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ABSTRACT

Recently, electroactive polymers (EAPs) have received immense attention and interest from

the materials community because of their promising properties such as light weight, high elastic

energy density and easy processing, which provide them the applicability in wide areas includ-

ing solar cells, super capacitors, actuators and sensors. Among wide variety of electroactive

polymers, ionic electroactive polymer (IEAP) has been proven more practical for both actuator

and sensor applications.

This dissertation discusses the the limiting factors in IEAP actuators and sensors. Three

important components, ionomeric polymer membrane, conductive network composites (CNCs)

and electrolytes, all have significant determination on the performance of IEAP actuators and

sensors. Thorough investigation are conducted by both experimental and theoretical methods,

and the findings are presented in this dissertation.

We first investigated how the morphology of CNC thin-film influences the mechanoelectrical

performance of IEAP sensors. IEAP sensor, in most cases, is also referred to as ionic polymer-

metal composite (IPMC) sensor. A novel approach, layer-by-layer (LbL) ionic self-assembly

technique is utilized to fabricate the porous and conductive CNC nanocomposites. The electro-

chemical, morphological characteristics, and the corresponding mechanoelectrical performance

of this IEAP sensor were explored as a function of the CNC morphology.

Meanwhile, the influence of ionic liquids (ILs) concentration on the electromechanical re-

sponse of IEAP actuators has been investigated. It was observed that an optimum concentration

of ions where the electromechanical response is maximized is achieved by adjusting the uptake

of IL in the ionomeric membrane; this optimum concentration, however, is not the highest ion

concentration.

Functional ionomeric polymer membrane is the backbone of a wide range of ionic devices

due to its permeability to ions, which is the principle of these devices. Ions are sourced by
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either aqueous electrolytes or ILs. ILs are preferred as their near zero vapor pressure allows

longer shelf life, operation in air, and higher operation voltages. We report that in addition to

ions sourced by the dopant (e.g. electrolytes or ILs), counterions of the ionomeric membrane

contained in the IEAP actuator are also mobilized and contribute to the final electromechanical

response.

Many approaches to fabricate CNC thin-film structures have been proposed and enabled

an intrinsic way to control the performance of IEAP actuators. We have demonstrated that

manipulation of ionic mobility through means of structural design can realize intrinsic limb-like

motion in IEAP actuators. By incorporating conjugated polymers in desired patterns as CNC

thin-films, we have developed unique IEAP actuators which are capable of exhibiting limb-like

angular deformation.

In a collaborative effort, we have also developed a nonlinear dynamic model of IEAP actu-

ators using rigid finite element method.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction to IEAP Actuators and Sensors

In the last two decades, more and more attention has been paid to understand the operation

mechanism and improve the performance of electromechanical actuators and mechanoelectric

sensors. Interesting applications for such devices are presented and applied in different fields,

such as bio-mimetic devices, biomedical devices, microrobotics and microfluidics[5, 6, 7, 8,

9, 10, 11]. In these applications, smart polymers have attracted significant attention due

to their low cost, low density, ease of processing and high sensitivity to stimulus[12]. Ionic

electroactive polymers, hereafter IEAPs, as a new class of smart structures which exhibit some

form of response to an external electric or mechanical stimulus due to the ion penetration

through the polymer network, play an important role in the application of electromechanical

and mechanoelectrical devices (actuators and sensors).

IEAP actuators are electromechanical devices which exhibit a mechanical deformation when

subjected to an external electric voltage. The mechanical deformation is the result of the

transport of free ions with different size and their accumulation at the oppositely-charged

electrodes, which, will generate a volume imbalance between the two sides of the structure

across the thickness[13]. Moreover, it has been proved that the electromechanical phenomenon

is reversible by generating an electric signal when the structure responses to any mechanical

deformation, which makes it work as an IEAP sensor. The sensing performance relies on, sup-

posedly, random displacement of free ions across the thickness of the structures; these free ions

are either provided by aqueous electrolyte or ionic liquids (ILs). The non-zero detectable net

electric voltage exists in reality because cations and anions behave differently when subjected

to stress[14].
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1.2 Dissertation Organization

Chapter 1 provides the background information on actuation and sensing mechanisms in

IEAP electromechanical actuators and mechanoelectric sensors, respective. Moreover, a com-

prehensive review of the existing research and literature is provided to lay a foundation for the

research presented in this dissertation.

Chapter 2 reports a fundamental study of IEAP stress sensors, which, in most cases, are also

referred to as ionic polymer-metal cmposite (IPMC) sensors. In this work the electrochemical

and morphological characteristics of an IPMC sensor were investigated as a function of the

nanostructure of its conductive network composites(CNCs).

Chapter 3 is dedicated to our investigation on the influence of IL concentration on the

electromechanical performance of IEAP actuators[15].

Chapter 4 presents evidence of couterion migration in ionic polymer actuators via the

investigation of their electromechanical performance. Functional ionomeric polymer membranes

(Nafion in this study) are the backbone of a wide range of ionic devices. In this chapter, the

electromechanical response of IEAP actuators consisting of Nafion ionomeric membranes with

different counterions was investigated to understand cationic counterions migration through

Nafion membrane[16].

Chapter 5 presents our studies on soft IEAP actuators with tunable limb-like deformation.

It was demonstrated that manipulation of ionic motion through means of structural design

could be achieved by incorporation of patterns of conjugated polymers. Consequently, intrinsic

properties of the IEAP actuators were altered.

Chapter 6 presents development of a non-linear dynamic model of IEAP actuators using

rigid finite element method. In this study a proper mathematical model was estimated to

effectively predict the actuators’ dynamic behavior. This study was conducted in collaboration

with Professor Kouzani and his research team at the Deakin University in Australia[17].

Chapter 7 presents the general conclusions and future works.
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1.3 Literature Review

1.3.1 Origin and development

To out best recollection, ionic chemomechanical deformation was first reported by Kuhn et

al.[18]. It was presented that a three-dimensional network system containing polyelectrolytes

such as Polyactrylic acid (PAA), if suspended in water, can contract and dilate reversibly when

the pH of the medium is changed by alternating addition of small amounts of acid and alkali.

They also pointed out that the shape of ionizable polymer molecules depends on the number of

charges distributed over the molecular chain. Later in 1965, another system based on Polyvinyl

alcohol (PVA) and PAA copolymer was reported by Hamlen et al.[19]. This system also ex-

hibited dimensional variations in response to chemical changes in the environment. Since the

direction of the current would cause the solution to become either acidic or alkaline, this is the

first time to obtain electrically deformation by appling voltage. The very first model of an elec-

trically controlled mechanical deformation was reported by Grodzinsky et al. in 1973[20, 21].

They studied and modeled collagen and other polyelectrolyte materials in an electrochemical

environment as a set of a electromechanical transduction. A model was developed relating ex-

ternally measured parameters (potentials and currents, etc.) and membrane intrinsic properties

(membrane deformations and fabril diameter, etc.)[21].

More recently interests in this area can be traced to Shahinpoor and his co-workers. In their

earlier works (before 1996), Shahinpoor et al. focused more on the study of ionic polymeric

gels for the robotic applications. As mentioned above, ionic polymeric gels, also known as

artificial muscles, are pH sensitive three-dimensional networks of cross-linked macromolecular

polymers that can change their initial volume in a liquid medium. As early as 1992, Shahinpoor

et al. have discussed design, kinematics and swimming dynamics of autonomous swimming

robotic structures based on the electrically controlled ionic polymer gels[22]. Subsequently they

published a series of experimental studies focused on ionic polymer gels for robotic applications

and presented the theoretical models[23, 24, 25, 26].

In 1996 Mojarrad and Shahinpoor firstly gave rise to a new composite of ion exchange

membranes (IEM) and platinum as electrically controllable artificial muscles through chemi-
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cally treating with platinum salt solution[27]. This work provided a platform for their further

studies on IPMC for biomimetic sensors, actuators and artificial muscles. More complete and

interesting work can be found in the following references[28, 29, 30]. They also did a series of

four review papers focusing on fundamentals, manufacturing techniques, modeling and simula-

tion, and industrial and medical applications of IPMCs[5, 6, 7, 8].

All the work mentioned above are about IEAP actuators doped with aqueous electrolytes.

Typical cations are alkali-metal such as Na+, Ka+, Li+ and Cs+. Nemat-Nasser and Wu et

al. conducted a comparative experimental study of IEAP actuators with different backbone

ionomers (Nafion- and Flemion-based) and in various cations forms[31]. In their work besides

the typical alkali-metal cations, alkyl-ammonium cations, tetramethylammonium (TMA+) and

tetrabutylammonium (TBA+) were also adopted. As reported in their publications, IEAP ac-

tuators doped with aqueous electrolytes and alkali-metal as cations undergo electrolysis when

subjected to voltages higher than that of electrolysis of water (approximately 1.3 V at room

temperature). The electrolysis phenomenon, however, has not occurred for Flemion-based

IEAP actuators in TBA+ form, for up to 3 V. Besides the electrolysis problem, water evap-

oration in open air is another issue that limits the application of IEAP actuators containing

aqueous electrolytes. One approach regarding to this issue was to apply an coating on the

actuator surface, which allowed operating the actuator for months[32]. However, this approach

increased the stiffness of the actuators and then reduced the strain generated.

Later in 2006, other types of solvents, ethylene glycol, glycerol, and crown ethers were

used instead of water in order to overcome these problems by Nemat-Nasser and Zamani et

al.[33]. IEAP actuators with these heavy and viscous solvents present slower actuation but can

withstand relatively higher electric potentials without electrolysis. Other dry forms of IEAP

actuators with composites of poly(ethylene oxide), PEO, and poly(ethylene glycol), PEG, have

also been studied by Shahinpoor and Kim[34, 35]. They reported that the new constricted

actuators overcome many inherent problems other actuators have, for example, wet operating

environments for IEAP actuators doped with aqueous electrolytes.

ILs were also investigated as possible new electrolytes for IEAP actuators due to their

near zero vapor pressure and large electrochemical stability window by Bennett and Leo[36].
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Bennett et al. presented that the Nafion-based actuators doped with ILs operated more stably

in air. Their work provides a platform for the further studies of IEAP actuators doped with

ILs as electrolyte[37, 38, 39, 13, 40, 4, 41, 42]. More in-depth discussion of IL-doped IEAP

actuators is presented in section 1.3.3.

Similar studies on IEAP sensors, also known as IPMC sensors, however, are reported later

and are relatively rare. To our best recollection, one of the first reports on Nafion-based sensor

was published by Sadeghipour et al. in 1992 where the concept was introduced[43]. A pressure

was applied across the thickness of the sensor and a voltage response was generated. Later

in 1995, Shahinpoor et al. investigated the response of IPMC sensor against large imposed

displacements[44]. More recent experimental and theoretical studies on IPMC sensors were

conducted by Bonomo et al.[9, 45, 46, 47, 48]. Over the same time period, studies on mathe-

matical modeling of IPMC sensors were also conducted and published[49, 50, 51, 52]. All of the

abovementioned studies considered the IPMC sensors doped with aqueous electrolytes; studies

on the IL-doped IPMC sensors, however, are rare.

IEAP actuators and sensors studied in this dissertation consist of a thin ionomeric mem-

brane of Nafion as the backbone structure, which is permeable to both cations and anions

provided by the dopant. Ionic liquid, typically 1-ethyl-3-methylimidazolium trifluoromethane-

sulfonate (EMI-Tf), is used to provide the mobilized ions (or ionic complexes). To improve

the performance of IEAP actuators and sensors, increasing the capability of the device to store

large nunmber of ions and facilitating the ions mobility through the thickness of the device

would be a logically effective approach, since the functionality of the device is highly depended

on the mobility of ions. Typically, IEAP actuators and sensors also consist of a CNC thin-film

on both surfaces of the ionomeric membrane. We have fully explored morphological and struc-

tural properties of the CNC nanocomposites and have identified that they both have instrinsic

impact on both the sensing (Chapter 2) and actuation (chapter 5) performance of IEAP devices.

The last but not the least, a layer of gold leaf is hot pressed on both surfaces of the device to

further improve the electrical conductivity and enable uniform charge distribution across the

device[1]. Schematic representation of an IEAP actuator/sensor is presented in Figure 1.1.



6

Figure 1.1: Schematic representation of an IEAP actuator/sensor (Not to scale)[1].

1.3.2 Ionomeric membrane

As the backbone of IEAP devices, ionomeric membranes are the core part to promote

the ion permeability through the thickness of the system. Nafion, developed at DuPont, is

the most common used ion-exchange membrane. The chemical structure of Nafion is shown

in Figure 1.2. It mainly consists of a Teflon backbone and ether groups as side chains with

sulfonate end group exchange sites. The value of x represents the degree of sulfonation of the

polymer, and it determines the equivalent weight (EW) of the membrane, which is defined as

the weight of dry polymer per mole of exchange sites. Figure 1.2 shows the form of Nafion

after hydrolyzed and the sulfonate exchange sites at the ends of side chains can be linked with

proton and some other cations such as Na+, K+, Li+, and alkyl-ammonium cations such as

tetramethylammonium (TMA+) and tetrabutylammonium (TBA+).

Figure 1.2: Chemical composition of Nafion.

Considering the unique chemical structure of Nafion, some different models have been pro-

posed for the interpretation of its morphology, including (i) two-phase model proposed by

Cooper et al., and (ii) Core-shell model proposed by Macknight et al. More details can be
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found in the references[53, 54]. Later a so-called cluster network model was first proposed by

Gierke et al. in 1982, which became the most generally accepted model to describe the specific

morphology of Nafion[55]. In this model, the hydrophilic sulfonate exchange sites (−SO−3 H+)

and the attached counter-ions are all reside on the inner surface of ionic cluster phase, while

the hydrophobic backbone portion (−CF2−CF2−) forms the fluorocarbon matrix outside of

the cluster phase. The hydrophilic clusters are approximately spherical which are intercon-

nected by short, narrow channels to ensure the mobility of charged ions. The hydrophilic phase

separates into approximately spherical domains, and the ionic exchange sites are found inside

the spheres near the interface between two phases. A schematic representation of the cluster

network model for Nafion perfluorinated membrane is shown in Figure 1.3, where the ionic

cluster phase is the pathway to permit water sorption and ion conductivity.

Figure 1.3: Schematic cluster-network morphology of Nafion proposed by Gierke et al.

The functionality of IEAP actuators and sensors relies on the mobility of ions through

the ionomeric membrane. In fact, ion diffusion/or drift through Nafion is the most essential

requirement for operating these ionic devices. Continuous studies have been conducted in the

past several years on the ion tranport dynamics of Nafion membranes. For instance, as early

as 1993 Morris et al. measured the density, dimensional changes and electrical conductivity

of Nafion 117 H as a function of water content[56]. Later in 1998, Okada et al. reported a

large dependence of the Nafion conductivity on the interaction of ions with water and with
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microscopic membrane channel structures[57, 58]. Meanwhile, some progress was made on

synthesizing new hybrid polymeric membranes by modifying Nafion[59, 60, 61]. The transport

properties of the synthesized hybrid membranes were also studied[62].

In one of studies reported in this dissertation, the functionality of Nafion ionomeric mem-

brane was altered by exchanging the proton counterion with larger cations, and the mobility

of these exchanged cations has been studied by utilizing the electromechanical response of the

IEAP actuators, consisting of Nafion with the corresponding cations. More details of this work

are presented in Chapter 4.

1.3.3 Ionic liquid

Technically the sensing and actuation performance of IEAP devices is mainly dependent on

the density and mobility of ions, which are provided by the dopant. For IEAP actuators and

sensors, electrolyte can be divided into two main categories: aqueous and ILs.

Aqueous electrolytes are acid, base, or salt solutions. IEAP actuators and sensors doped

with aqueous electrolytes, however, have inherent limitations including electrolyte evaporation

and electrolysis at relatively low voltage.

Therefore, dry solid-state IEAP actuators and sensors doped with ILs have been the subject

of extensive and continuous studies. ILs are salts that are in their liquid state at or below room

temperature. Common salts tend to be solid at room temperature, since the ionic bound

existing in salts is usually stronger than van der Waals force, which is between the molecules

of ordinary liquids. Room temperature ILs, on the other hand, usually consist of bulky and

asymmetric organic cations and a wide range of anions from organic to inorganic. They tend

to be liquid state at or below room temperature due to the inhibition of a crystalline solid

formation from their inherent cumbersome structure. ILs are more suited candidates for IEAP

devices due to their near-zero vapor pressure and high electrochemical stability.

As early as 2002, Lu et al. using ILs for electrochemical devices based on π-conjugated

polymers, and reported that ILs have not only enhanced lifetime up to 1 million cycles, but

also generated fast cycle switching speeds[63]. ILs as stable electrolytes for IEAP actuators

and sensors came from Bennett and Leo firstly in 2004[36]. 1-ethyl-3-methylimidazolium triflu-
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oromethanesulfonate (EMI-Tf) was first introduced as a viable electrolyte for Nafion polymer

actuators and sensors to eliminate the hydration dependence. Further studies about this sub-

ject were conducted in 2006 by the same group[64]. Two ILs, 1-ethyl-3-methylimidazolium

trifluoromethanesulfonate (EMI-Tf) which is water miscible, and 1-ethyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide (EMI-Im), which is hydrophobic, were chosen due to their

low viscosity and high conductivity. It was revealed that ILs interact with Nafion membrane

in the same way aqueous electrolytes do. The influence of imidazolium-based ILs on the elec-

tromechanical performance of IEAP actuators was investigated by Liu et al. in 2010[65]. Four

imidazolium ILs with two cations and anions of different sizes were used and the corresponding

doped actuators were operated under a step voltage.

In one of studies reported in this dissertation, the electromechanical performance of IEAP

actuators as a function of IL concentration is reported. More details of this work are presented

in Chapter 3.

1.3.4 Conductive network composite

Charge migration across the thickness of the actuator and their accumulation at the ionomer-

electrode interface is the actuation mechanism in IEAP actuators[50, 66, 67, 68, 69, 70]. It is

becoming clear that the performance of IEAP actuators is strongly dependent on the capac-

itance of the ionomeric membrane, which is due to the formation of the electric double layer

on the ionomer-electrode interface[71]. An enhanced capacitance of the ionomeric membrane

enables accumulation of a larger number of ions at the ionomer-electrode interface, which con-

sequently results in larger strain. Bennett and Leo presented some marked advantages over

traditional IEAP actuators by adding a layer of conducting polymer film (polypyrrole) on the

surface of Nafion[72]. As a result, CNC layers are designed and optimized to act as reservoirs

for electrolytes and offer large interfacial area. The mobility of the ions through the CNC layers

depends on many attributions of the layers such as the dimensions, conformation, morphol-

ogy, conductivity, porosity, and of course the interaction of ions with the nano/micro-channels.

These physical properties can be tuned by choosing different fabrication techniques in order to

ultimately define the characteristics of IEAP devices.
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1.3.4.1 Impregnation-reduction process

Figure 1.4: Schematic representation of ionic polymer metal composite prepared by

impregnation-reduction method proposed by Millet et al.[2].

A widely used method at earlier studies is the so-called impregnating-reduction process

which was first proposed by Millet et al.[2]. In this technique metal cation complex was plated

onto Nafion membrane first, then nanosized metal particles were obtained to penetrate into the

ionomeric membrane by chemical reduction method. As a result, Nafion membrane was plated

with interpenetrating platinum electrodes. Schematic representation of this impregnation-

reduction process is represented in Figure 1.4. Millet et al. proposed a model for the chemical

reduction of platinum tetramine and Nafion film and utilized this model to study the rate of

ion-exchange[73] and investigate the precipitation process[74]. Rashid and Shahinpoor also

utilized a similar reduction process for the study of ionic polymer platinum composite artificial

muscles[75].

The penetrating depth of the platinum electrode into the membrane in this process is up

to 20 µm, which effectively enhances the interfacial area between the polymer and the metal.
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The enhanced interfacial area is the main reason for the very large capacitance thus a large

accumulation of charges at the ionomer-electrode interface.

1.3.4.2 Direct assembly process

Figure 1.5: Schematic representation of the four steps of direct assembly process for building

dry transducers developed by Akle and Bennett et al.[3].

Despite advantages of impregnation-reduction technique for fabrication of CNC layers, there

are some limiting factors such as lack of control over morphology of the CNCs and limited

compatible materials that hinder applicability of this technique. Moreover, it is hard to combine

the reduction process with dry-state IEAP actuators and sensors which are doped with non-

aqueous electrolytes such as ILs. To eliminate these drawbacks, another direct assembly process

was developed by Akle and Bennett et al. in 2006-2007[12, 3]. They mixed ionic polymer

solution with electrically conductive powder and applied the mixture on both surfaces of the

ionomer by either using a brush or painting on Furon and then hot-pressing these decals on
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Figure 1.6: Schematic representation of the four steps of direct assembly process for building

solvated transducers developed by Akle and Bennett et al.[3].

the ionomer. Both dry membranes and solvated membranes can be applied in this process.

Figures 1.5 and 1.6 schematically represent the direct assembly process steps for building dry

and wet transducers, respectively.

This direct assembly process increases the effective interfacial area between the electrode

and ionomer by a factor of 5−10 compared with a conventional impregnation-reduction process.

The corresponding performance of an IEAP actuator fabricated with the direct assebly pro-

cess exceeds the performance of an IEAP actuator fabricated with conventional impregnation-

reduction process by a factor of 2−5[71]. Another attractive property of direct assembly process

is that this technique makes it possible to adopt some other materials including carbon nan-

otubes and non-metallic nanoparticles in CNCs[76].

1.3.4.3 Layer-by-layer self-assembly process

Layer-by-Layer (LbL) self-assembly technique is a process to build up an ultra-thin mul-

tilayer film upon the use of oppositely charged polyelectrolytes, DNA, conducting polymers,

proteins, and nanoparticles. This technique yields an easy controlled structure on the nano-

or microscale, which combines two or more desirable properties of its componenets and avoids

their weakness at the same time. This LbL self-assembly adsorption from aqueous solution was
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Figure 1.7: Schematic representation of the film deposition process using a slide and beakers.

Beakers with cationic and anionic species represent the adsorption process; beakers with water

represent washing step. The order of cationic and anionic species depends on the original

surface charge of the slide. This schematic assumes the slide has negative surface charge at the

very beginning.

presented and discussed detailedly by Decher and Hong et al. since 1991[77, 78, 79]. In this

technique, a functionalized substrate is alternatively immersed in cationic and anionic species

(or in a reversed order, depending on the original surface charge of the substrate). Each ex-

posure forms one layer and the original surface charge is restored to provide the foundation to

the next layer. Each set of two consecutive exposures to oppositely charged species results in

formation of a bilayer. Rinsing by water is also necessary after each exposure to remove loosely

bonded species. Figure 1.7 is a schematic representation of a LbL self-assembly deposition cycle

using a slide and beakers, and Figure 1.8 shows formation of two bilayers.

With many advantages, LbL self-assembly technique has become one of the most preferred

techniques to fabricate thin-films since it was reintroduced in 1991. First it offers freedom

in materials selection, virtually any specie with non-zero net charge can be used. It allows

different kinds of active elements incorporated into the thin-film without losing their intrinsic

properties including electric and chemical properties. It also allows different kinds of substrates
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Figure 1.8: Schematic of formation of two bilayers through adsorption[1].

for the thin-film deposition, from ITO coated glass slide, to flexible surfaces such as Nafion or

Teflon. Second, LbL self-assembly technique makes it possible to build a multi-material complex

structure at the nanometer scale, and various components can be tuned on a molecular level.

The control over the thickness of the thin-film can be accurate to tens of nanometers, which

is 1−2 orders of magnitude higher in comparison to the films made by other methods such

as spin-coating and screen casting. In addition, the thin-film deposited by this technique is

uniform, which makes it applicable in many sophisticated products such as permselective thin-

films[80, 81, 82, 83, 84, 85], electrochromic thin-films[86, 87, 88, 89] and nanomechanical thin-

films[90, 91]. Polymeric materials formed by LbL self-assembly technique, both in the forms of

capsules and thin-films, also have promising applications in biomedical implant devices such as

drug delivery vehicles[92, 93].

Due to its unique properties and easy operation, LbL self-assembly technique has been

adopted for developing CNC nanocomposites in IEAP actuators by Liu et al. and by us in

recent years[40, 4, 39, 13, 37, 38, 41, 94]. It has been reported that higher strain and bending

curvature can be achieved by employing the LbL technique to form CNC layers consisting of

gold nanoparticles (AuNPs) and polycation poly(allylamine hydrochloride) (PAH). Moreover,

the thickness and morphology of the CNC layers can be directly controlled by adjusting the

number of the deposited bilayers and composition of the deposited species. The achieved

ultra-thin, uniform and highly conductive CNC layer acts as a reservoir for mobilized ions and
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improves the capacitance at the interface between the electrode and polymer. As a result, a

higher strain was achieved.

1.3.4.4 Our studies

Influence of CNC layers on the performance of IEAP devices is studied in this dissertation.

In one of studies reported in this dissertation, LbL self-assembly technique was adopted

to fabricate the CNC nanostructures in IEAP stress sensors. The electrochemical and mor-

phological studies of CNCs were conducted and its influence on the sensing performance was

explored. More details of this work are presented in Chapter 2.

Another study is to achieve soft IEAP actuators with tunable limb-like deformation by in-

corporation of patterns of conjugated polymers. Details of this work are discussed in Chapter 5.

1.3.5 Electrode

Usually a layer of precious metal is attached on each surface of ionomeric membrane as

an electrode for two main reasons. First it distributes the electric charge uniformly across the

surface of the device. Second, it limits evaporation of the electrolyte. Precious metals such

as silver, gold and platinum are good candidates for the electrode deposition and usually the

deposited layer is ultra-thin to minimize the blockage force.

In the studies reported in this dissertation, a layer of gold leaf is hot-pressed on each side

of IEAP devices as an electrode.
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CHAPTER 2. ELECTROCHEMICAL AND MORPHOLOGICAL

STUDIES OF IONIC POLYMER METAL COMPOSITES AS STRESS

SENSORS

A paper accepted by the journal of Measurement

Wangyujue Hong, Abdallah Almomani, Reza Montazami

Abstract

Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices.

IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting

mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobi-

lization in and through IPMC nanostructure. In this study we have investigated electrochemical

and morphological characteristics of IPMCs by varying the morphology of their metal compos-

ite component (conductive network composite (CNC)). We have demonstrated the dependence

of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance

of IPMC sensors as a function of CNC morphology. It is shown that the morphology of CNC

can be used as a means to improve sensitivity of IPMC sensors by 3−4 folds.

2.1 Introduction

Ionomers, especially Nafion, have been subject of numerous investigations for their ionic

properties and applications in ionic-electric devices such as fuel cells[95, 96, 97, 98], actuators[39,

17, 99, 100, 101], batteries[102, 103, 104, 105], super capacitors[106] and sensors[107, 108, 14,

109]. Among all such applications, ionic polymer sensors have received less attention mainly

due to apparently inconsistent experimental results[110, 111, 112, 113]. Similar to ionic polymer

actuators, ionic polymer sensors are consisted of an ionomer membrane coated by conductive
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network composites (CNCs) on both sides, where the whole structure (also known as ionic

polymer-metal composite (IPMC)) is doped by either aqueous or ionic liquid electrolyte. The

functionality of ionomeric sensors relies on, supposedly, random displacement of ions (and

charged ionic clusters if ionic liquids are used) throughout the CNC layers when an external

mechanical stress is applied. Electric voltage generated due to the motion of charged species

is collected by the CNC and is detectable by conventional electronics. Due to the presence

and displacement of both cations and anions in IPMC, theoretically there should be a zero net

charge as opposite fields generated by displacement of cations and anions are expected to be

statistically very close to each other in magnitude and cancel one another. In reality, however,

there is a non-zero detectable net electric voltage. This electric voltage (mechanoelectric signal)

exists because, due to their volume, charge and interactions with the ionomer, motions of cations

and anions are different when subjected to stress[14, 47].

Influence of CNC structure[40, 13], ion density[15], electrode properties[41] and chemical

and ionic structure of ionomer membrane[16] on performance of IPMC actuators have been

thoroughly investigated by others and us; similar studies on IPMC sensors, however, are not

widely reported. To our best recollection, one of the first reports on Nafion-based sensors

was published by Sadeghipour et al. in 1992[43] where the concept was introduced. Later

in 1995, Shahinpoor et al. investigated the response of IPMC sensor against large imposed

displacements[44]. They published the first review paper of IPMC as biomimetic sensors and

actuators in 1998, presenting an introduction to IPMC, its applications and the corresponding

mathematical modeling[113]. In 1999 Ferrara et al. proposed the possibility of applying IPMC

sensor as a pressure transducer in the human spine[109]. Over the same time period, studies on

mathematical modeling of IPMC sensors were also conducted and published[70, 48, 49, 50]. All

of the abovementioned studies considered the IPMC sensors doped with aqueous electrolytes;

studies on the ionic liquid-doped IPMC sensors, however, are rare.

In this work, we have investigated the correlations between the mechanoelectric sensing

performance of IPMC sensors and structural and morphological properties of ionic liquid-doped

CNC layers. IPMC sensors were fabricated by layer-by-layer (LbL) (Figure 2.1a) deposition

of CNC layers consisting of gold nanoparticles (AuNPs) and poly(allylamine hydrochloride)
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(PAH) on Nafion membranes. LbL fabrication technique was utilized to manipulate structural

properties of CNC layers. IPMCs provide environments for storage and mobility of ions. Ion

mobility through IPMC, due to the porous structure of CNC layers, is higher compared to

dense ionomer membrane; thus, porosity and structural properties of IPMC is an influential

factor in performance and attributes of the sensors. This work specifically contributes to the

knowledge of ionic and electrical properties of ionic liquid-doped nanostructured IPMCs, as

well as the potential applications of such structures as mechanoelectric sensors.

Figure 2.1: (a) Schematic representation of layer-by-layer direct self assembly of AuNP and

PAH; (b) CNC layer formed on Nafion ionomer, the membrane is mounted on a glass frame;

(c) foreground: schematic representation of IPMC and sensor structure, background: SEM

micrograph of AuNP/PAH CNC nanostructure.

2.2 Experimental Section

2.2.1 Materials

Nafion membrane of 25 µm thickness (NR 211) was purchased form Ion Power, Inc. and

was cut into pieces of 2.5 cm × 5 cm. Poly(allylamine hydrochloride) (PAH) was purchased

from Sigma Aldrich and used to make 10 mM polycationic aqueous solution of pH 4; 1-ethyl-3-

methylimidazolium trifluoromethanesulfonate (EMI-Tf) and sodium chloride (NaCl) were pur-
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chased from Sigma Aldrich and used as received. 20-ppm aqueous dispersion of 3 nm (diameter)

negatively charged gold nanoparticles (AuNPs) of pH 9 were purchased from Purest Colloids,

Inc. and used without further modification. 3 M conductive copper tape was purchased from

VWR International LLC and used as current collector.

2.2.2 Methods

2.2.2.1 IPMC fabrication

An automated thin-film fabrication robot (StratoSequence 6, NanoStrata, Inc.) was used

to grow AuNP/PAH CNCs of desired number of bilayers via LbL deposition technique. Nafion

membrane was mounted on a glass frame and was alternately exposed to cationic (10 mM PAH

aqueous solution) and anionic (20-ppm aqueous dispersion of AuNPs) species for 5 minutes

each, with three steps of 1 minute each DI water rinsing after each deposition step. CNCs

consisting of 2, 4, 6, 8 and 10 bilayers were obtained to investigate thin-film growth on ionomer

membrane; CNCs consisting of 10, 20, 30 and 40 bilayers were obtained for electrochemical

studies. Thin-film thicknesses (h, see Table 2.1) were measured using a contact profilometer as

described in our earlier work[40].

Moreover, to further study the effect of ionic strength of polyelectrolyte on CNC morphology,

200 mM NaCl was added to PAH solution to manipulate its ionic strength and consequently

its polymer chains configuration. 20 bilayer CNCs with and without NaCl were fabricated

to investigate the influence of morphology on the sensing performance. The samples were

labeled (AuNP/PAH-NaCl)20 and (AuNP/PAH)20, respectively, where the subscript 20 iden-

tifies the number of deposited bilayers constituting the CNCs. Presented in Figure 2.1b is an

(AuNP/PAH)20 IPMC on a glass frame. Figure 2.1c, background, shows a SEM micrograph

of the CNC coating and a schematic of the device is presented in the foreground. CNC coated

ionomer membranes were then soaked in EMI-Tf ionic liquid at 80 ◦C to intake ∼30 wt% ionic

liquid. Considering the high sensitivity of Nafion and EMI-Tf ionic liquid to humidity[114, 115],

samples were then placed under vacuum (gauge pressure of ∼ −100 kPa) at 115 ◦C for three

days to dehydrate, and kept in desiccator until used.
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2.2.2.2 Optical characterization

Optical spectrum was acquired on CNCs to characterize the LbL self-assembled thin-films,

using a PerkinElmer Lambda−25 UV/VIS Spectrometer.

2.2.2.3 Electrochemical characterization

Samples doped with ionic liquid were characterized for their electrochemical properties using

a VersaSTAT−4 (Princeton Applied Research) potentiostat on 2−electrode mode. Impedance

spectroscopy studies were carried at frequencies between 1.0E5 Hz and 1.0E − 1 Hz, and a

potential difference (∆V ) of 10 mV. Electrical conductivity (σ) of the doped membranes was

calculated from Equation 2.1,

σ =
h

RA
(2.1)

where h and A are representing thickness and area of the membrane, respectively; and R is the

resistance deduced from impedance spectroscopy measurements.

2.2.2.4 Mechanoelectrical characterization

Stress induced dynamic electric response was measured and recorded to study mechano-

electrical properties of the samples. Samples were cut into pieces of approximately 14 mm ×

17 mm. Copper tape was used as electrodes and the whole system was covered by electrical

tape to form an isolated sample. The samples were placed flat and tested on an in-house made

setup at frequency of 1 Hz. A 12 kPa stress was generated and distributed uniformly across

the sensor by reciprocating motion of a mass manipulated by a computer controlled stepper

motor. A schematic representation of the setup is presented in Figure 2.2. Two ends of the

sample were clamped and connected to an oscilloscope to monitor the generated electric signal,

which was recorded via a LabVIEW interface over an extended period of time.
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Figure 2.2: A schematic representation of the setup and operations for the mechanoelectrical

characterization (dimensions are not to scale). The IPMC sensor piece was covered by electrical

tape, with copper tape used as electrodes to connect to an oscilloscope to monitor the generated

electric signal. A 12 kPa stress was distributed evenly by a mechanical arm whose frequency

was controlled at 1 Hz by a step motor.

2.3 Results and Discussion

2.3.1 Morphological characterization

Growth kinetics of CNC nanostructures, consisting of AuNP/PAH with and without ad-

dition of NaCl to the PAH solution, was investigated. Presented in Figure 2.3a is the plas-

monic absorption band of 3 nm diameter AuNPs, centered at 514 nm. When paired with

PAH to form LbL nanostructures, the absorbance peak shifted toward longer wavelengths (Fig-

ure 2.3b); which is an indication of the enhanced electromagnetic coupling between neighboring

nanoparticles[116], and it is more evident in nanostructures of larger thicknesses because a more

closely packed structure is formed. Increase in the absorbance intensity implies an increase in

the thickness of the CNC film. The correlations of ionic strength of polyelectrolyte and film

thickness in LbL self-assembly are discussed by several researchers including[117, 118, 119, 120].

Intensity of the absorbance peaks of the AuNP/PAH bilayers showed a direct and linear

dependence on the thickness of the nanostructures (Figure 2.3c). The linear correlation between

thickness and peak absorbance amplitude is an indication of consecutive surface-charge buildup
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(a)

(b) (c)

Figure 2.3: (a) UV-Vis absorbance spectra of AuNP aqueous solution (20 ppm); (b) UV-Vis

absorbance spectra of 2, 4, 6, 8, and 10-bilayer AuNP/PAH and AuNP/PAH-NaCl nanostruc-

tures; (c) plot of the absorbance peaks of CNCs consisting of different number of bilayers and

morphology.
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of AuNPs in the nanostructure[121]. Addition of NaCl to PAH resulted in formation of thicker

and denser nanostructures; thus, the increase in absorbance intensity for CNCs consisting of

larger number of bilayers is significantly more evident compared to that of samples without

NaCl (Figure 2.3c); this is mainly due to an increase in ionic strength of the polycation which

results in accumulation of more negatively charged AuNPs and formation of thicker and denser

bilayers.

2.3.2 Electrochemical analysis

To study thickness dependence of the frequency response in IPMC sensors and the corre-

sponding electrical efficiency, the electrical impedances of sensors with CNC layers consisting of

different number (0, 10, 20, 30 and 40) of bilayers were investigated as a function of frequency.

Applied potential of 10 mV was selected so that the electric impedance can be characterized

over a broad frequency range with required accuracy. Typically, the electrochemical responses

of such ionic devices are nonlinear functions of the CNC morphology and applied voltage, thus

different CNC structures (e.g. with or without NaCl) and changes in the applied voltage will

affect the numerical values of the electrical impedance results; for example, the capacitance

will increase with increase of applied voltage. However, these nonlinear effects will not change

the trends and conclusions drawn from the experimental results[4].

Presented in Figure 2.4a are the curves of Nyquist plot for the IPMC sensors at higher fre-

quencies, where the electrochemical systems exhibited near-pure resistance behavior. Solution

resistance (R) is deduced by reading the Zre value at the intersection of extended curves and

the x-axis. As discussed in our previous works[102, 15], solution resistance depends on the ionic

conductivity of the entire system including the transportation of ions between anode and cath-

ode. Thicker CNC layers result in smaller solution resistances, indicating the presence of an

ion-rich environment in thicker CNC nanostructures. Ionic conductivity of the IPMC sensors

is calculated from Equation 2.1 and reported in Table 2.1 along with solution resistance and

other characteristics of the IPMC sensors.

Magnitude of electrical impedance |Z| and phase angle (φ) for IPMC sensors consisting of

different thickness CNCs as a function of frequency (f) are presented in Figures 2.4b and 2.4c.
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(a) (b)

(c) (d)

Figure 2.4: Electrochemical studies of IPMC sensors consisting of different thickness CNCs

(without NaCl) (a) Nyquist plot of impedance magnitude of IPMC sensors. Solution resistance

values are deduced from the intersection of plots with the axis; (b) Impedance magnitude as a

function of frequency; (c) phase angle as a function of frequency; (d) plots of 1/(Rs−R) versus

ω, and their corresponding fitting lines based on the equivalent circuit (inset).
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Table 2.1: Solution resistance, ionic conductivity and electric double layer capacitance of IPMC

sensors with various thicknesses of CNC layers.

Bilayers 0 10 20 30 40

h (µm) 25.000 25.046 25.084 25.128 25.162

A (cm2) 1 1 1 1 1

R (Ω) 45.0 38.4 29.4 27.7 23.8

σ (S·cm−1) 5.56E − 5 6.52E − 5 8.53E − 5 9.07E − 5 10.58E − 5

C (F·cm−1) 3.64E − 7 3.62E − 7 9.37E − 7 2.32E − 6 2.67E − 6

As evident from Figure 2.4a, impedance |Z| is inversely proportional to the thickness of CNC

layer. This behavior is especially more evident at lower frequencies (0.1-100 Hz). In general, for

an IPMC sensor to response to an external mechanical stimulus and deliver an electric signal,

a large capacitance is preferred. At the same low frequency range, phase angle, which is a

function of frequency, exhibited a direct correlation to the thickness of the CNC nanostructure

(Figure 2.4c), suggesting a stronger capacitance-like behavior for samples with thicker CNC

layer; this characteristic is hindered at higher frequencies. To achieve high electrical efficiency

in IPMC sensors, larger phase angles are preferred; which, can be realized by increasing the

thickness of the CNC layers in sensors for low frequency (<100 Hz) applications.

An equivalent circuit, as shown in Figure 2.4d-inset, was introduced to study the electro-

chemical behavior of IPMC sensors at lower frequency boundaries, between 0.1 and 100 Hz,

as a function of thickness of the CNC layer. Briefly, an electric double layer (EDL) capacitor

(C) is formed at the interface between the outer electrodes and electrolyte, with a Warburg

impedance element (W ) connected in parallel to represent diffusion controlled charge transfer

process in pseudo-capacitors. Both elements are then connected with a solution resistor (R) in

series to represent the bulk resistance between two electrodes. The net real resistance of the

system (Rs) can be expressed as the sum of the solution resistance (R) and real part of the

impedance (Zre) as

Rs = R+
2Y0ω

ncos(nπ/2)

Y 2
0 ω

2n + ω2C2 + 2ωn+1CY0sin(nπ/2)

which can be reorganized to

1

Rs −R
=

Y0ω
n

2cos(nπ/2)
+

C2ω2−n

2Y0cos(nπ/2)
+ ωCtan(

nπ

2
)
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Take n = 0.5 for a Warburg element and rewrite the equation to

1

Rs −R
=

√
2

2

C2ω1.5

Y0
+ Cω +

√
2

2
Y0ω

0.5

More details of this model is presented in our previous study[15]. Experimental data (symbol)

fitted with computational data (solid line) are shown in Figure 2.4d, confirming viability of

the presented equivalent circuit. The computational data of the EDL capacitor (represented

as C in the circuit) at each sample was deduced and is listed in Table 2.1. A general upward

trend was observed with increasing thickness of CNC layer, confirming the hypothesis that a

thicker CNC layer has a larger ion storage volume and can withhold more mobile ions at the

electrodes[40].

2.3.3 Mechanoelectrical sensing performance

Figure 2.5: Mechanoelectric sensing in repose to cyclic 12 kPa stress at 1 Hz. Insets show the

zoomed in plots at the first and last 10 seconds of the experiment.

When mechanically deformed, IPMC sensors generate a weak yet detectable electric po-

tential, which is the core of the “sensing” concept of such systems. Mechanism and theory of
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such mechanoelectrical behavior of systems doped with aqueous electrolytes have been stud-

ied thoroughly and reported[108, 14, 113, 70]. It is hypothesized that prior to application of

mechanical stress, and the consequent deformation, the cations and anions are distributed uni-

formly over the inner surface of ionic cluster phase of Nafion. This steady state of zero net

charge, however, is disturbed and distorted by the imposed deformation. Consequently, ions

(either both types, or anions only depending on the system properties) are displaced producing

an effective dipole in each cluster[39, 13, 70, 4]. Moreover, the existence of homogenous and

porous CNCs outside the Nafion in this work promotes the motion of ions in varying degrees.

This generated electric voltage is treated as the dynamic sensing response and analyzed in this

work. Three sets of samples (bare Nafion (AuNP/PAH)0, (AuNP/PAH)20 and (AuNP/PAH-

NaCl)20), were studied for the mechanoelectrical characterization. Sample selection was in such

way that the role of CNC and its morphology can be examined. Samples were subjected to

cyclic mechanical stress of 12 kPa at 1 Hz for over 500 cycles, until sensing signals were stable

in amplitude. Presented in Figure 2.5 is the mechanoelectrical response of the three sets of

samples; insets shown zoomed in signals in the beginning and the end of the testing period.

Initially, signals generated by the samples with CNC coating were 5 to 11 folds stronger than

that of the uncoated samples. Amplitude of all signals declined overtime and reached a stable

state where the signals from coated samples were approximately 4 folds stronger than the un-

coated sample. Samples with and without NaCl in the CNC structure reached approximately

the same stable plateau. The dynamic response was observed to be highly repeatable with a

bandwidth of 1 Hz for all three samples. Each peak rises almost instantaneously when the

pressure is applied, and recovers when the pressure is withdrawn. To confirm reproducibility

and statistical significance of the collected data, three runs were conducted on each of the three

sets of samples, and the standard deviation of each data set was calculated. For the three

sets of samples ((AuNP/PAH)0, (AuNP/PAH)20 and (AuNP/PAH-NaCl)20), the standard de-

viation range (minimum/maximum) was found to be (6.7E − 6/1.7E − 3), (0/4.7E − 3) and

(0/7.5E − 3), respectively.

Experimental data suggests that there is a strong correlation between the morphology of

CNC layers and mechanoelectrical response in IPMC sensors. A higher concentration of AuNPs
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in CNC results in higher porosity that facilitates higher ion mobility under mechanical impact.

This enhanced ion mobility, however, is declined to a common and stable plateau for IPMC

sensors regardless of the nanostructure of the CNC. This observation may be due to loss of

elasticity, or creep of the IPMC at microscale. For samples without CNC the signal amplitude

is considerably weaker. Overall, the CNC layer results in at least 3−4 folds increase in the

strength of the sensing response; no dependence was observed between the structure of IPMC

and the response time of the sensors.

2.4 Conclusions

We reported the study of correlations between structural properties of IPMC sensors and

their electrochemical and mechanoelectrical properties and performance. It was demonstrated

that changes in nanostructure and morphology of CNC layers could be utilized as a means to

control and enhance the sensitivity of mechanoelectric IPMC sensors by at least 3 to 4 folds.

Initially optimized samples exhibited 11 folds increase in their sensitivity to mechanical strain;

the overall amplitude of the electrical signal, however, declined over hundreds of cycles, most

probably due to creep formation and mechanical failure of the IPMC. Better casing and more

robust IPMCs are expected to overcome this issue. It is foreseen that future work would involve

exploration of effective techniques to reduce the stabilization time of such sensor systems.
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CHAPTER 3. INFLUENCE OF IONIC LIQUID CONCENTRATION ON

THE ELECTROMECHANICAL PERFORMANCE OF IONIC

ELECTROACTIVE POLYMER ACTUATORS

A paper published in Organic Electronics 15 (2014): 2982−2987

Wangyujue Hong, Abdallah Almomani, Reza Montazami

Abstract

We have investigated influence of ionic liquid concentration on the electromechanical re-

sponse of ionic electroactive polymer actuators. Actuators were fabricated from ionomeric

membrane and doped with different concentrations of 1-ethyl-3-methylimidazolium trifluo-

romethanesulfonate ionic liquid. Samples were investigated for their electromechanical and

electrochemical characteristics; and it was observed that the maximum electromechanical strain

of approximately 1.4% is achieved at 22 wt% ionic liquid content. Increasing ionic liquid con-

centration results in saturation of the electrodeionomer interface and formation of ionic dou-

ble/multi layers, which in turn result an inward accumulation of ions; hence, generate strain in

an undesired direction that deteriorates the electromechanical response of the actuator.

3.1 Introduction

Recently, electroactive polymers have received immense attention and interest from the

materials community because of their applicability to actuators, sensors and haptics [122, 12,

123]. Electroactive polymers are soft and lightweight; hence, enable realization of biomimetic

and microrobotic devices. Among wide variety of electroactive polymers, ionic electroactive

polymers (IEAP) have proven more practical for actuator applications due to their substantially

low operation voltage (typically < 5 V), light weight, relatively large strain, and bending
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(instead of linear) deformation [124, 43]. IEAP actuators comprise of an ionomer membrane

that is doped with an ion-rich electrolyte and coated with electrodes on each surface [41, 39].

The electromechanical response is upon attraction/repulsion of ions and their accumulation at

the oppositely charged electrode when subjected to an external electric voltage. Due to the

volume difference between cations and anions, cathode and anode swell to different extents,

thus a volume imbalance is generated in the actuator, which in turn causes a mechanical

deformation. Change in the polarity of the electric voltage reverse the process and direction of

bending [38, 4, 40, 13, 37, 125, 126].

Ions are sourced by either an aqueous electrolyte or ionic liquid (IL). Ionic liquids are

preferred as their near zero vapor pressure allows longer shelf life, operation in air, and higher

operation voltages without concerns about ionomer hydration or electrolysis of water in aqueous

electrolytes [12, 69, 42]. Also, substantially higher ion concentration in ionic liquids, compare

to that of aqueous electrolytes, and larger van der Waals volume difference between molecular

cations and anions (compare to atomic cations and anions in aqueous electrolytes) result in an

enhanced performance of IEAP actuators doped with ionic liquids, compare to those doped with

aqueous electrolytes. These characteristics along with scalable manufacturing and flexibility

in design allow integration of IEAP actuators in flexible organic electronics, microrobotics,

biomimetic devices and bioelectronics [127].

In the present study, we have demonstrated that the electromechanical performance of IEAP

actuators is influenced by the concentration of ionic liquid, and that the concentration of ionic

liquids can be tuned to achieve maximum actuation performance. Ionic liquids concentration

in IEAP actuators was varied while electromechanical and electrochemical properties were

characterized. It is shown that the ionic liquid concentration can be used as a means to

control, improve and optimize actuation performance; and that at high concentrations of ionic

liquid an ionic double/multi-layer forms at the ionomerelectrode interface which deteriorate

the actuation strain.
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3.2 Materials and Methods

3.2.1 Sample preparation

Commercially available Nafion membrane of 25 µm thickness (Ion Power, Inc.) was used as

the ionomeric membrane. To fabricate IPMCs, nanocomposites of the polycation poly(allylamine

hydrochloride) (PAH) (Sigma Aldrich) and anionic functionalized gold nanoparticle (AuNP)

(∼ 3 nm diameter, Purest Colloids, Inc.) were grown on both sides of the Nafion membrane via

LbL deposition of the ionic species, using a StratoSequence 6 (NanoStrata, Inc.) automated

thin-film fabrication robot. The substrates were alternately immersed for 5 min each in aqueous

solutions of PAH at a concentration of 10 mM at pH 4.0 and AuNP at a concentration of 20

ppm at pH 9.0 with three rinsing steps for 1 min each in de-ionized water after each deposition

step. IPMCs were then soaked with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate

(EMI-Tf molecular formula: C7H11F3N2O3S) (Sigma Aldrich) ionic liquid at 80 ◦C for various

durations of time to intake desired concentrations of ionic liquid. Ionic liquid content was

measured as the weigh percentage (wt%) of dry weight of the membrane, and calculated from

Equation 3.1.

We(%) =
Wf −Wd

Wd
× 100 (3.1)

where We(%) is the weight-percent of the electrolyte; and, Wd and Wf are the weights of dry

and doped samples, respectively. Gold leaf electrodes of 50 nm thickness were then hot-pressed

at 95 ◦C under 1000 lbf for 25 s on both sides of the membrane to form IEAP actuators.

3.2.2 Electrochemical characterization

Impedance spectroscopy and current flow were measured and recorded using a VersaSTAT-4

potentiostat (Princeton Applied Research). The impedance spectroscopy studies were carried

at frequencies between 1.0E5 Hz and 0.1 Hz, and a potential difference (∆V ) of 10 mV. Cur-

rent flow was monitored in response to a ±4 V step potential over 60 s intervals. Electrical

conductivity (σ) of the doped membranes was calculated from Equation 3.2,

σ =
h

RA
(3.2)
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based on the geometry of the membranes where h and A represent thickness and area of

the membrane, respectively; and R is the resistance deduced from impedance spectroscopy

measurements.

3.2.3 Electromechanical characterization

Actuators were cut into approximately 1.5 × 15 mm2 pieces and tested under applica-

tion of a 4 V step potential. Electromechanical response of the actuators was monitored and

recorded using a charge-coupled device (CCD) video camera, mounted to an in-house fabricated

micro-probe station, at 30 fps. Individual frames were then analyzed to measure the radius of

curvature as a function of time (r(t)) and to calculate (Q(t)) and strain (ε%(t)) values from

Equation 3.3 and 3.4, respectively; where Q, ε and h are curvature, strain and thickness of the

actuator, respectively.

Q(t) =
1

r(t)
(3.3)

ε%(t) =
h

2r(t)
× 100 (3.4)

3.3 Results and Discussions

3.3.1 Current flow

Current flow corresponding to a 4 V potential difference between the outer electrodes was

measured and recorded as a function of time. As presented in Figure 3.1, magnitude of displaced

charge (area under the curve) increases with the increasing concentration of ionic liquid in the

samples; suggesting that first, current flow is due to mobilized ions; and second, more ions are

displaced in samples containing higher concentration of ionic liquid. After approximately 55 s

(see 55 < t < 60 and 115 < t < 120 on Figure 3.1) all curves have asymptotically reach the

x-axis (approximately zero current) indicating that the system is fully charged.

3.3.2 Electromechanical response

The electromechanical responses of IEAP actuators to an external 4 V DC step voltage

were monitored and recorded at a rate of 30 frames/s. Sequential digital images were used to
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Figure 3.1: Charging and discharging currents for samples containing different ionic liquid

concentrations recorded as a function of time under a 4 V square wave.

deduce r(t) and to calculate Q(t) and ε%(t) of each IEAP actuator. Presented in Figure 3.2

is the maximum actuation curvature and strain as a function of ionic liquid concentration.

The electromechanical response showed enhancement as the concentration of ionic liquid was

increased from 0 to 22 wt%, and was followed by a sharp decline at higher concentrations. The

initial incline between 0 and 22 wt% of ionic liquid is devoted to increased concentration of ions

at the interface of the outer electrodes. As ion concentration is increased, so does the extent of

the swelling at each electrode, resulting a larger volume imbalance between the two electrodes,

which in turn results a larger mechanical actuation. Data suggest that above 22 wt% of ionic

liquid content, a secondary layer of charge is formed at the inner side of the initial ion layer,

which not only does not contribute toward actuation, it cancels some of the strain generated by

the first ion layer which is at the electrode interface. Once this secondary ion layer is formed,

addition of more ionic liquid worsens the electromechanical response.
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Figure 3.2: Actuation curvatures (primary y-axis) and strain (secondary y-axis) of IEAP ac-

tuators in response to a 4 V step potential is presented as a function of EMI-Tf ionic liquid

concentration.

3.3.3 Electrochemical studies

To investigate how does the concentration of ionic liquid affect the frequency response of

the IEAP actuators, electrical impedance of the IEAP actuators was measured as a function

of frequency. Instead of a 4 V DC step voltage applied for electromechanical response studies,

electrochemical studies were conducted at lower voltage of 10 mV and at a varying frequency

to allow characterization over a broader frequency range, with required accuracy. It must be

noted that using a higher, or different, applied potential results in different numerical values;

however, trends and conclusions drawn from the experimental results would not be changed.

Presented in Figure 3.3 are the curves of Nyquist plot for the IEAP actuators. At higher

frequencies (close to the origin of the x-axis) the electrochemical systems exhibited near-pure

resistance behavior. Intersection of the semicircular plots with the x-axis, at high frequency
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regions manifests the solution resistance (R), as presented in the equivalent electrical circuit

(Figure 3.5). Solution resistance depended on the ionic conductivity of the entire system

including the transportation of ions between anode and cathode. Solution resistance of samples,

presented in Figure 3.3, suggests that the addition of ionic liquids results in the reduction of

solution resistance, an observation that is in agreement with expected effect of any ion-rich

electrolyte, such as ionic liquids. Solution resistance and ionic conductivity of IPMCs are listed

in Table 3.1.

Figure 3.3: Nyquist plot of impedance magnitude of IEAP actuators containing various con-

centrations of ionic liquid. Solution resistance is deduced from the intersection of plots with

the Zre axis.

Figure 3.4 presents electrical impedance magnitude |Z| and phase angle (φ) of IEAP ac-

tuators as a function of ionic liquid concentration. At frequencies smaller than 100 Hz the

magnitude of electrical impedance is relatively independent of ionic liquid concentration; how-

ever, at faster frequencies for samples containing more than 10 wt% ionic liquid a sharp decrease

in |Z| is observed. It is only at very high frequencies that the magnitude of electrical impedance
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(a) (b)

Figure 3.4: (a) Impedance magnitude versus frequency; and, (b) phase angle versus frequency of

IEAP actuator containing different ionic liquid concentration. At higher frequencies, impedance

and phase angle exhibit higher dependency on ionic liquid concentration.

Table 3.1: Solution resistance and ionic conductivity of IPMCs containing different concentra-

tions of ionic liquid.

IL(wt%) h(µm) A(cm2) R(Ω) σ(S·cm−1)

10 25 1 2081.5 1.2E − 6

16 25 1 99.5 2.5E − 5

22 25 1 26.7 9.4E − 5

26 25 1 11.5 2.2E − 4

29 25 1 7.8 3.2E − 4

exhibits full dependence on ionic liquid concentration. In general, for an IEAP actuator to de-

liver a large strain and force output, a large capacitance is preferred. The electrical impedance

(Z = |Z|exp(jφ)) is a function of the phase angle φ, which itself depends on frequency, and

can be deduced from tanφ = 1/ωRSCS , where RS and CS are the systems net resistance and

capacitance, respectively. Phase angles of φ = 90◦ corresponds to a pure capacitor and φ = 0◦

to a pure resistor (which would indicate the electrical impedance of the resistor is much larger

than that of the capacitor). Since the resistive component represents the electrical loss, a φ

approaching 90◦ is preferred in order to achieve a high electrical efficiency of the actuator. A

larger φ was observed for IEAP actuators containing higher concentrations of ionic liquid. At

higher frequencies, the difference in phase angles as a function of ionic liquid concentration
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Figure 3.5: Equivalent electric circuit with Warburg element.

became more distinct, suggesting stronger capacitance-like behavior for samples with higher

ionic liquid concentration.

As a result of ion accumulation at the outer electrodes an electric double layer (EDL) ca-

pacitor is formed at the interface between the ionomeric polymer membranes (Nafion in this

study) and the outer electrodes. This EDL capacitor and the solution (leakage) resistance of

IEAP actuators can be used to model electrochemical behavior of such systems by an equiva-

lent electrical circuit. Previously we have shown that due to a continuous contribution to the

charging and discharging current of a diffuse layer, an ideal RC circuit does not fit the experi-

mental results well at the low frequencies [128]. Therefore, a constant phase element, Warburg

element (W ), is introduced by the assumption of a semi-infinite linear diffusion process at the

planar electrode [37, 129, 130, 131]. Presented in Figure 3.5 is the equivalent electrical circuit

where the two CW components present outer electrodeionomeric membrane interfaces and R

is the solution resistance. Data from the real part of impedance was used to test the model at

low frequency range. Electrochemical behavior of this system at high frequency can be fitted

with a simple RC circuit; however, at lower frequencies (f < 100 kHz) the Warburg element is

required to provide an accurate model.
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As a constant phase element, the Warburg element has am explicit expression of Zw =

(1/Y0)(jω)−n, where Y0 is a coefficient with unit of Ω−1 · sn, ω is angular frequency (rad · s−1),

and n is a unitless coefficient and equal to 0.5.

Impedance of the equivalent circuit can be expressed as:

Z = R+
2

jωC + Y0(jω)n
(3.5)

which can be expanded by Euler’s equation to:

Z = R+
2Y0ω

ncos(nπ2 )

Y 2
0 ω

2n + ω2C2 + 2ωn+1CY0sin(nπ2 )
− j

2[ωC + Y0ω
nsin(nπ2 )]

Y 2
0 ω

2n + ω2C2 + 2ωn+1CY0sin(nπ2 )
(3.6)

where the net real resistance of the system (RS) can be expressed as the sum of the leakage

resistance (R) and real part of the impedance (Zre):

RS = R+
2Y0ω

ncos(nπ2 )

Y 2
0 ω

2n + ω2C2 + 2ωn+1CY0sin(nπ2 )
(3.7)

which can be reorganized to:

1

RS −R
=

Y0ω
n

2cos(nπ2 )
+

C2ω2−n

2Y0cos(
nπ
2 )

+ ωCtan(
nπ

2
) (3.8)

and for n = 0.5 can be rewritten as:

1

RS −R
=

√
2

2

C2ω1.5

Y0
+ Cω +

√
2

2
Y0ω

0.5 (3.9)

and simplified to:

y = ax1.5 + bx+
b2

2a
x0.5 (3.10)

where

a =

√
2

2

C2

Y0
, b = C (3.11)

Experimental data fitted with computational data are shown in Figure 3.6, confirming viability

of the presented electrical equivalent circuit; and, that the net real resistance of the system

decreases as concentration of ionic liquid increases.
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Figure 3.6: The plots of 1/(RS − R) versus ω with various ionic liquid contents and their

corresponding fitting lines with y = ax1.5 + bx+ b2/(2a)x0.5.

3.3.4 Discussion

It was observed in this study that the internal resistance of IEAP actuators is inversely pro-

portional to the ionic liquid concentration. Samples containing higher concentrations of ionic

liquid also exhibit more capacitor-like behavior, which in turn should result in larger electrome-

chanical response. However, electromechanical studies indicated that there exists an optimum

concentration of ions at which the electromechanical response is maximized, and that optimum

concentration is not the highest ion concentration. The observed drop in electromechanical

response beyond optimum concentration of ions is dedicated to formation of a saturated ion

layer at outer electrodes interfaces. As a result, swelling due to accumulation of ions is shifted

from the edge (which is most effective in generation of electromechanical response) toward the

center of the system (where its effect is no desired). Similar behavior is reported by Kwon and

Ng [132] where the concentration of ionic liquid in gel electrolyte was varied. Our investigation
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suggests that for applications where high charge displacement is desired (e.g. supper capaci-

tors, sensors, etc.) increasing concentration of ionic liquids (or more generally electrolytes) may

prove advantageous; however, for IEAP actuators where high electromechanical response if of

interest, it is recommended to optimize the system by not passing ion concentration saturation

threshold.

3.4 Conclusion

We fabricated and characterized IEAP actuators consisting of Nafion ionomeric membrane

and EMI-Tf ionic liquid. We found that increasing concentration of ionic liquids in IEAP

actuators results in enhanced electromechanical response, until the electrodeionomer interface is

saturated with the accumulated ions. Beyond the saturation point, ion accumulation is inward,

forming a secondary layer of ions, and generates undesired strain that partially cancels the strain

generated by the ion layer at the interface, which is desired for actuation. In short, optimum

(not maximum) concentration of ionic liquids should be incorporated in IEAP actuators to

achieve maximum electromechanical response.
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CHAPTER 4. EVIDENCE OF COUNTERION MIGRATION IN IONIC

POLYMER ACTUATORS VIA INVESTIGATION OF

ELECTROMECHANICAL PERFORMANCE
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Abstract

Functional ionomeric polymer membranes are the backbone of a wide range of ionic de-

vices; the mobility of ions through the ionomeric membrane is the principle of operation of

these devices. Drift and diffusion of ions through ionomeric membranes strongly depend on

the ionic properties of host membrane, as well as the physical and chemical properties of the

ions. It is well-established that cations and anions provided via a dopant (e.g. electrolyte

or ionic liquid) are mobilized under stimulation. However, in this study, we report that in

addition to ions sourced by the dopant, counterions of the ionomeric membrane are also mo-

bilized when stimulated. In particular, we have investigated the electromechanical response of

ionic electroactive polymer actuators consisting of Nafion ionomeric membranes with different

counterions and have demonstrated that those with cation counterions of larger van der Waals

volume exhibit stronger actuation due to motion of the larger cation counterions compared to

actuators consisting of Nafion with counterion of smaller van der Waals volumes.

4.1 Introduction

Ionic properties and ion permeability of ionomeric membranes, especially those of Nafion,

have been the subject of extensive and continuous studies in the past several years [56, 57,

58, 62]. The significance of such studies is mainly due to the increasing importance and ap-



42

plication of ionomeric membranes in ionic/electronic devices for energy generation and storage

applications. The functionality of ionic devices relies on mobility of ions through the ionomeric

membrane. Ion diffusion and/or drift through ion permeable polymer membranes is the most

essential requirement for operation of ionic devices; such as lithium-ion polymer batteries, fuel

cells, super capacitors and ionic electroactive polymer sensors and actuators, to name a few

examples [133, 134, 135, 136, 12, 137, 35, 123]. For instance, diffusion of protonsthrough a

proton-exchange membrane is the principle of operation of hydrogen fuel cells [138], and charg-

ing of secondary cell metal-ion polymer batteries (used in most smart phones and tablets) is

solely based on the ion drift through a polymer electrolyte membrane when an external electric

voltage is applied [139]. Better understanding of ion mobility through ionomeric membranes

will provide means for development of electric/ionic devices with higher performance and effi-

ciency.

Although ion mobility, both diffusion and drift, is well utilized in commercial devices, we

still lack a complete understanding of this phenomenon. It is not yet clear to the scientific

community the detailed process of how ions move through the ionomeric membranes and how

this process can be manipulated. The general understanding is that Nafion is a proton-exchange

membrane; thus, H+ can easily diffuse through it. Diffusion of H+ through Nafion is well

studied and applied in many conceptual applications such as fuel cells [140]. There is no

doubt about H+ permeability of Nafion; however, when subjected to an electric voltage Nafion

is also permeable to drift of other ions [69, 3, 141, 37, 38, 39]. Our prior work on ionic

electroactive polymer (IEAP) actuators confirmed that, when doped with ionic liquid, Nafion

is permeable to both cations and anions of the ionic liquid; and, the electromechanical response

of IEAP actuators is directly proportional to concentration of the ions from dopant [13, 40].

The functionality of IEAP actuators is solely the result of motion of ions through the ionomeric

membrane. The common understanding is that cations and anions provided by the doping of

the ionomeric membrane with electrolyte are responsible for the electromechanical response of

IEAP actuators. Upon application of an electric voltage, cations and anions are mobilized and

move toward electrodes of opposite charge. Since cations and anions have different van der

Waals volumes, their accumulation at the cathode and anode results in a volume imbalance in



43

the system; and thus, a mechanical deformation [4]; this phenomena is schematically presented

in Figure 4.1.

Figure 4.1: Schematics of uncharged and charged doped 3-layer ionic electroactive polymer

actuator. Red and blue spheres illustrate cations and anions, respectively. (Not to scale). (For

interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

In this study we have altered the functionality of ionomeric membranes by exchanging the

proton counterion of Nafion with larger cations; and have utilized the electromechanical re-

sponse of IEAP actuators, consisting of Nafion with different counterions and dopants, as a

means to study the mobility of ions through Nafion ionomeric membranes and, more specif-

ically, investigate mobility of counterions of Nafion. Ion-exchange process is schematically

demonstrated in Figure 4.2. This work contributes to the knowledge of electric and ionic prop-

erties of ionic functional materials and their applications in electric and ionic devices such as

sensors, actuators, fuel cells and metal-ion polymer batteries.

4.2 Experimental

4.2.1 Materials

Commercially-available Nafion membrane of 90 µm thickness (Ion Power, Inc.) was used as

the base ionomeric membrane. 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-

Tf, molecular formula: C7H11F3N2O3S), triethylsulfonium bis(trifluoromethylsulfonyl)imide

(TES-TFSI, molecular formula: C8H15F6NO4S3) and 1-butyl-1-methylpyrrolidinium bis (tri-

fluoromethylsulfonyl)imide (BMP-TFSI, molecular formula: C11H20F6N2O4S2) ionic liquids,
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Figure 4.2: Schematic presentation of ion-exchange process in Nafion. Proton counterions are

substitute by other cations.

and 1-ethyl-3-methylimidazolium chloride (EMI-Cl), zinc chloride and sodium chloride salts

were purchased from Sigma Aldrich and used without further modification. Transferable 24 K

gold leafs of 50 nm thickness were purchased from L.A. Gold Leaf and cut to desired size before

using.

4.2.2 Methods

4.2.2.1 Ion-exchange

Salt solutions were prepared at 0.5 M concentration by dissolving the proper amount of the

desired salt in deionized water. The solution was then stirred overnight. Ionic membranes of

the desired size (2.5 × 12 cm2) were cut out of a sheet of 90 µm thick Nafion and boiled in

diluted (1 M) sulfuric acid solution at 100 ◦C for 120 min. Water was added frequently to keep

the volume of the mixture constant and to compensate for the evaporated water. The samples

were then boiled in deionized water at 100 ◦C for 120 min, then dried using a wipe and cut into

smaller pieces (2.5 × 6 cm2). Cut samples were then placed in ample amount of saturated salt

solution in container with tightened caps, and heated to 80 ◦C for two days. The temperature

was then reduced to 60 ◦C for another eight days to assure ion-exchange between the Nafion and

salt solution. Considering high sensitivity of Nafion-ionic liquid systems to humidity [115, 114],
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samples were then placed under vacuum (∼ − 100 kPa) and heated to 115 ◦C for three days to

dehydrate and were kept in desiccator or used immediately.

4.2.2.2 Doping and assembly

Samples were then cut into smaller pieces (2.5 × 2.5 cm2), weighed and soaked in the desired

ionic liquid to uptake ∼40 wt% of their dry weight. Equation 4.1 was used to calculate the

electrolyte uptake, where We(%) is the weight-percent of the electrolyte; and, Wd and Wf are

the weights of dry and doped samples, respectively.

We(%) =
Wf −Wd

Wf
× 100 (4.1)

Gold leaves were hot-pressed at 95 ◦C, under 4500 N for 25 s on both sides of the ionic

liquid-doped samples to fabricate ionic electroactive actuators.

4.2.2.3 Electromechanical characterization

Actuators were cut into approximately 1.5× 15 mm2 pieces and tested under application of a

4 V applied potential. Electromechanical response of the actuators was monitored and recorded

using a charge-coupled device (CCD) video camera, mounted to an in-house fabricated micro-

probe station, at 30 frames per second. Individual frames were then analyzed to measure the

radius of curvature (r) as a function of time and to calculate curvature (Q) from Equation 4.2.

Q(t) =
1

r(t)
(4.2)

For actuators with small tip displacement, strain can be calculated from free length, thick-

ness and tip displacement of the actuator [142]; however, for actuators with more extensive

bending, the radius of curvature must be taken into account. Strain (%) was then calculated

based on the thickness (h) and radius of curvature of each actuator, using Equation 4.7, which

is derived from the ratio of the change in the free length of actuator between center and surface

of the actuator, to the initial free length. Schematic presented in Figure 4.3 and following

calculations demonstrate deriving of Equation 4.7; where Lc is actuator’s length at the center

(which is equal to actuator’s free length), Lo is actuator’s length at the expanded surface, rc
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and ro are radius to the center and expanded surface of actuator, respectively; and, α is the

angle between the mounted and free end of the actuator.

Lc = αrc (4.3)

Lo = αro = α(rc + h/2) (4.4)

ε% =
Lo − Lc
Lc

× 100 (4.5)

substituting Equation 4.3 and 4.4 in Equation 4.5, we will get:

ε% =
α(rc + h/2)− αrc

αrc
× 100 (4.6)

simplifying Equation 4.6 and including time dependency, we will have:

ε%(t) =
h

2rc(t)
× 100 (4.7)

Figure 4.3: Schematic representation of ionic electroactive polymer actuator with geometrical

components used in calculation of strain. (Not to scale).

To obtain strain data, each set of experiments was repeated at least three times to confirm

reproducibility. Where appropriate, data were averaged; otherwise the most common behavior

was used.
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4.3 Results and Discussion

4.3.1 Van der Waals radius of counterions

Four sets of samples were fabricated consisting of Nafion films with different counteri-

ons, doped with EMI-Tf ionic liquid. Nafion in its proton form (H+ counterion), and Nafion

ion-exchanged with Zn+, Na+ and EMI+ were studied for the cationic portion of their elec-

tromechanical response. Table 4.1 summarizes van der Waals properties of the investigated

counterions.

Table 4.1: Van der Waals properties of the counterions of Nafion membrane and anions and

cations of ionic liquid dopants.

Counter-ion Van der Waals radius (pm) Van der Waals volume (Å)

H+ 120.0 7.2

Zn+ 139.0 11.2

Na+ 227.0 48.9

EMI+ 294.6 107.1

TES+ 316.0 132.2

BMP+ 339.7 164.2

Tf− 275.5 87.6

TFSI− 337.8 161.4

The van der Waals volumes of the atomic ions were calculated directly from the van der

Waals radius of each atomic ion; the van der Waals volume of the EMI molecular ion was

calculated based on the number of bonds, aromatic and nonaromatic rings, as described by

Zhao et al. [143].

4.3.1.1 Influence of counterions on cationic electromechanical response

Presented in Figure 4.4 is the magnitude of the electromechanical response of the actua-

tors as a function of the van der Waals volume of the counterions. The actuator consisting of

Nafion with H+ counterion exhibits significantly smaller cationic strain compare to the actu-

ators consisting of Nafion with larger counterions. The increase in the magnitude of cationic

strain is more significant between atomic counterions and the molecular counterion. This is

most probably due to the complex 3-dimensional structure of EMI+ multi-atom ion compare to
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the simpler spherical structure of single-atom ions. Interestingly, actuators containing different

counterions reached the steady state at approximately the same time (93 ± 2 s), implying that

the ions move at approximately the same speed and that the ion mobility is drift dominated

rather than diffusion dominated. Back relaxation was not observed in any one of the systems.

Figure 4.4: Magnitude (arbitrary units) of maximum cationic strain of IEAP actuators consist-

ing of Nafion with different counterions as a function of van der Waals volume of counterions.

Actuators consisting of Nafion with larger counterions exhibit enhanced cationic strain.

4.3.2 Electromechanical response as a function of dopant

We further investigated the influence of the counterions on electromechanical response by

comparing the full (cationic and anionic) electromechanical response of IEAP actuators con-

sisting of Nafion with H+ and EMI+ counter-ions (the two extreme cases in this study), doped

with three different types of ionic liquids. The samples investigated in this section are named

by the following format: (Counterion\Cation−Anion) where cation and anion are those from

the ionic liquid.

As we described previously [13], the cationic and anionic strains are the result of the out-

of-phase motion of cations and anions in Nafion. For instance, in the case of IEAP actuators
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doped with EMI-Tf ionic liquid, the drift velocity of EMI+ cations is faster than that of Tf−

anions. As a result, when the voltage is applied, a bending toward the anode is observed first,

that is due to the fast accumulation of cations at the cathode, followed by a dominating anionic

motion that is due to accumulation of anions at the anode. In the case of EMI-Tf ionic liquid,

both cationic and anionic strains are significant and distinguishable, especially over long path-

lengths (i.e. thick Nafion); and, anionic motion is dominant due to the higher effectiveness of

anions (or anionic clusters)[125] in generating strain compare to cations. This behavior may

be different or even reversed, depending on the physical and electrochemical properties of the

electrolyte used in doping of the Nafion.

As presented in Figure 4.5, IEAP actuators consisting of Nafion with H+ and EMI+ coun-

terions, doped with EMI-Tf ionic liquid exhibit both cationic (in the plots showed as positive

strain (%)) and anionic (in the plots showed as negative strain (%)) strain, with the anionic

strain ultimately dominating the response. An interesting observation is that when the H+

counterions are exchanged with EMI+, the entire response curve of the IEAP actuator is al-

most uniformly shifted toward cationic strain, suggesting contribution of the EMI+ counterions

toward cationic strain.

Similar behavior was observed when other ionic liquids were used as dopants. As shown

in Figure 4.6 and 4.7, IEAP actuators consisting of TES-TFSI and BMP-TFSI in Nafion with

H+ counterion have dominating anionic strain, which prevents observation of any cationic

strain even at the beginning of actuation, suggesting that unlike Tf− anions in EMI-Tf, TFSI−

anions in TES-TFSI and BMP-TFSI are quickly mobilized upon application of the potential

difference. Hence, TES+ and BMP+ cations are not allowed the time required to generate a

temporary dominating cationic strain, or both types of ions are mobilized simultaneously yet

the effectiveness of the TFSI− is dominant.

In both cases, when H+ are exchanged with EMI+ ions, the overall response is shifted toward

cationic strain. In the case of the EMI\TES-TFSI IEAP actuator, a small cationic motion is

observed in the first tens of seconds, yet quickly canceled by the anionic strain. However, the

overall electromechanical response exhibits a shift toward cationic strain, again suggesting the

contribution of the EMI+ counterions to the net strain. In the case of the EMI\BMP-TFSI
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Figure 4.5: Electromechanical responses of IEAP actuators doped with EMI-Tf ionic liquid

consisting of Nafion membranes with H+ and EMI+ counterions. Cationic strain is enhanced

with larger counterion.

IEAP actuator the contribution of EMI+ is more significant. The electromechanical response

is fully reversed from an anionic-only to a cationic-only strain, suggesting significant influence

and contribution of EMI+ toward the electromechanical response of the IEAP actuators or, in

more general terms, influence on the ionic properties of Nafion ionomeric membranes.

4.3.3 Discussion

Our experiments and observations suggest that the counterions of the ionomeric membrane,

Nafion in this case, are mobilized upon exposure to an external electric voltage and thus

have significant influence on the ionic response of the membrane and do contribute to the

electromechanical response of the IEAP actuators. Considering the standard cluster-network

model to explain the morphology of Nafion (see Figure 4.8), two possible hypotheses may be

developed to explain the contribution of counterions to ion permeability of Nafion:

A) Counterions with larger van der Waals volume expand the narrow channels between the

interconnected clusters. These narrow channels in Nafion with H+ counterions have an
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Figure 4.6: Electromechanical responses of IEAP actuators doped with TES-TFSI ionic liquid

consisting of Nafion membranes with H+ and EMI+ counterions. The response is shifted toward

cationic strain with larger counterion.

approximate diameter of 10 Å, which is considerably larger than the van der Waals diameter

of H+ (2.4 Å, see Table 4.1). When larger cations (e.g. EMI+) are introduced to the

network, ionic interactions between the cations and sulfonate end-groups force the cations

into the channels, and to compensate for repulsion between neighboring cations the channels

expand; in presence of an electric voltage, the expanded channels allow motion of cations

(EMI+ in this case) through the network. These expanded channels provide means for

higher mobility of the ions throughout the Nafion membrane.

B) Counterions in Nafion are always mobile and contribute toward cationic strain; yet, due to

the small van der Waals volume of H+, this contribution is less significant. When a larger

cation is introduced, the contribution toward cationic strain is more significant and thus

observable.

Although it is very difficult to explain and construct an accurate model for mobility of ions

through Nafion, our experimental results and observations suggest that while both hypotheses
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Figure 4.7: Electromechanical responses of IEAP actuators doped with BMP-TFSI ionic liq-

uid consisting of Nafion membranes with H+ and EMI+ counterions. The electromechanical

response is completely reversed from fully anionic to fully cationic with larger counterion.

above may be, to some extent, correct, hypothesis B explains the behavior of IEAP actuators

more consistently and is responsible for the observation of an enhanced cationic strain in the

presence of larger counterions.

When an electric voltage is applied, it breaks the electrostatic bonds between the counterions

and sulfonate end-groups, mobilizing the counterions. Along with the cations from the doping

electrolyte, the mobilized counterions (red dots in Figure 4.8) are attracted to the cathode

while the anions are attracted to the anode. Depending on the van der Waals volume of the

counterions, their contribution toward cationic strain varies. In the case of H+ counterions, the

contribution is minimal due to the small van der Waals volume, while it is more significant in

case of larger counterions such as EMI+.
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Figure 4.8: Schematic cluster-network morphology of Nafion. It is anticipated that counterions

(red dots) are mobilized when exposed to an external electric voltage. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this

article.)

4.4 Conclusion

We investigated ion mobility through Nafion ionomeric membrane via the electromechanical

response of IEAP actuators fabricated using Nafion with a variety of counterions and ionic liquid

dopants. It was observed that exchange of the H+ counterion of Nafion with a cation of larger

van der Waals volume results in the generation of enhanced cationic strain. Experiments were

performed with four types of counterions and three different types of ionic liquids as dopants,

and in all cases the enhancement was observed. The results of this study suggest that in

the presence of an electric voltage, in addition to cations and anions from the dopant that

drift through the Nafion, the counterions of Nafion are also mobilized and drift through the

interconnected channels of the polymeric backbone structure and accumulate at the cathode

to contribute toward cationic strain. Further investigations are expected to contribute toward

more efficient actuators, sensors, metal-ion polymer batteries, and other ionic devices.

Acknowledgements

This material is based upon work supported in part by a funding from Health Research

Initiative and Presidential Initiative for Interdisciplinary Research at Iowa State University;



54

and the US Army Research Office under Grant No. W911NF-07-1-0452 Ionic Liquids in Electro-

Active Devices (ILEAD) MURI.



55
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Abstract

Although soft materials are well studied for their electromechanical behavior in soft actua-

tors and soft-robotic applications, practical development of such applications has been hindered

by the attributes of the soft materials. Electromechanical soft actuators, based on design, can

exhibit linear or circular deformation. For biomimetic soft-robotic applications linear deforma-

tion is minuscule and circular motion is unnatural. Here we demonstrate that manipulation of

ionic motion through means of structural design can realize intrinsic limb-like motion in soft

actuators. The incorporation of conjugated polymer, PEDOT:PSS patterns in the structure of

soft actuators allows control over ion permeability of the soft actuator as a whole while allevi-

ating compromise of electric conductivity. We experimentally and theoretically demonstrated

soft actuators that are capable to bend in sharp angles (90◦ and beyond) and exhibit limb-like

deformation.

5.1 Introduction

The field of robotics is currently dominated by “hard robots” consisting of hard materi-

als, mainly metallic or composite structures, paired with either (or both) ceramic actuators

or electric motors as drive trains. Although hard robots sometimes have biomimetic design

and limb-like structures similar to those in animals (e.g. “Big Dog” constructed by Boston

Robotics[144]), very often, hard robots utilize wheels and rotary motors for motion which dis-
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tance them from biomimetic design. Biomimetic robotics and microrobotics is an important

and emerging technology with potentials in military, intelligence healthcare and biomedical

applications. Hard robotics technology fails to provide practical means for construction of

biomimetic microrobotics.

Although MEMS have undergone an enormous technological leap in the past decade, it

is still not feasible from a practical point-of-view to manufacture biomimetic microrobotics

through hard robotic approach. Fabrication and integration of motors, actuators, moving parts

and the power sources required to autonomously run these systems is an immense challenge.

Soft actuators have enabled emergence of soft robotics capable of locomotion and ma-

nipulation, while exhibiting biomimetic physical and mechanical attributes similar to those of

Mollusca[145]. According to the robotic community “soft robots” are defined as: a) robots made

of soft materials, or b) robots made of multiple rigid components that operated to demonstrate

soft-robot-like behavior.

The ultimate advantages of soft actuators made of soft materials are that 1) they can easily

conform to curvilinear structures, similar to biological muscles; and 2) actuation is an intrinsic

property of the actuator; thus, design and fabrication of micro scale systems is practical.

Electroactive polymer actuators, and in particular ionic electroactive polymer (IEAP) ac-

tuators, have attracted enormous interest and attention from the soft-robotic community and

have been subject to extensive studies in the past several years. Depending on design, IEAP

actuators can exhibit either linear or circular actuation. Electromechanical response of linear

IEAP actuators is minuscule and not adequate to be utilized for locomotion; circular deforma-

tion, however, is substantial. IEAP actuators are comprised of an ionomeric membrane at the

core, covered with conductive network composite (CNC) layers and metal electrodes on each

side to enhance ionic mobility and electric conductivity. IEAP actuators are doped with elec-

trolytes, typically ionic liquids, to provide an ion-rich environment that is required for enhanced

actuation. Performance and attribution of IEAP actuators depend on many factors including

thickness and chemical structure of the ionomeric membrane[16]; thickness, density, porosity

and electric conductivity of CNC layers[13, 40, 38, 4, 39]; thickness and electric conductivity

of metal electrodes[41]; and type, mobility and prevalence of mobile ions[16, 38, 17, 37, 15].
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The main disadvantage of bending IEAP actuators, considering soft robotic applications,

is the circular actuation that is distinctly different from most of biological systems. Although

many muscles in vertebrates and invertebrates have circular or sinusoidal motions (e.g. tongue,

abdominal muscles, etc.), they are not utilized in locomotion of animals or insects. Muscles

involved in locomotion of these classes of species are very often integrated with skeleton or

exoskeleton structures to form limbs capable of motions required for locomotion of the species.

Mimicking a Venus flytrap[146], flapping wings[147, 148], artificial muscles[149, 123], and soft

actuator propelled fish robot[150, 151] are some great examples that utilize circular bending

soft actuators. On the other hand; some other applications like microgrippers[152, 153], and

miniaturized five fingered robotic[154], would have been more utilized with a limb-like motion

rather than a circular motion. To achieve the limb-like motion, some studies used segments

of IEAP actuators to be controlled individually in different direction[155, 156]. A snake-like

swimming robot is an example of a soft robot that used three individually controlled segments

of soft actuators[157].

In this study, IEAP actuators capable of demonstrating angular deformation are presented,

mimicking the limb-like motion in biological systems. The limb-like motion is achieved without

utilization of skeleton-like structures and it is purely intrinsic. This achievement is realized by

varying ion permeability of the CNC layers via patterns that can be manipulated by means

of design. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) were em-

ployed to fabricate the CNC layers with patterns due to its higher conductivity, low cost and

simple deposition techniques required in the manufacture process of IEAP actuators[158, 159].

It was used widely used as outer electrodes to develop some all-organic transducers[160, 161,

162, 163, 164, 165, 166]. As fully explored in our previous work, actuator with similar consti-

tution initially bends toward the anode and as the time progresses, it reverses the actuation

direction and bends toward the cathode[13, 40, 38, 4, 39]. The first motion towards anode,

which is named as cationic response, is resulted by the quicker response of cations, while the

second motion during which the actuator starts to bend towards the cathode, is named as

anionic response. The slower anionic response is generated by motion of anions or ion clusters

with net negative charge[125]. The angular bending reported in this study is dependent on
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the patterns of CNC layers. Moreover, due to its morphological asymmetry in some sets of

specimens, the bending performance revealed in cationic and anionic response were also dif-

ferent, even for the same actuator. Electrochemical analysis was performed on the specimens

with/without casted PEDOT:PSS layer, in order to explore its contribution to the ion transport

and storage of ionic liquids in the system. Additionally, finite element modeling (FEM) was

used to simulate the inhomogeneous mechanical deformation of actuators containing different

patterns.

5.2 Experimental

5.2.1 Materials

Commercially available Nafion membrane of 25 µm thickness (Ion Power, Inc., DE, USA)

was used as the ionomeric membrane; 1-ethyl-3- methylimidazolium trifluoromethanesulfonate

(EMI-Tf, molecular formula: C7H11F3N2O3S) ionic liquid (Sigma Aldrich, MO, USA) was

used as received; poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) (3.0

- 4.0% in H2O, high-conductivity grade) (Sigma Aldrich, MO, USA) was diluted by mixing with

DI water at 1:1 ratio and was used for fabrication of conductive polymer patterns. Gold leaf

of 50 nm thickness (24K, transfer, LA Gold Leaf, CA, USA) was used as the outer electrodes.

5.2.2 Sample fabrication

Nafion, in its acidic form, was first cut and soaked in EMI-Tf at 80 ◦C for 30 minutes to

intake 23 wt% of ionic liquid. Ionic liquid content was measured as the weight percentage

(wt%) of the dry weight of the membrane, and calculated from Equation 5.1.

We(%) =
Wf −Wd

Wf
× 100 (5.1)

where We(%) is the weight percent of the electrolyte; and Wd and Wf are the weights of dry

and doped samples, respectively[15]. Excess IL was wiped off using weighted paper and the

doped Nafion membrane was then placed between two sheets of paper overnight to flatten.

Diluted PEDOT:PSS aqueous solution was drop-casted on the Nafion membrane over a vinyl

mask of three desired patterns at 0.56µL/mm2. Schematic representation of each pattern is
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Figure 5.1: 3D schematic representation of the Nafion with three different PEDOT:PSS strip

patterns before gold leaf electrodes hot-pressed. From left to right are the samples with one

side (1S) (a), two-side symmetric (2SS) (b), and two-side asymmetric (2SA) (c) patterns,

respectively. Top line is the isotropic view, and the bottom line is the corresponding side view.

The 3D sketches are not to scale.

shown in Figure 5.1. The space between two strips and the width of each strip are both 3 mm.

Drop casted patterns were dried on a hot plate at 40 ◦C for 48 hours to allow for complete

solvent (DI water) evaporation. The coated samples were then dried in vacuum at −60 mmHg

at room temperature for 24 hours to further dehydrate the samples. Gold leaf electrodes were

then hot-pressed at 95 ◦C under 1000 lbf for 40 seconds on both sides of the membrane to form

an IEAP actuator.

5.2.3 Sample nomenclature

Sample nomenclature is concluded and shown in Table 5.1.

5.2.4 Electrochemical characterizations

Impedance spectroscopy and current flow were measured and recorded using a VersaSTAT-4

potentiostat (Princeton Applied Research, TN, USA) in two-electrode mode. The impedance

spectroscopy studies were carried out at frequencies between 1.0E5 Hz and 1.0E− 1 Hz, and a
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Table 5.1: The abbreviation and its definition of each sample used in this work.

Name Definition

1Sa Pattern deposited on one side, Figure 5.1(a)

2SSa Symmetric patterns on both sides, Figure 5.1(b)

2SAa Asymmetric patterns on both sides, Figure 5.1(c)

2SA2a 2SA sample with 2 strip-patterned side attached to anode

2SA3a 2SA sample with 3 strip-patterned side attached to anode

BNafionb, c Bare Nafion doped with IL

Nafion/2s-PEDOT:PSSb, c PEDOT:PSS drop-casted on both sides regardless of any patterns

Nafion/1s-PEDOT:PSSb,c PEDOT:PSS drop-casted on one side regardless of any patterns,

and connected to counter electrode

1s-PEDOT:PSS/Nafionc PEDOT:PSS drop-casted on one side regardless of any patterns,

and connected to working electrode

Nafion/1s-PEDOT:PSS/Aud PEDOT:PSS drop-casted on one side regardless of any patterns,

with gold leaf hot-pressed on both sides
a In electromechanical characterizations; b in impedance spectroscopy measurements; c in

charging and discharging currents collection; d in morphological characterizations.

potential difference (∆V ) of 10 mV. Current flow was studied as a function of +/ − 4 V step

functions, each over a 600 second interval.

5.2.5 Electromechanical Characterizations

Actuators of 1×15 mm2 dimension were cut perpendicularly to the longitudinal direction

of the PEDOT:PSS strips. A 4 V step function was applied across the actuator and the

electromechanical response was monitored and recorded using a charge-coupled device (CCD)

video camera, mounted to an in-house constructed microprobe station, at the rate of 30 frames

per second.

5.2.6 Morphological and mechanical characterizations

Surface analysis was conducted by scanning electron microscopy (SEM) (Joel. JCM-6000

NeoScope, IL, USA) for the characterizations of morphology such as the film thickness and the

layer adhesion. The SEM image of the crossection of specimen Nafion/1s-PEDOT:PSS/Au is

shown in Figure 5.2, indicating a tight layer adhesion between Nafion and PEDOT:PSS layer

after the hot-press, with no obvious separation in between.



61

Figure 5.2: SEM image of the crossection of specimen Nafion/1s-PEDOT:PSS/Au, indicating

a tight layer adhesion between each layer.

The elastic modulus of each component in IEAP actuator was performed on a Dynamic

Mechanical Analyzer (DMA-1, Mettler Toledo, OH, USA), loaded with tension clamp at static

modes. More information is included in Appendix A.

5.2.7 Finite element modeling

The electromechanical response of IEAP actuators with different patterns was modeled

by ABAQUES finite element code. The purpose of the simulation was to study the effect of

various patterns on the actuation performance, and compare the experimental and numerical

results. It was assumed that the accumulation/depletion of excess charges at the electrode is

equivalent to a thermal bimorph in mechanism. Detailed simulation procedures are included

in Appendix A.

5.3 Results

5.3.1 Equivalent circuit modeling

To investigate how the presence of PEDOT:PSS layers affect the frequency response of the

IEAP actuators, electrical impedance was studied as a function of frequency. Instead of a 4 V

DC step voltage applied for electromechanical response studies, electrochemical studies were

conducted at lower voltage of 10 mV and at a varying frequency to allow characterization over

a broader frequency range, with required accuracy.
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Figure 5.3: Equivalent circuit with Warburg element.

The electrochemical behavior of the system can be anaylized by fitting the electrical impedance

with an equivalent electric circuit[37, 167, 102]. An equivalent circuit of the Nafion-based ac-

tuator with CNC layers was built and verified in our previous studies[37, 15]. As a result of ion

accumulation at the surface of electrodes, electric double layer (EDL) capacitors are formed

at the interfaces of the outer electrodes and electrolyte. The EDL capacitors in series with

the resistance of bulk Nafion layer Rb can be used to model the electrochemical behavior of

such systems. Previously we have shown that due to a continuous contribution of a diffuse

layer to the charging and discharging current, general finite Warburg elements (GFWs) were

introduced in parallel with the EDL capacitors, as shown in Figure 5.3. The impedance of the

Warburg element GFW, W , is defined as

W = R
tanh[(jωτ)P ]

(jωτ)P
(5.2)

where R represents a diffusion impedance component independent of the frequency, P is an

exponent taking values between 0 and 1, τ is a time constant associated with the diffusion

process, and ω is angular frequency. In the diffusion process interpretation, the time constant

τ equals to L2/D where L is the effective diffusion thickness and D is the effective diffusion

coefficient of the ionic species[168].
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Figure 5.4: Impedance magnitude of (a) BNafion, (b) Nafion/1s-PEDOT:PSS, (c) Nafion/2s-

PEDOT:PSS, and phase of (d) BNafion, (e) Nafion/1s-PEDO-T:PSS, (f) Nafion/2s-

PEDOT:PSS fitted by equivalent circuit with Warburg element shown in Figure 5.3.

Considering the symmetric structure of sample BNafion and Nafion/2s-PEDOT:PSS, the

two EDL capacitors and GFWs were set equally, that is, C1 = C2, and W1 = W2. Pre-

sented in Figure 5.4a−5.4f are the experimental data and the fittings (solid curves) of the

electric impedance magnitude and phase of specimens BNafion, Nafion/1s-PEDOT:PSS, and

Nafion/2s-PEDOT:PSS, respectively. A well match is observed between the model and the

impedance spectrum in the entire frequency range. The fitting parameters for three actuators

are summarized in Table 5.2. The bulk membrane resistance Rb is found to increase from

88.8 Ω (BNafion) to 171.7 Ω (Nafion/2s-PEDOT:PSS), due to the indirect contact between the

ionomer and the external electrode[37]. As mentioned above, a CNC layer is commonly coated

on the Nafion membrane to increase the electrodes’ surface area and free volume to allow stor-

age of free ions. When comparing BNafion and Nafion/2s-PEDOT:PSS, the existence of the

PEDOT:PSS layers on both sides of Nafion leads to a significant drop in the capacitance (from

2.86 µF to 0.12 µF) of the EDL capacitor Cdl; consequently, the ion diffusion time from BNafion
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to Nafion/2s-PEDOT:PSS significantly increases, which is consistent with the previously re-

ported results[4]. Liu et al. have reported that an IEAP actuator with thicker CNC layers

will have a longer ion transport time and slower charging rate. They also concluded that the

charging time of IEAP actuator increased markedly as the CNC layer thickness increased[4].

Considering the thickness of PEDOT:PSS layer (∼15 µm at the center point) studied in this

work, the increased diffusion time of Nafion/2s-PEDOT:PSS specimen is due to the casted

polymer layers on both sides. It is also in consistent with our observation that, when compared

with other IEAP actuators with thinner CNC layers, the actuators with PEDOT:PSS patterns

present a much slower actuation speed, which is discussed in section 5.4. Since the total amount

of charge is fixed in the system, the presence of the PEDOT:PSS layer on both sides of the

Nafion membrane is more likely to hinder and limit the motion of ions.

Table 5.2: Fitting parameters for different specimens.

Circuit Element BNafion Nafion/1s-PEDOT:PSS Nafion/2s-PEDOT:PSS

Rb(Ω) 88.8 136.7 171.7

R(Ω) 26101 51221 28098

W1 τ(s) 0.55 46718 8.04E8

P 0.43 0.2 0.11

R(Ω) 26101 2786 28098

W2 τ(s) 0.55 0.76 8.04E8

P 0.43 0.22 0.11

C1(µF ) 2.86 12.7 0.12

C2(µF ) 2.86 4.52E-3 0.12

When PEDOT:PSS layer is casted on only one side of the Nafion membrane, an asymmetric

charging and diffusion behavior is induced by its morphological asymmetry. As presented in

Table 5.2, the capacitance Cdl improved on one side while dropped on the other side. The

largest (12.7 µF) and smallest (4.52E − 3 µF) capacitances of Cdl both occurred in the same

specimen Nafion/1s-PEDOT:PSS but at different electrodes. Meanwhile, the increased ion

diffused time occurs at the same side where more charge is stored in EDL capacitor, indicating

a highly imbalanced storage of ions at the external electrodes. Considering the difference

between BNafion and Nafion/2s-PEDOT:PSS specimens, the significantly large ion storage is

expected to occur at the PEDOT:PSS coated side.
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5.3.2 Charging and discharging
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Figure 5.5: (a) Charging/discharging currents and (b) charge density versus time for different

specimens under a 4 V square wave. Normalized charge versus time at the charging process (c)

and discharging process (d) at the interface of the external electrodes for different specimens.

To further investigate how the morphological asymmetry affects the charging/discharging

behavior under a step voltage, current flow corresponding to a 4 V potential difference between

the external electrodes was measured and recorded as a function of time. Each step function

was set to 600 seconds, a much larger time range for the strain generated in these actuators

that has already reached saturation[65]. 1s-PEDOT:PSS/Nafion and Nafion/1s-PEDOT:PSS

represent the same specimen, with PEDOT:PSS layer casted on one side of Nafion membrane,
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but connected to different electrodes. Similarly, polarity was also switched in other two spec-

imens, BNafion, and Nafion/2s-PEDOT:PSS, with the name referred to as BNafion1, 2, and

Nafion/2s-PEDOT:PSS1, 2, for comparison. In Figure 5.5a, when under +/ − 4 V step func-

tions, an unbalanced charging behavior is observed in specimen Nafion/1s-PEDOT:PSS due to

its asymmetric structure, while the other two specimens, BNafion, and Nafion/2s-PEDOT:PSS,

generate almost identical behaviors under altered polarity. Moreover, a significantly larger

magnitude of displaced charge (area under the curve) was observed in 1s-PEDOT:PSS/Nafion.

Figure 5.5b presents the corresponding charge density stored in the specimen as a function of

time. Both BNafion and Nafion/2s-PEDOT:PSS showed a similar response regardless of the

polarity change. However, significant difference was observed in Nafion/1s-PEDOT:PSS due to

its asymmetric structure. When the PEDOT:PSS layer was connected to the higher potential

at the charging process (0 – 600 seconds), the highest charge density was revealed, then a

remarkable charge density at the discharging process (600 – 1200 seconds) was led. When the

PEDOT:PSS layer was connected to the lower potential at the beginning (0 – 600 seconds),

a pretty small charge density (closed to BNafion) was observed, followed by a much higher

charge density in the discharging stage (600 – 1200 seconds). Overall specimen Nafion/1s-

PEDOT:PSS (or 1s-PEDOT:PSS/Nafion) reveals the highest charge storage capacity, which is

consistent with the equivalent circuit modeling results in section 5.3.1.

The normalized charge as a function of time at charging and discharging process is plotted

in Figure 5.5c and 5.5d, respectively. These results reveal the charging rate at the external elec-

trodes’ surfaces. Specimen with PEDOT:PSS casted on one side (both Nafion/1s-PEDOT:PSS

and 1s-PEDOT:PSS/Nafion) exhibits the fastest charging time (high ion transport rate). The

asymmetry in strucutue results in an asymmetrical charging and diffusion process[169].

5.3.3 Electromechanical response

Electromechanical response of IEAP actuators with different PEDOT:PSS patterns was

studied. Actuator 1S was first tested under a 4 V step function with the PEDOT:PSS patterns

attached to the cathode. The cationic response was homogenous, circular toward the uncoated

side, which is closed to the actuator with a similar structure but consisting of uniform CNC
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(a) (b)

(c) (d)

Figure 5.6: Sechematic representation and experimental actuation performance for actuator

(a)1S, (b)2SS, (c)2SA2, and (d)2SA3. Left side is the cationic response and right side is the

anionic response.

layers in previous works[38, 4, 39, 37, 65]. However, as the time progresses, this uniform

actuation was canceled by the dominating anionic strain that consists of a sharp, angular

bending, exhibiting a limb-like motion. The schematic representation of the pattern and the

images of the experimental results are shown in Figure 5.6a.

To further explore how different patterns affect the actuation performance, 4 V step func-

tion was applied to the other two actuators, 2SS and 2SA; experimental results are presented

in Figures 5.6b−5.6d. Electromechanical response of asymmetric 2SA actuator was studied

under different polarities, named as 2SA2 and 2SA3, and the results were recorded in Fig-

ure 5.6c and 5.6d, respectively. The results shown in Figure 5.6b reveal a rectangular, limb-like

motion in both cationic and anionic deformations, while actuator 2SA in Figure 5.6c and 5.6d

reveals a more complex behavior, indicating a dependency on the electrode polarity. In anionic
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motion, 2SA2 deformed into rectangle-like shape when actuator 2SA3 deformed into a triangle-

like shape. Meanwhile, both cases have noticeable anionic deformation (strain) but negligible

cationic deformation.

5.4 Discussion and Simulation

5.4.1 Discussion

Our experimental results suggest that the existence of the PEDOT:PSS layers as CNC leads

to a considerable effect on the actuation performance.

First the impedance data and the corresponding equivalent circuit modeling indicate that in

Nafion/1s-PEDOT:PSS specimen, ions are more likely to accumulate and act at one electrode’s

interface, while depleted on the other electrode’s interface. The increased ion concentration

is expected to occur at the PEDOT:PSS coated side. However, when the PEDOT:PSS layer

is casted on both sides of Nafion, a completely different phenomenon occurs − fewer ions

move to charge the EDL capacitors at the electrodes interfaces. Consequently, fewer ions will

accumulated at the outer electrodes; which in turn hinders mechanical deformation of the

actuator.

Secondly, 1s-PEDOT:PSS/Nafion specimen exhibits the highest charge density and shortest

charging time (high ion transport rate) under a 4 V square function. Since the main cause of the

actuation is exactly the accumulation and depletion of charged ions at the interfaces of different

electrodes, the existence of PEDOT:PSS layer casted on only one side of Nafion would, most

likely, enhance the actuation; however, when it is casted on both sides, its functionality will be

reduced, or even reversed.

In addition, electromechanical responses suggest that the actuation performance varies sig-

nificantly with the existence of PEDOT:PSS layer. Experimental results for actuators 1S,

2SA2 and 2SA3 all reveal an enhancement in the strain generation when PEDOT:PSS layer

only exists on the convex side, and an inhibition when it only exists on the concave side. Before

application of an electric voltage, EMI-Tf ions are only distributed in Nafion membrane, and

none in PEDOT:PSS layer. Therefore, this enhancement-on-convex and inhibition-on-concave
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phenomenon may be caused by the expansion of the PEDOT:PSS layer due to the ion penetra-

tion and accumulation at the electrodes. The experimental results for actuator 2SS, however,

exhibit a completely reversed trend that, no matter in convex or concave side, PEDOT:PSS

layer always hinders the actuation. That is, the existence of PEDOT:PSS layer does not con-

tribute considerably to any expansion.

Considering the structures of the actuators investigated in this study, segments of the

actuators can be categorized under three possible structures: 1) uncoated membrane (BNafion);

2) single-side coated membrane (Nafion/1s-PEDOT:PSS); and 3) double-side coated membrane

(Nafion/2s-PEDOT:PSS). Scrutinizing the electromechanical response of actuators at segment

scale, following conclusions are drawn: 1) for asymmetric segments, ion penetration into CNC

coated side results in an irreversible expansion; 2) the CNC does not exhibit contraction, and

3) for symmetric segments, the capacitance of the double-side coated segment is significantly

lower than that of the uncoated segment, thus deformation mainly occurs on the uncoated

segment.

5.4.2 Finite element simulation

In order to verify the conclusions draw from experimental observations (section 5.4.1), static

analyses were performed. Electromechanical response of IEAP actuators with different CNC

patterns was modeled on ABAQUS/CAE using FEM (details presented in the Appendix A).

Presented in Figure 5.7 are overlay images of experimental (5.7a, 5.7c, 5.7e, 5.7g) and simulated

(5.7b, 5.7d, 5.7f, 5.7h) results. Experimental results are collected under a 4 V step function and

figures are extracted from video recordings. Simulations are the corresponding increments from

static steps where blue and red gradation represents cationic and anionic strains, respectively.

Experimental and simulated data are in very good agreement, verifying the conclusive remarks

made in section 5.4.1.

Hou et al. suggested a simple aggregation model when EMI-Tf ionic liquid was absorbed

into an ionic polymer membrane (Nafion), indicating an excess of negatively charged triple ions,

[Tf−–EMI+–Tf−][125]. Without loss of generality, let EMI-Tf in Nafion membrane is in the

format of [EMI+] and [Tf−–EMI+–Tf−]. In an IEAP actuator with dimension as 15 mm × 1
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Figure 5.7: Comparison of experimental bending displacement in response to a 4 V step input

voltage (left column) and the results produced by the static theoretical model via ABAQUS

(right column). Figure (a) and (b) represent actuator 1S, (c) and (d) represent actuator 2SA2,

(e) and (f) represent actuator 2SA3, and (g) and (h) represent actuator 2SS. The top electrode

is cathode and the bottom electrode is anode.

mm (l×w) and EMI-Tf uptake as ∼ 24 wt%, the increased weight is around 1.91E−4 g. With

the molecular weight of 260.23 g/mol in EMI-Tf, the molecular from EMI-Tf is 7.35E − 7 mol

= 4.42E17. Therefore, the total movable cations [EMI+] and anionic cluster [Tf−–EMI+–Tf−]

should be half of the total molecular inside, which equals to 2.21E17. Meanwhile, when ∆T ×α

is pretty small, the change in volume by thermal expansion ∆V can be simplified into 3α·∆T ·V0,

by excluding the higher orders, where V0 is the volume before any expansion/contraction.

Simulations shown Figure 5.7 confirm a change in volume ∆V = 1.83E − 11 m3 in cations

response. Taken the molecular volume of cations [EMI+] as 182 Å3 [65], 1.0E17 [EMI+] is

supposed to contribute to the cationic response, which, is almost half of the mobile cations

inside Nafion membrane. That is, based on the experiments and simulations indicated in

Figure 5.7, approximately half of the ions from EMI-Tf contribute to the actuation.

Simulations shown in Figure 5.7 set the volume ratio of cations and anions/anionic clusters

based on the results reported by Hou et al., who characterized the diffusion ratio Dcation/Danion
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of EMI-Tf ionic liquid inside Nafion membranes as a function of water content χwater[125].

They discovered that when 15-30 wt% EMI-Tf was absorbed in Nafion at very low water

contents, the diffusion ratio falls in the range of 1.5 − 2.5. The diffusion coefficient D is

inversely proportional to the size of diffusing particles as described by the the Stokes-Einstein

relation, D = kT/(cηrH), where k is the Boltzmann constant, T is absolute temperature,

c is a constant factor depending on the shape and relative size of the diffusion particle to

its surrounding fluid, η is viscosity of the fluid, and rH is the hydrodynamic radius of the

diffusing particle[125, 170]. Since the cations and anions/anionic clusters exist in the same

thermodynamic phase, Dcation/Danion equals the reciprocal of their hydrodynamic radii ratio,

which is proportional to the cubic root of the ions’ volume distributed in the Nafion membrane.

That is, Dcation/Danion = rHanion/rHcation ∼ (Vanion/Vcation)1/3. The volume ratio of cations

and anions/anionic clusters set in the simulation falls in the range of 1.53 − 1.73, which is

consistent with the results reported by Hou et al.

5.5 Conclusion

In this work an intrinsic limb-like motion was achieved by incorporation of conjugated poly-

mer, PEDOT:PSS patterns in the structure of soft actuators. Instead of a homogeneous linear

or circular deformation revealed by conventional IEAP actuators, the fabricated soft actua-

tors can exhibit sharp angles of 90◦ and beyond. The intrinsic deformation enables a wide

application of this manipulated actuator in biomimetic soft-robotics due to the natural motion

indicated. Electromechanical responses indicated that the actuation performances varies signif-

icantly by the pattern design of the polymer in structure. The casted number of PEDOT:PSS

layer highly determines the ionic motion through the thickness of the actuators and conse-

quently their final performance, which has been verified both experimentally and theoretically

in this study. Meanwhile, through a static model built by FEM, around half amount of the

ions from EMI-Tf would contribute to the final actuation performance. With different patterns

of the incorporated PEDOT:PSS, we are able to get a new kind of actuators whose behaviors

are more complex but intrinsically controllable at the same time.
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CHAPTER 6. NONLINEAR DYNAMIC MODELING OF IONIC

POLYMER CONDUCTIVE NETWORK COMPOSITE ACTUATORS

USING RIGID FINITE ELEMENT METHOD

A paper published in Sensors and Actuators A: Physical 217 (2014): 168−182

Amir Ali Amiri Moghadam, Wangyujue Hong, Abbas Kouzani, Akif Kaynak, Reza Zamani, Reza Montazami

Abstract

Ionic polymer conductive network composite (IPCNC) actuators are a class of electroac-

tive polymer composites that exhibit some interesting electromechanical characteristics such

as low voltage actuation, large displacements, and benefit from low density and elastic modu-

lus. Thus, these emerging materials have potential applications in biomimetic and biomedical

devices. Whereas significant efforts have been directed toward the development of IPMC ac-

tuators, the establishment of a proper mathematical model that could effectively predict the

actuators dynamic behavior is still a key challenge. This paper presents development of an

effective modeling strategy for dynamic analysis of IPCNC actuators undergoing large bending

deformations. The proposed model is composed of two parts, namely electrical and mechanical

dynamic models. The electrical model describes the actuator as a resistive-capacitive (RC)

transmission line, whereas the mechanical model describes the actuator as a system of rigid

links connected by spring-damping elements. The proposed modeling approach is validated by

experimental data, and the results are discussed.

6.1 Introduction

Electroactive polymers (EAPs) are a relatively new class of functional materials with a

wide variety of applications including solar cells, super capacitors, sensors and actuators [171,
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172, 173]. Ionic polymer conductive network composites (IPCNCs) are nanostructures based

on EAPs doped with conductive nanomaterials to enhance electromechanical performance [13].

Due to their: (i) large strains of up to 39%, (ii) bio-compatibility, (iii) micro- and nano-

scale fabrication feasibility, and (iv) relatively low operation voltage [174, 175, 176], EAPs are

suitable candidates for biomedical and biomimetic applications, such as artificial organs and

micro-electro-mechanical systems (MEMS).

Preceding research works on IPMC actuators based on Pt-electroded Nafion indicate that

these materials can produce large bending deformation under relatively low actuation voltages

[124, 177, 178]. Several research studies have been carried out to investigate the key parameters

which affect the electromechanical performance of IPMC actuators in terms of strain level,

actuation speed, lifetime and efficiency [177, 178, 12, 36, 76, 31, 136]. Experimental results

indicate that high charge density at the electrodes significantly improves the electromechanical

actuation of IPCNC actuators [177, 31, 136]. As it has been shown in our previous works

[39, 4, 37], integration of conductor network composite (CNC) fabricated by the layer-by-

layer (LbL) self-assembly method with IPCNC bimorph actuators will considerably increase

strain level and response time of the IPCNC actuators. Considering such an important effect,

the current work is devoted to investigate the nonlinear large bending deformation of these

actuators.

There are many reports in the literature about the potential applications of electroactive

polymers in different robotic systems. Bar-Cohen et al. [171] presented several EAP driven

mechanisms that emulate human hand including a gripper, a manipulator arm, and a surface

wiper. Chen et al. [150] reported the modeling of a robotic fish propelled by an ionic polymer-

metal composite actuator. Jain et al. [179] used IPCNC actuators as a micro gripper in the

SCARA robot. We have proposed modeling and design of soft robots based on EAPs [180, 181].

However, a practical dynamic model of these actuators is required for design of advanced control

systems [182, 183] and fabrication of functional devices made of IPCNC actuators.

There are several models in the literature for predicting the behavior and performance

of IPCNC actuators. These models range from simple black-box models to complex white-

box models [184, 185]. The complexity and accuracy are two main factors which should be
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considered in development of a practical model of IPCNC actuators. The modeling complexity

issue becomes even more important when IPCNC actuators are integrated into micro devices

such as micro robotic systems which include several electrical and mechanical components. In

this case, the complexity of the actuator model increases the overall complexity of the device

model which is not desirable.

The current work aims to come up with an effective modeling strategy based on a tradeoff

between the complexity and accuracy of the actuator model. Following key factors which

significantly influence the development of dynamic models are defined: (i) the use of a physics-

based modeling method, (ii) the consideration of electrical as well as mechanical dynamics, and

(iii) the consideration of large deformation. These factors play a significant role in development

of dynamic models of IPCNC actuators and thus, a model which incorporates all of these factors

can more realistically predict the performance of IPCNC actuators. Several research studies

have been devoted to address some of these factors in dynamic modeling of IPCNC actuators.

Bar-Cohen et al. [171] proposed the use of black-box modeling approach for calculation of

actuator curvature as a function of applied voltage. Although black-box models are relatively

simple, they are merely based on data mapping and therefore, have a limited application. More

advanced models, mainly based on a gray-box modeling approach, have been developed which

use electrical circuit models to correlate the voltage and bending displacement of the IPCNC

actuators. These models range from lumped RC models [37, 186, 187, 188], to distributed

transmission line models [185, 189]. Finally, the most complex models are white-box models [69,

66, 70, 190]. These models try to explain the complicated electro-chemo-mechanical dynamics

of IPCNC actuators based on physical principals. Although these models provide valuable

insight into the underlying physics of actuation process, they are very complex and are not

suitable for real time control of the actuators [184].

Despite the fact that the use of IPCNC actuators in functional devices requires nonlinear

large deformation dynamic analysis of the system, the common characteristic of the described

modeling strategies is that they cannot take into account the large bending deformation (geo-

metric nonlinearity) of actuators. Addressing the large deformation of IPCNC actuators, Yim

et al. [191] proposed the use of finite element method (FEM) in modeling of IPCNC actuators.
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However, this method cannot consider the rigid body rotation of each element and consequently

is inaccurate in predicting large bending deformation of IPCNC actuators. In an attempt to

overcome this problem, Gutta et al. [192] modified the previous finite element model by attach-

ing local coordinate frame to each element which could take into account rigid body motion of

the actuator. They have also used a lumped RC model to emulate the electrical admittance

of the actuator. Although this model is comparatively effective in predicting large bending

deformation of IPCNC actuators, derivation of motion equation based on FEM is complex and

therefore, limits the application of the proposed method for design and control of micro devices

based on IPCNC actuators. Furthermore, previous studies have shown that lumped RC models

are not accurate in predicting the actuators performance [37, 185, 188, 189].

Addressing the stated deficiencies, the current work proposes a dynamic model for the

large deformation dynamic analysis of IPCNC actuators employing an effective rigid finite

element (RFE) method. This is achieved by establishing a mathematical relation between the

input voltage and the output bending displacement of the polymer actuator, considering both

electrical admittance and mechanical dynamics of the actuators, simultaneously. In contrast to

the classical finite element method (FEM), the RFE method discretizes the flexible links into

rigid elements, which facilitates the representation of the inertial features of the body. These

elements are connected by means of spring-damping elements (SDEs) [193].

The other advantages of applying the RFE method include (i) simplicity, which is reflected in

the description of flexible links as a system of rigid links connected by SDEs, (ii) employment

of a uniform approach to model rigid and flexible links, (iii) numerical efficiency, and (iv)

applicability for the analysis of both small and large deformations. Based on these advantages,

we extend the RFE method to emulate the dynamics of polymer actuators. To realize this

goal, in the first step, an electrical model based on the transmission line theory is utilized to

define the induced electrochemical moment which acts on the actuator, and in the next step,

the actuator is replaced with a set of rigid elements which are connected by means of SDEs

and controlled by the electrochemical moment. All modeling results are based on these two

aforementioned steps. Despite the lack any complication in the model, experimental results

indicate the model can accurately predict the behavior of the actuator.
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The paper is organized as follows. In Section 6.2, trilayer IPCNC actuators are introduced,

and the synthesis of a polymer actuator is described. Section 6.3 presents a dynamic analysis

of polymer actuators based on the proposed RFE method. Finally, in Section 6.4, the model

is validated by using simulation, and the corresponding experimental results are presented.

6.2 Ionic Polymer Conductive Network Composite (IPCNC) Actuators

IPCNC actuators were fabricated by the direct assembly method in which the CNC elec-

trodes were developed by means of layer-by-layer (LbL) ionic self-assembly technique [89].

The constitution and geometry of these actuators is depicted in Figure 6.1(a). The actuators

consist of five layers. According to Figure 6.1(a), the middle layer is the ionomer which is sand-

wiched between CNCs and on both side of CNCs there are gold leaves as external electrodes

[39, 4, 37]. Figure 6.1(b) demonstrates the bending mechanism in IPCNC actuators. Under

electrical stimuli, diffusion and drift of ions through the ionomeric membrane and CNC layers,

and their accumulation at the oppositely-charged electrodes, creates a volume imbalance in

the system which in turn causes the bending motion of IPCNC actuators; the motion can be

reversed by reversing the polarity of the electric voltage [13, 4, 37].

Figure 6.1: (a) Structure of a goldCNCionomerCNCgold five-layer actuator. (b) Bending mech-

anism in the IPCNC actuator based on accumulation of ions at oppositely-charged electrodes

(not to scale).
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6.2.1 Synthesis of the actuator

In this study, the commercial Nafion membrane (NR-211, Ion Powers) with the thickness

of 25 µm was used as the ionomeric membrane. Subsequently, to fabricate CNCs, Nafion mem-

brane was immersed into two oppositely charged solutions which contain anionic gold nanopar-

ticles (AuNPs) and the polycation poly(allylamine hydrochloride) (PAH) [4]. The composites

grew via the electrostatic force between polyelectrolyte and nanoparticles. Each CNC layer

consists of 20 bilayers of AuNP/PAH, with an approximate thickness of 40 nm [40]. Next,

the sample was soaked with 40 wt% 1-ethyl-3-methylimidazolium trifluoromethanesulfonate

(EMI-Tf) ionic liquid, and 50 nm thick gold leaves were hot-pressed on both side of sample as

external electrodes [4].

6.3 Electromechanical Modeling

The electromechanical model used in this paper, as its name implies, is comprised of both

electrical and mechanical models. Each of these two components is discussed in a separate

sub-section.

6.3.1 Electrical modeling

An electrical circuit is used to model the electrochemical process within the IPCNC actua-

tors. The electrical charge can be stored within the actuator which is analogous to a capacitance

element in an electrical circuit. Moreover, the energy loss in the actuator can be modeled as

an electrical resistance. Thus, the simplest electrical admittance model for IPCNC actuators

can be a lumped electrical circuit model [4, 188]. It has been shown that a lumped C-R-

C circuit model can be used to approximate the complex electrical impedance model of the

IPCNC actuators [4, 37, 188]. In this model, two capacitor elements refer to the formation of

double-layer capacitors at the interfaces of two electrodes and the electrolyte, and the resistor

element represents the internal resistance of the electrolyte. Moreover, possible leakage in the

system can be represented by a shunt resistor (Figure 6.2(a)). Considering the electrical circuit

in Figure 6.2(a), the transfer function of the electrical admittance between input voltage and
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output current is:

It
Vin

=
(R1 +R2)Cs/2 + 1

R1(R2Cs/2 + 1)
(6.1)

where, s is Laplace variable.

Figure 6.2: (a) Equivalent lumped electrical circuit model IPCNC actuators. (b) Transmission

line model of IPCNC actuators.

Although this simple relation provides initial insight into the electrical dynamics of the

actuator, it cannot accurately predict the performance of the actuator; in effect, experimental

observation not only in the current work but in previous studies [4, 37, 188] suggests that a ca-

pacitor element with constant value cannot accurately model the output current of the actuator.

To address this issue, Bao et al. [188] proposed that the ion diffusion at the electrode/electrolyte

interfaces can be modeled with a RC transmission line model. Since then, several authors have

employed transmission line models for modeling the electrical admittance of IPCNC actuators

[185, 189]. In these models, electrical parameters of the actuators such as electrolyte resistance,

shunt resistance and double-layer capacitors are defined as distributed parameters along the

thickness of the actuator. Apparently, incorporation of several distributed parameters into the

transmission line model not only makes the derivation of admittance model complicated, but

complicates the identification of the actuator electrical parameters as well. To address this

issue in the current work, the electrical model is defined as the integration of lumped resis-
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tor elements and RC transmission line model where both electrolyte and shunt resistances are

lumped parameter elements. Moreover dynamic of ion diffusion at electrode/electrolyte inter-

faces is replaced with an RC transmission line model (Figure 6.2(b)). This modeling approach

significantly simplifies the derivation of the admittance model as well as the identification of

its parameters.

The first step in derivation of the distributed admittance model of the actuator, shown

in Figure 6.2(b), is to calculate the impedance of ion diffusion at the electrode/electrolyte

interfaces. This will be done based on the equivalent single unit circuit in Figure 6.3.

Figure 6.3: The equivalent single unit circuit for ion diffusion at the electrode/electro-lyte

interface.

Considering Kirchhoff’s and Ohm’s laws, the relation between current and voltage for ion

diffusion in Figure 6.3 can be derived as:

∂V (z, t)

∂z
= −ri(z, t) (6.2a)

∂i(z, t)

∂z
= −c∂V (z, t)

∂t
(6.2b)

where r and c are the resistance, and capacitance per unit thickness of the CNCs, respectively.

Next, by substituting partial derivative of Equation 6.2a with respect to z into Equation 6.2b,

the governing equation of the RC line can be simplified as:

∂2V (z, t)

∂z2
= rc

∂V (z, t)

∂t
, 0 ≤ z ≤ h (6.3)
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The general solution of Equation 6.3 can be derived as:

V (z, s) = Asinh(z

√
s

β
) +Bcosh(z

√
s

β
) (6.4)

where β = 1/rc.

Also, the suitable boundary conditions can be defined as:

V (0, s) = Vin, I(h, s) = 0 (6.5a)

V (z, s)

Vin
= cosh(z

√
s

β
)− tanh(h

√
s

β
)sinh(z

√
s

β
) (6.5b)

Thus, the current in the RC line is:

I(z, s)

Vin
=

1

r

√
s

β
[tanh(h

√
s

β
)cosh(z

√
s

β
)− sinh(z

√
s

β
)] (6.6)

Moreover, the impedance of the RC line is:

ZD =
rcoth(h

√
s/β)√

s/β
(6.7)

Therefore, the charging current can be defined as:

Ich
Vin

=
1

2ZD +R2
(6.8)

And finally according to Figure 6.2(b), the total current in the circuit can be obtained as:

It
Vin

=
(R1 +R2)/2ZD + 1

R1(R2/2ZD + 1)
=

(R1 +R2)c
√
βstanh(h

√
s/β)/2 + 1

R1(R2c
√
βstanh(h

√
s/β)//2 + 1)

(6.9)

To study the infinite-dimensional system in Equation 6.9, one can utilize the Mittag-Leffler’s

expansion of tanh(s):

tanh(s) = 2s

∞∑
n=0

1

s2 + (n+ 1/2)2π2
(6.10)

Thus after some manipulations, the electrical admittance model of the actuator can be obtained

as:

It
Vin

=
(R1 +R2)((cβs/h)

∑∞
n=0(1/s+ (2n+ 1)2(π/2h)2β)) + 1

R1(R2(cβs/h)
∑∞

n=0(1/s+ (2n+ 1)2(π/2h)2β) + 1)
(6.11)

where h is the thickness of the CNC layer.
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6.3.2 Electrical parameter identification

The parameters R1 and R2 can be directly obtained from experimental current response

under a step input voltage:

R1 =
Vin
It
|steady state, R2 =

Vin
(It|initial − It|steady state)

(6.12)

where It|initial and It|steady state are the initial and steady state experimental current response of

the actuator, respectively. Moreover, parameters r and c can be identified by means of system

identification methods. In this work, system identification is performed by means of simulated

annealing method which is one of the most efficient optimization algorithms [194, 195]. The

error signal is defined as the difference between the experimental and simulated current output

of the actuator, and consequently, the objective function is defined as the integral of squared

relative error. Moreover, the vector of unknown parameters γ is defined as:

γ = [r, c]T (6.13)

According to Figure 6.4, it can be observed that the objective function converges after approx-

imately 80 iterations. The values of the electrical model parameters are presented in Table 6.1.

Figure 6.4: Convergence of the objective function based on the simulated annealing algorithm.
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Table 6.1: Values of physical parameters for electrical admittance model.

R1(Ω) R2(Ω) c(F/m) r(Ω/m)

1158.9 115.45 14100 2.7278× 108

6.3.3 Validation of electrical model

The convergence of the electrical model can be studied based on the number of terms (n)

used in Equation 6.11. Table 6.2 shows the poles of the electrical admittance model based on

using different values for (n). It can be seen that using more terms in Equation 6.11 generates

poles which are located far to the left of the imaginary axis in comparison with other poles of

the system. This suggests that the electrical admittance model will converge to the infinite-

dimensional by using finite number of terms in Equation 6.11.

Table 6.2: Poles of the electrical admittance based on number of terms.

n Poles

1 (s+ 1.854)

3 (s+ 69.69)(s+ 20.97)(s+ 1.789)

5 (s+ 250.6)(s+ 142.3)(s+ 66.12)(s+ 20.27)(s+ 1.776)

7 (s+ 544.6)(s+ 377.3)(s+ 242.8)(s+ 138.9)(s+ 64.83)(s+ 19.89)(s+ 1.77)

Typically IPCNC actuators produce very little bending displacement at relatively high

frequencies and consequently have a low bandwidth (under 10 Hz) [184, 185, 110]. With this in

mind the convergence of the electrical admittance model can be studied within the bandwidth

of the actuator. According to Figure 6.5, it can be seen that the admittance model with

n = 5 closely matches the infinite-dimensional model for the frequency range less than 20 Hz.

Therefore, this model is chosen for simulation of electrical admittance model. Moreover, the

step response could be utilized to study the convergance of the electrical addmitance model

in terms of time constant and steady state response of the systesm. According to Figure 6.6,

it can be see that the models with 5 and 7 terms almost have the same time constant, and

setteling time.

Figure 6.7 compares the experimental current output of the polymer actuator with the

lumped RC model and the transmission line model in response to a step voltage input. It can
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Figure 6.5: Convergence of the transmission line model in frequency domain.

be seen from this figure that the distributed model is more accurate compared to the lumped

RC model in predicting the actuator current response.

Integral of square error (ISE) can be used to compare the accuracy of the lumped and

distributed electrical models:

ISE =

∫ t

0
e2(t)dt (6.14)

Table 6.3 compares the ISE of distributed model with the lumped model. It can be seen that

the ISE of distributed model is about 4 times less than the lumped model which indicates the

effectiveness of the proposed transmission line approach in modeling of the actuator electrical

admittance.

Table 6.3: Comparison of ISE for lumped and distributed electrical models.

Transmission line model Lumped circuit model

ISE 2.8434× 10−6 1.0999× 10−5
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Figure 6.6: Convergence of the transmission line model in predicting the actuator current

response.

Comparison of experimental current data with the lumped electrical model shows that at the

beginning of the process, the experimental current drops relatively faster than the prediction

of the lumped model. However, as the actuator charges up, the lumped model shows a faster

charging rate. This indicates that a constant capacitor element in the lumped model is not

suitable for prediction of the actuator performance. To capture the gross dynamic of ion

diffusion at the electrode/electrolyte interfaces, we have used an effective RC transmission line

model. By definition a control oriented model is the least complex model which captures the

gross dynamic of the system. Hence, a key factor in the development of a proper control oriented

model is a proper tradeoff between the complexity and the accuracy of the corresponding

model. In order to further evaluate the proposed model, it has been compared with more

complex models [184, 185] in prediction of the electrical impedance of a different IPCNC sample

(37 × 5.5 × 0.360 mm3). As is seen in Figure 6.8, the proposed model is in close agreement

with the experimental data, indicating that the model is significantly effective in capturing the

dynamic of ion diffusion.
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Figure 6.7: Convergence of the transmission line model in predicting the actuator current

response.

6.3.4 Mechanical modeling

In contrary to the aforementioned electrical model, which relates the current to the stored

charges, the mechanical model relates the stored charges to the bending displacement of the

IPCNC actuators. The basic idea in the mechanical modeling part is to consider the polymer

actuator as a discretized system which consists of rigid finite elements (RFEs) connected by

springdamping elements (SDEs). In this model, each rigid finite element moves based on the

induced electrochemical moment, denoted by M (i) acting at RFE(i). As is shown in Figure 6.9,

the actuator is divided into (n+1) RFEs and (n) SDEs. The components RFE(i) and RFE(i−1)

are considered to be connected by means of revolute joint at SDE(i). Moreover, SDEs comprise

of rotational stiffness (k(i)) and damping elements (c(i)). These parameters will be introduced

later in this section.

It was experimentally shown that the induced electrochemical stress is proportional to the

charge density (ρch) [70].

σch = αρch (6.15)



86

Figure 6.8: Comparison of the proposed electrical model with the other models.

Figure 6.9: Discretization of a three-layer IPCNC actuator into RFEs and SDEs.

where α is the tress-to-charge ratio, and ρch can be achieved in the time domain as follows:

ρch =
1

bLh

∫ t

0
Ich(t)dt (6.16)

where b, h and L are the width, thickness and length of CNC layer respectively. Recalling that

the CNC layer is responsible for actuation in IPCNC actuators [4], the induced electrochemical

moment in the ith element can be defined as (Figure 6.10):

M
(i)
ch (t) =

∫
A
σchzdA = 2bαρch

∫ h2

h1

zdz =
α(h2 + h1)

L

∫ t

0
Ich(t)dt (6.17)

Now, the motion of components (RFEs) can be studied by assigning suitable generalized

coordinates to them. According to Figure 6.11, the coordinate system {X(i)} and {Y (i)} are

attached to RFE(i) and SDE(i). It must be noted that the orientation of the coordinate system
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Figure 6.10: Distribution of induced electrochemical stress across the thickness of IPCNC

actuators.

{Y (i)} coincides with the coordinate system {X(i − 1)}. Thus, the transformation matrix

which defines the frame {X(i)} relative to the frame {X(i− 1)} is expressed as:

B̃(i) =


cos(ϕ(i)) −sin(ϕ(i)) d(i)

sin(ϕ(i)) cos(ϕ(i)) 0

0 0 1

 (6.18)

where, ϕ(i) is the angle between these two frames. Considering that the actuator has a length

of L, and is divided into (n+ 1) RFEs, the value of d(i) can be calculated through the following

relation:

d(1) =
L

2n
, d(i) =

L

n
i = 2, 3, · · · , n (6.19)

Then the transformation matrix which defines the frame {X(i)} relative to the frame {X(0)}

is calculated as:

B(i) = B̃(1)B̃(2) · · · B̃(i) i = 1, 2, · · · , n (6.20)

Consequently, the position of any particle dm in RFE(i) with respect to the frame {X(0)} is

defined as:

r(i) = B(i)r̃(i) i = 1, 2, · · · , n (6.21)
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Figure 6.11: Frame assignment for RFEs and SDEs.

where r̃(i) = [x̃
(i)
1 x̃

(i)
2 1]T and r(i) = [x

(i)
1 x

(i)
2 1]T are the position vector of the particle dm relative

to frame {X(i)} and {X(0)}, respectively. Therefore, the kinetic energy of the particle dm is

represented as:

dT (i) =
1

2
tr{ṙ(i)ṙ(i)

T

}dm(i) i = 1, 2, · · · , n. (6.22)

It follows that the kinetic energy of the RFE(i) is obtained as:

T (i) =
1

2

∫
m(i)

tr{ṙ(i)ṙ(i)T }dm(i)

=
1

2

∫
m(i)

tr{Ḃ(i)r̃(i)r̃(i)
T
Ḃ(i)T }dm(i)

=
1

2
tr{Ḃ(i)[

∫
m(i)

r̃(i)r̃(i)
T
dm(i)]Ḃ(i)T }

=
1

2
tr{Ḃ(i)H(i)Ḃ(i)T } i = 1, 2, · · · , n

(6.23)
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where H(i) is the pseudo-inertia matrix, which is defined as:

H(i) =

∫
m(i)

r̃(i)r̃(i)
T
dm(i) i = 1, 2, · · · , n (6.24)

Thus, the kinetic energy can be rewritten as:

T (i) =
1

2
tr{Ḃ(i)H(i)Ḃ(i)T } i = 1, 2, · · · , n (6.25)

Finally, the kinetic energy of the actuator is determined by summing over all RFEs:

T =

n∑
i=1

T (i) (6.26)

The potential energy of the rotational springs at SDEs is expressed as:

V =
n∑
i=1

1

2
k(i)[ϕ(i)]2 (6.27)

where k(i) is the coefficient of rotational stiffness which can be defined as [193]:

k(i) =
nEI

L
(6.28)

where E is the Young’s modulus and I is the area moment of inertia of the actuator. Moreover,

the function of energy dissipation is

D =
n∑
i=1

1

2
c(i)[ϕ̇(i)]2 (6.29)

where c(i) is the coefficient of rotational damping which can be defined as [193]]:

c(i) =
nηI

L
(6.30)

In the above relation η is the normal damping material constant. The virtual work which is

done by induced electro chemical moment is defined as:

δW = δ[
n∑
i=1

M(t)
(i)
chϕ

(i)] (6.31)

Thus, the generalized forces (Q(i)) is obtained as:

Q(i) = M(t)
(i)
ch i = 1, 2, · · · , n (6.32)
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Next, based on Lagrange’s equations, the discrete set of equations that describe the dynamic

of the actuator is derived as follows:

d

dt
(
∂T

∂q̇i
)− ∂T

∂qi
+
∂V

∂qi
+
∂D

∂q̇i
= Q(i) i = 1, 2, · · · , n (6.33)

where the vector of generalized coordinates, q, is defined as:

q = [ϕ(1), ϕ(2), · · · , ϕ(n)]T (6.34)

Finally, the equations of motion can be rewritten in the compact matrix form as:

A(t)q̈ + e(q, q̇, t) + Cq̇ +Kq = Q(t) (6.35)

where:

A(t) = [aij ], aij =
n∑

k=max{i,j}

tr{∂B
(k)

∂qi
H(k)(

∂B(k)

∂qj
)T } (6.36)

e(q, q̇, t) = {ei}, ei =
n∑
k=i

tr{∂B
(k)

∂qi
H(k)(

k∑
h=1

k∑
j=1

∂2B(k)

∂qh∂qj
q̇hq̇j)

T } (6.37)

C = diag{c(1), c(2), · · · , c(n)} (6.38)

K = diag{k(1), k(2), · · · , k(n)} (6.39)

To simulate the motion of the actuator, in the first step the induced electrochemical moment

is obtained based on Equation 6.8 and 6.17. Next, the nonlinear dynamics of the actuator

(Equation 6.35) is solved for the angular acceleration (q̈)

q̈ = A−1(t)[Q(t)− e(q, q̇, t)− Cq̇ −Kq] (6.40)

Given the initial condition of the actuator motion as

q(0) = q0, q̇(0) = q̇0 (6.41)

The angular position and velocity (q, q̇) can be obtained by means of Euler integration method

as follows

q̇(t+ ∆t) = q̇(t) + q̈∆t (6.42a)

q(t+ ∆t) = q(t) + q̇(t)∆t+
1

2
q̈(t)∆t2 (6.42b)

Finally, bending displacement of the actuator is obtained by using kinematics model (Equa-

tion 6.21).
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6.4 Comparison of Simulation and Experimental Results

In order to validate the theoretical model, the anticipated behavior of the actuators was

compared to experimental data. For this purpose, as shown in Figure 6.12, a 0.0268mm ×

1mm× 10.9mm IPCNC actuator was employed, and a known voltage of 3.5 V was supplied to

the actuator by means of a potentiostat. A Keithley 2400 source meter was used to measure

and store the current passing through the actuator, and the actuator motion was recorded

by a Canon 5D Mark III full frame camera fitted with a 100 mm/f2.8 IS Macro lens. The

experimental setup is shown in Figure 6.13. In addition, numerical simulations of the actuation

were performed using MATLAB software. Experimental observation shows that the voltages

more than 4 V damage our IPCNC actuators. Thus, to avoid any damage to the actuator, the

maximum voltage of 3.5 V is chosen for experiments. A point worth mentioning is that for

lower input voltages, the actuator dynamic performance shows more linearity, and as a result

the experimental data matches better to the simulation results.

Figure 6.12: Frame assignment and bending deformation of IPCNC actuator.
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Figure 6.13: Experimental set-up for measuring the current and bending displacement of

IPCNC actuator.

6.4.1 Mechanical parameter identification

There are four parameters in the mechanical model of the actuator: actuator’s equivalent

elastic modulus, density, damping and charge to stress ratio. To obtain the actuator’s equivalent

elastic modulus, the elastic modulus of each layer can be measured experimentally, using a setup

specifically designed to measure the elastic modulus of soft materials. Details of the setup and

procedures are presented in our previous work [39]. The equivalent flexural rigidity (El) of the

actuator can be defined based on the elastic modulus and thickness of each layer [172].

EI =
2b

3
[E1h

3
1 + E2(h

3
2 − h31) + E3(h

3
3 − h32)] (6.43)

where E1, E2, and E3 are the elastic modulus of the Nafion film, the CNC layer, and the

gold electrode respectively. The fundamental natural frequency of the actuator can be used to

estimate the equivalent density of the actuator. Linear RFE model can be employed to obtain

the natural frequency of the actuator. Recalling the fact that the linear RFE model converge

to the linear EulerBernoulli beam model [193], the equivalent density of the actuator is defined
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Figure 6.14: Convergence of the theoretical model for Y coordinate of the actuator tip.

as:

ρ = 1.8754
EI

2bh3L4(2πf)2
(6.44)

where f is the fundamental natural frequency of the actuator. Table 6.4 shows the convergence

of the RFE model to the linear EulerBernoulli beam model in prediction of the fundamental

natural frequency of the actuator.

Table 6.4: Convergence of the RFM to linear EulerBernoulli beam model.

Linear RFM Linear RFM Linear RFM Linear Euler-

model (3 DOF) model (5 DOF) model (7 DOF) Bernoulli beam model

Fundamental natural

frequency (Hz) 18.98 18.67 18.58 18.50

Free vibration test was performed to estimate the equivalent damping constant of the ac-

tuator. The logarithmic decrement (δ) and the damping ratio (ξ) can be define as [196]

δ =
1

n
ln(

ai
ai+1

), ξ =

√
δ2

4π2 + δ2
(6.45)

where, (n) is the number of cycles, and (ai) is the amplitude of the actuator bending displace-
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Figure 6.15: Convergence of the theoretical model for X coordinate of the actuator tip.

Table 6.5: Values of physical parameters for mechanical model.

E1(MPa) 50

E1(MPa) 739

E3(GPa) 20

E(MPa) 538.4857

f(Hz) 18.5

ρ(kg/m3) 2088.6

ξ 0.0228

η(Pa · s) 2.11 ×105

a(J/C) 0.0053

ment in the ith cycle. Moreover, the equivalent damping constant is defined as

η =
Eξ

πf
(6.46)

Finally, as the last parameter of the mechanical model, stress to charge ratio (α) was estimated

from the experimental bending displacement of the actuator. Table 6.5 shows the values of the

physical parameter for the mechanical model.

6.4.2 Model sensitivity analysis

The sensitivity of the model can be studied based on the number of elements that are

used in the RFE model. For this purpose three different cases with 2, 5 and 7 DOF are
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Figure 6.16: Comparison of the results produced by the theoretical model against the experi-

mental bending displacement of the actuator in response to the step input voltage.

considered. Figure 6.14 and 6.15 show the convergence of X, and Y coordinates of the actuator

tip in response to the step input voltage. From the data presented in these figures, it was

deduced that the theoretical model converges as the number of elements increases. However,

the increase of elements amplifies the computational load. Thus, a model with 5 DOF which

shows an approximate convergence was utilized for numerical simulations.

6.4.3 Validation of the RFE model

Figure 6.16 shows a comparison of the simulated model with five degrees of freedom and

experimental bending displacements of the IPCNC actuator under a 3.5 V step input volt-

age. It can be seen that the presented theoretical model is significantly accurate in predicting

large bending deformation of the actuator. Moreover, the simulated and experimental data

corresponding to the actuators tip displacement were employed to further validate the model.

Figure 6.17 and 6.18 compare X, and Y coordinate of the actuator tip in response to the step

input voltage. It can be observed that the experimental data significantly confirm the simulation

results. Since the proposed model predicts uniform curvature along the actuator length, the

deviation in the X coordinate of the actuator tip suggests that both the actuation force and the

curvature decrease along the length of the actuator. Having said that, the experimental data
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Figure 6.17: Comparison of the results produced by the theoretical model with the experimental

Y coordinate of the actuator tip in response to the step input voltage.

in our previous works [39] and [4], shows that the IPCNC actuators bend with almost uniform

curvature along their length (circular curve). Thus, the deviation in the X coordinate of the

actuator tip may be due to the imperfections in gold coating of the investigated sample.

6.5 Discussions

As described in Section 6.1, the development of practical and accurate models for IPCNC

actuators has a key role in the design and fabrication of functional devices employing these

actuators. The proposed model in the current work is distinguished from the existing models

reported in the literature in the sense that not only it has a simple structure, but also it can

effectively predict the electrical admittance, mechanical dynamics and large deformation of the

IPCNC actuators. The effectiveness of the electrical model is due to the proper combination

of lumped resistor elements with the RC transmission model which significantly simplifies the

derivation of the admittance model and identification of its parameters.

Whilst most of the existing works on modeling of IPCNC actuators are based on the linear

EulerBernoulli beam model [184, 185, 186] and [187] due to its simplicity, this model cannot take

into account large deformation of the actuators. To demonstrate the inability of this model in
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Figure 6.18: Comparison of the results produced by the theoretical model with the experimental

X coordinate of the actuator tip in response to the step input voltage.

prediction of large deformation of the actuators, we have modeled the bending displacement of

an actuator by using both the linear Euler-Bernoulli beam model and the proposed RFE model.

Figure 6.19 shows the comparison of these two models for a 3.5 V step input voltage. It can be

seen that the linear Euler-Bernoulli beam fails to predict the large bending deformation of the

beam, whereas the RFE model with only 5 elements can effectively predict the large bending

deformation. Moreover, the actuator’s tip displacement data can be employed to compare

these models. As the linear Euler-Bernoulli beam model cannot produce the displacement in

X direction, only Y coordinate of the actuator tip was used in the simulation.

Figure 6.20 compares Y coordinate of the actuator tip in response to the step input voltage.

It can be observed that while for the case of relatively small bending deformation both models

produce the same bending displacement, for the case of large bending deformation the predic-

tion of the linear Euler-Bernoulli beam model deviates from that of the RFE model where the

linear Euler-Bernoulli beam model incorrectly produces a greater bending displacement.

6.6 Conclusion

In this paper, an effective nonlinear dynamic model for an analysis of the large bending de-

formation of IPCNC actuators has been proposed. The model consists of two separate electrical
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Figure 6.19: Comparison of the linear Euler-Bernoulli beam model and the RFE model in

prediction of bending displacement of the actuator in response to the step input voltage.

and mechanical components and establishes a mathematical relation between the input voltage

and the output bending displacement of the actuators. The core in the electrical component

is the integration of lumped resistor elements and RC transmission line model, with both elec-

trolyte and shunt resistances being assumed as lumped parameter elements. The mechanical

component, however, relates the stored charges to the bending displacement through consider-

ing the polymer actuator as a discretized system connected by springdamping elements (SDEs).

The employed RFE method has simplified the modeling of the large bending deformation of

the actuator. The modeling technique based on RFE provides a unified approach to analyze

micro robotic systems which consist of both flexible polymer links and rigid links. This impor-

tant feature, will enhance the design and modeling of functional devices based on conductive

polymer actuators. The proposed model can be considered as a step forward toward under-

standing the large deformation dynamic behavior of IPCNC actuators based on their physical

parameters. It should be noted that the proposed modeling strategy can be simply extended to
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Figure 6.20: Comparison of the linear Euler-Bernoulli beam model and the RFE model in

prediction of Y coordinate of the actuator tip.

other polymer actuators such as conjugated polymer actuators with some modifications in the

electrical dynamic model. A comparison of the simulation results and experimental results of

the IPCNC actuator strongly indicates that the model has been successful in predicting large

bending deformation of the actuator.
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CHAPTER 7. GENERAL CONCLUSIONS

This dissertation has focused on design, fabrication, characterization and simulation of

IEAP actuators and sensors (mostly on actuators). It is focused on each main component of

IEAP actuators and sensors and its contribution to the functionality, with the goal to study the

mechanism of IEAP devices and improve the final performance. I will discuss more specifically

about how each component contributes to the functionality of the final device in the following

sections. In the last section some ideas and suggestions for future studies are presented.

7.1 Contribution of CNC Nanocomposites on IEAP Sensor

IEAP sensor, also known as IPMC sensor, demonstrates a strong dependence on the nanos-

tructure and morphology of its CNC nanocomposites. In this work LbL self-assembly technique

was adopted to build up the CNC layers. Control over the CNC fabrication process by ad-

justing the ionic strength of polycation PAH and the number of deposited bilayers provides an

effective means to enhance and optimize the sensitivity of IPMC mechanoelectric sensors.

Ionic strength of the ionic species is the key to control the nanostucture achieved by LbL

deposition process. With the addition of small molecular salts such as NaCl, some fraction of

the ionic charge distributed among the polymer chains will be neutralized. As a result, the

polymer backbone will change its morphology from long chains to a more curl and globular

conformation due to the reduced electrostatic repulsion. Layers deposited from ionic species

with higher ionic strength tend to be thicker and more porous due to the globular conformation

of polymer chains. It was observed that with the addition of NaCl in PAH solution, the

achieved IPMC sensor demonstrated an enhanced sensitivity by at least 3 to 4 folds. However,

a decline of the generated electric signal was observed over the first hundreds of cycles before
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the stabilization, indicating an unstable functionality of the set of specimens, most probably

due to the inner mechanical failure of the sensors. Exploration of effective techniques to reduce

the stabilization time will be involved in the future work.

7.2 Contribution of CNC Patterns on IEAP Actuator

Besides control over the generated strain, CNC layers existing in IEAP actuators also enable

different actuation patterns. Instead of a circular bending from an IEAP actuator consisting

of a homogeneous CNC nanocomposites, an angular deformation is generated by the modified

IEAP actuator, whose CNC nanocomposites are designed and fabricated with specific patterns.

Experimental observation indicates that the incorporation of conjugated polymer, PE-

DOT:PSS patterns allows control over ion permeability through the thickness of the actuators

as a whole. With the desired PEDOT:PSS patterns casted on the surface of Nafion, IEAP

actuator demonstrates an angular deformation with sharp angles.

FEM was used to simulate this angular deformation and further explore the interactions

between the ions and PEDOT:PSS layers. It is proved that the contribution to the ion perme-

ability through the PEDOT:PSS layer is highly dependent on the number of deposited layers.

If PEDOT:PSS layer is casted on either side of Nafion ionomeric membrane, ions from ILs are

more likely to penetrate the layer and accumulated at the surface of the external electrodes.

If PEDOT:PSS layer is casted on each side of Nafion, however, ions from ILs will stay in their

initial area, that is, most of them won’t drift to the electrode’s surface. FEM results also

indicate that around half amount of the ions from ILs contribute to the actuation.

This intrinsic angular bending makes it possible for IEAP actuators to be implemented in

soft robotic applications due to their biomimetic angular limb-like deformation. A systematic

study based on the interaction mechanism, dynamic modeling and more explorations on its

practical applications would be the next stage of this work.
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7.3 Contribution of IL Concentration on IEAP Actuator

The influence of IL concentration on the electromechanical response of IEAP actuators has

been investigated. Electrical impedance results suggest that the addition of IL results in the

reduction of solution resistance, which is in agreement with expected effect of any ion-rich

electrolyte.

Equivalent circuit with Warburg element representing the ion diffusion contributions was

used in this work to model the electrochemical behavior of the system. A more capacitor-like

behavior is observed with the addition of ILs in the system.

Electromechanical results indicate that the optimum concentration in which the actuation

response is maximized, however, does not occur at the highest ion concentration. With the

addition of ILs, the generated strain keeps increasing until the ILs uptake reaches around 22

wt%; after that the strain drops. The optimum concentration (∼ 22 wt%) implies a formation

of a saturated ion layer at outer electrode interfaces. As the ILs concentration, extra layers

are formed at the edge and grow inward toward the center of the system, which, in turn, will

reduce the strain generated. This observation provides an effective approach in fabrication of

IEAP actuators to achieve the best functionality.

7.4 Contribution of Ionomeric Membrane on IEAP Actuator

In IEAP actuator, not just the charged ions provided by the dopant (ILs or aqueous elec-

trolyte), but also the counterions of the ionomeric membranes are mobilized under electric

stimulation. When under a fixed electric stimulation, different electromechanical responses

were observed of IEAP actuators consisting of Nafion ionomeric membranes with different

counterions.

Before soaked in the desired IL to uptake ∼ 40 wt% of their dry weight, ion-exchange

process was performed to exchange proton counterions of Nafion with larger cations (Zn+, Na+

and EMI+). IEAP actuators consisting of Nafion with exchanged counterions were fabricated

and tested. The magnitude of the maximum cationic strain generated by the corresponding

IEAP actuator increases with the van der Waals volume of the exchanged counterions. That is,
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the actuator consisting of Nafion with H+ counterion shows the smallest cationic strain, while

the actuator consisting of Nafion with EMI+ counterion generates the largest cationic strain.

The full electromechanical response of two actuators consisting of Nafion with counterions

H+ and EMI+ (the two extreme cases) were also investigated and compared. Three different

ILs, EMI-Tf, TES-TFSI, and BMP-TFSI were adopted. In all cases, after exchanging H+ with

EMI+ ions, the overall response was shifted toward cationic strain, suggesting the contribution

of the counterions to the net strain.

As suggested by the experimental results, when under an applied electric voltage, the coun-

terions of Nafion also diffuse and drift through the interconnected channels of the polymeric

backbone structure. The larger van der Waals volume the counterions have, the larger contri-

bution to the cationic strain they have.

This work helps to draw a clear conclusion on the ion mobility through Nafion ionomeric

membrane in the presence of an electric stimulus. The contribution of the generated strain

is not only from the ions provided by the dopant, but also from the counterions of Nafion

ionomeric membrane.

7.5 Nonlinear Dynamic Modeling of IEAP Actuator

A nonlinear dynamic modeling is presented to effectively predict the IEAP actuators’ dy-

namic behavior by using rigid finite element method. This work was in collaboration with

Professor Kouzani and his research group at the Deakin University in Australia. The model

provides a thorough understanding and a theoretical support to the IEAP actuators fabricated

and studied in this dissertation.

7.6 Future Studies

One recommendation for future work is to further study the mechanism of IEAP stress

sensor. While quit a few publications from us and others have studied IEAP actuators, the

papers considering IEAP sensors are quite fewer, especially IEAP sensors doped with IL. The

work presented in Chapter 2 is still in its infancy, and further studies need to be conducted.
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For example, explore the ions mobility and chemical/electrostatic interactions of ions under a

mechanical stimulus, the reason of the declining electric signal, and the effective ways to reduce

the stabilization time for these sensors.

Another interesting topic to consider for future studies is to conduct a systematic study

based on the patterned IEAP actuators discussed in Chapter 5. These soft actuators with their

unique behavior are most suitable for microrobotic applications. The angular deformation gen-

erated in these actuators is intrinsic, hence the actuators can be made in very small dimensions.

More comprehensive works are necessary based on a large variety of conductive materials (not

just limited to polymers), ILs, and the designed patterns. These proposed set of works, plus

the work presented in this dissertation, would provide a clear picture for the potentially wide

applications of these unique actuators.

The last recommendation is to establish a proper mathematical model to predict the dy-

namic behavior of the patterned IEAP actuators developed in Chapter 5. So far we have

developed a static model to verify the proposed hypothesis and further explore the interactions

between the ions and incorporated conjugated polymer. However, this static model lacks the

ability to predict the actuator’s dynamic behavior. Due to its unique structures and inho-

mogeneous deformation, previously proposed models on circular IEAP actuators are hardly

applicable. Therefore, developing a proper model that could effectively predict the dynamic

behavior of this angular actuator would be a challenging but meaningful study.
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APPENDIX A. PROCEDURES OF FINITE ELEMENT MODELING

Detailed finite element modeling (FEM) procedures are presented in this chapter.

Morphological and mechanical properties

(a) (b) (c)

Figure A.1: SEM images of specimen Nafion/1s-PEDOT:PSS/Au, from middle point to edge

((a) - (c)) of PEDOT:PSS layer.

Figure A.1a − A.1c show a wedge-shaped thickness profile of the casted PEDOT:PSS layer.

Similar to a trapezoid, the highest concentration is in the center, and gradually tapers off along

the edge, due to the imperfect fabrication process of the simple drop-casting technique.

Figure A.2: Schematic of a bilayer laminate for the characterization of the elastic modulus of

individual layer[4].
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For the bilayer laminate with much larger length respect to its width and thickness, the

elastic modulus of each layer can be deducted as described by Liu et al. previously[4]. Fig-

ure A.2 illustrates a bilayer laminate with the length much larger than the other dimensions.

The elastic modulus of the entire structure Y e is dependent on the elastic modulus of each

layer Y a and Y b as

Y e = aY a + bY b (A.1)

where a and b are the volume fractions of the corresponding layer in the laminate structure[4].

The thickness of the each layer is read from the SEM images; average value from the

middle point to the edge of the PEDOT:PSS layer was taken for the average thickness. Three

tensile tests were conducted to take the average value. The elastic modulus of each component

measured, deduced or read from other literatures is listed in Table A.1, with the corresponding

Poisson’s ratio listed in the next column.

Table A.1: The thickness of each layer in IEAP actuator and its physical properties.

Sample Layer
Thickness

(µm)

Elastic Modulus

(MPa)

Poisson’s

Ratio

overall 40.2 20.7

Nafion/1s-PEDOT:PSS Nafion 28.6 27.3 0.487[197, 198]

PEDOT:PSS 11.6 4.3 0.33[199]

Nafion/1s-PEDOT:PSS/Au gold leaf 0.05 20,000[4] 0.42[200]

Simulation of electromechanical response by FEM

FEM is performed to model the electromechanical response of IEAP actuators with different

patterns. The mechanical deformation is modeled by ABAQUS finite element code. Due to

the pretty small width of the IEAP actuator (1 mm), the normal stress and the shear stresses

directed perpendicular to the plane in which the bending occurs are assumed to be zero. As

a result, the 3–D configuration of IEAP actuator can be reasonably approximated as a 2–D

plane stress configuration in the preprocessing module, with a 4–node bilinear plane stress

quadrilateral (CPS4R) element for the analysis. Moreover, SEM images reveal a non-uniform

distribution of PEDOT:PSS layer, whose highest concentration is in the center, and gradually
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tapers off along the edge. A trapezoid–like geometry is used to represent the PEDOT:PSS

pattern. Materials’ properties and geometric information are from Table A.1. Tie constraint

is employed to model the surface contact with gold electrode as master surface and Nafion

with PEDOT:PSS pattern as slave surface, with the assumption that no relative displacement

happened due to the hot-pressed bonding. The boundary condition of ENCASTRE (U1 =

U2 = U3 = UR1 = UR2 = UR3 = 0) is adopted at one end of the model to represent the

mechanically fixed end of the actuator.

The actuation response of IEAP actuators with ions from EMI-Tf is caused by the accu-

mulation and depletion of excess charges at the electrodes under an applied voltage, which is

equivalent to a thermal bimorph in mechanism. Nafion membrane is divided into four lay-

ers along the thickness evenly. The layer connected to cathode and anode are referred to as

Nafion/cat and Nafion/ani, respectively. These two layers are used to simulate the expansion

and contraction due to ions accumulation and depletion at different electrodes. The other

two layers located in the middle are named by Nafion/neu, to simulate the ions depletion

during the actuation process. A consistent isotropic thermal coefficient αL is applied to each

main component, and temperature field is used to control the deformation of each layer. In

ABAQUS the definition of the isotropic thermal coefficient αL is the ratio of change in length

(∆L) to the total starting length (L) and change in temperature (∆T ), with the expression

as ∆L/L = αL × ∆T . The change in area of the 2–D plane cross-section due to thermal ex-

pansion is ∆A = hl × (1 + αL∆T )2 − hl ≈ 2hl · αL∆T if we exclude the higher orders due

to the pretty small value of αL. As a result, the change in area (∆A) caused by thermal ex-

pansion/contraction is linear to the change in temperature (∆T ). Same approximation is also

applicable to the change in volume (∆V ).

Define N as the total amount of cations drifted in the cationic response of actuation.

Following paragraphs introduce the detailed procedures and their theoretical support.

1. Actuator 1S

(a) Cationic response: N cations are drifted from Nafion/neu and Nafion/ani layers

homogeneously, and accumulated in PEDOT:PSS layer (attached to cathode) and
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Nafion/cat layer with volume ratio of 2:1.

(b) Anionic response: N anions/anionic clusters are drifted and stored in Nafion/ani

layer from Nafion/cat and Nafion/neu layers homogeneously. The cations stored in

PEDOT:PSS layer (attached to cathode) in previous cationic response won’t move

out during the anionic response.

The procedures adopted in actuator 1S are based on the observation of a non-ignorable

expansion from PEDOT:PSS layer when it only exists on the convex side of Nafion.

Meanwhile, IEAP actuator with bare Nafion also displays a noticeable bending, indicating

ions accumulation at the outer layers of Nafion and depletion at the inner layers at the

same time[40, 4]. In addition, PEDOT:PSS layer does not contain any ions at the very

beginning, thus it won’t show any contraction during the simulation.

2. Actuator 2SA

• Cationic response: N cations are drifted from Nafion/neu and Nafion/ani layers

homogeneously, and accumulated in PEDOT:PSS layer (attached to cathode) and

Nafion/cat layer with volume ratio of 2:1.

• Anionic response: N anions/anionic clusters are drifted from Nafion/neu and Nafion/cat

homogeneously. Then, (i) part of the anions/anionic clusters are stored in PE-

DOT:PSS layer (attached to anode) with the same volume density of the cations in

PEDOT:PSS layer (attached to cathode) in the previous cationic response, and (ii)

remaining anions/anionic clusters are accumulated in Nafion/ani layer.

The procedures adopted in the simulation of actuator 2SA are based on the same reason

with part 1.

3. Actuator 2SS

Actuator 2SS differs remarkably from actuator 1S and 2SA. There are five segments

along the length, with 3 segments made of Nafion/2s-PEDOT:PSS and 2 segments made

of BNafion. Due to their significant difference in electrochemical and electromechanical

responses, a segment-wise procedure is employed as below:



109

• Cationic response: in each segment made of BNafion, n(= N/5) cations are drifted

from Nafion/neu and Nafion/ani layers homogeneously, and accumulated in Nafion/cat

layer. In each segment made of Nafion/2s-PEDOT:PSS, n/8 cations are drifted from

Nafion/neu and Nafion/ani layers homogeneously, then accumulated in PEDOT:PSS

layer and Nafion/cat layer with volume ratio of 2:1.

• Anionic response: in each segment of BNafion, n anions/anionic clusters are drifted

and stored in Nafion/ani layer from Nafion/cat and Nafion/neu layers homoge-

neously. In each segment made of Nafion/2s-PEDOT:PSS, n/8 anions/anionic clus-

ters are drifted from Nafion/neu and Nafion/cat homogeneously. Then, (i) part of

the anions/anionic clusters are drifted and stored in PEDOT:PSS layer (attached

to to anode) with the same volume density of the cations stored in PEDOT:PSS

layer (attached to cathode) in the previous cationic response, and (ii) remaining

anions/anionic clusters are accumulated in Nafion/ani layer.

The procedures adopted in actuator 2SS are based on the observation from the equivalent

circuit modeling. Specimen Nafion/2s-PEDOT:PSS reveals a much smaller EDL capac-

itance (0.12 µF) at the electrode surface when compared to the specimen BNafion (2.86

µF). As a result, BNafion and Nafion/2s-PEDOT:PSS are treated differently for a best

match of the experimental results.

From the equivalent circuit modeling, the ratio of EDL capacitance of specimen Nafion/2s-

PEDOT:PSS and specimen BNafion is 0.12/2.86 = 0.04, while from the simulation procedures

above, this ratio becomes 1/8 = 0.125, in order to fully match the experimental results. It sug-

gests the complexity to quantify the ions/ion clusters motion during the actuation. However,

all the procedures made above is consistent with our previous electrochemical and electrome-

chanical responses, and fully respect to the conclusions in earlier works[40, 38, 4, 37].
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