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ABSTRACT

Maintenance, rehabilitation, and reconstruction of highway system are the major expenses in a

state general expenditure. The emergence of predicting pavement performance and detecting the

current state of the pavement health encourages pavement agencies to develop an accurate, e�cient,

and intelligent model to predict the remaining life of a pavement. Relating pavement condition,

surface distresses, and structural properties, to a set of predictors including material properties,

tra�c loading, environmental factors, etc. through mathematical expressions is called performance

modeling. To measure and predict pavement performance, a reproducible, authoritative, and field

calibrated condition evaluating system is required. However, in the existence of numerous important

predictors and their interrelationships, developing a predictive model for pavement performance is

not a trivial task. The present study tackles the problem of developing pavement performance

predictive model in two ways. First, a machine learning-based predictive framework is developed

based on the laboratory produced performance data. The developed framework is implemented to

predict the amount of permanent deformation in asphalt pavement as well as the asphalt pavement

dynamic modulus. The developed framework is then used to solve a performance-based pavement

design problem along with an evolutionary optimization algorithm. In the second approach, the

structural behavior of a gantry crane way pavement at intermodal facilities is investigated by

assessing the interactions between pavement, subgrade, and operational loading conditions. The

pavement structural response to the crane load is measured through the installed strain gages in the

field and used to validate a finite element-based model through an inverse analysis. The validated

model is implemented to predict the fatigue life of the pavement structure as well as maintenance,

rehabilitation and design recommendation for the existing and new crane way pavement sections.
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CHAPTER 1. INTRODUCTION

This research has been motivated by the emergence of predicting pavement performance and

detecting the current state of the pavement health. According to the American Association of

State Highway and Transportation O�cials (AASHTO), pavement performance is the pavement

ability to su�ciently serve tra�c over time. Maintenance, rehabilitation, and reconstruction of

highway system are the major expenses in a state general expenditure Fakhri et al. (2017); Jalali

et al. (2019). Therefore, pavement agencies are seeking to develop an accurate and e�cient per-

formance model to predict the remaining service life of a pavement. Relating pavement condition,

surface distresses, and structural properties, to a set of predictors including material properties,

tra�c loading, environmental factors, etc. through mathematical expressions is called performance

modeling Ghasemi et al. (2019b). To measure and predict pavement performance, a reproducible,

authoritative, and field calibrated condition evaluating system is required Mirhosseini et al. (2019).

The performance predictive model can be used to provide pavement maintenance, rehabilitation

or reconstruction requirement. Several researchers tempted to develop pavement performance pre-

dictive models but almost all of the performance models are site specific and also limited to the

materials used in the AASHO road test. Predictive modeling is a process that can use data mining

tools as well as probability theory techniques to forecast outcomes from a given system, with each

model constructed with several predictors likely to influence future results. Once data have been

collected for relevant predictors, a statistical model is formulated that may use a simple linear equa-

tion, or may rather use a complex structure such as an Artificial Neural Network (ANN) obtained

through sophisticated optimization algorithms Rahami et al. (2011a); Aslani and Asla (2010). ANN

modeling has the same goal as statistical regression modeling because, both attempt to capture the

relationship between a set of model inputs and corresponding outputs Devore (2011) by estimating
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Figure 1.1: Rutting happening in an asphalt pavement under the wheelpath.

a set of coe�cients that provide the best fit with the data. Among performance related properties

of asphalt pavement, rut resistance and dynamic modulus are considered in this study.

1.1 Predicting rut resistance of asphalt pavement

One of the performance related properties of asphalt pavement is its resistance to rutting.

Rutting is a term for when permanent deformation or consolidation accumulates in an asphalt

pavement surface over time Notani et al. (2019); Ziari et al. (2016). It is typically shown by the

wheel path being engraved in the road as indicated in Figure 1.1 Miller et al. (2014).

To analyze asphalt mixture rut susceptibility, performance testing along with mechanistic-

empirical regression-based modeling appear to be a common approach Bashin et al. (2012). To

simulate rutting in laboratory a rut resistance index called Flow Number (FN) is defined. In a

repeated loading and unloading test FN is the point at which the strain rate starts to increase

with loading. A schematic of the FN point is indicated in Figure 1.2. This parameter has

demonstrated a strong correlation with rutting that happens in asphalt pavement due to tra�c
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Figure 1.2: Flow number (FN) point.

in field Ghasemi et al. (2018b,a). Therefore, it is selected as the representative of rut behavior

of asphalt pavement. In asphalt pavement design procedure, the amount of rutting should gener-

ally be limited to 0.4 inches (10.16 mm) regarding the total deformation of a pavement structure.

It has been demonstrated that the amount of rutting is a function of binder viscosity, volumet-

ric properties of asphalt mixture, and testing temperature Kaloush et al. (2003); Witczak (2002).

Kvasnak et al.Kvasnak et al. (2007), proposed the following properties as the e↵ective factors in rut

susceptibility of asphalt mixture: nominal maximum aggregate size (NMAS), voids in mineral ag-

gregate (VMA), percentage aggregate passing through sieve sizes No.4, No.16, No.200, binder grade,

binder viscosity, asphalt content, testing temperature, and the number of gyrations. Rodezno et

al.Rodezno et al. (2010) specified 12 parameters, i.e., testing temperature, maximum shear stress,

normal stress, binder viscosity, percentage aggregate passing through sieve sizes 3/4-inch, 3/8-inch,

and No.4, percentage air voids, e↵ective binder content, binder content, VMA, and voids filled with

asphalt (VFA) to be important in studying asphalt pavement rutting behavior. It is illustrated

by Apeagyei, et al.Apeagyei (2011) that dynamic modulus test results at specific temperature and

loading frequencies along with aggregate gradation appears to have strong correlation with FN

test results. However, there are some discrepancies on the existence of correlation between rut



4

susceptibility of asphalt mixture and its dynamic modulus value Birgisson et al. (2004a); Pellinen

and Witczak (2002); Timm et al. (2006).

1.2 Predicting Dynamic Modulus of asphalt mixture

Another widely used pavement performance characteristic is dynamic modulus, |E⇤|, which

defines stress-strain relationship of asphalt mixtures under sinusoidal loading. Dynamic modulus

represents the sti↵ness characteristic of asphalt mixture and it has a significant role in Mechanistic-

Empirical (M-E) pavement design. Therefore, several researchers have been attempted to predict

asphalt mixture dynamic modulus as a function of material’s components properties, loading rate,

and temperature Ghasemi et al. (2016); Nobakht and Sakhaeifar (2018); Peng et al. (2019). Wiczak

et al. developed a predictive model using material components properties including binder viscosity.

Andrei et al modified the original Witczak model Andrei et al. (1999). The developed model has

then been modified to use binder shear modulus instead of binder viscosity Bari and Witczak

(2007). Christensen et al. Christensen Jr et al. (2003) created a predictive model based on the law

of mixtures. Alkhateeb et al. Al-Khateeb et al. (2006) created a model from the law of mixtures

to be used over a wide range of temperatures and loading frequencies. Sakhaeifar et al.Sakhaeifar

et al. (2017) created separate temperature-based models that can predict dynamic modulus over

a wide range of temperature. The predictor variables of the aforementioned models are selected

from the following list: cumulative percentage aggregate retained on sieve sizes 3/4-inch, 3/8-inch,

No.4, and percent aggregate passing the No.200, VMA, VFA, percentage air voids, e↵ective binder

content, binder shear modulus (|G⇤|), and binder phase angle (�). There are several issues with the

existing predictive models for rut resistance and dynamic modulus of asphalt mixture:

• The selected input variables, material properties, are not necessarily accepted as a set of

independent variables. Therefore, they might not be appropriate to be used in developing

a predictive model. Pairwise correlated input variables can adversely a↵ect the estimation

accuracy of their e↵ects on the output. To address this issue, pairwise correlation analysis

is conducted in the present study. In case of having several correlated input variables a
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multivariate statistical technique called Principal Component Analysis (PCA) is implemented

to firstly reduced the dimensionality of the data set and secondly, to eliminate the correlation

within the predictors. As a result, a set a orthogonal pseudo-variables is developed to be used

in further model development.

• The developed models are not tested against an unseen, new, set of data. Therefore, they

might be biased towards the dataset which is used in model development. Therefore, they

might be overfitted against the training data. To address this issue, an appropriate cross

validation technique is employed, and the developed models are tested against an unseen

data set.

• The developed predictive models are based on empirical data. Therefore, they can be prone

to extrapolation which is defined as the process of estimating beyond the original observation

range. In case of extrapolation, predictive models are subject to major uncertainty and

high risk of producing meaningless results. To guard against extrapolation, an n-dimensional

hyperspace is found and added to the problem as an extra constraint.

• Due to the nonlinear nature of the pavement performance predictive models, none of the ex-

isting models can be implemented in developing a performance-based or optimized pavement

design. To indicate an application of the developed predictive framework, a state-of-the-art

evolutionary optimization algorithm called Mean-Variance Mapping Optimization, MVMO, is

implemented to solve several real-life design related (performance-based design) optimization

problems.

1.3 The unique performance predictive framework

Performance predictive models are developed based on a limited amount of empirical data.

Therefore, the developed model will not necessarily be a good representative of all the produced

asphalt mixtures. For example if a model is developed based on laboratory or field produced

data of asphalt mixtures in the State of Arizona, it will not be a good fit for asphalt mixtures in
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the State of Iowa. Therefore, for the past several years researchers have been trying to calibrate

the existing models, i.e. rutting, fatigue, dynamic modulus, low temperature behavior, etc., and

make them more suitable for their local pavements. A better idea will be developing a single

performance framework for pavement which substitutes all of the existing models. The predictive

framework can be trained based on the local condition and data without further calibration and

will be implemented in Mechanistic-Empirical pavement design approach. Using the developed

framework will be highly beneficial for asphalt agencies as well as Departments of Transportation

(DOT) when a large amount of performance data is available.

1.4 Performance prediction Finite Element-based framework

Other than the aforementioned performance-based modeling approach, the problem of predict-

ing and evaluating pavement performance can be tackled by studying pavement structural response

to the applied load. This will result in a framework for decision-making using the information that

accommodates and manages inevitable uncertainties. The structural behavior of a pavement can

be studied by assessing the interactions between pavement, subgrade, and operational loading con-

ditions. This can be done by installing strain gages in the pavement during or after construction.

These strain gages will measure the pavement response to the load in the field and can be used

to predict the fatigue life of the pavement structure as well as pavement maintenance and reha-

bilitation requirements and design recommendation for the existing and new pavement sections.

The stain measurements can be used to verify a finite element-based model of pavement section

to obtain pavement critical responses which are the maximum tensile stress at the bottom of rigid

pavement, maximum compressive stress at top of base course and maximum compressive stress at

top of subgrade soil. Finite element analysis is a powerful tool to capture pavement responses and

have been used for the past decades to analyze rigid pavement structure Shoukry et al. (2007);

Uddin et al. (1995); Sadeghi and Hesami (2018); Huang (1993). The methodology is not new to

the pavement design and research community and has been used over the past decades. Traditional

pavement-subgrade analysis based on static load and multilayers linear elastic formulation with
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infinite dimensions in the horizontal plane and with a semi-infinite subgrade does not allow for

dynamic behavior and pavement discontinuities. Besides, the finite element method allows for the

dynamic analysis of pavements and the consideration of finite or infinite dimensions of the physical

pavement structure. Several finite element programs have been developed exclusively for pavement

analysis, e.g. ILLIPAVE and ILLISLAB for flexible and rigid pavement respectively. However,

these packages are only capable of performing static analysis.

The finite element package ABAQUS is available for comprehensive structural pavement re-

sponse analysis in static as well as dynamic procedures. Moreover, ABAQUS has a variety of ma-

terial models including linear elastic, nonlinear elastic, viscoelastic etc. Surface to surface contact

problems can also be defined and solve in this package. Therefore, in the present study ABAQUS is

implemented to simulate the crane way pavement section under the crane load. However, the finite

element analysis as the established method with enough e�ciency and precision, can simulate the

actual performance of the pavement only if the input information is precise enough. With having

limited resources, it is not possible to measure every single property in the field. In these cases, the

problem has some known as well as unknown properties (e.g. the only field measurement is strain

values in concrete pavements). There are two major ways to tackle the problem of finding unknown

properties of a system given some, and not all, experimental measurements. In the first approach,

one can run the FEM simulation (can also be called the forward problem) of the system using some

ranges of the given unknowns and then build a network using the batch of these simulations. Once

the network is built given some error threshold one can use it inside an optimization solver to find

the unknown properties directly. This approach has been used in a number of studies Ghasemi

et al. (2018a). However, this approach is not applicable once we realize that our computational

resources are limited because running FEM simulation of such a medium-size model is cumbersome.

Another way to tackle this problem is using the inverse optimization approach.

This study is focused on development of numerical models for predicting pavement performance.

The issues within the existing predictive models are addressed and a robust performance predictive

framework is created based on laboratory and field produced performance data. Artificial neural
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network as well as multivariate regression analysis are implemented in developing the proposed

framework. The developed framework is not only capable of predicting pavement performance

accurately but also it can be used along with a state-of-the-art evolutionary optimization algorithm

to develop optimal performance-based pavement design.

1.5 Thesis outline

In chapter 2 rutting susceptibility of asphalt pavement is modeled using principal component

pseudo inputs in regression and neural networks. Elimination of correlated inputs and extrapolation

in modeling and optimization of permanent deformation is studied in Chapter 3. An n-dimensional

hyperspace is defined, found and added as a constraint to the modeling problem. The problem of

minimizing the amount of rutting is discussed and solved in this chapter. In Chapter 4 two predictive

models for asphalt mixture dynamic modulus are developed and the authority of the developed

models are examined. The developed models are used to find the optimal design, corresponding

to maximum dynamic modulus value, as well as the design corresponding to a prescribed value

of dynamic modulus. The general idea of using a single performance model for asphalt pavement

is discussed in Chapter 5. Chapter 6 focuses on developing a finite element-based framework

for predicting pavement performance. An Inverse algorithm is implemented to find the unknown

material properties. Summary and discussion
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CHAPTER 2. MODELING RUTTING SUSCEPTIBILITY OF ASPHALT

PAVEMENT USING PRINCIPAL COMPONENT PSEUDO INPUTS IN

REGRESSION AND NEURAL NETWORKS

A paper published at the International Journal of Pavement Research and Technology, Elsevier

2.1 Abstract

Permanent deformation is a major load-associated distress occurring in flexible pavement sys-

tems and increases with load repetitions a↵ecting road roughness, serviceability, and the interna-

tional roughness index (IRI). Early detection of rutting is necessary for maintenance and reha-

bilitation activities, but due to the complex behavior of asphalt mixtures, accurately predicting

the permanent deformation of asphalt pavement is di�cult. Historically, multivariate regression

modeling and recently, artificial neural networks (ANNs) are used widely for material properties

prediction. The ability to model accurately the response variable is adversely a↵ected when inputs

have pairwise correlations. To overcome this barrier, principal component analysis (PCA), as a di-

mensionality reduction technique, can be used to produce uncorrelated linear combinations of the

original inputs as illustrated in this work using 83 (i.e., samples) laboratory compacted specimens

from the State of Wisconsin. Asphalt binder, aggregate, and mix properties are obtained and used

as the model inputs. The response parameter is the accumulated strain at the corresponding flow

number. Using the developed pseudo inputs from PCA, a multivariate regression and an ANN

model are generated and were able to fit the test cases with (rfit) of 0.8 and 0.97 respectively.

The developed machine learning-based framework is shown to be a capable tool in estimating the

rutting behavior of asphalt mixture.
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2.2 Introduction

Permanent deformation (also known as rutting) is one of the most common flexible pavement’s

distresses a↵ecting road roughness, serviceability, and international roughness index (IRI). Rutting

in asphalt mixtures usually occurs in wheel-paths and appears as the longitudinal depressions

with small upheavals to the side. This di↵erential consolidation in the pavement profile can cause

safety issues Sousa et al. (1991). Early detection of rutting is necessary for maintenance and

rehabilitation activities, but due to the complex behavior of asphalt mixtures, accurately predicting

the permanent deformation of asphalt pavement is di�cult. To determine the amount of permanent

deformation, di↵erent modeling approaches can be used including empirical, mechanistic-empirical,

and mechanistic where the goal is to estimate future performance based on the laboratory test data

and the observed distress history of pavement. Mechanistic-empirical, regression-based modeling

and performance testing approaches are prevalent in asphalt mixture’s rut susceptibility analysis

Sousa et al. (1991). Recently, more researchers have concentrated on viscoelastic, viscoplastic, and

viscoelastoplastic continuum damage-based modeling to explain the rutting behavior of asphalt

mixtures. These models have some limitations including high dependency on the empirical data and

requiring accurate characterization of asphalt behavior Bashin et al. (2012). Although permanent

deformation of hot mix asphalt (HMA) depends on sti↵ness of the mixture, deformation cannot be

estimated from the sti↵ness characteristic alone. Many researchers have demonstrated that in order

to determine the rutting performance of HMA mixtures, permanent deformation characteristics

should be measured directly Zhang et al. (2015). Due to this limitation, researchers have attempted

to simulate rutting by using a rutting resistance indicator parameter, entitled flow number (FN),

defined as the point where the permanent strain rate reaches a minimum value. This parameter

can be measured by a repeated loading and unloading test AASHTO TP 79-13 (2013). The FN

has indicated a good correlation with field rutting of asphalt mixtures exposed to di↵erent levels

of tra�c Witczak (2007).

The width, path, and severity of the rutting profile depend on the pavement structure, loading,

and environmental conditions. During the design procedure, there is generally a limiting criteria
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of 0.4 inches (10.16 mm) with the total deformation of the pavement structure and its impacts on

the lateral and longitudinal surface profiles. Many researchers have demonstrated that the amount

of rutting depends on the mixture volumetric properties, binder viscosity, and testing temperature

Kaloush et al. (2003). Asphalt mixture properties, which a↵ect rutting behavior (simulated by FN),

were identified more precisely by Kvasnak et al. Kvasnak et al. (2007). They demonstrated that

binder grade, binder viscosity, asphalt content, testing temperature, nominal maximum aggregate

size (NMAS), voids in mineral aggregate (VMA), percentage aggregate passing from sieve sizes

No.4, No.16, No.200, and number of gyrations a↵ect the FN of asphalt mixture. Rodezno et al.

Rodezno et al. (2010) represented 12 parameters a↵ecting rutting behavior of asphalt mixtures in

the laboratory including testing temperature, maximum shear stress, normal stress, binder viscosity,

percentage aggregate passing from sieve sizes 3/4-in, 3/8-in, and No.4, air voids, e↵ective binder

content, binder content, VMA, and voids filled with asphalt (VFA). Although, there are some

disagreements on the existence of correlation between dynamic modulus of asphalt mixture and its

rutting behavior Birgisson et al. (2004a); Pellinen and Witczak (2002); Brown et al. (2002); Timm

et al. (2006), Apeagyei Apeagyei (2011) represented that using dynamic modulus test results at

specific test temperature and loading frequencies in conjunction with aggregate gradation shows a

good correlation with FN test results. According to the existing literatures, the parameters a↵ecting

the rutting behavior of asphalt mixtures can be classified into three categories including asphalt

properties representing the viscoelastic and viscoplastic behavior, aggregate properties representing

the elastic/plastic behavior, and mixture properties.

Early detection of rutting, required for punctual maintenance and rehabilitation activities, pro-

vides motivation for the designers to predict the rutting behavior of the asphalt mixtures. Histori-

cally multivariate regression modeling and recently, pattern recognition techniques are used widely

for material properties prediction Cheng and Titterington (1994b). In the conventional material

modeling process, regression analysis is an important tool for building a model. In linear regression

analysis, several procedures have been developed for parameter estimation. These methods di↵er in

computational simplicity of algorithms, presence of a closed-form solution, robustness with respect
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to heavy-tailed distribution, and theoretical assumptions needed to validate desirable statistical

properties. Among these methods, least-square estimation is the simplest and the most common

technique. It minimizes the sum of squared residuals, and leads to a closed-form expression for the

estimated value of the unknown parameter Devore (2011). Pattern recognition techniques can learn

and recognize trends in data contributing to their current widespread use. These techniques learn

the pattern from experimental data and design the computational models. One such approach, Ar-

tificial Neural Network (ANN), is an interconnected network of many simple processors as shown

in Figure 2.1. All ANNs consist of a set of processing units or neurons classified as input, hidden

and output neurons. Input neurons receive input from external sources and transfer it to the rest of

the network. Hidden neurons receive input and transmit their computed output to the processing

units within the network without any outside contact. Output neurons receive the input from the

rest of the network that it transforms and sends to external receivers Kartam (1994).

Although ANN can be trained to approximate a non-linear, complicated relationship Kartam,

Nabil. Flood (1994); Rahami et al. (2011a); Aslani and Asla (2010); Saltan and Sezgin (2007),

similar to multivariate linear regression model and other modeling tools, their ability to accurately

predict the response variable highly depends on the quality and properties of input variables May

et al. (2011). Cross-correlated inputs adversely a↵ect accurate estimation of their causative e↵ects

on the response variable and this impedes the ability of the model to accurately estimate the

response variable Rollins et al. (2015). Thus, a pre-processing step is needed to examine the

quality and relationship of input variables – a step not commonly practiced by design engineers in

this application.

In the presence of correlated input variables, orthogonal variables can be obtained using a

dimensionality reduction technique called principal component analysis (PCA). PCA is a multi-

variate statistical procedure that uses an orthogonal transformation to convert a set of correlated

variables into a set of uncorrelated variables called principal components (PCs). The PCs are a set

of orthogonal, linear combinations of the original variables within the dataset Jolli↵e (2002).
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Figure 2.1: Example of an architecture for ANN.

The present study focuses on developing a machine learning-based framework to reduce a large

set of correlated input variables to a set of uncorrelated input variables to model the accumulated

strain of asphalt mixtures using ANN and multivariate regression structures.

The rest of the paper is organized in the following way. Experimental materials and methods are

presented in Section 2.3. Section 2.4 covers the pre-processing step for input variables evaluation.

PCA is described in detail in Section 2.5. The proposed modeling methods, PCR and PCNN, are

presented in Sections 2.6, followed by results, discussion, and conclusions in Sections 2.9 and 2.10

respectively.

2.3 Experimental materials and methods

2.3.1 Materials Sampling and Collection

The materials used in the present study were sampled at the plant site directly from the back

of trucks after they had been loaded out, in accordance with ASTM Standard D979 and D3665.

In addition to the mix, the asphalt binder was also sampled for each pavement section. Maximum

theoretical specific gravity (Gmm) was measured in accordance with AASHTO T209/ASTM D2041

for two 1250 g split samples for each job. The Gmm was used to determine the volumetric properties

of the specimens. Eighty-three specimens from 21 di↵erent HMA mixtures collected from di↵erent

projects in the State of Wisconsin, were compacted in the laboratory using a Pine AFGC125X

Superpave Gyratory Compactor (SGC) that can produce specimens in the dimensions of roughly
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150 mm in diameter by 170 mm in height. Specimens were compacted to 4.0%, 7.0%, and 10.0%

air voids. The bulk specific gravity was determined in accordance with AASHTO T166/ASTM

D2726.

2.3.2 Dynamic Modulus Testing

A 100-mm diameter by 150 mm high cylindrical specimen was cored, trimmed, and prepared

for the dynamic modulus test. The specimens were tested under a repeated sinusoidal compressive

stress at an e↵ective test temperature of 36.6 �C and at four loading frequencies including 25, 10,

1, and 0.1 Hz in unconfined conditions. The e↵ective test temperature for all of the laboratory

tests (36.6 �C) was selected based on climatic condition of the Midwestern parts of the United

States, and was considered the temperature at which permanent deformation would occur, which

is equivalent to a seasonal correction throughout the year. A Universal Testing Machine (UTM

100) was used to conduct the testing with a temperature controlled testing chamber. In accordance

with AASHTO TP 79-13 the test was conducted from higher to lower frequencies to mitigate the

amount of deformation that is induced upon specimens.

2.3.3 Flow Number Testing

After conducting the dynamic modulus tests, the same specimens were used for performing the

FN test under a repeated haversine compressive stress at a single e↵ective temperature. The UTM

100 machine was used to perform the tests, with a temperature-controlled testing chamber. The

load was applied for a duration of 0.1 second and a dwell period of 0.9 second. No confining pressure

was used and the axial stress is the deviator stress (600 kPa). The FN test is conducted at the

e↵ective test temperature of 36.6 �C. The reason why the accumulated strain at the FN is selected

as the response variable, and not the FN itself, is that the FN is just an indicator parameter of

rutting resistance, and to relate laboratory data to the AASHTO design procedure, which uses

strain and not FN as the rutting criteria.
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2.3.4 Complex Shear Modulus Testing

To obtain binder shear properties, complex shear modulus test was conducted at the same

e↵ective test temperature of 36.6 �C and same frequencies including 25, 10, 1, and 0.1 Hz. The

test was conducted in accordance with ASTM D755-09.

2.4 Pre-processing step: input variables selection strategy

Selecting input variables is a fundamental and crucial task in identifying the optimal functional

form of statistical models. Accurate modeling of the output requires a set of input variables

su�ciently high in information content that maps to the output space. The di�culty of selecting a

parsimonious set of input variables arises due to the following reasons: 1. the number of available

variables can be very large; 2. high correlations exist between input variables, and; 3. variables

that are unknown to be weakly related or unrelated to the response Fodor (2002).

Mathematical modeling is the process of mathematically relating measured input variables

to output variables. The modeler selects a mathematical structure and a process for estimating

unknown model parameters. For a general model structure, let its expectation be represented as

⌘i = f(xi, ✓), where ⌘i is the expected value of the response (i.e., output) at the ith sampling time,

i = 1, . . . , n; xi is the vector of input values at the ith sampling time; and ✓ is the vector of unknown

model parameters with ✓ = [✓1, . . . , ✓q]T Let the element of its Jacobian Matrix, Jn⇥q, in the ith row

and jth column be @⌘i
@✓j

i.e. J = @⌘i
@✓j

, Note that, the jth column represents ✓j and its column vector

represents the change in the response space as ✓j changes for the set of experimental conditions.

If two columns such as j and k are orthogonal, then their correlation coe�cient is zero. More

specifically, if these two columns are orthogonal, the information to estimate ✓j is decoupled (i.e.,

separate or independent) from the information to estimate ✓k, and vice versa. The advantage of

this attribute is that it strengthens causative relationships of inputs on the output and maximizes

parameter accuracy, and thus, estimation accuracy for the modeled output. Correlated columns in

the Jacobian Matrix arise from pairwise correlation of inputs. Thus, for a given set of experimental

data, to minimize standard error and maximize the accurate mapping of input behavior into the
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Table 2.1: Original Input Variables

Variable Identity
Values in the database Selection based on

Min. Max. Ave. Std. Dev. literature Current research

x1 Binder % 3.4 6.6 5.093 0.773 *
x2 G* 210801 1163560 612180 265903.652 *
x3 NMAS 12.5 25 15.922 3.761 *
x4 Passing 3/4” 81.3 100 98.554 4.085 *
x5 Passing 1/2” 38.3 98.8 87.13 15.199 *
x6 Passing 3/8” 34.1 89.9 76.34 15.099 *
x7 Passing #4 26.2 72.5 56.248 13.741 *
x8 Passing #8 17.5 54 42.249 10.512 *
x9 Passing #16 14.2 47.4 32.178 8.74 *
x10 Passing #30 9.6 39.1 23.196 7.004 *
x11 Passing #50 5.7 18.6 12.022 3.179 *
x12 Passing #100 3.7 9.8 6.187 1.424 *
x13 Passing #200 2.8 8.5 4.322 1.115 *
x14 VMA 10.323 21 16.452 2.502 *
x15 VFA 46.45 91.719 65.189 9.062 *
x16 Va% 1.019 9.825 5.868 2.088 *
x17 E* 395.7 2299.4 869.41 411.524 *

response space, this work seeks to minimize pairwise correlation of the inputs that are used to

model the response behavior.

According to the literature Kaloush et al. (2003); Rodezno et al. (2010), the rutting behavior

of an asphalt mixture can be explained by its components’ properties . The properties and their

ranges used in the present study are indicated by Table 2.1. As previously mentioned, the binder

properties describe the viscous behavior and the aggregate properties describe the elastic behavior.

The complex shear modulus of asphalt binder is selected to describe the shear relaxation behavior

and the dynamic modulus of asphalt mixture is selected as the demonstration of material sti↵ness

used in mechanistic-empirical pavement design.

The seventeen aforementioned properties are expressed as input variables to predict the accu-

mulated strain value at the FN. Using JMP statistical software, the pairwise correlation matrix of

input variables is calculated and presented by Table 2.2. Results with absolute value of 0.5 and

higher are in bold and red text.



17

Table 2.2: Correlation Matrix for the Input Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

x1 1 0.33 -0.73 0.6 0.71 0.63 0.47 0.45 0.46 0.45 0.41 0.43 0.42 0.61 -0.18 0.35 -0.43
x2 0.33 1 -0.11 0.08 -0.03 -0.23 -0.38 -0.32 -0.18 -0.06 0.01 0.23 0.35 0.02 -0.02 0.02 0.24
x3 -0.73 -0.11 1 -0.64 -0.76 -0.69 -0.51 -0.41 -0.39 -0.32 -0.25 -0.30 -0.39 -0.53 0.13 -0.30 0.37
x4 0.6 0.08 -0.64 1 0.88 0.78 0.58 0.51 0.42 0.32 0.25 0.23 0.24 0.46 -0.21 0.32 -0.45
x5 0.71 -0.03 -0.76 0.88 1 0.95 0.77 0.71 0.61 0.49 0.41 0.39 0.36 0.56 -0.33 0.44 -0.51
x6 0.63 -0.23 -0.69 0.78 0.95 1 0.92 0.86 0.75 0.61 0.49 0.30 0.16 0.53 -0.27 0.38 -0.49
x7 0.47 -0.38 -0.51 0.58 0.77 0.92 1 0.95 0.84 0.69 0.49 0.11 -0.14 0.43 -0.16 0.26 -0.37
x8 0.45 -0.32 -0.41 0.51 0.71 0.86 0.95 1 0.95 0.83 0.59 0.11 -0.15 0.42 -0.16 0.26 -0.41
x9 0.46 -0.18 -0.39 0.42 0.61 0.75 0.84 0.95 1 0.96 0.74 0.18 -0.11 0.40 -0.16 0.25 -0.41
x10 0.45 -0.06 -0.32 0.32 0.49 0.61 0.69 0.83 0.96 1 0.84 0.28 -0.06 0.35 -0.15 0.22 -0.37
x11 0.41 0.01 -0.25 0.25 0.43 0.49 0.49 0.59 0.74 0.84 1 0.59 0.17 0.21 -0.20 0.20 -0.25
x12 0.43 0.23 -0.30 0.23 0.39 0.30 0.11 0.11 0.18 0.28 0.59 1 0.82 0.24 -0.28 0.28 -0.15
x13 0.42 0.35 -0.39 0.24 0.36 0.16 -0.14 -0.15 -0.11 -0.06 0.17 0.82 1 0.29 -0.30 0.32 -0.22
x14 0.61 0.02 -0.53 0.46 0.56 0.53 0.43 0.42 0.40 0.35 0.21 0.24 0.29 1 -0.62 0.83 -0.71
x15 -0.18 -0.02 0.13 -0.21 -0.33 -0.27 -0.16 -0.16 -0.16 -0.15 -0.20 -0.28 -0.30 -0.62 1 -0.94 0.52
x16 0.35 0.02 -0.30 0.32 0.44 0.38 0.26 0.26 0.25 0.22 0.20 0.28 0.32 0.83 -0.94 1 -0.63
x17 -0.43 0.24 0.37 -0.45 -0.51 -0.49 -0.37 -0.41 -0.41 -0.37 -0.25 -0.15 -0.22 -0.71 0.52 -0.63 1

As it can be seen in the table, the absolute value of 273 results are above 0.1 which shows

that most of the inputs are highly correlated with 41 of them greater than 0.5 indicating that

several inputs are highly correlated. Therefore, to predict the response variable accurately, we used

principal component analysis (PCA) to obtain a much smaller set of pseudo variables that are

uncorrelated Fodor (2002).

2.5 Principal component analysis (PCA)

Mathematically, PCA is defined as an orthogonal linear transformation that transforms the

data to a new coordinate system such that the greatest variance by some projection of the data

comes to lie on the first coordinate (or the first principal component), the second greatest variance

on the second coordinate, and so on. It can be considered as fitting an n-dimensional ellipsoid

to the data, where each axis of the ellipsoid represents a principal component. If some axis of

the ellipsoid is small, then the variance along that axis is also small, and by omitting that axis
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Figure 2.2: Schematic of the PCA transformation.

and its corresponding principal component from our representation of the data set, we lose only a

commensurately small amount of information. Often, this operation can be thought of as revealing

the internal structure of the data in a way that best explains the variance within the data. If

a multivariate dataset is visualized as a set of coordinates in a high-dimensional data space (1

axis per variable), PCA can supply the user with a lower- dimensional picture, a projection of

this object when viewed from its most informative viewpoint Jolli↵e (2002). A schematic of this

transformation for three inputs is presented in Figure 2.2. This is done using only the first few

principal components so that the dimensionality of the transformed data is reduced.

Considering a data set X, PCA reduces the dimension of X by expressing the p (p =17) original

variables (x1, . . . , xp) as d new pseudo-variables (principal components, PCs), where d < p. The

PCs are a set of orthogonal (i.e., uncorrelated), linear combinations of the original variables within

the dataset. The obtained PCs can be used for multiple purposes including: 1. to construct a

new set of variables that are linear combinations of the original variables and that contain exactly

the same information as the original variables; 2. to identify patterns of multicollinearity in a

data set and use the results to address the collinearity problem in multiple linear regression; 3.

to identify variables or factors, underlying the original variables, which are responsible for the

variation in the data; 4. to find out the e↵ective number of dimensions over which the data set

exhibits variation, with the purpose of reducing the number of dimensions of the problem and; 5.

to create a few orthogonal variables that contain most of the information in the data and that

simplify the identification of groupings in the observations Johnson and Wichern (1992). PCA
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can be considered as a data pre-processing methodology that determines an optimal rotational

transformation of the dataset, X, and maximizes the amount of variance of the output � that is

explained by the PCs Fodor (2002).

Considering the given dataset X, PCA is performed in the following steps:

1. Standardizing X by transforming it to Z using the following equations:

X =

2

66666664

x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp

3

77777775

Z =


z1 . . . zp

�
=

2

66666664

x11�x1
s1

x12�x2
s1

. . . x1p�xp

sp

x21�x1
s1

x22�x2
s2

. . . x2p�xp

sp

...
...

. . .
...

xn1�x1
s1

xn2�x2
s2

. . . xnp�xp

sp

3

77777775

(2.1)

where, for i = 1 to n and j = 1 to p, xij is the ith measurement for the jth variable, xi is

sample mean for the ith variable, and si is sample standard deviation for the ith variable.

2. Determine the unit eigenvectors e1, . . . , ep of Z.

3. Determine the corresponding eigenvalues �1, . . . ,�p.

4. Rank the eigenvectors according to their eigenvalues.

5. Select the d PCs according to their eigenvalues (or the scree plot).

Selection of the PCs is based on examining the eigenvalues of each PC, which correspond to

the amount of variance explained by each PC, and thereby including only the significant PCs as

input features. A common selection method is to rank the PCs and select all PCs whose eigenvalues

exceed some threshold, k, to ensure that selected components explain the desired amount of variance

of �. Another selection method is to generate and use a scree plot of the percentage contribution

of each k th PC and to visually identify an optimal value of k. Therefore, the first PC contains the

most variance possible to be captured in a single axis. The second PC is orthogonal to the first one

(their correlation is zero) and contains as much of the remaining variance as possible. The third

PC is orthogonal to all previous ones and also contains the most variance possible, etc. Rollins

et al. (2006).
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Using the JMP statistical software package, the eigenvectors and eigenvalues of the correlation

matrix are calculated and presented in Table 2.3 and Table 2.4, respectively. According to the

eigenvalues, 89.72% of the variation in the original data is explained by the first 5 PCs. The scree

plot, which is a graph of the eigenvalues versus their order, can also be used as a visual inspector

of identifying critical PCs. The scree plot is presented in Figure 2.3. The “elbow” point, and the

location of this breaking point, indicates the number of critical PCs to be selected. The presented

graph illustrates that there are 4 critical PCs.

Based on the PCA results, the first 5 PCs were selected to create pseudo input variables. As

mentioned previously, these PCs are a linear combination of the original input variables described

by Eq. 2.2

pci =
17X

j=1

↵ijxj + �i (2.2)

where, ↵ is the corresponding coe�cients, � is constant, andXj ’s are the original input variables.

Eq. 2.2 is presented in matrix notation by Eq. 2.3

PC = AZT +B (2.3)

where,
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Table 2.4: Eigenvalues from the Z Matrix

Number Eigenvalue Percent Variance Cumulative Percent

1 7.979 46.935 46.935
2 2.876 16.920 63.856
3 1.947 11.456 75.311
4 1.539 9.052 84.363
5 0.912 5.363 89.726
6 0.581 3.419 93.145
7 0.421 2.475 95.620
8 0.260 1.529 97.149
9 0.198 1.165 98.314
10 0.152 0.892 99.206
11 0.063 0.371 99.577
12 0.038 0.224 99.801
13 0.016 0.095 99.896
14 0.008 0.049 99.945
15 0.005 0.028 99.973
16 0.003 0.016 99.989
17 0.002 0.011 100.000

AT =

2

666666666666666666666666666666666666666666666666664

3.41⇥ 10�1 �2.04⇥ 10�1 2.89⇥ 10�1 �1.94⇥ 10�1 3.71⇥ 10�1

�7.6⇥ 10�8 �1.17⇥ 10�6 1.31⇥ 10�6 1.05⇥ 10�7 2.47⇥ 10�6

�6.59⇥ 10�2 3.22⇥ 10�2 �4.53⇥ 10�2 9.1⇥ 10�2 �7.97⇥ 10�3

6.34⇥ 10�2 �1.31⇥ 10�2 1.86⇥ 10�2 �9.38⇥ 10�2 �7.13⇥ 10�3

2.11⇥ 10�2 �2.33⇥ 10�3 5.26⇥ 10�3 �1.63⇥ 10�2 �9.03⇥ 10�3

2.17⇥ 10�2 7.23⇥ 10�3 1.55⇥ 10�3 �1.23⇥ 10�2 �1.13⇥ 10�2

2.13⇥ 10�2 2.01⇥ 10�2 �2.82⇥ 10�3 �7.27⇥ 10�3 �7.11⇥ 10�3

2.79⇥ 10�2 2.89⇥ 10�2 �2.98⇥ 10�3 3.79⇥ 10�3 1.41⇥ 10�3

3.28⇥ 10�2 3.22⇥ 10�2 4.43⇥ 10�3 2.35⇥ 10�2 1.71⇥ 10�2

3.73⇥ 10�2 3.39⇥ 10�2 1.53⇥ 10�2 4.98⇥ 10�2 3.14⇥ 10�2

7.08⇥ 10�2 3.3⇥ 10�2 7.38⇥ 10�2 1.54⇥ 10�1 �9.05⇥ 10�3

1.08⇥ 10�1 �2.03⇥ 10�1 2.33⇥ 10�1 2.3⇥ 10�1 �2.72⇥ 10�1

9.18⇥ 10�2 �4.06⇥ 10�1 2.29⇥ 10�1 6.69⇥ 10�2 �3.18⇥ 10�1

9.98⇥ 10�2 �8.77⇥ 10�2 �1.12⇥ 10�1 �1.14⇥ 10�2 8.85⇥ 10�2

�1.73⇥ 10�2 3.21⇥ 10�2 4.57⇥ 10�2 �2.69E ⇥ 10�2 �9.43⇥ 10�4

9.75⇥ 10�2 �1.42⇥ 10�1 �1.95⇥ 10�1 7.31⇥ 10�2 4.70⇥ 10�2

�5.50⇥ 10�4 2.73⇥ 10�4 8.2⇥ 10�4 �8.92⇥ 10�6 1.36⇥ 10�4

3

777777777777777777777777777777777777777777777777775
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Figure 2.3: Scree plot.

B =

2

666666666664

�1.72E + 01

5.87E � 01

�8.21E + 00

7.36E + 00

�4.85E � 01

3

777777777775

The obtained PCs will be used as new inputs for further modeling e↵orts.

2.6 Proposed modeling approaches

2.6.1 K -fold cross validation

In order to recognize how the results of the statistical analysis will generalize to an independent

data set, and to prevent overfitting, a k-fold cross-validation technique is used. Cross validation

is a procedure to guard against overfitting models by checking the fitted model against a set of

data that was not used in fitting the model Refaeilzadeh et al. (2009). In k -fold cross-validation,

the dataset is randomly partitioned into k equal-sized subsamples. When using only a training
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set and test set of the k subsamples, a single subsample is retained and the set for testing the

model, and the remaining k -1 subsamples are used as training data, e.g., to fit the model. The

cross-validation process is then repeated k times (the folds), with each of the k subsamples used

exactly once as the test data. The advantage of this method over repeated random subsampling is

that all observations are used for both training and testing, and each observation is used for testing

exactly once. Based on the size of the data set (83), 3-folds with 24 sample vectors in each of them

are randomly selected, and 3-fold cross-validation is done.

2.7 Principal Component Regression (PCR)

Using the first five PCs as input variables and the accumulated strain as the response variable,

multiple regression modeling consisting of the second-order quadratic and interaction terms was fit

and retrained. Least squares criterion of minimizing the sum of squared residuals (SSE) is used for

both linear regression and ANN modeling. For the training fold, it minimizes the sum of squared

residuals and develops a closed-form expression for the estimated value of the unknown parameter.

Full third-order models and reduced third order models were also developed and fitted. However,

these models were rejected because of they did not significantly improve fit to the training data

and gave worse fit to the test data.

2.8 Principal Component Neural Network (PCNN)

The proposed Principal Component Neural Network (PCNN) approach was used to develop

predictive models of the response that included the pseudo variables as inputs. More specifically,

a three-layer feedforward neural networks consisting of an input layer of 5 neurons, a hidden layer

of 10 neurons, and an output layer of one neuron was developed using the MATLAB program.

Selection of the number of neurons in the hidden layer is based on a trial-and-error procedure

between optimization of the cost function and computational time. A four-layer network with two

hidden layers was also developed but due to the principal of parsimony, the simplest and most

economical way (in terms of computational time) has been selected.
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Table 2.5: Linear Regression Coe�cients for Equation 2.4

Coe�cient Value

c0 1.64⇥ 104

c1 �8.89⇥ 102

c2 �1.24⇥ 103

c3 �1.24⇥ 103

c4 �92.41
c5 6.55⇥ 102

c6 1.58⇥ 102

c7 �4.35⇥ 102

c8 2.35⇥ 102

c9 3.74⇥ 102

c10 �8.28⇥ 102

For each fold, the training process starts with adjusting the initial values of the network’s

weights and biases in order to obtain a reasonable output and continues modifying the network by

minimizing SSE. The iteration continues until the convergence criterion is met (Note that this is

the reason a validation set is not used. That is, just as for the linear regression model, training

stops when convergence is obtained). The Bayesian Regularization algorithm is implemented for

the training e�ciency of the network.

2.9 Results and discussion

2.9.1 Results

Results of the proposed methods are presented in this section and their accuracy in predicting

the rutting behavior of asphalt mixtures is evaluated and compared. The second-order quadratic

linear regression model fit the measured response, y, best and is given by Eq. 2.4 as ŷ

ŷ = c0 + c1 ⇥ pc1 + c2 ⇥ pc2 + c3 ⇥ pc3 + c4 ⇥ pc4 + c5 ⇥ pc5 + c6 ⇥ pc1 ⇥ pc2

+ c7 ⇥ pc2 ⇥ pc4 + c8 ⇥ pc1 ⇥ pc3 + c9 ⇥ pc2 ⇥ pc3 + c10 ⇥ pc3 ⇥ pc5

(2.4)

where, ci’s for i = 0, . . . , 10 are presented in Table 2.5.
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The successfully trained ANN models can be presented by Eq. 2.5 for ease of use and wider

reproduction. Each ANN is presented by the connection weights and biases in a three-layer topology

Juang and Chen (1999a).

ŷ = f2

8
<

:B0 +
nX

j=1

"
Wj · f1

 
BHj +

mX

i=1

WijPi

!#9=

; (2.5)

where, B0 = bias at output layer (just one neuron at this layer); Wj = weight of connection

between neuron j of the hidden layer and output layer neuron; BHj = bias at neuron j of the hidden

layer (for j = 1 to 10); Wij = weight of connection between input variable i (for i = 1 to 5) and

neuron j of the hidden layer; Pi = input parameter i ; f1 (t) = transfer function of the hidden layer,

and f2 (t) = transfer function of the output layer.

Both transfer functions f1 (t) and f2(t) are sigmoid functions defined in Eq. 2.6 Juang and

Chen (1999a).

fk(t) =
1

1 + e�t
for k = 1, 2. (2.6)

The connection weights and biases of the ANN are presented by the following matrixes.

Wij =

2

66666666666666666666666666664

�0.447 1.702 �0.811 �0.854 �1.295

0.010 �1.462 0.280 0.114 �1.926

1.315 �1.391 �0.028 �0.218 0.895

�0.089 0.182 �0.135 �0.323 �0.150

0.089 �0.182 0.135 0.324 0.150

�0.613 0.255 �1.190 �0.808 0.120

0.089 �0.182 0.135 0.324 0.150

0.443 �1.496 �0.414 1.051 �0.641

0.280 �0.625 0.831 0.736 1.158

�0.007 0.168 0.003 �1.380 �0.292

3
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Wj =

2

66666666666666666666666666664

0.673

0.348

�1.250

�0.294

0.294

�1.713

0.294

�0.262

0.974

0.986

3

77777777777777777777777777775

, BHj =

2

66666666666666666666666666664

�0.084

�1.208

�1.742

�1.528

0.567

�0.567

�1.320

�0.567

1.464

�1.750

3

77777777777777777777777777775

, BHj = [1.334]

Performance results of the PCR and PCNN models are given based on the following statistics,

and presented in Table 2.6. The first statistic is the “average error (AE)” defined as

AE =
1

n

nX

i=1

(yi � ŷi). (2.7)

AE is an estimate of systematic model bias, n is the number of input vectors, yi is the ith

measured response value, and byi is the ith fitted response value. The second statistic is the “average

absolute error (AAE)” and defined as

AAE =
1

n

nX

i=1

|yi � ŷi|. (2.8)

This statistic gives the average closeness of the fitted value to the measured response value.

The third statistic, rfit, is the correlation of yi and byi and defined as

rfit =
n
P

n

i=1
yiŷi � (

P
n

i=1
yi)(
P

n

i=1
ŷi)q

n
P

n

i=1
y2
i
� (
P

n

i=1
yi)2

q
n
P

n

i=1
ŷ2
i
� (
P

n

i=1
ŷi)2

(2.9)

The better the fit, the higher rfitwill be with a maximum possible value of 1. The last statistic

is R2 or the coe�cient of determination. In linear regression, for training, R2 is the portion of

the variation explained by the fitted model. It is only applicable to the PCR since it is linear in

parameters but not to PCNN it is non-linear in parameters.



28

Table 2.6: Statistical Analysis of PCR and PCNN Modeling (na*: not applicable)

PCR PCNN

Statistics Fold 1 Fold 2 Fold 3 Fold 1 Fold 2 Fold 3

Training

AD 0 0 0 34.99 -242.99 46.19
AAD 1497.02 1705.55 1514.59 729.41 1350.87 944.83
rfit 0.83 0.82 0.85 0.96 0.87 0.94
R2 0.69 0.68 0.72 na* na* na*

Testing

AD 626.73 -129.91 -226.1 -98.24 149.2 -169.6
AAD 2007.47 1515.74 2110.64 694.53 719.9 1037.28
rfit 0.79 0.8 0.73 0.97 0.95 0.92
R2 na* na* na* na* na* na*

According to the values of rfit presented in Table 2.6, the predicted values of accumulated strain

by PCR and PCNN models have a high correlations with the measured ones which means both

PCR and PCNN modeled the response well. The second fold of PCR has the highest PCR rfit

which is 0.8. The first fold of the PCNN has the highest PCNN rfit of 0.97 which is the highest

compare to other folds in both methods.

A phenomenological model is given by Eq. 2.10 below:

✏p
✏r

= aT bN c (2.10)

where, ✏p = accumulated plastic strain at N repetition of load; ✏r = resilient strain of the asphalt

material as a function of mix properties, temperature, and time rate of loading; N = number of load

repetitions; T = pavement temperature, and a, b, and c are unknown model coe�cients. Although

many researchers including Leahy and Ayres tried to obtain suitable estimates for the unknown

parameters by performing repeated load permanent deformation tests, their models were able to the

accumulated strain with R2 of not higher than 0.76 with temperature being the most important

variable and loading conditions, material type, and mix parameters being less important ones
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Witczak (2007). In comparison with the literature, the overall performance of both the PCR and

PCNN models which is expressed in terms of the three test statistics used in the work is significantly

higher than previous prediction models used in the AASHTO design procedure Witczak (2007).

Comparing the two best folds for training and testing stages indicates that although the PCR

modeling works well in predicting the response variable, PCNN has the best results in both training

and testing.

2.9.2 Model Validation

Equation 2.11 is a general regression model for this study:

yi = f(Zi, ✓) + ✏i (2.11)

wheref is the expectation function, ✓ is the vector of parameters and ✏i is random error term

assumed to be normally distributed with mean zero and unknown variance �2 for i = 1, . . . , n,

where n is the number of input vectors. Violation of these assumptions and model adequacy can

be investigated by the examination of residuals, defined by Eq. 2.12

ei = yi � ŷi (2.12)

Through the analysis of residuals, many types of model inadequacies and violations of the

underlying assumptions can be assessed. If the model is adequate, the residuals should contain

no obvious pattern. Checking the normality assumption can be done by constructing a normal

probability plot of the residuals. If the underlying error distribution is normal, this plot will

resemble a straight line Devore (2011). These assumptions were checked for the best fold in each

method. The plot of residuals for the best folds are presented in Figure 2.4 and 2.5. Since there is

no obvious pattern in the residual plot, the assumption of equal variances seems acceptable. The

normal probability plots of the residuals for both models are presented in Figure 2.6 and 2.7. The

data points are not too far away from a straight line. Therefore, the normality assumption does

not appear to be violated.
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Figure 2.4: Plot of the residuals for best fold of PCR model.

Figure 2.5: Plot of the residuals for best fold of PCNN model.
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Figure 2.6: Normal probability plot of the residuals for best fold of PCR model.

Figure 2.7: Normal probability plot of the residuals for best fold of PCNN model.
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2.10 Conclusions and recommendations

This study used the experimental data of the permanent deformation of asphalt mixture and

focused on the evaluation and qualifying the input variables to be used in further modeling. A total

number of 17 input variables from three categories of material properties including binder, aggre-

gate and mixture properties were selected as the e↵ective parameters in rutting behavior. Cross

-correlated input variables were identified by correlation analysis and substituted by the orthogonal

pseudo-inputs (PCs) using a dimensionality reduction technique called PCA. This work compared

multiple regression and ANN modeling of a small set of pseudo-variables determined from PCA

(PCR and PCNN, respectively). Both proposed approaches modeled the amount of permanent de-

formation well with PCNN fitting the test data significantly better. Nonetheless, both approaches

showed better performance as a modeling tool than other regression-based approaches that use

standard variables in the AASHTO design procedure. Thus, these PCA approaches are strongly

recommended as sound modeling approaches in this application. Moreover, theses methodologies

appear to also have much promise in modeling other material properties at every e↵ective temper-

ature and this investigation is recommended in future studies. Another future study to consider is

development of an approach to determine the importance of each inputs on the response. Consider-

ing the obtained regression model (Eq. 2.4), the linear terms contain orthogonal variables (i.e. PCs)

which are in the same normalized scale. Therefore, the linear terms with the largest coe�cients

(with the absolute value) are the ones with greatest contribution. In order to map this principal

component that contributes the most to the original input space and finding the input with the

greatest contribution, one can consider the coe�cients for each input value in Table 2.4. The one

with the largest absolute value is associated variable contributes the most to that pseudo-variable.
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CHAPTER 3. PRINCIPAL COMPONENT ANALYSIS-BASED

PREDICTIVE MODELING AND OPTIMIZATION OF PERMANENT

DEFORMATION IN ASPHALT PAVEMENT: ELIMINATION OF

CORRELATED INPUTS AND EXTRAPOLATION IN MODELING

A paper published at the Journal of Structural and Multidisciplinary Optimization, Springer

3.1 Abstract

Permanent deformation in asphalt pavement is a function of material properties, loading, en-

vironmental conditions, and structural design (e.g., thickness of pavement layers). Because of the

large number of e↵ective variables and their nonlinear interrelationships it is not easy to develop

a predictive model for permanent deformation. In this study, a laboratory database containing ac-

cumulated strain values (output) and material properties (inputs) from several asphalt pavements

has been used to develop a predictive model for permanent deformation. We first show that the

inputs are highly correlated, then Principal Component Analysis (PCA) is used to compute a set

of orthogonal pseudo-inputs. Two predictive models based on the pseudo-inputs developed using

linear regression analysis and Artificial Neural Networks (ANN), and are compared using statistical

analysis. Extrapolation using empirical predictive models is highly risky and discouraged by ex-

perienced practitioners, so to guard against extrapolation, a method is developed to determine an

input hyper-space. The above-developed model, along with an n-dimensional hyper-space, provides

su�cient information for supporting an optimization algorithm for finding the minimum accumu-

lated strain. An asphalt pavement design with accumulated strain value of 1772 micro-strain (0.02

inch in a 10-inch-thick asphalt pavement layer) is obtained by solving the optimization problem

and the design parameters meet flexible pavement design specifications. The proposed framework
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is able to generate accurate predictive models when the original inputs are highly correlated and

able to map to an optimal point in the fitted input space.

3.2 Introduction

Design and control of systems require engineers to predict complex behavior, configuration, and

environmental loads to which they are exposed. This obviously constitutes a challenging task of

determining a mapping from cause to e↵ect, thus engineers model material and system behaviors,

from which they make predictions about the expected behavior of specific system configurations.

This behavior is often governed by nonlinear multivariate (and sometimes unknown) interrelation-

ships that can vary over time due to degradation of material properties and occur within varying

and less controllable physical environments. Another challenge in addition to predicting system

behavior is the estimation of unmeasured attributes based on measured attributes.

Flexible pavement is one such complicated system for which engineers try to predict behavior,

and permanent deformation (i.e., rutting) is one of the most important flexible pavement design

criteria. Rutting usually occurs under the wheel-path and appears as longitudinal depressions with

small upheavals to the side, that occur as di↵erential consolidation and cause safety issues for

drivers Zhang et al. (2015); Ghasemi et al. (2018b).

Mechanistic-empirical, regression-based, modeling and performance-testing approaches are com-

monly used in asphalt mixtures rut susceptibility analysis, and viscoelastic, viscoplastic, and vis-

coelastoplastic continuum damage-based modeling can all be used to explain the rutting behavior

of asphalt mixtures Bashin et al. (2012). A common problem with such models is that they are

highly dependent on empirical data and require accurate characterization of asphalt binder be-

havior. Rutting is commonly simulated using a rutting resistance indicator parameter called Flow

Number (FN), and defined as the point where the permanent strain rate reaches a minimum value,

as shown in Figure 3.1, that can be measured through repeated loading and unloading tests. This

parameter has been found indicative of good correlation with field rutting of asphalt mixtures

exposed to di↵erent levels of tra�c AASHTO TP 79-13 (2013); Arabali et al. (2017).
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Figure 3.1: Typical repeated load permanent deformation behavior.

During the design procedure, there is generally a limiting criterion of 0.4 inches (10.16 mm)

with respect to the total deformation of a pavement structure. According to the existing literature

Kaloush et al. (2003); Witzcak (2002), parameters a↵ecting the rutting behavior of asphalt mix-

tures can be classified into three categories, i.e., asphalt binder properties representing viscoelastic

and viscoplastic behavior, aggregate properties representing elastic/plastic behavior, and mixture

properties. Many studies have demonstrated that the amount of rutting depends on mixture volu-

metric properties, binder viscosity, and testing temperature. Kvasnak et al. Kvasnak et al. (2007),

demonstrated that binder grade, binder viscosity, asphalt content, testing temperature, nominal

maximum aggregate size (NMAS), voids in mineral aggregate (VMA), percentage aggregate pass-

ing through sieve sizes No.4, No.16, No.200, and the number of gyrations all can a↵ect the FN of

asphalt mixture. Rodezno et al. Rodezno et al. (2010) designated 12 parameters a↵ecting rutting

behavior of asphalt mixtures, i.e., testing temperature, maximum shear stress, normal stress, binder

viscosity, percentage aggregate passing through sieve sizes 3/4-inch, 3/8-inch, and No.4, percent-

age air voids, e↵ective binder content, binder content, VMA, and voids filled with asphalt (VFA).

Although Apeagyei, et al. Apeagyei (2011), indicated that using dynamic modulus test results

at specific temperature and loading frequencies in conjunction with aggregate gradation seems to

exhibit good correlation with FN test results, there is some disagreement on the existence of cor-

relation between the results of these two performance tests Birgisson et al. (2004a); Pellinen and
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Witczak (2002); Timm et al. (2006), so engineers have tried to predict asphalt pavement rutting

behavior based on system properties Kvasnak et al. (2007); Rodezno et al. (2010).

Predictive modeling is a process that can use data mining tools and probability theory techniques

to forecast outcomes from a given system, with each model constructed with several predictors likely

to influence future results. Once data have been collected for relevant predictors, a statistical model

is formulated that may use a simple linear equation, or may rather use be a complex structure such

as an Artificial Neural Network (ANN) obtained through sophisticated optimization algorithms

Carpenter and Barthelemy (1993); Nicholas et al. (2015). ANN modeling has the same goal as

statistical regression modeling because, both attempt to capture the relationship between a set of

model inputs and corresponding outputs Cheng and Titterington (1994a); Liew et al. (2004) by

estimating a set of coe�cients that provide the best fit with the data.

The asphalt pavement properties discussed above are not necessarily accepted as an independent

set of variables because they may not be adequate for modeling. Since cross-correlated inputs in

the modeling data set can adversely a↵ect accurate estimation of their causative e↵ects on the

response variable and this impede the capability of the model to accurately estimate the response

variable Rollins et al. (2006); K Rollins Sr (2015), a pre-processing step is often useful to examine

the quality and relationships among the input variables, although this step is rarely practiced by

design engineers in this particular application.

In the presence of correlated input variables, orthogonal (uncorrelated) variables can be obtained

using a pseudo-variable approach called principal component analysis (PCA) Rollins et al. (2006);

Jolli↵e (2002); Noh et al. (2009); Yi et al. (2017); Lever et al. (2017). PCA is a multivariate

statistical procedure that uses an orthogonal transformation to convert a set of correlated variables

into a set of uncorrelated (pseudo-) variables called principal components (PCs). The PCs are a

set of orthogonal variables that are linear combinations of the original variables in the dataset.

Such an approach has been applied to a number of engineering problems as an essential part of

the design procedure Xiong et al. (2017); Su and Tong (1997); Happ and Greven (2018); Hargrove

et al. (2017); Malik et al. (2018); Xiong et al. (2018); Lim et al. (2018); Granato et al. (2017).
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Extrapolation using empirical predictive models is highly risky and therefore often discouraged

by experienced practitioners. Given a training data set {(x1, y1), . . . , (xn, yn)} a common purpose of

linear/nonlinear predictive modeling is to find an accurate approximation, e.g., f̂(x), of a function

f (x) = E (y|x) , that can be used to predict the value of a new y given x. When x lies outside the

convex hull of xi values, the prediction is called an extrapolation and the behavior of the model

is not predictable Devore (2011). Extrapolation inflates standard prediction error compared to

interpolation, a process in which, x lies inside the convex hull. To avoid using locations outside the

convex hull, one might define a hyper-space for the input set. This n-dimensional domain might

satisfy certain qualifications, including convexity and minimum volume enclosing data points, to

prevent extrapolation.

The focus of the current study is to define a machine-learning based framework to predict rut-

ting behavior of asphalt mixture. The proposed framework is uniquely addressing the correlated

inputs in modeling using PCA. Unlike most of the existing pavement performance predictive mod-

els, the proposed framework is seeking to define the n-dimensional input space to guard against

extrapolation. These issues are commonly ignored in pavement predictive modeling problems. This

framework can be used to find an optimal design using an optimization algorithm. The minimum

volume enclosing ellipsoid enters as a constraint into the optimization problem to ensure that no

extrapolation is occurring. Although the domain is convex, the modeled function is multimodal,

making this a nonconvex optimization problem that we tackle in this study with an evolutionary

optimization solution approach called Mean-Variance Mapping Optimization (MVMO) Rueda and

Erlich (2015); Erlich et al. (2010). The current implementation of MVMO employs adaptive strate-

gies on essential control parameters in order to explore the search domain initially and exploit

the domain of interest in the later stages of optimization. A major interest in this algorithm for

pavement rutting design optimization (where a moderately accurate solution is assumed to be suf-

ficiently good as long as it meets the design specifications) is the fast convergence rate of MVMO

compared to classical evolutionary algorithms. This property of the algorithm has been confirmed

through rigorous analytical and engineering-based benchmarking Rueda and Erlich (2015).
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This manuscript is organized as follows: the materials and the developed methodologies are pre-

sented in Section 3.3 and the results and discussion and an application of the developed framework

are presented in Section 3.4, followed by conclusions in Section 3.5.

3.3 Materials and Methodologies

3.3.1 Data collection

Eighty-three specimens from 21 di↵erent asphalt mixtures collected from di↵erent projects in

the State of Wisconsin provided the database for subsequent modeling. Asphalt mixtures required

for the study were sampled at the plant site directly from the back of the delivery trucks, and

asphalt binders corresponding to each pavement section were sampled during mix plant produc-

tion. Maximum theoretical values of specific gravity were measured and used to determine other

volumetric properties of the asphalt mixtures. Asphalt mixtures were compacted in the laboratory

using a Superpave Gyratory Compactor (SGC) into test samples whose dimensions were 150 mm

in diameter by 170 mm in height.

Each 100-mm diameter by 150-mm height cylindrical specimen was cored, trimmed and prepared

for dynamic modulus testing. The specimens were tested under repeated sinusoidal compressive

stress at an e↵ective test temperature of 36.6 �C and at the four loading frequencies 25, 10, 1, and

0.1 Hz under unconfined conditions. Flow number tests were performed on the same specimens

under repeated haversine compressive stress at a single e↵ective temperature of 36.6 �C, with the

load applied for a duration of 0.1 second and a dwell period of 0.9 second. No confining pressure

was used and the axial stress was similar to the deviator stress (600 kPa). To obtain binder shear

properties, a complex shear modulus test was conducted at the same e↵ective test temperature and

similar frequencies used in the the dynamic modulus tests.

It should be mentioned that the e↵ective test temperature for all of the laboratory tests (36.6�

C) was based on climatic condition of the Midwestern area of the United States (central Wisconsin),

and was considered the typical temperature at which permanent deformation happens, equivalent

to a seasonal correction throughout the year.
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3.3.2 Pre-processing step: input variable selection

A fundamental and crucial step in identifying the optimal functional form of statistical models

is input variable selection. In general, this requires a set of input variables su�ciently high in

information content that maps to the output space. The di�culty in selecting a parsimonious set

of input variables can arise from several conditions, including too many available variables, highly-

correlated input variables, and input variables weakly-related or unrelated to the response Fodor

(2002).

Mathematical modeling is the process of functionally relating measured input variables to output

variables. The modeler selects a mathematical structure and a process for estimating unknown

model parameters. For a general model structure, let the expectation function of the response be

represented as ⌘i = f(xi, ✓), where ⌘i is the expected value of the response (i.e., output) at the ith

sampling time, i = 1, . . . , n, xi is the vector of input values at the ith sampling time, and ✓ is the

vector of unknown model parameters with ✓ = [✓1 . . . ✓q]
T . Let the element of the Jacobian matrix,

J, in the ith row and jth column be @⌘i
@✓j

i.e., J =
n

@⌘i
@✓j

o
. Note that the jth column represents ✓j and

its column vector represents the change in the response space as ✓j changes for a particular set of

experimental conditions. If two columns such as j and k are orthogonal, their correlation coe�cient

is zero. More specifically, if these two columns are orthogonal, the information used to estimate

✓j is decoupled (i.e., separate or independent) from the information to estimate ✓k, and vice versa.

The advantage of the orthogonal attribute is that it strengthens causative relationships of inputs

on the output while maximizing parameter accuracy and consequently estimation accuracy for

the modeled output. Correlated columns in the Jacobian Matrix arise from pairwise correlation of

inputs, so for a given set of experimental data, to minimize standard parameter errors and maximize

accuracy mapping of input behavior into the response space, we should seek to minimize pairwise

correlation of the inputs used to model the response behavior.

In the present study, the vector of input values (x), represents the asphalt mixture’s component

properties, recalling from the literature Kaloush et al. (2003); Witzcak (2002); Kvasnak et al.

(2007); Rodezno et al. (2010), that the rutting behavior of an asphalt mixture can be legitimately



42

Table 3.1: Original Input Variables

Variable Identity Min. Max. Ave. Std. Ave.

x1 Binder % 3.400 6.600 5.093 0.773
x2 G* 210800.543 1163559.917 612179.576 265903.652
x3 NMAS 12.500 25.000 15.922 3.761
x4 Passing 3/4” 81.300 100.000 98.554 4.085
x5 Passing 1/2” 38.300 98.800 87.130 15.199
x6 Passing 3/8” 34.100 89.900 76.340 15.099
x7 Passing #4 26.200 72.500 56.248 13.741
x8 Passing #8 17.500 54.000 42.249 10.512
x9 Passing #16 14.200 47.400 32.178 8.740
x10 Passing #30 9.600 47.400 32.178 8.740
x11 Passing #50 5.700 18.600 12.022 3.179
x12 Passing #100 3.700 9.800 6.187 1.424
x13 Passing #200 2.800 8.500 4.322 1.115
x14 VMA 10.323 21.000 16.452 2.502
x15 VFA 46.450 91.719 65.189 9.062
x16 Va% 1.019 9.825 5.868 2.088
x17 E* 395.700 2299.400 869.410 411.524

characterized by its component properties. The component properties and their ranges used in the

present study are summarized in Table 3.1.

These seventeen properties are used as input variables to predict accumulated strain value at

the flow number (FN), and the cross or pairwise correlation matrix of the input variables is given

by Table 3.2. Results with absolute values of 0.5 or higher are shown in bold and red text. As can

be seen, the absolute value of 273 correlation coe�cients are above 0.1, with 41 of them greater

than 0.5, indicating that several of the input variables appear to be highly correlated. Therefore, to

accurately map the inputs to the response, it would be useful to obtain a smaller set of orthogonal

pseudo-variables as linear combinations of the inputs using the PCA method and mapping them

to the response is required Fodor (2002).
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Table 3.2: Correlation Matrix for the Input Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

x1 1 0.33 -0.73 0.6 0.71 0.63 0.47 0.45 0.46 0.45 0.41 0.43 0.42 0.61 -0.18 0.35 -0.43
x2 0.33 1 -0.11 0.08 -0.03 -0.23 -0.38 -0.32 -0.18 -0.06 0.01 0.23 0.35 0.02 -0.02 0.02 0.24
x3 -0.73 -0.11 1 -0.64 -0.76 -0.69 -0.51 -0.41 -0.39 -0.32 -0.25 -0.30 -0.39 -0.53 0.13 -0.30 0.37
x4 0.6 0.08 -0.64 1 0.88 0.78 0.58 0.51 0.42 0.32 0.25 0.23 0.24 0.46 -0.21 0.32 -0.45
x5 0.71 -0.03 -0.76 0.88 1 0.95 0.77 0.71 0.61 0.49 0.41 0.39 0.36 0.56 -0.33 0.44 -0.51
x6 0.63 -0.23 -0.69 0.78 0.95 1 0.92 0.86 0.75 0.61 0.49 0.30 0.16 0.53 -0.27 0.38 -0.49
x7 0.47 -0.38 -0.51 0.58 0.77 0.92 1 0.95 0.84 0.69 0.49 0.11 -0.14 0.43 -0.16 0.26 -0.37
x8 0.45 -0.32 -0.41 0.51 0.71 0.86 0.95 1 0.95 0.83 0.59 0.11 -0.15 0.42 -0.16 0.26 -0.41
x9 0.46 -0.18 -0.39 0.42 0.61 0.75 0.84 0.95 1 0.96 0.74 0.18 -0.11 0.40 -0.16 0.25 -0.41
x10 0.45 -0.06 -0.32 0.32 0.49 0.61 0.69 0.83 0.96 1 0.84 0.28 -0.06 0.35 -0.15 0.22 -0.37
x11 0.41 0.01 -0.25 0.25 0.43 0.49 0.49 0.59 0.74 0.84 1 0.59 0.17 0.21 -0.20 0.20 -0.25
x12 0.43 0.23 -0.30 0.23 0.39 0.30 0.11 0.11 0.18 0.28 0.59 1 0.82 0.24 -0.28 0.28 -0.15
x13 0.42 0.35 -0.39 0.24 0.36 0.16 -0.14 -0.15 -0.11 -0.06 0.17 0.82 1 0.29 -0.30 0.32 -0.22
x14 0.61 0.02 -0.53 0.46 0.56 0.53 0.43 0.42 0.40 0.35 0.21 0.24 0.29 1 -0.62 0.83 -0.71
x15 -0.18 -0.02 0.13 -0.21 -0.33 -0.27 -0.16 -0.16 -0.16 -0.15 -0.20 -0.28 -0.30 -0.62 1 -0.94 0.52
x16 0.35 0.02 -0.30 0.32 0.44 0.38 0.26 0.26 0.25 0.22 0.20 0.28 0.32 0.83 -0.94 1 -0.63
x17 -0.43 0.24 0.37 -0.45 -0.51 -0.49 -0.37 -0.41 -0.41 -0.37 -0.25 -0.15 -0.22 -0.71 0.52 -0.63 1

3.3.3 Principal component analysis (PCA)

PCA is an orthogonal linear transformation of a set of variables to a new coordinate system.

Among the transformed variables, the first has the greatest variance or spread along its axis,

followed by the second, then the third, and so on. The transformation can be thought of as fitting

an n-dimensional ellipsoid to the data, where each axis represents one of the principal components

(PCs) such that the variance along the small axis of the ellipsoid is also small, so omitting that

axis and its corresponding principal component from the representation of the data set results in

losing, only a small portion of the information. Another explanation of the PCA could be in its

revealing of the internal structure of the data in a way that best explains the variance within the

data. If a multivariate dataset is visualized as a set of coordinates in an n-dimensional data space,

with one axis per variable, PCA can provide a lower-dimensional picture, a projection of the object

viewed from its most informative viewpoint Jolli↵e (2002). This operation is visualized for three
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Figure 3.2: Schematic of the PCA transformation.

input variables in Figure 3.2. The dimensionality of the transformed data is reduced by using only

the first few principal components representing the highest variations in the original data.

Considering a data set X, PCA reduces the dimension of X by expressing the p (p =17) original

variables (x1, . . . , xp) as d new pseudo-variables (principal components, PCs), where d < p. The

PCs are a set of orthogonal (i.e., uncorrelated), linear combinations of the original variables within

the dataset.

As a data pre-processing methodology, PCA determines an optimal rotational transformation

of the dataset X into an orthogonal set of PCs (pseudo-variables) that maximizes the information

content of the original data for a smaller set of these pseudo variables Fodor (2002); Johnson et al.

(2014). With respect to dataset, X, PCA is performed in the following steps:

1. Standardizing X by transforming it to Z using the following equations:

X =

2

66666664

x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp

3

77777775

Z =


z1 . . . zp

�
=

2

66666664

x11�x1
s1

x12�x2
s1

. . . x1p�xp

sp

x21�x1
s1

x22�x2
s2

. . . x2p�xp

sp

...
...

. . .
...

xn1�x1
s1

xn2�x2
s2

. . . xnp�xp

sp

3

77777775

(3.1)

where, for k = 1 to n and j = 1 to p, xkj is the kth measurement for the jth variable, xk is

sample mean for the kth variable, and sk is sample standard deviation for the kth variable.

2. Determine the unit eigenvectors e1, . . . , ep of Z.
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3. Determine the corresponding eigenvalues �1, . . . ,�p.

4. Rank the eigenvectors according to their eigenvalues.

5. Select d PCs according to their eigenvalues (or the scree plot).

Examining the eigenvalues of each PC, corresponding to the amount of variance explained by

each, is the basis for selecting the PCs. A common method is to rank the PCs and select those with

eigenvalues exceeding a significant threshold. The first PC contains the most variance captured in

a single axis, the second PC is orthogonal to the first (their correlation is zero) and contains the

second greatest variance, the third PC is orthogonal to all previous ones and also contains the third

greatest variance, etc. Rollins et al. (2006). Generating a plot of the percentage contributions of

each PC indicating eigenvalues versus their order, called a scree plot, visualizes the PC selection

strategy. The “elbow point” in this plot indicates the number of significant PCs needed to properly

represent the data.

The eigenvectors and eigenvalues of the correlation matrix are calculated and presented in Tables

3.3 and 3.4, respectively. Table 3.4 shows the fraction of total variation in the data as represented

by each eigenvalue. The eigenvalues are ordered by decreasing in contribution to the total variation.

According to the eigenvalues, 89.72% of the variation in the original data is represented by the first

five PCs. The scree plot presented in Figure 3.3 indicates that the elbow point is located at the

fourth PC, meaning that first four PCs appear to be significant. We conservatively selected the

first five PCs as our pseudo-input variables.

Forming a linear combination of the original input variables, the PCs are obtained using Eq.

3.2:

pci =
17X

j=1

↵ijxj + �i (3.2)

where i = 1 to 5 , the ↵ij is the corresponding coe�cients, the �i are constants, and the xjs are

the original input variables. Eq. 3.2 can be presented in matrix notation as in Eq. 3.3:

p = Mz+ n (3.3)
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where

p =

2

666666666664

pc1

pc2

pc3

pc4

pc5

3

777777777775

MT =

2

66666666666666666666666666666666666666666666666666664

3.41⇥ 10�1 �2.04⇥ 10�1 2.89⇥ 10�1 �1.94⇥ 10�1 3.71⇥ 10�1

�7.60⇥ 10�8 �1.17⇥ 10�6 1.31⇥ 10�6 1.05⇥ 10�7 2.47⇥ 10�6

�6.59⇥ 10�2 3.22⇥ 10�2 �4.53⇥ 10�2 9.10⇥ 10�2 �7.97⇥ 10�3

6.34⇥ 10�2 �1.31⇥ 10�2 1.86⇥ 10�2 �9.38⇥ 10�2 �7.13⇥ 10�3

2.11⇥ 10�2 �2.33⇥ 10�3 5.26⇥ 10�3 �1.63⇥ 10�2 �9.03⇥ 10�3

2.17⇥ 10�2 7.23⇥ 10�3 1.55⇥ 10�3 �1.23⇥ 10�2 �1.13⇥ 10�2

2.13⇥ 10�2 2.01⇥ 10�2 �2.82⇥ 10�3 �7.27⇥ 10�3 �7.11⇥ 10�3

2.79⇥ 10�2 2.89⇥ 10�2 �2.98⇥ 10�3 3.79⇥ 10�3 1.41⇥ 10�3

3.28⇥ 10�2 3.22⇥ 10�2 4.43⇥ 10�3 2.35⇥ 10�2 1.71⇥ 10�2

3.73⇥ 10�2 3.39⇥ 10�2 1.53⇥ 10�2 4.98⇥ 10�2 3.14⇥ 10�2

7.08⇥ 10�2 3.30⇥ 10�2 7.38⇥ 10�2 1.54⇥ 10�1 �9.05⇥ 10�3

1.08⇥ 10�1 �2.03⇥ 10�1 2.33⇥ 10�1 2.30⇥ 10�1 �2.72⇥ 10�1

9.18⇥ 10�2 �4.06⇥ 10�1 2.29⇥ 10�1 6.69⇥ 10�2 �3.18⇥ 10�1

9.98⇥ 10�2 �8.77⇥ 10�2 �1.12⇥ 10�1 �1.14⇥ 10�2 8.85⇥ 10�2

�1.73⇥ 10�2 3.21⇥ 10�2 4.57⇥ 10�2 �2.69⇥ 10�2 �9.43⇥ 10�4

9.75⇥ 10�2 �1.42⇥ 10�1 �1.95⇥ 10�1 7.31⇥ 10�2 4.70⇥ 10�2

�5.50⇥ 10�4 2.73⇥ 10�4 8.20⇥ 10�4 �8.92⇥ 10�6 1.36⇥ 10�4

3

77777777777777777777777777777777777777777777777777775
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Figure 3.3: Scree plot of components’ contribution.

n =

2

666666666664

�1.72⇥ 10

5.87⇥ 10�1

�8.21

7.36

�4.85⇥ 10�1

3

777777777775

The PCs obtained in this way will be used in further modeling.

3.3.4 K-fold cross validation

To recognize how the results of the statistical analysis can generalize to an independent dataset,

and to prevent overfitting, a k -fold cross validation technique, a procedure to avoid overfitting

models by checking the fitted model against a set of data not used in fitting the model Refaeilzadeh

et al. (2009), is used. During this procedure, the given dataset is randomly partitioned into k

equal-sized subsamples from which k-1 subsamples are used as training data, and the remaining

single subsample is used for testing the developed model. This procedure is then repeated k times

(number of the folds), with each of the k subsamples used exactly once as test data. In this way, all
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Table 3.3: Eigenvectors of the Z matrix

pc1 pc2 pc3 pc4 pc5 pc6 pc7 pc8 pc9 pc10 pc11 pc12 pc13 pc14 pc15 pc16 pc17

z1 0.26 -0.16 0.23 -0.15 0.29 -0.28 0.14 0.27 0.48 -0.49 0.29 -0.13 -0.04 0.03 0.01 0.05 0.01
z2 -0.03 -0.31 0.35 0.02 0.67 0.26 -0.15 0.08 -0.26 -0.03 -0.4 0.07 -0.04 0.01 0.02 -0.03 0.03
z3 -0.25 0.12 -0.17 0.35 -0.02 0.21 -0.39 0.7 0.13 -0.07 0.1 0.17 0.1 0.1 -0.01 0.02 0.04
z4 0.26 -0.06 0.08 -0.38 -0.03 0.28 -0.57 -0.04 0.18 0.36 0.24 -0.31 -0.2 0.1 -0.03 -0.02 0.03
z5 0.32 -0.04 0.08 -0.24 -0.14 0.21 -0.12 0 -0.05 -0.12 0.06 0.48 0.42 -0.25 0.01 0.13 -0.49
z6 0.33 0.11 0.02 -0.18 -0.17 0.17 0.05 0.07 -0.01 -0.12 -0.18 0.18 0.24 -0.02 0.03 -0.1 0.79
z7 0.29 0.28 -0.04 -0.1 -0.1 0.17 0.23 0.2 0.01 -0.06 -0.41 -0.15 -0.08 0.62 -0.09 0.08 -0.29
z8 0.29 0.3 -0.03 0.04 0.01 0.08 0.09 0.25 -0.22 -0.07 0.01 -0.04 -0.46 -0.44 0.15 -0.49 -0.14
z9 0.29 0.28 0.04 0.2 0.15 -0.04 0.01 0.03 -0.31 0.05 0.2 -0.02 -0.18 -0.13 -0.09 0.75 0.13
z10 0.26 0.24 0.11 0.35 0.22 -0.11 -0.07 -0.11 -0.2 0.09 0.28 -0.28 0.56 0.19 0.01 -0.33 -0.04
z11 0.22 0.11 0.23 0.49 -0.02 -0.01 -0.15 -0.35 0.43 0.08 -0.09 0.45 -0.28 0.14 -0.01 -0.1 0.01
z12 0.15 -0.29 0.34 0.34 -0.39 0.03 0.06 0.19 0.15 0.16 -0.31 -0.42 0.15 -0.33 0.04 0.13 -0.05
z13 0.1 -0.46 0.26 0.08 -0.35 -0.11 0.04 0.15 -0.47 -0.04 0.32 0.19 -0.21 0.36 -0.04 -0.12 0.04
z14 0.25 -0.22 -0.29 -0.03 0.22 -0.24 0.26 0.28 0.12 0.61 -0.02 0.22 0.05 -0.05 -0.33 -0.08 0.01
z15 -0.16 0.29 0.41 -0.25 -0.01 -0.41 -0.03 0.21 0 0.35 -0.08 0.16 0.05 0.08 0.53 0.06 0
z16 0.2 -0.3 -0.41 0.15 0.1 0.2 0.14 -0.06 0.05 0.06 0.08 -0.01 -0.01 0.11 0.75 0.11 0
z17 -0.23 0.12 0.33 -0.01 0.05 0.58 0.53 0.04 0.15 0.22 0.37 0.04 0.02 0 -0.02 -0.01 0.02

Table 3.4: Eigenvalues of the Z Matrix and the Corresponding Percent Variance

Number Eigenvalue Percent Variance Cumulative Percent

1 7.979 46.935 46.935
2 2.876 16.920 63.856
3 1.947 11.456 75.311
4 1.539 9.052 84.363
5 0.912 5.363 89.726
6 0.581 3.419 93.145
7 0.421 2.475 95.620
8 0.260 1.529 97.149
9 0.198 1.165 98.314
10 0.152 0.892 99.206
11 0.063 0.371 99.577
12 0.038 0.224 99.801
13 0.016 0.095 99.896
14 0.008 0.049 99.945
15 0.005 0.028 99.973
16 0.003 0.016 99.989
17 0.002 0.011 100.000
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observations are used for both training and testing exactly once, constituting which is the advantage

of k -fold cross-validation technique over repeated random sub-sampling.

In the present study, based on the size of the data set (83 values), 3-folds with 24 sample vectors

in each have been randomly selected, and 3-fold cross validation was performed.

3.3.5 Principal Component Regression (PCR)

In statistics, ordinary least squares (OLS) is a method for estimating the unknown parameters

in a linear regression model, with the goal of minimizing the sum of the squares of the di↵erences

between the observed responses in the given dataset and those fitted by a linear function of pa-

rameters using a set of explanatory variables. This can be visually seen as the sum of the squared

vertical distances between each data point in the set and the corresponding point on the regression

line (the smaller the di↵erences, the better the model fits the data).

Several multiple regression structures including those with second-order quadratic and interac-

tion terms considered to represent the relationship between the dependent variable (accumulated

strain) and explanatory variables (PCs). The least-squares criterion of minimizing the sum of

squared residuals (SSE) is used for estimating the values of the unknown model coe�cients. For

the training fold, this minimizes the sum of squared residuals and develops a closed-form expression

for the estimated value of the unknown parameter. While full third-order models and reduced third-

order models were also developed and fitted, they were rejected due to their inability to improve

the fit to the training data and also because they were deficient in fitting to the test data.

3.3.6 Principal Component Neural Network (PCNN)

Using artificial neural networks (ANN), a predictive model of the response that we call, “Princi-

pal Component Neural Network (PCNN)” was developed. ANNs are computational tools composed

of highly-interconnected networks of many simple processors or nodes arranged in di↵erent layers

Kartam (1994); Garćıa-Segura et al. (2017); May et al. (2011). Our three-layer feed-forward neural

network, consisting of an input layer of 5 neurons, a hidden layer of 10 neurons, and an output
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layer of one neuron was developed using the MATLAB MATLAB (2012) program. Selection of the

number of hidden neurons is based on a trial- and- error optimization procedure balancing between

the cost function and computational time.

The input of each processing element, pci, is multiplied by an adjustable connection weight

wij . At each processing element, the weighted input signals are summed and a threshold value,

bHj , is added. This combined input is then passed through a non-linear transfer function, f (.),

to produce the output of the first layer, ⌫j , forming the input to the next layer. The network

adjusts its weights on the presentation of a training dataset and uses a learning rule to find a

set of weights that will produce the input/output mapping that results in the smallest possible

error. This process is called “learning” or “training”. Once the training phase of the model has

been successfully accomplished, the performance of the trained model must be validated using an

independent testing set Cheng and Titterington (1994a); Kartam (1994); Juang and Chen (1999b).

This process is visually represented in Figure 3.4.

The output ⌫j from the jth hidden nodes is given by

⌫j = f1(pci, wij), i = 1, ..., 5 and j = 1, ..., 10 (3.4)

and the single output ŷ is:

ŷ = f2 (f1(pci, wij)) . (3.5)

Then the expression of ŷ as a function of pc becomes a complicated nonlinear regression function

with the j sets of weights, as parameters. As a special case it is assumed that

f2(⌫j , wHj) = b0 +
X

j

⌫jwHj , (3.6)

and for each j,

f1(pci, wij) = bHj +
X

i

pciwij (3.7)

so a general form of the feed forward neural network is described in Eq. 3.8:

ŷ = f2

8
<

:b0 +
nX

j=1

"
wHj · f1

 
bHj +

mX

i=1

pciwij

!#9=

; (3.8)
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where, b0 is bias at output layer (just one neuron at this layer); wHj is weight of connection between

neuron j of the hidden layer and output layer neuron; bHj is bias at neuron j of the hidden layer

(for j = 1 to 10); wij is weight of connection between input variable i (for i = 1 to 5) and neuron j

of the hidden layer; pci is pseudo input parameter i ; f1 (t) is transfer function of the hidden layer,

and f2 (t) is transfer function of the output layer.

Both transfer functions f1 (t) and f2(t) used in this paper are sigmoid functions which, for an

arbitrary variable t, are defined in Eq. 3.9,

fk(t) =
1

1 + e�t
for k = 1, 2. (3.9)

For each fold, the training procedure starts with adjusting the initial values of the network’s

weights and biases to obtain a reasonable output and continue to modify the network by minimizing

the value of the sum of squared errors (SSE). The iteration continues until the convergence criterion

is met. It is worth mentioning that this is the reason that a validation set is not used, and just as

for the linear regression model, training finishes when the convergence criterion in satisfied. The

Bayesian Regularization algorithm is implemented for network training e�ciency.

3.3.7 E↵ective variable space

As discussed above, these empirical models are prone to high uncertainty when used in extrapo-

lation. To avoid extrapolation, one should find the n-dimensional hyper-space that is representative

of the space of the n inputs used to train the model. As discussed earlier, to achieve this goal,

a symmetrical convex space containing all the input data used in the development of the model

should be determined.

It is assumed that each input variable (xi) has a normal distribution, so their joint distribution

is bi-variate normal, and such distributions are frequently portrayed in terms of a contour diagram.

A contour curve on such a diagram is composed of all the points on the surface equidistant from

the xixj plane. Expressed in a di↵erent way, a contour curve is composed of all (xi, xj) outcomes

that have a constant density function Kutner et al. (2004), so one can picture a contour as the
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Figure 3.4: Schematic of the training process in a processing element

cross section obtained by slicing a bivariate normal surface at a fixed distance from the xixj plane.

A schematic view of this concept is presented in Figure 3.5.

Therefore, the minimum volume-enclosing ellipsoid should be found and added as a constraint

to the developed models. Minimum volume enclosing ellipsoids play an important role in several

diverse applications such as optimal design, computational geometry, convex optimization, pattern

recognition, and statistics.

The minimum enclosing ellipsoid will provide the n-dimensional symmetrical convex space that

includes all the data points. The ellipsoid method generates a sequence of ellipsoids whose volume

uniformly decreases at each step, thus enclosing a minimizer of a convex function. As an algorithm

for solving linear programming problems with rational data, the ellipsoid algorithm was studied by

Leonid Khachiyan Todd and Yıldırım (2007). The idea is to formulate an optimization problem

that approximately finds a minimum volume enclosing ellipsoid, Vol(E), given p data points in

n-dimensions.
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Figure 3.5: Graphic representation of a bivariate normal distribution

An arbitrary oriented n-dimensional ellipsoid can be defined in the form of

(x� v)TA(x� v)  1, 8x 2 Rn, (3.10)

where the ellipsoid is centered at v2 Rn and A = AT 2 Rn⇥n is a positive-definite matrix. The

eigenvectors of A thus define the principal semi-axes of the ellipsoid and the eigenvalues of A(�i)

are the reciprocals of the squares of the principal semi-axes, i.e., si = �
� 1

2
i

.

The following minimization problem for the volume of the ellipsoid (Vol(E)) must be solved

given a matrix containing p points in n dimensions (M ⇢ Rn⇥p where the ith point is Mi) and

a pre-specified threshold �, find the approximate values (vector v and matrix A) for the optimal

ellipsoid as follows:

minimize V ol(E)

with respect to v 2 Rn,A 2 Rn⇥n

subject to (Mi � v)TA(Mi � v)  1 for i = 1, 2, ..., p

(3.11)

The Vol(E) can be replaced by k1 ⇥ det
h
A� 1

2

i
where k1 is a positive constant. In the Khachiyan

approach, the objective is replaced by log (Vol (E)) = �k2 ⇥ log(det [A]) for convexity purposes.

To produce a centrally symmetric ellipsoid, the points will be lifted into a centrally symmetric (n

+ 1)-dimensional space with coordinates located at the center of the ellipsoid. This lifting requires
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creating a new set of points in Rn+1 using:

M̃2p⇥(n+1) =
n
±M̃1,±M̃2, ...,±M̃p

o

M̃i = [Mi 1]T for i = 1, 2, ..., p.

(3.12)

We can then write the Lagrange dual problem of the above minimization problem in the following

format

maximize log

 
det

"
pX

i=1

qiM̃i(M̃i)
T

)

#!

with respect to q 2 Rp

subject to eTq = 1, q � 0,

(3.13)

where e is the unit vector and q is the unknown variable. With the optimality condition (KKT

condition) simplified to solve the following complementary slackness condition:

!i(q
⇤) = n for i = 1, 2, ..., p (3.14)

where, !i(q) = (M̃i)T
⇣P

p

i=1
qiM̃i(M̃i)T

⌘�1

M̃i.

The above algorithm satisfies the so-called �-relaxed optimality conditions (approximate q⇤ by

q̃) defined by:

(1��)n  !i(q̃)  (1 +�)n (3.15)

Therefore, such a solution satisfies a very weak approximation form of the complementary slackness

conditions. Finally, the algorithm starts with a feasible solution (q̃ > 0) and improves upon the

objective function value by increasing only one component of q̃ at each iteration, followed by

rescaling to regain feasibility.

Once the approximate solution (q⇤) is found the solution to the primal problem can be found

using:

A⇤ =
1

n

⇣
M̃Q⇤M̃T � (M̃q⇤)(M̃q⇤)T

⌘�1

(3.16)

where, Q = diag(q). The center of the ellipsoid is then:

v⇤ = Aq⇤ (3.17)
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Algorithm 1 Minimum Volume Elliposoid

procedure Constructs a sequence of ellipsoids
input set of p points M ⇢ Rn where the ith point is Mi and threshold � > 0
set k  0, q0  (1/p)e , and M̃i  (Mi, 1)T for i = 1, 2, .., p
while q(k) does not satisfy Eq. 3.15, do
loop

j  argmax(i=1,...,p)(Mi)T
⇣P

p

i=1
qk
i
M̃i(M̃i)T

⌘�1

(Mi)

 (Mj)T
⇣P

p

i=1
qk
i
M̃i(M̃i)T

⌘�1

(Mj)

�  �(n+1)

(n+1)(�1)

qk+1  (1� �)qk + �ej , k  k + 1
end loop

The pseudo-code of the above algorithm that satisfies Eq. 3.15 can be summarized as follows

This algorithm was used to find the 17-dimensional and 5-dimensional enclosing ellipsoids in

the primary space and pseudo space of the data set, respectively.

Figure 3.6 indicates a summary of the methodology for producing the proposed framework. The

flowchart starts with creating a dataset using laboratory data and continues with the pre-processing

step of input variable qualification followed by model development over the defined n-dimensional

input space. The obtained models will be used in further performance prediction, optimization

problems, etc.

3.4 Results and discussion

3.4.1 Performance measurement

Results of the proposed methods are presented in this section, and their capability and accuracy

in predicting rutting behavior of asphalt mixtures over the presented e↵ective variable space are

evaluated and compared. The problem of determining optimal design parameters that minimize the

amount of accumulated strain over the e↵ective variable space is defined and solved. The obtained

optimal design parameters can be used as a first step in the design procedure.
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Figure 3.6: A summary of the proposed machine learning-based framework
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Table 3.5: Linear Regression Coe�cients for Equation 3.18

Coe�cient Value

c0 1.64⇥ 104

c1 �8.89⇥ 102

c2 �1.24⇥ 103

c3 �1.24⇥ 103

c4 �92.41
c5 6.55⇥ 102

c6 1.58⇥ 102

c7 �4.35⇥ 102

c8 2.35⇥ 102

c9 3.74⇥ 102

c10 �8.28⇥ 102

The best second-order quadratic linear regression model fitting the measured response, y, is

presented in Eq. 3.18:

ŷ = c0 + c1 ⇥ pc1 + c2 ⇥ pc2 + c3 ⇥ pc3 + c4 ⇥ pc4 + c5 ⇥ pc5 + c6 ⇥ pc1 ⇥ pc2

+ c7 ⇥ pc2 ⇥ pc4 + c8 ⇥ pc1 ⇥ pc3 + c9 ⇥ pc2 ⇥ pc3 + c10 ⇥ pc3 ⇥ pc5

(3.18)

where, ci’s for i = 0, . . . , 10 are presented in Table 3.5.

As mentioned previously, the successfully trained three-layer ANN can be presented as in Eq.

3.8. For ease of use and wider reproduction, the connection weights and biases are presented using

the following matrices:
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W T =

2

66666666666666666666666666664

�0.447 1.702 �0.811 �0.854 �1.295

0.010 �1.462 0.280 0.114 �1.926

1.315 �1.391 �0.028 �0.218 0.895

�0.089 0.182 �0.135 �0.323 �0.150

0.089 �0.182 0.135 0.324 0.150

�0.613 0.255 �1.190 �0.808 0.120

0.089 �0.182 0.135 0.324 0.150

0.443 �1.496 �0.414 1.051 �0.641

0.280 �0.625 0.831 0.736 1.158

�0.007 0.168 0.003 �1.380 �0.292

3

77777777777777777777777777775

WH =

2

66666666666666666666666666664

0.673

0.348

�1.250

�0.294

0.294

�1.713

0.294

�0.262

0.974

0.986

3

77777777777777777777777777775

, BH =

2

66666666666666666666666666664

�0.084

�1.208

�1.742

�1.528

0.567

�0.567

�1.320

�0.567

1.464

�1.750

3

77777777777777777777777777775

, B0 = [1.334]

Performance results of the PCR and PCNN models are given based on the following statistics,

and presented in Table 3.6. The first statistic is the “average error (AE)” defined as

AE =
1

n

nX

i=1

(yi � ŷi). (3.19)

AE is an estimate of systematic model bias, n is the number of input vectors, yi is the i th measured

response value, and ŷi is the i th fitted response value.
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The second statistical component is the “average absolute error (AAE)” defined as

AAE =
1

n

nX

i=1

|yi � ŷi|. (3.20)

This statistic gives the average closeness of the fitted value to the measured response value.

The third statistical component, rfit, is the correlation of yi and ŷi defined as

rfit =
n
P

n

i=1
yiŷi � (

P
n

i=1
yi)(
P

n

i=1
ŷi)q

n
P

n

i=1
y2
i
� (
P

n

i=1
yi)2

q
n
P

n

i=1
ŷ2
i
� (
P

n

i=1
ŷi)2

(3.21)

The better the fit, the higher rfit will be, with a maximum possible value of 1. The last statistical

component is R2 or the coe�cient of determination. In linear regression, for training, R2 is the

portion of the variation explained by the fitted model. It is only applicable to the PCR since it is

linear in its parameters and not to PCNN that is non-linear in its parameters.

According to the values of rfit presented in Table 3.6, the predicted values of accumulated strain

given by PCR and PCNN models have a high correlation with measured values, meaning that both

PCR and PCNN modeled the response well. The second fold of PCR has the highest PCR rfit,

0.80, a very good fit for modeling this type of real data in this application. The first fold of the

PCNN has the highest PCNN rfit 0.97 is the highest compared to other folds in both methods.

The prediction models used in the flexible pavement design guide can be expressed in the general

form of Eq. 3.22 Bashin et al. (2012); ARA (2004)

✏p
✏r

= aT bN c (3.22)

where ✏p is accumulated plastic strain at N repetition of load, ✏r is resilient strain of the asphalt

material as a function of mix properties, temperature, and time rate of loading, N is number

of load repetitions, T is pavement temperature, and a, b, and c are unknown model coe�cients.

Many researchers (see Ref. ARA (2004)) have tried to obtain suitable estimates for the unknown

parameters by performing repeated load permanent deformation tests. Leahy’s model was able to

estimate the accumulated strain with an R2 of 0.76, with temperature being the most important

variable while loading conditions, material type, and mix parameters were less important. Ayres

re-analyzed the original Leahy data and added additional laboratory data to develop a predictive
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Table 3.6: Statistical Analysis of PCR and PCNN Modeling (na*: not applicable)

PCR PCNN

Statistics Fold 1 Fold 2 Fold 3 Fold 1 Fold 2 Fold 3

Training

AE 0 0 0 34.99 -242.99 46.19
AAE 1497.02 1705.55 1514.59 729.41 1350.87 944.83
rfit 0.83 0.82 0.85 0.96 0.87 0.94
R2 0.69 0.68 0.72 na* na* na*

Testing

AE 626.73 -129.91 -226.1 -98.24 149.2 -169.6
AAE 2007.47 1515.74 2110.64 694.53 719.9 1037.28
rfit 0.79 0.8 0.73 0.97 0.95 0.92
R2 na* na* na* na* na* na*

model with fewer input variables and a slightly lower R2 of 0.725 Bashin et al. (2012); ARA (2004).

Although the reported R2 values for both models seem reasonable, they did not use separate data

sets for training and testing possibly resulting in overfitted models. Also, as mentioned previously,

the ability of the model in fitting to the empirical data should be expressed in the rfit value and

not the R2 value.

In comparison with results from the literature, the overall performance of both the PCR and

PCNN models, as expressed in terms of the three test statistics used in the work, is significantly

higher than that of the previous prediction models used in the American Association of State

Highway and Transportation O�cials (AASHTO) design procedure.

Comparing the two best folds for training and testing stages indicates that although the PCR

modeling works well in predicting the response variable, PCNN produced the best results in both

training and testing. Since ANNs learn from data examples presented to them and use these

data to adjust their weights in an attempt to capture the relationship between the model input

variables and the corresponding outputs, ANNs require no prior knowledge about the nature of the

relationship between the input/output variables, this is one of the advantages of ANNs compared

with most empirical and statistical methods. Although PCNN indicates higher performance in
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terms of predicting the response variable, linear regression models are always easier to use so are

often preferred by designers.

3.4.2 Model validation

A general regression model for this study can be represented as

yi = f(Zi, ✓) + ei (3.23)

where f is the expectation function; ✓ is the vector of parameters, and ei is a random error term

assumed to be normally distributed with a mean of zero and unknown variance �2 for i = 1, . .

., n, where n is the number of input vectors. Violation of these assumptions and model adequacy

can be investigated by the examination of residuals as defined by

ei = yi � ŷi. (3.24)

Through analysis of residuals, many types of model inadequacies and violations of the underlying

assumptions can be assessed. If the model is adequate, the residuals should contain no obvious

pattern. Checking the normality assumption can be done by constructing a normal probability plot

of the residuals. If the underlying error distribution is normal, this plot will resemble a straight

line Devore (2011). These assumptions were checked for the best fold in each method, and the plot

of residuals for the best folds are presented in Figure 3.7. Since there is no obvious pattern in the

residual plot, the assumption of equal variances seems acceptable. The normal probability plots

of the residuals for both models are presented in Figure 3.8, and the data points are not too far

away from a straight line, so the normality assumption does not appear to be violated. Although

the criteria based on squared residuals as SSE, can give rise to misleading results when the initial

assumptions about normality or data being independent are violated Marti-Vargas et al. (2013),

the residual plot and normal probability plot of the residuals indicate that these assumptions in

this modeling problem hold well without concern.
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Figure 3.7: Plot of the residuals for the best fold of (a) PCR and (b) PCNN models

Figure 3.8: Normal probability plot.



63

Figure 3.9: Non-linear nature of PCNN function.

3.4.3 Application of the framework: Optimal design

3.4.3.1 Description of the problem and optimization algorithm

One application of the above framework is to find the optimal design parameters that minimize

the predicted value of accumulated strain. An appropriate optimization algorithm is required to

solve this problem reliably, and the inter-connected functions in ANN create a nonlinear objective

function that resemble the properties of a non-convex function leading to multiple local minima.

Figure 3.9 depicts the non-linear nature of the function (PCNN). In this figure accumulated strain

is plotted against pc4 while, other PCs are changing over their ranges. On the other hand, the

e↵ective variable space is restricted by the bounds defined using high-dimensional ellipsoids (for

original variables and principal component space variables) and this will add to the complexity of

the problem by introducing a number of constraints to the optimization problem.

Given the various aspects of the above problem, gradient-based optimization algorithms are

not useful, while a population-based evolutionary search algorithm represents a potentially active

area of the research. A number of novel techniques have been employed in recent years to solve
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complex real-world problems Talatahari et al. (2015); Rahami et al. (2011b); Aslani et al. (2010);

Ebrahimi et al. (2017). Elrich, et al. Rueda and Erlich (2015); Erlich et al. (2010), developed a new

optimization algorithm, called Mean-Variance Mapping Optimization (MVMO) that preserves an

archive of the best points that implicitly resemble elitism. This archive of best solutions provides

guidelines for a mapping algorithm based on the mean and variance of the archive on which the

mapping function depends. MVMO has the ability to carry out a global search using the best-so-far

solutions. It is initially designed to work with a single-solution on a normalized domain. While there

exist a vast number of optimization algorithms in the literature, in this study a constrained version

of MVMO algorithm is implemented to minimize the amount of accumulated strain in asphalt

pavements. Although, MVMO is an algorithm for unconstrained problems, Aslani et al. Aslani et al.

(2018) showed that constrained MVMO is an attractive tool for engineering-based optimization

problems with an improved convergence rate. The primary interest in the MVMO algorithm,

for this particular problem, is based on the rigorous numerical comparisons with some basic and

enhanced evolutionary algorithms which have shown that MVMO exhibits a better performance,

especially in terms of convergence speed (see Refs.Rueda and Erlich (2015); Erlich et al. (2010);

Aslani et al. (2018).)

In the present study, the constraints are the e↵ective space for input and PCA variables. If

a solution point (an extrapolated point outside the enclosing ellipsoid) violates the constraint the

penalty is applied through an adaptive quadratic function. The design optimization problem that

minimizes the accumulated strain in asphalt pavements is introduced as follows:

minimize ✏ = FANN (x)

with respect to x = (x1, ..., x17)

subject to (x� v)TA(x� v)  1,

(xpca � v0)TA0(xpca � v0)  1,

(3.25)

where ✏ is the accumulated strain; x is the vector of variables, and (x � v)TA(x � v)  1 is the

enclosing ellipsoid constraint equation for the original and mapped variables. A widely-practiced

approach is to use a penalty function that penalizes (increases, in the case of the minimization
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Table 3.7: User-defined parameters in MVMO single-solution

Parameter and Description Value

Archive Size (narchive) 6

Factor (fs) (Adaptive, f start
s = 0.8, ffinal

s = 2)

Increment (�di) (Adaptive, �dstart
i

= 0.01, �dfinal
i

= 0.4)
Number of mapped variables (mmapped) 6
No. of Iterations (Convergence criterion) 30,000

problem) the objective value for each constraint in proportion to its degree of closeness/violation of

the corresponding constraint. Similar to other algorithms, MVMO contains a number of parameters

which could potentially alter its convergence behavior. In this study, adaptive strategies are used

for control parameters including shape factor (fs) and the local increment size (�di) in order to

mimic exploration to exploitation behavior automatically. A number of initial tests are performed

to select the initial and final values of these parameters. Table 3.7 contains the parameters used

in this study for a single-solution MVMO algorithm. A larger archive size and number of mapped

variables will make the search more intensive, however, it will inversely a↵ect the performance of

the algorithm in terms of computational resources. Initial tests on this problem revealed that once

the number of archive size and mapped variables are above 6, then the final results converge and

the problem is independent of these control parameters.

It should be noted that given the uncertainty in the parameters of the ellipsoid, the above

penalty function is also prone to an uncertainty. If the threshold in Eq. 3.15 is �, then it can be

shown that for small values of �, the penalty function can be modified as follows:

(x� v)TA(x� v)  1� |�|max(si) (3.26)

where si = �
� 1

2
i

, is the principal semi-axes of the ellipsoid which will be di↵erent for original and

pseudo inputs.

Figure 3.10 shows the convergence history for the above problem solved using a constrained

MVMO algorithm. The algorithm starts with a random initial point and the objective function

decreases as the iteration evolves. MVMO uses adaptive strategies to mimic exploration and ex-
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Figure 3.10: Convergence study

ploitation strategies during optimization. MVMO is initiated with a random point and it is termi-

nated after executing 30,000 function evaluations. Multiple experiments have shown that the above

stopping criterion is su�cient for the algorithm to converge (when the change in the solution is not

significant). The convergence plot shows that the algorithm converges to virtually similar results

when � varies from 0.001 to 0.05. It should be noted that using relatively small values of � could

make the matrices in Algorithm 1 ill-conditioned.

Solving the optimization problem using PCNN predictive model over the available e↵ective

variables space produces a minimum value of accumulated strain of 1772 micro strain with cor-

responding material properties presented in Table 3.8. The constrained MVMO was used once

for PCR and a minimum value of accumulated strain of 4181 micro strain was obtained. Corre-

sponding design variables were also obtained but, since the PCNN produced better accuracy, those

results are not reported in this section. The constrained single-solution MVMO is implemented in

MATLAB and a serial simulation (calculation on a single core Intel processor with 2.60 GHz Clock

Speed) with 30,000 function evaluations takes around 400 seconds on and takes roughly 1.1 GB of

memory.
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3.4.3.2 Statistical description of solution and global optimum estimation

In order to verify the quality of the solution obtained using the optimization algorithm, 1000

MVMO simulations (each one initiated with a random point) are conducted. These tests are

performed following the parameters described for MVMO (see Section 3.4.3) and the threshold

parameter � is 0.005. Figure 3.11 (left) shows the accumulated strain (in micro strain unit)

obtained from each run. The statistical description of the 1000 runs is the following: the maximum

and minimum values are 1787.1 and 1765, respectively; the sample mean value is 1773; the standard

deviation of the sample is 4.19. A statistical approach is employed following Refs. LOMBARDERO

et al. (2012); Paya-Zaforteza et al. (2010) where extreme value theory based on Weibul distribution

is implemented to estimate the global optimum of the solution obtained by MVMO. The fitted

Weibul cumulative distribution function (cdf) parameters are ⌘ = 11.1212 (scale parameter) � =

2.570046 (shape parameter), and � = 1763.21 (location parameters). The fitted cdf is plotted in

Figure 3.11 (right) and compared to the experimental data obtained from MVMO. The di↵erence

between the estimated global minimum and the minimum obtained from MVMO is only 0.1%

which is small enough given the empirical nature of the predictive model and the application of

the current framework. Thus, the proposed optimal design (which successfully satisfy the design

consideration as discussed in the next section) can be used confidently as a sound starting point in

flexible pavement design problem.

3.4.3.3 Design considerations and discussion

Although there is no design specification for the amount of asphalt binder to be used in the

mixture, 4% by weight of total mix is reasonable for a nominal maximum aggregate size (NMAS) of

19 mm (3/4”). The percentage of aggregate passed by sieve size and located in the allowable ranges

of a typical gradation specification is presented in Figure 3.12 (The obtained aggregate gradation

is shown by the red line). The obtained percentage air void is 4%, the target value of the design

specification. Voids in mineral aggregate (VMA) for NMAS of 19 mm (3/8”) should be greater

than 13%, a condensation that was satisfied. The acceptable range for voids filled with asphalt
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Figure 3.11: The results for 1000 runs

(VFA) depends on the amount of tra�c, and for tra�c loading less than 0.3 million Equivalent

Single Axel Load(ESALs), VFA should be in a range between 70 and 80, for tra�c loading between

0.3 and 3 million ESALs, the range for VFA should be 65 to 78, and for tra�c loading greater than

3 million of ESALs, the range should be 65 to 75. The obtained VFA value of 76% is satisfied for

all the loading categories.

Recalling the PCNN’s higher prediction capability, the o↵ered optimum design parameter based

on PCNN would be more reliable as a design starting point. It is also worth pointing out that the

obtained optimum design parameters and minimal accumulated strain are based on the available

empirical database. Eventually, for creating a comprehensive predictive model, a large empirical

database is required for obtaining more reliable and applicable results. The purpose of this study

was to provide and introduce a framework that could be reproducible and easy to use for every

database.

3.5 Conclusions and recommendations

This study used the experimental data of permanent deformation of asphalt mixtures and

focused on evaluation and qualification of input variables to be used in further modeling. Cross-

correlated input variables are identified using correlation analysis and substituted by orthogonal

pseudo-inputs using a dimensionality reduction technique called PCA. This work compared mul-
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Figure 3.12: Optimal aggregate gradation graph

Table 3.8: Optimal design parameters

Variable Identity Optimal values from PCNN
Current design specification

Control points Restricted zone
Lower Upper Lower Upper

x1 Binder % 4 - - - -
x2 G* (Pa) 270190 - - - -
x3 NMAS 19 - - - -
x4 Passing 3/4” 92 90 100 - -
x5 Passing 1/2” 66 - 90 - -
x6 Passing 3/8” 65 - - - -
x7 Passing #4 58 - - - -
x8 Passing #8 50 23 49 34.6 34.6
x9 Passing #16 39 - - 22.3 28.3
x10 Passing #30 27 - - 16.7 20.7
x11 Passing #50 9 - - 13.7 13.7
x12 Passing #100 4 - - - -
x13 Passing #200 3 2 8 - -
x14 VMA 16 13 - - -
x15 VFA 76 65 80 - -
x16 Va% 4 4 4 -
x17 E*(Mpa) 713 - - - -
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tivariate regression and ANN modeling of a small set of pseudo-variables determined from PCA

(PCR and PCNN, respectively). Both proposed approaches modeled the amount of permanent

deformation satisfactorily with PCNN fitting the test data significantly better. A simple method is

developed to characterize the e↵ective variable space because empirical-based predictive models can

lead to spurious values under extrapolation. The obtained n-dimensional enclosing ellipsoid is de-

fined as the e↵ective variable space in which both predictive models can be used while guard against

extrapolation. Nonetheless, both approaches showed better performance as modeling tools than

other regression-based approaches that use standard variables in the AASHTO design procedure.

These PCA-based approaches are therefore strongly recommended as sound modeling approaches

in this application. Moreover, these methodologies appear to also have much promise in modeling

other material properties at other e↵ective temperatures and such investigations are recommended

as future studies. To present one of this framework’s applications, an optimization problem of

finding minimum accumulated strain over the e↵ective variable space is defined and solved. The

value of 1772 micro-strain is obtained as the minimum accumulated strain and the design parame-

ters corresponding to this minimum value are calculated for PCNN. The results meet the flexible

pavement design specifications and could be used as a sound starting point in the design procedure.

The proposed approach is applicable for predictive modeling problems with correlated inputs and

when seeking to use the model to map back to input space, without extrapolation, to find an input

vector for near optimal response. Future research would address the scalability and e�ciency of

the method in other modeling problems, particularly for larger data sets.
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CHAPTER 4. PRINCIPAL COMPONENT NEURAL NETWORKS FOR

MODELING, PREDICTION, AND OPTIMIZATION OF HOT MIX

ASPHALT DYNAMICS MODULUS

A paper published at the Journal of Infrastructure, MDPI

4.1 Abstract

The dynamic modulus of hot mix asphalt (HMA) is a fundamental material property that

defines the stress-strain relationship based on viscoelastic principles and is a function of HMA

properties, loading rate, and temperature. Because of the large number of e�cacious predictors

(factors) and their nonlinear interrelationships, developing predictive models for dynamic modulus

can be a challenging task. In this research, results obtained from a series of laboratory tests includ-

ing mixture dynamic modulus, aggregate gradation, dynamic shear rheometer (on asphalt binder),

and mixture volumetric are used to create a database. The created database is used to develop

a model for estimating the dynamic modulus. First, the highly correlated predictor variables are

detected, then Principal Component Analysis (PCA) is used to first reduce the problem dimension-

ality, then to produce a set of orthogonal pseudo-inputs from which two separate predictive models

were developed using linear regression analysis and Artificial Neural Networks (ANN). These models

are compared to existing predictive models using both statistical analysis and Receiver Operating

Characteristic (ROC) Analysis. Empirically-based predictive models can behave di↵erently outside

of the convex hull of their input variables space, and it is very risky to use them outside of their

input space, so this is not common practice of design engineers. To prevent extrapolation, an input

hyper-space is added as a constraint to the model. To demonstrate an application of the proposed

framework, it was used to solve design-based optimization problems, in two of which optimal and

inverse design are presented and solved using a mean-variance mapping optimization algorithm.
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The design parameters satisfy the current design specifications of asphalt pavement and can be

used as a first step in solving real-life design problems.

4.2 Introduction

The stress-strain relationship for asphalt mixtures under sinusoidal loading can be described

by the dynamic modulus, |E⇤|, a function of material’s components properties, loading rate, and

temperature Ghasemi (2018); Birgisson et al. (2004b). The dynamic modulus is one of the pri-

mary design inputs in Pavement Mechanistic-Empirical (M-E) Design to describe the fundamen-

tal linear viscoelastic material properties Arabali et al. (2017); Bozorgzad et al. (2017); Guide

(2004), and is one of the key parameters used to evaluate rutting and fatigue cracking distress

predictions in Mechanistic-Empirical Pavement Design Guide (MEPDG) Guide (2004); AASHTO

(2008). Although |E⇤| has a significant role in pavement design, the associated test procedure is

time-consuming and requires expensive equipments, so extensive e↵ort has been extended to predict

|E⇤| from hot mix asphalt (HMA) material properties Nobakht and Sakhaeifar (2018); Peng et al.

(2019); Shu and Huang (2008).

Predictive modeling is a process of estimating outcomes from several predictor variables using

data mining tools and probability theory. An initial model can be formulated using either a

simple linear equation or a more sophisticated structure obtained through a complex optimization

algorithm Devore (2011).

There are several well-known predictive models for dynamic modulus, some of them are re-

gression models, and some more recent ones have used techniques that include Artificial Neural

Networks (ANN) and genetic programming El-Badawy et al. (2018). Andrei et al. Andrei et al.

(1999), used 205 mixtures with 2750 data points and revised the original Witczak model, and

the developed model has subsequently been reformulated to use binder shear modulus rather than

binder viscosity Bari and Witczak (2007). Christensen et al. Christensen Jr et al. (2003), developed

a new |E⇤| predictive model based on the law of mixtures. The data base used for training the

model contained 206 |E⇤| measurements from 18 di↵erent HMA mixtures. Jamrah et al. Jamrah



77

et al. (2014), attempted to develop improved |E⇤| predictive models for HMA used in the State of

Michigan. They observed a significant di↵erence between measured and fitted |E⇤| values, especially

at high temperatures and low frequencies. Alkhateeb et al. Al-Khateeb et al. (2006), developed a

new predictive model from the law of mixtures to be used over broader ranges of temperature and

loading frequencies, including higher temperatures/lower frequencies. The predictor variables used

in that model were Voids in Mineral Aggregate (VMA) and binder shear modulus (G⇤).

Sakhaeifar et al. Sakhaeifar et al. (2017), developed individual temperature-based models for

predicting dynamic modulus over a wide range of temperatures. The predictor variables used

in their model were aggregate gradation, VMA, Voids Filled with Asphalt (VFA), air void (Va),

e↵ective binder content (Vbeff ), G⇤, and binder phase angel (�).

The existing dynamic modulus predictive models in the literature typically use two or more

predictors from the following list: aggregate gradation, volumetric properties, and binder shear

properties. These predictor variables are not necessarily an independent set of variables and thus

it may not be appropriate for use in developing models. Since cross-correlated inputs in a dataset

can unfavorably a↵ect the accuracy of a predictive model by unduly a↵ecting the estimation of

their causative e↵ects on the response variable, a pre-processing step of data evaluation would

be useful for studying the quality of the input variables and their pair-wise correlations Ghasemi

et al. (2018b). Principal Component Analysis (PCA) is a multivariate statistical approach that

not only reduces the dimensionality of the problem but also converts a set of correlated inputs to

a set of orthogonal (pseudo-)inputs using an orthogonal transformation Ren et al. (2019). During

such a transformation, PCA maximizes the amount of information of the original dataset X by

using a smaller set of pseudo-variables Fodor (2002); Johnson et al. (2014). Another issue in all of

the predictive models is extrapolation that can be risky because a model might behave di↵erently

outside of the convex hull that contains all of the data points used for its training. To avoid using

points outside of this convex hull, a hyper-space containing all data points can be found and added

as a constraint on the desired modeling problem.
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Ghasemi et al. Ghasemi et al. (2018a), developed a methodology for eliminating correlated

inputs and extrapolation in modeling; they created a laboratory database of accumulated strain

values of several asphalt mixtures and used the resulting framework to estimate the amount of

permanent deformation (rutting) in asphalt pavement. Following their new PCA-based approach,

this study focuses on developing a machine-learning based framework for predicting the dynamic

modulus of HMA using orthogonal pseudo-inputs obtained from principal component analysis.

Unlike most of the existing |E⇤| predictive models, the proposed framework uses di↵erent data sets

for model training and performance testing. To avoid extrapolation, an n-dimensional hyperspace is

developed and added as a constraint to the modeling problem. This study also claims to determine

the optimal HMA design and design variables for a pre-specified |E⇤| by applying framework using

an evolutionary-based optimization algorithm. It is worth pointing out that, unlike other predictive

models, the proposed framework is not site-specific and also not limited to the materials used in

the American Association of State Highway and Transportation O�cials (AASHTO) road test, i.e.,

this framework can adjust itself based on the dataset presented to the framework. The need for a

more robust and general framework for performance prediction in asphalt pavement also stems from

the availability of the vast amount of experimental data in this field. In this work, the developed

framework operates in such a spirit and improves the accuracy of available models via machine

learning-based approaches.

The remainder of the document is organized as follows: Section 4.3 presents material and

methodology, followed by Section 4.4 that covers results and discussion. Two examples of the

proposed framework’s applications are discussed in Section 4.5, followed by conclusions presented

in Section 4.6.

4.3 Material and Methodology

Twenty-seven specimens from nine di↵erent asphalt mixtures (three replicates for each mixture

group) were used in this study. Using AASHTO TP 79-13 the dynamic modulus test was performed

at three temperatures (0.4, 17.1, and 33.8 �C) and nine loading frequencies (25, 20, 10, 5, 2, 1, 0.5,
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Table 4.1: General mixture properties of nine asphalt mixtures used in this study.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9

Binder performance grade 58–28 58–28 58–28 58–34 58–34 58–34 64–28 64–34 64–28
% Vbeff 4.20 4.10 4.10 3.90 3.50 4.30 4.20 4.00 4.60
%VMA 13.50 13.50 13.60 13.10 12.50 13.90 13.70 13.40 14.40
% VFA 70.30 70.40 70.60 69.60 68.10 71.20 70.80 70.20 72.30
Gmb 2.32 2.31 2.31 2.32 2.31 2.32 2.31 2.32 2.31
Gmm 2.41 2.46 2.51 2.48 2.64 2.46 2.48 2.51 2.44
% Va 4.01 3.99 3.99 3.98 3.98 4.03 4 3.99 3.98
% passing 3/400 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
% passing 1/200 93.90 96.40 87.20 93.50 95.10 96.40 94.10 94.40 94.20
% passing 3/800 77.50 84.60 73.70 76.40 83.10 87.30 83.40 82.00 80.90
% passing #4 49.80 53.10 48.40 52.20 52.20 60.90 63.80 48.20 58.60
% passing #8 34.40 38.40 35.10 43.60 38.80 46.90 47.10 34.90 46.00
% passing #30 16.70 18.70 17.90 20.90 18.80 23.40 21.70 19.20 25.90
% passing #50 10.30 10.80 10.90 11.40 9.90 12.40 11.90 11.80 13.80
% passing #100 6.10 5.90 6.40 5.80 5.40 6.10 6.60 6.10 7.20
% passing #200 3.60 3.30 6.20 3.30 3.50 3.40 4.00 3.10 4.00

0.2, 0.1 Hz). The maximum theoretical specific gravity (Gmm), the bulk specific gravity (Gmb),

and the e↵ective binder content (Vbeff ) were determined and used to calculate other volumetric

properties of the asphalt mixtures.Asphalt binder shear properties were obtained from a dynamic

shear rheometer (DSR) test. Using ASTM D7552-09(2014) the test was performed over a wide range

of temperatures (�10 to 54 �C) and frequencies (0.1 Hz to 25 Hz), the same test temperatures and

loading frequencies used in the mixture dynamic modulus test. It is important to note that this

study uses a consistent definition of frequency, and that in order to predict the dynamic modulus

value of an asphalt mixture for example at 4 �C and 25 Hz, for example, one should use as a model

input the complex shear modulus of asphalt binder, |G⇤|, at 4 �C and 25 Hz. A summary of the

nine di↵erent mixture properties is given in Table 4.1. Using the laboratory test results on 27

specimens, a database of 243 data points was created for use in further modeling.

4.3.1 Preliminary Processing Step: Input Variable Selection

A parsimonious set of input variables is required to develop a model Fodor (2002). For a common

model structure, one can represent the expectation function of the response as yi = fi(xi, ✓), where

yi is the expected response variable at the ith measurement, i = 1, . . . , n, xi is the input vector
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at the ith measurement, and ✓ is the vector of unknown model parameters with ✓ = [✓1 . . . ✓q]
T . It

is assumed that the element in the ith row and jth column of the Jacobian matrix , J, is @⌘i
@✓j

i.e.,

J =
n

@⌘i
@✓j

o
. Note that the jth column represents ✓j and its column vector reflects the variation in

the response space as ✓j varies over a specific set of experimental conditions. If j and k are two

orthogonal columns, their correlation coe�cient (r) must be zero, meaning that the information

used to estimate ✓j is independent from the information used to estimate ✓k and vice versa. The

benefit of using orthogonal input variables is that not only does it result in consolidation of causative

e↵ects of inputs on the output but it also maximizes parameter accuracy and therefore estimation

accuracy of the predicted output.

According to the literature Andrei et al. (1999); Bari and Witczak (2007); Christensen Jr et al.

(2003); Al-Khateeb et al. (2006); Kim et al. (2011); Sakhaeifar et al. (2017, 2015); El-Badawy

et al. (2018), the sti↵ness characteristic of an asphalt mixture presented by a dynamic modulus

can be estimated by its component properties. In this study, the input variables vector (x) defines

the asphalt mixture’s component properties. A summary of the selected input variables and their

ranges in the dataset is presented in Table 4.2 with the xi’s and y being the input and output

variables, respectively.



81

Table 4.2: Selected input variables (x) and output variable (y)

Variable Identity Min. Max. Ave. Std. Dev.

y Log|E⇤| 2.62 4.37 3.76 0.46

x1 Cum. % retained on 3/400 3.60 13.00 6.11 2.63

x2 Cum. % retained on 3/800 12.68 26.29 19.01 4.11

x3 Cum. % retained on #4 36.20 51.76 45.86 5.319

x4 Cum. % retained on #8 52.87 65.70 59.42 5.06

x5 Cum. % retained on #30 74.06 83.30 79.63 2.76

x6 Cum. % retained on #50 86.22 90.12 88.57 1.15

x7 Cum. % retained on #100 92.81 94.59 93.83 0.48

x8 % Passing from #200 3.07 6.18 3.81 0.89

x9 Log|G⇤| �2.29 3.03 0.50 1.26

x10 Phase angle (degree) 28.15 79.17 52.86 11.54

x11 %Vbeff 3.50 4.60 4.10 0.29

x12 %VMA 12.50 14.40 13.51 0.49

x13 %VFA 68.10 72.30 70.40 1.08

x14 %Va 3.98 4.01 3.99 0.01

Cross-correlation analysis is performed on the 14 selected predictor variables and the obtained

pairwise correlation matrix is given in Table 4.3 along with the schematic heat map of the correlation

matrix given by Figure 4.1. Correlation coe�cients with absolute values of 0.5 or higher are

displayed in bold red text. The corresponding cells in the correlation heat map are shown in dark

blue and dark red as shown in Figure 4.1. According to Table 4.3, the absolute values of the 130

correlation coe�cients are greater than 0.1, with 50 of them greater than 0.5, indicating that several

of the input variables give an impression of being highly correlated. The correlation heat map also

clearly indicates that a high level of correlation (dark blue and dark red cells) exists within the input
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Figure 4.1: Heat map

variables. If the correlated input variables are detected, to enable accurate mapping of the inputs

to the response variable, it would be useful to produce a smaller set of orthogonal pseudo-variables

using the PCA method and use them in model development Fodor (2002).

4.3.2 Orthogonal Transformation Using PCA

In multivariate statistics, PCA is an orthogonal transformation of a set of (possibly) correlated

variables into a set of linearly uncorrelated ones, and the uncorrelated (pseudo-) variables, called

principal components (PCs), are linear combinations of the original input variables. This orthog-

onal transformation is performed such that the first principal component has the greatest possible

variance (variation within the dataset). This procedure is then followed for the second component,

then the third component, etc. This means that each succeeding component in turn has the highest

variance when it is orthogonal to the preceding components Rollins et al. (2006); Jolli↵e (2002);

Kuźniar and Waszczyszyn (2006); Hua et al. (2007). To help visualize the PCA transformation,

a schematic dataset with three input variables is presented in Figure 4.2 (left). As shown in this

figure, in conducting PCA the data points are transferred from the original 3D original input space

(on the left) to a 2D principal component space (on the right).
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Table 4.3: Pairwise Correlation Matrix for the Selected Input Variables.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

x1 1 0.832 0.412 0.366 0.294 0.119 �0.269 0.905 �0.044 �0.058 0.003 0.04 0.049 0.013
x2 0.832 1 0.597 0.458 0.391 0.246 �0.109 0.583 �0.035 0.106 �0.061 �0.099 �0.089 �0.115
x3 0.412 0.597 1 0.918 0.756 0.596 0.425 0.133 �0.019 0.154 �0.465 �0.485 �0.49 �0.111
x4 0.366 0.458 0.918 1 0.87 0.687 0.375 0.169 �0.028 0.237 �0.388 �0.412 �0.424 0.212
x5 0.294 0.391 0.756 0.87 1 0.919 0.618 0.112 �0.021 0.235 �0.585�0.631�0.633 0.3
x6 0.119 0.246 0.596 0.687 0.919 1 0.794 �0.009 0.003 0.203 �0.741�0.796�0.806 0.209
x7 �0.269�0.109 0.425 0.375 0.618 0.794 1 �0.414 0.036 0.047 �0.854�0.886�0.892�0.087
x8 0.905 0.583 0.133 0.169 0.112 �0.009 �0.414 1 �0.032 �0.102 0.179 0.238 0.238 0.142
x9 �0.044�0.035�0.019�0.028 �0.021 �0.003 0.036 �0.032 1 �0.808 0.021 0.016 0.013 0.034
x10 �0.058 0.106 0.154 0.237 0.235 0.203 0.047 �0.102�0.808 1 0.09 0.024 0.014 0.3
x11 0.003 �0.061�0.465�0.388�0.585�0.741�0.854 0.179 0.021 0.09 1 0.988 0.985 0.372
x12 0.04 �0.099�0.485�0.412�0.631�0.796�0.886 0.238 0.016 0.024 0.988 1 0.998 0.321
x13 0.049 �0.089 �0.49 �0.424�0.633�0.806�0.892 0.238 0.013 0.014 0.985 0.998 1 0.301
x14 0.013 �0.115�0.111 0.212 0.3 0.209 �0.087 0.142 0.034 0.3 0.372 0.321 0.301 1

PC1

x1

x2
x3

PC1

PC2
PC2

Transferring data from 
original space to principal 
component space with 
conducting PCA

Data points are projected 
in a way that the object 
is viewed from its most 
informative view point

The directions in which data 
has the most variance are 
presented with PC1 and PC2 
respectively 

Original data space Principal component space

Figure 4.2: Schematic of the PCA transformation.

PCA can be performed either by eigenvalue decomposition of a data covariance (or correlation)

matrix or by singular value decomposition. The process usually begins with mean centering the

data matrix (and normalizing or using Z -scores) for each attribute as follows:
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(4.1)

where for k = 1 to n and j = 1 to p, xkj is the kth measurement for the jth variable, xk is

the sample mean for the kth variable, and sk is sample standard deviation for the kth variable.

As discussed in the previous section, highly correlated input variables lead to inflation of the

standard error of estimate, negatively a↵ecting the accuracy of the estimation. PCA will help us not

only reduce the dimensionality of the modeling problem, but will also produce orthogonal pseudo-

variables to be used in solving the problem. To perform PCA in this study we used eigenvalue

decomposition of the correlation matrix of the data. The eigenvalues of the data correlation matrix

are calculated, ranked, and sorted in descending order (representing their quota of the total variation

within the dataset), as presented in Table 4.4. According to the eigenvalues, the first five PCs

represent 95.8% of the existing variation within the dataset.

Recalling the fact that the PCs are linear combinations of the original input variables, the PCs

can be defined as in Eq. (4.2):

pci =
14X

j=1

↵ijxj + �i (4.2)

where i = 1 to 14 , the ↵ij is the corresponding coe�cients, the �i are constants, and the xj are

the original input variables. Equation (4.2) can be stated in matrix notation as in Eq. (4.3):

p = Mz+ n (4.3)

where



85

p =

2

666666666664

pc1

pc2

pc3

pc4

pc5

3

777777777775

MT =

2

66666666666666666666666666666666666666664

0.03 0.19 �0.08 �0.06 �0.09

0.03 0.11 �0.04 �0.05 0.04

0.06 0.04 0.00 0.00 0.10

0.06 0.05 0.02 0.04 0.07

0.13 0.06 0.05 0.09 �0.01
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�1.26 0.64 0.52 0.61 0.67
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(4.4)

n =

2

666666666664

�55.95

�58.54

�218.20

�352.79

174.78

3

777777777775

Further modeling e↵orts will be performed using the first five PCs.
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Table 4.4: Eigenvalues of the normalized input variables matrix.

Number Eigenvalue Percent Variation Cumulative Percent Variation

1 6.0225 43.018 43.018
2 3.2193 22.995 66.013
3 1.9746 14.104 80.118
4 1.4174 10.124 90.242
5 0.7850 5.607 95.848
6 0.3176 2.269 98.117
7 0.1091 0.779 98.896
8 0.0778 0.556 99.452
9 0.0549 0.392 99.844
10 0.0218 0.156 100

4.3.3 Holdout Cross Validation

In prediction problems, cross validation will be used to estimate model accuracy. Cross valida-

tion is a model validation technique that can be used to prevent overfitting as well as to assess how

the results of a statistical analysis can be generalized to an independent dataset. In this study, a

holdout cross validation technique is used in which the given dataset is randomly assigned to two

subsets, d0 and d1, the training set and the test set, respectively. Since the training set contains

80% of the data points and the test set contains 20% of the data points, 80% of the data points are

used to train the model and the remainder are used to evaluate the trained model’s performance.

4.3.4 Principal Component Regression (PCR)

Linear regression attempts to model the relationship between response variables and explanatory

variables by fitting a linear equation to observed data. In regression analysis, the least-squares

method is used to calculate the best fitting line for the observed data by minimizing the sum of

the squares of the residuals (di↵erences between the measured responses and the fitted values by a

linear function of parameters).

All possible regression structures were considered for representing the relationship between the

response variable, log|E⇤|, and predictor variables (pc1, pc2, pc3, pc4, and pc5). To estimate the

values of the unknown coe�cients in the model, the least-squares criterion of minimizing the sum of
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squared residuals (SSE) is used. Finally, after eliminating redundant terms, the reduced third order

cubic and interaction terms were developed and selected as the best-fitted model. The developed

model is called “Principal Component Regression (PCR)”.

4.3.5 Principal Component Neural Network (PCNN)

A predictive model called “Principal Component Neural Network (PCNN)” is developed as

briefly described in this section. ANNs are brain-inspired systems intended to replicate the way

humans learn. Neural network structures consist of several layers, including input layers, out-

put layers, and hidden layer(s), with nodes (neurons) in each layer Kartam (1994); Sanabria et al.

(2017); Gong et al. (2018); Fathi et al. (2019). A three-layer feed-forward neural network is de-

veloped for this study. It consists of an input layer of five neurons (five input variables), a hidden

layer of 10 neurons, and an output layer of one neuron (one response variable). A trial-and-error

procedure of optimizing the computational time and cost function is used to choose the number of

hidden neurons. In this study supervised learning is used in which a training dataset, including

inputs and outputs, is presented to the network. The network adjusted its weights in such a way

that the adjusted set of weights produces an input/output mapping resulting in the smallest error.

This iterative process is carried on until the sum of square residuals (SSE) increases. After the

learning or training phase, the performance of the trained network must be measured against an

independent (unseen) testing data Cheng and Titterington (1994a); Kartam (1994). Let the input

of each processing node be pci, the adjustable connection weight be wij , and let the bias at output

layer be b0, so that the network transfer (activation) function is f(.). The jth output of the first

layer can be obtained using Eq. (4.5)

⌫j = f1(pci, wij), i = 1, ..., 5 and j = 1, ..., 10 (4.5)

and the response will be

ŷ = f2 (f1(pci, wij)) . (4.6)
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If we assume that

f2(⌫j , wHj) = b0 +
X

j

⌫jwHj , (4.7)

and for each j,

f1(pci, wij) = bHj +
X

j

pciwij , (4.8)

then a feed-forward neural network can be formulated as follows:

ŷ = f2

8
<

:b0 +
nX

j=1

"
wHj · f1

 
bHj +

mX

i=1

pciwij

!#9=

; , (4.9)

where pci is pseudo input parameter i, wij is the weight of connection between input variable i

(for i = 1 to 5) and neuron j of the hidden layer, b0 is a bias at the output layer, wHj is the weight

of connection between neuron j of the hidden layer and output layer neuron, bHj is a bias at neuron

j of the hidden layer (for j = 1 to 10), and f1(t) and f2(t) are transfer functions of the hidden layer

and output layer, respectively.

It should be pointed out that iteration proceeds until the convergence criterion is met. Thus, sim-

ilar to the linear regression model, the validation set is not used. The Bayesian Regularization

algorithm is used to achieve network training e�ciency.

4.3.6 E↵ective Variable Space

It is widely known that the use of an empirical predictive model outside the convex hull contain-

ing the data points is prohibited. In this context, e↵ective variable space is referred to the space

where the uncertainty of the developed models is bound to their already calculated thresholds. In

other words, outside of this region, the extrapolated behavior of the models may not be predictable.

To guard against extrapolation, Ghasemi et al. Ghasemi et al. (2018a) concluded that the space

containing input data could be interpreted as a symmetrical convex space, then demonstrated how

this space can be used in the design procedure.

Following the approach in Ghasemi et al. (2018a), a normal distribution is assumed for each

input variable (xi), resulting in their joint distribution being bi-variate normal, and such distribu-

tions are usually represented in form of a contour diagram. Since a contour curve on such a diagram
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contains the points on a surface with the same distance from the xixj plane, these points have a

constant density function Kutner et al. (2004) (see Figure 4.3 for an example of such distribution).

The cross section is obtained by slicing a bi-variate normal surface at a constant distance from

the xixj plane. As indicated in Figure 4.3, the n-dimensional hyperspace is a hyper-ellipsoid with

minimum volume (to avoid any gaps in the edges).

Figure 4.3: A schematic of a bivariate normal distribution.

Khachiyan’s work Todd and Yıldırım (2007) formulates the problem of finding an approximate

minimum volume enclosing ellipsoid (E) given p data points in n-dimensions as an optimization

problem. In Ghasemi et al. Ghasemi et al. (2018a), the authors detailed the derivation of a proce-

dure for solving this problem and obtaining its e↵ective variable space. For brevity, the flowchart

in Figure 4.4 summarizes this iterative method for finding the minimum volume enclosing ellipsoid.

This algorithm was used to find two enclosing ellipsoids in the primary space (14-dimensional)

and the pseudo space (5-dimensional) of the dataset. It should be pointed out that this space is

independent of the predictive models and is used only to solve the optimal (and inverse) design

problems.

4.3.7 Guideline for Implementation

A summary of the methodologies used to develop the framework is presented in Figure 4.5.

The procedure begins with collecting experimental data from the laboratory, followed by the pre-
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Figure 4.4: Iterative method to solve the problem

processing step of input variable evaluation. The flowchart continues with the model development

and the addition of a constraint on the n-dimensional input variable hyperspace to the modeling

problem. The developed models can then be used to predict pavement performance, solve design-

based optimization problems, etc. There are a number of aspects of the proposed framework that

can be achieved using free and commercially available software like MATLAB R�, Python, and R

packages, and one may implement many parts of the framework in the language of their interest.

For example, the algorithm to find the n-dimensional hyper-ellipsoid is very straightforward using

the flowchart in Figure 4.4.

4.4 Developed Model Results, Performance, and Validation

The results produced by the developed models are presented in this section, and their capability

to use empirical data to estimate the dynamic modulus of asphalt mixtures is evaluated.
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Figure 4.5: A summary of the methodologies used.
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4.4.1 Model Performance

The performance is first compared with the existing predictive models; modified Witczak,

Hirsch, and Alkhateeb models selected from the literature are presented in Equations (4.10)–(4.13),

respectively Bari and Witczak (2007); Christensen Jr et al. (2003); Al-Khateeb et al. (2006)

log |E⇤| = �0.349 + 0.754(|G⇤
b
|�0.0052)(6.65� 0.032⇢200 � 0.0027(⇢200)

2+

0.011⇢4 � 0.0001(⇢4)
2 + 0.006⇢3/8 � 0.00014(⇢3/8)

2 � 0.08Va � 1.06(
Vbeff

Vbeff + Va

))

+
2.558 + 0.032Va + 0.713(

Vbeff

Vbeff+Va
) + 0.0124⇢3/8 � 0.0001(⇢3/8)

2 � 0.0098⇢3/4

1 + exp(�0.7814� 0.5785 log |G⇤
b
|+ 0.8834 log �b)

(4.10)

where |E⇤| is dynamic modulus in psi; |G⇤| is the binder shear modulus in psi; �b is the binder

phase angle in degrees; ⇢3/4 is the cumulative percent aggregate retained on the 3/400 sieve (19 mm);

⇢3/8 is the cumulative percent aggregate retained on the 3/800 sieve (9.5 mm); ⇢4 is the cumulative

percent aggregate retained on the No. 4 sieve (4.75 mm); ⇢200 is the percent aggregate passing

the No. 200 sieve (0.075 mm); Va is the percent air void in the mix; Vbeff is the e↵ective asphalt

content; VMA is the percent of voids in the mineral aggregate, and VFA is the percent voids filled

with asphalt,

|E⇤
m| = Pc

✓
4, 200, 000(1� VMA

100
) + 3|G⇤|b(

V FA⇥ VMA

10, 000
)

◆
+

(1� Pc)
1�V MA

100
4,200,000

+ VMA

3|G⇤
b |(V FA)

(4.11)

where

Pc =
(20 + 3|G⇤

b
|(V FA)/(VMA))0.58

650 + (3|G⇤|b(V FA)/(VMA))0.58
(4.12)

and |E⇤|m is dynamic modulus of HMA in psi; Pc is the aggregate contact volume; VMA is the

percentage of mineral aggregate voids in compacted mixture; and VFA is the percentage of voids

filled with asphalt in the compacted mixture,

|E⇤
m| = 3(

100� VMA

100
)(

(90 + 1.45 |G⇤|b
VMA

)0.66

1100 + (0.13
|G⇤

b |
VMA

)0.66
)|G⇤

g| (4.13)
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where |E⇤
m|, |G⇤

b
|, and |G⇤

g| (the complex shear modulus of binder in the glassy state, assumed to be

109 Pa.) are in Pa. Equation (4.14) shows the best reduced third-order (linear) regression model

(PCR) fitting the measured response:

ŷ =c0 + c1pc1 + c2pc2 + c3pc3 + c4pc4 + c5pc5

+ c6pc1pc2 + c7pc1pc3 + c8pc1pc4 + c9pc1pc5

+ c10pc2pc3 + c11pc2pc4 + c12pc2pc5 + c13pc3pc4

+ c14pc3pc5 + c15pc4pc5 + c16pc1pc2pc3 + c17pc1pc2pc4

+ c18pc1pc2pc5 + c19pc1pc3pc4 + c20pc1pc3pc5 + c21pc2pc3pc4

+ c22pc1pc4pc5 + c23pc2pc4pc5 + c24pc3pc4pc5

(4.14)

where, c0 = 6.59; c1 = 2.58; c2 = 4.4; c3 = �0.36; c4 = 0.49; c5 = 1.93; c6 = �0.33; c7 = �0.77;

c8 = �1.69; c9 = 0.15; c10 = �1.65; c11 = �4.68; c12 = 4.81; c13 = 0.7; c14 = �0.85; c15 = �1.58;

c16 = �0.17; c17 = �0.79; c18 = 1.83; c19 = 0.04; c20 = 0.18; c21 = 0.42; c22 = 0.05; c23 = 0.32;

c24 = 0.06. The trained three-layer ANN (PCNN) presented in Equation (4.9) contains the following

connection weights and biases:

WT =

2

66666666666666666666666666664

�0.511 0.134 0.654 �1.064 �0.267

�0.315 �0.147 �0.267 0.177 �1.047

�0.060 �1.266 0.759 �1.248 �0.331

�0.075 0.022 0.208 0.015 0.167

�0.074 0.022 0.206 0.015 0.165

0.103 �0.177 1.253 �1.045 0.535

0.078 �0.020 �0.231 �0.014 �0.172

0.238 0.070 �0.885 0.848 0.943

0.123 0.456 �0.387 1.547 �0.017

�0.079 0.020 0.213 0.014 0.173

3

77777777777777777777777777775
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WH =

2

66666666666666666666666666664

0.869

�0.886

0.632

�0.291

�0.288

�0.859

0.299

0.556

0.971

�0.299

3

77777777777777777777777777775

, BH =

2

66666666666666666666666666664

0.162

0.710

0.319

�0.008

�0.009

�0.570

0.007

0.290

�0.373

�0.007

3

77777777777777777777777777775

, B0 = [0.148]

Figure 4.6 presents the performance of the developed models in terms of measured values of

dynamic modulus versus the fitted dynamic modulus values. The measured and fitted values are

fairly close to the line of equality, indicating that the fitted values are highly correlated with the

measured ones.
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Figure 4.6: Measured values of dynamic modulus .
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Table 4.5: Statistics which are used to compare model performance.

Statistical Component Formula Definition

Average di↵erence (AD) AD = 1

n

P
n

i=1
(yi � ŷi) An estimate of systematic model bias

Average absolute
di↵erence (AAD)

AAD = 1

n

P
n

i=1
|yi � ŷi|

Average closeness of the fitted and
measured values of response

rfit rfit =
n
Pn

i=1 yiŷi�(
Pn

i=1 yi)(
Pn

i=1 ŷi)p
n
Pn

i=1 y
2
i �(

Pn
i=1 yi)

2
p

n
Pn

i=1 ŷ
2
i �(

Pn
i=1 ŷi)

2

Correlation of the measured and fitted
values of response

Coe�cient of
determination (R2)

R2 = 1� SSres
SStotal

Portion of the response variation
elucidated by regressors in the fitted
model in linear models

Comparisons of PCR and PCNN performance to that of the existing predictive models are

conducted based on three statistics: average di↵erence (AD), average absolute di↵erence (AAD),

and correlation between measured and fitted values of response (rfit). A summary of the definitions

of these statistical components and their formulas is presented in Table 4.5. In the formulas

presented in Table 4.5, yi is the ith measured response, ŷi is the ith fitted response, and n is the

number of data points.

The results of the comparison are presented in Table 4.6. According to the values of rfit in

Table 4.6, the estimated dynamic modulus values obtained form PCR and PCNN models are highly

correlated with measured values according to the values, showing that the both PCR and PCNN

performed well in terms of modeling the response variable.

Although the corresponding values of rfit for modified Witczak, Hirsch, and Alkhateeb models

are 0.93, 0.95, and 0.95, respectively, the average di↵erence and average absolute di↵erence with

respect to the measured response are significantly higher than those of PCR and PCNN. This means

that the fitted values by the modified Witczak, Hirsch, and Alkhateeb models are not close as those

fitted by PCR and PCNN to the response value. In other words, rfit, which reflects the correlation

between response and estimated response (if one goes up the other one goes up), could be biased,

and in this situations other statistics (AD, and AAD) could be used to evaluate the goodness of fit.

The dynamic modulus measured and predicted values are presented in Figure 4.7 for four asphalt

mixtures. According to the presented master curves the current study (PCNN model) provides the
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Table 4.6: Performance comparison of the developed and existing models.

Average Di↵erence (MPa) Average Absolute Di↵erence (MPa) rfit R2

PCR
Training 3.9 575.3 0.996 0.99
Testing �162.3 718.9 0.995 na

PCNN
Training 13.2 380.7 0.997 na
Testing 9.7 337.5 0.997 na

Modified Witczak �2460 3152.1 0.93 0.88
Hirsch 1241.6 1785.7 0.95 0.91

Alkhateeb 2844.5 2984.5 0.95 0.90

closest values of E⇤ to the measurements for all of three test temperatures, while, the conventional

models either overestimate or underestimate the response variable.

Figure 4.7: Comparing the measured and predicted dynamic modulus.
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A graphical comparison of the PCR and PCNN performance and that of the existing models is

presented in the following section.

4.4.2 Receiver Operating Characteristic Analysis (ROC)

A receiver operating characteristic (ROC) graph is a technique for visualizing, organizing, and

selecting classifiers based on their performance. ROC graphs are widely used in medical decision-

making as well as in machine learning and data-mining research Fawcett (2006). True ROC curves

plot the false positive rate (probability of false alarm) on the x -axis and the true positive rate

(probability of detection) on the y-axis. A classifier is said to perform well if the ROC curve climbs

rapidly towards the upper left-hand corner. The more the curve deviates from y = x behavior,

the more accurate the prediction is Bi and Bennett (2003). We can borrow from the concept of

ROC curve to obtain a measurement of fit for the competing models and a ROC graph for this

study is presented in Figure 4.8 for this study. As described in Equation (4.15), the x -axis indicates

the standardized residuals ordered from the lowest to the highest (e⇤⇤
i
). Residuals are sorted in

ascending order and divided by the largest one that belongs to the Hirsch model.

e⇤⇤i =
|e⇤

i
|

|e⇤
iMAX

| (4.15)

The y-axis indicates the fraction of points whose standardized residuals are less than e⇤⇤
i

Marti-

Vargas et al. (2013). Although the curves obtained for all of the models are monotonically non-

decreasing and climb towards the upper left-hand corner (the desired situation shows that the

predictive models perform well), PCNN and PCR curves were the highest, proving their better

performance to be better than that of existing predictive models.

A convenient global measure of the goodness-of-the-fit is the Area Under the Curve (AUC).

To compare classifiers, it is more desirable to reduce ROC performance, to a single scalar value

representing expected performance. Since the AUC is a portion of the area of the unit square, its

value will always lie between 0 and 1. The AUC values for the PCNN, PCR, Alkhateeb, modified

Witczak, and Hirsch models are 0.9864, 0.9717, 0.8746, 0.7609, and 0.6320, respectively. One
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can use the ROC and AUC analysis results and rank the predictive models according to their

performances. In this study, the PCNN model reflected the highest performance in predicting the

dynamic modulus value, while the Hirsch model ranked the lowest among all the models.

Figure 4.8: ROC curves for the developed and the existing predictive models.

4.4.3 Model Validation

The current regression model is presented in the following general form as

yi = fi(Zi,✓) + e⇤i . (4.16)

In the above equation fi is the ith expectation function, ✓ is the vector of parameters, and e⇤
i
is

a random deviation of yi from fi. This term is assumed to be independent and normally distributed

with a mean of zero and unknown variance �2 for i = 1, · · · , n, where n is the number of input

vectors. If the above assumptions are violated, the results of the analysis could be misleading or

erroneous. These assumptions can be testified by examining residuals as defined by

e⇤i = yi � ŷi. (4.17)
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The assumption of independency holds when the residuals plot does not reflect a trivial pattern.

The normality assumption is assessed by creating a normal probability plot of the residuals. When

the error has a normal distribution, this plot will appear as a straight line Devore (2011). These

assumptions were checked for PCR and PCNN, as presented in Figure 4.9. The assumption of

equal variances does not appear to be violated because there are no trivial pattern in this plot.

Figure 4.9 presents the normal probability of the residuals in which it can be seen that the data

points are close to the straight line and the normality assumption is validated.

Figure 4.9: Checking the assumptions of independency models.
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4.5 Application of the Framework: Flexible Pavement Design and

Optimization

The above framework is used along with an optimization algorithm to answer the following two

central questions:

• what design parameters result in the maximum |E⇤|?

• what design parameters result in a pre-specified |E⇤
0
|?

One can see that the first item corresponds to the optimal design problem while the second one

corresponds to the so-called inverse design.

Since it was shown through multiple statistical measurements that PCNN had the best predic-

tion capability, this model is used in the following section to solve the optimization problems. The

ANN used in PCNN is essentially an interconnected nonlinear function, and this necessitates the

application of a global optimizer. Moreover, the e↵ective variable space enters the problem as a

series of constraints and further restricts the available algorithms. The optimal design problem is

formulated as follows:

maximize |E⇤| = FANN (x)

with respect to x = (x1, ..., x14)

subject to (x� v)TA(x� v)  1,

(xpca � v0)TA0(xpca � v0)  1,

(4.18)

where the vector of fourteen variables is x, and (x � v)TA(x � v)  1 are the enclosing ellipsoid

constraint equations for the original and PCA-based variables. A penalty function approach is used

to convert the above constrained problem to an unconstrained one Rahami et al. (2011a). In this

case, when the penalty function is active, it decreases (increases) the objective function when the

problem is one of maximization (minimization), and the degree of penalty is based on the closeness

of the solution to the corresponding constraint.
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Since the inverse design problem aims at finding the specification of a predefined goal, it is

defined as a minimization problem as follows:

minimize error = ||E⇤|� |E⇤
0 ||

with respect to x = (x1, ..., x14)

subject to (x� v)TA(x� v)  1,

(xpca � v0)TA0(xpca � v0)  1,

(4.19)

where |E⇤
0
| is the desired (goal) dynamic modulus. Although a similar penalization method can also

be used to address the constraints in this case, for the above problem the constraints will penalize

the objective function when they are active.

Reliable solution of the above problems requires the application of a gradient-free optimization

algorithm. Gradient-based optimization algorithms are not applicable in this case because of the

network-based nature of the ANNs. Evolutionary-based algorithms are potentially easy-to-use

algorithms in the above problems. Novel algorithms have been used to solve complex optimization

problems in recent years He and Yao (2002); Cai et al. (2006), and in this case, Mean-Variance

Mapping Optimization (MVMO), an in-house optimization algorithm based on the work by Elrich

et al. Rueda and Erlich (2015); Erlich et al. (2010), is used. The constraints are handled using

the approach described in Aslani et al. Aslani et al. (2018), in which, the convergence rate of

a constrained MVMO was compared to the already-developed methodologies using benchmark

structural problems. Authors in Ghasemi et al. (2018a) indicated that a constrained MVMO is

capable accurately identifying an optimal value with a minimum number of simulations. It should

be noted that the choice of optimization algorithm is not the principal focus of this study.

Figure 4.10 (left) depicts the convergence achieved for the first design problem by the constrained

MVMO algorithm. The initial data points are random making it heavily penalized, and then the

objective function increases as the algorithms evolves. Exploration-exploitation behavior is achieved

using adaptive strategies in the course of optimization for MVMO. � = 0.05 is used as the threshold
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in Figure 4.4. Solving the maximization problem resulted in |E⇤
max| = 53,703 MPa. The optimal

design parameters are presented in the first column of Table 4.7.

To find the maximum amount of dynamic modulus one could design for without low temperature

failure in the asphalt binder, the maximization problem was solved one more time with an additional

constraint of G⇤sin�  5000, resulting in |E⇤
max| = 36,307 MPa. Corresponding design parameters

are presented in the second column of Table 4.7 as the optimal design 2.

Figure 4.10 (right) shows the convergence of the algorithm for the inverse design problem after

starting randomly from three di↵erent initial points, with the algorithm is terminated when the

error reaches about 10�9. A pre-specified |E⇤
0
| of 20,417 MPa is considered and the inverse problem

of finding the corresponding design parameters is solved. Because of non-linearity of the function,

the problem has no unique solution. Three of the possible solutions are presented as designs 1 to

3 in Table 4.7.

Finally, the five sets of design parameters are compared with current design specification,

with the results shown in Table 4.7. The percentage of aggregate passing by each sieve size is

within the acceptable range of the gradation specification. Gradation charts are presented in Fig-

ure 4.11. The obtained percentages of air voids are 4%, which is the target value in the design

specification. The obtained values for VMA are slightly less than 14% for a nominal maximum

aggregate size (NMAS) of 12.5 mm because the VMA values of the nine mixtures used to train the

PCNN are slightly less that 14% (see Table 4.1). The acceptable range for VFA varies with the

amount of tra�c load measured in million Equivalent Single Axle Loads (ESALs) as follows:

• tra�c loading < 0.3 ! 70 < VFA < 80

• 0.3 < tra�c loading < 3.0 ! 65 < VFA < 78

• tra�c loading > 3.0 ! 65 < VFA < 75

The VFAs obtained for all of the five sets of design are satisfied for all of the tra�c categories.
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Figure 4.10: Convergence for the optimal design problem.

Table 4.7: Th corresponding design parameters.

Identity Optimal Design 1 Optimal Design 2 Design 1 Design 2 Design 3
Design Specification

Control Points Restricted Zone

Lower Upper Lower Upper

%Passing from 3/400 100 100 100 100 100 - 100 - -
%Passing from 1/200 93.38 94.03 92.25 91.88 91.80 90 100 - -
%Passing from 3/800 81.74 81.72 79.57 79.92 80.70 - 90 - -
%Passing from #4 53.00 53.90 55.36 55.23 54.39 - - - -
%Passing from #8 39.56 40.51 41.37 41.08 40.92 28 58 39.1 39.1
%Passing from #30 20.75 20.68 21.02 20.87 20.83 - - 19.1 23.1
%Passing from #50 11.66 11.60 12.08 11.81 12.02 - - 15.5 15.5
%Passing from #100 6.22 6.21 6.52 6.38 6.40 - - - -
%Passing from #200 4.10 3.85 4.38 4.58 4.56 2 10 - -
G* (Mpa) 103.13 7.81 133.51 30.20 11.82 - - - -
Phase angle (degree) 35.71 39.60 47.69 47.27 44.77 2 8 - -
Vbe↵% 4.11 4.18 4.02 4.06 4.05 - - - -
VMA 13.47 13.56 13.41 13.45 13.44 - - - -
VFA 70.29 70.50 70.11 70.24 70.24 - - - -
Va% 4.00 4.00 3.99 4.00 4.01 4 - -
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Figure 4.11: Aggregate gradation graphs.

4.6 Conclusions

This study used the HMA dynamic modulus data and focused to evaluate the quality of predic-

tor variables to be used in a procedure of model development. Correlation analysis is performed to

identify cross-correlated input variables, and correlated inputs are replaced by orthogonal pseudo-

inputs (PCs) obtained using PCA. Two separate models are developed using multivariate regression

and ANN (called PCR and PCNN, respectively). Extrapolation in empirical modeling is addressed

by adding the constraint of an n-dimensional enclosing ellipsoid to the modeling problem. Perfor-

mances of the proposed models were compared to existing predictive models using both statistical

analysis and ROC analysis. The models developed satisfactorily estimated the dynamic modulus

value, with PCNN indicating remarkably better performance when fitted to the test data than

the existing predictive models from the literature. These PCA-based approaches are thus highly

recommended as precise modeling strategies in this application. Moreover, these methodologies

appear to be capable of modeling other material properties and future investigation in this regard

is recommended. To determine this framework’s application in pavement design, two optimiza-

tion problems including optimal design and inverse design have been presented and solved using
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a mean-variance mapping optimization algorithm. The results for the two problems are in a good

agreement with the HMA mix design specification and thus could be a reasonable starting point in

solving real-life design problems. Although, the developed models as well as obtained optimal de-

sign parameters are based on the empirical database created in this study, the suggested framework

has the capability of being re-trained and adjusted to fit new data. For obtaining more reliable and

applicable results, a larger empirical database would be required.
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CHAPTER 5. DEVELOPING A ROBUST MODELING APPROACH FOR

PAVEMENT PERFORMANCE PREDICTION AND OPTIMIZATION

A paper published at the Journal of Association of Asphalt Pavement Technologists (AAPT)

5.1 Abstract

In pavement technology, performance models are mathematical expressions that relate pavement

condition, surface distresses and structural properties as response variables to a set of predictors

including material properties, tra�c loading, environmental factors, etc. In the existence of numer-

ous important predictors and their interrelationships, developing a predictive model for pavement

performance is not a trivial task. In this study, a machine learning-based framework is devel-

oped for predicting pavement performance. The framework starts with a preparation step of data

pre-processing and data wrangling. After removing outliers, the framework will conduct Principal

Component Analysis (PCA) to firstly reduce the dimensionality of the problem and secondly elim-

inate the pairwise correlation between the inputs by producing orthogonal pseudo-inputs. These

pseudo-inputs are used to develop two predictive models using multivariate regression analysis and

Artificial Neural Networks (ANN). In empirical predictive models, mapping input space to response

space can be threatened by extrapolation. However, it is often disregarded by design engineers. In

this study to confront extrapolation, a method is implemented to determine a hyperspace based

on the inputs. The hyperspace determines where the predictive model is valid up to given thresh-

olds and is then added as a constraint to the modeling problem. Two of the performance-related

characteristics of asphalt mixture including rut resistance and dynamic modulus are considered

to examine the robustness of the proposed approach. The developed predictive models then com-

pared to the conventional models for each case and indicated superior performance rfit of 0.97 and

0.99 for rutting and dynamic modulus, respectively). A global variable importance analysis is also

conducted to obtain the most e↵ective variable in each case. Percent air void and binder shear
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properties appeared to be the most e↵ective variables in predicting rutting and dynamic modulus,

respectively. To indicate an application of the developed framework in asphalt pavement design,

for each of these two cases a design-related optimization problem is defined and solved using mean-

variance mapping optimization (MVMO) algorithm. The obtained optimal design parameters are

within the acceptable range of current asphalt pavement design specifications and thus can be used

as an appropriate starting point in design procedure.

5.2 Introduction

Maintenance, rehabilitation, and reconstruction of the highway system are the major expenses

in a state general expenditure. Therefore, seeking to develop an accurate and e�cient performance

model to predict the remaining service life of a pavement and to provide its rehabilitation or re-

construction requirements punctually is beneficial. Relating pavement condition, surface distresses,

and structural properties, to a set of predictors including material properties, tra�c loading, en-

vironmental factors, etc. via mathematical expressions is called performance modeling Jalali et al.

(2019); Hosseini et al. (2020). According to the American Association of State Highway and Trans-

portation O�cials (AASHTO), pavement performance is the pavement ability to serve tra�c over

time su�ciently. To measure and predict pavement performance, a reproducible, authoritative,

and field calibrated condition evaluating system is required. Several researchers tempted to de-

velop pavement performance predictive models but almost all of the performance models are site

specific and also restricted to the materials used in the AASHTO road test.

One of the performance related properties of asphalt pavement is its resistance to rutting.

Rutting or permanent deformation often happens under the wheel- path and appears as a depression

worn into a pavement with uplift occurring along the sides Ghasemi et al. (2018b); Notani et al.

(2019). To analyze asphalt mixture rut susceptibility, performance testing along with mechanistic-

empirical regression-based modeling appear to be a common approach Bashin et al. (2012). To

simulate rutting in laboratory a rut resistance index called Flow Number (FN) is defined. In a

repeated loading and unloading test FN is the point at which the strain rate starts to increase
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with loading. This parameter has demonstrated a strong correlation with rutting that happens

in asphalt pavement due to tra�c in field. In asphalt pavement design procedure, the amount of

rutting should generally be limited to 0.4 inches (10.16 mm) regarding the total deformation of a

pavement structure.

It has been demonstrated that the amount of rutting is a function of binder viscosity, volumetric

properties of asphalt mixture, and testing temperature Kaloush et al. (2003); Witzcak (2002).

Kvasnak et al.Kvasnak et al. (2007), proposed a list of the e�cacious factors in rut susceptibility

of asphalt mixture. The list includes nominal maximum aggregate size (NMAS), voids in mineral

aggregate (VMA), percentage aggregate passing through sieve sizes No.4, No.16, No.200, binder

grade, binder viscosity, asphalt content, testing temperature, and the number of gyrations. Rodezno

et al. Rodezno et al. (2010) selected 12 parameters, i.e., testing temperature, maximum shear stress,

normal stress, binder viscosity, percentage aggregate passing through sieve sizes 3/4-inch, 3/8-inch,

and No.4, percentage air voids, e↵ective binder content, binder content, VMA, and voids filled with

asphalt (VFA) to be important in estimating asphalt pavement rutting behavior. It is illustrated

by Apeagyei, et al.Apeagyei (2011) that dynamic modulus test results at specific temperature and

loading frequencies along with aggregate gradation appears to have strong correlation with FN

test results. However, there are some discrepancies on the existence of correlation between rut

susceptibility of asphalt mixture and its dynamic modulus value Birgisson et al. (2005); Pellinen

and Witczak (2002); Timm et al. (2006).

Another widely used pavement performance characteristic is dynamic modulus, |E⇤|, which

defines stress-strain relationship of asphalt mixtures under sinusoidal loading. Dynamic modulus

represents the sti↵ness characteristic of asphalt mixture and it has a significant role in pavement

design. Therefore, several researchers have been attempted to predict asphalt mixture dynamic

modulus as a function of material’s components properties, loading rate, and temperature Nobakht

and Sakhaeifar (2018); Peng et al. (2019); Shu and Huang (2008).

There are several well-known predictive models for dynamic modulus amongst which, some

use regression analysis while newer ones use other techniques including genetic programming and
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artificial neural networks Ziari et al. (2018). Wiczak et al. developed a predictive model using

material components properties including binder viscosity. Andrei et al Andrei et al. (1999) modified

the original Witczak model. The developed model has then been modified to use binder shear

modulus instead of binder viscosity Bari and Witczak (2007). Christensen et al. Christensen Jr

et al. (2003) created a predictive model based on the law of mixtures. Alkhateeb et al. Al-Khateeb

et al. (2006) created a model from the law of mixtures to be used over a wide range of temperatures

and loading frequencies. Sakhaeifar et al.Sakhaeifar et al. (2017) created separate temperature-

based models that can predict dynamic modulus over a wide range of temperature. The predictor

variables of the aforementioned models are selected from the following list: cumulative percentage

aggregate retained on sieve sizes 3/4-inch, 3/8-inch, No.4, and percent aggregate passing the No.200,

VMA, VFA, percentage air voids, e↵ective binder content, binder shear modulus (|G⇤|), and binder

phase angle (�).

The predictor variables used in the conventional performance predictive models, e.g., rutting

and dynamic modulus, are not admitted being independent set of variables and therefore may not

be suitable to be used in modeling. Pairwise correlated predictors in the data set can decrease

the estimation accuracy of their e↵ects on the response variable. Therefore, a data preparation

step is useful to assure that the input variables are qualified to be used in model development K

Rollins Sr (2015). The process of transforming a raw data into another format with the intention

of making it more appropriate and valuable for the main analysis is called data wrangling. One

of the data wrangling techniques is reducing the dimension of the data especially when predictor

variables are highly correlated. There are several dimensionality reduction techniques including

exploratory factor analysis (EFA), variable clustering and principal component analysis (PCA).

To reduce the dimension of the data, variable clustering and EFA tend to eliminate some of the

predictors Thompson (2004) while PCA transforms the data into a new coordinate system and

preserves more information of observed variables with less tendency to information loss. Therefore,

PCA is preferred over other techniques for this particular application presented in this study.
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PCA is a multivariate statistical procedure that reduces the size of a data set by transforming

a large set of variables into a smaller set of orthogonal, (i.e. zero correlation) pseudo-variables

called principal components (PCs). The produced pseudo-inputs can be used as input variables in

developing predictive models. They not only make the prediction analysis easier but also contain

most of the information of the large set Ghasemi et al. (2018b).

Another issue within performance models is that since they are developed based on empirical

data, they can be prone to extrapolation which is defined as the process of estimating beyond the

original observation range. In case of extrapolation, predictive models are subject to major uncer-

tainty and high risk of producing meaningless results. To prevent extrapolation from happening, a

hyper-space containing all the data points can be found and added as a constraint to the desired

modeling problem.

The focus of this study is developing a machine learning-based framework to predict pavement

performance using orthogonal pseudo-inputs obtained from principal component analysis. Unlike

most of the conventional performance models, the proposed framework utilizes di↵erent data for

model training and performance testing. An n-dimensional hyperspace is determined and added

as a constraint to the modeling problem to guard against extrapolation. The authority of the

proposed framework is illustrated by solving two separate problems of predicting rutting behavior

and predicting dynamic modulus of asphalt mixtures. In order to find the most e↵ective variable,

global variable importance analysis is performed on the developed models. This research also

claims to determine the optimal design and a successful approach to perform inverse design of

asphalt mixture as some of the applications of the framework using a state-of-the-art evolutionary

optimization algorithm.

5.3 Methodology

5.3.1 2.1. Data preprocessing

Data preprocessing is a crucial task in every machine learning and data mining project. Ir-

relevant and redundant information as well as correlated and unreliable predictor variables can
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produce misleading results. Therefore, the representation and quality of data should be verified

prior running the main analysis.

A parsimonious model is a model that accomplishes a great explanatory predictive power with

as few predictor variables as possible. The obstacles in creating such model can be the availability

of numerous, highly correlated, and weakly related or unrelated predictor variables Fodor (2002).

In a general model, the expectation function is given by

⌘i = f(xi, ✓) (5.1)

where vector xi is input values at the ith sampling time, ⌘i is the expected value of the response,

and ✓ = [✓1, . . . , ✓q]T is a vector containing unknown parameters of the model. The corresponding

element of the ith row and jth column in the Jacobian matrix, J, is defined by @⌘i
@✓j

. In this case if

two columns (e.g., m and n) are orthogonal, their correlation coe�cient should be zero. In other

words, if the two columns are independent, the information used to estimate ✓m is separate from

the information used to estimate ✓n. Such approach will solidify the inputs-output relationship

which leads to enhancing the accuracy of analysis. Correlated columns in the Jacobian Matrix are

a consequence of pairwise correlated inputs. Therefore, to decrease standard parameter errors and

increase accuracy of input-output mapping, the pairwise correlation of inputs could be eliminated

by implementing PCA Fodor (2002).

5.3.2 Data Wrangling: Dimensionality Reduction using Principal Component Anal-

ysis (PCA)

Data wrangling is a main step in creating a machine learning model. During this step the data

will be converted into a suitable format which can be used by any machine learning algorithm.

During data wrangling step PCA can be implemented to remove correlated predictors, improve

algorithm performance, and reduce overfitting.

PCA is a statistical technique often used to reduce the dimensionality of the data by selecting

the most important features that capture maximum information about the data set. In other

words, PCA is a technique of extracting important features (in the form of PCs) from a large set of
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available features in a data set. The features are selected based on variance that they cause in the

response. During this orthogonal transformation, original inputs of the data set are converted to

the principal components (PCs) which are linear combinations of the original inputs Rollins et al.

(2006). PCA works in a way that the variable that causes highest variance is the first PC, the

variable responsible for the second highest variance is considered the second PC, and so on.

PCA can be implemented by either eigenvalue decomposition of a data covariance (or correla-

tion) matrix or singular value decomposition (SVD), often after normalizing the data matrix (mean

centering) for each procedure Jolli↵e (2002). In the present study, the eigenvalue decomposition

of the data correlation matrix is used. PCA reduces the dimension of a given data set, X, by

representing the l original variables (x1 , . . . , xl ) as p new pseudo-variables (PCs), where p < l.

For a given dataset, X, this analysis is summarized in the following steps:

• Standardize original data, X, by transforming it to Z using the following equations:

X =

2

66666664

x11 x12 · · · x1l

x21 x22 · · · x2l

...
...

. . .
...

xn1 xn2 · · · xnl

3

77777775

, Z =


z1 z2 . . . zl

�
=

2

66666664

x11�x1
s1

x12�x2
s2

. . . x1l�xl
sl

x21�x1
s1

x22�x2
s2

. . . x2l�xl
sl

...
...

. . .
...

xn1�x1
s1

xn2�x2
s2

. . . xnl�xl
sl

3

77777775

[2]

where, for k = 1 to n and j = 1 to l, xkj is the kth measurement for the jth variable, xk is

sample mean for the kth variable, and sk is sample standard deviation for the kth variable.

• Determine the unit eigenvectors e1 , . . . , el of Z.

• Determine the corresponding eigenvalues�1, . . . , �l.

• Rank the eigenvectors (in descending order) according to their eigenvalues.

• Select the p PCs according to their eigenvalues.

Considering the number of eigenvalues (or components) versus their fraction of total represented

variance is used to select the appropriate number of PCs. One might stop adding more PCs when
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little variance is gained by retaining additional eigenvalues. The selected PCs will be used in the

main analysis.

5.3.3 Cross Validation

To assure that the results of a statistical analysis can generalize to an independent dataset a

model validation technique called cross validation should be implemented. This technique is mainly

used to prevent overfitting in prediction problems, where a model is usually trained with a dataset

called training data and is tested against a first-seen dataset called testing data Refaeilzadeh et al.

(2009). According to the size of an available database and the desired computational time, the

most suitable cross validation technique should be selected to be used in the modeling.

5.3.4 Principal Component Regression (PCR)

Recalling from section 5.3.2, the selected PCs are used as new predictors in the modeling

procedure. All possible regression structures should be considered and examined for mapping

the predictors(pc’s) to the response variable (pavement performance). To estimate the values of

unknown coe�cients of the model the least squares criterion of minimizing the sum of squared

residuals (SSE) is implemented. Finally, after eliminating the redundant terms the reduced model

is developed and selected as the best fitted model. The developed model is called “Principal

Component Regression (PCR)”.

5.3.5 Principal Component Neural Network (PCNN)

A predictive model called, “Principal Component Neural Network (PCNN)” is developed using

artificial neural networks (ANN). ANNs consist of a collection of connected units or nodes called

artificial neurons which learn to perform tasks by considering examples Cheng and Titterington

(1994b). A three-layer feed-forward neural network, consisting of an input layer of n neurons,

with n being the number of principal components (pc’s), a hidden layer of 10 neurons, and an

output layer of one neuron, which is the pavement performance, is developed using the MATLAB
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software. The number of hidden neurons is selected to make balance between the cost function and

computational time using a trial and error procedure.

To initiate the training process the input of each processing neuron, pci, is multiplied by a

randomly assigned (and adaptable) connection weight wij and the weighted inputs are summed and

added to a threshold value, b0. The result crossed through a nonlinear transfer function (sigmoid

in this study) resulted the output of the first layer, ⌫i, which establishes the input for the next

layer. During each iteration in training process, the network adjusts its weights and biases to

minimize the loss function which is the di↵erence between the predicted and observed values of

response variable. The iterative procedure continues till the convergence criterion is satisfied. The

performance of the trained network is then validated against an unseen set of data (test data set).

For network training e�ciency the Bayesian Regularization algorithm is implemented.

The output ⌫j from the jth hidden node is given by

⌫j = f1(pci, wij), i = 1, ...,m and j = 1, ..., 10 (5.2)

and the single output by is:

ŷ = f2 (f1(pci, wij)) . (5.3)

Then the expression of by as a function of PC becomes a complicated nonlinear regression function

with the j sets of weights, as parameters. It is assumed that

f2(⌫j , wHj) = b0 +
X

j

⌫jwHj , (5.4)

and for each j,

f1(pci, wij) = bHj +
X

j

pciwij . (5.5)

so a general form of the feed forward neural network is described in Eq. 5.6
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ŷ = f2

8
<

:b0 +
nX

j=1

"
wHj · f1

 
bHj +

mX

i=1

pciwij

!#9=

; (5.6)

where, b0 is bias at output layer; wHj is weight of connection between neuron j of the hidden

layer and output layer neuron; bH j is bias at neuron j of the hidden layer (for j = 1 to 10); wij is

weight of connection between input variable i (for i = 1 to m) and neuron j of the hidden layer;

pci is pseudo input parameter i ; f1(t) is transfer function of the hidden layer, and f2(t) is transfer

function of the output layer.

For an arbitrary variable t The transfer functions used in the network, f1(t) and f2(t), are

defined in Eq. 5.7,

fk(t) =
1

1 + e�t
for k = 1, 2. (5.7)

5.3.6 E↵ective Variable Space

A major shortcoming in most of research articles where a predictive model is developed is

the space (range of input variables) where the developed empirical model is valid. The answer

to this question is important because the behavior of such empirical model is arbitrary when the

inputs are not inside the n-dimensional hyper ellipsoid covering the original data (in this case the

training dataset). A number of valid assumptions make the above conclusion possible. One of these

assumptions is based on the normal distribution of the input variables and their joint distribution

which is bi-variate normal Devore (2011). In this way, any slice of such a domain (at a constant

density function) will result in a n-dimensional hyper ellipsoid. Thus, one should perform a test to

determine if the desired data is inside this appropriate space. This concept is better visualized in

Figure 5.1Kutner et al. (2004).

The n-dimensional space can be located using a number of approaches Todd and Yıldırım (2007).

The problem of finding the n-dimensional ellipsoid that contains m-dimensional data has been a

subject to a thorough classical computational complexity analysis Sun and Freund (2004) and is

not the purpose of this article.
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Figure 5.1: Schematics of a bi-variate distribution.

Ghasemi et al.Ghasemi et al. (2018a) showed that an iterative scheme where a modified dual op-

timization problem is solved numerically to find the details of the desired n-dimensional hyperspace

(in this case an n-dimensional ellipsoid) is an e↵ective solution to this problem. This approach is

only dependent on an inverse matrix step which might become numerically cumbersome for large

data sets.

Another approach to this problem is possible through the usage of interior-point algorithms as

described in Sun and Freund (2004). To summarize the approach used in this article, we start by

defining the following optimization (minimization) problem:

minimize V ol(E)

with respect to v 2 Rn,A 2 Rn⇥n

subject to (Mi � v)TA(Mi � v)  1 for i = 1, 2, ..., p

(5.8)

where, p is the number of points given in n dimensions and Mi is the ith point. The unknowns

are vector v and the matrix A. The above problem is reformulated in order to fit an interior point

type algorithm as follows:

minimize � ln(det(M)

with respect to !i, yi 2 Rp

subject to Mai � z � yi = 0, i = 1, . . . , p

!i = 1, i = 1, . . . , p

(5.9)
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Figure 5.2: A summary of the sequential tasks .

To use an available interior-point method, one should reformulate the above problem to a barrier

function type:

B = � ln detM � ✓
mX

i

n
�
!2

i � yTi yi
�

(5.10)

An interior point method is used where at each step Schur-complement matrix of size p2 (n+ 1)2

is factorized.

The above algorithm is used to determine the p-dimensional and d-dimensional hyper ellipsoid

in the original and pseudo space of the data set, respectively.

A summary of the proposed methodology is presented in Figure 5.2. For every performance pre-

diction problem, the framework starts with creating an empirical data base using field or laboratory-

produced data. The framework continues with a data preprocessing and data wrangling step to

make the data more appropriate and valuable for the main analysis which is developing the pre-

dictive models (PCR and PCNN). The framework confront extrapolation with using the developed

predictive models over their allowed variable space. The developed models can be used in further

performance prediction, design and optimization problems, etc.

The rest of the paper focuses on using the developed framework to define and solve two separate

performance related problems: (1) predicting rutting behavior (2) predicting dynamic modulus of

asphalt mixture. These two examples are presented, solved, and discussed in section 3 of this paper.
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5.4 Results and discussion

The problem of predicting rutting behavior, as one of the most important performance related

properties of asphalt mixture, is defined and solved in this section.

5.4.1 Problem (1): Predicting Rutting Behavior

5.4.1.1 Material and laboratory testing

To create a data set for predicting rutting behavior of asphalt mixture, specimens are collected

from di↵erent locations in the State of Wisconsin. Eighty-three specimens from 21 di↵erent mixture

are used to perform laboratory testing.

Asphalt mixtures were collected directly from the back of the delivery trucks at the plant

site, and for each asphalt mixture the corresponding asphalt binder was sampled during mix plant

production. Maximum theoretical specific gravity (Gmm) is measured in accordance with AASHTO

T209/ASTM D2041. The measured Gmm is used to obtain other volumetric properties of the

asphalt mixtures. Specimens are compacted using a superpave gyratory compactor to the following

dimensions: 150 mm in diameter by 170 mm in height. Specimens are compacted to three di↵erent

air voids including 4.0%, 7.0%, and 10.0%. Following AASHTO T166/ASTM D2726, the bulk

specific gravity values of specimens are determined.

To conduct dynamic modulus test, a 100-mm diameter by 150-mm height cylindrical specimen

is cored out of the laboratory compacted specimens. The specimens are trimmed and prepared for

dynamic modulus test. The specimens are tested at an e↵ective test temperature of 36.6 �C under

repeated sinusoidal load with 25, 10, 1, and 0.1 Hz loading frequency following AASHTO TP-13.

The same specimens are used to perform flow number tests under repeated haversine load with

the load being applied for a duration of 0.1 second and a dwell period of 0.9 second. The same

e↵ective temperature of 36.6�C is selected for flow number test. No confining pressure is applied,

and the axial stress is similar to the deviator stress (600 kPa). The accumulated strain at the FN

is considered to be the response variable during the modeling procedure.
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To study binder shear properties, complex shear modulus test was performed using Dynamic

Shear Rheometer (DSR) based on ASTM D7552-09 at 36.6 �C and similar loading frequencies used

in the dynamic modulus tests (25, 10, 1, and 0.1 Hz) .

It is worth pointing out that 36.6�C is selected as the temperature that all the laboratory

tests are performed at based on Midwestern area of the United States climate condition. In other

words, this temperature is considered as a reasonable temperature at which permanent deformation

happens in this area, equivalent to a seasonal correction throughout the year. However, what makes

the machine learning based models so special is that the model can be retrained and modified based

on any test temperatures suiting any climate conditions. Once the data is fed into the framework it

will learn the data pattern and the network will modify its weights and biases to fit the new data.

5.4.1.2 Step 1: Data preprocessing

According to the literature Kaloush et al. (2003); Kvasnak et al. (2007); Rodezno et al. (2010);

Witzcak (2002), the rutting behavior of an asphalt mixture can be accurately estimated as a function

of its component properties. The input variables are selected amongst those properties that have

already proven to be important in predicting rutting behavior. However, their importance was

also re-examined before selection by performing a multi-factor analysis of variance (ANOVA). The

selected material component properties and their ranges that are measured and used in this section

are presented in Table 5.1. These properties are selected based on the existing literature and used

as the original input variables to predict accumulated strain value at the FN.

To study the quality of the input variables and their interrelationships, the correlation analysis

is performed, and the cross-correlation matrix of the input variables is obtained and presented

by Table 5.2. Within the matrix, there are 273 elements which their absolute values are greater

than 0.1. This means that the corresponding variables are not independent. Besides, there are 41

elements that their absolute values are greater than 0.5 (elements in bold and red text). This means

that several on the input variables appear to have strong correlation. Therefore, to eliminate the

existing pairwise correlation PCA should be implemented.
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Table 5.1: Original input variables of problem (1): predicting rutting behavior.

Variable Identity Min. Max. Ave. Std. Ave.

x1 Binder % 3.400 6.600 5.093 0.773
x2 G* 210800.543 1163559.917 612179.576 265903.652
x3 NMAS 12.500 25.000 15.922 3.761
x4 Passing 3/4” 81.300 100.000 98.554 4.085
x5 Passing 1/2” 38.300 98.800 87.130 15.199
x6 Passing 3/8” 34.100 89.900 76.340 15.099
x7 Passing #4 26.200 72.500 56.248 13.741
x8 Passing #8 17.500 54.000 42.249 10.512
x9 Passing #16 14.200 47.400 32.178 8.740
x10 Passing #30 9.600 47.400 32.178 8.740
x11 Passing #50 5.700 18.600 12.022 3.179
x12 Passing #100 3.700 9.800 6.187 1.424
x13 Passing #200 2.800 8.500 4.322 1.115
x14 VMA 10.323 21.000 16.452 2.502
x15 VFA 46.450 91.719 65.189 9.062
x16 Va% 1.019 9.825 5.868 2.088
x17 E* 395.700 2299.400 869.410 411.524

Table 5.2: Pairwise correlation matrix.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

x1 1 0.33 -0.73 0.6 0.71 0.63 0.47 0.45 0.46 0.45 0.41 0.43 0.42 0.61 -0.18 0.35 -0.43
x2 0.33 1 -0.11 0.08 -0.03 -0.23 -0.38 -0.32 -0.18 -0.06 0.01 0.23 0.35 0.02 -0.02 0.02 0.24
x3 -0.73 -0.11 1 -0.64 -0.76 -0.69 -0.51 -0.41 -0.39 -0.32 -0.25 -0.30 -0.39 -0.53 0.13 -0.30 0.37
x4 0.6 0.08 -0.64 1 0.88 0.78 0.58 0.51 0.42 0.32 0.25 0.23 0.24 0.46 -0.21 0.32 -0.45
x5 0.71 -0.03 -0.76 0.88 1 0.95 0.77 0.71 0.61 0.49 0.41 0.39 0.36 0.56 -0.33 0.44 -0.51
x6 0.63 -0.23 -0.69 0.78 0.95 1 0.92 0.86 0.75 0.61 0.49 0.30 0.16 0.53 -0.27 0.38 -0.49
x7 0.47 -0.38 -0.51 0.58 0.77 0.92 1 0.95 0.84 0.69 0.49 0.11 -0.14 0.43 -0.16 0.26 -0.37
x8 0.45 -0.32 -0.41 0.51 0.71 0.86 0.95 1 0.95 0.83 0.59 0.11 -0.15 0.42 -0.16 0.26 -0.41
x9 0.46 -0.18 -0.39 0.42 0.61 0.75 0.84 0.95 1 0.96 0.74 0.18 -0.11 0.40 -0.16 0.25 -0.41
x10 0.45 -0.06 -0.32 0.32 0.49 0.61 0.69 0.83 0.96 1 0.84 0.28 -0.06 0.35 -0.15 0.22 -0.37
x11 0.41 0.01 -0.25 0.25 0.43 0.49 0.49 0.59 0.74 0.84 1 0.59 0.17 0.21 -0.20 0.20 -0.25
x12 0.43 0.23 -0.30 0.23 0.39 0.30 0.11 0.11 0.18 0.28 0.59 1 0.82 0.24 -0.28 0.28 -0.15
x13 0.42 0.35 -0.39 0.24 0.36 0.16 -0.14 -0.15 -0.11 -0.06 0.17 0.82 1 0.29 -0.30 0.32 -0.22
x14 0.61 0.02 -0.53 0.46 0.56 0.53 0.43 0.42 0.40 0.35 0.21 0.24 0.29 1 -0.62 0.83 -0.71
x15 -0.18 -0.02 0.13 -0.21 -0.33 -0.27 -0.16 -0.16 -0.16 -0.15 -0.20 -0.28 -0.30 -0.62 1 -0.94 0.52
x16 0.35 0.02 -0.30 0.32 0.44 0.38 0.26 0.26 0.25 0.22 0.20 0.28 0.32 0.83 -0.94 1 -0.63
x17 -0.43 0.24 0.37 -0.45 -0.51 -0.49 -0.37 -0.41 -0.41 -0.37 -0.25 -0.15 -0.22 -0.71 0.52 -0.63 1
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Table 5.3: Eigenvalues of the normalized matrix

Number Eigenvalue Percent Variance Cumulative Percent

1 7.979 46.935 46.935
2 2.876 16.920 63.856
3 1.947 11.456 75.311
4 1.539 9.052 84.363
5 0.912 5.363 89.726
6 0.581 3.419 93.145
7 0.421 2.475 95.620
8 0.260 1.529 97.149
9 0.198 1.165 98.314
10 0.152 0.892 99.206
11 0.063 0.371 99.577
12 0.038 0.224 99.801
13 0.016 0.095 99.896
14 0.008 0.049 99.945
15 0.005 0.028 99.973
16 0.003 0.016 99.989
17 0.002 0.011 100.000

5.4.1.3 Step 2: Data wrangling: Dimensionality reduction using PCA

For the pairwise correlation matrix the eigenvalues and their corresponding percent variance

are calculated and presented in Tables 5.3 which indicates the fraction of total variation in the data

expressed by each eigenvalue. In Table 5.3 the eigenvalues are sorted in descending order meaning

that the first eigenvalue represents the highest portion of the total variation, the second one has

the second highest portion and so on. By selecting the first five PCs, 89.72% of the variation in the

original data will be represented. Adding the sixth PC has an insignificant impact on the overall

represented variation. Thus, the first five PCs are selected to be used as the pseudo-input variables.

PCs can be obtained using Eq. 5.11

pci =
17X

j=1

↵ijxj + �i (5.11)

where i = 1, . . . , 5, the ↵ij is the corresponding coe�cients, the �i are constants, and the

xj’s are the original input variables. Eq. 5.11 can be presented in matrix notation as in Eq. 5.12
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p = Mz+ n (5.12)

where

p =

2

666666666664

pc1

pc2

pc3

pc4

pc5

3

777777777775

MT =

2

66666666666666666666666666666666666666666666666666664

3.41⇥ 10�1 �2.04⇥ 10�1 2.89⇥ 10�1 �1.94⇥ 10�1 3.71⇥ 10�1

�7.60⇥ 10�8 �1.17⇥ 10�6 1.31⇥ 10�6 1.05⇥ 10�7 2.47⇥ 10�6

�6.59⇥ 10�2 3.22⇥ 10�2 �4.53⇥ 10�2 9.10⇥ 10�2 �7.97⇥ 10�3

6.34⇥ 10�2 �1.31⇥ 10�2 1.86⇥ 10�2 �9.38⇥ 10�2 �7.13⇥ 10�3

2.11⇥ 10�2 �2.33⇥ 10�3 5.26⇥ 10�3 �1.63⇥ 10�2 �9.03⇥ 10�3

2.17⇥ 10�2 7.23⇥ 10�3 1.55⇥ 10�3 �1.23⇥ 10�2 �1.13⇥ 10�2

2.13⇥ 10�2 2.01⇥ 10�2 �2.82⇥ 10�3 �7.27⇥ 10�3 �7.11⇥ 10�3

2.79⇥ 10�2 2.89⇥ 10�2 �2.98⇥ 10�3 3.79⇥ 10�3 1.41⇥ 10�3

3.28⇥ 10�2 3.22⇥ 10�2 4.43⇥ 10�3 2.35⇥ 10�2 1.71⇥ 10�2

3.73⇥ 10�2 3.39⇥ 10�2 1.53⇥ 10�2 4.98⇥ 10�2 3.14⇥ 10�2

7.08⇥ 10�2 3.30⇥ 10�2 7.38⇥ 10�2 1.54⇥ 10�1 �9.05⇥ 10�3

1.08⇥ 10�1 �2.03⇥ 10�1 2.33⇥ 10�1 2.30⇥ 10�1 �2.72⇥ 10�1

9.18⇥ 10�2 �4.06⇥ 10�1 2.29⇥ 10�1 6.69⇥ 10�2 �3.18⇥ 10�1

9.98⇥ 10�2 �8.77⇥ 10�2 �1.12⇥ 10�1 �1.14⇥ 10�2 8.85⇥ 10�2

�1.73⇥ 10�2 3.21⇥ 10�2 4.57⇥ 10�2 �2.69⇥ 10�2 �9.43⇥ 10�4

9.75⇥ 10�2 �1.42⇥ 10�1 �1.95⇥ 10�1 7.31⇥ 10�2 4.70⇥ 10�2

�5.50⇥ 10�4 2.73⇥ 10�4 8.20⇥ 10�4 �8.92⇥ 10�6 1.36⇥ 10�4

3

77777777777777777777777777777777777777777777777777775
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n =

2

666666666664

�1.72⇥ 10

5.87⇥ 10�1

�8.21

7.36

�4.85⇥ 10�1

3

777777777775

The PCs obtained in this way will be used in the main analysis.

5.4.1.4 Step 3: Model development

To validate the stability of the machine learning model and examine how well it would generalize

to new data, cross validation technique is implemented. In this case of having limited amount of

data (sample size of 83), k-fold cross validation technique leads to a less biased model compare to

other methods. Because it ensures that every observation from the original data set has the chance

of appearing in training and test sets. K-fold cross validation technique works in a way that the

given data set is randomly partitioned into k subsets. K-1 of these subsets are used to train the

model and the remaining subset is used to test the model. The process is repeated k times and

each subset can be used as test data exactly once.

Based on the size of rutting data set (83 data points), the data set is randomly partitioned into

3 folds. Results of the developed models are presented in this section, and their performance in

predicting the response variable over the defined e↵ective variable space are examined and discussed.

After examining all the possible regression structures, the second-order quadratic linear regres-

sion model fitting the measured response the best, is presented in Eq. 5.13

by = c0 + c1 ⇤ pc1 + c2 ⇤ pc2 + c3 ⇤ pc3 + c4 ⇤ pc4 + c5 ⇤ pc5 + c6 ⇤ pc1 ⇤ pc2

+ c7 ⇤ pc2 ⇤ pc4 + c8 ⇤ pc1 ⇤ pc3 + c9 ⇤ pc2 ⇤ pc3 + c10 ⇤ pc3 ⇤ pc5
(5.13)

where, c0 = 1.64⇥ 104, c1 = �8.89⇥ 102, c2 = �1.24⇥ 103, c3 = �1.24⇥ 103, c4 = �92.41, c5 =

6.55⇥102, c6 = 1.58⇥102, c7 = �4.35⇥102, c8 = 2.35⇥102, c9 = 3.74⇥102, and c10 = �8.28⇥102.

Using Eq. 5.6 the developed network’s connection weights and biases are presented by the

following matrices:
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W T =

2

66666666666666666666666666664

�0.45 1.70 �0.81 �0.85 �1.30

0.01 �1.46 0.28 0.11 �1.93

1.32 �1.39 �0.03 �0.22 0.90

�0.09 0.18 �0.14 �0.32 �0.15

0.09 �0.18 0.14 0.32 0.15

�0.61 0.26 �1.19 �0.81 0.12

0.09 �0.18 0.14 0.32 0.15

0.44 �1.50 �0.41 1.05 �0.64

0.28 �0.63 0.83 0.74 1.16

�0.00 0.17 0.00 �1.38 �0.29

3

77777777777777777777777777775

WH =

2

66666666666666666666666666664

0.67

0.35

�1.25

�0.29

0.29

�1.71

0.29

�0.26

0.97

0.99

3

77777777777777777777777777775

BH =

2

66666666666666666666666666664

�0.08

�1.21

�1.74

�1.53

0.57

�0.57

�1.32

�0.57

1.46

�1.75

3

77777777777777777777777777775

, B0 = [1.33]

Using several statistics, the performance results of the PCR and PCNN models are discussed

and presented in Table 5.4. The first statistic is the “average di↵erence (AD)” defined as

AD =
1

n

nX

i=1

(yi � ŷi). (5.14)

AD is an estimate of systematic model bias, n is the number of input vectors, yi is the ith

measured response value, and by is the ith fitted response value. The second statistical component
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Table 5.4: Statistical Analysis of PCR and PCNN Modeling (na*: not applicable)

PCR PCNN

Statistics Fold 1 Fold 2 Fold 3 Fold 1 Fold 2 Fold 3

Training

AD 0 0 0 34.99 -242.99 46.19
AAD 1497.02 1705.55 1514.59 729.41 1350.87 944.83
rfit 0.83 0.82 0.85 0.96 0.87 0.94
R2 0.69 0.68 0.72 na* na* na*

Testing

AD 626.73 -129.91 -226.1 -98.24 149.2 -169.6
AAD 2007.47 1515.74 2110.64 694.53 719.9 1037.28
rfit 0.79 0.8 0.73 0.97 0.95 0.92
R2 na* na* na* na* na* na*

is the “average absolute di↵erence (AAD)” which shows the average closeness of the fitted value to

the measured response value. AAD is defined as

AAD =
1

n

nX

i=1

|yi � ŷi|. (5.15)

The third statistical component, rfit, is the correlation of y and by defined as

rfit =
n
P

n

i=1
yiŷi � (

P
n

i=1
yi)(
P

n

i=1
ŷi)q

n
P

n

i=1
y2
i
� (
P

n

i=1
yi)2

q
n
P

n

i=1
ŷ2
i
� (
P

n

i=1
ŷi)2

(5.16)

Higher rfit (with maximum value of 1) indicates better fit. The last statistical component is

R-squared (R2) also known as the coe�cient of determination. R2 is the portion of the variance in

the dependent variable that can is predictable from the independent variables and can be explicated

by the fitted model. It is applicable to the PCR (training set) since it is linear in its parameters

and not to PCNN due to the non-linear nature of its parameters.

Researchers have developed several predictive models for rutting in asphalt mixture Witzcak

(2002); Kaloush et al. (2003); Rodezno et al. (2010); Kvasnak et al. (2007); Andrei et al. (1999). A

summary of the most well-known conventional models, their parameters and prediction accuracy

expressed in R2 is presented in Figure 5.3.
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Figure 5.3: Summary of the well-known existing models
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Figure 5.4: Measured values of accumulated strain

* It should be mentioned that the ability of the developed model in fitting to the empirical data

should be expressed in terms of the rfit value and not the R2 value.

Although the reported R2 values for Leahy, Ayres, and Kaloush models seem reasonable, they

did not use separate data sets for training and testing possibly resulting in biased and over fitted

models. Comparing the results obtained from the PCR and PCNN models with the previous

prediction models used in the AASHTO design procedure, the developed models are performing

significantly better with rfit = 0.8 for PCR model and rfit = 0.97 for PCNN model. In Comparison

between PCR and PCNN, one can see that although the PCR works well in predicting the response

variable, PCNN provides the best fit for both training and test sets. Measured values of accumulated

strain and the fitted values are presented in Figure 5.4. The measured and fitted values are close

to the line of equality meaning that the fitted values by PCR and PCNN have a strong correlation

with the measured one.
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5.4.2 Problem (2): Predicting dynamic modulus

The problem of predicting dynamic modulus, as one of the most important performance char-

acteristics of asphalt mixture, is solved and discussed in this section.

5.4.2.1 Material and laboratory testing

To create a data set for dynamic modulus prediction, 27 specimens from nine di↵erent asphalt

mixtures are selected and used to perform laboratory testing. AASHTO T209/ASTM D2041 is

used to measure maximum theoretical values of specific gravity (Gmm). The measured Gmm values

are used to obtain other volumetric properties of the asphalt mixtures.

The samples are 150 mm in diameter and 38 mm in thickness cut from suparpave gyratory

compacted specimens. The dynamic modulus test in indirect tension mode of testing is performed

at three temperatures (0.4, 17.1, and 33.8 �C) and nine loading frequencies (25, 20, 10, 5, 2, 1, 0.5,

0.2, 0.1 Hz) in accordance with AASHTO TP 62-07. Based on ASTM D7552-09 dynamic shear

rheometer (DSR) test is conducted to measure complex shear modulus of asphalt binder. The

test is performed at a wide variety of temperatures (-10 to 54 �C) and frequencies (0.1 Hz to 25

Hz) including the exact test temperatures and loading frequencies which are used in the mixture

dynamic modulus test. It is important to mention that, the present research uses a consistent

definition of frequency, meaning that to predict the dynamic modulus value of an asphalt mixture

for example at 4 �C and 25 Hz, one should input in the model the complex shear modulus of asphalt

binder, |G⇤|, at 4 �C and 25 Hz. A summary of the nine di↵erent mixtures’ properties is presented

in Table 5.5. Using the laboratory test results on 27 specimens, a database of 243 data points is

created to be used in further modeling.

5.4.2.2 Step 1: Data preprocessing

According to the literature dynamic modulus of asphalt mixture can be estimated by the ma-

terial components properties Andrei et al. (1999); Bari and Witczak (2007); Christensen Jr et al.

(2003); Al-Khateeb et al. (2006); Sakhaeifar et al. (2017). The input variables are selected amongst
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Table 5.5: Properties of nine asphalt mixtures

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9

Binder performance grade 58-28 58-28 58-28 58-34 58-34 58-34 64-28 64-34 64-28
% Vbe↵ 4.20 4.10 4.10 3.90 3.50 4.30 4.20 4.00 4.60
%VMA 13.50 13.50 13.60 13.10 12.50 13.90 13.70 13.40 14.40
% VFA 70.30 70.40 70.60 69.60 68.10 71.20 70.80 70.20 72.30
Gmb 2.32 2.31 2.31 2.32 2.31 2.32 2.31 2.32 2.31
Gmm 2.41 2.46 2.51 2.48 2.64 2.46 2.48 2.51 2.44
% VA 4.01 3.99 3.99 3.98 3.98 4.03 4 3.99 3.98

% passing 3/4” 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
% passing 1/2” 93.90 96.40 87.20 93.50 95.10 96.40 94.10 94.40 94.20
% passing 3/8” 77.50 84.60 73.70 76.40 83.10 87.30 83.40 82.00 80.90
% passing #4 49.80 53.10 48.40 52.20 52.20 60.90 63.80 48.20 58.60
% passing #8 34.40 38.40 35.10 43.60 38.80 46.90 47.10 34.90 46.00
% passing #30 16.70 18.70 17.90 20.90 18.80 23.40 21.70 19.20 25.90
% passing #50 10.30 10.80 10.90 11.40 9.90 12.40 11.90 11.80 13.80
% passing #100 6.10 5.90 6.40 5.80 5.40 6.10 6.60 6.10 7.20
% passing #200 3.60 3.30 6.20 3.30 3.50 3.40 4.00 3.10 4.00

those properties that have already proven to be important in predicting dynamic modulus. How-

ever, their importance was also re-examined before selection by performing a multi-factor analysis

of variance (ANOVA).The selected component properties and their ranges that are obtained from

laboratory testing and used in the present study are summarized in Table 5.6.

To evaluate the quality of the predictors, correlation analysis is performed, and the result is

presented by Table 5.7. Fifty Elements of the pairwise correlation matrix with absolute value of

greater than 0.5 are shown in bold red text indicating that there is strong correlation between the

predictors. Therefore, to eliminate the existing correlation PCA is implemented.

5.4.2.3 Step 2: Data wrangling: Dimensionality reduction using PCA

The eigenvalues of the correlation matrix are calculated and presented in Table 5.8. The eigen-

values and their corresponding contribution to the total variance are sorted in descending order.

According to the table, 95.8% of the variation in the original data is expressed by the first five PCs.

Adding the sixth PC has an insignificant impact on the overall represented variation. Therefore,

the first five PCs are selected to be used as input variables in the modeling problem.
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Table 5.6: Original Input Variables of Problem (1): Predicting Dynamic Modulus

Variable Identity Min. Max. Ave. Std. Dev.

x1 Cum. % retained on 3/4” 3.60 13.00 6.11 2.63
x2 Cum. % retained on 3/8” 12.68 26.29 19.01 4.11
x3 Cum. % retained on #4 36.20 51.76 45.86 5.319
x4 Cum. % retained on #8 52.87 65.70 59.42 5.06
x5 Cum. % retained on #30 74.06 83.30 79.63 2.76
x6 Cum. % retained on #50 86.22 90.12 88.57 1.15
x7 Cum. % retained on #100 92.81 94.59 93.83 0.48
x8 % Passing from #200 3.07 6.18 3.81 0.89
x9 Log|G⇤| -2.29 3.03 0.50 1.26
x10 Phase angle (degree) 28.15 79.17 52.86 11.54
x11 Vbeff% 3.50 4.60 4.10 0.29
x12 VMA 12.50 14.40 13.51 0.49
x13 VFA 68.10 72.30 70.40 1.08
x14 Va% 3.98 4.01 3.99 0.01

Table 5.7: Correlation Matrix for the Input Variables

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

x1 1 0.832 0.412 0.366 0.294 0.119 -0.269 0.905 -0.044 -0.058 0.003 0.04 0.049 0.013
x2 0.832 1 0.597 0.458 0.391 0.246 -0.109 0.583 -0.035 0.106 -0.061 -0.099 -0.089 -0.115
x3 0.412 0.597 1 0.918 0.756 0.596 0.425 0.133 -0.019 0.154 -0.465 -0.485 -0.49 -0.111
x4 0.366 0.458 0.918 1 0.87 0.687 0.375 0.169 -0.028 0.237 -0.388 -0.412 -0.424 0.212
x5 0.294 0.391 0.756 0.87 1 0.919 0.618 0.112 -0.021 0.235 -0.585 -0.631 -0.633 0.3
x6 0.119 0.246 0.596 0.687 0.919 1 0.794 -0.009 0.003 0.203 -0.741 -0.796 -0.806 0.209
x7 -0.269 -0.109 0.425 0.375 0.618 0.794 1 -0.414 0.036 0.047 -0.854 -0.886 -0.892 -0.087
x8 0.905 0.583 0.133 0.169 0.112 -0.009 -0.414 1 -0.032 -0.102 0.179 0.238 0.238 0.142
x9 -0.044 -0.035 -0.019 -0.028 -0.021 -0.003 0.036 -0.032 1 -0.808 0.021 0.016 0.013 0.034
x10 -0.058 0.106 0.154 0.237 0.235 0.203 0.047 -0.102 -0.808 1 0.09 0.024 0.014 0.3
x11 0.003 -0.061 -0.465 -0.388 -0.585 -0.741 -0.854 0.179 0.021 0.09 1 0.988 0.985 0.372
x12 0.04 -0.099 -0.485 -0.412 -0.631 -0.796 -0.886 0.238 0.016 0.024 0.988 1 0.998 0.321
x13 0.049 -0.089 -0.49 -0.424 -0.633 -0.806 -0.892 0.238 0.013 0.014 0.985 0.998 1 0.301
x14 0.013 -0.115 -0.111 0.212 0.3 0.209 -0.087 0.142 0.034 0.3 0.372 0.321 0.301 1
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Table 5.8: Eigenvalues of the Z Matrix and the Corresponding Percent Variance

Number Eigenvalue Percent Variation Cumulative Percent Variation

1 6.0225 43.018 43.018
2 3.2193 22.995 66.013
3 1.9746 14.104 80.118
4 1.4174 10.124 90.242
5 0.7850 5.607 95.848
6 0.3176 2.269 98.117
7 0.1091 0.779 98.896
8 0.0778 0.556 99.452
9 0.0549 0.392 99.844
10 0.0218 0.156 100

The PCs are obtained using Eq. 5.11 and 5.12 where matrices M and n are as follows

MT =

2

6666666666666666666666666666666666666666664

0.03 0.19 �0.08 �0.06 �0.09

0.03 0.11 �0.04 �0.05 0.04

0.06 0.04 0.00 0.00 0.01

0.06 0.05 0.02 0.04 0.07

0.13 0.06 0.05 0.09 �0.01

0.33 0.01 0.09 0.16 �0.20

0.71 �0.54 0.05 0.13 �0.20

�0.03 0.52 �0.20 �0.70 �0.53

�0.01 �0.05 �0.40 0.43 0.12

0.00 0.01 0.06 �0.02 0.00

�1.26 0.64 0.52 0.61 0.67

�0.75 0.37 0.21 0.28 0.31

�0.34 0.17 0.09 0.12 0.14

�4.41 18.38 47.08 76.24 �40.48

3

7777777777777777777777777777777777777777775

, n =

2

666666666664

�55.95

�58.54

�218.20

�352.79

174.78

3

777777777775
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5.4.2.4 Step 3: Model development

To examine the stability of the developed model against of an unseen data set and based on

the size of dataset, a holdout cross validation technique is used. During this procedure the given

dataset is randomly assigned to two subsets, d0 and d1, called the training set and the test set,

respectively. The training set contains 80% of the data points and the test set contains 20% of the

data points which means 80% of the data points are used to train the model and the rest is used

to evaluate the performance of the trained model.

After examining all the possible regression structures, the best reduced third-order cubic linear

regression model fitting the measured response, y, is presented in Eq. 5.17

by = c0 + c1 pc1 + c2 pc2 + c3 pc3 + c4 pc4 + c5 pc5 + c6 pc1 pc2 + c7 pc1 pc3 + c8 pc1 pc4

+c9 pc1 pc5 + c10 pc2 pc3 + c11 pc2 pc4 + c12 pc2 pc5 + c13 pc3 pc4 + c14 pc3 pc5+

c15 pc4 pc5 + c16 pc1 pc2 pc3 + c17 pc1 pc2 pc4 + c18 pc1 pc2 pc5 + c19 pc1 pc3 pc4

+c20 pc1 pc3 pc5 + c21pc2 pc3 pc4 + c22 pc1 pc4 pc5 + c23 pc2 pc4 pc5 + c24 pc3 pc4 pc5

(5.17)

where, c0 = 6.59; c1 = 2.58; c2 = 4.4; c3 = �0.36; c4 = 0.49; c5 = 1.93; c6 = �0.33; c7 = �0.77;

c8 = �1.69; c9 = 0.15; c10 = �1.65; c11 = �4.68; c12 = 4.81; c13 = 0.7; c14 = �0.85; c15 = �1.58;

c16 = �0.17; c17 = �0.79; c18 = 1.83; c19 = 0.04; c20 = 0.18; c21 = 0.42; c22 = 0.05; c23 = 0.32;

c24 = 0.06.

The networks weights and biases are presented in the following matrices:
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W T =

2

66666666666666666666666666664

�0.511 0.134 0.654 �1.064 �0.267

�0.315 �0.147 �0.267 0.177 �1.047

�0.060 �1.266 0.759 �1.248 �0.331

�0.075 0.022 0.208 0.015 0.167

�0.074 0.022 0.206 0.015 0.165

0.103 �0.177 1.253 �1.045 0.535

0.078 �0.020 �0.231 �0.014 �0.172

0.238 0.070 �0.885 0.848 0.943

0.123 0.456 �0.387 1.547 �0.017

�0.079 0.020 0.213 0.014 0.173

3

77777777777777777777777777775

WH =

2

66666666666666666666666666664

0.869

�0.886

0.632

�0.291

�0.288

�0.859

0.299

0.556

0.971

�0.299

3

77777777777777777777777777775

BH =

2

66666666666666666666666666664

0.162

0.710

0.319

�0.008

�0.009

0.570

0.007

0.290

�0.373

�0.007

3

77777777777777777777777777775

B0 = [0.148]

Performance results of the PCR and PCNN models are compared with three of the well-known

predictive models for dynamic modulus base on the statistics introduced in section 5.4.1.4. A

summary of these models equations and parameters definition as well as their performance in com-

parison with PCR and PCNN are presented by Figure 5.5 Bari and Witczak (2007); Christensen Jr

et al. (2003); Al-Khateeb et al. (2006) and Table 5.9, respectively.
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Figure 5.5: Summary of the well-known conventional dynamic modulus
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Table 5.9: Statistical comparison of PCR and PCNN

Average di↵erence (MPa) Average absolute di↵erence (MPa) rfit R2

PCR
Training 3.9 575.3 0.996 0.99
Testing -162.3 718.9 0.995 na

PCNN
Training 13.2 380.7 0.997 na
Testing 9.7 337.5 0.997 na

Modified Witczak -2460 3152.1 0.93 0.88
Hirsch 1241.6 1785.7 0.95 0.91

Alkhateeb 2844.5 2984.5 0.95 0.90

According to the obtained rfit values, the predicted values of dynamic modulus by PCR and

PCNN models have a strong correlation (0.99) with the measured ones thus, both PCR and PCNN

are capable of predicting the response. The corresponding values of rfit for modified Witczak,

Hirsch, and Alkhateeb models are 0.93, 0.95, and 0.95 respectively, which seem reasonable. How-

ever, rfit can be biased since it shows if the measured response increases then the predicted response

will increase and vice versa. Considering other statistics, AD and AAD, shows that these values are

significantly higher for modified Witczak, Hirsch, and Alkhateeb models. Meaning that the fitted

values by these models are not as close as the ones fitted by PCR and PCNN to the response value.

In other words, AD and AAD indicate that the Hirsch and Alkhateeb models are overpredicting

and the modified Witczak model is underpredicting the response variables. Measured values of

dynamic modulus and the fitted values are presented in Figure 5.7. The measured and fitted values

are close to the line of equality meaning that the fitted values by PCR and PCNN have a strong

correlation with the measured one.



139

Figure 5.6: Summary of the well-known conventional dynamic modulus

Figure 5.7: Measured values of dynamic modulus versus fitted values .
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Figure 5.8: Plot of the residuals.

5.5 Model Validation

The task of confirming that the outputs of a statistical model have enough fidelity to the

output of data generating process is called model validation. The di↵erence between estimated

and measured values of the response (residual) is assumed to be a random error which is normally

distributed with a mean of zero and unknown variance Devore (2011). To examine the adequacy

of these assumptions, two sets of residual diagnostic analyses are implemented and presented in

Figure 5.8. If the residuals are random error terms, the residual plot should contain no obvious

pattern. According to the residual plot this assumption is satisfied for both PCR and PCNN

in rutting as well as dynamic modulus prediction models. The assumption of normality can be

checked by normal probability plot in a way that if the residual distribution is normal, their plot

will resemble a straight line. According to Figure 5.9 the data points are located around a straight

line. Therefore, the normality assumption does not appear to be violated.
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Figure 5.9: Normal probability plot.
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5.6 Variable Importance Analysis (VIA)

Once the performance model has been identified, design engineers may desire to know which

factor (predictor variable) included in the model has the strongest influence on the response variable.

If variation of a specific factor causes high variability in the response, that e↵ect is important relative

to the model. Variable importance analysis is one of the global sensitivity analysis methods and

is based on the functional decomposition idea by Sobol Sobol’ (1990). He proved that one can

decomposed a function y = f(x1, . . . ,xp) = f0 + f1(x1) + . . . + fp(xp) + f12(x1,x2) + . . . into the

sum of lower dimensional functions. The variability of these lower dimensional functions assesses

the importance of input variables in terms of e↵ect indexes which indicate relative importance of

the variables and are presented as the main e↵ect

Si =
Vi

V (y)
=

V (E (y|xi))
V (y)

(5.18)

and the total e↵ect

STi =
VTi

V (y)
=

V (y)� V (E (y|x�i))

V (y)
(5.19)

where xi represents a random input (vector) variable and x�i indicates all input variables except

xi. The unique contribution of the input variable xi to the total variation of the response, y, is

represented by main e↵ect, while the total e↵ect represents the overall contribution of xi on y which

includes all interaction terms Wei et al. (2015).

In the case of correlated factors (inputs), the contribution of an individual input variable to

the variation of the response should be divided into two parts of uncorrelated and correlated

contributions. In order to account for correlation, in the present study, factor values are constructed

from observed combinations using a k-nearest neighbors (KNN) approach. Observed variance and

co-variance are treated as representative of the co-variance structure of the factors. For rutting

and dynamic modulus prediction models, VIA is conducted, and the results are presented in this

section. Table 5.10 and Figure 5.10 indicate the main and total e↵ects for rutting prediction model.

For the developed rutting prediction model, percent air void, percent passing from #200 sieve, VFA
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Table 5.10: Variable Importance Analysis Results

Variable Main E↵ect Total E↵ect

Va% 0.155 0.195
Passing #200 0.024 0.181

VFA 0.155 0.155
VMA 0.128 0.134

Passing #16 0.042 0.119
Passing #100 0.033 0.112

E* 0.091 0.091
NMAS 0.068 0.068

Passing #50 0.03 0.067
Passin 3/4” 0.052 0.052
Passing #8 0.043 0.043

G* 0.03 0.043
Passing 1/2” 0.041 0.041
Passing 3/8” 0.035 0.035
Passing #30 0.03 0.03
Passing #4 0.02 0.025
Binder% 0.021 0.021

and VMA are in turn the most e↵ective variables, while for dynamic modulus prediction model the

most e↵ective variables are in turn complex shear modulus and phase angle as presented in Table

5.11 and Figure 5.11.

5.7 Application of the framework

In this section we present two applications of the developed framework in the design and opti-

mization of flexible pavement.

5.7.1 Problem 1: Minimizing accumulated strain

A proper formulation of minimizing accumulated strain in the flexible pavement design can be

formulated based on the above framework. The objective function is the output of the trained
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Figure 5.10: Variable importance analysis results

Table 5.11: Variable importance analysis results

Variable Main E↵ect Total E↵ect

Log —G*— 0.221 0.685
Phase angle 0.156 0.322

VMA 0.057 0.057
Cumulative%Retainedon1/2” 0.052 0.052
Cumulative%Retainedon 3/8” 0.052 0.052
Cumulative%Retained on #4 0.052 0.052

Cum. Retained on #8 0.052 0.052
Cum.Retained on #30 0.052 0.052
Cum.Retained on #50 0.052 0.052
Cum.Retained on #100 0.052 0.052

Passing #200 0.052 0.052
VFA 0.052 0.052
%Va 0.052 0.052

%Vbe↵ 0.042 0.042
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Figure 5.11: Variable importance analysis results.

network based on the laboratory data as explained in the previous section. The next step is adding

the appropriate constraints to this problem. These constraints ensure that the desired point remains

in the space where the trained dataset were originally located and that the model remains reliable

in this domain. It should be noted that the ANN network makes a nonlinear objective function

and unlike convex function, their behavior tends to promote multiple local minimizing points. The

problem becomes more complicated by the introduction of constraints.

Since the overall optimization problems is not convex, gradient-based algorithms are prone to

being trapped in a local optimal point. Many researchers have shows that a proper application of

evolutionary-based algorithms for engineering-based problems can result into desirable solutions in a

finite amount of computational time Cai et al. (2006); He and Yao (2002); Zitzler and Thiele (1999).

In this study, we use a variant of an evolutionary-based search algorithm called Mean Variance

Mapping Optimization (MVMO). MVMO Erlich et al. (2010) employs a number of operators to

locate the global optimum of a given function. More specifically, MVMO preserves an archive of

points during its evolution and extracts information to proceed forward from this archive. MVMO

also behaves adaptively so that it can explore the domain initially and exploit the specific domain

of interest to better locate the global optimum.
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MVMO is originally designed to solve unconstrained problems. In an attempt to optimize truss

structures with multiple constraints, Aslani et al. Aslani et al. (2018) provided an adaptive penalty

function which can transfer a given constrained problem into an unconstrained one. This strategy

has been shown to be robust, especially in the context of the problems with many constraints

involved. In the problem of minimizing accumulated strain, the constrains limiting the space to

an enclosing ellipsoid enter the problem through constrains and then are added to the objective

function through the penalty approach that was described above. Thus, the problem is formulated

as following:

minimize ✏ = ✏ANN (x)

with respect to x = (x1, ..., x17)

subject to (x� v)TA(x� v)  1,

(xpca � v0)TA0(xpca � v0)  1,

(5.20)

where " is the objective function (in this case, it is the accumulated strain) which is a function of

material property indicated by x. Finally, the set of constraints are represented by (x� v)TA(x�

v)  1. The uncertainty in the process of finding the enclosing can be found as a function of

principal semi-axes of the ellipsoid (si):

(x� v)T A (x� v)  1� |�| max(si) (5.21)

where � is pre-defined threshold in the e↵ective variable space section. As indicated before, the

constrained problem is changed to an unconstrained one through application of a penalty function.

MVMO convergence plot is shown in Figure 5.12. The initial point is random, and the algorithm

is evolved through the application multiple routines that model exploration initially and later on

exploitation to narrow down the domain of interest.

PCNN predictive model used in the objective function along with the constraint results in a

minimum of 1772 micro strain. Table 5.12 summarizes the material properties associated with this

solution. The obtained aggregate gradation graph in presented in Figure 5.13.
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Table 5.12: Optimal design parameters

Variable Identity Optimal values from PCNN
Current design specification

Control points Restricted zone
Lower Upper Lower Upper

x1 Binder % 4 - - - -
x2 G* (Pa) 270190 - - - -
x3 NMAS 19 - - - -
x4 Passing 3/4” 92 90 100 - -
x5 Passing 1/2” 66 - 90 - -
x6 Passing 3/8” 65 - - - -
x7 Passing #4 58 - - - -
x8 Passing #8 50 23 49 34.6 34.6
x9 Passing #16 39 - - 22.3 28.3
x10 Passing #30 27 - - 16.7 20.7
x11 Passing #50 9 - - 13.7 13.7
x12 Passing #100 4 - - - -
x13 Passing #200 3 2 8 - -
x14 VMA 16 13 - - -
x15 VFA 76 65 80 - -
x16 Va% 4 4 4 -
x17 E*(Mpa) 713 - - - -
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Figure 5.12: Convergence plot.

Figure 5.13: Optimal aggregate gradation graph.
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5.7.2 Problem 2

The developed predictive model for dynamic modulus is used along with an optimization algo-

rithm to answer the following two central questions:

• what design parameters result in the maximum |E⇤|?

• what design parameters result in a pre-specified |E⇤|?

One can see that the first item corresponds to the optimal design problem where

as the second one corresponds to the so-called inverse design. Recalling the PCNN’s higher

prediction capability, solving optimization problems based on PCNN would be more reliable. The

optimal design problem is formulated as follows:

maximize |E⇤| = FANN (x)

with respect to x = (x1, . . . , x14)

subject to (x� v)T A (x� v)  1
⇣
xpca � v

0
⌘
T

A
0
⇣
xpca � v

0
⌘
 1

(X � v)T A (x� v)  1� |�|max (si)

(5.22)

Similar to the rutting predicting problem, the vector x represents the predictor variables, and

(x � v)TA(x � v)  1 is the constrain equation. This optimization problem will be solved by

implementing a penalty function that penalizes (decreases, in the case of the maximization prob-

lem) the objective value for each constraint regarding to its degree of closeness/violation of the

corresponding constraint.

Compared to optimal design problem, the inverse design problem is a minimization problem

defined as follows:
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minimize error = ||E⇤|� |E⇤
0 ||

with respect to x = (x1, . . . , x14)

subject to (x� v)T A (x� v)  1
⇣
xpca � v

0
⌘
T

A
0
⇣
xpca � v

0
⌘
 1,

(5.23)

where |E⇤
0
| is the desired dynamic modulus. A similar penalization method is used to address

the constraint in this case as well. As mentioned in previous section, constrained MVMO algorithm

is implemented to solve the problem.

Figure 5.14 (left) shows the convergence plot for the optimal design problem solved using the

constrained MVMO algorithm. The algorithm initiates with a random initial point (heavily penal-

ized as it can be seen from the graph) and the objective function increases with every iteration.

It should be noted that � = 0.05 is used as the threshold in Figure 5.12. Solving the maximiza-

tion problem resulted in |E⇤max| = 53, 703 MPa. The obtained optimal design parameters are

presented in the first column of Table 5.13. The maximization problem is solved one more time

with an additional constraint of G⇤ sin (�)  5000kPa. to find the maximum amount of dynamic

modulus one could design for without low temperature failure in the asphalt binder. Solving this

problem resulted in |Emax| = 36, 307 MPa. Corresponding design parameters are presented in the

second column of Table 5.13 as the optimal design 2. Figure 5.14 (right) shows the convergence

of the algorithm for the inverse design problem which was started randomly from three di↵erent

initial points. The algorithm is terminated when the error reaches around 10�9. A pre-specified

|E⇤
0
| of 20,417 MPa. is considered and the inverse problem of finding the corresponding design

parameters is solved. Due to the non-linearity of the function, the problem dose not have a unique

solution. Three of the possible solutions are presented as designs 1 to 3 in Table 5.13. The five sets

of design parameters are compared with current design specification in Table 5.13. The percentage

of aggregate passing by sieve size located in the allowable range of the gradation specification.

Gradation charts are presented in Figure 5.15. The obtained percentage for air void is 4% which

is the target value of the design specification. The obtained values for VMA are slightly less than
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Table 5.13: Design parameters associated with maximum

Identity Optimal Design 1 Optimal Design 2 Design 1 Design 2 Design 3
Design Specification

Control Points Restricted Zone
Lower Upper Lower Upper

%Passing from 3/4” 100 100 100 100 100 - 100 - -
%Passing from 1/2” 93.38 94.03 92.25 91.88 91.80 90 100 - -
%Passing from 3/8” 81.74 81.72 79.57 79.92 80.70 - 90 - -
%Passing from #4 53.00 53.90 55.36 55.23 54.39 - - - -
%Passing from #8 39.56 40.51 41.37 41.08 40.92 28 58 39.1 39.1
%Passing from #30 20.75 20.68 21.02 20.87 20.83 - - 19.1 23.1
%Passing from #50 11.66 11.60 12.08 11.81 12.02 - - 15.5 15.5
%Passing from #100 6.22 6.21 6.52 6.38 6.40 - - - -
%Passing from #200 4.10 3.85 4.38 4.58 4.56 2 10 - -

G* (Mpa) 103.13 7.81 133.51 30.20 11.82 - - - -
Phase angle (degree) 35.71 39.60 47.69 47.27 44.77 2 8 - -

Vbe↵% 4.11 4.18 4.02 4.06 4.05 - - - -
VMA 13.47 13.56 13.41 13.45 13.44 - - - -
VFA 70.29 70.50 70.11 70.24 70.24 - - - -
Va% 4.00 4.00 3.99 4.00 4.01 4 - -

14% for nominal maximum aggregate size (NMAS) of 12.5 mm. The reason is that VMA values of

the nine mixtures used to train the PCNN are slightly less that 14% (see Table 5.5). As discussed

in previous section, the acceptable range for VFA depends on the amount of tra�c. The obtained

VFAs for all of the five sets of design are satisfied for all of the tra�c categories.

It should be mentioned that these are examples of the framework’s application in pavement

design indicating how to apply appropriate constraints to the modeling problem. Other example

can be finding optimal design parameters when a specific source of aggregate (or specific aggregate

size) is missing. Multi-objective design problem (minimizing rut depth while maximizing pavement

fatigue life) can also be solved with this framework.

5.8 Conclusions and recommendations

The purpose of this study was to develop a predictive framework for pavement performance

that could be reproducible and easy to use for every data base. The proposed framework in a

data preprocessing step, evaluates and qualifies the input variables to use them in further analysis.

It identifies cross correlated input variables using correlation analysis and substitutes them by

orthogonal pseudo-variables (PCs) using a multivariate technique called PCA. This transformation
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Figure 5.14: Convergence plot.

Figure 5.15: Aggregate gradation graphs.
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not only eliminates the existing pairwise correlation between the original inputs but also it reduces

the dimensionality of the data set and increases the accuracy of the prediction. The framework uses

pseudo-inputs (PCs) and develops two predictive models using multivariate regression and ANN

(models are called PCR and PCNN respectively.)

According to the size of the available data set, the framework implements a cross-validation

technique to prevent developing biased or overfitted models. In case of limited amount of data

points (e.g. rutting data set) the network performs k-fold cross validation technique to assure that

the developed model is stable against an unseen data set. Empirical predictive models can lead

to inaccurate results under extrapolation. A simple method is implemented to define the e↵ective

variable space in which both predictive models can be used. The defined hyperspace is added as a

constraint to the modeling problem.

To illustrate the authority of the proposed framework, two separate performance prediction

problems are defined and solved. In the first problem, the rutting behavior of asphalt mixture is

predicted as a function of asphalt binder, aggregate, and mixture properties using experimental

data of the flow number test. In the second problem, the dynamic modulus of asphalt mixture is

predicted using asphalt binder, aggregate, and mixture volumetric properties using experimental

data of the dynamic modulus test. In both of the problems, the developed models, PCR and PCNN,

indicated satisfactory performance in terms of modeling the amount of permanent deformation and

dynamic modulus value, with PCNN being significantly better in fitting the test data than the

conventional performance predictive models.

To indicate one application of the proposed framework in pavement performance prediction,

the problem of finding the optimal design parameters is solved using mean-variance mapping op-

timization algorithm for both of the performance prediction problems over their e↵ective variable

spaces. The value of 1772 micro-strain is obtained as the minimum accumulated strain. For the

problem of predicting dynamic modulus, the inverse design problem of finding the design param-

eters corresponding to any pre-specified value of dynamic modulus is also solved over its e↵ective

variable space. In all the optimization problems the design parameters corresponding to optimum
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or inverse designs are obtained for PCNN. The obtained optimal design parameters satisfy the

current asphalt pavement design specifications and could be used as an appropriate starting point

in the design procedure.

It is also worth pointing out that selection of study materials was based on the availability of

asphalt mixtures for laboratory testing and like every empirical model the obtained results are based

on the available empirical database. Eventually, for creating a more reliable predictive model, a

larger data base is required. However, what makes machine learning-based models special is that the

model will be retrained and modified when a new data set is fed into the framework. Thus, unlike

other empirical predictive models there is no need to calibrate the model for each specific location

based on its climate condition and available materials. Moreover, the proposed framework can be

used to predict any performance-related characteristics of asphalt mixture including rutting, fatigue,

low temperature behavior, etc. In other words, having several performance predictive models for

asphalt mixture is no longer necessary. Besides, due to the high accuracy of the developed models

in predicting pavement performance characteristics, the framework can be implemented to improve

level 2 and level 3 inputs in MEPDG design procedure. The proposed framework can make a stand-

alone software for predicting pavement performance which is highly beneficial for asphalt agencies

when a large number of performance data is available.

Future research would address the capability of the model in handling larger data sets. Con-

sidering the high accuracy of the developed predictive models, these PCA-based approaches are

strongly recommended as an appropriate modeling approaches in this application. Moreover, these

methodologies appear to be capable of modeling asphalt binder chemical properties as well as

finding performance volumetric relationships and such investigations are recommended as future

studies.
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CHAPTER 6. AN INVERSE APPROACH FOR EVALUATING GANTRY

CRANE-WAY PAVEMENT PERFORMANCE

A paper Submitted to the Journal of Transportation Geotechnics

6.1 Abstract

Gantry-crane pavements and foundations are significant assets within intermodal facilities. Be-

cause they are subjected to highly-variable loads and are critical to safe operations, tra�c inter-

ruptions and costs associated with maintaining and rehabilitating distressed or failed pavements

in associated areas are of particular importance. Design of gantry crane-way pavements and inves-

tigation of the contribution to overall performance of each of the pavement layers are challenging

tasks for design engineers, and failure to seriously address this contribution can result in premature

pavement failure or high maintenance requirements. The purpose of this study was to evaluate

structural behavior and improve design procedures for gantry crane way pavement used at inter-

modal facilities by assessing interactions among pavements, subgrades, and operational loading

conditions. The performance of the gantry crane pavements and foundations was assessed using

a finite-element model, while pavement structural response to a crane load was measured using

strain gages installed in the field. An inverse design approach was implemented to verify consistent

behavior of the developed finite-element model with repect to the field measurements. Because of

the significant cost of FEM simulation, the gradient-based solver used in this study was based on

an interior point algorithm, following which the verified model was used to predict the critical re-

sponses of PCC layer, base course, and subgrade soil. These parameters were then used to conduct

a pavement fatigue damage analysis, parametric analyses of material strength and slab geometry

were carried out based on Model Code, and resulting fatigue-life recommendations for improved

designs were made.
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Figure 6.1: Gantry crane and crane way pavement.

6.2 Introduction

At intermodal facilities, the pavement, including paved entrances/exits, loading areas, truck

aisles, and container parking areas, usually represents the largest asset in the facility. The United

States economy significantly depends on successful and e�cient operation of intermodal facilities

in transporting goods across the nation, and operational safety, reduced operational variability ,

and satisfactory customer interactions all depend on satisfactorily-performing pavements under a

variety of loadings and environmental conditions. Gantry-crane pavements and their foundations,

depicted in Figure 6.1, comprise a key area subject to wide variation in loading and critical to the

safe operation of intermodal facilities. When the cross-country train arrives at a halting point at

an intermodal facility, heavy containers will be typically be unloaded using a Rubber Tire Gantry

Crane (RTGC), and severe distresses (and failure) can occur to the crane-way pavement when it is

subjected to numerous repeated heavy loads in a daily operation. Since tra�c disruptions and costs

associated with maintaining and rehabilitating distressed or failed pavements in these areas are of

particular importance in achieving safe and e�cient operation of gantry crane areas and associated

intermodal facilities, crane-way pavement structural performance requires a unique assessment for

development of appropriate design and maintenance strategies.
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Concrete pavement deterioration is a function of several factors, including slab thickness, mate-

rial properties (concrete and foundation beneath the pavement), boundary conditions, interactions

between concrete slab and base course, subgrade soil characterization, environmental conditions,

and magnitude and position of applied load Maitra et al. (2010). In the case of heavy-duty pave-

ments, i.e., pavements designed to carry heavy loads, subgrade soil characteristics play an even

more significant role in pavement performance Kermani et al. (2018); Shoukry et al. (2007); Uddin

et al. (1995); Sadeghi and Hesami (2018). One of the most common cause of failure of such pave-

ments is weak soil support (low bearing capacity) beneath the pavement, suggesting that failure

to rigorously test and accurately characterize the native foundation soils can lead to premature

pavement failure and high maintenance requirements Knapton (1989); Huang (1993); Miller et al.

(2014), major issues when examining crane-way pavement performance at intermodal facilities.

Finite-element analysis has serves as a powerful tool for capturing pavement responses when

analyzing rigid-pavement structure Huang (1993); Tabatabaie and Barenberg (1978); Shoukry et al.

(2007); Uddin et al. (1995); Sadeghi and Hesami (2018). The methodology is not new to the pave-

ment design and research community and has been used over the past several decades. Traditional

pavement-subgrade analysis, based on static load and multilayer linear elastic formulation of infi-

nite dimension in the horizontal plane and a semi-infinite subgrade, does not account for dynamic

behavior or pavement discontinuities. The finite-element method, however, does support dynamic

analysis of pavements and consideration of either finite or infinite dimensions of the physical pave-

ment structure. Several finite-element programs have been developed exclusively for pavement

analysis, e.g., ILLIPAVE and ILLISLAB for flexible and rigid pavements, respectively, but these

packages are capable of performing static analysis only. The finite-element package ABAQUS

is available for comprehensive structural pavement response analysis in both static and dynamic

procedures. ABAQUS also has a variety of material models, i.e., linear elastic, nonlinear elastic,

viscoelastic etc. Since surface-to-surface contact problems can also be defined and solved using

this package, in the present study ABAQUS was implemented for simulating a crane-way pavement

section under crane load. However, while finite-element analysis is an established method providing
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su�cient e�ciency and precision, it can simulate the actual performance of the pavement only if

the input information is su�ciently precise. Limited time and resources may make it impossible

to measure every single property in the field, and in such cases the problem under study may have

both known and unknown properties (e.g. due to the time limitations the only field measurement

is strain values in concrete pavements).

There are two major approaches to tackling the problem of finding unknown properties of

a system from some experimental measurements. In the first approach (also called the forward

problem), one can run the FEM simulation of the system using some ranges of given unknowns,

then build a network using the resulting batch of simulations. Given some error threshold. Once

the network is built one can use it inside an optimization solver to directly determine the unknown

properties. While this approach has been used in a number of studies Ghasemi et al. (2019a), it may

not be applicable if computational resources are limited, because running FEM simulation of even a

medium-sized model is computationally cumbersome. Another approach would be using the inverse

optimization approach (the forward model problem) in which the value of an unknown parameter

under investigation is guessed and the solution obtained is validated. Once the forward model is

solved for an assumed value of input, the next step would be to compute the error between simulated

and experimental measurements. If the error is found to lie within the limit, the initial guess is taken

as the solution to the inverse problem; otherwise, the process is repeated until the error condition

is satisfied. It should be noted that, once the numerical simulation (in this case the FEM) has

been verified, one can use this same model to study properties or measurements not available from

experiments. While a step forward would be to use the current model to optimize the design of the

system of interest, in this study we focus only on the feasibility of the inverse approach to finding a

high-precision numerical simulation. The purpose of this study was to evaluate structural behavior

and improve design procedures used for determining gantry-crane way pavement used at intermodal

facilities. To achieve this purpose, existing facilities of the intermodal facilities were investigated,

instrumented, and assessed to seek understanding of interactions between pavements, subgrade,

operational loading conditions, and performance of such pavements. Finite-element analysis was
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used to assess performance related to design and maintenance procedures . An inverse design

methodology was implemented to verify the finite-element model against the field measurements,

and pavement critical responses and structural life predictors were obtained from the verified model,

leading to recommendations for modifying crane-way pavement design procedures . The rest of

this paper is organized as follows: The field test setup is presented in the next section, followed by

discussion of the modeling approach implemented and inverse-design strategy. Results, discussion,

and conclusions are presented in the remaining sections.

6.3 Field test setup

Strain measurements were collected from a gantry crane way at intermodal facilities located in

Chicago, Illinois. The pavement was a 21 inch (53.34 cm) thick Portland cement concrete (PCC)

slab poured over a 6 inch (15.24 cm) thick crushed limestone base course, with the PCC layer saw-

cut every 10 ft. (3.048 m). A total number of 18 vibrating-wire strain gages had been installed at

top, middle and bottom of the middle, and the edge of the PCC slab before pouring the concrete, as

shown in Figure 6.2. A schematic of the strain gages installation plan is shown in Figure 6.3. The

Model 4200 (standard)strain gages used in this study,designed for direct embedment in concrete,

had a 153 mm gage lengths and 1 µ✏ sensitivity, are commonly used for strain measurements in

foundations, piles, bridges, dams, tunnel linings, etc. They were oriented horizontally to measure

longitudinal strain developed as the crane slowly passed over the slab, applying a load for a period of

40 seconds before moving to the next loading situation. Consistent with the strain-gage orientation

and the defined coordinate system, the strain in the x-direction ,✏xx, was measured as the response of

the pavement to the applied monotonic load. The footprint of the RTGC tire, also recorded during

the site visit, was used to estimate the net contact area of the tire. Due to the costs associated

to tra�c interruptions, the field test setup must have been done in less than two days. Moreover,

taking cores and bore holes from the field was not allowed to avoid tra�c interruptions. Therefore,

direct measurement/back-calculation of the materials properties using in-situ/laboratory tests was

not possible in this study.
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Figure 6.2: Vibrating wire strain gages

6.4 Modeling

A three-dimensional PCC pavement with properties similar to those of the experimental pave-

ment was modeled in this study. The modeled pavement section consisted of five full-length slabs

with untied asphalt-concrete shoulders. The concrete slabs along with a base course were placed

on a saturated-clay subgrade soil. A schematic of the developed model is presented by Figure 6.4.

The slabs are tied together every 30 ft (9.144 m) using dowel bars. Dowel bars are assumed to be

embedded into the concrete slabs. The boundary conditions were considered fixed for the bottom

of the subgrade layer and the joints at the edges of the soil and the base layer. The lateral sides

of the concrete slabs were assumed to be free to simulate field conditions under which concrete

shrinkage and expansion can happen. A schematic of the applied boundary conditions is presented

in Figure 6.5.

Since the dowel bars are placed every three slabs in the field, in developing the model, aggregate

interlock was assumed to be the main source of load transfer between the adjacent slabs, and a
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2 Strain Instrumentation Plan.png

Figure 6.3: Strain gages installation.
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Figure 6.4: A schematic of the developed model.

Figure 6.5: Applied boundary conditions in finite element.
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sliding interface with a coe�cient of friction value of 1.5 and a possibility of slab-base separation

was provided between the slabs and the base layer. As mentioned previously, during the site visit

a tire footprint was taken, so to enhance image quality and extract useful information image-

processing analysis was implemented in MATLAB. After enhancing the contrast, removing noise,

and providing some filtering, the net contact area of the tire footprint was calculated, and the

original tire footprint and final image-processing results are presented in Figure 6.6. According

to information provided about the crane model (mj MI-Jack 1200) and the obtained contact area

a 689,851 Pa (690 MPa) pressure is applied on the pavement by each wheel of the crane. To

achieve compatibility with the field setup, during the analysis the same amount of pressure was

applied by the two wheels for a duration of 40 seconds. Linear elastic materials were used for

concrete slabs as well as the base course, and to examine the inelastic behavior of the concrete, a

Concrete Damage Plasticity (CDP) model was implemented. That model assumed main concrete

failure mechanisms were tensile cracking and compressive crushing. Equation 6.1 known as the

Kent and Park model, was used to describe concrete uniaxial compression behavior in the absence

of laboratory test results.

�c = f 0
c0[2(

✏c
✏0c
)� (

✏c
✏0c
)2] (6.1)

where �c is compressive stress, ✏c is compressive strain, f 0
c0

is compressive strength, and ✏0c is strain

at compressive strength. The concrete compression damage behavior is defined using the following

equations:

�c = (1� dc)E0(✏c �
f
✏plc ) (6.2)

f
✏plc = g✏inc d� 1

(1� dc)
�c/E0 (6.3)

dc = 1� �c
f 0
c

(6.4)

where
f
✏plc is the plastic compressive strain, f✏inc is the inelastic compressive strain,E0 is the initial

elastic modulus, and dc is the compression damage coe�cient. Concrete tensile strength is assumed
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to be 10% of its compressive strength. The tensile behavior of concrete is defined using the following

equations.

�t = (1� dt)E0(✏t �
f
✏pl
t
) (6.5)

f
✏pl
t
= f✏ck

t
� 1

(1� dt)
�t/E0 (6.6)

where �t is tensile stress, dt is tensile damage coe�cient, ✏t is tensile strain,
f
✏pl
t

is plastic tensile

strain, and f✏ck
t

is cracking strain. In this way the cycling behavior of concrete were defined Kent

and Park (1971); Grassl and Jirásek (2006) and the elastic and plastic properties (with kinematic

hardening) of the steel dowel bars were defined. According to field observations, the ground water

table level was as high as the base course height, so the subgrade soil was 100% saturated, and

the Mohr-Coulomb model was implemented to describe the elastic-perfectly-plastic behavior of

saturated clay. A geostatic procedure was used as the first step of the analysis to ensure that

gravity load and the initial geostatic stress were in equilibrium and produced zero deformation. An

8-node linear brick with reduced integration and hourglass control (C3D8R) was used for concrete

slabs and base course, and for the subgrade soil a 20-node brick with pore pressure, quadratic

displacement, linear pore pressure, and reduced integration (C3D20RP) was used. Two-node linear

beam elements (B31) were used for the dowel bars. A convergence study was also performed

to ensure that the finite-element analysis results were not a↵ected by changing the mesh size.

The finite-element method enables evaluation of the state of stress and strain in a continuum by

transforming the continuum into an assemblage of finite elements interconnected at their mutual

nodes. Dynamic finite-element analysis involves solving the di↵erential equation of motion:

MÜ + CU̇ +KU = F (6.7)

where M is mass matrix, C is damping matrix, K is sti↵ness matrix, Ü , U̇ , U are vector of accel-

eration, velocity, and displacement, and F is vector of nodal forces.
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Figure 6.6: Tire foot print taken in the field.

As previously discussed, in this study an ABAQUS finite-element package was utilized to solve

the aforementioned di↵erential equation, and 500 CPU-hours on the High Performance Computer

(HPC) at Iowa State University was used to complete each simulation.

6.4.1 An inverse approach for material property estimation

As previously discussed, during field measurements the amount of strain in the x-direction, ✏xx,

at top, middle, and bottom of the slabs were measured as pavement responses to the applied load,

and the values of material properties, including layer modulus or Mohr-Coulomb parameters, were

not known a priori. 1. To verify the developed model against field measurements one should find

the set of the material properties for use in the numerical model that results in the closest ✏xx

value to the field measurements. Performing this verification is the same as solving the problem

inversely that would require solving an optimization problem. The main objective of using the

inverse algorithm was to obtain the solution in the least possible time, thereby imposing minimal

computational penalties. The inverse problem is usually associated with estimation of unknown

parameters based on the measurements from sensors located at known accessible locations in the

domain. The current optimization problem has a number of functions calculated based on the FEM

simulation, and such simulation-based optimization often involves derivatives that are unavailable

and, in this particular case, prohibitively expensive in terms of calculation or numerical approxi-

1Note that one might have access to this information given their available facility
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mation. In an inverse problem we typically require two solvers: a forward solver (in this case the

FEM model) used to evaluate the objective function, and an inverse solver that iteratively locates

the optimum point. The forward solver (FEM simulation) was described in the previous section,

and the outputs from the forward problem (in this case the strain values) were used as inputs to

the inverse solver. The inverse solver uses an iterative optimization solver to locate the optimum

point where the following error function is minimized:

Ferror(M) =
NX

i=1

(✏i,FEM � ✏i,EXP )
2 (6.8)

where N is the number of points to be considered for the comparison. Since the strain obtained from

the experiments is constant, the error function is dependent only on the strain rates obtained from

the FEM simulation. The vector M contains the set of material properties that remain constant

when the forward problem (FEM simulation) is called.

There are a number of naturally-occurring constraints in this case, including field measurement

errors. After initial trial-and-error finite-element analysis (to calibrate the material properties) it

was found that not all of the strain gages achieved the same measurement accuracy, so the six

most accurate gages were selected for use in the objective function while the others would be used

as constraints for the inverse problem. These constraints were associated with strain values not

appearing in the error function that should be constrained to a prescribed specific values. These

strains were obtained directly from the forward solver and entered into the inverse problem as a

nonlinear constraint. If Ec = Ec(M) (with size Nc), ) is taken as the vector of constraints not

contained in the error function, Ec < E0 is the desired set of constraints for the inverse problem.

As can be seen, unlike regular bounds for variables that enter the optimization problem linearly,

the constrains on the strains are nonlinear and must be treated appropriately.

If Ec(M) � E0 = c(M)  0, are the constraints expressed in functional form we can define a

Lagrangian function for the general problem in the following form:

L(M,�) = Ferror(M)�
X

i

�ici(M), (6.9)
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where �i is the Lagrangian multiplier for constraint i. Our goal is to find M⇤ and �⇤ such that the

following conditions (also known as KKT conditions) are simultaneously satisfied

rML(M⇤,�⇤) = 0, c(M⇤)  0, �⇤
i ci(M

⇤) = 0 for all i (6.10)

where the last complementary condition implies that a constraint is either active or �i = 0 or both.

In this way, values of �i can be interpreted as parameters for study of sensitivity analysis of the

constraints of the problem. We also note that the first condition can be rewritten in the following

form:

rML(M⇤,�⇤) = rFerror(M
⇤)�

X

i

�⇤
irci(M⇤) = 0 (6.11)

in which we are looking for a stationary point when first-order necessary conditions are met. As

can obviously be seen, the above function involves calculation of the gradient function for the error

function and the constraints, but since we had no direct access to those functions (The Abaqus

solver is basically a black box here!), we used an approach based on a gradient-based optimization

solver and instead attempted to approximate the derivatives of our error and constraint functions.

We also note that the application of evolutionary heuristic or meta-heuristic algorithms are not

appropriate because they require many function evaluations to converge (if we can precisely define

convergence for them). Also, since we seeded a local convergence rate that was near quadratic, a

fast termination of the algorithm was expected.

In this work we employed a trust-region-based algorithm used in the context of sequential

quadratic programming (or SQP) because of the presence of the constraints, and we were trying

to minimize sub-problems defined by fully-linear or fully-quadratic models. These problems are

typically formed from linear/polynomial interpolations, and our modified function written in the

form of an SQP was:
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minimize fk +rfT

k
p+

1

2
pTr2

xxLkp

with respect to p

subject to rci(xk)T p+ ci(xk) > 0 for all i

(6.12)

where calculation of the gradient of the function is based on quadratic approximation in the

vicinity of the current points (xk) and the second derivative is approximated based on the BFGS

algorithm Nocedal and Wright (2006). The major interest in this algorithm stems from the fact

that it is able to converge quickly given a proper initial condition, and also that, in all iteratipons

of the algorithm, the inequality constraint was strictly satisfied. This was an important advantage.

especially because the cost of performing the FEM simulation is excessively high. There are many

details of the above algorithm that have been omitted in this discussion, and the reader is referred

to the Nocedal and Wright (2006) for further details.

Our experimentation with the current problem has shown that the this algorithm converges to

a local minimum in a number of epochs (O(10)) thanks to locally-descending Newton steps at each

iteration. Figure 6.7 shows convergence history for the normalized gradient and objective functions

on the left and right axis, respectively, demonstrating the rapid convergence of the aforementioned

methodology. As can be seen, the simulations were terminated after approximately 12 epochs.

A schematic summery of the implemented inverse approach is presented in Figure 6.8. The

inverse solver starts from a guess (in this case a set of prescribed values obtained from the literature

Shoukry et al. (2007)) aand the forward FEM problem is then solved. In the next step, a gradient-

based optimization algorithm determines a new set of properties, then the forward problem is solved

once again and the error function is reassessed. This procedure continues until the target function

has been minimized. The inverse solver is coded in MATLAB and combined with ABAQUS software

to solve the forward problem.
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Table 6.1: Material properties obtained from the inverse approach

Material
Property Concrete Crushed limeston base Clay subgrade Steel dowel bars

Density (kg/m3) 2350 2240 1800 7850
Elastic Modulus (Pa) 3.445⇥ 1010 1.76⇥ 108 3⇥ 107 2.10⇥ 1011

Poisson’s ratio 0.18 0.4 0.48 0.3
Permeability (m/s) - - 1⇥ 10�7 -

Void ratio - - 0.889 -
friction angle (degree) - - 0 -

6.5 Results and Discussions

Results from both the finite-element analysis and the field measurements are presented in this

section. The inverse design approach resulted in a set of material properties that led to the closest

✏xx (or minimum di↵erence between the measured and the predicted response). The obtained

material properties for concrete, crushed limestone base course, subgrade soil, and steel dowel bars

are presented in Table 6.1. After verifying the finite-element model against the field-produced data

using obtained material properties, six of the best-performing strain gages were selected and their

corresponding measured and estimated strain values are presented in Figure 6.9 that indicates the

amount of strain captured by the strain gages as the crane passes over the pavement. It should

be mentioned that since these six strain gages are those used in the inverse design procedure, they

indicate the strain values closest to the field measurements, while the measurements obtained from

the other gages were used as constraint (to stay within a prescribed range) in the inverse solver.

Now that it has been indicated that the developed model is capable of accurately predict-

ing known (measured) pavement structural responses, it can be used to predict critical pavement

responses considered to be pavement structural-life predictors. Since the main cause of slab deteri-

oration are cracks that can be considered as indicators of tensile failure in concrete slabs that will

happen when tensile stresses exceed the concrete flexural strength, the maximum horizontal tensile

stress, �xx,max, obtained from the verified model at the bottom edge of the PCC slab, is considered

to be a predictor of pavement structural life Brill (1998). The maximum horizontal tensile stress is
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Figure 6.9: Field measurements versus estimated strain.
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obtained for di↵erent load locations to emphasize the importance of the load location in the con-

crete fatigue life. In the remainder of this section we first introduce the various fatigue predictive

models based on the existing literature. These models will be implemented to predict the fatigue

life of the crane-way pavement based on the subsequent FE analysis outputs.

6.5.1 Crane way pavement fatigue analysis

Rigid pavement structures deterioration occurs in the form of fatigue cracks over the pavement

service life. The deterioration process can be accelerated with the introduction of heavier loads that

can change the boundary conditions through subgrade support loss and slab curling. Predicting

fatigue life of a rigid pavement can be performed by calculating a slabs critical tensile stress and

implementing fatigue equations (S-N curves) to predict the allowable number of load repetitions

until material failure based on the applied stress ratio (tensile bending stress divided by flexural

strength of the concrete slab). Smith, et al., (Smith and Roesler 2004) have conducted a review

of fatigue models for concrete airfield pavement design, and Table 6.2 presents a summary of the

fatigue models they discussed in their study.

Table 6.2 summarizes key characteristics for fatigue models in terms of some of the key factors of

importance in fatigue-model development, and the type of data used in the development of fatigue

models can be seen to be a primary factor a↵ecting their results. The fatigue models mentioned in

Table 6.2 are either based on field data or on concrete beam data, and the primary advantage of a

model based on field data is that it can include many influential real-world factors, including direct

consideration of tra�c and foundation support conditions and indirect consideration of environ-

mental forces, to be considered in evaluating fatigue life. However, the fact that the entire range of

possible design and stress conditions are not included, that the number of available field sections

for evaluation is generally limited, that the available field studies were conducted over short periods

of time, and that the e↵ect of material and construction variability may not be fully reflected, are

some of disadvantages in the use of field data. While laboratory testing of concrete beams is a

relatively simple, inexpensive, and rapid way of developing relationships between load applications
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and failure, there are several factors a↵ecting the results of laboratory testing, including loading

rate, loading sequence, stress ratio (ratio of minimum to maximum stress levels), etc. In addition

to using di↵erent data sources, fatigue models can also di↵er based on the failure criterion (e.g., 50

percent of the slabs cracked versus failure of concrete beam) used to develop the model. The partic-

ular stress computation process used in developing the fatigue model is also important. There are

several stress computation methods, including Westergaard edge stress equations, elastic-layered

theory, and finite-element methods. The location of the critical response (stress) also varyies in

di↵erent equations. Because of such di↵erences in the way fatigue models are developed, they can-

not be simply substituted for one another in a given design procedure. That being said, based on

stress computation methods, Foxworthy, NCHRP 1-26, PCA, and Zero-maintenance methods were

selected for use in predicting fatigue life of the pavement. Roesler et al., also conducted a series

of large-scale concrete fatigue tests and suggested a comprehensive model that considers temper-

ature stresses, built-in curling stresses, stress range, peak stresses, and loading rate Roesler and

Barenberg (1999); Hiller and Roesler (2005); Roesler et al. (2005). Other than the aforementioned

equations for predicting fatigue life of a concrete beam or slab, the Model Code Taerwe et al. (2013)

also provides a predictive model for concrete structures fatigue life taking into account both pure

compression and a combination of compression and tension. The remainder of this section describes

prediction of the fatigue life. the number of load cycles to failure (the failure criterion might be

di↵erent for each fatigue predictive model), using all the aforementioned equations, and compares

the results for two di↵erent load locations, mid and edge slab. Design recommendations will be

subsequently provided. It is worth note that, in order to perform valid fatigue analysis, the most

unfavorable node (for each load location) should be considered. These analyses are based on the

FE model results.

6.5.1.1 Load location 1: Mid-slab

A schematic diagram of the concrete slabs under the mid-slab load along with the base course

and subgrade soil layers and their corresponding critical responses is presented in Figure 6.10. The
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Figure 6.10: Deformed shape (scale = 500) of one of the slabs.

load was applied on the slabs by two crane wheels, obtaining �xx,max is 1.088⇥ 106 Pa that occurs

directly beneath the load at the bottom edge of the concrete slab; it was smaller than the concrete

slab flexural strength (ff , 6.24⇥ 106 Pa, obtained from the following equations from ACI 318

E = 15000
p
f 0
c (6.13)

ff = 0.44f2/3

c (6.14)

where E is concrete elastic modulus, f 0
c is concrete compressive strength,and ff is concrete flexural

strength.
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Table 6.3: Pavement layers critical response parameters

Layer Critical Response Value (Pa),(m)

Concrete �xx,max 1.088⇥ 106

Base Course
�zz,max 3.35⇥ 104

�zz,max 2.795⇥ 10�3

Subgrade Soil
�zz,max 1.13⇥ 104

�zz,max 2.717⇥ 10�3

Table 6.4: The number of cycles to failure and fatigue

Fatigue Model Cycles to failure Fatigue life (year)

Model Code pure compression 9.1025 4.16⇥ 1021

Model Code pure tension
and tension-compression with

�ct,max>0.026|�c,max| 2.92⇥ 107 1.33⇥ 103

FoxWorthy - -
NCHRP 1-26 - -

PCA 4.72⇥ 109 2.15⇥ 105

Zero maintenance 3.29⇥ 1014 1.50⇥ 1010

MEPDG 4.98⇥ 1016 2.27⇥ 1012

FAA Compression 2.27⇥ 1014 1.04⇥ 1010

FAA Tension 1.12⇥ 1012 5.11⇥ 107

Roesler 1.21⇥ 105 5.52

The number of cycles to failure and the pavement fatigue life were calculated for each fatigue

model, with an assumed average daily operation of 60 load repetitions. The number of cycles to

failure for a mid-slab load is presented in Table 6.4.

It should be mentioned that concrete fatigue equations are dependent on four main factors that

explain why so many di↵erent fatigue algorithms exist even for the same data sets:

• Specimen size and geometry, loading configuration, and boundary conditions (generally called

the size e↵ect)

• Theoretical model for stress calculation (plate theory, layered elastic, or finite-element anal-

ysis)
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Figure 6.11: Deformed shape (scale = 500) of one of the slabs.

• Bending stresses included (temperature and moisture curling and mechanical loading)

• Method of counting stress repetitions

6.5.1.2 Load location 2: Slab edge

A schematic of the concrete slabs under the mid slab load, along with the base course and

subgrade soil layers and their corresponding critical responses, is presented in Figure 6.11. The

load was applied on the slabs by two of the crane wheels. The pavement critical responses and

their corresponding fatigue life calculations are presented in Tables 6.5 and 6.6 ,respectively.

By comparing the fatigue life results obtained for two di↵erent load locations, one can see that

the edge load is more critical in terms of structural critical response of the pavement. Monitoring the

exact load positions and load repetitions would result in a cumulative damage study of the crane-way

pavement. According to the obtained results, the most conservative fatigue models with 3, 7, and 12
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Table 6.5: Pavement layers critical response parameters

Layer Critical Response Value (Pa),(m)

Concrete �xx,max 1.626⇥ 106

Base Course
�zz,max 4.195⇥ 104

�zz,max 3.331⇥ 10�3

Subgrade Soil
�zz,max 2.134⇥ 104

�zz,max 3.010⇥ 10�3

Table 6.6: The number of cycles to failure and fatigue life

Fatigue Model Cycles to failure Fatigue life (year)

Model Code pure compression 2.10⇥ 1023 9.10⇥ 1017

Model Code pure tension
and tension-compression with

�ct,max>0.026|�c,max| 1.68⇥ 105 7.69
FoxWorthy 4.28⇥ 105 1.95⇥ 101

NCHRP 1-26 2.63⇥ 1014 1.20⇥ 1010

PCA 4.16⇥ 108 1.90⇥ 104

Zero maintenance 9.78⇥ 1012 4.47⇥ 108

MEPDG 1.71⇥ 1010 7.82⇥ 105

FAA Compression 1.72⇥ 1014 7.87⇥ 109

FAA Tension 6.00⇥ 1010 2.74⇥ 106

Roesler 6.58⇥ 104 3.01
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years predicted fatigue life are Roesler, Model Code, and FortWorthy, respectively. As previously

mentioned, intermodal facilities often must deal with premature-cracking in the first one or two

years of the crane-way pavement service life. According to the obtained critical response parameter

(�xx,max), while concrete slabs have a high flexural strength value, 100% saturated clay does not

provide su�cient support for pavement for large applied loads. Previous studies have shown, that

during a wet season, cyclic loading of heavy tra�c can result in pumping of fine particles from

the subgrade into the granular layers, redistribution of materials beneath slabs, and progressive

ejection of materials through pavement joints Kermani et al. (2018). During this process pavement

will lose its subgrade support and may face several distresses (premature cracking, faulting, etc.)

resulting to pavement failure. Moreover, at the end of wet season subgrade settlements will result

in another set of premature cracks that are extended continuously to several slabs. Therefore,

to design specific heavy-duty pavements, it is crucial to consider the contribution of pavement

foundation to the overall pavement performance. A damage evaluation along with a parametric

analyses on material strength and slab geometry are conducted and discussed in the next section.

6.5.1.3 Fatigue damage evaluation

As discussed previously, since the slabs were not made of reinforced concrete, the fatigue damage

due to tension in concrete is the main concern. For a general stress state, while the stress at a

specific direction should be selected for cycle counting and damage evaluation, it is known that a

stress gradient can cause redistribution of concrete stress, and if this e↵ect is ignored the obtained

fatigue damage will increase slightly. For damage evaluation purposes, a load was applied at two

di↵erent load locations, slab middle and slab edge, for 20 seconds and the analysis considered

horizontal tensile stress, (�xx), at the most unfavorable node. Fatigue damage evaluation was then

conducted following the Mode Code 2010 formulation. For the tensile stress, �xx, cycle counting

was carried out using the rain-flow algorithm developed by Downing and Socie Downing and Socie

(1982). A subroutine was developed in MATLAB for performing this task on stress time histories

and to present the counted cycles in the matrix shown in Figure 6.12 and Figure 6.13 for each
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Figure 6.12: The total number of 106 cycles counted.

stress range and mean. For each stress range, the fatigue life N was calculated according to the

Model Code using the following equations both for pure tension and for tension-compression with

�ct,max > 0.026|�c,max|:

LogN = 12(1� Sct,max) (6.15)

Sct,max =
�ct,max

fctk,min

(6.16)

where N is the number of cycles to failure, Sct,max is the maximum tensile stress level, �ct,max is

the maximum tensile stress in MPa, and fctk,min is the minimum characteristic tensile strength.
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Figure 6.13: The total number of 108 cycles counted
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Based on Miner’s rule, damage resulting from a given stress range is a linear function of the

number of cycles of that stress range. The Miner’s rule formula can be expressed as:

Di =
ni

Ni

(6.17)

where Ni is the number of cycles needed to cause failure at the ith stress range Si, and ni is the

number of cycles of the stress range Si. For both load locations, the damage, Di for each stress

range is determined and presented in Figure 6.14. The total damage D can be calculated using the

following equation:

D =
NX

i

Di (6.18)

According to Miner’s rule, the failure occurs if the total damage, D, is equal to 1. The total

estimated damage for 10 seconds of loading (one crane passage) for mid-slab load was 0.0000176%

for edge-slab load it was 0.00149%.

6.5.1.4 Parametric analysis and design recommendations

This section presents results from studies on the e↵ect of concrete compressive strength, concrete

slab geometry, elastic modulus of the base course material, and thickness of the base layer, on

damage at the most unfavorable node. Each of these individual parametric studies were done while

keeping constant the other material properties and model geometries, and the results are presented

in Figures 6.15 to 6.19. According to Figure 6.15, damage decreases with increasing base course

elastic modulus. However, concrete pavements do not require strong foundation support since the

load is distributed over large areas of the subgrade soil and therefore, deflections are small. It is

much more important that the support be reasonably uniform with no abrupt changes in degree

of support. To provide an appropriate base, its materials should meet minimum requirements to

prevent mud-pumping of subgrade soil. Moreover, proper gradation controls should be applied to

ensure a reasonably unique support for the concrete pavement. Studying the e↵ect of base-course

thickness on damage at the most unfavorable node of the model indicated that, while increasing

the base-course thickness would decrease damage, as presented in Figure 6.16, a suitable base-

course thickness should be selected based on construction specifications and material availability.
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Figure 6.14: The fatigue damage estimated
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Figure 6.15: Damage of the most unfavorable node

According to Figure 6.17, while damage decreases rapidly with an increase in concrete compressive

strength, for compressive strength values greater than 50 MPa the damage reduction rate decreases,

so 50 MPa appears to be a reasonable value for the concrete compressive strength. According to

Figure 6.18 increasing concrete slab thickness can drastically decrease the amount of damage; when

it changed from 0.4 m to 0.533 m and the damage reduction rate decreases after this point. It is

worth pointing out that the accumulated damage, D, for slab thickness of 0.2 m is one, meaning

that the slab will be cracked under the applied load. Figure 6.19 describes the e↵ect of concrete

slab width-to-length ratio (w
l
) (when l = 10ft. = 3.048m). When (w

l
) ratio changes from 0.7 to

0.82, damage decreases by 10�5%, after which the damage reduction rate will decrease.

6.6 Conclusions

The focus of this study was evaluating gantry crane-way pavement performance at intermodal

facilities. First, 18 vibrating-wire strain gages were installed before concrete was poured. These

gages were used to capture pavement structural response, ✏xx, when the crane travels over the slabs.

Several loading locations at which the crane stopped for around 40 seconds each were selected, and

the tire footprint was also captured in the field to be used for further image processing. The amount
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Figure 6.16: Damage of the most unfavorable node

Figure 6.17: Damage of the most unfavorable node
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Figure 6.18: Damage of the most unfavorable node

Figure 6.19: Damage of the most unfavorable node
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of tire pressure was also obtained for use in further modeling. Second, to monitor the structural

behavior of the pavement, a finite-element-based model was developed reflecting the same geometry,

boundary conditions, and applied load as those in the field. Since the strain values were the only

field measurements, an inverse approach was used to obtain a set of material properties to be

used in the model for determining the ✏xx value closest to the field measurements. The inverse

approach begins with an assume value for the unknown parameter and obtains a solution to the

forward model problem. Once the forward model has been solved for the assumed value of input,

the next step is to compute the error between the simulated and experimental measurements, and

the process will iterate until the convergence goal (minimum error) has been achieved. Using

the obtained material properties, the finite-element model is verified against field measurements

(using the same inputs and same load and boundary conditions to give the closest ✏xx at the gage

locations), and the verified finite-element model is then used to study pavement critical response

parameters. The maximum vertical deflection and maximum vertical stress at the top of the base

and the subgrade and the maximum tensile stress at the bottom of the concrete slab are obtained

for mid-slab and edge-load locations. After evaluating the obtained critical response parameters,

a fatigue damage analysis was conducted for a mid-slab load and an edge load. The amount of

accumulated damage after one crane passage with a load applied on the slab edge was found to be

approximately 85 times that for a load applied at the slab middle. Finally, a parametric analysis

of the material properties and slab geometry was conducted, and based on the obtained results the

following design recommendations are suggested:

• The concrete compressive strength should be no less than 50 MPa to decrease the amount of

damage.

• The slab thickness should be no less than 0.5 m to decrease the amount of damage.

• The slab width-to-length ratio (with l = 3.048m) should increase from 0.8 to 0.9 to reduce

the produced damage.
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• The design procedure should consider the contribution of foundation behavior to overall

pavement performance rather than focusing only on PCC layer failure.

• Due to the heavy applied load, while fine particles will be pumped up from the subgrade into

granular base and ejected through the joints, there are several soil stabilization techniques

that could be used to avoid material loss and premature cracking of the pavement.

• A permeable base material should be considered for this heavy duty pavement which experi-

ence indicated the potential for pavement faulting and pumping.

• Since edge-loading is more destructive than the mid-slab loading, the crane driver should

avoid slab edges.

A longer structural-health monitoring analysis could be implemented for the pavement section,

and the results could be used in future studies to develop a probability damage study and predict

the remaining life of the pavement sections under each loading condition. Such analyses will be

conducted in future studies.

6.7 References

Brill, D. (1998). Development of advanced computational models for airport pavement design. Rep.
No. DOT/FAA/AR-97, 47.

Downing, S. D. and Socie, D. (1982). Simple rainflow counting algorithms. International journal
of fatigue, 4(1):31–40.

Ghasemi, P., Aslani, M., Rollins, D. K., and Williams, R. (2019). Principal component analysis-
based predictive modeling and optimization of permanent deformation in asphalt pavement:
elimination of correlated inputs and extrapolation in modeling. Structural and Multidisciplinary
Optimization, 59(4):1335–1353.
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CHAPTER 7. SUMMARY AND DISCUSSION

Maintenance, rehabilitation, and reconstruction of the highway system are the major expenses

in a state general expenditure. Thus, predicting pavement performance and detecting the cur-

rent state of pavement health are crucial for pavement agencies as well as state departments of

transportation (DOT). In pavement engineering, performance models are mathematical expres-

sions that relate pavement response to several factors including material components’ properties,

loading condition and frequency, and climatic condition. Over the past decades, researchers have

developed numerous models to predict pavement performance. However, there are several issues

in conventional modeling approaches. In this thesis, the existing issues are discussed and a new

robust framework for predicting pavement performance is developed.

One of the performance characteristics of asphalt pavement is its resistance to rutting. Rutting

or permanent deformation defines as surface depression in the wheelpath and can cause safety

issues for drivers when it is filled with water. It has been demonstrated that rutting can be

defined as a function of material properties, loading condition, and temperature. However, these

predictors can be correlated and not appropriate to be used in modeling. Seventeen input variables

are selected to be used in model development. This study focuses on evaluating the quality of

input variables through pairwise correlation analysis. A multivariate statistical technique called

Principal Component Analysis (PCA) is implemented to first reduce the dimensionality of the data

set by using five pseudo-inputs instead of the 17 original input variables, and second to eliminate

the pairwise correlation within the inputs by transforming the original data to a new coordinate

system. Two separate model is produced to predict rutting using artificial neural networks (ANN)

and multivariate regression analysis. The developed models are called PCNN and PCR, respectively,

and both modeled the amount of permanent deformation satisfactorily with PCNN fitting the test

data significantly better. Since the developed models are based on empirical data they are prone
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to extrapolation. To prevent extrapolation from happening, a simple method is developed to

characterize the e↵ective variable space. The obtained n-dimensional enclosing ellipsoid is added

as a constraint to the problem. To indicate one of the applications of the developed framework,

an optimization problem of finding minimum amount of permanent strain and its corresponding

design parameters is defined and solved.

The proposed framework is implemented to predict another performance related property of

asphalt mixture called dynamic modulus. Dynamic modulus is the sti↵ness characteristic of as-

phalt mixture and defines the stress-strain relationship of the material due the compressive sinu-

soidal load. Two separate dynamic modulus predictive models are developed using artificial neural

network as well as multivariate regression analysis. Performances of the proposed models were

compared to conventional predictive models using both statistical analysis and Receiver Operating

Characteristic (ROC) analysis. Both models predicted the amount of dynamic modulus remark-

ably better that the traditional models. Two optimization problems including optimal design and

inverse design have been presented and solved using a mean-variance mapping optimization algo-

rithm. The results are in a good agreement with current flexible pavement design specifications

and thus can be a reasonable starting point in solving real-life design problems. Moreover, these

methodologies appear to also have much promise in modeling other material properties at other

e↵ective temperatures and thus can be used to be a proper substitute to conventional performance

models, i.e. fatigue, rutting, dynamic modulus, low temperature behavior. Besides, the ability

of the framework to be retrained with more, or di↵erent data from di↵erent condition and loca-

tion, (dynamic nature) of the developed framework will make local calibration of the traditional

empirical models unnecessary.

Another way of tackle the problem of predicting pavement performance is also discussed in this

study. The structural response of a concrete pavement to the applied load is studied by installing

strain gages during construction. The strain measurements are used to validate a finite element

model of the pavement section with similar geometry and boundary conditions as those in the

field. In the absence of some field measurements, an inverse algorithm is implemented to find the
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unknown material properties. The algorithm assumes an initial value for the unknown parameter

that is under investigation and validates the solution to the forward model problem. Once the

forward model is solved for the assumed value of input, it calculates the error between the simulated

and experimental measurements. If the error belongs to a prespecified limit, the initial guess is the

solution to the inverse problem; otherwise, the process is repeated until the condition is satisfied.

After finding the unknown material properties, the finite element model is validated against the

field measurements. The validated model is used to predict pavement critical response as well

as predicting fatigue life of the pavement. Although, the developed predictive framework as well

as obtained optimal design parameters are based on the empirical database created in this study,

the suggested framework has the capability of being re-trained and adjusted to fit new data. For

obtaining more reliable and applicable results, a larger empirical database would be required.
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