] =
(
pt
)4

. With linearity of expectation,

E
[
Xt
∣∣ pt] =

∑ξt

i=1 E
[
Xt
i

∣∣ pt] = ξt
(
pt
)4

. Then, E
[
Y t

Fleet1

∣∣ pt] = E
[
Xt
(
pt
)−4 ∣∣ pt] = ξt. By

conditional expectation, E
[
Y t

Fleet1

]
= E

[
E
[
Y t

Fleet1

∣∣ pt]] = ξt.

5.1.2 Concentration analysis of Y t
Fleet1

We next show that if the upper bound on the reservoir size (M) is large enough, then the

estimate Y t
Fleet1 will be concentrated around its expectation, i.e., have a small relative error, with

a high probability. There are a few complexities to deal with here. First, the sampling probability

pt is itself a random variable, since it is the result a random process. We first analyze a simpler

algorithm Bern(p) that is based on fixed sampling probability p, which we have explained earlier.

After t edges, let Ztp denote the estimate computed by Bern(p), of ξ(Gt), the number of

butterflies in Gt. Lemma 15 shows a concentration bound for Ztp. The difficulty with analyzing Ztp

is in handling the dependency between random variables corresponding to different butterflies
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being sampled into the reservoir. Though different edges are sampled independently by Bern(p),

different butterflies are not necessarily independent since butterflies may share edges. We address

this with the help of the Hajnal-Szemerédi theorem, building on ideas from prior works

[27, 49, 65] all of who applied this idea in the context of triangle counting.

Lemma 15. After t edges, let ht denote the maximum number of butterflies in Gt that an edge can

be part of. For a fixed p, and for any ε ∈ (0, 1), we have Pr
[∣∣Ztp − ξt∣∣ ≥ εξt] ≤ 8ht · exp

(
− ε2ξtp4

12ht

)
Proof. Consider a new graph Ht = (VHt , EHt) constructed from Gt: each vertex v ∈ VHt

corresponds to a butterfly in Gt. For each pair of butterflies u, v ∈ VHt that share at least one

edge, there is an edge in EHt . Since each edge in Gt can be shared by at most ht butterflies, the

maximum degree of vertex u ∈ VHt is (4ht − 4). Using the Hajnal-Szemerédi theorem [37], there

exists an equitable coloring of Ht with at most (4ht − 3) colors. Let the colors be numbered as

{1, 2, . . . , 4ht − 3}. For each butterfly i ∈ VHt , let random variable Xi be defined as: Xi = 1 if all

edges of butterfly i are sampled by Bern at time t, and 0 otherwise. Let the set of butterflies

assigned color j be denoted by Cj . For two butterflies a, b ∈ Cj , note that Xa and Xb are

independent, since a and b do not share edges, and all their edges are sampled independently.

Define Yj =
∑

i∈Cj Xi. Note that Yj is a Binomial random variable since it is the sum of

independent 0-1 random variables. We have E[Yj ] = |Cj | · p4 and |Cj | > ξt/4ht, since the coloring

of vertices in VHt is an equitable coloring. Using the Chernoff bound,

Pr
[∣∣Yj − |Cj | · p4

∣∣ ≥ ε · |Cj | · p4
]
≤ 2 exp

(
− ε2

3 ·
ξt

4ht · p4
)

Using the union bound,

Pr
[
|Ztp − ξt| ≥ εξt

]
= Pr

[∣∣∣∑4ht−3
j=1 Yj · p−4 −

∑4ht−3
j=1 |Cj |

∣∣∣ ≥ ε∑4ht−3
j=1 |Cj |

]
≤∑4ht−3

j=1 Pr
[
|Yj · p−4 − |Cj || ≥ ε|Cj |)

]
≤ 8ht · exp

(
− ε2ξtp412ht

)
We next derive a concentration result for Fleet1. Fleet1 essentially returns the estimate due to

Bern(pt) where pt is itself a random variable. While it is possible to compute the expected value

of pt, this cannot be directly plugged into the Lemma 15. Lemma 16 shows that for a large

enough reservoir size, Fleet1 returns an estimate that is concentrated around its expectation.
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The proof considers multiple Bern(p) instances, one for each sampling probability and combines

with the event of Fleet1 stopping at one of these levels.

Lemma 16. Assume γ ≤ 0.9. For any ε, δ ∈ (0, 1), when M satisfies M ≥ 6t · 4

√
12ht

ε2ξt
· ln 8ht(4+δ)

δ

then Pr
[∣∣Y t

Fleet1 − ξt
∣∣ ≥ εξt] ≤ δ.

Proof. Note that the sampling rate of Fleet1 is γi for i ≥ 0. We say that Fleet1 is at level i

when the sampling rate is γi. For i ∈ [0,+∞), define events Si and Bi as follows. Event Bi:

Suppose that we execute algorithm Bern(γi), and we have
∣∣∣Ztγi − ξt∣∣∣ ≥ εξt. Si is the event that

Fleet1 stops at level i.

Define event B:
∣∣Y t

Fleet1 − ξt
∣∣ ≥ εξt. We decompose the probability of event B in terms of Bi and

Si.

Pr [B] =

∞∑
i=0

Pr [Bi ∧ Si] =
∑̀
i=0

Pr [Bi ∧ Si] +

∞∑
i=`+1

Pr [Bi ∧ Si]

≤
∑̀
i=0

Pr [Bi] +

∞∑
i=`+1

Pr [Si]

where ` = log(M/6t)
log γ . The sampling probability at level i is γi, by Lemma 15 we have∑`

i=0 Pr [Bi] =
∑`

i=0 8ht · exp
(
− ε2ξtγ4i

12ht

)
=
∑`

i=0 α
(γ−4i) where α = 8ht · exp

(
− ε2ξtγ4`

12ht

)
and α < 1.

When γ ≤ 0.9, γ−4 > e1/e, we have γ−4i ≥ i for any i ≥ 1. Applying this fact, and using the

bound on M we get:
∑`

i=0 α
(γ−4i) ≤ α+

∑`
i=1 α

i ≤ 2α
1−α ≤ δ

2

Let X` denote the number of edges in R when Fleet1 is at level `. Note that the event Fleet1

stops at level higher than ` is equivalent to the event that X` is greater than the reservoir size M .

By E[X`] = t · γ` and Chernoff bound, we have∑∞
i=`+1 Pr [Si] = Pr [X` > M ] ≤ Pr [X` > 6 · E[X`]] ≤ δ

2 . Combining the above bounds, we arrive

at Pr [B] ≤ δ.

5.1.3 Improved Adaptive: Fleet2 and Fleet3

We present two algorithms Fleet2 and Fleet3 which improve upon Fleet1, providing a better

memory-accuracy tradeoff. Fleet2 is similar to Fleet1, but handles sub-sampling differently.

Say Fleet1 is at “level i” when its sampling probability is γi. In Fleet1, each time the level
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changes from i to (i+ 1), edges are discarded according to a random process, and the number of

butterflies is recomputed on the new reservoir from scratch (Line 8 of Algorithm 12, shown in

pink color). Due to this re-computation, butterflies that were already detected at the higher

sampling rate (level i) may no longer have all their edges present at the lower sampling rate (level

(i+ 1)). In contrast, Fleet2 does not recompute when the reservoir is sub-sampled. Instead, the

current butterfly count at level i is maintained, and as more butterflies are detected at level i+ 1,

they are accumulated into this estimate. It can be expected that Fleet2 obtains a better

accuracy than Fleet1, since it “catches” more butterflies than Fleet1. It is easy to see that the

estimation of Fleet2 is unbiased. In addition to better accuracy, Fleet2 is also slightly faster

than Fleet1, since it avoids recomputation of butterflies at the sub-sampling step.

Fleet3 (described in Algorithm 13) improves accuracy over Fleet1 and Fleet2 by handling

new edges differently. This idea is inspired by Algorithm Mascot of [55], which used the idea in

the context of counting triangles from a graph stream (the same idea is also used in [92]). Upon

receiving a new edge, the estimate is updated by accounting for butterflies that are created by the

new edge (and existing sampled edges), even before deciding whether or not to sample the new

edge (see Line 1). In other words, Fleet3 first updates the estimate and then samples. If the

current edge sampling probability is p, then the probability of detecting a butterfly involving the

new edge increases from p4 (in Fleet1) to p3 (in Fleet3). This helps increase the accuracy of

butterfly counting while using the same memory. Algorithm 13 has further details. We omit

further details and proofs, due to space constraints.

Comments: Instead of Bernoulli sampling, we could also use reservoir sampling of edges as the

basis. We took the route of Bernoulli sampling to simplify the analysis, since it leads to edges

being sampled independent of each other (given a sampling probability), unlike reservoir

sampling, where the sampling of edges are not independent events. Our initial implementations of

algorithms based on reservoir sampling without replacement, showed that the accuracy-memory

tradeoffs were similar to that of our current algorithms. We can also achieve estimates of

per-vertex butterfly counts (the number of butterflies that each vertex is a part of) using a similar
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Algorithm 13: Fleet3 (S, M): Adaptive sampling

Input: Edge stream S, max. reservoir size M, resampling parameter γ (default value is γ = 0.5)
Output: Estimate of ξt, the number of butterflies at t

1 p← 1,R ← ∅, t← 0, β ← 0
2 for each edge e in S do
3 t← t+ 1
4 β ← β + p−3 × eBFC(e,R)
5 while |R| ≥ M do
6 p← γp
7 for each edge e ∈ R do
8 Keep e in R with prob. γ and discard with prob. 1− γ

9 if coin (p) is Head then R ← R∪ {e}
10 Y tFleet3 ← β

sampling approach of estimating per-vertex subgraph counts from the reservoir, and maintaining

additional state for each vertex. A detailed study of local butterfly counting is a goal for future

work.

5.2 Sliding Window Streaming

In this section, we consider butterfly counting in two types of sliding window models:

sequence-based and time-based. We assume the number of edges in a window is (much) greater

than the available memory M – otherwise, the entire window can be stored within memory and

an exact algorithm can be applied.

5.2.1 Sequence-based Window (Algorithm FleetSSW)

We first present FleetSSW for sequence-based sliding window (Algorithm 14), which is based on

maintaining a sample of edges from within the sliding window. In the initial stages of observation,

all edges fit in memory, and as more edges are observed, we recursively decrease the sampling

probability as in Fleet1, to ensure that the sample fits in memory. However, once the number of

edges in a window reaches W , it will stay at W henceforth. As a result, when the edge sampling

probability p reaches M/W , the algorithm does not decrease p any further holds it at M/W 1.

The algorithm stores only active edges in the sample, i.e., any item (e, t′) such that t′ is not

1For simplicity of exposition, we assume M/W is a power of γ.
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within the current window is discarded. Let Y t
sw denote an estimate returned by Algorithm 14,

Algorithm 14: FleetSSW (S,M,W ): Seq-based SW

Input: Edge stream S, max. reservoir size M , window size W (�M)
Output: Estimate of ξtW , the number of butterflies in window at t

1 p← 1, R ← ∅, t← 0, β ← 0
2 for each edge e in S do
3 t← t+ 1
4 if p > (M/W ) then Run Fleet1 (S, M) and update p, β,R
5 else
6 p← (M/W )
7 if coin (p) is Head then
8 R ← R∪ {e, t}, and β ← β + p−4 × eBFC(e,R)

/* Delete expired edges and update estimate */

9 if (e′, t′) ∈ R s.t. t′ ≤ (t−W ) then
10 β ← β − p−4 × eBFC(e′,R), and R ← R \ (e′, t′)

11 Y tsw ← β

of ξtW , the number of butterflies in the window at time t.

Lemma 17. The space of R in Algorithm 14 is no greater than M in expectation and

Pr(|R| ≥ 2M) ≤
(
e
4

)M
. Y t

sw is an unbiased estimate of ξtW . For parameters 0 < ε < 1 and

0 < δ < 1, when M ≥ 6W · 4

√
12ht

ε2ξtW
· ln 8ht(4+δ)

δ , then Pr
[∣∣Y t

sw − ξtW
∣∣ ≥ εξtW ] ≤ δ.

Proof. We sketch the proof ideas and omit details, due to space constraints. For the space

complexity, note that when p > M/W , the algorithm runs Fleet1 and its space is strictly

bounded by M . Otherwise, p = M/W and the number of edges in the sample is a binomial

random variable with parameters W and M/W , and the space bounds follow using Chernoff

bounds.

At any given time, each edge currently in the window is sampled into R with probability p, and

E
[
Y t

sw

]
= ξtW · p4.When p > (M/W ), we apply results from Fleet1 for expectation (Lemma 14)

and concentration (Lemma 16) to show the corresponding properties of Y t
sw. When p = (M/W ),

we rely on an analysis similar to Algorithm Bern in Lemma 15 and derive the concentration

result that Pr
[∣∣Y t

sw − ξtW
∣∣ ≥ εξtW ] ≤ 8ht · exp

(
− ε2ξtW

12ht ·
(
M
W

)4) ≤ δ.
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5.2.2 Time-based Sliding Window (Algorithm FleetTSW)

We next consider the case of a time-based sliding window, where each element has an associated

timestamp, and the window at time t consists of all elements with timestamps greater than

(t−W ), where W is a specified window size. Handling a time-based sliding window is more

challenging than a sequence-based window since the number of elements within a time-based

window can grow and shrink with time. The sequence-based window can be seen as a special case

of time-based window such that at each time, exactly one edge arrives in the stream.

FleetTSW (Algorithm 15), our algorithm for time-based sliding window, can estimate the

number of butterflies when the window size W is provided at query time. We assume an upper

bound nmax number of edges within a window. Let T = d1 + logγ
M

nmax
e. FleetTSW is based on

maintaining not only a single sample, as in FleetSSW or Fleet1, but T reservoirs

Ri, i = 0, 1, 2, . . ., at different sampling rates. Every edge is sampled into R0. For i > 0, each edge

that was sampled into Ri−1 is sampled into Ri with probability γ. Each reservoir has a capacity

of M ′ = M/T edges, and contains the most recent edges sampled into the reservoir. Each Ri is

stored as a first-in-first-out queue, so that if a new edge enters when the queue is full, the edge

with the earliest timestamp is deleted.

Lemma 18. Y t
tw is an unbiased estimate of ξtW . If M ∈ Ω

(
logγ

M
nmax

4

√
n4
maxh

t

ε2ξtW
ln ht

δ

)
, then we

obtain Pr
[
|Y t

tw − ξtW | ≥ εξtW
]
≤ δ.

Proof. At query time t, when presented with a window size W , let GtW denote the graph

consisting of all edges that have timestamps in [t−W + 1, t]. For level ` ∈ {0, 1, 2, . . .}, let GtW (`)

be defined inductively as follows. GtW (0) = GtW . For i ≥ 0, GtW (i+ 1) is derived from GtW (i) by

choosing each edge in GtW (i) with probability γ. We note that in Algorithm 15, Ri contains the

M/T most recent elements from GtW (i). Further, when a query arrives at time t, the algorithm

uses R`∗ such that `∗ is the smallest value, where GtW (`∗) is completely contained in R`∗ .

Let ZtW (i) denote the estimate of ξ(GtW ) derived from Ri. Similar to the proof of Lemma 16, we

define: event Si is the event that the algorithm chooses Ri to answer the sliding window query,

and Bi is the event that the estimate ZtW (i) has a relative error that is greater than ε. The
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Algorithm 15: FleetTSW (S, M, nmax): Time-based SW

Input: Edge stream S, reservoir size M , nmax(�M) (the maximum number of elements within a
window)

Output: Estimate of ξ(GtW )
1 T ← d1 + logγ

M
nmax

e
// d` is the time of most recent discarded edge in R`

2 ∀i ≤ T, Ri ← ∅, di ← 0
3 for each edge e in S at time t do
4 `← 0
5 do
6 R` ← R` ∪ {(e, t)}
7 if |R`| > M

T then
8 R` ← R` \ {(e∗, t∗)} s.t. t∗ = min{t′| (e′, t′) ∈ R`}
9 d` ← t∗

10 `← `+ 1

11 while coin (γ) is Head

12 `∗ ← arg min`∈[T ]{d` | d` ≤ (c−W )}
13 A ← {(e, t′) ∈ R`∗} s.t. t′ > (c−W ) // sample of window

14 Y ttw ← γ−4`∗ × ξ(A)

probability that the algorithm fails to return an estimate that has a relative error within ε is

given by Pr [B] =
∑∞

i=0 Pr [Si ∧Bi]. Using an argument similar to the proof of Lemma 16, we

arrive at the result.

5.3 Algorithms for Fully-dynamic streams

A more general problem is counting butterflies in a fully dynamic stream where both edge

insertion and deletion may occur. While the mainstream methods are designed for graphlet

counting in insertion-only streams, there are only few counting methods for handling edge

deletions in a stream. It is clear that counting graphlets in a fully-dynamic steam is more

challenging because it supports more operations than an insertion-only setting, and, therefore, it

is of high interest in research/industry communities with numerous real-world applications. Note

that the classical solutions for insertion-only setting, including reservoir sampling technique,

cannot be directly applied as deletion is not supported which makes the estimations unbiased.

This is because reservoir sampling will result in non-uniform sample and inaccurate estimations

when deletions occur.
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In this section, we introduce estimators for counting butterfly in fully-dynamic streams. The goal,

here, is to maintain an unbiased estimation of butterfly count at any moment while using a

fixed-size reservoirs over the entire graph stream which is in the presence of both edge insertions

and deletions.

5.3.1 Algorithm ThinkD-ACC

We describe algorithm ThinkD-ACC which is a modified version of [89] for triangle counting in

fully-dynamic streams. This method uses random pairing sampling (henceforth RP), due to

Gemulla et al. [31]. RP is an extension of the reservoir sampling technique. It maintains two

integer variables cb and cg to represent “bad” and “good” uncompensated edge deletions. As

shown in [31], RP keeps the uniformity of sampled edges over the entire stream. We describe

more details of RP in the description of algorithm ThinkD-ACC. Here, we introduce a

Algorithm 16: ThinkD-ACC

Input: Fully-dynamic edge stream S, an integer M.
Output: Estimate of ./t, i.e. # of butterflies at t.

1 α← 0, t← 0, R ← ∅, cg ← 0, cb ← 0
2 for each item (δ, e) in S, s.t. δ ∈ {+,−} do
3 B ← eBFC(e,G)

4 pt =
∏2
i=0

y−i
|S|+cg+cb−i

5 if δ is − then
6 α← α−B/pt
7 if edge e ∈ S then R ← R \ {e}, cb ← cb + 1
8 else cg ← cg + 1

9 else if δ is + then
10 α← α+B/pt

11 if cb + cg = 0 then
12 if t ≤ M then R ← R∪ {e}
13 else if coin(M/t) is Head then
14 e′ ← a random edge from R
15 R ← (R \ {e′}) ∪ {e}

16 else if coin(cb/(cg + cb)) is Head then
17 R ← R∪ {e}, cb ← cb − 1

18 else cg ← cg − 1

19 return α

butterfly counting method for fully-dynamic streans which is based on a triangle counting
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algorithm and is first introduced by Shin et al. [89], and itself is inspired by Trièst-FD [27], the

fully-dynamic work of Stefani et al. Shin et al. [89] use a technique such that each arrival edge

from the stream contributes to the estimation. It is worth noting that the technique is first

introduced by Lim and Kang [55]. Here, we describe ThinkD-ACC, a butterfly counting version

of the work of Shin et al. [89]. Recall that ThinkD-ACC uses RP for sampling edges to keep a

uniform sample over the stream. First, we compute the probability of each observed butterfly in

reservoir R with size M at time t using Lemma 19.

Lemma 19. Let the size of stream be |St|2 at time t and reservoir R with size M is used. Let

y = min{M, |St|+ cg + cb}. Upon receiving edge e at time t from the stream, the probability that a

butterfly, which includes edge e in reservoir R, equals

pt =
2∏
i=0

y − i
|S|+ cg + cb − i

Proof. Suppose {u, v, w, x} be a newly formed butterfly when a new edge {u, v} is received from

the stream at time instant t . Then, the probability that this butterfly is sampled is,

Pr
[
{u, x} ∈ St ∩ {v, w} ∈ St ∩ {w, x} ∈ St

]
= Pr

[
{w, x} ∈ St|{u, x} ∈ St ∩ {v, w} ∈ St

]
×

Pr
[
{u, x} ∈ St ∩ {v, w} ∈ St

]
Using Lemma 7 of [88] we obtain,

Pr
[
{w, x} ∈ St|{u, x} ∈ St ∩ {v, w} ∈ St

]
= Pr

[
{w, x} ∈ St \ ({u, x} ∪ {v, w})

]
=

y(t) − 2

S(t) + c
(t)
g + c

(t)
b − 2

And, using Lemma 2 of [89] we obtain,

Pr
[
{u, x} ∈ St ∩ {v, w} ∈ St

]
=

y(t)

S(t) + c
(t)
g + c

(t)
b

× y(t) − 1

S(t) + c
(t)
g + c

(t)
b − 1

Thus, the result follows.

2Note that since the stream is a fully-dynamic, the size of stream is not necessarily t.
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Next, we show that ThinkD-ACC gives an unbiased estimates of the global butterfly count at

any given point of time. We use the following results in our proof:

Lemma 20. The count of butterflies |Bt| in the bipartite graph at time t (i.e., |Bt| = ξt) equals to

the count of added butterflies |X t| subtracted by the count of deleted butterflies |Yt|. Formally,

|B(t)| = |X (t)| − |Y(t)| ∀t ≥ 1.

Now, we can state the following:

Theorem 1. ThinkD-ACC gives an unbiased estimates at any time t. Formally,

E
[
α(t)
]

= ξt ∀t ≥ 1.

Proof. Assume that when an edge e(t) = {u, v} from the stream was added to the bipartite stream

at time t. Also, assume that γtuv = +B/pt is a random variable for the amount of change

(increments) occurs, where B and pt are computed in Line 3 and Line 4 of Algorithm 16,

respectively. Similarly, if the edge e(t) in the stream is deleted from the graph, and assume that

γt−uv = −B/pt be a random variable for the amount of change (decrements) occurs in α. By

Lemma 19, we showed that Pr
[
{u, x} ∈ St ∩ {v, w} ∈ St ∩ {w, x} ∈ St

]
= pt. This shows that at

any time t, E
[
αt
]

= E
[
γtuvwx

]
− E

[
γt−uvwx

]
= |X (t)| − |Y(t)| = |B(t)| = ξt considering that the

probability of each newly formed/deleted butterfly is pt.

Algorithm 16 describes ThinkD-ACC. Line 3 computes the number of butterflies upon receiving

edge e. This number contributes to the estimation regardless the fact that e is sampled in

reservoir R. In addition, pt is computed and used as a scale-up factor in Lines 6 and 10 to

maintain an unbiased estimation of butterfly count over the stream. The rest of the algorithm

uses technique RP to ensure that reservoir R keeps uniformity while edges are sampled from the

stream. Two variables cb and cg are used to record the number of “uncompensated” edges.

Uncompensated edges are simply the difference between the number of cumulative insertions and

deletions. As shown in [31], RP ensures that the sampled edges in the reservoir are sampled

uniformly even though edges could be removed from the stream and possibly from the reservoir.
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Algorithm 17: Fleet-FD (S, M): Fleet for fully-dynamic streams

Input: Fully-dynamic edge stream S, max. reservoir size M, resampling parameter γ (default value is
γ = 0.5)

Output: Estimate of ξt, the number of butterflies at t
1 p← 1,R ← ∅, t← 0, β ← 0
2 for each item (δ, e) in S, s.t. δ ∈ {+,−} do
3 t← t+ 1
4 if δ is − then
5 β ← β − p−3 × eBFC(e,R)
6 R ← R \ {e}
7 else
8 β ← β + p−3 × eBFC(e,R)
9 while |R| ≥ M do

10 p← γp
11 for each edge e ∈ R do
12 Keep e in R with prob. γ and discard with prob. 1− γ

13 if coin (p) is Head then R ← R∪ {e}
14 Y tFleet3 ← β

5.3.2 Algorithm Fleet-FD

Here, we introduce Fleet-FD for counting butterflies in a fully dynamic graph stream. This

algorithm is basically the modified version of algorithm Fleet3. Recall that Fleet3 processes

edges of an insertion-only stream and guarantees the uniformity by sampling each edge from the

stream with probability pt at any time t. Because at any time the sampling probability is fixed,

we can simply update the estimation even if an edge deletion occurs. Algorithm 17 represents

Fleet-FD. When a deletion occurs, the estimation is updated and the edge is simply removed

from reservoir R (Line 4). Note that this operation does not change the sampling probability of

remaining edges in the reservoir. On the other hand, if an edge insertion occurs, the rest of the

procedure is similar to Fleet3 – edges are sampled with the sampling probability, and whenever

the reservoir is full, a downsampling is performed to keep the size of reservoir below the given

threshold. As a result, at any time t, the probability of each sampled edge in the reservoir is pt,

and we obtain an unbiased estimation through the scale-up factor, i.e.,
(
pt
)−3

.
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Figure 5.2: Number of butterflies as a function of stream size.

5.4 Experimental Evaluation

We experimentally evaluate the infinite window and sliding window algorithms on real-world

temporal bipartite networks with hundreds of millions of edges from a variety of domains, such as

social, web, and rating networks.

Bipartite networks and experimental setup: We used five real-world temporal bipartite

networks from the publicly available KONECT repository [51]3, summarized in Table 5.1.

Movie-lens is the ratings by users for movies. Edit-frwiki is a bipartite network of editors and

pages of the French Wikipedia where each edge represents an edit. Edit-enwiki is the English

version of Edit-frwiki. Yahoo-song is a ratings by users for songs. Bag-pubmed is a

word-document bipartite network. Note that Bag-pubmed is not a temporal network, and we

generated a stream by randomly permuting the edge set of Bag-pubmed. Edit-frwiki,

Edit-enwiki, and Bag-pubmed had multiple edges between the same node pairs, and we only

considered the first interaction. Edges are read from the stream in the order of timestamps.

Figure 5.2 shows the number of butterflies as a function of stream size.

The streaming algorithms were implemented in C++4 and compiled with g++ compiler using -O3

as the optimization level. We ran the experiments on a machine equipped with a 2.0 GHz 16-Core

Intel E5 2650 processor and 128GB of memory.

3http://konect.cc/
4https://github.com/beginner1010/ButterflyCounting
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Figure 5.4: Accuracy of Fleet1, Fleet2, and Fleet3 for γ = 0.5 versus reservoir size. Bottom

x-axis shows the reservoir size and top x-axis shows the sample rate, defined as the ratio of the

reservoir size to the stream size.
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Figure 5.6: Accuracy of Fleet1, Fleet2, and Fleet3 at different points in the stream, reservoir

size is 3.00× 102K and γ = 0.9.

5.4.1 Accuracy

If the true value of the butterfly count is x > 0, then the relative error of an estimate x̂ is defined

as |x− x̂|/x and is usually shown as percent error. We also used MAPE (Mean Average

Percentage Error) to measure the accuracy over the entire stream, defined as the average of the

relative error, taken over the entire stream. Figure 5.4 shows the accuracy on the entire stream vs

the reservoir size. Larger reservoirs yield better accuracies, as expected. Fleet3 can keep the

estimation error around 1% for all networks by storing only 600K edges in the reservoir. This

corresponds to 6%, 2.7%, 0.49%, 0.23%, and 0.12% of the total stream sizes for Movie-lens,

Edit-frwiki, Edit-enwiki, Yahoo-song, and Bag-pubmed, respectively. When the reservoir size

is 300K, Fleet3 yields 3% error for Edit-enwiki and Bag-pubmed and less than 1% for other

networks. As expected Fleet2 has better accuracy than Fleet1, and Fleet3 has the best

accuracy.
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Figure 5.8: Throughput of Fleet1, Fleet2, and Fleet3 algorithms as a function of reservoir

size where γ = 0.6.
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Figure 5.10: Accuracy and runtime of Fleet1, Fleet2, and Fleet3 as a function of γ where

M = 600K.

Figure 5.6 shows the relative error at different points in the stream, for a fixed reservoir size. As

the stream size increases, the error of Fleet1 and Fleet2 increase slightly. This can be

attributed to the fact that the edge sampling probability p is proportional to 1/t, where t is the

number of edges, and from Lemma 15, the probability of a given relative error decreases with

p4ξt. Unless ξt increases as the fourth power of t, the probability of a given relative error

increases with the stream size.

Table 5.1: Properties of the bipartite graphs. |E| is the number of edges, ξ the total number of

butterflies, and the butterfly density is the ratio ξ/|E|4. |L| and |R| are the number of vertices in

the left and right partions, respectively.

Graphs |E| |L| |R| ξ Butterfly density

Movie-lens 10M 69K 10K 1.1T 1.1× 10−16

Edit-frwiki 22M 288K 3M 601.2B 2.5× 10−18

Yahoo-song 256M 1M 624K 101.4T 2.3× 10−20

Edit-enwiki 122M 3M 21M 2T 9.1× 10−21

Bag-pubmed 483M 8M 141K 40.8T 7.4× 10−22
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Figure 5.12: Relative error vs. number of edges received for FleetSSW. Window size = 5 × 106

edges, γ = 0.9.

Butterfly Density: We note the errors of Fleet1 and Fleet2 for a given reservoir size are

roughly correlated with the butterfly density (ξt/t4 where t is the number of edges). One reason is

as follows. Following Lemma 15, the probability of a high relative error decreases with p4ξt.

Setting p ≈M/t where M is the reservoir size, this is M4 times the butterfly density ξt

t4
, showing

that the error probability decreases quickly as the butterfly density increases. When the networks

are ordered according to increasing butterfly density, we get the order Bag-pubmed, Edit-enwiki,

Yahoo-song, Edit-frwiki, and Movie-lens. We note that for the same reservoir size, this is

exactly the increasing order of accuracy (decreasing order or error) for algorithms Fleet1 and

Fleet2 (Figure 5.6). The trend is not so clear for algorithm Fleet3, since its accuracy depends

heavily on the temporal order of the edges within a butterfly.

5.4.2 Runtime and Throughput

The better accuracy of Fleet3 comes at the cost of increased runtime. From Figure 5.8, we see

Fleet3 has the lowest throughput (number of edges processed per second), while Fleet1 and

Fleet2 have similar throughputs. The reason is there is one per-edge butterfly computation for

each arriving edge in Fleet3, where as there is one such computation only for each sampled edge

in Fleet1 and Fleet2. The throughput decreases as the reservoir size increases, due to the

increased cost of per-edge butterfly counting on the reservoir. Fleet3 is able to achieve quite a

high throughput, e.g. 6.2× 105 edges per second on graph Bag-pubmed with reservoir size 150K,

making it suitable for practical scenarios. Fleet2 always has a slightly higher throughput than
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Fleet1. Overall, Fleet3 has the best accuracy with a good throughput, while Fleet2 trades a

lower accuracy for a higher throughput.

5.4.3 Impact of γ on Runtime and Accuracy

Figures 5.9a and 5.9b show the accuracy as a function of γ. As γ increases, the average size of the

reservoir increases, while the frequency of sub-sampling also increases. The accuracies of Fleet1

and Fleet2 improve slightly as γ increases from 0.5 to 0.9 e.g. for graph Yahoo-song. In

contrast, from Figures 5.9c and 5.9d, the runtime increases for all estimators as γ increases. A

value of γ of about 0.7 seems to be a good “middle ground” since it achieves nearly the best

throughput as well as accuracy.

5.4.4 Sliding Window

Figure 5.12 shows the relative error of FleetSSW for window size W = 5M edges, when the

reservoir size is varied from 1% to 5% of W . The accuracy improves as the reservoir size

increases; when M is 5% of the window size, the relative error is always under 5%. The number of

butterflies within a window ranges from 5× 1010 to 1011 for Movie-lens and 1× 1010 to 6× 1010

for Yahoo-song. We also experimented with FleetTSW for time-based windows. We used 30

queries, and a window size is randomly generated at query time. When the reservoir size M is

10% of the stream size, the average relative error over the queries is 2.55% for movie, 5.52% for

Edit-frwiki and 6.32% for Edit-enwiki. This result shows FleetTSW can achieve good

accuracy using memory much smaller than the whole stream.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

In this dissertation, we described a suite of randomized algorithms for counting triangles and

butterflies in static and streaming networks. We detailed state-of-the-art triangle counting

algorithms. We theoretically and empirically compared the run-time, memory usage performance

and proposed the most efficient algorithm in various scenarios. Note that while there are

numerous existing work for triangle counting, there is no comprehensive comparison between the

triangle methods in the literature. The existing methods are developed for different scenarios,

and, therefore, thorough empirical and theoretical analyses will be helpful to shed light on the

actual performance of the prior methods.

We introduced our butterfly estimators which are considered state-of-the-art in the literature.

Our butterfly counting algorithms in static networks are fast and efficient that are enabled to

estimate the number of butterflies with less than 1% error in large networks with trillions of

butterflies within 5 seconds. We developed streaming algorithms which use a fixed size memory to

maintain an accurate butterfly estimate over the entire stream. In addition, we developed

algorithms for sliding window scenarios in bipartite network stream. Our methods outperform the

existing methods in terms of accuracy and runtime. We also provide C++ libraries that includes

the implementation of static and streaming algorithms for triangle and butterfly counting and also

support fully-dynamic streams where both insertion and deletion of edges occur in the stream.

This framework is supplied with a user-friendly interface that shows the progress of executions

and will output the runtime and estimates of triangle count along with other useful statistics.

One future direction is to extend our scope to a more restricted yet interesting scenario which is

butterfly counting in online social network (OSNs) where the topology of the input network is not

readily shared, due to either data privacy or the sheer size of the input data; however, it is still

expected that crawling from a vertex of the network to its neighbors are available through an
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API. Because only a few number of vertices/edges (sub-linear to the size of network) can be

explored, an efficient computation of butterfly count could be highly challenging. Note that none

of the streaming nor static algorithms are applicable in this restricted scenario.
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[56] P. G. Lind, M. C. González, and H. J. Herrmann. Cycles and clustering in bipartite
networks. Phys. Rev. E, 72:056127, 2005. ↑5, ↑20

[57] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient (a, β)-core computation:
an index-based approach. In The World Wide Web Conference, pages 1130–1141. ACM,
2019. ↑1

[58] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in parallel graph
processing. Parallel Processing Letters, 17(01):5–20, 2007. ↑3

[59] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H. Sun. Approximate counting of cycles
in streams. In European Symposium on Algorithms, pages 677–688. Springer, 2011. ↑22

[60] A. McGregor, S. Vorotnikova, and H. T. Vu. Better algorithms for counting triangles in
data streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 401–411. ACM, 2016. ↑19



83

[61] B. Menegola. An external memory algorithm for listing triangles. 2010. ↑13

[62] M. Newman. Scientific collaboration networks. ii. shortest paths, weighted networks, and
centrality. Phys. Rev. E, 64:016132, 2001. ↑4

[63] M. E. J. Newman. Scientific collaboration networks. i. network construction and
fundamental results. Phys. Rev. E, 64:016131, 2001. ↑4

[64] T. Opsahl. Triadic closure in two-mode networks: Redefining the global and local clustering
coefficients. Social Networks, 35(2):159 – 167, 2013. Special Issue on Advances in Two-mode
Social Networks. ↑5, ↑20

[65] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112(7):277–281, 2012. ↑23, ↑50, ↑60

[66] S. Pandey, X. S. Li, A. Buluc, J. Xu, and H. Liu. H-index: Hash-indexing for parallel
triangle counting on gpus. In 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7. IEEE, 2019. ↑18

[67] H.-M. Park and C.-W. Chung. An efficient mapreduce algorithm for counting triangles in a
very large graph. In Proceedings of the 22nd ACM international conference on Information
& Knowledge Management, pages 539–548. ACM, 2013. ↑16

[68] H.-M. Park, S.-H. Myaeng, and U. Kang. Pte: Enumerating trillion triangles on distributed
systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1115–1124. ACM, 2016. ↑13

[69] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh. Mapreduce triangle enumeration with
guarantees. In Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pages 1739–1748. ACM, 2014. ↑13

[70] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling triangles
from a graph stream. Proceedings of the VLDB Endowment, 6(14), 2013. ↑19, ↑20

[71] A. Pinar, C. Seshadhri, and V. Vishal. Escape: Efficiently counting all 5-vertex subgraphs.
In Proceedings of the 26th International Conference on World Wide Web, pages 1431–1440,
2017. ↑20, ↑21

[72] A. Polak. Counting triangles in large graphs on gpu. In 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 740–746. IEEE, 2016.
↑17
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