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ABSTRACT

We consider functional linear regression models (FLRMs) with functional regressor and scalar
response, where the inference of the slope function is an important problem. However, even
though asymptotic inference methods exist in FLRMs, these methods are limited in applicability
because a wrong scaling factor is used; truncation bias in the limit is neglected; or only
homoscedastic errors are assumed, which may not happen in practice. Consequently, it is
necessary to develop alternative inference methods, such as bootstrap, that use the correct
scaling, accommodate possible bias, and are valid even under heteroscedasticity. In this thesis, we
introduce three bootstrap methods in FLRMs, namely the residual bootstrap, paired bootstrap,
and wild bootstrap. Their theoretical validities are established, and their performances are
numerically demonstrated. Central limit theorems for the projection are studied as well, which

are fundamental results themselves and are basis to verify bootstrap validity.



CHAPTER 1. GENERAL INTRODUCTION

This dissertation investigates three bootstrap methods for inference in functional linear
regression models (FLRMs) with functional regressor and scalar response. Even though
asymptotic inference methods exist in FLRMs, these methods are limited to in applicability
because a wrong scaling factor is used; truncation bias in the limit is neglected; or only
homoscedastic errors are assumed, which may not happen in practice. Consequently, it is
necessary to develop alternative inference methods, such as bootstrap, that use the correct
scaling, accommodate possible bias, and are valid even under heteroscedasticity.

The following three research papers constitute the dissertation:
Paper 1: Bootstrap inference in functional linear regression models with scalar response.

Paper 2: Bootstrap inference in functional linear regression models with scalar response under

heteroscedasticity.
Paper 3: An initial theoretical work on wild bootstrap for functional linear regression.

The first two papers treat two different bootstrap methods in FLRMs under either homoscedastic
or heteroscedastic error assumptions. In either case, a suitable central limit theorem (CLT)
justifies the developed bootstrap methods. The last paper contains initial theoretical justification
for a wild bootstrap method in FLRMs.

Paper 1 considers a new residual bootstrap method in FLRMs under homoscedasticity. The
proposed residual bootstrap is theoretically shown to be consistent and is widely applicable for
constructing both confidence and prediction regions at target regressor points. The method is also
extendable to simultaneous regions, which is less tractable by normal approximation. The
establishment of the bootstrap further involves generalizing, refining, and correcting a

foundational CLT for functional linear regression.



Paper 2 develops a new paired bootstrap method in FLRM under heteroscedasticity. A novel
CLT is established under heteroscedasticity; CLTs have not even been investigated in this case.
The paper then shows the proposed paired bootstrap provides valid inference in FLRMs under
heteroscedastic error assumptions, while it also exhibits good numerical performance in
homoscedastic cases. Interestingly, the paired bootstrap is also shown to fail if this is
implemented in a naive way. As an application of the paired bootstrap, a novel hypothesis test for
projections is developed, which are supported both theoretically and numerically.

Paper 3 focuses on multiplier wild bootstrap as an alternative to paired bootstrap in FLRMs
under heteroscedasticity, particularly for large data cases. Since paired bootstrap repeats
computing (pseudo-)inverse covariance operators in every re-sample, wild bootstrap that uses just
residuals is beneficial in terms of computing speed. This paper provides wild bootstrap

consistency and its theoretical details.



CHAPTER 2. BOOTSTRAP INFERENCE IN FUNCTIONAL LINEAR
REGRESSION MODELS WITH SCALAR RESPONSE

Modified from a paper accepted by the Bernoulli Journal
Hyemin Yeon', Xiongtao Dai?, and Daniel John Nordman!
IDepartment of Statistics, Iowa State University

2Division of Biostatistics, University of California, Berkeley

Abstract

In fitting linear regression models for functional data, a complicating factor with regressors as
random curves is that regression estimators have complex distributions, due to issues in bias and
scaling. Bias arises because the target slope function is infinite-dimensional, while finite-sample
estimators necessarily involve truncations. To approximate sampling distributions, we develop a
residual bootstrap method. Despite the parametric regression problem, the bootstrap for
functional data requires a development that resembles resampling for nonparametric regression
with multivariate regressors. Essentially, original- and bootstrap-data estimators require
coordination in the truncation levels to remove bias (akin to tuning parameter choices). The
resulting bootstrap has wide applicability for constructing both confidence and prediction regions
at target regressor points, and with coverage properties even holding conditionally on data
regressors; the method also extends to simultaneous regions. Establishment of the bootstrap
further involves generalizing, refining, and correcting a foundational central limit theorem for
functional linear regression. Numerical studies verify our theory, showing that the bootstrap
performs better than normal approximations, and also suggest a rule of thumb for setting the
truncation levels. The bootstrap method is illustrated with an application to wheat spectrum

data.



2.1 Introduction

Functional data analysis (FDA) has seen intensive development during the last two decades to
address fundamental data units being trajectories, surfaces, and more general functions (cf. [32]).
Overviews of FDA may be found in several reference textbooks, such as [12, 20, 21, 25, 29]. Our
work focuses on the functional linear regression model (FLRM), a generalization of the classical
linear regression model to the case where the predictor is a function. FLRM and its extensions
are highly relevant in practice and have been applied in subject areas such as bio-medicine
[15, 30] and agronomy [31], among others; see, also, [27] for a review of the applications.

The FLRM with scalar response can be written as
Y = (8.X) +e, 21)

where [ is a slope function and X is a random function, both taking values in a Hilbert space H
with inner product (-,-); Y represents a scalar response; and ¢ is a random error with mean zero
and finite variance, that is uncorrelated with X. For example, a random function X is commonly
modeled in H = L2([0,1]) = {f : [0,1] = R | fol f2(t)dt < oo}, the space of all square-integrable
functions supported on [0, 1], equipped with inner product (f1, f2) = fol fi1(t) fa(t)dt for f1, fo € H.
Based on a random sample {(Y;, X;)}? ; of size n from the model (2.1), estimation of the
slope function g € H is challenging due to an ill-posed problem with inversion of the sample
covariance operator of {X;}" ;. Consequently, an estimator Bhn of B is commonly constructed
from the functional principal components (FPCs) of this covariance operator (cf. [6, 19]). This
involves the selection of a number h,, of FPCs where the corresponding eigenspace determines a
finite-dimensional approximation to the slope function 5. The latter, though, is typically
infinite-dimensional and thus bias necessarily occurs in the approximation, analogous to the
nonparametric regression setting [18]. While the regression estimator Bhn is consistent under
smoothness assumptions [19], Cardot, Mas, and Sarda [7] (herafter referred to as [CMS]) critically
showed that an(ﬁhn — f3) cannot converge in distribution to any non-degenerate random function

taking values in H, under any scaling sequence {a,} such that a,, — co as n — co. However,



importantly for inference, [CMS] also showed that the projections defined as

V/n/hn [(Bn,, Xo) — (8, Xo)] can have distributional limits and satisfy a type of the Central Limit
Theorem (CLT), for X denoting a random regressor point that is independent of the sample. We
focus attention on such projections, noting though that the CLT involved actually requires a bit
more development. In particular, we consider the bootstrap as a device for approximating the
sampling distributions of estimated projections <Bhn, Xp) from FLRMs.

Bootstrap methods for regression models, particularly the residual bootstrap, have a long
history beginning with [14] and continuing to recent big-data regression problems (cf. [10]).
However, these cases involve finite-dimensional regression parameters, which differs from FLRMs
where the bootstrap must mimic estimation of infinite-dimensional slope function § and
accommodate the possible bias in this. Due to such difficulties, bootstrap methods for FLRMs
have not received much development outside of important works by [16, 24]. [16] established a
residual bootstrap for FLRMs in a specialized context where the target parameter was not the
projection (B, Xo), but rather a biased version of this (c.f. (II;, 8, Xo) in Section 2.2). [24]
investigated properties of percentile bootstrap confidence intervals for (3, Xo) under a modified
residual bootstrap procedure. Essentially, bootstrap consistency in [16, 24] are not shown to hold
conditionally on the regressors because of the dependency on the unconditional CLT developed in
[CMS]. Neither of these previous works considered prediction intervals or simultaneous inference
with bootstrap in FLRMs.

These aspects motivate us to study the residual bootstrap under a more general framework for
FLRM. Our new contributions include accounting for possible bias and treating wider inference
scenarios: calibrating either confidence regions for (53, Xo) or prediction regions for a new response
Yy, whether conditionally or unconditionally on a regressor Xg, and for both pointwise or
simulatenous inference cases. The bootstrap approximations also capture the distribution of
estimators (e.g., (Bn., X)), conditionally on the given regressors {Xi},, which goes beyond
unconditional distributions considered by the CLTs from either [CMS] or [23], or the initial

bootstrap works of either [16] or [24]. Our numerical studies also suggest that the bootstrap



generally performs better than normal approximations and extends well to simultaneous intervals,
where normal approximations become less tractable.

While our development is heavily influenced by the CLT work of [CMS] for projections from
FLRMs, we refine and generalize those CLT results as another contribution. For a random new
regressor Xg, the CLT there suggests \/W ((Bhn,X0> — (B, Xo)) has a normal limit, where h,,
denotes a number of FPCs. However, the scaling m is not generally valid and should be
replaced by another scaling factor \/m depending on h,, the target regressor Xy, as well
as the eigenvalues of the covariance operators in (2.1). The generalized CLT for FLRMs improves
upon [CMS] by having a unified scaling for X being random or given, and by further holding
conditionally on any data regressors {X;}? ; rather than only unconditionally. These findings
form the basis for developing the new bootstrap results in FLRMs.

The organization of the paper is as follows. Section 2.2 outlines background on the FLRM
(2.1) as well as the regressor estimator ﬁhn based on FPCs and regularization. A generalized CLT
result is presented in Section 2.3. Section 2.4 then describes the residual bootstrap method for
FLRMs and establishes its validity for both prediction and estimation. Numerical studies appear
in Section 2.5, while Section 2.6 provides a data application to illustrate the bootstrap method.
Proofs are outlined in an appendix and further included in the supplement [34]. An R package is
provided to find confidence and prediction intervals for FLRM projections based on either CLT or

residual bootstrap.

2.2 Background on estimation for FLRMs

2.2.1 Model and identifiability

We suppose that the underlying Hilbert space H is separable throughout the paper and define
the tensor product x ® y : H — H between two elements x,y € H as a bounded linear operator
2z (x®y)(2) = (z,x)y, for z € H. Without loss of generality, suppose that the regressor X in
the FLRM (2.1) has a finite second moment E[||X||?] = E[(X, X)] < oo and zero mean E[X] = 0,

which is common in theory development for FLRM for ease of exposition (cf. [CSM]); in general,



the responses and regressors in the data {(Y;, X;)}"_; can be centered by their respective sample
means without affecting the results to follow. Write I' = E[X ® X] and A = E[Y X] to respectively
denote the covariance operator of X and the cross-covariance of X and Y, respectively. Then, we

have the following functional version of the normal equation as
A=Tp. (2.2)

This equation will be solved to identify the parameter 5 € H.

Let T be a bounded linear operator on H. The adjoint of T', denoted by T, is defined by
(Tz,y) = (x, T*y) for x,y € H, and T is said to be self-adjoint if 7" = T"*. A non-negative definite
operator is a self-adjoint operator T' with the property that (T'z,x) > 0 for each = € H, which also
admits a square-root operator T2 such that (T1/2)2 = TYV27Y2 = T 1f, for any bounded
sequence {x,} C H, {T'z,} has a convergent subsequence in H, then 7 is said to be compact.
Finally, if 3777, | T'¢;|* < oo holds for a complete orthonormal basis {¢;} for H, then T is called
a Hilbert—Schmidt operator.

With this background, the covariance operator I is self-adjoint, non-negative definite, and
Hilbert-Schmidt, and hence compact [21]. By spectral decomposition for compact self-adjoint

operators, I' admits the decomposition

[e.9]
I'= Z)\J ej @ ej),
7j=1

where \; and e; respectively denotes the jth eigenvalue and the corresponding eigenfunction in H
for j > 1. Here, {e;} forms an orthonormal system of H, and {);} is a positive non-increasing
sequence with A\; — 0 as j — oo. For the identifiability of § in (2.2), we assume that ker I' = {0}

for simplicity of presentation as in previous works [7, 16]. The slope function is then written as
B=T"1A,

where "1 = Py )\j_lﬂ'j and m; = €; ®ej, j > 1.



For later development, we define here some additional quantities related to I' = E[X ® X]. For
h=1,2,..., let
h
Iy = Z g (2.3)
j=1

be the projection onto the first i eigenfunctions {e;}? ; of I'. Finally, for reference, the

Karhunen—Loéve expansion of X is written as
o0
X = Z \/)\]fjej, (2.4)
j=1

where the FPCs {¢;} form a sequence of uncorrelated random variables with zero mean and unit

variance (cf. [21]).

2.2.2 Regression estimator and regularization

For estimating the slope 5 € H, we consider a random sample {(Y;, X;)}" ; of n paired

observations from the model (2.1), namely,
Yi=(6,Xi)+e, i=1,...,n (2.5)

Regarding the distribution of (¢1, X7), we assume only that E[e;|X1] =0 and

E[e?|X1] = 02 € (0,00) along with an accompanying property: for any integer u > 0, it holds
almost surely that E[e?[(|e1| > u)|X1] < f(u) for a non-random function f(u) where

limy 00 f(u) = 0 (where I(-) denotes the indicator function). Along with the conditional mean
and variance, this integrability condition with conditional second moment is mild and holds
trivially when errors ¢; and regressors X; are independent as an important special case.

As counterparts to the covariances I' and A in the population normal equation (2.2), the
sample versions are defined as I, = n~ ! Yo (X ®X;) and A, =n"1 Yo YiX;. Here, I,
admits spectral decomposition I',, = Z?:l j\jfrj where 7; = (é; ® é;), in terms of the jth sample
eigenvalue ;\j > 0 and corresponding eigenvector €; € H. Inverting I',, is ill-posed because of the
finite-sample nature and decaying eigenvalues, which complicates a sample analog of the

parameter 3 = I'"'A. To handle this issue (cf. [5, 7, 19, 16]), a regression estimator ﬁhn of g is



defined by regularizing the inversion of f‘n, obtaining
Bh, =T} A, (2.6)

where f};n = Z?;l 5\]-_17%]- denotes a finite-sample approximation of '™ = Zjoil /\j_le based on a
choice h, = 1,2,... of truncation level. That is, h,, represents the number of eigenpairs from Iy

used in estimation and may depend on the sample size n.

2.3 CLT for FLRM projections

We now describe some large-sample distributional properties of estimated projections
<Bhn, X)) for later developing bootstrap inference in Section 2.4. As mentioned in Section 2.1,
CLT results can hold for projections <Bhn,X0> formed with a new regressor point Xy € H, where
Xo may be either random or fixed. A complication, though, is that this CLT holds most readily
with biased centering (I, 3, Xo) rather than a target of (3, Xo); here I, § = Z?L(B, ej)ej is a
truncated version of the parameter 8 =372, (3, ej)e;, where II;, from (2.3) is the projection on
the first h,, eigenfunctions {e; };‘;1 of T'. A bias occurs due to the regularization step (2.6) in Gy,
A further complication is that, even with biased centering (II;, 3, Xo), the CLT for (Bhn,X0>
requires some refinement from the original work of [CMS], as given next.

Let Xy be a new regressor observation under the model (2.1), independent of {(Y;, X;)}" .
[CMS] considered a CLT for the projection [(3,, Xo) — (ITy, B, Xo)] with biased centering under

mild assumptions that we also adopt. These conditions are

(A1) kerI' = {0};

(A2) supjey E[€]] < oo;

(A3) 22721 [(B, e5)| < o0

(A4) Xj = ¢(j) holds, at least with large j, for a convex positive function ¢ : [1,00) = R;

(A5) sup;>q Ajjlogj < oo; and
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(A6) n~! E;ﬁl 5;2 — 0 as n — oo for the sequence of eigengaps defined as 61 = A1 — Ay and

§; = min{\; — Ajp1, A1 — Aj} for j > 2.

In brief, Condition (A1) ensures that § is the unique solution to the normal equations (2.2).
Condition (A2) implies a finite fourth moment E[[|X||*] < co for the regressor. Condition (A3)
embodies a degree of smoothness for 5. Both this and the convexity of {A;} in (A4) may
potentially be relaxed, but are imposed for simplicity. Condition (A5) is a decay condition on
eigenvalues, while (A6) prescribes a decay rate on eigengaps {¢;} in relation to the truncation
level h,, defining the estimator Bhn; these conditions are applied in proofs involving perturbation
theory for functional data.

For a CLT with the FLRM projection [(8h,, Xo) — (IIs, 8, Xo)], or the counterpart
[(BhnaX0> — (B, Xo)] with true parameter centering (3, X), we use a scaling factor given by
{n/tn. (Xo)}~'/2, involving a term

hn
() =YX (e = (0], ) 2l e (2.7
j=1
Due to regularization in defining the estimator Bhn (cf. Section 2.2.2), the quantity (2.7)
represents a norm involving a truncated version I'l = 2?21 /\j_l(ej ® e;) of
r-t= P A;l(ej ®ej). A sample analog of (2.7) is given as
hn
na(2) = DA . 6)* = |(F],) 20, @ € H, (2:8)

j=1
based on sample quantities and the finite-sample approximation f;n = Z?;l X;l(éj ®éj) of 71
for defining Gy, in (2.6).

With this scaling, our Theorem 1 next states a generalized CLT for FLRM projections under
essentially the same weak conditions intended by [CMS]. Write &,, = {X1,..., Xy} as the set of
observed regressors and let Xy again denote an independent regressor point under the model. In
the following, let P(-) denote either the conditional probability P(-|X,, Xo) or P(-|X,), where X;

may be considered conditionally or unconditionally.
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Theorem 1 (Generalized/refined CLT for projections). Under the FLRM (2.5), suppose that
Conditions (A1)-(A6) hold along with h,; ! + n_1/2h2/2(log hy)? — 0. In addition, suppose
hotn, (Xo)™! = Op(1). Then, as n — 0o, we have

(1)

P
— 0,

sup
yER

P ( th, (Xo) [<Bhn;X0> - <thB7XO>] < y) — P(y/oe)

where ® denotes the standard normal distribution function.
(ii) tn, (Xo) and tp,, (Xo) are equivalent in that, for any n > 0,
°

Thus, the result in (i) also holds replacing ty,, (Xo) by the sample version ty, (Xo).

th, (Xo)
ty, (Xo)

—1’>n>3>0.

Let P denote either the probability P(-|Xo) or P, where the observed regressors X, are

considered unconditionally. The unconditional CLT is then stated as below.

Corollary 1. Under the assumptions of Theorem 1, as n — oo, we have

P
— 0,

P < i (Xo0) [(Bha» Xo) = (11, 8, Xo)] < y> — ®(y/o.)

sup
yER

where the convergence above remains valid with estimated scaling Ehn from (2.8).

Remark 1. Theorem 1 again involves biased centering (IIj, /3, X(). An analogous CLT holds with
unbiased centering (3, X), but requires more assumptions such as those required by Theorem 3;
see Theorem 5 in the supplement. In this case, a specific example for the valid choice of the

tuning parameter h, is given in Corollary 2 in Section 2.4.2.

Theorem 1 involves a mild condition that h,ts, (Xo) ™! = Op(1), so the scalings t;,, (Xo) does
not have to scale as h,,. To give some examples, we provide some sufficient conditions on the
sequence {¢;} of the FPC scores for hptp, (Xo) ™! = Op(1) to hold: (i) if P(r; < |¢| <) =1,
where 0 < 71 < 73 < oo for all integer j > 1, or (ii) if the average h,, ! Z?il §J2- converges to V in
distribution as n — oo for some random variable V' with P(0 < V' < 00) = 1. See also a

counterexample in Remark 2.



12

When the FPC scores ¢; in (2.4) under the model are independent, one can show that
ho Y, (Xo) P, 1. In this special case, values of t5, (Xo) or h, are equivalent, and the CLT from
[CMS] will hold. However, scaling by t5, (Xo) is generally required for the projection-type CLT in
Theorem 1. If the regressor X has the FPC scores {; in (4) that are dependent, then Theorem 2
of [CMS] with the scaling factor h,, may not apply. A counterexample is given next, and others

are provided in Section 2.10 of the supplement.

Proposition 1. Under the FLRM (2.5), suppose that Conditions (A1)-(A6) hold along with
hot+ n_I/Qh;Z/Q(log hy)? — 0. In addition, suppose that X has FPC scores in (2.4) being
& =W;& j=1,2,..., with an iid sequence {W;} independent of & ~ N(0,1), where

P(Wy=1)=1/2=P(Wy = —1). Then, for a random Xy sharing the same distribution with X,

n ~ d
\/ hf[(ﬁhan@ — (I, 8, Xo)| = €0lZ0,  Zo ~ N(0,02), & ~ N(0,1),
holds as n — 0o, where & and Zy are independent variables.

The (counter-)example in Proposition 1 serves to show the scaling ¢, (Xo) works in the CLT
while the scaling h,, fails. Figure 2.1 provides a numerical illustration, based on 1000 experiments
from a FLRM with regressors X generated according to setting described in Proposition 1 (and
those described in Section 2.5 with uniform errors and a = b =5). The figure shows that the CLT
holds for projections with the updated scaling as in Theorem 1, while the CLT fails with scaling

\/n/hp, so Theorem 2 of [CMS] does not hold for the setup described in Proposition 1.

Remark 2. A reviewer suggested an example based on the model in Proposition 1 with &; = BZ;
where B follows a Bernoulli distribution is independent from Z; normally distributed. In this
case, the condition h,ty, (Xo)™! = Op(1) used in the CLTs of Theorem 1-Corollary 1 fails to
hold. Further, we then have 1/2 = P(B = 0) < P(ty, (Xo) = 0), which means that the target
quantity \/n/tp, [(Bn, , Xo) — (B, Xo)] is not well-normalized with positive probability. This

example helps to further motivates the condition hnt}:n1 (Xo) = Op(1).

Remark 3. [CMS] originally considered a more general way of regularization of " by using a

sequence {f,}22; of positive functions. If f,, is set to be a reprocical, i.e., f,(r) = 27!, the FPCR
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n=50, hn=3 n=200, hn=4 n=1000, hn=5
0.5
0.4
0.3
0.2
0.1
0.0 .
-6 3 0 3 6 -6 3 0 3 6 -6 3 0 3 6
— |N(0, 1) IN(0,67) — N(0,57) — T --T

Figure 2.1: Kernel density estimates of T = {n/tp, (X0)}"/?[(Bn,, Xo) — (3, Xo)] with scaling
tn, (Xo) (solid black line, according to our result) and Ty = {n/h, }/2[(Bn. . Xo) — (3, Xo)] with
scaling h,, (dashed black line, according to [CMS]) over different sample sizes n and different
truncation levels h,, depending on sample sizes. The theoretical limits N(0, 052 = 2) of T7 and
|€0|Zo of T in Proposition 1 are given for reference (red and blue solid lines, respectively).
Centering (3, Xo) is used for illustration; results for biased centering (I, 3, Xo) are similar.

estimator in [CMS] is equal to the FPCR estimator /3, in (2.6) as explained in Example 1
therein. The scaling term s, considered in their Theorem 2 is then exactly the same as the

truncation level h,,.

Theorem 1 serves to unify the scaling needed for the projection CLT across the cases where
the target regressor Xy may be random or conditionally given. In contrast, [CMS] suggests a
scaling of \/W for random X and \/rm for fixed Xy. Our results show that scaling
\/W is not generally valid in the former case (Proposition 1) and regardless of how Xj is
considered, a common scaling t, (Xg) or £, (Xo) should be used. Furthermore, Theorem 1
considerably strengthens the CLT for projections in FLRMs, because this CLT holds
conditionally on any given data regressors &, = {X;}!' ;, rather than unconditionally as intended
in [CMS]. This feature is relevant for the residual bootstrap which can target conditional
sampling distributions for (3hn, Xp) given data regressors X,.

Theorem 1 cannot be deduced from Theorem 3 of [CMS], where the latter considers a fixed
new regressor x, even though they look similar. Considering the condition

SUp,jeN )\j_l<X0, ej)? < oo of their Theorem 3 applied to a random Xy, it may hold that
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P(supjen )\]-_1<X0, ej)? < 00) = 0, for example, when X is Gaussian. Furthermore, with fixed a z,
the bias term related to ((IT;,, — ITj, )3, z) is hard to remove as explained in Remark 5 of [CMS].

Hence, the fixed x design and the random Xg cases are not directly translatable.

2.4 Bootstrap method and results

After outlining the residual bootstrap in Section 2.4.1, Section 2.4.2 establishes the method’s

consistency for approximating the sampling distribution of regression-based projections

{n/th, (X0)}'"*[(Bn,.» Xo) — (8, Xo)),

involving estimated scaling 5, (Xo) as well as centering (3, Xo) at the true parameter 8 € H.
This justifies the bootstrap for inference about (5, Xo). Section 2.4.3 then describes the bootstrap
for simultaneous confidence regions, while Section 2.4.4 establishes bootstrap prediction intervals

for new responses Yjp.

2.4.1 Residual bootstrap in the FLRM

To describe the residual bootstrap in greatest generality, we consider two integer tuning
parameters ky, g, for constructing bootstrap data {(Y;*, X;)}!" ; to mimic the original
observations {(Y;, X;)}7_, from (2.5). These values define estimators Sy, , 3, from {(Y;, X;)}7,,

which are akin to 5, in (2.6), but serve exclusively to create {(¥;*, X;)}7_,. With the estimator

Bkn = anAn, we obtain residuals ¢; = Y; — <Bkm Xi), i=1,...,n having sample mean

~

n=n""t >, &, and define a sample of bootstrap errors €7, ..., e} as iid uniform draws from
{é& — &,}"_,. The estimator Bgn = f‘;n A,, then plays the role of the true parameter 3 in the

bootstrap world, and the bootstrap sample {(Y;*, X;)}I", is defined by
Vi = (B Xi) +el, i1,

as an analog of (2.5). Note that both original and bootstrap-recreated data share (or be equally
conditional on) the same regressors {X;}? ;. The bootstrap data {(Y;*, X;)} then renders a

version B;‘Ln of the original data estimator Bhn based on a common truncation level h,,. Selecting a
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single ky, = g, = hy, is possible ([16] use k,, = h,, by default), but it is helpful to separate the
effects of tuning parameters in the bootstrap re-construction, as is often considered in resampling
problems with kernel estimation (cf. [13]).

Let X denote a new regressor under the model, independently of the data {(Y;, X;)}? ;. For

an observed or given value of X, we estimate the conditional distribution of

Tn(XU) = thn(LXO) [<Bhn7X0> - <ﬁaX0>]

with the bootstrap distribution of

T (X3) th(”XO) (B, X5) = (Bou» X3)]

with X§ = Xy fixed. As a strongest result, both distributions of T;,(Xy) and T}; (X)) are viewed
as conditional on Xy and on the same data regressors &,, = {X;}" ;. For a different case where
Xy is unobserved and inference is intended about (3, Xy) as a random projection, the distribution
of T,,(Xo) can still be approximated with a bootstrap counterpart 7} (X(), with the change that
X is defined by a random draw from X),; both distributions remain conditional on &}, though

not Xj.

2.4.2 Validity of residual bootstrap

To frame the bootstrap results to follow, we first provide a reference result on bootstrap
validity for a biased target (Ilj, 3, Xo), formed by truncating 5 based on a number h,, of FPCs for
defining the estimator f3j,, and with II;, = 2?21(61' ® e;) from (2.3).

Below let P denote P(-|X,, Xo) or P(:|X,), conditional on data regressors X, = {X;}?, with
independent X as potentially random or given, and denote the bootstrap probability counterpart
as P*(-) = P*(-|X,, X; = Xo) or P*(:) = P*(-|X,), respectively, where P* is the bootstrap
distribution of the bootstrap data {(Y;*, X;)},. Also, let II), = Z;ﬁl(éj ® €;4), based on
estimated eigenfunctions é; (cf. Section 2.2.2), denote the sample analog of II;,, = Z;ﬁl(ej ® €j),
in order to define a bootstrap version f[hn Bgn of the biased parameter II; 3 with Bgn again

playing the bootstrap role of j3.
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Theorem 2. Along with assumptions of Theorem 1, suppose that the additional bootstrap

truncation ky, satisfies k' +n~12k2logk, +n~" Z?Zl 5j_2 — 0. Then, as n — oo,

sup
yER

P < thnzziXo)RBhn,Xo) — (I, B, Xo)] < y>
—p* < thn(nXo*) [(ﬁZn,Xf)k) - <ﬂhnﬁgn,Xg>] < y> L 0,

where the above remains valid if ty,, is replaced by the estimated scaling fhn from (2.8).

Theorem 2 strengthens the main bootstrap finding of [16] for FLRMs, who considered biased
centering, with X, as given, and P without conditioning on X, = {X;}_,. The bootstrap
operates under the same basic assumptions as in the biased-case CLT for projections
(Theorem 1); no extra conditions are needed for the bootstrap truncation g,, while the conditions
for k,, are mild to allow consistent estimation of errors in the bootstrap. For perspective on either
the CLT (Theorem 1) or bootstrap (Theorem 2) with biased centering, note that there is no strict
requirement on the common truncation h,, except that h, — oo as sample size n — oo under the
condition h,, ! + n~Y Qh;Z/ 2(log h,)? — 0, and h,, can grow quite slowly relative to n; for instance,
hp = O(nl/ Yn) is acceptable for any v, > 5. That is, while these results impose upper bounds on
hny, there are no lower growth rates on h,. However, in order to recover an unbiased target (3, Xo)
from (Bhn, Xo), the truncation level h,, will, at least intuitively, need to diverge to infinity
sufficiently fast as n — oo to adequately capture 8 from the approximate mean Il 3 of Bhn- This
is considered next.

Theorem 3 establishes bootstrap consistency for sampling distributions defined with an
unbiased centering (5, Xo). Additional smoothness conditions for § are needed in the spirit of
those used by [CMS] to handle II;  f — 5. Smoothness assumptions are also intricately related to
the truncation selections, particularly h, for the original estimator Bhn of 8 and g, for bootstrap

re-creation Bgn of 3.



17

Theorem 3. Under the assumptions of Theorem 2, suppose that for some constants u,v > 0 to

be specified and a function m(j,u) = max{j", 3:1 (5{2} where j =1,2,...,

sg§><ﬁ,6j>2j”_1m(j, u) < oo (2.9)
J=

holds, and that either (a) or (b) holds as follows:

(a) gn < hy, with n = O(him(hy,u)) for some u > 5, v > 0;

(b) gn > hy with hy/gn — 1, 7”L_1/2gg/2(loggn)2 — 0, n=0(gim(gn,u)) for some u > 17,
v > 0.

Then, as n — 00, the bootstrap is valid for regression estimators (Bhn,X0> with unbiased

centering (3, Xo):

sup
yEeR

~ n ~
P —_— Xo)— (B, Xp)| <
< thn (XO) [<ﬁhnu 0> <57 0>} = y)
P (e [(Br X = Bon XD <) | B0
thn (XS) hn7 0 9n> 0 — y ’
where the above remains valid if ty,, is replaced by the estimated scaling ty,, from (2.8).

For inference about (3, X) directly, Theorem 3 justifies the residual bootstrap, though the
choice of a truncation parameter h,, (or g, if g, > hy) is more critical than for the biased target
(I}, B, Xo) case of Theorem 2. Under the type-(a) assumption in Theorem 3, the bootstrap
truncation g, for re-creating  through Bgn can be flexibly chosen after the choice of h, (i.e., less
than h,); the truncation g, can also be larger than h,, through the type-(b) assumption, though
they are asymptotically equivalent.

To build a better understanding of the truncation and parameter smoothness conditions in
Theorem 3, we may also consider a simpler setting with polynomial decay rates on eigengaps

@ (implying \; < j7%"!) and coordinate projections |(3,e;)| < 4~ for some constants

5]' =~
a>2and b > 1 with a + 2 < 2b; here and in the following, we write r, < s, if r,, /s, is bounded
away from both zero and infinity for generic sequences r, and s, > 0. Corollary 2 is a special

recasting of Theorem 3.



18

Corollary 2. Under the above polynomial decay rates, suppose (A1)-(A2) hold along with
hutn, (Xo) ™! = Op(1), ky, — oo, and k% = O(n) for some v, > max{4, (2a + 1)}. Suppose further
that either (a) or (b) holds as follows:

(a) gn < hy, with n < hYh for some max{5, (2a+ 1)} < v, < a+2b—1;

(b) gn > hy with by /gy — 1 and n =< g;° for some max{7, (2a + 1)} < vy < a+ 2b — 1.
Then, the conclusions of Theorem & remain valid.

Remark 4. Theoretical rates of truncation paramters for FPCR estimators similar to h,, =< nl/v
(or g, < nt/ Ys) are quite common and appear in previous works on asymptotic theory in FLRMs

such as [5, 19].

Corollary 2 entails that the truncation h, needs to grow in an appropriate range of rates n'/v»
prescribed by the smoothness of 5 and the eigendecay in the regressor covariance I'. The
conditions of Corollary 2 also support those used in other estimation studies of the slope function
S [19] and its projection (3, Xo) [5]. The theoretically best rate for h,, in the former work [19] is
Ry =< nt/(@+20=1) at the upper bound of the range v;, € (max{5,2a + 1}, a + 2b — 1) of Corollary 2,
whereas the optimal rate in the latter work [5] is contained in this range. That is, estimation of
(B, Xo) involves a larger h,, compared to slope ( estimation, indicating that less smoothing is
needed for estimation of (8, Xo). This latter point is essentially supported by Corollary 2 in that
bootstrap inference about (3, X) similarly requires a sufficiently large h, in setting the estimator
Bhn‘ In this sense, while the regression problem with FLRM is parametric, the bootstrap here
behaves similarly to resampling in classical nonparametric regression (cf. [17, 18]) where
bandwidths are likewise chosen to undersmooth due to bias issues. Numerical studies of the
bootstrap in Section 2.5 lead to some recipes for selecting truncations (e.g., Ay, gn, kyn), while

data-based truncation choices are considered in the data example of Section 2.6.

Remark 5. For simplicity, we have focused on presenting the case where a new (independent)
regressor point Xy has the same marginal distribution as that of the original data regressors
X, = {X;}" . However, the bootstrap results here can be extended to the case when X, does not

have the same distribution. For this, we require additional conditions, similar to those of
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Section 2.3 (cf. (A1)-(A6)), but applied to an analogous Karhunen-Loeve expansion (2.4) for X
in place of X from the model (2.1). In particular, suppose that the new regressor X, has a
Karhunen-Logve expansion Xo = Y >, u;(je; with eigenfunctions {e;} being the same as those
for the regressor X but possibly different eigenvalues {4;} and FPC scores {¢;}. If
sup;en(j/Aj) < 0o, the CLT Theorem 1 still holds, regardless of the distribution of the FPC
scores {(;}, upon replacing the scaling ¢, (Xo) there with

T, (Xo) = Z?”l 1y YXo,e)? = Z?gl C]?; the latter is asymptotically equivalent to h,, if the FPC
scores (; are independent. The bootstrap Theorems 2-3 results, conditional on Xy (i.e.,

X = Xo), also hold replacing tp,, (Xo) with 74, (Xo); this bootstrap essentially approximates
((Bn, — B), Xo) with ((an - /J’gn), Xo). When independent replications of Xy are further available
in this setting, then the scaling rj, (Xo) can also be estimated as in (2.8), using these regressor

replicates in place of the data regressors A,.

2.4.3 Simultaneous intervals based on bootstrap

A benefit of bootstrap inference in FLRMs is that the method extends readily to simultaneous
intervals. Let Xy = {Xo; };n:l denote an iid collection of m > 1 target regressors, independent of
the data {(Y;, X;)}!"_,, which share the same distribution as a model regressor X (though this
may be relaxed as in Remark 5). For inference about the collection {(8, Xo;)}72; of m

projections simultaneously, we extend the residual bootstrap to approximate the distribution of a

M E 1/ X(),] ’ Bhnv ,] <57X0,j>

For observed or given values of &p, the sampling distribution of M, (Xjy) may be estimated with

maximal quantity as

the bootstrap distribution of

M (X)) = lr%zim\/ng) B, X540 — <5gn,Xo,g>

with fixed X7 ; = Xo; for j =1,...,m. The distributions of both M, (Xp) and M (X7) are

interpreted as conditional on Xj and data regressors X, = {X;}
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When values Xy = {Xo,;}}_, are unobserved and inference is intended about {(3, Xo;)}7L; as
random population locations, we estimate the distribution of M, (Xp) (unconditional on Xp, but
conditional on X)) with the bootstrap version My (&) defined by A7 = {Xg;}7L, as an iid
sample of size m drawn uniformly from X,,. The following result justifies the bootstrap for
simultaneous inference.

Let P denote P(-|X,, Xp) or P(-|X,) with P* as the bootstrap counterpart P*(:-|&,, X = Xp)

or P*(-|X,,).

Corollary 3. Under the assumptions of Theorem 3, the bootstrap is valid for calibrating

simultaneous intervals based on the mazimum My (Xy): as n — oo,

sup P (M (Xo) < y) — P* (M (X5) < )

| 5o
Hence, by estimating the (1 — «) percentile ¢, of the maximum M,,(Xp) with the quantile

¢1—« of the bootstrap version M (X(), we may define a collection of Scheffé-type intervals

</3hn7X07j> +q1-a tAhn(XOJ)/nﬂ Jj=1...,m,

that simultaneously cover (3, Xo;), j = 1,...,m, with asymptotically guaranteed coverage 1 — «

(conditionally on any data regressors &, = {X;}I" ).

2.4.4 Prediction intervals based on bootstrap

The residual bootstrap in FLRMs can also be used to construct intervals for capturing or
predicting the value of a future response Yy = (3, Xo) + £¢ at some new regressor Xj. Note that a
prediction interval for Yy depends heavily on the exact distribution of underlying model errors ¢,
which is not true in the case of a confidence interval for (3, Xy) that may be based on CLT results
instead. In this sense, the bootstrap can be attractive for setting prediction intervals without
explicit distributional assumptions about model errors.

At some observed values for regressors Xy = { Xy ; };-”:1, we use the bootstrap to

simultaneously predict the collection of m future responses

Yo, = (6, Xo,) + €04, J=1,...,m,
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which are independent of the data {(Y;, X;)};_; and formed by independent pairs {(Xo,;,0,;)}724
under the model (2.1). Natural data-based predictors of {Yp ;}72, are given by the location
estimators Yo’j = (Bhn, Xo,j), j=1,...,m, formed from the estimator Bhn of 8. The bootstrap

goal is then to approximate the distribution of the maximal prediction error

En(X) = max Yo, — Yo,

with the distribution of a bootstrap version
* *\ — * Or %
EL(A) = 11%3;;1 |Y0,j - Y(),j‘v

to calibrate simultaneous prediction intervals for {Yp ;}72; see [28] for a similar idea regarding
single m = 1 predictions from time series.

The construction of E}(X) applies the bootstrap prescription from Section 2.4.3. Bootstrap
data {(Y;*, X;)}_; produces a regression estimator B;‘Ln and bootstrap-analog predictions
}A/O*:j = <anvX5,j>v where we fix X = Xo,5, j =1,...,m in defining X§ = {X(‘ij 7', Bootstrap
versions of the new responses {Y{ ; };":1 are defined in the same fashion as the bootstrap sample
{7, Xi) ey dtself: Y, = <,6A'gn,X5‘7j) +epsJ=1,...,m, using {&f ;}72; as iid draws from
centered residuals (cf. Section 2.4.2).

Corollary 4 justifies the bootstrap for prediction intervals. Because neither the quantity
E,(Xp) nor the error terms in (2.1) may have continuous distributions, we state bootstrap
convergence in terms of the Levy metric, say dr,[E,(Xp), E;; (X)|Xy], between the distributions of

E,(Xp) and E;;(Ay), conditional on the data regressors Aj,.

Corollary 4. Suppose that the assumptions of either Theorem 3 or Corollary 2 hold. Then, as

n — 00, the bootstrap is consistent for the mazimal prediction error: dp[En(Xp), £ (X])|Xn] 0.

Simultaneous prediction intervals via bootstrap are then similar to the simultaneous
confidence intervals described in Section 2.4.3, i.e., if 41—, denotes the (1 — «) percentile of the
bootstrap quantity E (X)), then a set of simultaneous prediction intervals for {Yp ;}I, is given

by (B, Xoj) £ ti1-a,j=1,...,m.
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2.5 Simulation studies

Section 2.5.1 describes the design of simulation studies to examine the coverage and width
properties of confidence intervals (CIs) and prediction intervals (PIs). For clarity, Section 2.5.2
summarizes findings with pointwise intervals and also provides a rule of thumb for selecting

truncations (hy,, gn, kn) with the bootstrap. Section 2.5.3 then treats simultaneous intervals.

2.5.1 Simulation design

To examine intervals, random samples {(Y;, X;)}i; of size n = 50,200, 1000 were generated
from the FLRM (2.1). Iid regressors &, = {X;}! ; were generated as random curves on [0, 1]
along with n iid errors {¢;}"_; having a uniform distribution U(—a,a) for a = /6, independently
of the regressors. Results for other error distributions (e.g., normal, t) were similar; see
Section 2.10 of the supplement for more details. Each regressor curve was simulated from a

truncated Karhunen—Loeve expansion
1
X = Z \//\jfjej (2.10)
j=1

with J = 15; eigengaps having a polynomial decay rate d; = 357 of a for j > 1; and basis
functions {e; }3]:1 as the first J functions from the trigonometric basis {1, cos(2mrx), sin(27x), ... }.
All curves were evaluated at 100 equally spaced points in [0, 1]. In (2.10), we also used
uncorrelated (but dependent) sequences {£;} of FPC scores defined as follows: let &; = V; W},
where {W;} are iid N(0, 1) variables and, independently, let {V;} be a stationary autoregressive
process such that each V; ~ N(0,1) and Vj41|V; ~ N(0.5V},1.5). The slope function 8 was
constructed as = ijl wg ;| Bjle;, with |8;j| = 2~ following a polynomial decay rate of b and
with fixed coefficients wgs ; defined by a initial random draw of J values from {—1,1}. Level
combinations (a, b) were considered for the different polynomial rates with a € {2.5,5} and

b € {2,5}. Note that all scenarios except a = 5 and b = 2 satisfy the conditions of Corollary 2
(e.g., 2a 4+ 1 > a + 2b) for guaranteeing the consistency of the bootstrap. In each scenario, the

tuning parameters h,, and g, were varied in the range {1,...,15} to investigate their effects on
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coverage, while the less consequential bootstrap truncation k, was chosen as k, = 2[n1/ Uk] with
v = 2a + 1 + ki for a small k;, = 0.1. For a given data set, bootstrap distributions were

approximated from 1000 Monte Carlo resamples.

2.5.2 Empirical coverage probabilities

Cl_trunc Cl PI

1.001

0.95

0.901

Coverage Rates

0.95

0.907

0.851

12345678 9101112131415 123 456 7 8 9101112131415 1 2345678 9101112131415
P

On = 1 3 5 7 < 9 - 11 - 13 - 15 —& CLT

Figure 2.2: Empirical coverages of intervals from bootstrap and normal approximation over
different truncations when n = 50, b = 2. The three columns display the CI for (II;, 3, Xo), the
CI for (53, Xo), and the PI for Yp, respectively. Crosses x indicate bootstrap coverages with Ay, gn
selected by a proposed rule.

We next compare Cls and PIs from bootstrap to those from CLT /normal approximations. For
each simulation run, an additional regressor Xy was generated independently of the data. Both
bootstrap and normal theory ClIs were computed for biased targets (Il;, (3, Xo) that vary with
truncation h,, defining Bhn, and for the location (3, Xy) For each simulation combination, the
reported coverages of Cls represent the proportion of those intervals covering (I, 3, Xo) or
(B, Xo) over 1000 runs. We likewise determined coverage for bootstrap and normal theory PIs for

containing a response Yy generated at X in each simulation run. Normal theory Pls implicitly
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assume that model errors follow a normal distribution, which represents a common practice but is
not true for the simulation results presented here. See the supplement for further algorithmic
details on the methods and results with other data generations. A nominal level of 1 — a = 0.95
was used in all scenarios.

We only present results for the smallest sample size n = 50 and slowest decay rate b = 2 for
the slope parameter 3, as the most difficult cases of inference. Additional results and details are
included Section 2.10 in the supplement. Figure 2.2 displays the associated coverages of Cls and
PIs, where intervals depend on h,, on the horizontal axis; the bootstrap also requires selection of

Jn, denoted by different lines in Figure 2.2. We observe the following;:

1. Bootstrap Cls are always superior to normal-theory Cls in terms of coverage accuracy,

provided h,, and g, are appropriately chosen.

2. Supporting our theory, g, does not affect bootstrap Cls for biased targets (Il 3, Xo); any

reasonably large h,, leads to good coverage.

3. For true projections (3, Xo), bootstrap CIs depend on both g,, and h,,. While our
Theorem 3 allows cases where g, may be either larger or smaller than h,, the simulation
results indicate that only choices with g, < h,, are practically relevant. Setting h, = g,
worked well for larger g, but setting h,, to be slightly larger than g,, seems overall preferable

for performance, particularly for small g, = 1 or 3.

4. Bootstrap Pls behave similarly to bootstrap Cls and perform much better than normal
theory-based Pls; the latter perform especially poorly due to underlying non-normal model

CIrors.

In all, we recommend setting h,, to be slightly larger than g, in practice. Based on the
simulation results in all considered scenarios, we also propose a rule of thumb for selecting tuning
parameters h,, and g, in terms of k,, namely h,, = [2.21k,] and g, = [1.36k,,], where [-] denotes

the nearest integer. The scaling factors were determined by a linear regression of appropriately
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Figure 2.3: Average widths of intervals from bootstrap and normal approximation over different
truncations when n = 50, b = 2. Crosses X indicate average widths with h,, g, selected by the
proposed rule. Varying g, had a negligible effect on the average widths

chosen ky, vs. (hy, gn) through manual inspection over all combinations of the latter, from all
simulation scenarios, producing coverages within 0.01 of the nominal 95% level. Our rule of
thumb exhibited good coverages in Figure 2.2, as indicated by crosses there. In practice, one may
appy this procedure with k,, chosen via cross-validation, for example, based on prediction error
(cf. Section 2.11 of the supplement).

Figure 2.3 also displays the average widths of intervals, where the rule of thumb tended to
produce relatively short- to moderate-width of intervals. Widths of all intervals depend on h,,
and generically increase with h,,, but bootstrap truncation g,, does not impact widths. However,
gn does impact the coverages of the Cls/Pls, as demonstrated in Figure 2.2, through affecting the
“centering” of the bootstrap estimates. Despite having similar average widths in Figure 2.3,
bootstrap intervals can outperform normal intervals because the bootstrap better approximates

the sampling distribution than the CLT.
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2.5.3 Coverage of simultaneous intervals

SCI SPI
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Figure 2.4: Empirical coverages of SPIs and SPIs from bootstrap over different truncations when
n = 50, b = 2, and regressors Xy are fixed. Crosses x indicate bootstrap coverages with h,, g,
selected by the proposed rule.

We next examine simultaneous confidence intervals (SCIs) and prediction intervals (SPIs) via
bootstrap, as based on Corollaries 3—4. We focus purely on bootstrap as there is no simple analog
for comparison from normal theory. For simplicity, we consider a collection of five regressors
Xy = {X07l}l5:1 defined by the first five eigenfunctions Xo; = ¢;, { = 1,...,5, which remained fixed
for the study. From the data generated in each simulation run, SCIs were computed for the
locations {(3, Xo;)}?_;, while SPIs were computed for new responses {Yy,}7_, at the regressors
Xy. Coverage probabilities, as averaged over 1000 simulation runs, were calculated analogously to
those in Section 2.5.2 and we likewise present results for the case n = 50 with b = 2. The
supplement summarizes results for other simulation settings, including comparisons to individual

CIs/PIs and cases of random regressors. Along lines suggested in Remark 5, note that each
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regressor X, can be viewed as a realization of Z;’il \/)ijjej with FPC scores as
G=N"1G=0,5>1

Figure 2.4 shows the coverage rates of SCIs/SPIs from bootstrap. Particularly under fixed
regressors here, simultaneous intervals tend to exhibit over-coverage, though coverages are often
close to nominal for a variety of truncations h,, ¢g,. However, an important take-away is overly
small values of g, might naturally be avoided, as these can induce extreme under-coverage in
SCIs/SPIs due to issues in capturing bias across several intervals at once. Coverage rates from the

rule of thumb selections of h,, and g, given in Section 2.5.2 continue to appear reasonable for

SCIs/SPIs in Figure 2.4.

2.6 Real Data Analysis

We demonstrate application of the residual bootstrap for FLRMs with a wheat spectrum
dataset Moisturespectrum from the package fds. The dataset, originally described in [22],
contains the near-infrared (NIR) reflectance spectra of 100 wheat samples, measured in 2 nm
intervals from 1100 to 2500 nm, as well as a response variable, namely the moisture content.

The regressor X; we analyzed was the negative log-transformed absorption rates — log(R(t)),
where R(t) € (0,1) denotes the absorption rate at wavelength ¢ over the spectrum [1100, 2500],

and the response was the associated moisture level Y;, ¢ = 1,...,n. The functional regressors X;

1.254

1.004

Spectrum
o
~
(&)}

0.50 1

0.004 1 i
1500 2000 2500 0.13 0.14 0.15 0.16 0.17
Wavelength (nm) Moisture

0.251

Figure 2.5: The uncentered NIR spectra predictor curves and the distribution of the moisture
response
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appear in Figure 2.5 along with a distributional summary of the observed responses Y;. After

Y; — Y, we apply a FLRM (2.1) and

obtaining centered observations X = X; — X,, and Ye
estimate the slope parameter j3.

Figure 2.6(a) and (b) show that the distributions of the first two FPC scores do not resemble
normal distributions. Additionally, the joint distribution of the first two FPCs appear to follow a
slanted v-shape, as shown in Figure 2.6(c), and thus the two FPCs are not independent. For these
data, neither Gaussianity nor independence assumption seems reasonable for the FPC scores.

However, bootstrap inference is still applicable as per our theoretical results.

(@) (b) (c)
0.20 1.00 1 @ 27 ¢
o .
- 4 [8)
5015 5075 5 .
‘n ‘» 8 0 o °
S 0.101 S 0.501 T o |
[ ]
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First FPC scores

Second FPC scores

First FPC scores

Figure 2.6: Distributions of the first (a) and second (b) FPC scores, and the scatterplot of the
first versus the third FPC scores (c)

An initial bootstrap truncation parameter k,, = 4 was selected via repeated cross-validation,
minimizing prediction errors over estimates from Bkn; the details are included in Section 2.11 of
the supplement. Using the selection rule from in Section 2.5.2, we then set h, =9 and g, = 5.

To illustrate bootstrap-based inference conditional on target regressors Xy, we consider a
collection of six hypothetical regressors Xy = {X(],l}?:l of interest and create bootstrap intervals
for estimating the true projection, as well as predicting a new response, at these Xy. Three types
of regressor collections Xj are considered: (OS) an overall shift in the magnitude; (sim) a simple
functions supported on either [1100 nm, 1400nm], [1400 nm, 1900 nm|, or [1900 nm, 2500 nm)];
and (S5) a sum of two simple functions in (sim). The Xj consists of six of a given type, where we

vary the type. Types (sim) and (SS) are inspired by two locations where the estimated slope
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(b) Simple functions
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Figure 2.7: Three collections of six hypothetical regressors (curves) for consideration; curves in

(b)-(c) partially overlap along the average curve X =n~t>"" X,

function seems to have a peak. Figure 2.7 shows the curves in each set Ay under consideration

after de-centering. The supplement provides more specific details on these curves and the

estimated slope. Using bootstrap, Table 2.1 gives the endpoints for 95% individual confidence

intervals (ICIs) and simultaneous confidence intervals (SCIs) for {(3, Xo,)}%_, along with

individual prediction intervals (IPIs) and simultaneous prediction intervals (SPIs) for new

responses at the regressors Xy. To facilitate comparison to SCIs/SPIs, the ICIs/IPIs are

symmetric.

As expected, PIs are wider than the corresponding Cls. From Table 2.1(a), a higher NIR

absorption rate, i.e., a curve with lower overall magnitude, is associated with slightly less

moisture content. More interesting patterns are involved in the shape of curves or where their

peaks are located, which can be seen in Table 2.1(b)-(c). The target regressors which have a peak

in the interval [1400 nm, 1900 nm], such as Xgim 2, Xss2, and Xgg¢ provide the intervals that

contain the lowest value of moisture levels. In contrast, for target regressors having a trough on

this interval, for example, Xy 5, Xss3, and Xgg 5, their intervals contains the largest moisture

levels. We notice that as target regressors have more pronounced peaks or troughs on this

interval, their corresponding intervals reflect lower or higher values of moisture level, respectively.

We note that the ICIs for the first and the sixth regressors among the overall-shift (OS) type

in Table 2.1(a) match their corresponding SCIs, while the remaining regressors have wider SCIs

than PIs. This is not surprising because regressors of the O.S type lie in the same one-dimensional
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space, and the bootstrap procedure automatically accounts for this aspect and calibrates the SClIs
according to the two most extreme target regressor curves. It is evident that bootstrap intervals
are the widest for the category of simple functions (sim), showing that a change in the shapes of

regressors has a stronger effect on the response than a change in the overall magnitude.

Table 2.1: ICIs/IPIs and SCIs/SPIs from bootstrap at six target regressors within one of three
regressor types (OS), (sim), and (SS).

(a) Overall shifts

ICI SCI IPI SPI

Xos1 | 17.65 19.97 | 17.65 19.97 | 17.62 20.00 | 17.44 20.18
Xos2 | 1750 18.89 | 17.50 18.89 | 17.35 19.04 | 16.86 19.56
Xoss | 17.34 1781 | 17.34 17.81 | 17.04 18.11 | 16.21 18.94
Xosa | 16.73 1719 | 16.73 17.19 | 16.46 17.46 | 15.59 18.33
Xoss | 15.64 17.04 | 15.64 17.04 | 15.47 17.21 | 1497 17.71
Xose | 14.56 16.88 | 14.56 16.88 | 14.38 17.07 | 14.35 17.09

(b) Simple functions

ICI SCI IPI SPI

Xsim,1 | 1834 23.47 | 18.23 23.57 | 1843 23.37 | 16.58 25.21
Xeima2 | 824 16.67 | 7.64 17.26 | 8.17 16.73 | 8.14 16.77
Xsim,3 | 1692 22.44 | 16.32 23.04 | 16.53 22.83 | 15.37 24.00
Xsima | 11.06 16.21 | 10.96 16.31 | 10.92 16.35 | 9.32 17.95
Xgim,5 | 17.86  26.30 | 17.27 26.89 | 17.86 26.30 | 17.77 26.39
Xsime | 12.09 17.61 | 11.49 18.21 | 11.80 17.90 | 10.54 19.16

(¢) Sums of two simple functions

ICI SCI IPI SPI

Xssq1 | 17.27 1849 | 17.25 1851 | 17.14 18.62 | 15.74 20.02
Xss2 | 14.05 16.88 | 13.85 17.08 | 14.12 16.81 | 13.32 17.60
Xss3 | 17.37 2139 | 17.14 21.63 | 17.40 21.36 | 17.24 21.52
Xss4 | 16.05 17.26 | 16.02 17.29 | 16.01 17.30 | 14.51 18.79
Xsss | 17.65 20.49 | 17.45 20.69 | 17.56 20.58 | 16.93 21.21
Xsse | 13.14 17.16 | 12.90 17.40 | 13.04 17.26 | 13.01 17.29
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2.7 Proof of the generalized /refined CLT

The proof of the CLT is based on the decomposition of Bhn - B
Bh, =B = (D} —T} W +T}, Up+ (I, —11,,)8 + Iy, B — B, (2.11)

where U, = n~1 3" | X;e;. The main difference between our results and those of [CMS] is the
distributional convergence of the variance term, which is based on I‘L Up in (2.11). Lemma 8 of
[CMS] discussed this convergence, but the statement and the proof require some clarification. We

establish the following proposition, which refines their Lemma 8.

Proposition 2. Suppose that Condition (A2) and hntp, (Xo)™! = Op(1) hold. Asn — oo, if

n~th2 — 0, then we have

sup i> 0.

yEeR

n
< _
P ( iy (T U Xo) < y‘Xn,X()) ®(y/o.)

Proof. Let EX denote conditional expectation given X,,, Xo in the following. Note that

\/o?Thn<Fszn Un, Xo) = > 1 Zi n where

Z@n = 0';17171/2]1;1/2@‘};”)(,‘, X0>€i.

Then, EX[Z; ] = a;ln_l/Qhﬁl/Q(FLnXi, Xo)E¥X[e;] = 0 holds by independent errors. Set

v2 =" EX [an] Then, we may write

n
v =0t Y (X, T Xo)?
i=1

n
=n"hy 'Y (X ® X)) Xo, T}, Xo)
=1

= h;l <f‘nF}LlnX0, F;anX0>

= by, {An + th, (Xo)}
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where A, = (), — )T}, Xo,T}, Xo). Then, by setting L;,, = (I}, X;, Xo), we formulate a

(conditional on &, and X) Lindeberg’s condition as
v 2 Z EX [Z2.0(1Zin] > Tvn)]

ZL2 EX 211 (Hylei| > 7)),

- 02v2nh

where we will show that £,, converges to 0 by proving

maxlgign |L7

UV Nhy,

We assume (2.12) for now and later verify that H, P, 0 as claimed. To verify the Lindeberg

Hy

Il
o

(2.12)

condition, we note that, for a given n > 0, there exist a positive integer u = u(n) > 0 such that
f(u) < n (recalling f in Section 2.2.2) and a positive integer N such that P(H,, > tu~!) < n for
n> N by H, P. 0. We treat the conditional Lindeberg term L,, in two cases, depending on the

event H, < 7u~'. When this event holds, we bound £,, as

2 X 2 —1
LI(H, < Tu~ {U%h ZL EX[e21(H,|e;] > T)]} I(H, <Tu™!)
2 X &2 ) -1
< Uth ZL EX[21(Hy|ei| > 7)I(H, < Tu™1)]
< E[efI(ler] > )| X1) < f(u) <1

using > 7" L%n = nhyv? and I(Hy,|e;| > 7)I(H, < 7u™!) <1(|g;| > u); the complement has

probability bounded by
P(LI(H, > 1u™b) >¢e) <P(H, >71u™b) <.

Consequently, we find P(L,, > 2n) < n holds for n > N, which verifies the Lindeberg condition
L, 55 0asn— occ. Furthermore, by Lemma 7 in the supplement, we have A, = Op(n~/2h2),
while A,tp,, (Xo)~t = Op(n~12h,) by Condition Aty (Xo)~' = Op(1). As n — oo, if n~Th2 — 0,

we have

thn (X()) o 1 B
Ap +th,(Xo) — An/th,(Xo) +1 L+ op(1). (2.13)
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From this and noting that

n
_ th, (Xo) n
1 _ hn\20 T
ity Zin = Il U,, Xo),
mo TN At (Xo) Jgthn(X0)< hn U Xo0)

we have

P

sup
yeR

n
P (v;l Y Zin<y

Xna XO) - Q(y)
=1

by the Lindeberg CLT and by Polya’s theorem (Theorem 9.1.4 of [2]), which is equivalent to

Xn,xo> —ayon)| B0

n
P U, Xo) <
yek ( thn(Xo)< U Xo) <y

yeR

We next show that H,, = 0 in (2.12). Due to (2.13), to establish (2.12), it suffices to show

My = max |Li.n| = Op((nh2)Y*)\/ty, (Xo), (2.14)

which then implies

th, (Xo)

Hy = Op((hn /) 0\ | 1= =055

= Op((h,/n)'/*),

and H, 5 0 by n7'h2 — 0 as n — oo. To establish (2.14), note that

hn hn

hn
’LG Z X’L7€] X07e]> < Z)\J'_1<Xi76] Z XOyej
=1 =1

= Z YXy, e)2/th, (Xo).

Also, we have by Jensen inequality that
2
Z/\ (Xiye))? | < h ()\ (Xi,e;) ) —h, Z/\ (Xi,e;)t
j=1
By the finite fourth moment assumption (A2), we see that

hn n
E | max Y A%(X;e)*| <E ZZA (Xi,e))| < nh,C,

1<i<n
Jj=1 i=1 j=1
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which implies that, max;<j<y, E <XZ, e]> = Op(nhy,). Therefore, we have that

31]

1/4
hn /

Mng h max )\ <Xi,€j>4 \/thn Xo Op nh2 1/4) thn(X()),

1<i<n 4
proving (2.14). O

Proof of Theorem 1. The theorem follows by applying Proposition 2, Propositions 17-18 in the

supplement, the decomposition (2.11), and Polya’s theorem (Theorem 9.1.4 of [2]). O

Proof of Proposition 1. It suffices to show the weak covergence of the variance term

\/n/Tn <Fszn Un, Xo). For any given regressor X, the FPCs ¢; are uncorrelated with mean zero,
variance one, and finite fourth moments, and hence satisfy the assumptions involved. However,
these are not independent due to their common component £. To derive the weak convergence
result, we first notice that hy,'t;, (Xo) = &3, where &, denotes the copy of ¢ for defining X, which
is independent of the data {(Y;, X;)}_;. Then, by applying Theorem 1 with the bounded

convergence theorem, noting also P(§y = 0) = 0, we find

i ot — i n f ‘
P (] v X0) < ) = i [P (0l [y 00, U X < o]0 2,

_E {@ (Uj&)'ﬂ = P(I60| % < /o),

where Zy ~ N(0,1) denote a random variable independent of &. ]

2.8 Validity of the residual bootstrap

The Mallow’s metric [3] is applied to show that some key distributional components have the
same limits in both bootstrap and original data worlds. The Mallows metric, denoted by da, is a
metric between either two distributions on a separable Banach spaces B or two random variables
that can be valued in B. The Mallows metric between two probability distributions P and () on B

is defined as

©(P.Q) = inf (E[U = V)"
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where (U’, V') denote any pair of two B-valued random variables with P and @ being the
marginal distributions of U’ and V’, respectively. With abuse of notation, the Mallows metric
between (the laws of) two random variables U and V taking values in B is similarly defined by
(U V)= it (E[JU" = V'|P)V/2.
vduvidy
See Section 8 of [3] for more details. Let d2* denote the Mallows metric defined via the
conditional expectation EX given X, and Xj.
We divide the proof of validity of the residual bootstrap into two cases, namely, with or
without the bias. Unless otherwise stated, we impose the assumptions in Theorem 2. We first

notice the following decomposition of bootstrap quantity

B;kln - Bgn = f‘ILnA:/ - Bgn = f‘;,nf‘nlégn +fILnU7>; - Bgn
= F;ran;.Lk + thﬁgn - 69n'

Here, B;‘;n - ﬂhn Bgn = f‘;n U} represents the variance part whereas ﬂhn 3% — Bgn is the bias part
in the bootstrap world. We hence compare these variance and bias parts between the real and the
bootstrap worlds.

Thus, we will show that m(f};n Un, Xo) and , /5 (Xo) <1“Jr Uy, Xo) conditional on
X1,...,X, and Xy has the same distributional limit by proving the Mallows metric between them

converges to zero in probability.

Proposition 3. The Mallows metric between the variance terms conditional on X, and Xy

satisfies

X i i i
3 (g Thn 290y )

hn
= 0p [ n7'2h1 Y (jlogh)® | +1 3 do(F, F)?,
j=1
where F and F,, denote the distribution functions of errors {e;}_; and the centered residuals
(& — &}y, respectively. Thus, as n — oo, if n=Y2h2(log h,)*> = O(1), and da(F, ) — 0, then

the conditional Mallows metric converges to zero in probability.
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Proof. The proof is along the lines of the proof of Theorem 4.1 in [26]. Since the infimum in the

Mallows metric is attained due to Lemma 8.1 of [3], there exists iid (¢}, &}’)’s such that

N

!/
1. ei~F, e ~ Fy,

2. (gh,e¥') is independent of X;, and

R

A

3. EX[(el — )Y = E[(¢} — &)?] = da(F, F,)2.

2
n A
N ! Un, Xo), I U*, X
< thn XO hn 0> thn(X0)< hnon 0>)

EX [< (UL = U2), Xo)?)

Then, we have

<
_thn(XO)
where U}, = n~ 13" | X;eh and U =n~1 3" | X;el'. Note that

n

2
EX [(1),, (U7, - U3, Xo)?| =¥ {n12<onXi7Xo><€é—€i">}

i=1

n
=n"2> (0] X, Xo)2do(F, F).
i=1
Also, note that

n n
n Y (0] X Xo)r =) (X @ X)) Xo, T Xo) = (TaT), Xo, T, Xo)
=1 =1

= (I}, Xo, Xo) = i, (Xo),

and thus

2 ~
) ) i (Xo) .
dX< "t U, Xo), "0 Ut x ) < D 20) g ()2
2 thn(X0)< hn 0> thn(X0)< hn 0> = thn(XO) 2( )

By Proposition 8 in the supplement, we have

th, (Xo0)/th, (X0) =1+ Op (n_l/thl Z 1(jlogj 2) and thus, we conclude that

2
dX< (0}, Uny Xo), | r* Uy, X )
? thn(Xo) fin ’ thn

=L 0p | nV2n IZjlogj ) +1 dgFF)
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Proof of Theorem 2. We consider here the bootstrap approximation conditional on Xj = X, and

the supplement treats the unconditional (on Xy) bootstrap case. Write

Op = \/n/thn(X0)<f,Tann,Xo> and
0 = v/n/th, (Xo) (T}, Us, Xo) = v/n/t, (Xo) (B, Xo) — (Tn, By, Xo)].

By consistency of the bootstrap error (cf. Theorem 6 in the supplement), under the assumptions
in Theorem 2, we have d3 (9, 0;;) 2.0 as n— oco. Meanwhile, to show the convergence of ¥, in

the Mallows metric, note that

n
EX(] U, Xo0)?) =072 Y EX[(Xiei, T Xo)2 + 072 EX[(Xies, T, Xo)(Xier, T}, Xo)]
i=1 i/
g

2 n
nszl,F Xo) :?Z (X; @ X;)I'T XO,F Xo)
=1 =1

S oo

2
o . os .
= —=(Xo, T} Xo) = ;Ethn(XO);
which implies that as n — oo,

EX[02] =0

€ thn (XO) — £
by Proposition 8 in the supplement. Therefore, by Lemma 8.3 of [3], Proposition 2, Proposition 17
in the supplement, and Slutksy’s theorem (Theorem 9.1.6 of [2]), as n — oo, we have

dsX (o, Z) L 0, which implies that d3 (9}, Z) P, 0, where Z ~ N(0, 02). Therefore, we have the

desired result by Theorem 1, Lemma 8.3 of [3], and Polya’s theorem (Theorem 9.1.4 of [2]). O

To deal with the bias terms in the real and bootstrap worlds, let

by = \/n/tn, (X0)[(Th, B, Xo) — (8, Xo)] and b, = \/n/tn, (Xo)[(XTh, Ben> Xo) — (Bgn> Xo0)]- The

difference between bias terms is

1y, By, — g, = (I, — 1, ) (By, — B) + (I, — I, )8 + (I, — 1) (Bg, — B) + (I, — I)B.
(2.15)

Proof of Theorem 3. We suppose for now and later verify by P, 0 as n — co. Conditional on Xo

and following the proof of Theorem 2, we have dx (0%, Z) Po. By using a subsequence argument
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(cf. Theorem 20.5 of [4]) and Slutksy’s theorem (Theorem 9.1.6 of [2]), one can show that

n A* A A~k 7 d 2
- Xo) — Xo)] = by, —— N(0, 0
sy B X0) = (B, X)] = 0 by S NGO, 02)

along the subsequence, pointwise on an almost sure set. In other words, as n — oo, we have

sup L)

yER

P (i o e X80 = B X1 < 01 X5 = X0 ) = 0(0/2)

by Polya’s theorem (Theorem 9.1.4 of [2]). Using the above, the proof for the unconditional (on
X() bootstrap version in Theorem 3 follows by the argument used for Theorem 2 in this same
case.

It suffices to show that by, Py 0asn — co. We first suppose that g, < h,, which implies that
b, = 0. Due to Theorem 2, it is enough to show that

n
th, (Xo)

as n — 0o. Thus, the desired result follows from Lemma 9 in the supplement after applying

(T, 8 — B, Xo) & 0

Condition (2.9).
We now suppose that g, > h, for the second part. The proof is based on the decomposition
(2.15) of the difference between bias terms. Due to Propositions 11-12 in the supplement, if

gn/hn — 1, one can show that

E* [ L (T, — TTn,) (B, — B)=X0>’]

th, (Xo)
hon hn
=O0p | Mg, hy /2> jlogj | +0p [ 020,12 |57 823 (jlogj)? |,
j=1 Jj>gn  J=1

where for integer j > 1, M, ; is defined as

j ; 1/2 .
J J J
My =n"' Y6 P (Ulog )2 4 n~'/? (Z %1> +n7 Y2y " llogl, (2.16)

=1 =1 =1

and

X n 3
£ [\ [ = ) B — 2. X0

In
_ ~1/2p,-1/2 oz 7)2 0 n 32
Op | n~'/?hy, j;(y 0gj)* | + Op hng; YB3
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Finally, the result follows again from Lemma 9 in the supplement after applying Condition (2.9),

along with the condition n_l/QgZL/Q(lOg gn)? — 0. =

2.9 Technical details

In this section, we complete the proofs for the main results of the paper. After some
preliminary results related to the perturbation theory in functional analysis, we provide proofs for
our generalized CLT and the residual bootstrap in Sections 2.3-2.4, respectively, of the main
paper.

Recall that Bhn — B is decomposed as follows:
B, —B= (L}, =T} W +T}, Up+ (I, —10,)8+ 10,8 — B. (2.17)

To deal with the bias terms related to (f;rln - I‘Ln)Un and (IT, — I, )3, we apply perturbation
theory or functional calculus as seen in many existing works such as Cardot, Mas, and Sarda [7]
(referred to as [CMS] hereafter) or [9]. We refer to Chapter VII of [11] or Chapter 5 of [21] for an
overview.

Write || - [l for the operator norm, namely [|Al[oc = supj,=1 [|Av||. Let
Bj ={z € C:|z— \j| =0;/2} be the oriented circle in the complex plane C and set C,, = U?;l B
to define the contour integral for operator-valued functions. By the theory from functional

calculus (for the bounded linear operators) or perturbation theory, we see that

h h
n 1 & 1
I, = = I—-D)'dz = — I-1)"4
hn z mz_:/B(z )= g [ 1)

1
(2 —=T)tdz = — “Lr-1m)"'d
hn 21, Z/ (2 “Tom /Cn oz ) dz

where 7; = 5 f (2I —T)~'dz denotes the Riesz projection of I' to corresponding to the j-th
eigenvalue A;, which is the projection operator onto the j-th eigenfunction e;. One can also get
the empirical counterparts 7;, f[h , and f‘T from the sample covariance operator I, with the
corresponding random contours B; = {z € C : |z — \j| = §;/2} and C,, = Uh” B;. For later

development, write random operator-valued functions Gy (z) = (21 — ')~ Y2(I', = T')(2] — ')~/
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Kn(2) = (21 = TD)Y2(20 = T,) Y2l = T)Y/2, and event & = (||Gn(2)loe < 1/2,¥2 € B;). Due to
the frequent uses, we state the following lemma without proof, which corresponds to Lemmas 1-4

in Section 6.1 of [CMS].

Lemma 1. Suppose that Conditions (A2) and (A4) in the main paper hold. We have the

following:

1. For sufficiently large j, k € N with k < j, we have

Aj

A > kA
SEA I Vs Vi

,and YN < (k4 1A,
Jj=k

2. For sufficiently large j €N, 37, P\/\%M < Cjlogj.
J J
3. For sufficiently large j, we have

E [SUP IGn(2)]I5 | < Cn™'(jlog j)?

ZGB]'

and

E [sup [(zI —=T)~Y2X,|2| < Cjlogj.

ZEBj

4. We have that sup,cp, | Kn(2)|locle; < C almost surely and P(E5) < Cn=Y2%jlog .

Write event A, = {Vj € {1,...,hn},|\j — \j| < §;/2} for each n € N. The Lemma 5 of [CMS]
explains that the random contours Bj in the integrals can be replaced by the population
counterparts B; asymptotically based on the asymptotic ignorability of P(.A,). However, we
technically refine this result to incorporate a certain approximation error omitted in previous
proofs (cf. page 344 of [CMS]). Specifically, [CMS] approximated ]5\] — A by [{((T,, = D)ej, e;)]
while ignoring the approximation error [A; — A\; — (I, — D)e;, e;)|. However, this approximation
error may not be negligible, which requires an additional condition related to both the truncation
parameter h, and the eigengaps {J;}. Hence, we state the following lemma separately and

provide its proof.
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Lemma 2.

1. It holds that

. 1 .
Oy, —Mp, == [ {(zI =Ty)" = (eI =1)"'}dz + ripllac,
21 Je,
A 1 A
I / 2T (2 = Ty) 7 = (21 = T) '}z + ronllac,
n n2m e,
where
fip, — — [ (21 =Tl
Tin = - — 2l — z
in hn 2L c. n )
Top = - 1 zfl(zI — f‘n)fldz.
hn = omy Cn

2. Suppose that Conditions (A2) and (A4) in the main paper hold. We then have that

hn hn
P(AS) < Cin~! Z (53-_2 + Con /2 Zj log .

j=1 j=1
Proof. On A, since S\j lies in Bj, we have
. 1 N
I, = — (2 —T,) "dz
27 Je,
! (21 —=T')"Yd
= — — z.
2L Cn i "
This implies that
II ! (2 =T,) ldzp T 0
- — 2zl — z =
hn 271 c. n An )
and hence,
N 1 A
Iy, — My, = =— [ {(zI =Tp)"" = (2 =) Ndz + rinlge,
2me Je, "

where 71, = ﬂhn — % fcn(zl — fn)*ldz. One can derive the second equality for f‘;n with the

_ 1
2me

remainder term 7o, = fzn fC 271 (2] — fn)_ldz in the same way.

For the second part, We first claim that

1A = Aj = ((Tn = D)ej,e5)] < C67HT, — T2 (2.18)
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To see this, set ¢; = sign((é;,€;)). Note that

((Tn —T)éj,¢5€5) = (Tnéj, ¢iej) — (€5, ¢Te;) = (Njéj, éje5) — (€5, ¢5Nze5)
= (Aj = N)(Ej. 6ie5) = (N — X)) ({65, ¢e5) — 1) + (A — ;)

= (\j = N)(é5, 8565 — &) + (N — Aj),
which implies that
A=A — (T = D)ej, cies)| = |A — NjlIEs, &5 — ejei)| < 1A — Ajlllés — éjeg

On the other hand, we have

|<(Fn - F)€j7ej> - <(fn - F)éjvéjejH
=[((Tn — D)ej, 5 — &65) + (T — D)ej, ¢;8;) — (Tn — T)éj, ¢5e5)]|

=[((T'n = T)ej, éjej — )| < Tn = TlloollEje; — &
Combining these two results, by Lemmas 2.2 and 2.3 of [20], we have

IAj = XAj = ((Tn = TD)ej, e5)]
<|Aj =N — (T = D)éj, é5e)| + [{(Tn — D)éj, e5e5) — (T — D)eje5)]
<[Aj = Al = &esll + ITn = Tllolléje; — &1 < €657 T, = T2,

which verifies the inequality (2.18).

Note that

hn hn
P(AS) <D PN — Nl >6;/2) <2 67 'E[[A; — Ayl

J=1 J=1
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by Markov inequality. We also have E[((T', — T')e;, e;)%] < Cn~' A3 (cf. page 341 of [CMS]). Then,

by the inequality (2.18) derived above, Theorem 2.5 of [20], and Lemma 1, we have that

h i
P(A;) < CL Y65 EllITn = TIR] + C2 ) 65 El{(Tn — D)ejy e5)]]

Jj=1 J=1
hn hn
<Oty 674+ Con TP T
j=1 j=1
hn hn,
<Oty 5P+ Con T2y (j+1)
j=1 j=1
hn hn,
< Cin 1253 24 COon 1/22310gj
j=1 j=1

Remark 6. From the following section, we investiage the rates of convergence of different
quantities based on perturbation theory. In the proofs, the quantities related to either £ or AS

will be negligible due to the following arguments.

1. Let Q; be any non-negative quantity (that can be either random or fixed and can depend on
. . . hn
n or not). Note that ]Ig; = 0 implies that Qj]lg;_: = 0. Let n > 0 be given. If ijl Qj]Ig; >,

then Z?ll Qj]lgjc = 0, and hence, there exists j such that ]Ig]@ £ 0.

(a) Suppose either P = P or P = P(-|X). We then see that

hn hnp hn hn,
PY Qles>n | <D Pllec #0) =Y P(E) =D P(E)
7j=1 7j=1 7j=1 7=1
hn
<Cn 1/ZZ:jlogj
j=1

by Lemma 1.

(b) Suppose either P = P(-|X,,) or P = P(-|X,,, Xo). We then see that
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and for each 7’ > 0,

hn hn hn hn
PY Tee>n' | <D Pec £0) =D P(E) <Cn™?Y jlogj
j=1 Jj=1 Jj=1 j=1

by Lemma 1.

Thus, any quantities related to I[g]q (or their sums) are asymptotically negligible or ignorable
under any choice of conditional probabilities P if n~1/2 2?21 jlogj — 0 as n — oco. This
helps to theoretically guarantee that sup.ep; |[Kn(2)[|ls is bounded above almost surely

(with upper bound not depending on j) based on Lemma 1.

2. Let @, be any non-negative quantity (that can be either random or fixed and can depend
on n or not). Note that [ 4c = 0 implies that Q,l4c = 0. Let n > 0 be given. If Q,l4c > 7,

then Q,ll4c # 0, and hence, T4 # 0.
(a) Suppose either P =P or P = P(-|X(). We then see that
P(Qulag > n) < P(Qullag #0) < P(Lag #0) = P(A7) = P(A7)

hn hn,
<Oty 67+ Con Y jlog .

Jj=1 J=1

(b) Suppose either P = P(-|X,,) or P = P(-|X,, Xo). We then see that
P(Qnllag >n) < P(Qulag #0) < P(lag #0) = P(A;) = E[lag] = Lae,
and for each n’ > 0,

hn I
P(Lag > ') < P(lag #0) = P(AS) < Cin ™'Y 672+ Con™ /2~ jlog .
j=1 J=1
Thus, due to Lemma 17, any quantities related to [ 4c are also asymptotically ignorable
under any choice of conditional probabilities P if n~! 2?21 5;2 — 0 and

n~1/2 2?21 jlogj — 0 as n — oco. This aspect theoretically guarantees that the random

contour éhn for ﬁhn and f;rln can be replaced with the fixed contour C,.

In what follows, we suppose that Conditions from (A1) to (A6) and h,ts, (Xo)~! = Op(1)

hold unless otherwise stated.
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2.9.1 Preliminaries

Before presenting the main theory, the following lemmas concern the differences ﬁhn —IIj, and
f};n — F;rln between the sample and population operators and are introduced due to frequent usage.
Most of these follow from similar arguments as in Proposition 3 in [CMS], but all the proofs will
be provided. For conditional arguments, the lemmas are provded either conditionally or
unconditionally given on X, and Xo. In what follows, EX[-] = E[-|&,,, Xo] and PX(-) = P(:|X,,, Xo)

denotes the conditional expectation and conditional probability, respectively, given X,, and Xj.
Lemma 3. Asn — oo, if n=1/2 Z?gljlogj — 0, we have the following.

L. M1y, =Ty, [l = Op (025202, jlog ).

2. |tf, =T Jlo = Op (n‘1/2 S 852G 10g3)3/2>

3. ||(TTh, — Tn, )Xol = Op (n*1/2 Sl jlog j).

410, =] )Xol = Op (72 )y 6 2 (j10g )%/2).

Proof. Only the last part is proved, as the remaining parts are similar. We observe that

I, -1f =5 Z/ —1 S R e 2y g r)—l} dz + ronlla,
=5 Z/ L) (Tn = D) (2] —T) " 'dz + 79004,
=5 Z / Y2l =) V2K, (2)Go(2) (2] = D)™ Y2dz + 19,14, .
This implies that H(f’};n - FIZ")XOH < C'Z;Lll Aj + ||ranXo||La, where
4; Z/B 27T = T) 2 oo | Kn(2) ool G (2) oo | (2T = T) 72 X0 | dz.
j
Note that for all z € Bj, |z| > A\j — 0;/2 > A;/2. By the equation (5.3) of [21], for z € B;, we have

-1
Wﬁ—rrvwm=(%%w—kﬁﬂ> = |z = N[ 7V7 = (8;/2) 7
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Thus, by Lemma 1, we have

E[A;le;] Z/B A7 ML =TI PEL K (2) loole |G (2) llso]ELl (2 — T) 72 Xo|Jd=

J
<C /B A L0 PE(| G (2) | TN (2T — T) Y2 X ]dz
J
< OX182 (Y% 10g ) (jlog §) /2 < Cn =257 (j10g )2,
and hence,
. hn
_ -1/2, . .
DAl | =0 (02305 o )
— j=1

Consequently, we have the desired result by following the argument in Remark 6 on the reaminder

terms related to £F and A7, O

Lemma 4. Asn — oo, if n=1/2 Z 1 Jlogg — 0, we have the following.

1. EX[||(an - F;rln)UnH] =Op (n‘l Z?gl 6;1/ (j logj)3/2) Hence, as n — oo, if

hn
n 1y 6 P (log )P = 0,
j=1
then for each n > 0, we have

- P
PY(IT] —Tf Ul > n) = 0.

2 [|(F}, =T}, )Uall = Op (71 520, 672 (j10g)2).

Proof. We observe that
0 -1} = oo Z /B P {(zI — ) = (2] - F)—l} dz + ronlla,

Jg=1""3
1 & L

= gr 2 [, T B DT T,
2L j B;

= Z / Yol = 1) V2K,(2)Go(2) (2] —T)Y2dz + 19,14, .
This implies that H(F};n - I‘ILH)UHH < Czjil Aj + ||72nUnl|L4, where

1 _ _
AJ:/B mll(zf—F) V2 oo | K (2) oo | Gn(2)llocll (21 = T) 712U d=.

J
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1. Notice that

(1T = 1) U] = 02072 3 T - T) VR P,
=1

and

E [sup EX {H(z] - F)*l/QUnHQ}
ZEB]'

=o’n'E [sup [(zI =) V2X 12| < Cn'jlogj

ZEBJ‘
by Lemma 1. Note that for all z € Bj, |z| > \j —0;/2 > A;/2. By the equation (5.3) of [21],

for z € B;, we have
-1
(=1 =T) 2o = <rlré1§ |z — )\1‘1/2) = |z — A 7M2 = (5;/2)7 V2

Thus, we have

hn
Z Ajlle, <CZd1am )05t sup [[56n(2) ol
€B;
Jj=1 7=1 J
x sup G (=) oo sup EX [[| (1 =) 71205
2€B; 2€B;

< 025 /2 up [1Gu(2) o s1p EX [|I(=1 — 1)~ 20,

j=1 2€B;
and
hn hn
> EN[A]I, gcz(sj‘l/z [sup |G (= )H%o] E lsup EX [||(=I — T)-1/20,|])°
=1 j=1 2€B; 2€B;
L 1/2 L 1/2
<0 6 P 2 log jn VA (jlog Y2 = Cn ST 6 (j10g 5) 2.
: et
This entails that as n — oo, if n™* Z?“l o; 1/2(j log 7)3/2 — 0, then Zh” EX[A4; i1l 2o

2. A similar argument applies here. Note that for all z € Bj, |z| > A\j —§;/2 > X;/2. By the

equation (5.3) of [21], for z € B;, we have

-1
(=1 =)0 = <5%%§1!z—kz\”2) = |z = N[ 7V7 = (8;/2) 7
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Thus, we have
E[4;Le,] =/B 217 = T) 2o E | K (2)[loole; G (2) lloo (21 = T) =20 |||d2
J
<C [ 0716 PG ol (2T ~ 1)Uz
B;

< C/B‘ )\],—15;1/2 E[||Gn(z)\|go]\/EH|(Z]_F)_l/QUnHQ]dZ

R Y Cag1/2
< 067 P (n 12 log ) {n ™ (jlog )/} = Cn 167 (jlog ).
J

We therefore conclude that E [Z?;l Ajﬂg]} < Cnt Z?"l 53 1/2 (jlog 3)3/2 which implies

hn hn,
_ —1/2, . .
D Ajle, = Op | n7t 307 (10 )"
— o
Consequently, we have the desired result by following the argument in Remark 6 on the

reaminder terms related to £ and A7. O
Lemma 5. We have the following.

1. EX[Hf‘;anUn\P] = < -1 Z] 12 ) Hence, as n — oo, if n=* Z?;l )\j_l — 0, then for any

n >0,

o P
PX(IT], Unll > n) = 0.

2. |T} Uall = Op (n_1/2 S A )
Proof.

1. Note that

n
=n"2Y EX[ED) X
=1
2 n

2 _22 Z Xz7ej> TL2 ZZ)\ Xlaej ,

j =1 j=1

EX(IT, Unll?]

_1ZFT Xaz
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which implies that

hn, hn,

Xt _Ué - —1_13 -1

E\EXIT, Uall)| = 5 N =E N
=1 j=1 =

We thus have the desired result.

2
2. We first note that ||F};nUnH2 = HZ?”l )\] (Un,e;) ejH = Z;“’l A 2 (Un, e;)? and

2
E[(Un,¢;)°] = E < *12@ Xz,e]>

—22 T(Xi )’ + 02 Eleie; (Xise5) (Xir )]

1£4/

72ZE X“e] ’X +n ZZE gz <X17€]><Xi’7ej>’Xi7Xi’H

£
*QZE (X, ;) E[ef|Xill +n72 > E[(Xi, ;) (X, e5) Elei] Xi]E[e]| X ]
i
2 2
_£

=72 (X, )] = (X)) = T

This implies that
hn hn
E [IT], Unl?] = " 7B (U, e5)7 < Cnt D07,
j=1 j=1

and hence, ||F1-ann|| =Op (n_1/2 Z?ﬂ Aj )

Theorem 4 (Consistency of the FPC estimator). As n — oo, if n~/2h2 log h, — 0, then we

have ||Bn,, — Bl < 0.
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Proof. Note that the remainder terms related to &5 and A7, are negligible by following the

argument in Remark 6. Then, by Lemmas 3-5 and the decomposition (3.38), we see that

1Bh = BI < (T}, =T} )Unll + UL, Unll + [|(TTh, = T15,)B + [|(TTs, — D)B]|

hn
=0Op nilzdl/Q(]logJ)?’/Q +Op (2.19)
j=1
hn
+O0p (072> jlogj | +O [ [ (B,e;)?
Jj=1 J>hn

2
Note from Cauchy-Schwarz inequality that (Z;ﬁl 5j_1> < hyn Z?gl 5]-_2, which implies that

2 2

h',L hn h’n
~1/2p-1/2 -1 _,—-1p-1 ~1 ~1 -2
n~'“h, E 0; n-h, g 0; <n E o; "

7=1 7=1 7j=1

ha  s—1/2)2 hn -1 1 :
We also have that (> 0", ¢, < hp Y 0™, 6; ", which implies that

Jj=1"j Jj=1"j
hn y 2 hn / 2 hn
—1/43 —3/4 —1/2 _ . —1/23-3/2 -1/2 —1/23-1/2 -1
n VA3 GV | 122 (S| <1212y 5,
j=1 j=1 J=1

Thus, under Condition (A6), as n — oo, we have n_1/2h;1/2 Z?gl 6]71 — 0 and

n=1/4p, 3/ E?;l 5]-_1/2 — 0. The first term in (2.19) is bounded as

hn,
'y 6 (jlog )
j=1

hn, hn,
Sn_lhiﬁ(log hn)3/2 Z 5;1/2 _ ”_1/4%3/4 Z 5;1/2 {n‘3/4h?/4(log hn)3/2}
j=1 j=1

=o(1) {hi(bgw}i"@

n
Next, the second term in (2.19) is bounded as

. B B\ 12
n SN < [ 202 35| (2Rl = o) () |
i=1 j=1

n

Finally, the third term in (2.19) is bounded as

hn 1/2
hi(log hy, )?
n*1/22jlogj Snil/thloghn: {"(Og ) } )

X n
Jj=1
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Thus, as n — oo, if n='/2h2 log h, — 0, we have that ”Bhn - Bl Po. O

Corollary 5. Asn — oo, if f, L B, then we have that 62 =n=1Y " (V; — (B, Xi))? L o2,

Proof. We may expand

62 = -12 — (Bh,, X -12 (B = Bhn» Xi) + &)

*IZ (B = Bn, X +2n*1251 (B = Bha X)) +n7 Y ef. (2.20)

i=1
By using the weak law of large numbers, the first and second terms in (2.20) converge to zero in

probability as

‘IZ (B = Bhns X _IZIIX 118n, — BI* = {EIXF] + op(1)}op(1) = 0p(1)

and
n_l Z 5z(<5 - Bhn7 Xz>)
i=1

respectively. Thus, since n=' "

<n”! Z lealll Xl Bn, — BIl = {ElleallIX1 ][] + 0p (1) }op (1) = 0p(1),

2 P 2
nel —>J , we have 67 — oZ. O

2.9.2 The generalized /refined CLT
2.9.2.1 Random bias terms

We first deal with the bias terms in the decomposition (3.38). We call the biases from
(1T, — I, )8 and (f;rln - an)Un the first and second random bias terms, respectively, and that

from I, B — B the non-random bias from now on.

Proposition 4. Asn — oo, if n=/2h, 1/2 Z 1(4log§)* — 0, then we have

n
th, (Xo)
Proof. Note from the Proposition 2 of [CMS] that

I (Xo) <(th —1I,)5, Xo \/ hﬂ (T, — I0y,) B, Xo>

e
th, (Xo)

<(ﬂhn — th)B,X0> Po.

op(1) +Op | n=Y2h; 1/22 (jlogj)?
7=1
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if n=1/2 2?21 jlogj — 0, as n — co. We thus have the desired result.

The proof of the following proposition about the second random bias cannot be directly
obtained from Proposition 3 of [CMS] even though they have the same structure. There are

subtle modifications because of conditioning on X, and Xj.

Proposition 5. As n — oo, if n=Y2h, 1/2 Z (4log )2 — 0, for any n > 0,

(e ek i) 2

Proof. As seen in the proof of Proposition 3 of [CMS], we observe that

(T}, =T}, )Un, Xo)

1 / -1 1 -
S oI -1, = (2 = D) VU, Xo ) d + (ronUn, Xo)la,
35 (et e s
1 &
= 2N (2] =T Lp— D)zl = 1) ,, Xo ) dz + (ronUp, Xo)la,
m;/@ (2T = B) (= T) (T =)0, X dz + (ranl, Xo)
1 &
:Z/ z’1<(zl )" 12K, (2)G(2) (2] — T) 1/2Un,Xg>dz+(rQnUn,XO)HAn
2m B;
2 LZ/ 1<Kn (z)(ZI_F)_l/zUna(ZI_F)_1/2X0>CZZ+<r2nUn7X0>HAn
T

This implies that ‘((fgn — T} U, Xo)| < C X Ay + [(ronUn, Xo)[La, where
Aj = /B_ |21 1 K (2) oo | G (2) oo (2T = T) 2 Un [} (21 — T) ™12 Xo||d2.
’
Notice that
5 [T =Ty V20, ] = 22 3 T - 1) 2

=1

and

E lsup EX [H(zf - P)_l/QUnH?]
z€B;

=on~! [sup |(zI =D)~Y2x1|12| < Cn~'jlog}j.

zE]
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This implies that

sup EX [H(zf - P)*l/QUnHQ]
ZEBj

sup H (21 -T)" 1/2X0‘
2€B;

—E [sup H(z[ . r)—l/QXOHQI E [sup EX [H(zl - F)_l/QUnHZ}
2€B 2€B,
<Cn™'(jlogj)*.

by independence bewteen Xy and A,,. Then, by using the third and fourth parts of Lemma 1,

zeb; ZGBJ

ZEX iJle; < CZdlam )6;1 sglg) G (2)|loo sup ||(2I — T)~Y2X;|| sup EX [H(ZI r)~2y H}
z ' .

7j=1

<C Zsup 1G ()13 ZS“}; (21 = T) =12 Xo||? sup EX (=1 =T) 72U 1]
j= 1 %€ z€B;

j=1%€

From Lemma 1, we have E {Z?;l SUpez; HGn(z)Hgo} <Cn~t Z?;‘l(j log )2, which implies that

1/2
hn
Z sup |G (2)|[Z = Op | n™ /24> (jlog )
j=1 z€B 5 j=1
We then bound the remaining term by
hn hrn
E Z sup H (2] — )~ 1/2X0‘ sup EX [||(zf—r)—1/2Un||2] <Cn 'S (jlogj)?
ZGB ZGBj j=1
from the independence between X, and X, which implies that
he h 1/2
> sup [[(21 = T)=1/2X|[2 sup EX [||(2I = T)~1/20,|12] = n~/? (5log 5)?
=1 2€B; 2€B; =1

Therefore, we have
hn,

hn,
n
./ Aile | =O0p | n7 2071723 " (jlog j)?

and the desired result by following the argument in Remark 6 on the reaminder terms related to

£ and A, O

In addition, Proposition 18 holds even when Xg = X; with the help of the following lemma.



54
Lemma 6. Under the same assumptions of Lemma 1, we have
sup [|(2I = T)"2X[|*| < C(jlogj)*.
ZGB]'

Proof. Note that

2

_ YRS >“52
sup [[(21 = 1) 71X < | 30 oo
ZGBJ' k#] k

2 2¢4
. Z| NG} Z A FER A&

i 1A = Al = Al Ve
Due to Condition (A2) and Lemma 1, we have that
sup ||(z] —T)"V2X|4| < C Z alla" Z Aj M )\?
z€B; T e A Al = A 5% — Al
2 )\2
_ j
A 102ven] R W veowit:
k#j k#j

< C{(Cilogj)* + (j + 1)(Cjlogs) + (j +1)*}

< C(jlogj)*.

Proposition 6. Proposition 18 holds even when Xg = X1.

Proof. As seen in the proof of Proposition 18, we have

(T, = T}, )Un X0)| < C X252 Aj+ [(ranUn, X1) L, where
Aj = /B 2 K@) lloc |G (2 locll (1 = 1) 72Ul (21 = )72 | d.
J

By taking the expectation EX, we have

EX[4)] = /B |27 K (2) o1 Ga(2) I EX Il (21 = D) 2T (21 = T) 712X d=

n 1/2
05/8 |27 (2) oo G (2) oo {H_QZ (=1 = F)_I/QXiIIQ} (=1 = T)""2 X1 dz.
J

=1
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By Lemmas 1 and 6, it holds that

E DIz =) 2X % (=1 = 1) 12 X2

i=1
=E[||(2T = 1) 2X1[|] + Y E[l(2I = )2 X PIE[[| (21 = T) "2 X4 %)
i#1
<Cn(jlog j)*.

This implies that
han
E[EX Z Ajle,
j=1

hn n 1/2
SCZ/ |21 7' [ 1Gn(2) [loo {n_QZH(d—F)_l/QXiHQ} I(zI =T)" 2 X3 ||| dz
j=1"Bi

=1

hn n 1/2
<on 'Y [ EGA) ] [Z (1 =T) X P T - r>1/2X1||2] d
j=17B; i=1
hn
<Cn™') (jlogj)
j=1
by a similar argument to the proof of Proposition 18. We finally have the desired result by
following the argument of Remark 6. O
2.9.2.2 Variance terms

To prove the weak convergence of the variance term \/n/t,, (Xg)(FLn Un, Xo) in Proposition 2

in the main paper, we need the following lemma.

Lemma 7. We have that A, = ((I'y — )T}, Xo, T}, Xo) = Op(n~1/2h2).
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Proof. Note that A, =n~1Y " | B;, where

hn hn
B, = <(Xi ®X;—-T) ZAJI (Xo,€j) ej, ZVI (Xo, er) €l>

j=1 I=1
hn
— Z XTI (X0, e5) (Xos e0) (X @ X — D)eye)
= ZA A (X0, €5) (Xo, @) ((Xiy e5) (Xiy 1) — (Dej,e))
= ZA;” N eoseor (NP6t — MG =)

gl

hn
= &ojbor{&is&u — 1(5 = 1)}

4l
and & = /\j_l/2 (Xi,ej) so that &; has mean 0 and variance 1, and E[§;;&;] = 0. Let
Ji g1 = &ojéoi{&i;&i — 1(7 = 1)}. We next establish and bound the expected value of B;,, along
three cases presented below. Note that E[J; ;] = E[£5,(£7; — 1)] = E[§5E[(&F; — 1)] = 0/if j =1

and E[J; ;1] = E[§0j&0i&ij&i) = E[Soj€0lE[ij&u] = 0 if j # [. This implies that E[B; ] = 0.
Next, to bound the second moments of B;,,, note that B; ,, By , = Z] R Jijidi jrpr- we now
study the expected values of the products J; j;Ji j» v depending on (4,1, j',1'). We consider the

first case of i # i'. We have
ELJijai ) = El&G; (&5 — D&, (655 — V)] = EL&6;€6,/ (&5 — DIE[(ER; — 1)] =0
if j=1and j/ =1,
E[Jijadir ) = E[65;(65; — 1)€og€or&irye &) = E[€5;€05€or|EN(E]; — V)E[Ewrje&or] = 0
if j =1 and j/ £ 1, and
ElJijudir ] = ElSoj€méij&udosrSou&ir&ir] = El€oj€oiosrSow |E[Siial El&ij &ir] = 0

if j # 1 and j' # I’ This implies that E[B; By ,,| = 0 if ¢ # ¢'.
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For the other cases with 7 = 7/, we can bound E[Ji,j,lJi/7j/7l/] by using the finite fourth moment

assumption sup;ey )\]-_QEKX, ej)1] < oo as below. We have

E[JijaJigwr] = E€8;(65; — D& (67 — 1)) = E[€5;€0,/E[(&5 — 1)(&F; — 1)
= E[fgjfgjf](E[&zj 3]/] - 1)

< /Eléh Eléd, 1y [ElhElE ) < ©

ifj=landj =1
E[JijaJi 0] = EI65; (&5 — 1)ojSov&iy&ar] = EI€5;€05€orJEN(ET — D&y &ar]
= E[£5;€05€or |E[E5 & Ear]
< \JEled 1Bl €2, JE e JEIE2 €3

< JEled ] (Eled; IElea]) " \JEleL] (Eleh JE[R)

<C

if j=1and j' #1', and

E[Ji ;17,5 0] = El€ojéonii&uos oy &ir] = El€oj€oiéoj o |E[Eij &y &ir']
< (E[ed,Ele el eI ) " (ElehElehE, JE[EL])

C

IN

if j # 1 and j’ # I'. By combining the bound from above, we find
E[Bgn] = i1pw Eigadigal <3250 C = Ch?. Since E[A2] =n=23"" | E[an] < Cn~'h}, we

hence derive that A, = Op(n~1/2h2). O
Proposition 7. Proposition 2 in the main paper also holds even when Xy = Xj.

Proof. Denoting A, = ((I';, — F)FILHXl, I‘LXQ, we have that

hn
th, (X1) | An| < th, (X1) M T = T, X3 |* = Op (nmhnl > )‘j1>
j=1
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due to E[| T, — I'||?] < n'E[|| X1]|*] from Theorem 2.5 of [20] and

EIT] X1]%) = 320 A7 2E[(X1, €)% = Y2 A7 Thus, under Condition (A5), we have that

th, (X1)71A, = op(1) since

1/2

hn hn hn
P e e e D -l E e = 0.
j=1 j=1 j=1
The proof of Proposition 2 can be completed with Xg = X1 by the same argument. O

2.9.2.3 Scaling terms

We now provide the proof for the second part of Theorem 1 in the main paper, which
guarantees the interchangeability of ¢;, (Xo) and #5, (Xo) in the asymptotics. We exclude the case
conditional on both X, and Xy, as the cases with P = P and P = P(:|X,,, Xo) indicate the same

result. We re-write the statement for preciseness.

Proposition 8. Suppose that n~'/?h; ! Z?;l(j logj)? = 0 as n — co. The scaling ty, (Xo) and

th, (Xo) are equivalent in that, for any n > 0,

°(

where P denotes one of the conditional probabilities P, P(-|X,), or P(-|Xp).

£, (Xo)
th, (Xo)

—1’>n>£>0,

Proof. We first observe
fhn(XO) = <f;rlnX0,X0> = <(f;rzn — FL7L)X0,X0> + th, (Xo)

so that

th, (Xo)

D200t (X))@ =TT )X, Xo).

To use the perturbation theory, note that

A

hn
N - Z/ 21 {(zI—Fn)_l _ (ZI—F)—l}derrznﬂA%
1 B

" 2L 4 )
J= J

hn
- % Z/ Zﬁl(ZI - F)il/an(z)Gn(Z)(ZI — F)il/ZdZ + TQRH.A%-
j=17B;
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This implies that H<(f‘;rzn - FLH)XO,X(DH < ng?;l A + |{ranXo, Xo)|Las , where
A= [ 1 I ool Gl ol = )72 P
j

Note that for all z € By, |z| > A\j —0;/2 > Aj/2. We now study the convergence rates in
probability either conditionally on Xy or A),, or unconditionally on both by using the third and

fourth parts of Lemma 1.

1. Consider the unconditional case. By the third and fourth parts of Lemma 1, we have
E[A;le;] S/B A E( K (2) oolle, |G (2) [l Elll (2T — T) =2 Xo|[*)d
4

< C/B AJIE[”Gn(Z)HOO]E[H(ZI_F)_1/2X0”2}dz

= C3;A; ! (n™'2jlog j) (jlog )
< Cn~'2(jlog j)*.

This implies that E [Z?zl Ajﬂgj} < Cn~1/2 Z?zl(j log 7)2, and hence,

hn, hn
tn, (Xo) ™' D Ajlle, = Op [ n™1/2 ) (jlog j)?
j=1 j=1

2. Consider the case conditional on Xy. By the third and fourth parts of Lemma 1, we have
EX0[A1e,] S/B A5 E( G (2) ool [ Gn(2) o] (21 = T) 72 Xo | *dz
j
e /B A ENG () [T — D)2 X 22
j
= C3;A;" sup E[[|Gn(2)]|oo] sup [|(zI = T) 72 X0
2€B; 2€B;

< C(n"%jlog ) sué) (2] —T)~1/2x,|2.
zEB;

This implies that

hn hn
EE™ 1D Ajley | | <Cn'2) jlogjE | sup [|(= - T)7"/2Xo|?
j=1 j=1 zeb;

hn
<Cn~?Y (jlogj)?,

J=1



60

and hence, EX0 [ty, (Xo) ™0 20, Ayllg,| = Op (n1/2h 1 20, (jlog 5)?).
3. Consider the case conditional on X},. By the third and fourth parts of Lemma 1, we have
EY [41g,] S/B A K (2)[loole, |G (2) [l Bl (21 = T) 712X | P|d2

)

< C(jlog ) /B AT B (2) o, | Gin (2) ootz

J

= C(jlogj) Sup [ K (2) [l ooIe; |G (2) [ oo
z€B;

This implies that

hn hn i
E|EY |3 Al | | <C (jlogj)E | sup ||K<>|ooﬂgj||Gn<z>||oo]

j=1 =1 | 2€85;

. )
<C) (jlogj)E |sup HGn(Z)Hoo]

j=1 _ZGB]'

hn
<Cn™'?Y (jlog )’
j=1

and hence, E*» [hrjl Z?;l Ajﬂgj] =Op (n*1/2h51 Z?;l(j logj)2>.
We now suppose that n~/2p -1 Z?Zl(j log j)2 — 0 as n — 0o, and let > 0 be given. From

the fact that

lim limsup P (hutp, (Xo) ™' > M) = lim limsup P(hnty, (Xo) ™t > M) =0,
M—00 n—oo M—0co p—oo
we have
hn
ptn th,, (Xo)_l Z Aj]Ig]. >n
j=1

hn,
<P (Bt (Xo) ™ > M) +PY | h,t Y " Ajlle, > /M
j=1

<P (hnth, (Xo) ™! > M) + —EX” ~1 ZA Ie,

for each M > 0. Let {n'} be a subsequence of {n}. Then, since E*" [hfll 2?21 Aj]Igj:| 20

as n — 0o, there exists a further subsequence {n”} C {n’} of {n} and an almost sure set
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D € F (ie., P(D) = 1) such that E*n” [h;} Z?g’{ Ajle,| = 0on D. On D, we see that

h’n”
lim sup PY [ ¢, , (Xo)™? Z Ajlg; > n | < limsup P (hynty, ,(Xo) ™' > M) =0
n'’—oo " = ' =00 n

as M — oo. Since this holds for each subsequence {n'} C {n}, as n — oo, if

n~1/2p 1 Z?;l(j log j)? — 0, we have that

P {1, (Xo) 'Y Ajle, >0 | S
We finally have the desired result by following the argument in Remark 6 on the reaminder terms
related to £ and A7. O
Proposition 9. The unconditional result in Proposition 8 holds even when Xo = X1.
Proof. As seen above, we have H<(f2" — FLn)Xth)H < CZ?;I Aj + |(ron X1, X1)|Iac , where

Aj = /B‘ |27 K (2) |1 G(2) ool (21 = ) 72X |Pdz.
j
This implies that
E[4,1s,] < C /B A7 ElIGa(2) lsoll (21 — D)2, ?)dz
j
= O sup E[[[G(2) 3] PElIT = 1)1/ X0] )2

< Cn~?(jlog j)*.

by Lemmas 1 and 6. We finally have the desired result by the same argument as
Proposition 8. O
2.9.2.4 An example of uncorrelated but dependent FPC scores

We provide the proof that {¢;} constructed in Proposition 1 in the main paper are not

independent for the reference.
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Lemma 8. Let {W;} be a sequence of #d random variables defined as

PW;=1)=1/2=P(W; = —1) and £ ~ N(0, 1), which is independent of {W;} and suppose that
X has the FPC scores in its Karhunen-Loéve expansion defined as £ = W;§ for j =1,2,.

Then, the sequence {&;} forms a white noise with (uniformly) finite fourth moments, but the

random variables in {;} are dependent.

Proof. One can show that this example satisfies the condition that the random variables §; are
uncorrelated with mean zero, variance one, and finite fourth moments. To see their dependence,
assume that §; and {; are independent where j # j'. Then, by the properties of normal
distributions, &; 4 &; should be normally distributed. However, since §; + & = (W; + W), we

have

P& +& =0)=P(W; + Wy =0)U(=0))=1-P(W; +W; =0)°N (£ =0))

— P(W; + Wy = 0)9)P((€ = 0)°) = 1 = P((W + W;» = 0)%)

— P(W; +W,_0)):P(Wj:1:—Wj,)+P(Wj:—1:—Wj,)

which is the contradiction to the fact that the normal distribution is continuous. Thus, for each

distinct 7,5, & and §;s are not independent. O

2.9.2.5 Proof of unconditional CLT

Proof of the unconditional result on Xo of Theorem 1 in the main paper. From Theorem 1, for

each y € R, we obtain P(TY*(Xp) < y|X,, Xo) LN ®(y/o.) as n — oo where
beias(XO) = n/thn (XO)[<Bhn3X0> - <thﬁa X0>]7
implying that

P(TL* (Xo) < y|Xn) = E[P(T*(Xo) < [, X0)|Xn] = E[@(y/0e)| ] = B(y/0)
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as n — oo due to a subsequence argument (cf. Theorem 20.5 of [4]) and Theorem 9.5.1 of [2]. By
using Polya’s theorem (Theorem 9.1.4 of [2]) again, as n — oo, we finally have
; P
sup P(T37(Xo0) < y|X,) — @(y/oe)| = 0. (2.21)
ye

O

Proof of Corollary 1 in the main paper. It can be shown by a similar argument to the above proof

for the unconditional CLT on Xj. ]

2.9.2.6 The unbiased CLT

One can achieve the CLT for unbiased centering (3, X) as an analog of the residual bootstrap
for unbiased centering (8, Xo). For this, the non-random bias should be controlled via the
smoothness assumption on the slope function . Recall that the condition B(u,v) depends on
generic constants v,u > 0 and a function m(j, ) = max{j",>7_, ¢; 672} of integer j > 1.

Condition B(u,v) : sup;s;(8,e;)%j* tm(j,u) < oc.

Lemma 9. We see that

n

D‘:

E[(IT,, B — B, X0)?] < A (8, ;)25 \m(j,
~E[(II 0)%] hzmax{hz,zjl”lé] } gh: sug e;)25" " m(j,w)]

for v,u >0, and hence, under Conditions B(u,v), as n — oo, if

n=0 (hfL max{h}j,zglnléj }), we have that | /M%(thﬁ — 5, Xo) 0.

Proof. We first notice that 7-E[(Il,,5 — B, Xo)?] = e D jahn A (Bs e;)?. We first see that

-1

SR S h (D o) I Cb o IO

j>hn J>hn

T PR Sup[ <Z5’2> e ]

Jj=1%j J>hy JEN
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Also,

o 2 e = S AT T TG )’

j>hn J>hn

We thus have the desired inequality and convergence of the non-random bias term in probability

from the assumption hpty, (Xo)~! = Op(1) and the Chebyshev inequality. O
In what follows, P denotes either P(-|X,,) or P(-|X,, Xo) as Theorem 1 in the main paper.

Theorem 5 (Unbiased CLT). Under the assumptions of Theorem 1 in the main paper, suppose

that n = O(m(hy,u)) holds with Condition B(u,v) for some u > 5 and v > 0. Then, as n — oo,

sup i) 0,

yeR

(B Xo) — (B, Xo)] < y> — a(y/o)

P ( th, ?Xo)

where the above also holds with the sample version ty, (Xo) of tn, (Xo).

Proof. 1t follows from Theorem 1 in the main paper and Lemma 9. O

@ (implying \; < j~%*1) and coordinate

Under polynomial decay rates on eigengaps d; =< j~
projections |{8, e;)| < j° for some constants a > 2 and b > 1, one can derive the following
corollary; here and in the following, we write r,, < s, if 7, /s, is bounded away from both zero

and infinity for generic sequences r, and s, > 0.

Corollary 6. Under the above polynomial decay rates, suppose (A1)-(A2) along with
hatn, (Xo)™! = Op(1). If n < ¥ for some max{5, (2a + 1)} < v, < a+ 2b— 1, then the

conclusions of Theorem 5 remain valid.

Proof. The dominating term for the non-random bias is

h£ Z Aj <B’€j>2 < Cnhgl Z jTe2 o nh;a72b+1'

" j>hy, §>hn
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Suppose that n =< hPr where vy, = {5V (2a + 1)} + &y, for k, > 0. Then, we get the convergences
n_1/2h2/2(log hy)? — 0 and n~! Z?”l o 2 =< p~th2etl 0 as n — oo. We thus now check the

convergence of the remaining non-random bias term. Since

nh—a 204+1 _ — h’lr)Lh (a+2b— 1)
h h

if v, < a+ 2b— 1, then the upper bound of the non-random bias term satisfies
e D ish, i (Bs ej>2 = 0(1), and the result follows by Lemma 9. O

2.9.3 Validity of the residual bootstrap

To establish the consistency of the bootstrap error distribution, let /' be the common
cumulative distribution function (CDF) of the errors {e;}",. Also, let F,, and F}, denote the

empirical distributions of the errors {¢;}7; and the centered residuals {¢&; — £}, respectively.
Theorem 6. Asn — oo, if ||Br, — B P, 0, then we have do(F', F) P o.

Proof. The proof is along the lines of the proof of Theorem 3.1 in [26]. By Lemma 8.4 of [3],

do(Fy, F) > 0. Note that

do(E,, Ep)? <™t Z{Sz — )2 < c{ zn:(ei — &)+ (5)2} .
=1

Since (8)2 = (6 — 4 &) < C{(¢ — &)? + &%} and

(5—5)2:{71_12(52'—61} < _12 —sz ,

we have

dy(F, F)? { —12 i—&)° }

As n — 00, since £ — E[e1] = 0 almost surely, it suffices to show that n=1 Y"1 | (e; — &;)? 2. 0. We

observe that

n

Y (e — &) =07 (Br, — B, Xi)? < |Br, — BIPn T I1XG?

=1 =1 i=1
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since & — &; = (B, — B, Xi). As n — oo, since n= ' Y7 || Xi||> — E[[| X1/|?] < oo almost surely,

and || B, — B|| = op(1), we have the consistency of bootstrap error distribution as follows:

dy(F, F) < dy(F, Fy) + do(Fp, F) < C 071 (g5 — &)% + &2 + da(Fo, F)
=1

< C |18, — B2 <n—1 > HXAP) &2+ dy(Fy, F) B 0.

i=1

The following propisition helps to prove the bootstrap consistency unconditional on Xj.

Proposition 10. Proposition 3 holds even when Xo = X;.

Proof. 1t follows from Proposition 9 along with the same argument of the proof of Proposition 3

in the main paper.

O

Proof of the unconditional result of Theorem 2 in the main paper. One can show that as n — oo,

where 0,,(X1) = \/n/th, (Xl)(anUn, X1), by using Proposition 9 and the same argument in the

proof of Theorem 2. Therefore, the argument in the proof of Theorem 2 works even with Xg = X3

by Propositions 6-7 and 10, and we obtain

kX [ A% * * P
Sug |P (Un(XO) < y‘XanO = Xl) - q)(y/o's)‘ — 0,
ye

where

0 (X5) = \/n/th, (X)), Un X5) = \/n/tn, (X5)(Bh,, X5) — (g, By, X3)]-

The bootstrap distribution of 0} (X{) unconditional on X is given as

Caly) = P*(0,(X5) < ylXn) = E[P*(05,(X5) < yldn, X5)] = n ') GalylX)
i=1

(2.22)
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where G, (y|Xi) = P*(07(X%) < y|&Xn, X§ = X;) denotes the bootstrap distribution of o (X{)

conditional on X = X;. We then have from the bounded convergence theorem and (2.22) that

E [sup |én(?/) - (I)(y/ga)|] <n”! Z E

yek i=1

sup |G (y] Xi) — ‘P(y/Ua)!]
yeR

= E |sup |Gn(y|X1) — ®(y/o:)|| =0

yEeR

: A d A . )
using that sup,cp |Gn(y|X1) — ®(y/0:)| = supyer |Gn(y|Xi) — ®(y/o.)| for each i = 1,...,n. This

implies that

A P
sup |Gin(y) — ®(y/oe)| = 0. (2.23)
yeR
Consequently, we have the desired result by (2.21) and (2.23). O

We now only need to show the detailed convergence rates that appear in Theorem 3 in the

main paper. The decomposition of the bootstrap bias term is re-stated here:

1y, By, — g, = (I, — 1, ) (By, — B) + (I, — I, )8 + (I, — 1) (Bg, — B) + (I, — I)B.
(2.24)

In (2.24), the quantities related to second and fourth terms can be dealt with by Proposition 17
and Lemma 9. In what follows, we investigate the rates of convergence of the quantities related to

the first and third terms in (2.24). Before seeing the details, the following two lemmas will be

proved.

Lemma 10. Suppose that g, > hy, {tg, (Xo) — tn, (X0)} ™' = Op(1), and n=/%(g,, — hy)?> = 0, as

n — 0o. Then, as n — oo, we have we have

Po.

sup

sup pX <\/tgn(X0) ﬁ th (Xo) <(I — th)FZ,nUn,XO> < y> — B(y/o.)

Proof. The argument of the proof is similar to that in Proposition 2 in the main paper. Note that

(T}, Uy (I =TIy ) Xo) = 327, Zi where Zip, = n YD}, Xy, (I —10;,, ) Xo)e;. Note that
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EX[Zin] = 0 and

n n

2 2
=Y EX[Z2,) = % <r X, (I — th)X0>
= =1

3N

02
= 2= (1L}, (= 4, )Xo, T}, (I = 11y, ) Xo)

02

= ;(An +tg, (I — p, ) Xo))
where A, = (T, — D)T}, (I — Iy, )Xo, T} (I — 115, ) Xo) and
tg, (I — 11y, ) Xo) = <F;n(1 — I, ) Xo, (I — th)Xo> :
with

an
Il (I-1,)Xo = Z)\j*l((l—l'[h )Xo, ej) ej = Z DN (Xose) (eneg) €

j=11>hy,
E )\ X(),ej
j>hp

We can write A, =n"1>"" | B, , where
Bin = <(Xi © X, — D)0} (I—11,,) X0, T (I - th)X0> .
By applying the same argument as the proof of Lemma 7, we have
B;, = ?,7>hn ojéor 1€ — 1(j = 1)}, and thus,
E[A7] < Cn”Hgn — hn)",

which implies that A,, = Op(n"'/2(g, — hn)?). We next observe that

tgn((I Hh Xo <Z )\ Xo,e] €5, Z <X0,€l > Z )\ X(),e]

j>hy [>hn j>hy

tg, (Xo) — th, (Xo)-

Then, Eltg, ((I —II1,)X0)] = gn — hyn, which implies that tg, ((I —IIp,)Xo) = Op(gn — hn). As
n — 0o, since {ty, (Xo) — tn,(Xo)} ! = Op(1) and n='/?(g,, — hy)? — 0 by the assumptions, we
have

tg, (I — 1y, ) Xo)
Ay + 1, (1 — 10, ) Xo)

=1+ OP(l),
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and the Lindeberg condition is satisfied by applying the same argument as the proof of

Proposition 2 in the main paper. Since

o ;Zm - \/Us(An +tg, (I =TI, ) X0)) <F Un, (I — th)X0>

[t (U - 114,)Xo) 2 R
- \/An +ty, (T =TI, ) Xo) \/getgn((l Y (T8, Uns (1 =Ty, )Xo )

we finally have

sup
yER

> <\/ Ty A )T Un Xo) < y) ~a(y/o)| B

as n — 0o. O
The second term in (2.24) is bounded as follows.

Proposition 11. Suppose that g, > hy, with h, — co as n — oco. Then, as n — oo, we have

e [ €0, 10,0, — ), 0

hn
=0p Mn,gnhgl/ZZjlogj + Op n_1/2h;1/2 Z BQZ jlogj)? +op(1),
J=1 i>gn  j=1

where for integer j > 1, My, ; is defined as

1/2 ;
J J
M, = ‘125 Y2(110g 1)3/2 4 n~V/? (ZAI 1) 1) llogl. (2.25)

=1 =1 =1
Therefore, if n= g (log gn)2h3 (log hy)? — O (which is implied by g’ = O(n) for some vy > 7),

then for each n > 0,

" ] 3 P
” ( o oy (e = 00, ) (B, = B)., Xo) | > n) LS
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Proof. Following the spirit of Remark 6, we ignore the remainder terms related to either £ or

A¢. Based on Lemmas 3-5 and the decomposition (3.38), one can see that

— <X0> (01, = T1,) By, ~ 10, 8). X0)

=EX - |<(Bgn 1y, B), (I, — My, )X0>|}

<X ,/ NG, = 0 D, T, ) |

=Op | My, anylogJ
7j=1

Meanwhile, to bound the remaining part related to ((II,, — Iy, )(I — I1,,), Xo), we have

I, — I, 27”2/ {(z21 -Ty) = (I -1)"'}dz
=8, +Rn+ TlnHA%

as seen in the proof of Proposition 2 in [CMS], where

27”2/ (21 —=T)"Y(T,, = T)(2I —T) tdz,

Rp = 27”2/ (21 =T)"Y,, =) (2 =) (T, = I)(2] — T'y) " Ydz.

Following the proof of Proposition 2 in [CMS], as n — oo, one can show that

n NSVe
o B [(Sall = Ty,) B8, X0)] < Chyy 12& > 1B
n U'>gn I — Al
han 1/2 1/2 2
<Chy' D n | D Bl =] =0,
=1 U'>hn

which implies that , /- (Sn(I — I, )3, Xo) 2 0. Second, note that [|(I — 1Ly, )B] < (/> i, 52

Thus, following the proof of Proposition 2 in [CMS], as n — oo, we have

\/Zmna—ﬂgnw,Xm:OP n= 121 Zﬁ?ZylogJ +op(1),

j>gn
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where the latter op(1) is related to the event sets 5]9 Hence, as n — oo, we have that

hn,
\/% ’<(ﬂhn =y, ) — Hgn)/B;X0> =op(1) + Op n*1/2h;1/2 Z /832 Zl(j logj)2

I>gn Jj=

It now suffice to show that the convergence rete n~'g?(log g,)%h3 (log hy,)? — 0 implies the

result. We observe from Cauchy-Schwarz inequality that as n — oo, if n=! gll 5;2 — 0, then

2 2
9n In 9n
j=1 j=1 Jj=1
2 2

gn gn gn
n_1/4g;3/4 Z 5;1/2 _ n_1/29;3/2 25;1/2 < n—1/zg;1/z Z(Sj—l -0
j=1 j=1 j=1
From these, we have the desired result by showing that each term in M, g, hy, 1/2 Z?;l log h,, is

dominated by n~'g?(log g, )2h3 (log hy,)? as follows.

1. The first term in M, 4, h;1/2 Z;ﬁl log h,, is bounded by

9n hn
— —1/2,. . _ . .
n1S T 6 P (log )P 8 Y jlog
=1 =1

gn
<n g2 (log g)*2 [ D05 Y7 | B2 log by,
j=1

an
= [ Mgt | {8 log ga) /2 2 log B |
=1

3/4
3 21,2 4/3
:O(l) { gn (log gn) hn(log hn) } .

n
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2. The second term in ]\4[,l’gnh;1/2 2?21 log h,, is bounded by

g 1/2 h
n—1/2 Z )\;1 h;1/2 Z]logj
Jj=1 Jj=1
1/2

gn
<n 2> 76| Ry loghy
j=1

1/2
gn
_ n—1/2g;1/225;1 ”_1/4971/%%/2 log hy,
j=1

=o(1) {gnhg(loghn)‘l}lﬂ |

n

3. The third term in My g, by /> 320 log by, is bounded by

g’ﬂ hn
n2 8N "jloggp by 2N jlog
j=1 j=1

<nY2¢2log g,h3/* log h,

_ { 9 (108 gn)*his (10g hin)? }1/2

n

The third term in (2.24) is bounded as follows.

Proposition 12. Suppose that g, > hy, with h, — o0 as n — co. Asn — o0, if gn/hn — 1, we

have that

th, (Xo)

dn
_ _ . . n
=0p [ n 1/2hn1/2§ (Jlog])z +0p<1)+0p hf E /\Jﬂj2
j=1 " i>gn

erefore, if jurther, n— n (loghyp)® — mmpuea by no ' gy (loggn ) — and Condition
Therefore, if further, n="/2hy/*(log hn)? =+ 0 (implied by n="/>g;/* (log gn)* — 0) and Conditi

X [ (T T (B —ﬂ>,Xo>|]

B(u,v) are satisfied, then for each n > 0,

. 3 P
2 ( 5 (%) (= T (B, = B), Xo) | > n) L)
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Proof. One can imagine that this can be verifed in a similar manner to the proof of the
generalized CLT because the target quantity is here the projection onto a truncated new predictor
(I —1Ip,)Xo at the truncation level h,,. We again study each term in this quantity based on the

decomposition (3.38).

1. The term /n/ty, (Xo){(({ — th)(fgn - I’gn)Un, Xy is bounded as follows. Note that

(I —TIp, )Xo = D 1op, (Xo, er)er. One can see that

(=1 = 1)~ /2(1 = 1, ) Xo|?

2 2
=1 (Xo,e)(zI =T)" V|| = || (Xo,er)(z— X)V2e
I>hn [>hn
NEF
= (X -\
S

which implies that

E [sup (2 = T)~Y2(I — 0, ) Xo||? | < Cjlogj

ZEB]'

as done by Lemma 1. Then, by a similar argument to the proof of Proposition 18, we have

gn
n 2 _ _ . .
EX[ m (X0)<(I—th)(1“;n—an)Un,X@} =Op | n 712012 "(jlog§)? |

gn
(I =, (T = TF VUn, Xo) = Op | 21,2 " (jlog j)?
j=1

n
th, (Xo)

2. The term \/n/ty, (Xo){((I — Iy, )T}, Un, Xo) is bounded as follows. Notice that

e (Xo) (I - th)F Un, Xo)
[ty (Xo) = tn,(Xo) n
_\/ g e \/tgn(XO) thn(Xo) <F Un,(I 1Ty, )X0>

(Xo)
XO

g” Il Uy, (I —1p,)X

\/tg (Xo) —th (X0)< ( ) Xo0).

Suppose that g, /h, — 1 as n — oo. Then,

tg, (Xo) _ e tg,(Xo) = th,(X0) gn — B B
e = ey = On(1)0e(1)o(1) = on (1)
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This implies from Lemma 10 that for any n > 0,

(gl monl o)

as n — oQ.

3. The term /n/ty, (Xo){((I — 1Ty, )(I1,, —II,,)5, Xo) is bounded as follows. As seen in the

proof of Proposition 17, we have

I, — 11, 27”2/ {(zI =Tp) ' = (21 -T) '} dz

= Sgn + Rgn + Tln]I.sz

where
an
o QLZ/ (21 =T)"YI,, =) (2] —T)"tdz,
T

gn
(21 =T)" YT, =) (2I =) YT, = T)(2I —=T',) 7!
Ry, = 27”2/ A=) (T = D) (el = 1) (0 = ) (o] = T) .
Following the proof of Proposition 2 in [CMS], we have

—E [(Sy,8, (I — 101, ) Xo)?]

n

gn
<o Yo (0 1ol 2 oSy > I

I>hn U>gn I>gn U'<gn

2

If gn/hyn = O(1), then as n — oo, we have that ;-E [(Sg. 8, (I —11,)X0)?] — 0 as seen in
their proof, which implies that /(S 3, (I — L1, )Xo . Next, note that

(I =TIy, )Xo = D 1op, (Xo, €r)er. One can see that

(=1 =)~ /3(1 =10, ) X |2

2 2
=D (X ez =T) e = || (Xp,e)(z = N) e
I>hp I>hnp
NEF
=3 (X —\)

[e.e]
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which implies that
E [sup (21 = D) Y2(I =0, ) X4 |2 | < Cjlog
ZEBJ'

in a similar fashion to Lemma 1. Thus, following the proof of Proposition 2 in [CMS], as
n — 0o, we have
n n
\/ E<Rgn5, (I —1p,)Xo) = Op [ n~ 2,2 "(jlogj)* | + op(1).
j=1

By (a) and (b), if g,,/hn, = O(1), we have

gn
(I 10y, ) (M, —11,,) 3, Xo) = op(1) + Op | 0 /?h,1/2 > (jlog)?

th, (Xo) =

4. The term /n/ty, (Xo)(({ — Iy, )y, — 1) = -1 —1IIy,)(I —11,)B, Xo) is bounded as
follows. Notice that (I — Iy, )(I —1Ilg,) = I — Iy, vg, = I — 1, since g, > hy,. Since

((I = g,)B, Xo) = >~ Bi(Xo, ej), we have

B (4L~ 10, )0, 13, %001 < B [0 11,08, X00] = [37 262,

j>gn

n n
i &y ~ ) Ty, = DB, Xo) = Op W

Proof of Corollary 2 in the main paper. We first notice that k2t = O(n) implies that

which gives us

n~12k2(log k) — 0 and n~! E?Zl 5;2 = n~tk20+l 0 as n — oco. This guarantees the
consistency of bootstrap error distribution in Theorem 6. The first part under g, < h,, follows
from the same argument as the proof of Corollary 6. We apply the same argument for the second
part. The dominating term for the non-random bias is here

n 2 _ —aq— —a—
- Z X\ (B, ej) < Cng;! ZJ a QbXngna 2b+1
" j>gn J>gn
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Suppose that n < gn? where v, = {7V (2a + 1)} + £, for £, > 0. Then, we get the convergences
n12g7/%(log gn)(log hy) — 0 and n~t o (5;2 =n~1g2e*l 5 0 as n — oco. Since

—a—2b+1 _ T vg—(a+2b—1)
ngn Vg gn ’
n

if vy < a+2b—1, then it holds that 7= .. A; (5, e;)? = o(1), and the result follows by

Lemma 9. O]

Proofs of Corollary 8 in the main paper. One can show the asymptotic normality and the
bootstrap consistency for any linear combination ZZ)OZI a;, X, following the same argument of
those for single new predictor. The result of Corollary 3 then follows by the Wold device

(Theorem 10.4.5 of [2]) and the continuous mapping theorem (Theorem 9.4.2 of [2]). O

Proof of Corollary 4 in the main paper. We first consider the individaul prediction of response Yj
with single new predictor Xg. To establish the result, the proof is based on a subsequence
argument (cf. Theorem 20.5 of [4]). Let {n’} C {n} be a subsequence of {n}. Then, due to
Theorems 5-6 and Theorem 3 in the main paper (where distributional convergence holds
conditionally on Xy and Xj = X and thereby also when removing conditioning on Xj), there
exists a further subsequence {n”} and an almost sure event D € F such that

supyeg |P(Tnr < yl&Xnr) — ®(y/0e)| — 0, supyegr [P* (T < ylXu) — @(y/oe)| — 0,

\/7"/th, , (Xo) — o0, and dQ(an,F) — 0 as n” — oo on D, where

T = \[n/th,, (X0)[(Br..,» Xo) — (B, Xo)],
T;;” =/ n/thn// (XO)KBI):M/ ) X0> - <Bgnu ) X0>]7

and F),» denotes the empirical distribution function of the centered residuals, while F' denotes the
distribution function of an error . It then holds that <Bhn/,,X0> — (8, Xo) 9 0 and
<B,’; LX) — <Bgn,,,X§> 40 along the sequences {P(:|X,,»)} and {P*(-|X,,#)}, respectively, on D.

This implies by Slutksy’s theorem (Theorem 9.1.6 of [2]) that

> 5 d
Yo—Yo = <ﬁ7X0> - <5hn/mX0> + €0 — €0,

* %] A D% x d
YE) - }/O = </8gn//aX0> - <5hn//’X0> + €y — €0,
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as n” — oo along the sequences {P(:|X,,»)} and {P*(:|X,,~)}, respectively, on D, using that the
conditional distribution of €y given X, is F' (the unconditional distribution of €y) by independence
while the bootstrap distribution of €3 is E (which converges weakly to F'). Since convergence in

the Levy metric is equivalent to weak convergence (cf. Problem 9.18 of [2]), we have
dp (Yo — Yol X, Y5 — Y| Xr) < di(Yo — Yol X, e0) + dr (Vg — Y| X, £0) = 0

as n” — 0 on D. Due to Theorem 20.5 of [4], we derive dp,(Yy — Yo|Xn, Y§ — Y§'|Xn) 2.0 as
n — oo. Simultaneous prediction result follows from the same argument as the proof of

Corollary 3. O

2.10 Additional simulation results

2.10.1 Other scenarios under consideration

In addition to the set-ups for simulation described in Section 2.5.1 of the main paper, we
consider the following choices of FPC scores to obtain uncorrelated (but possibly dependent)

sequence and error distributions:

(FPC1) Define &; = £€W; where £ ~ N(0,1) and W; are iid with P(W; = 1) =1/2 = P(W; = —1).

(FPC2) Define §; = (W, where & ~ N(0, 1), W; Y N(0,1), and £ and {W;} are independent.

(FPC3) let & = V;W;, where {W;} are iid N(0, 1) variables and, independently, let {V;} be a

stationary autoregressive process such that each V; ~ N(0,1) and V1|V, ~ N(0.5V},1.5).

(E1) & " N(0, 02) with o2 = 2.

(E2) ¢ Y t(ve) with 02 = 2 and v. = 4.

(E3) & S U(—a,a) with a = v/6 so that 02 = 2.

It can be shown that the random variables in the sequence {{;} are uncorrelated but not

independent because E[§]2~§]2-,] # E[SJZ]EEJ%] for each distinct j, 7' € N Since all the results show a
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similar pattern, we report only the results from the third types (FPC3) and (E3) of FPC scores

and error term, respectively, considered above.

2.10.2 Sampling distributions

The finite sampling distributions of the target quantities \/n/th. (Xo)[(Bh,, Xo) — (8, Xo)] and
V/n/hy [(Bh,, Xo) — (B, Xo)] are investigated in this section based on the scenarios described as
above and in Section 2.5.1 of the main paper. In addition to Figure 2.1 of the main paper,
Figures-2.8-2.11 show the kernel-estimated densities of these sampling distributions with different
choice of tuning parameters h,, € {1,...,15} and M = 1000 Monte Carlo simulation size.

For each m =1,..., M, perform the following.

1. Simulate independent X1, ..., X, with X; 4 X and € id N(0,1) fori=1,...,n, and
independently simulate X 4 X and go ~ N(0,1). Then, generate Y7,...,Y, and Yj as

Y;:<5’Xz>+€2 fori:la"'anandyb:</87X0>:€O.

2. Compute I‘Tn, H;rln, f;rln, flhn, Ay, Uy, and Bhn to get the components in the decomposition
of B, — B:
B, — B =@} T} W +T} Uy + (I, —10,)8 + 10, 8 — B.
The tuning parameter h,, is here given as h,, = [nl/ Uk] where vy = 2a + 1 + Ky, for some
small k; > 0 and [a] denote the nearest integer of a € R. We also compute ¢, (Xo) and

fhn (Xo). For further purposes, some quantities for prediction are also computed:

Yo = (Br,., Xo ) and 2 = Yo - ¥p.

3. Store the following quantities.

Variance term: F};n U,.

Random bias term 1: (f‘;gn — FILH)UH.

Random bias term 2: (IT,, — I, ).

Non-random bias term: 1I, 3 — 3.
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- Truncated and non-truncated roots: Bhn — 11,8 and Bhn —B.
- Scaling factors: tp,, (Xo), tn, (Xo) and hy,.

- Yy and éy.

Although we store all the quantities, for brevity, we only show the pictures for our main quantities

Ty = /n/th, (X0)[(Bn,, Xo) — (8, X0)] and Ts = /n/hn[(Bh,, Xo) — (8, Xo)] in Figures 2.8-2.11.

2.10.3 Coverage rates when the new predictor is random

We will examine the empirical coverage rates and average widths for intervals when the new
predictor X is random, as these were not included in Section 2.5.2 of the main paper. At each
Monte Carlo iteration, we simulate the new predictor X (along with the corresponding error &)
as well as the data samples {(X;,Y;)} ;. Here, the Monte Carlo simulation size M and the
bootstrap sample size ) are given as M = 1000 = Q). Figures 2.12-2.13 shows the empirical
coverage rates and average widths for each interval when the new predictor X is random.

The simulation are conducted as follows. For each m = 1,..., M, perform the following.

1. (Simulation) Simulate X; with X; X ande; L e, where {(Xj,&;)}_, are independent, and
compute Y; = (8, X;) +¢; for i = 1,...,n. Also, for prediction purpose, simulate X dx

and gq 4 e, where (Xo, o) is independent of {(X;,¢e;)}" 1, and compute Yy = (3, Xo) + €o.

2. (Residuals) Compute the residuals &; = Y; — <Bkn,Xi) and the centered residuals & = &; — ¢

fori=1,...,n.

3. (Residual bootstrap) To approximate the bootstrap distribution, do the following for each
qg=1,...,0Q.
(a) Draw independent bootstrap error {e; ;};"; and ] ; from the uniform distribution on
the centered residuals {&;}7 ;.

(b) Compute the bootstrap responses Y, = (Bgn,Xi> + €} ;> and construct the bootstrap

estimate B;‘ n, based on the bootstrap samples {(X;,Y,";) HL.
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(c) For prediction purporse, set Yo = <Bgn,X0> + £, from the estimate Bgn, and compute
the bootstrap prediction error £ ; = quo — Y, to approximate the prediction error

g0 = Yy — Yp where Y, = (B2, , Xo) and Yy = (B, Xo).

4. (Intervals based on the residual bootstrap)

For all cases, construct the following confidence intervals for (Il 3, Xo) and for (5, Xo) and

prediction intervals for Y{ based on the residual bootstrap.

(a) Compute the «/2 and 1 — «/2 quantiles of {(B;‘ By~ ﬂhnﬁgn,X@}?:l, say | and wu.

Then, the confidence interval for (IIj, 5, Xo) is
CItTunc = <Bhn7 X0> —Uu, <Bhn7 X0> —1.

(b) Compute the a/2 and 1 — «/2 quantiles of {<B¢}khn - Bgn,Xm,0>}Q

g=1, say [ and u. Then,

the confidence interval for (8, Xo) is
Cl = [(BhnaX(ﬁ —u, (Bn,., Xo) — l} :

¢) Compute the /2 and 1 — a/2 quantiles of {&¥ Q: , say [ and u. Then, the prediction
9,0/ ¢=1
interval for Yj is

PI = [%—u,ffo—z].

5. (Intervals based on the central limit theorem) For all cases, construct the following
confidence intervals for (II;, 3, Xo) and for (3, Xo) and prediction intervals for Y based on

central limit theorem.

(a) The confidence interval for (I, 3, Xo) is

R X th, (Xo0) 4 X th, (X
CI"™"¢ = | (Bh,, Xo) — 6c21—a/2 hnS@O)’w""’X‘]) 02102\ 51 2
(b) The confidence interval for (3, Xy, o) is
th,, (Xo)

; . th, (Xo0) 4 .
CI = | (B> Xo) — Gc21—a/2 ~ 51 0)7(5hn,X0> +6:21_a/2 -
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(c) The prediction interval for Y is

~

L th, (X L th, (X
PI = |¥y—6:21 0y W+1,%+a€zla/z {1 X0)

+1
6. Let Ty denote the target quantity, either (Il 53, Xo), (8, Xo), or Yo, and I denote the
corresponding interval constructed above, i.e., either CI?"%"¢ C1I, or PI, for each method

(one of the residual bootstrap and the central limit theorem). Compute I,,, = I(Ty € I).

The coverage probability 1 — « is then approximated by M ! Z%zl L.
Figures 2.12-2.13 respectively provide an illustration of empirical coverage rates and average
widths for each interval with different tuning parameters h,, and g,, under the scenarios

considered.

2.10.4 Coverage rates when the new predictor is fixed

In addition to the results in Section 2.5.3 of the main paper, we provide further coverage

no

probabilities and average widths for the following intervals when the new predictors {Xo i, }in—

are fixed.

Individual confidence intervals (ICIs) for (Il 8, Xo) and (8, Xo) based on residual bootstrap

and central limit theorem. These are referred to as ICI_trunc and ICI, respectively.

- Individual prediction intervals (IPIs) for Yy = (53, Xo) + €0 based on residual bootstrap and

central limit theorem. This is referred to as IPI.

- Simultaneous confidence intervals (SCIs) for (I}, 3, Xo) and (5, Xo) based on residual
bootstrap either with or without studentization. These are referred to as SCI_trunc and SCI

without studentization and SCI_trunc_std and SCI_std with studentization, respectively.

- Simultaneous prediction intervals (SPIs) for Yy = (8, Xo) + €0 based on residual bootstrap
either with or without studentization. These are SPI_trunc_std and SPI_std with

studentization, respectively.
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As seen in the below construction, the SCI_std and SPI are constructed based on Corollaries 3-4
in the main paper. However, in practice, it turns out from our simulation that the studentization
does not have a substantial effect in terms of empirical coverage rates and average widths.

In contrast to the case when the new predictor is random, here we simulate the new predictors
{Xo,io }iu—y and fix it before the Monte Carlo iteration. We now describe the detailed procedure of
simulation. The Monte Carlo simulation size M and the bootstrap sample size () are again
provided as M = 1000 = ). Given the new predictors {XO,io}Z)O:p foreachm=1,..., M,

perform the following.

1. (Simulation) Simulate X; with X; 4 X ande 2 e, where {(Xj,&;)}_; are independent, and

compute Y; = (8, X;) +¢; for i = 1,...,n. Also, for prediction purpose, simulate
independent &g 4, 4 ¢ for iop =1,...,n0, where {gg, }Z)(J:l is independent of {(X;,¢&;)}" 4,
and compute Yy, = (8, Xo,i,) + €0,i, for io = 1,...,no.

2. (Residuals) Compute the residuals é; = Y; — <Bkn7Xi> and the centered residuals & = &; — &

fori=1,...,n.

3. (Residual bootstrap) For ¢ =1,...,Q, do the following.

(a) Draw independent bootstrap error €} ; for i = 1,...,n and €} o ; from the uniform

distribution on the centered residuals {&;}" ;

(b) Compute the bootstrap responses Y,*; = (Bgn, Xi) +&;,; from the estimate Bgn, and

construct the bootstrap estimate B; n, based on the bootstrap samples {(Xs, Y;Z) .

(c) For prediction purporse, for each ig = 1,...,ng, set Y00 = <Bgn,X0,iO> + €504y and
compute the bootstrap prediction error £ ;= }A/(]*O io — Yq04, t0 approximate the

prediction error £o;, = Yo,i, — Yo,i, where Y ; = <5:;,hn7X0,io> and Yo.i, = (Bh,,, Xo0,io)-

4. (Intervals based on the residual bootstrap) Construct the following intervals based on the

residual bootstrap.

(a) ICIs for {(II}, 0, Xo,i())}ZJO:y



(f)
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Compute the 100(1 — «/2)% and 100(c/2)% quantiles of {(B;‘hn — ﬂthnﬁgn, XO,iQ)}qQ:p

say uj, and l;,. Then, the ICIs for {(Il4, B, Xo,) };1—; are
ICIztgunc = |:<Bhn7X0,io> — Uiy, <Bhna XO,io> - lio .

ICIs for {(5, Xo,iy) }12

o=1"

Compute the 100(1 — «/2)% and 100(«/2)% quantiles of {<B:;,hn - BgnaXO,i0>}Q

q:l’ Sa‘y

ui, and l;,. Then, the ICIs for {(3, Xo,)};°, are

10
IOI’LU = </3hna XO,io) - uio) <Bhn7X0,’i()> - l’L():| .

SCIs for {(TIy, B, Xo,io) }1°_ ;.-

Compute the 100(1 — «/2)% quantile of {maxi<i,<n, \(B;;hn S | P X07i0>|}qQ:1, say

u. Then, the SCIs for {(I1p, 8, Xo,,) };n; are
SCIZtgunc — |:</3hn7X0> —u, </3hn7X0> + u] .

SCIs for {(8, XO,io>}Z)O=1'

Compute the 100(1 — «/2)% quantile of {maxi<j,<n, \(B;hn - Bgn,Xo,Z'O)\}qQ:l, say u.

Then, the SCIs for {(3, X07i0>}%°:1 are

SCIio = <Bhn7X0> —u, <Bhan0> +ul.

Studentized SCls for {(I1p, B, Xo,ig) };oe1-
Compute the 100(1 — «/2)% quantile of
- PO Q
|</8q,hn - th Bgn ) X07i0> |
max — )
1<io<no th, (XO,io) -

say u. Then, the studentized SCls for {(Ils, 8, Xo,i,) };r—; are

SCI;fOrunc,std _ |:<Bhn’X0> — fhn (X07i0)u, <Bhan0> + 4/ tAhn (Xo),;o)u:| .

Studentized SCIs for {(8, Xo.i,) }:°

io=1"
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Compute the 100(1 — «/2)% quantile of

n A Q
|(Bz1,, = B Xous)

max - :
tstosno th,, (Xoio)

q=1

say u. Then, the studentized SCIs for {(3, Xo,,)};r—, are
SCI = {<ﬁh Xo) = \/tnn (X0,i0)u, (Bn,» Xo) + \/Th,, (XO,iO)U] :

(g) IPIs for {Yp,}i0

io=1"
Compute the 100(1 — «/2)% and 100(«/2)% quantiles of {quZo}qQ:D say u;, and ;.

Then, the TPIs for {Yp;,};_, are
IPI;, = DA/OJO — Uig; Yb,io - lio]'

(h) SPIs for {Yp, }i°

i0=1

Compute the 100(1 — «/2)% quantile of {maxlgiogno

*
%77;07‘1 -

Yy }Q
: Say Uu.
0710 »q q:1 ’ y

Then, the SPIs for {Yo, };°_, are
SPI;, = [}A/O,io - UJA/OJO + u].

(i) Studentized SPIs for {Yp,};°

10=1
Compute the 100(1 — «/2)% quantile of
’Yo*io q }/O*io,q

max ,
1<ip<ng \/thn XOzo)/n+1

say u. Then, the studentized SPIs for {Yp;, };._, are

SPIStd [YO 10 \/thn XO zo)/n+ 1u Yz)zo + \/thn XO Zo)/n+ lu| .

5. (Intervals based on central limit theorem) For each case, construct the following intervals

based on central limit theorem.
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(a) ICIs for {(II;, 3, Xo Z0)}10 1

« 0 Ehn XO,‘
ICL" = | (Bhn» Xoyio) = 21— 0‘/2\/710 (Bho Xojio) + 21-a/2 (nm)

(b) ICIs for {(8, Xo.iy) }:.

Zo 1.

thn Xo o)

IC[Z'O = <Bhn7XOzo — Rl—a/2 6hn7XOzo + 21— /2
(c) IPIs for {Yp, Zo}zo 1
5 thn 0 th, (Xo,i
IPLi; = | Yo,y — 21-a/2 io) +1, Y0, + 21 a2 (nm) +1

6. Let {Tb,i,}j—; denote the target quantities, either {(IIp, 8, Xo,i) }in1, {(B5 X0sig) }ine1s OF
{Yo,i0 bin—q- Also, {I1;,};"_; denote the corresponding individual intervals constructed

above, i.e., either {ICI{"™"°}10_ | {ICT;)}°

s iy, or {IPI; }lo 1, for each method (one of the

residual bootstrap and the central limit theorem). Finally, {SI;,};°_; denote the
corresponding simultaneous intervals constructed above, that are either studentized or not,

Le., either {SCIT* e} {SCILy}ie ), {SC’I””"C std wo_y, or {SCItyM

The coverage probabilities for individual intervals are approximated by

M
1=y =M™ (T, € I1;)

m=1
for each 19 = 1,...,ng, and those for simultaneous intervals are approximately computed as
l—a=M" ZI[T(”O € SI;,,Yip=1,...,m9).

m=1

We have the results for two sets of new predictors. One consists of the first five eigenfunctions
Vi ={ei,...,e5}. Figures 2.14-2.16 show the empirical coverage rates of ICIs for

{0, B, Xo,ig) bia—1, ICIs for {(B, Xo,is) }ir—y, and IPIs for {Yp,}iv_;, respectively, while the

10=1"

corresponding average widths are displayed in Figures 2.17-2.18. Note that the widths of ICIs for

the truncated and original projections are equal due to their construction based on residual
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bootstrap. Empirical coverage rates of SCIs for {(I1p, B, X0, }iy—1, SCIs for {(3, X}, and
SPIs for {Yo,, };.—; are provided in Figure 2.19. In Figure 2.20, we illustrate the average widths
of non-studentized SCIs and SPIs. As these are not based on studentization, the widths do not
depend on each of the new predictors. Meanwhile, the average wdiths of studentized SClIs and
SPIs are given in Figures 2.21-2.22 since studentization causes the widths to depend on the new
predictors. As above, the widths of studentized SCIs for the truncated and original projections
are equal. In the other set Vs, the new predictors X ;, are independently drawn from the model

x4 Z;le Vv Aj€je; introduced in Section 2.5.1 of the main paper. Figures 2.23-2.31 shows the

results for Vo where the panels are arranged in the same order as the figures for V;.

2.11 Additional details regarding real data analysis

In this section, we provide further background for real data analysis on wheat moisture data

from Section 2.6 of the main paper.

2.11.1 Selection of the tuning parameter k, by using a cross-validation method

based on prediction error

When we conduct the residual bootstrap procedure in practice, one can choose the tuning
parameter k, for determining residuals by a cross-validation method based on a certain measure
such as the prediction error. We refer to [1] for a general overview of cross-validation methods. In
our real data analysis, the procedure of selecting k,, is as follows. For a given k,, and each

m=1,..., M, perform the following.

1. Divide the samples into training and testing samples with sizes ng. and ngest, respectively,

with ng + Ngest = n. Write Zy,. and Zyes: for the corresponding index sets.

2. Compute the estimator Bkn,tr with the tuning parameter k,, based on the training sample

{(X:,Y;) i € Iy}
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3. Compute the prediction error PE,,(ky) = nt_ei,t ieTpn, (Yi — <Bkn,tr7 X:))? of Bkn,tr based on

the testing sample {(X;,Y;) : i € Zyest }-

We now compute the estimate I/DE(kzn) of the true prediction error as
- M
PE(ky) =M™ > PEp(kn).
m=1

Among some pilot tuning parameters (e.g., {1,...,20}) for k,, one can choose one that minimizes

the estimated prediction error ﬁ(kn)

2.11.2 Symmetrized intervals based on the residual bootstrap

One may construct a symmetrized version of individual confidence or prediction intervals
based on the residual bootstrap. For simplicity, we describe this only with ICI for untrucated

projection (3, Xo) and IPI for the new response Yy. We first supppose that we have the bootstrap

Q

q—1 and the bootstrap new response

samples, which provides the bootstrap estimators {B,’in q
{quo}qQ:p where () denotes the Monte Carlo size to approximate the bootstrap distribution.

Then, the symmetrized ICI/IPI are obtained as follows.

1. (ICI) Compute the 100(1 — «/2)% quantiles of {](B,’;nq - Bgn, X0>|}qQ:1, say u. Then, the

symmetrized confidence interval for (3, Xy) is
ICI = |:<5Ahn,Xo> —u, <Bhn7X0> + u] .

2. (IPI) Compute the 100(1 — «/2)% quantiles of {]?qfo — Yq’fo}gzl, say u, where

quo = <,5’,’;n - Xo). Then, the symmetrized confidence interval for Yj is

IPI = |:<Bhn7X0> - u, <Bhn,X0>+U :

2.11.3 New predictor functions under consideration

The following functions are the new regressor functions that are considered in the real data

analysis as described in Figure 2.7 of the main paper.
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1. Overall shift: Xpg1(t) = 0.25, Xog2(t) = 0.15, Xps3(t) = 0.05, Xpg4(t) = —0.05,
Xos,5(t) = —0.15, Xpg6(t) = —0.25

2. Simiple functions: write I;(¢) = I(¢t < 1400), Iz(t) = [(1400 < ¢ < 1900), I3(¢t) = I(¢t > 1900),
and define Xsim,l =0.1- Hl, Xsim,Q =0.1- ]IQ, Xsim,S =0.1- ]13, Xsim,4 =—-0.1- ]11,

st'm,5 =—-0.1- ]IQ, Xsim,6 =—-0.1- ]13.
3. Sums of two simple functions:
- XSS,I = 01 . ]Il + 005 . Hg, XSS,Q = 01 . ]12 + 005 . ]13’ XSS,3 — 01 . ]13 + 005 . ]Ila

- Xssa = —Xgss1, Xgs5 = —Xgs,2, Xss56 = —Xs53.

2.11.4 Estimated slop function for the wheat data

In Figure 2.32, we provide an illustration of the estimated slope functions used in bootstrap

inference with different tuning parameters k, =4, h, =9, and g, = 5.

FPCR estimators
0.010-
0.005+1
\‘[ — k,=4
':l I‘
l,.ll'" l'."\ - = hn=9
0.000 ?\f ¢\ . o<

-0.005 1

1500 2000 2500
Wavelength (nm)

Figure 2.32: Estimated slope functions with the selected tuning parameters k, = 4, h, = 9, and
gn = 5
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CHAPTER 3. BOOTSTRAP INFERENCE IN FUNCTIONAL LINEAR
REGRESSION MODELS WITH SCALAR RESPONSE UNDER
HETEROSCEDASTICITY

Modified from a manuscript submitted to the Annals of Statistics
Hyemin Yeon', Xiongtao Dai?, and Daniel John Nordman!
Department of Statistics, Iowa State University

2Division of Biostatistics, University of California, Berkeley
Abstract

Inference for functional linear models in the presence of heteroscedastic errors has received
insufficient attention given its practical importance; in fact, even a central limit theorem has not
been studied in this case. At issue, conditional mean (projection of the slope function) estimates
have complicated sampling distributions due to the infinite dimensional regressors, which create
truncation bias and scaling problems that are compounded by non-constant variance under
heteroscedasticity. As a foundation for distributional inference, we establish a central limit
theorem for the estimated projection under general dependent errors, and subsequently we
develop a paired bootstrap method to approximate sampling distributions. The proposed paired
bootstrap does not follow the standard bootstrap algorithm for finite dimensional regressors, as
this version fails outside of a narrow window for implementation with functional regressors. The
reason owes to a bias with functional regressors in a naive bootstrap construction. Our bootstrap
proposal incorporates debiasing and thereby attains much broader validity and flexibility with
truncation parameters for inference under heteroscedasticity; even when the naive approach may
be valid, the proposed bootstrap method performs better numerically. The bootstrap is applied to

construct confidence intervals for projections and for conducting hypothesis tests for the slope
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function. Our theoretical results on bootstrap consistency are demonstrated through simulation

studies and also illustrated with real data examples.

3.1 Introduction

In classical linear models, bootstrap methods have been developed for several decades under
either homoscedastic or heteroscedastic error assumptions. [22] first studied residual and paired
bootstrap methods for approximating the sampling distribution of the least square estimator in
multiple linear regression models. These bootstraps are intended, respectively, for handling
homoscedastic or heteroscedastic error cases. Both bootstrap methods have been investigated in
other contexts as well, for example, in nonparametric [29] or high-dimensional [20] regression

problems.

0.31
Regions

Arctic
—— Atlantic
—#— Continental

Pacific

Standard deviation

5 10 15 20
Truncation

Figure 3.1: Estimated standard deviations for each region over different truncation levels used in
estimation

In a functional linear regression model (FLRM), bootstrap inference is likewise valuable but
also more complicated due to the infinite dimensionality of the underlying function space. A main
issue with functional regressors is that a truncation bias arises in estimators of the conditional
mean, because of the infinite dimensional regressor and slope function involved, which imposes

challenges for even central limit theorems [12, 53]. Existing works on both the central limit



118

theorem (CLT) and (residual/wild) bootstrap for functional linear regression models (FLRMs)
have focused exclusively on homogeneous error variance models [25, 53|, while either avoiding or
accommodating this bias issue. In fact, beyond homoscedasticity assumptions, more stringent
conditions of independence between regressors and errors are also commonly imposed in FLRM
literature [6] and especially for hypothesis testing [8, 11, 31, 40, 41]. However, heteroscedastic
error variances are commonly observed in practice. For illustration, Figure 3.1 shows the
estimated standard deviations of residuals from an FLRM fit to a Canadian weather dataset
(cf. Section 3.6) over different geographical regions. Each regressor curve represents averaged
daily temperatures measured at a different location contained in one of the four regions in
Canada: Atlantic, Continental, Pacific, and Arctic regions, where the associated response is the
total annual precipitation on the log scale. As variances appear to differ across regions, it seems
natural here to avoid homoscedastic error models.

To the best of our knowledge, heteroscedastic error conditions have not received much formal
consideration in the FLRM literature, with perhaps the exception of work on weighted least
squares by [19], which does not discuss distributional inference. For example, while a CLT for
projection estimates is again available for FLRMs in the homoscedastic case [12, 34, 53], a
counterpart foundational result does not yet exist under heteroscedasticity. One might further
anticipate that previous bootstrap theory under homoscedasticity does not directly apply for the
inference in FLRMs under heteroscedasticity. We show this to be the case, which necessitates our
new development of a CLT and resampling theorems. As in the homoscedastic setting, resampling
approximations in FLRMs are remarkably valuable under heteroscedasticity for capturing
complicated sampling distributions of mean estimators, as current bootstraps from the
homoscedastic case become invalid [25, 35, 53].

To bootstrap FLRMs in the presence of heteroscedastic errors, a paired bootstrap method can
be considered, similar to the paired bootstrap for usual multiple linear regression models [22].
Paired bootstrap has indeed been applied for different inference in FLRMs [43, 46, 51], though

without any theoretical development or justification. This latter point is important, because we
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show here that, surprisingly, a naive/standard implementation of paired bootstrap, adopted
directly from the usual multiple regression case, can fail to provide valid inference for mean
estimates under FLRMs if the truncation parameters are not set appropriately in a certain
narrow and restricted way, in contrast to the case of finite-dimensional multiple linear regression
[22]. In fact, as sample sizes increase with mean estimators in FLRMs, the distance between naive
paired bootstrap and true sampling distributions may not converge to zero as typically expected,
but rather can converge in distribution to a random number supported on [0, 1] unless associated
tuning parameters are set in a specific manner. The problem arises from a construction bias in
the bootstrap world with FLRMs which relates to, but is a separate issue from, the truncation
bias inherent to the FPCR estimator Bhn of the slope. Such failure of bootstrap due to bias issues
has been observed in other bootstrap works with complicated regressions, such as nonparametric
[29, 30, 55], quantile [50], penalized linear [14, 15, 7], and high-dimensional linear [20] regression
models, though the approaches of correcting bootstrap bias can differ. In some problems, the
extent of the bias in paired bootstrap is such that this bootstrap must be discarded (cf. [29, 30]).
This motivates our new development of paired bootstrap for FLRMs with heteroscedastic errors,
which remedies the bias problem by modifying a bootstrap estimating equation to define a
bootstrap estimator.

Under a general heteroscedastic error assumption, we study asymptotic and bootstrap
inference in FLRMs with scalar response, along with providing its theoretical validity. In
particular, we first establish a CLT for the projection estimator of (3, Xy) with Xy being a
(random) new regressor function. This serves as the foundation for our bootstrap results and
more broadly, justification of asymptotic inference for FLRMs under dependent errors. Our main
bootstrap result is to develop a modified paired bootstrap to approximate the sampling
distribution. We estimate the projection via the functional principal component regression
(FPCR) estimator Bhn of the slope function g [9, 5, 28, 12, 25, 34, 35, 53|, where h,, denotes a
truncation level involved in the estimation procedure. For flexibility and also for better practical

performance, we allow additional truncation parameters g,, k, to be introduced, and possibly
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vary from h,,, for defining important quantities in the bootstrap formulation, where g, arises to
estimate bootstrap centering and k,, is applied to estimate a scaling factor in studentization. The
modified paired bootstrap incorporates an important debiasing step in order to accommodate a
general combination of such truncation parameters. In the process of establishing a paired
bootstrap, we also derive a new central limit theorem for the projection (3, Xy) in FLRMs,
involving an appropriate scaling for capturing different conditional error variances. In
heteroscedastic cases, our numerical studies suggest that the paired bootstrap performs better
than the residual bootstrap and normal approximation, while also maintaining good coverage in
homoscedastic cases. The proposed paired bootstrap also numerically outperforms the naive
version even when the latter is appropriately tuned. We consider intervals from studentization
steps to obtain pivotal limits for use in bootstrap approximations. A rule of thumb for selecting
the tuning parameters involved in the bootstrap procedure is further provided.

As an application of the paired bootstrap method, we treat a testing problem about the
possible orthogonality of the slope function S to subspaces spanned by a collection of target
functional regressors. In this problem, the bootstrap combines several simultaneous estimation
steps into one test, which would otherwise be distributionally intractable through normal
approximations. The bootstrap construction also has the advantage of enforcing the null
hypothesis in re-creating a reference distribution for testing, which can be useful for controlling
size and boosting power. Our development in this testing problem is distinguishable from the
previous works on hypothesis testing in FLRMs [8, 11, 31, 40, 41]: the latter tests are limited to
independent error scenarios and often restrict claims to global nullity 8 = 0 or other specific
projections of the slope function 8 based on the cross-covariance between regressor and response.
In contrast, by considering a general heteroscedastic setting, our work allows for formal
hypothesis tests with FLRMSs to be further justified under dependence between regressors and
errors. Our testing method also allows hypotheses about 3 be defined from projections with more
arbitrarily specified functional regressors. This is useful in practice for assessing how projections

of B may differ from zero as predictor levels are varied, which may not be addressable by a global
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test of 3, e.g., to examine effects of a hotter year on precipitation, or a higher winter/summer
temperature contrast.

Section 3.2 describes the paired bootstrap method in FLRMs with scalar response under
heteroscedasticity, along with a modification for general validity. Section 3.3 provides the main
distributional results regarding estimated projections regarding the consistency of the paired
bootstrap method and the failure of the naive bootstrap. With suitable scaling, a general CLT is
also established, which is useful for framing studentized versions of statistics. We then give a
consistent bootstrap procedure in Section 3.4 for testing the orthogonality over the slope function
to linear subspaces. Numerical results are provided in Section 3.5, while Section 3.6 illustrates the
paired bootstrap method with a real dataset that potentially have heteroscedasticity; an extra
data application is provided in the supplement [54]. Some proofs for the main results are given in
Appendix, while further details of the proofs and extended numerical results can be found in the
supplement [54]. An R package is provided to construct confidence intervals for FLRM

projections and to test the nullity of the projection of 5 based on paired bootstrap.

3.2 Description of FLRMs and bootstrap

We start with the description of functional linear regression models (FLRMs) under
heteroscedastic error variances in Section 3.2.1, and the paired bootstrap for estimated
projections appears in Section 3.2.2.

3.2.1 FLRMs under heteroscedasticity

Consider the following FLRM

Y=a+(3X)+e, (3.1)

where Y is a scalar-valued response; X is a regressor function taking values in a separable Hilbert
space H with inner product (-,-); « is the intercept; and 5 € H is the slope function. The error

term ¢ has E[¢|X] = 0 but its distribution can otherwise depend on X; for example, heterogeneous
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conditional variances of the error ¢ given the regressor X is allowed, that is, 02(X) = E[¢?|X] may
depend on the regressor X. As aw = E[Y] — (8, E[X]) holds in (3.1), without loss of generality, we
assume that E[X] = 0 and E[Y] = 0 so that a = 0 for purposes of developing estimation of the

slope function 8. The FLRM is then written as
Y =(8,X)+e. (3.2)

Define the tensor product z ® y : H x H — H between two elements =,y € H as a bounded
linear operator z — (z ® y)(z) = (2, z)y for z € H. Under the assumption E[||X||?] < oo where
|| - || is the induced norm in H, the covariance operator I' = E[(X ® X)] is self-adjoint,
non-negative definite, and Hilbert—Schmidt, and hence, compact (cf. [33]). Then, I" admits the

following spectral decomposition

[e.e]
L=> ym
j=1

with m; = ¢; ® ¢;, where v; and ¢; are the j-th eigenvalue and eigenfunction of I for j = 1,2,....
Here, the set {¢;} of eigenfunctions is an orthonormal system of H and {v;} is a non-negative
non-increasing sequence with v; — 0 as j — oco. The functional version of normal equations is

written as
A=Tp (3.3)

from the model (3.2), where A = E[Y X] is the cross-covariance function between X and Y.
Under the model identifiability assumption kerI" = {0} [9, 10, 12] (see Assumption (A.1) of

Section 3.3.1), the slope function is then given as
B =T""tA.

The functional principal component regression (FPCR) estimator of § has been widely studied
in the literature [5, 9, 12, 28]. To define the estimator, we suppose that the data pairs

{(X;,Y;)}, are independently and identically distributed under the FLRM (3.2), that is,

1/'5:<B7Xi>+€ia izl,...,n. (3‘4)
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The sample versions of I' and A are defined as I, = n~! S (X — X)®? and
A, =n"1 S Y —Y)(X; — X), where X =n ' Y0 X, Y =n"1Y" Y, and 2®? =z @ for
x € H. The sample covariance operator I, also admits spectral decomposition I, = 2?21 AT

with 7; = gﬁj ® qgj, where 4, > 0 is the j-th sample eigenvalue and dA)j € H is the corresponding

eigenfunction. By regularizing the inversion of I',, the FPCR estimator of 3 is defined as

Il
=

Bn, =T, 1A, (3.5)

where F}:: = Z?Zl ‘yj_lfrj is a finite approximation of I' ™! = Z;’il 'yj_le. Here, hy, is the number

of eigenpairs used in estimation, which represents a truncation level [5, 9, 12, 28].

3.2.2 Paired bootstrap procedure

For FLRMs with homoscedastic errors, the residual bootstrap is natural [25, 53], where this
bootstrap re-creates data, e.g., Y;* = (X, Bhn> + ¢}, through bootstrap error terms €* as
independent draws from an appropriate set of residuals. However, under heteroscedastic errors, a
different bootstrap approach is necessary, akin to the standard multiple regression case with
Eucliean vectors [22]. Similar to that setting for capturing response variances that may differ
conditionally over regressors, we consider a paired bootstrap (PB) method for inference in
FLRMSs. To the best of our knowledge, the theory for PB in FLRMs has been studied only once
by [24], but their application does not consider the slope function or its projections and the errors
therein are homoscedastic in variance. For estimating means or projections under the FLRM with
heteroscedastic errors, we explain next how the PB generally requires careful consideration in
order to be valid.

To implement the PB, we draw the pairs {(X,Y;*)}I"; uniformly from the original data
{(X;,Y;)}, with replacement. The bootstrap counterparts of sample moments are then given as
=n ' (X - X*)%2 and AX =n Y (V- V9)(XF — X*) where X* =n~ ' Y, X7

and Y* =n! Yo, Y*. From the spectral decomposition of f;‘;, we define a regularized inverse of
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A

I';, with trunction level h,, as

hn
)7t =D G e @),
j=1

where 47 and q@}‘ are the j-th eigenvalue and the corresponding eigenfunction of f‘;‘L This
represents a direct bootstrap analog of (I',,)~! in (3.5).
An initial, though naive, bootstrap version ﬁ;n naive Of the FPCR estimator Bhn can be found

as
o s 14
Bltn,naive = (Fltn) A;km

by directly imitating the definition of Bhn in (3.5) with bootstrap data. The validity of this naive
bootstrap, though, requires caution. The issue is that, in the bootstrap world, we need to define
bootstrap version * of the true parameter S and, for flexibility, one might consider a FPCR
estimator B* = Bgn = fg_nlﬁn determined by a general truncation level g, in (3.5). It turns out
that the naive bootstrap estimator B,*Ln’mwe must be restricted to a bootstrap parameter 5* = Bgn
defined by g, = h,. The reason is due to a type of construction bias in the naive bootstrap,
related to mimicking the linear structure in the model (3.2). Unless the bootstrap parameter 5* is
specifically chosen as Bhn, which imposes limitations for implementation and numerical
performance, the naive bootstrap construction will be biased with a provably substantial and
adverse effect on inference (cf. Proposition 13).

In order to define a more versatile bootstrap version an of the FPCR estimator Bhn, we begin
from a general estimator, say Bgm to play the role 8* of the slope function § in the bootstrap
world; again Bgn denotes an FPCR estimator similar to Bhn from (3.5) but based on a truncation
gn rather than h,. The level of truncation g, used in a bootstrap version 5* = Bgn of B becomes a
consideration because 3 is infinite dimensional while any FPCR estimator Bgn is
finite-dimensional. It is possible to choose g, = h,,, though more flexibility with §* = Bgn for g,
smaller than h,, can later provide a better re-creation of 5 in the PB approximation than the
original data estimator ﬁhn. However, regardless of the estimator ﬁgn used to mimic 8, the PB

analog B;‘Ln of the original-data estimator Bhn needs to be appropriately defined to avoid a
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construction bias in resampling. To correct this resampling bias, we adapt a modification of [48]
for defining bootstrap M-estimators through adjusted bootstrap estimating equations; see also
[37, 39] or [38], Section 4.3. It is non-trivial that this adjustment device should apply for PB in
the FLRM case; in fact, this approach has not been applied in other bootstrap contexts where, for
varying reasons, bootstrap construction has bias (e.g., nonparametric regression; [16]; lasso;
[14, 15, 7]; high-dimensional regression; [20]).

To define a modified bootstrap version B;‘Ln of the FPCR estimator Bhn, we first observe that
the slope function 3 = I'"'A can be prescribed as the solution to the estimating equation

E[W;(8; px, py)] = 0 where
Wi(B; px sy ) = (X — ) (Y — py) — (X3 — px) %3 (3.6)

is an estimating function with ux = E[X] and py = E[Y]. A direct bootstrap counterpart of this

estimating function is given by, say,

Ui (3 X,Y) = (X = X)(Y7 = Y) = (X7 = X)¥*B,

7 (2

where X =n~ 13" X, and Y =n~ 1Y ", V;. A key observation is that, while 8 = I'"1A is the
solution to the equation E[W;(5; pux, uy)] = 0, an estimator Bgn = fg_nlﬁn, playing the role of 8 in

the bootstrap world, will not generally be a solution to the equation

An —Tf = E[¥(8;X,Y)] =0
due to the finite dimensionality of 3gn, where E*[-] = E[|D,] denotes the bootstrap expectation
conditional on the data D,, = {(X;,Y;)}I";. That is, due to truncation, f‘g_nl does not generally
match the inverse of T, = n~ ! Yo (X — X)®2 for any finite truncation g,. However, by starting

from an estimator Bgn = f‘lAn, we may adjust a bootstrap-level estimating function to be

WH(B; X, Y) = Ui (8 X, V) — E*[¥] (By,; X, V)]

= (X; = X)(V] = Y) — (X] = X)?*8 — Ung,.

7
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where

n

e oo . 1 .
B3 (Bgus X, V)] = Ung, = o D (Xi— X) (g, — Eg0) (3.7)
i=1

has a closed form expression as the cross covariance between the regressors {X;}? ; and the
residuals {€; 4, }i"1, €ig, = Yi— <Bgn, X;) arising from the estimator Bgn, with &g, =n 130 &y,
above. These corrected bootstrap estimating functions have bootstrap expectation of

~ A A~

E*[\I/j(,B,X,Y)] =A, —Tn8— Un,gns

which equals zero at 8 = Bgn in the bootstrap world. Consequently, Bgn as the solution to
E*[¥7(B; X,Y)] = 0 mimics true slope function 3 = 1A solving E[¥;(3; px, uy)] = 0.

By replacing X and Y in ¥}(3; X,Y) with bootstrap data counterparts X* =n=13" | X*
and Y*=n"13"" | V* (in analog to the original estimator Bhn defined by using X and Y in place
of px and py), a PB version an of the FPCR estimator Bhn is defined by the solution of the

empirical bootstrap-data estimating equation
1 n
0=— S UK X YY) = AL~ 58— Ung,,
i=1
upon regularization of (I'*)~1, where I'* = n~! (X — X*)%2 and
Ar =n= ' (Y — Y*)(X; — X*) are averages from the bootstrap sample. Hence, the PB

re-creation of the FPCR estimator is then given by
Br, = @571 AY = Ung,)- (3.8)

The construction in (3.8) matches how the original estimator (3, = f,;lﬁn from (3.5) is the
solution of 0 = ™1 Y7 | W, (B; X,Y) = A,, — I',,3, based on (3.6), upon similar regularization
with truncation level h,,. The combination (B;*Ln, Bgn) in PB then serves to mimic (3, , 3) for

inference about the FLRM.

3.3 Distributional results under heteroscedasticity

Section 3.3.1 first describes a CLT for estimated projections (3, , Xo) under the FLRM with

heteroscedasticity. While novel and of potential interest in its own right, the CLT helps to
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develop the appropriate scaling needed for statistics and to also frame some baseline assumptions
that are useful for bootstrap. Section 3.3.2 establishes the consistency of PB for distributional
approximations. For comparison, Section 3.3.3 then provides a formal result to show that the
naive implementation of bootstrap is generally invalid without restrictive conditions on truncation

parameters.

3.3.1 CLT for the projections under heteroscedasticity

Let X denote a new regressor under the model, which is independent of {(X;,Y;)}" ; and
identically distributed as X;. For an observed or given value of X (i.e., conditional on Xj), we

consider the sampling distribution of the difference

m[@hn,X@ — (B, Xo)], (3.9)

between estimated (Bhn,X0> and true (8, Xo) projections. Above s;,_ (Xp) denotes a scaling

factor, based on F,;} = Z?gl ’)/j_lﬂ'j, which is defined as

Sn, (¥) = (AT, 'z, Ty la) = |[AY2T) M2)?, 2 € H (3.10)

and involves the covariance operator A = E[(X¢e)®?] of Xe, where T"/? denotes a self-adjoint
square-root operator of a non-negative definite bounded linear operator 7" on H such that

(T"/2)? = TV/2T7/2 = T. A sample counterpart of (3.10) is given as
8no(2) = (R, T2, T2y = |AYE T lel?, 2 e H, (3.11)

where Ankn =n 130, (Xié@kn —n7 1y Xié@kn)m is an estimate of A based on residuals
Eikn = Y5 — <Bkm X;); for generality, here k,, represents another tuning parameter used only to
compute residuals {&; s, }7-, for estimated scaling $,, () in (3.11).

Under either scaling factors sp,, (Xo) and $j,, (Xo), we next show a CLT for the projection
parameter (3, Xo) in Theorem 7, where the limiting distribution is standard normal under the

scaling. For describing the CLT, some technical assumptions are listed.

(A1) kerI' = {0}, where kerI'={zx ¢ H:T'x = 0} ;



128

(A2) supjen v; 2ELX, ¢;)] < oo;
(A3) ~; is a convex function of j > J (which implies that v; — ;41 is decreasing) for some integer

J > 1;
(A4) sup,ey;jlogj < oo;

(A5) n~1 E;ﬁl 5;2 — 0 as n — o0;

(A6) hysp, (X)L =0p(1);
(A7) supjen )\J»_QEKXE, 1Y) < 0o, where \; and v; are the j-th eigenvalue—eigenfunction pair of
A;

(A8) supjen; IAY295)1? < oo.

Condition (A1) is necessary for the model identifiability [9, 10, 12]. Conditions (A2) and (A7)
ensure that X and Xe respectively have finite fourth moments. Conditions (A3)-(A5) are
technical assumptions related to the decay behaviors of eigenvalues {~;} and eigengaps {0;},
where for (A4) we define 6; =1 — 72 and §; = min{y; — vj4+1,7j—1 — 5} for j > 2; such
conditions are weak and are generally used to simplify proofs involving perturbation theory for
functional data [12]. Condition (A6) provides a mild lower bound for scaling sp,, (Xo), where a
similar assumption is needed in the homoscedastic setting; see [53] for a related discussion.
Condition (A8) is a technical condition that balances the eignedecay of I' and the decay rate of A
in terms of {¢;}32,. When Condition (A2) holds, sufficient conditions for (A8) can also be
developed by assuming moment structures on the error and regressors; for example,

Condition (A8) follows if either E[e%] < oo or 02(X) = E[e?|X] = P p?(X, ¢;)? for some
{p;}32, such that Z;L V; pjz < 00. The statement of the CLT also involves the following
condition,

Condition B(u) : supjeNjflm(j,u)w, $;)? < oo,

depending on a generic constant u > 0 and function m(j, u) of integer j > 1 defined as

m(j,u) = max {j“, 25l2} . (3.12)
=1
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Condition B(u) is generally mild and helps to remove bias in the limiting distribution of the
statistics from (3.9) by balancing the decay rates of eigenvalues and the Fourier coefficients of the
slope function (3, as described further in Remark 9 below.

A CLT for the projection in FLRMs under heteroscedasticity is a new development in the

FLRM literature, as given in the following theorem.

Theorem 7. Suppose that Conditions (A1)-(A7) hold along with h, ' + n_l/QhZ/Q(log hy)? — 0 as
n — oo. We further supppose n = O(m(hy,u)) along with Condition B(u) for some u > 7. Then,

as n — oo,

(i)

sup L 0,

yeR

(s Xob = 8. X0)] < 3] ) - 2(0)

(Vo

where ® denotes the standard normal distribution function.

(ii) Additionally, if ||Br, — B|| 2. 0 and Condition (A8) hold, then s, (Xo) and sp, (Xo) are

asymptotically equivalent in that, for any n > 0,

°(

and the result in (i) also holds upon replacing sp, (Xo) by the sample version §p, (Xo).

3, (Xo)
Shn (X0)

- 1’ > n‘X()) P,

Theorem 7 generalizes the CLT for projections in FLRMs [12, 53] from the homoscedastic case
to broader heteroscedastic cases. When the errors are homoscedastic, i.e., E[e2|X] = o2 € (0, 00),
then the covariance operator of €eX becomes A = ¢2I" and the scaling in (3.11) reduces to
sn, (Xo) = o2ty (Xo), where t), (z) = HF}::/QJJHQ for x € H. In this case, the result (i) in
Theorem 7 matches the CLT under homoscedasticity [12, 53].

From Theorem 7, estimated projections (B, Xo) with data-based scaling 85, (Xo) are
asymptotically pivotal and, hence, an asymptotic normal approximation may be applied to
calibrate inference about (3, Xy). However, resampling becomes useful for improving

distributional approximations in FLRMs under heteroscedasticity, due to the complicated impacts
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of truncation h,, in finite samples. The next section establishes the validity of the proposed PB

method.

Remark 7. A sufficient condition for Bkn to be consistent for  in Theorem 7(ii) is that
k-t +n~Y2k2 logk, — 0 as n — oo; see Theorem S1 of [54] for details. Theorem 7(ii) may be
further generalized by replacing Bkn used for constructing the estimated scaling §;, (Xo) with a

general consistent estimator of 3.

Remark 8. Under certain conditions on the error structure, the rate on the truncation level h,,
can be weakened to a lesser rate sufficient for obtaining a CLT under homoscedasticity. For
instance, the rate h,; ! +n=1/ 255/ *(log hy)* — 0 is sufficient for Theorem 7 if either E[e*] < oo or
E[?|X] = P p3(X, ¢;)? for some {p;}52, with P ~jp5 < oo. This is the same rate as the
ones assumed for the CLTs under homoscedasticity provided in [12, 53]. See Remark S1 in [54] for

more details.

Remark 9. In Theorem 7 and Theorem 8 to follow, the Conditions n = O(m(hy,u)) (or
n = O(m(gn,u))) and B(u) are necessary only for removing bias in limit distribution of

n/sn, (X0)[(Bh,, Xo) — (8, Xo)] due to truncation h,; that is, without these conditions, the
asymptotic results would hold upon replacing (53, Xo) with a biased centering (II;, 3, Xo), where
II;,, denotes the projection on the first h,, eigenfunctions {¢; ?;1 of I'and II;, B = Z?glw, bj) ;i
is a truncated version of the slope 8 = Z;’il(ﬁ ,®j)¢;. Such conditions are common for balancing
the decay rates of eigenvalues and the Fourier coefficients of the slope function in the removal of

bias ((IIj,, — I)B3, Xo) from truncation. See [12, 53] for further discussion.

3.3.2 Counsistency of the paired bootstrap (PB)

Based on scaling from the CLT for estimated projections in (3.13), we next consider PB

approximations for the distribution of the studentized-type quantity

Tn(Xo) = [(Bh,» Xo) = (B, Xo)], (3.13)

_n
8h,, (X0)

conditional on a given regressor Xy, involving estimated scaling $,(Xo) from the data (3.11).
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Based on the scaling factor §,,(Xj), one direct bootstrap counterpart of (3.13) is then given as

T36(X0) = [ 55 (B Xo) = (B, Xo) (3.14)

with the same fixed X fixed, where (an, B,,.) denote the bootstrap analogs (3.8) of the FPCR
estimator Bhn and true slope 5. Due to the shared scaling, this bootstrap version essentially
approximates [(3,, Xo) — (8, Xo)] with [(8; , Xo) — (Bg,, Xo)]-

To apply the bootstrap principle further, though, one might also consider a different bootstrap
formulation of the studentized statistic (3.13) that aims to re-create the estimated scaling $j,, (Xo)
from bootstrap data. Recall that construction of §p, (-) in (3.11) involves residuals from a FPCR
estimator Bkn with a generic bandwidth k,. A bootstrap version of scaling factor is then defined,

in analog to (3.11), as

S @) = (N 0 (1), (T, ) ) = [(AS g, o) V25 7 2%, 2 € H, (3.15)
~ ®2
where Ay = n~ty" (Xz*éjk,n —nIY" Xz*éjkn> is a bootstrap estimator of the

covariance A based on bootstrap residuals é;kn =Y - <B;n, X/) from a bootstrap FPCR
estimator B,’:n = (f};n)_l(A;’; — Ung,); the latter is akin to (3.8) with tuning parameter k,. A

studentized bootstrap counterpart of (3.13), with estimated bootstrap scaling 8}, (Xo), is then

given as

T - (Xo) = an,x& — (B, Xo)l. (3.16)

Theorem 8 establishes the consistency of the PB method for the sampling distribution of the
studentized projection estimator in (3.13) under heteroscedasticity. Let P* = P(-|D,,) denotes the

bootstrap probability conditional on the sample D,, = {(X;,Y;)} ;.
Theorem 8. Suppose that Conditions (A1)-(A8) hold and that n~1 Z;‘Zl /\j_1 =0(1) and
k-t +n~Y2k2logk, — 0 as n — oo. Along with Condition B(u) for some u > 7, we further

suppose that T = limy, o0 hy/gn > 1, g1 + n_l/QhZL/Q(log hy)? = 0, and n = O(m(hy,u)). Then,

as n — 0o, the paired bootstrap (PB) is valid for the distribution of the studentized projection
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estimator T,, = \/n /3, (Xo)[<3hn, Xo) — (B, Xo)]:

* * P
sup [P (T, (Xo) < 1 Xo) = P (Tn(Xo) < y|Xo)| =0,
ye

where T (Xo) denotes either T;ﬁ(Xo) from (3.14) or T} .(Xo) from (3.16).

Theorem 8 conditions for the PB are similar to those for the CLT itself from Theorem 7,
though additional mild assumptions (i.e., 7 = limy 00 hn/gn > 1) appear to govern the second
truncation g, used in PB in conjunction with the original data truncation h,,. Namely, the
truncation level g,, for defining the bootstrap rendition Bgn of the true parameter 3, may differ
from the other truncation level h,, for defining the original FPCR estimator Bhn, though ¢,, may
not be larger than h,, asymptotically (see also Proposition 14). This coordination of truncation
levels is generally required for the bootstrap to be asymptotically correct, which allows the
bootstrap to control the bias type described in Remark 9. In practice, we recommend choosing a
slightly smaller g,, than h,,. In particular, we give a rule of thumb for selecting h,, and g, in

Section 3.5, which performs well as illustrated numerically.

3.3.3 Limitations of naive bootstrap

As described in Section 3.2.2, a naive bootstrap formulation B?Ln,naive = (f‘;n)*lA;‘L of the
FPCR estimator will not be generally be valid for approximating the distribution a projection
estimator Ty, = \/n/3p, (X0)[(Bn,» Xo) — (8, Xo)] in (3.13) unless bootstrap centering parameter
8 = Bgn is narrowly chosen. That is, unlike with the PB method of Section 3.3.2 which is
consistent when 7 = lim,, o0 Ay, /gn, > 1 holds, the naive bootstrap in contrast can fail if
T = limy—y00 hn/gn > 1. This aspect arises due to an extra construction bias created in the naive
bootstrap definition of B}tn,naiv ., particularly under heteroscedasticity. As a formal illustration,
Proposition 13 considers a bootstrap quantity

* (XO) = 7§hn (Xo)

n,naive

[<B;<Ln,naiveaX0> - <BgnaX0>] (317)

that differs from a valid bootstrap version T'r .(Xo) in (3.14) by using the naive bootstrap

estimator B;‘mew . in place of the proposed B,’;n In doing so, T;,naive(XO) cannot capture the
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distribution of T,,(Xy) if the heteroscedasticity is strong enough. Proposition 13 provides a
general illustrative data example where the naive bootstrap method provably fails, which stands
in contrast to the consistency of the modified PB from Theorem 8.

In the following, let D denote the space of all real-valued functions on [—o0, 00| that are right

continuous with left limits, which we equip with the Skorokhod metric (cf. [4]).

Proposition 13. Suppose Theorem 8 assumptions along with n_1/2h2/2(log hi)® = o(1) and

T = limy 00 hn/gn > 1. We further suppose conditions (a)-(b) as follows:

(a) the conditional variance of the error € given the regressor X is

o} (X) = E[e?|X] = 3272, pH(X, ¢5)? for some {p;}32, with 372, ~jpF < 00;

(b) X has functional principal component (FPC) scores as 7;1/2()(, ¢j) = EW; for j > 1, where
{W;} denote iid standard normal variables and, independently, & is a random variable with

finite eighth moment E[¢8] < oo;

Then, the naive bootstrap version Ty, ,,in.(Xo) of Tn = \/n/3p, (X0)[(Bn,, Xo) — (B, Xo)] satisfies

that, as n — 00,

P*(T»

n,naive

(Xo) < 91 X0) = P(Tu(X0) < ylXo) & @(y+0(r)Z) — 0(y), yeR,

as elements in D, where Z denotes a standard normal variable with distribution function ® and

o(1) > 0 denotes a constant (cf. (3.18)). Thus, the naive bootstrap is inconsistent.

Remark 10. A take-away from Proposition 13 is that the naive bootstrap can fail with simple
regressor structures, such as Gaussian X (i.e., £ = 1 above), though Condition (b) of
Proposition 13 serves to accommodate a larger class of regressor distributions with potential

dependence among FPCs.

Remark 11. The naive bootstrap (3.17) in Proposition 13 can be shown to be valid upon
restricting 7 = limy, 00 A /g, = 1, which in case o(7) = 0 (cf. (3.18)) so that the distributional

limit becomes zero in the result. Essentially, bootstrap centering 5* = Bgn must be confined to
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the original FRCR estimator Bhn (i.e., gn = hy). Further, neither the proposed or naive PB

approach is generally valid if 7 = lim;, 00 hp/gn < 1 (cf. Proposition 14).

By Proposition 13, for increasing n, the distance between the true distribution function of the
studentized projection estimator T}, (Xp) and that of the naive bootstrap approximation

T*

o naive(X0) does not converge to zero at any point on the real line, but rather behaves as a

randomly drawn number in (—1,0) or (0,1) at each y € R. A similar bias issue, though, does not
arise with standard applications of PB to regular finite-dimensional linear regression models
(cf. [22]). A way to envision the bias of the naive bootstrap in FLRMs is as follows. From the

proof of Proposition 13 and due to a construction bias, quantiles from the naive bootstrap

*

approximation 17 .

(Xo) in (3.17) are shifted from those of a valid bootstrap approximation
1, :(Xo) in (3.14) by a random contribution, say B, that depends on the original data but not

the bootstrap sample; in large samples, this bias amount B,, ~ T;;mwe

(Xo) = T;; 4(Xo) acts like a

draw from a normal distribution with mean 0 and variance
oo
o*(r)= (1= 771 [ IT28)12 /3 3508 +1 (3.18)
j=1

where 7 = limy, o Ay /gn > 1 and so is non-ignorable if 7 > 1. See the supplement [54] for more
details. This bias behavior can also be observed practically. Figure 3.2 contains a numerical
illustration based on 1000 experiments generated from an FLRM with regressor X and error ¢ as
described in Proposition 13. We examine the resulting distribution of the construction bias B, in
the naive approach when h, /g, > 1. Figure 3.2 shows the distribution of this term B,, is
remarkably different from zero in small samples, even when h,, = g, + 1. The bias B, is
non-ignorable and becomes quite influential as the ratio h, /g, becomes larger. The latter
observation matches the theoretical result in (3.18), underling Proposition 13, in that the
distributional spread of bias B, is greater as the ratio h, /g, increases. Further simulation results
in Section 3.5.1 indicate that naive bootstrap intervals also tend to over-cover.

For clarity, both naive and modified PB may fail if 7 = lim,,_o0 hn/gn < 1 due to a different
source of bias (i.e., apart from the construction of the bootstrap estimator B,’:n), which relates to

centering in the CLT (cf. Remark 9). This bias does not vanish if h, /g, < 1, which arises because
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n=200, h,= 4, g,=4 =200, h,= 5, g,=4 =200, h,= 7, g,=4
0.251 0.251 0.25
0.20- 0.20- 0.20
0.151 0.151 0.154
0.10- 0.10- 0.10
0.051 0.05- 0.054
>‘000- T T  ; T 000- T T T T T 000- 1 T T T T
£ 50 25 00 25 50 50 25 00 25 50 50 25 00 25 50
=
8 n=1000, h,= 6, g,=6 n=1000, h,= 7, g,=6 n=1000, h,= 9, g,=6
0.251 10.0 0.25
0.201 . 0.20
0.151 0.154
5.0
0.101 0.104
0.054 257 0.054
OOO- T T T T 00- T T T T T 000‘ T T T T T
50 25 00 25 50 50 25 00 25 50 50 25 00 25 50

Bootstrap Construction Bias

Figure 3.2: Kernel density estimates of a construction bias B,, in the naive bootstrap. Plots have
a common z-axis, and the bias is zero when g,, = hy,.

any estimator Bgn, playing the role of the true slope 5 in the bootstrap world, cannot capture the
infinite dimensionality of 5. This failure is illustrated in Proposition 14, with details in the

supplement [54].

Proposition 14. Suppose the assumptions of Theorem 8 along with T = lim, o0 hyn/gn € (0,1).
We further suppose Conditions (a) and (b) in Proposition 13. Then, as n — oo, both naive
Ty naive(Xo) and modified Ty, (Xo) bootstrap renditions of T, = n/5n, (X0)[(Bh,, Xo) — (B, Xo)]

fail to provide asymptotically correct distributional approximations. Namely, the convergence in

Proposition 13 holds for T} (Xo) upon redefining o (1) there as v7—1 —1 > 0, and this same

;naive

result holds also for T (Xy).

To summarize our bootstrap distributional results, the asymptotic ratio
T = limy—y00 hn/gn € (0,00) plays a significant role in PB methods. If h,, is asymptotically larger
than g, with 7 > 1, our modified PB is applicable (Theorem 8) while the naive PB may provably
fail (Proposition 13), even with simple FPC scores. If 7 = 1, both PB methods work, though the
naive one requires a stronger tuning parameter condition n =/ QhZ/ 2 (log h,)® = O(1)

(cf. Remark 11). Thus, the naive PB requires asymptotic equivalence of h,, and g,, and becomes
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invalid when h,, is asymptotically larger than g,. In contrast, the modified PB enjoys additional
flexibility in setting h,, and g,, which will be shown to result in better numerical performance in
Section 3.5. Namely, simulation evidence indicates that our modified PB produces good and
stable coverages over different h,, > g,, while the performance of the naive PB can be more
sensitive to the ratio h,/g,. Finally, if h,, is asymptotically smaller than g, with 7 < 1, both PB
methods might fail due to the bias from the finite dimensionality of the estimator Bgn, serving as

the bootstrap rendition of the true slope parameter 5 (Proposition 14).

Remark 12. The bootstrap theory in Theorem 8 and Proposition 13 can be generalized in that
the ratio h,, /g, need not have a convergent limit, and 7 = lim,,—,o0 /g, may be replaced by

7 = liminf,, 00 hn/gn-

3.4 Hypothesis tests for projections onto finite-dimensional subspaces

The testing of the association between the functional regressor X and the scalar response Y in
FLRMs has drawn much recent attention in the literature. [8] first proposed a global test of 5 =0
by assessing the covariance operator for A = 0, and several works have similarly considered
various global tests [11, 24, 31, 40, 41]. In contrast, [36] and [49] focused on testing of
(By¢1) =+~ =(B,¢r) = 0 for some pre-fixed integer L, where {¢;}72, denotes the set of
eigenfunctions of I' = E[(X — E[X])®?]. However, none of these previous works applies to testing
the orthogonality of 8 to generally specified regressor points. In this testing problem with
FLRMs, though, the proposed PB method from Section 3.2 can be adapted to assess projections
of the slope function 8 onto subspaces spanned by general directions.

To frame the testing problem, let Xy = {XOJ}ZL: ; denote a collection of regressors
Xo,1,.-.,Xo,r, under consideration, for some integer L > 1. Letting I1x, 3 denote the projection of
the slope function 8 onto the linear subspace span(Xj) C H spanned by Xy, we wish to test the

null hypothesis

Hy:Ily,8 =0 against Hj: Hp is not true,
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regarding the orthogonality of 8 to span(Xj). The null hypothesis is equivalently stated as
(B,Xo04) =0foralll=1,...,L. As the bootstrap results in Section 3.3 apply for a given
regressor Xg, a PB-based testing procedure can be formulated to assess this type of hypothesis.
An advantage is that this approach provides a specific test of whether regression effects exist in
any pre-defined directions, while a global test about 3 (e.g., based on the covariance A) is not
amenable to this purpose. Additionally, essentially all of the previous works on hypothesis testing
for FLRMs rely on independent error assumptions, while our bootstrap-based testing procedure
provides a first work on addressing such testing problems in FLRMs under dependent errors and
heteroscedasticity.

To describe test statistics, write

n
8h,, (Xo,1)

to denote the studentized projection estimator (3.13) for each direction with centering

Hy
Tn,l

</3hn7X0,l>7 l:17"‘7L7 (319)

(X0, ) = 0 under the null hypothesis. We may define test statistics by combining these

direction-based statistics as

T*o

n,l

L
2
W2 = Z [THO} and  Wj max = max , (3.20)

)l 1<I<L
=1 ==

representing Lo- or Loo-type norms. Large values of such statistics then provide evidence against
the null hypothesis. While both test statistics are well-defined with non-degenerate limit
distributions under the null hypothesis, these limit laws are complicated under heteroscedasticity,
depending intricately on covariances between estimated projections. Consequently, these limit
distributions are impractical for direct use. However, the sampling distributions of test statistics
can be viably approximated with the proposed PB method and, in fact, there exist two ways of
implementing the bootstrap here: by enforcing the null hypothesis at the bootstrap level or not.

If we do not enforce the null hypothesis in the bootstrap world, then we essentially adopt the
same PB procedure described in Section 3.3.2 (i.e., Theorem 8). That is, we may formulate

studentized bootstrap quantities, similar to (3.16), as

n ~ ~
= B X)) — By Xo), l=1,....L
n,l,§ §;<Ln (X[),l) [<ﬁhn 0,l> </Bgn 0,l>]
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based on the same bootstrap sample {(X*,Y;*)}" ; and a common estimator Bgn playing the

bootstrap role of 5. The bootstrap test statistics are then given by

L
2 = Z [T*Lé*]Q and W, .. = max }T;J,é*

— n, n,max 1<I< L,

, (3.21)

To enforce the null hypothesis in the bootstrap world, we modify the PB procedure described
in Section 3.2.2, letting Bgn = Bgn — HXoBgn rather than Bgn denote the bootstrap analog of the
slope 3. Here Bgn denotes a version of Bgn after removing its projection Iy, Bgn onto the subspace
spanned by Xp. With this change, it holds that Ily, Bgn =0 and so ﬁNgn mimics the same property
ITx, 8 = 0 of the true parameter 3 under Hy. To formulate bootstrap data, we also write a
response variable Y; = Y; — (T, Bgn, X;) after removing a projection contribution from ITx, Bgn
with respect to X;. A PB sample {(X/, f/z*) ?_, is defined by iid draws from the empirical
distribution of {(Xj, Y;) " ,, and the same development from Section 3.2.2 then applies with the
change that Y;*, Bgn, Y there become ffi*, 3%, Y =n! Sy Y, =Y — (onﬁgn,X>. That is, a
baseline estimating function becomes

)= (X7 - XY - V) — (X} - X)¥%8,

(2

=

Ui (8 X,

and its bootstrap expectation at (g, is E*[W¥(B,,; X, 17')] = Up.g,., similar to (3.7); a
mean-corrected estimating function is then W} (3; X, }:/) = U (B; X, 3:/) - Un,gn§ and the bootstrap
version an of the original FPCR estimator 3, is the (regularized) solution to the bootstrap
empirical average n=! Y1 W (3; X*, 3:/*) =0 with X*=n"13"" | X7 and Ve =nl S Y

from the bootstrap sample. The bootstrap estimator then has a closed form as
B, = (50 7HA, = Unga)
in parallel to (3.8) with A¥ =n~1 S0 (V) — ?*)(XZ* — X*) in place of

A:‘L =n! S (Y —Y*) (X} — X*). When enforcing the null hypothesis at the bootstrap level,

bootstrap versions of test statistics in (3.20) are then given by

L
2
;’Lz = Z {T*HO} and W’ = 1max T

n,l n,max
=1

: (3.22)
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with

T*Ho = _n

. (oD B Xog), 1=1,...,L,
denoting the bootstrap rendition of the estimated projection quantities 7T’ f ¢ from (3.19) under Hy.
Above 8}, denotes estimated scaling, akin to §p,,, computed from the bootstrap sample
{(X7, Yy

The following result guarantees that, under the null hypothesis Hy : I1x, 8 = 0, the
distribution of test statistics W,, 12 and Wy, max in (3.20) can be approximated by either bootstrap

approach: enforcing Hy as in (3.22) or not as in (3.21).

Corollary 7. Let W,, denote a test statistic Wy, 12 or Wy max and let W denote its paired
bootstrap counterpart, computed either as in (3.21) or (3.22). Under the assumptions of
Theorem 8, if the null hypothesis Hy : Ilx,8 = 0 holds, then
sup |[P* (W, <wl|Xy) — P(W,, < w|Ap)| 20 asn— 0.
weR
While both implementations (3.21)-(3.22) of PB are valid for testing, numerical studies
suggest that enforcing the null hypothesis (3.22) can have better performance in both size and

power. This is explored further in Section 3.5.2.

3.5 Simulation studies

Section 3.5.1 summarizes numerical studies of the PB and other methods for calibrating
confidence intervals for projections in FLRMs. A rule of thumb for selecting the tuning
parameters (ky, hy, gn) in the bootstrap procedure is also examined. Section 3.5.2 then

investigates the performance of the bootstrap test from Section 3.4 regarding projections.

3.5.1 Performance of bootstrap intervals

Here we examine, through simulation, PB confidence intervals for a projection (3, Xo). To

describe the data generation, we independently simulate n curves &;, = {X;}!' ; from a truncated
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Karhunen—Loeéve expansion:

J
x4 Z NG, (3.23)

j=1
with J = 15. Above {¢; : j =1,...,J} denote the first J of the Fourier basis functions
{1,sin(27t), cos(2nt),... } on [0,1]. The FPC scores are defined as &; = (W, where W; S N(0,1)
and ¢ follows a t(v) distribution with chosen degrees of freedom v € {4,5,7,9,00}. This entails
that FPC scores are uncorrelated, but dependent. The eigengaps in (3.23) are defined with a
polynomial decay rate involving a parameter a > 0, namely ~; — ;41 = 257 %, j > 1 where
v = Zj; j~%. Using the same basis functions, the slope parameter is set to g = ijl Bjdj,
where 3; = 3j 7bW/37j has a polynomial decay involving a rate parameter b > 0 and the terms Wg ;
are fixed upon drawing these as iid from a distribution P(W3; = 1) =1/2 = P(W3; = —1). We
consider various scenarios involving different polynomial rates and sample sizes:
a,b e {1.5,2.5,3.5,4.5,5.5} and n € {50,200, 1000}. For brevity, we report some representative
numerical results here, though full results can be found in the supplement [54]. All the function
values are evaluated at 100 equally-spaced time grid points in [0, 1]. Response values {Y;}" , are
then generated through the FLRM (3.4) as follows. To consider both homoscedastic and
heteroscedastic scenarios, errors €; are generated to be either independent from or dependent on
the regressors X;. For a given generated regressor X;, a dependent error ¢; is simulated from a
chi-square distribution x?(v(X;)) — v(X;) with v(X;) = || X;||?/2 degrees of freedom. In this
heteroscedastic case, the conditional variance of an error depends on the regressor value X;, and
the marginal variance of an error is var[e?] = tr (I') = ijl 7;. Due to the latter, we also generate
errors €; with the same marginal variance, independently from regressors X;, with a centered
chi-square distribution x?(v) — v with v = tr (I') /2 degrees of freedom in homoscedastic cases.
The supplement [54] provides further results with other error distributions, which are
qualitatively similar. In each simulation run, a regressor X for projection estimation is also
generated by (3.23).

We consider both PB and naive PB implementations for computing two-sided 95% intervals

for a projection (Xo,3). In the original data FPCR estimator 3, from (3.5) and estimated
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scaling §,, from (3.11), we varied the range of the truncation parameters hy, g, € {1,...,15} and
we set k, = 2[n1/”] with v = 2a + 1 + v1 for a small v; = 0.1 for consistent estimation of Bkn in
scaling (3.11) (cf. Theorem S1 of the supplement [54]). To recall, k,, is used to reconstruct the
residual as used in the scaling factor (3.11), g, is for constructing the bootstrap centering, and h,,
is the truncation used by the actual and bootstrap estimators (see Theorem 8). For simplicity
here, we focus on symmetrized intervals in the PB implementation involving bootstrap
studentization (e.g., T} 5 (Xo) in (3.16)) as well as a naive PB counterpart defined by replacing
scaling 85, (Xo) in (3.17) with a bootstrap sample counterpart 8j (Xp) from

Bzmmwe = (f’,;n)_lﬁ;;; further comparisons with non-studentized versions of PB (e.g., T); ;(Xo) in
(3.14)) or non-symmetrized intervals can be found in the supplement [54], though bootstrap
studentization steps tend to induce the best performances. For comparison, we also consider
intervals based on normal approximations with estimated scaling §,, (Theorem 7) or residual
bootstrap (RB) (cf. [53]). For each generated data set, bootstrap distributions are approximated
by 1000 Monte Carlo resamples.

We also propose a rule of thumb for setting the tuning parameters based on simulations for all
the parameter combinations. We suggest to set g, = ky, and h,, = [1.113k,] being a slightly larger
value than g,; the value of k, can be selected in practice by cross-validation minimizing the
prediction errors. Our rule of thumb is found by considering all scenarios and truncation levels
producing coverages of PB intervals within 1% from the nominal level 95%, and running linear
regression of response (hy, gn) on ky. This rule targets to make appropriate choices of (hy, gn), as
most critical to performance of PB, in relation to k,. Setting g, = k, aligns with the appropriate
choices for the RB [53].

For each 95% interval procedure for (X, ), empirical coverages were approximated by 1000
simulation runs over each data generating model and sample size. Figure 3.3 displays observed
coverage rates from different methods under a few selected scenarios when a = 2.5, b = 5.5 and

& ~ t(5); see the supplement [54] for results over all scenarios. For clarity, the results in Figure 3.3
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focus on the case that g, = k,, for both PB and RB while varying h,,. Coverages for the PB

method under the proposed rule of thumb are indicated using crosses in Figure 3.3 for reference.
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Figure 3.3: Empirical coverage rates of 95% intervals for (3, X) from CLT (black), RB (green),
PB with studentization (red), and naive PB with studentization (blue), over various truncations
h, when the decay rates for v; — ;41 and 3; are set to be a = 2.5 and b = 5.5 and the latent
variable for the FPC scores is £ ~ t(5). In particular, for errors dependent on regressors (lower
panels), the coverage curves of CLT/RB intervals are cropped as these perform poorly. Crosses x
indicate coverage rates with h,, selected by the proposed rule.

As a first observation from Figure 3.3, the coverages from intervals based directly on normal
approximation (CLT) exhibit sensitivity to the truncation level h,, and also under coverage,
particularly when the sample size is small. Under heteroscedasticity, both the CLT and RB
methods perform quite poorly and lie at least partially outside of the charting regions in
Figure 3.3. In fact, RB is not asymptotically valid in this case and the coverages are quite low to
the extent that coverage curves do not appear in the figure, even for large sample sizes n = 1000.
In contrast, PB intervals perform much better under the heteroscedastic models. For independent

errors, while RB assumes and uses the true model structure (homoscedasticity) and PB does not,
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the PB method has very similar performance to RB for large sample sizes (n = 1000) and exhibits
comparable performance for smaller samples (n = 50 or 200). Our rule of thumb provides
reasonable coverages in most cases for PB intervals.

Figure 3.4 displays the corresponding average widths of intervals, which generally increase
with h,. Importantly, this figure indicates that intervals from RB and CLT approximations are
often overly narrow under heteroscedasticity, which relates to the low coverages in Figure 3.3.
Figures 3.3-3.4 also demonstrate that our rule of thumb seems to suggest an optimal truncation
hy in the sense that the corresponding intervals balance good coverage rates with lowest average
widths. Finally, while the naive PB implementation is asymptotically invalid in the sense of
Proposition 13, the latter finding also suggests that the bias in the naive PB should translate to
over-coverage for symmetrized intervals in Figure 3.3. Even for large sample sizes n = 1000, naive
PB intervals tend to over-cover projections, while their average widths are larger than those from
the proposed PB. Moreover, the coverages of naive PB intervals are unstable against the choice of
truncation level h,, while our modified PB produces stable coverages close to the nominal level for
all h,, > g, and moderate to large sample sizes n = 200 and 1000. The over-coverage problem in
the naive PB also worsens as truncation levels h,, deviate from the case h,, = g,,. This can be
interpreted as the construction bias from the naive bootstrap negatively impacts this method,

even as the sample size increases.

Remark 13. To investigate the effect of the moments of the regressor X on interval performance,
we also varied the distribution of £ in (3.23) over different ¢(v) cases with v € {4,5,7,9, 00},
where ¢(4) provides an example that does not satisfy (A2). Figures in Section S3.1 of the
supplement [54] show that, under heteroscedasticity, both unsymmetrized and symmetrized
intervals from the proposed PB (either with or without bootstrap studentization steps) are fairly
robust to the moment of X, while the RB is quite sensitive to the number of finite moments of X;
the coverages of the RB method tend to increase to the nominal level as more moments for &

become available, though the coverages remain quite low. However, regardless of the available
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Figure 3.4: Average widths of 95% intervals for (53, Xo) from methods over different truncation h,,
when the decay rates for v; — ;41 and ; are set to be a = 2.5 and b = 5.5 and the latent variable

for the FPC scores is £ ~ t(5): RB (green), PB with studentization (red), and naive PB with
studentization (blue). Crosses x indicate coverage rates with h,, selected by the proposed rule.

moments for £, the PB method with bootstrap studentization (3.16) performs well in most cases

based on our rule of thumb.

3.5.2 Performance of bootstrap tests of projections

We now turn our attention to the testing problem discussed in Section 3.4. We investigate the
empirical rejection rates of the bootstrap testing procedure when enforcing a null hypothesis of
projection orthogonality, with bootstrap statistics from (3.21), or otherwise, with bootstrap
statistics from (3.22).

The data generation for purposes of study are generally the same as considered in
Section 3.5.1 with & ~ N(0,1) and a = 2.5, with the exception that we modify the definition of the

slope function § to describe different hypotheses. For testing, the target predictors are considered
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as Xy = {¢; }?:1 based on the first six Fourier basis functions and we wish to assess the
orthogonality of 5 to the subspace spanned by Xp (i.e., Ilx,8 = 0). Under the null hypothesis, the
slope function is defined as 70 = i>6 W3.;18j]¢;, while the true data-generating slope is
defined as 1 = (1 — p)BHo —i—pZ?:l Wg ;|Bj|#; in terms of a proportion p € {0,0.1,...,0.9,1}
for prescribing a sequence of alternative hypotheses; here |3;| = ¢j % holds with ¢ = 50 and

b= 3.5, and the value p = 0 renders the null hypothesis with the slope g0,

We consider bootstrap tests of Hy : Iy, = 0 based on a nominal size 5%. For each simulated
dataset, 1000 bootstrap resamples are used to approximate the distribution of test statistics in
(3.20). Truncation parameters h, and g, are again selected by the rule of thumb suggested in
Section 3.5.1 based on k. Using 1000 simulation runs for each data generation scenario (level of
p) and sample size n, we compute rejection rates by the proportion of times that an original test
statistic exceeds the 95th percentile of bootstrap test distribution. The supplement [54] contains
more details and findings over different sample sizes n € {50, 200, 400, 600, 800, 1000} as well as
both test statistic forms from (3.20); we present results for n = 50 here with maximum or L,

statistic form W, max, as other results are qualitatively similar.
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Figure 3.5: Empirical rejection rates (when n = 50) of the bootstrap testing procedure as the
degree/proportion p € {0,0.25,0.50,0.75, 1} of the alternative increases (only p = 0 corresponds
to a true null hypothesis). The test may enforce the null hypothesis (red) or not (blue) in the
bootstrap. The black horizontal line represents the nominal 0.05 size.
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The resulting empirical rejection rates are summarized in Figure 3.5. As perhaps expected,
the power of the test increases with the degree p of how much the null hypothesis is violated,
whether enforcing the null hypothesis (3.22) or not (3.21) in bootstrap. However, enforcing the
null hypothesis maintains size better (i.e., when p = 0), which then also leads to slightly better
power here. Another advantage to bootstrap enforcement of the null hypothesis is less sensitivity
to choices of truncation parameters hy, g,. Results in the supplement [54] indicate that honoring
the null hypothesis in bootstrap typically ensures good performance in testing as truncations

hn, gn are varied, which is not equally true for the bootstrap version that does not enforce the null

(e.g., small g,).

3.6 Real data analysis

Atlantic Continental Pacific Arctic

Daily temperature

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Days

Figure 3.6: Daily temperature curves of locations in four different regions. Each black curve
corresponds to the averaged in one location over 1964 to 1990, and the regional average curves are
denoted in bold pink lines.

Bootstrap intervals and tests for projections are demonstrated with applications to Canadian
weather data; another data application to medfly data is given in Section S4.2 of the supplement
[54]. We analyze the Canadian weather dataset from the R package fda consisting of daily
temperature and precipitation at 35 different locations in Canada [cf. 45]. The regressor X; is the
daily temperature on each day averaged over 1960 to 1994, and the response Y; is the log of total

annual precipitation with base 10. Here, ¢ indexes the n = 35 weather stations that record the
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temperatures and precipitations. The regressor curves X; are displayed in Figure 3.6, where the
thicker lines represent the average for four different regions in Canada, namely, Atlantic,
Continental, Pacific, and Arctic regions. The new predictors Xy = {XOJ}f:l under consideration
for bootstrap inference are selected as these four average curves in each region as illustration. The
centered observations are obtained as X¢ = X; — X, Y =Y; — Y, and Xg,=Xoi— X before
bootstrap inference. We will conduct inference of projections based on the proposed PB when the
new (centered) daily temperatures are taken from X§ = {X&l}f:l.

Each weather station is located in one of the four regions, where each region exhibits a
different pattern as shown in Figure 3.6. This leads us to suspect the existence of different
conditional variance of errors in FLRM (3.2). To investigate the heteroscedasticity, we estimate
the variance from residuals for each region as 6,1, = {n; LS ier (Y — (B, Xf>)2}1/2, where Z,
and n,., respectively, denote the index set of and the number of location in the rth region. Here,
the estimator Bkn used for computing residuals is constructed from the combined data
D¢ = {(X£, Y)Y, over all four regions. As shown in Figure 3.1, homoscedastic error models
seems implausible for this dataset. A similar conclusion is deduced from the residual plots given
in Section 4.1 of the supplement.

Applying different bootstrap methods, the endpoints of 95% (symmetrized) confidence
intervals for the (centered) projections {(g, Xg,l>}?:1 are given in Table 3.1. Here, the less
consequential tuning parameter k, = 2 was selected via repeated cross-validation, which
minimizes prediction errors over estimates from Bkn, while h,, = 2 and g,, = 2 was then chosen by
the rule of thumb suggested in Section 3.5.1. The supplement provides further results with
different tuning parameter choices. As expected under possible heteroscedasticity and shown in
Table 3.1, the results for residual bootstrap (RB) are quite different from those for PB, whether
the latter is based on bootstrap studentization as in (3.16) (denoted as PB_std) or not as in (3.16)
(denoted as PB). This distinction is also seen from a comparison of interval lengths in Table 3.1.
Compared to the overall average, the Pacific region has the highest range of annual precipitation

while the Continental region exhibits less precipitation with relatively narrow widths for both
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Table 3.1: 95% symmetrized confidence intervals for projections { (3, Xgﬁ}?:l from RB, PB, and
PB with studentization for Canadian weather dataset. The ratios of widths of RB intervals to
widths of either PB or PB_std intervals are given in the parentheses.

RB PB PB_std
Atlantic | [0.06, 0.11] | [0.05, 0.12] (1.32) | [ 0.05, 0.12] (1.29)
Continental | [-0.19, -0.08] | [-0.18, -0.09] (0.84) | [-0.19, -0.08] (1.03)
Pacific | [ 0.18, 0.36] | [0.19, 0.35] (0.91) | [0.18, 0.36] (1.03)
Artic | [-0.49,-0.19] | [-0.58, -0.09] (1.61) | [-0.57, -0.10] (1.55)

regions. The annual precipitation of the Atlantic and Arctic regions are respectively in either
higher or lower range than the overall average, but with wider widths.

We apply our bootstrap testing procedure to this dataset for testing the null Hy : ILye 5=0.
Note that, because the regressors Xj§ = {X&l}?zl are centered by an overall average, this
assessment is equivalent, in ANOVA fashion, to testing the null hypothesis of the equality of
means across the four regions. The corresponding p-values are given in Table 3.2. All PB-based
test statistics used strongly support that the slope function  is not orthogonal to the space
spanned by the predictors . That is, the data suggest that the true (uncentered) rainfall mean
responses { (0, Xo,ﬂ}?:l are not equal at each regional mean curve and cannot be simultaneously
equal to a common mean response (3, X) at the global mean curve. This finding supports the

region-wise PB intervals in Table 3.1.

Table 3.2: P-values for bootstrap testing of the null hypothesis Hy : Ilx¢8 = 0 with different
statistics for Canadian weather dataset.

Enforcing the null | FALSE TRUE
L2 0.000 0.001
Max 0.000 0.002
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3.7 On establishing the CLT

We briefly outline of the proof of the CLT in Theorem 7; more technical details are provided

in the supplement [54].

Proof of Theorem 7. The proof uses the following bias-variance decomposition of the functional

principal component estimator Bhn with respect to the true slope parameter j3:
Bhy — B =bn + T}, Uy, (3.24)

where, upon scaling \/n/sp, (Xo), the quantity I‘,:: U,, determines the normal limit while a
remainder/bias term b,, = Bhn —p-T ,;nl U,, converges to zero in probability. Above
U, =n"13" (X; — X)(g; — &) represents the cross-covariance between the regressors

X, = {X;}", and the errors {g;}7;, with X =n" !> | X; and e=n"1 3" | &, and further

F;nl = Z;@l fyj_17rj denotes a truncated version of the inverse covariance operator
r-'= Z;’il yj_lﬂj with 7; = ¢; ® ¢; for integer j > 1. The supplement [54] shows that, as
n — 0o,

P < % (b, Xo)| > n‘X0> 20 (3.25)

holds for each 1 > 0. The distributional convergence of the term F,:nl U, is stated in the following

proposition, where the proof is deferred to the supplement [54].

Proposition 15. Suppose that Conditions (A5)-(A7) hold. Asmn — oo, if n= h2 — 0 holds, then

P

sup — 0.

yeR

<F;;3Un,Xo> < y‘X()) - ®(y)

n
)
( Sh,, (Xo0)
Theorem 7 then follows from (3.25) and Proposition 15 under the decomposition (3.38); see

also Propositions S1-S3 in the supplement [54]. O

3.8 On proofs for the paired bootstrap

We sketch the proofs of Theorem 8 (consistency of the paired bootstrap) and Proposition 13

(inconsistency of naive paired bootstrap); further details appear in the supplement [54].
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Proof of Theorem 8. To show bootstrap consistency, we consider a bootstrap-level decomposition,
similar to (3.38), as
Br = Bon =V} + T (U — Ung,) (3.26)

where b is a bias term, U, 4, is the bias correction from (3.7), and
Up=n" Y0 (X — X*)(ef gn — Eg,) denotes the sample cross covariance between the bootstrap
regressors { X[ }1' | and the bootrstrap errors {e] , }, where X*=n"tY " X7 and

Egn = n iy Ej g, rom ey =V — (ﬁgn, ). Proposition 16 shows that, upon scaling, the

distribution of ', (U ¥ — Up,g,) under bootstrap probability P*(-|X() converges to a standard

normal distribution.

Proposition 16. Suppose that Conditions (A1)-(A7) hold, and that ||3,, — B|| 2.0 and

n~t Z?”l )\] 1 =0(1) asn — oo. Then, as n — oo,

<F};}(U:7j - Un,gn),X0> < y‘X()) _ ‘IJ(y) P

sup — 0.

yeR

n
” ( sh, (Xo)
The supplement [54] then establishes that a scaled projection involving
= B;l“n - Bgn — F,;:(U;; — Up.g,) from (3.26) converges to zero in bootstrap probability P*(:|Xo),
namely,

P*( Shn( )\< X0>|>?7’X0>£>0, (3.27)

as n — oo, for each n > 0. Using a subsequence argument (cf. [4], Theorem 20.5) for bootstrap
distributions along with Slutsky’s theorem, Theorem 8 then follows from (3.27) in combination

with Proposition 16 and (3.26); see also Propositions S5-S9 in the supplement [54].

Proof of Proposition 16. We write Z;, = (X[e}  — INJn,gn,F;anO) with Uy, g, =n ' 0 Xjer

% zg % 'L,gn

so that E*[Z],|Xo] = 0 and

7<F;7:(U* — Unga): Xo) (3.28)
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where &, =n" 1Y " &, With &, =Y — (Bgn, X;). Conditional on Xy, define the bootstrap
variance 92 = Y1, E*[Z;‘%|Xg] and a bootstrap version of the Lindeberg condition as
n =023  EF [ZZ*%]I(| "l > T0n)| Xo] for given 7 > 0. To establish a bootstrap CLT, we use

assertions (3.29)-(3.32) below, proved in Section S2.4 of the supplement [54]: as n — oo,

2
n — P
B[ D (Xrer - XETIIX ’X 0; 3.29
[{ Shn(X0)< : = hn 0>} 0] s (3.29)
2
n 3.30
(Xo (8:30)
! P
[( 1r£1?<xn| > ’X()] P o; (3.31)
nfl
[ Zl 1 1 ‘X()] P 0. (3.32)
Results in (3.30) and (3.32) further yield that
E* [@fzzii 1 ‘X()] ® 0. (3.33)
i=1

We next write A% = 0,230, Z;2, By = 0,21 ZF21(| 2], | > niy), and

i
Cr = b, ' maxy<i<p, |Z;,,|. Using a subsequence argument on an almost sure set and conditional
on Xy (cf. [4], Theorem 20.5), one can verify that (i) B, — 0 holds in bootstrap probability
P*(:| Xo), because B} < A*I(C}: > 1) — 1-0 in bootstrap probability from (3.31) and (3.33); and
also that (ii) {B;} is uniformly integrable with respect to P*(:|Xy), because B} < A} holds and
{4} } is likewise uniformly integrable by (3.33). When (i)-(ii) hold, then

L, = E*(B*|Xy) — E*(0|X0) = 0 follows along the same subsequence almost surely. Hence, we
conclude that the Lindeberg term £,, converges to zero in probability (cf. [2], Theorem 9.5.1).

This fact, together with (3.29) and the expansion in (3.28), yields

* n -1 * 2 P
sup |P ( — TN U - Ty, X Sy‘X)@y L
yeR Shn(X0)< h"( " nn): Xo) ° )
by Polya’s theorem and the continuity of the standard normal distribution function . O

Proof of Proposition 13. By Propositions S11-S15 and Lemma S39 in the supplement [54], the

naive bootstrap construction 7 nawe(XO) can be written as
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T*

n,naive

(Xo) =T} s(Xo) + A, + By, + Cp, where T}y ((Xo) is the PB quantity from (3.14);

Ar = A% (Xp) is a bootstrap error term that converges to zero in bootstrap probability if
n~Y2ht(log h,)"/? — 0; B, = B,,(Xy) represents a bias-type term that does not depend on the
bootstrap sample and satisfies sup,cg |P(Bn < y|Xo) — ®(y/o(7))] P, 0 with limit variance o?(T)
from (3.18); and C), = C,, (X)) is a negligible term that converges to zero if

n-1/2p2/? (log h,,)® — 0. By writing D,, = B,, + C,, and applying the triangle inequality, we find

* * P
sup |P*(T, (Xo) < y|Xo) — P(Tn(Xo) < y|Xo)| - sup |®(y — Dpn) — @(y)|| — 0,
ye

n,natve
yeR

using that sup,cg [P*(T); ;(Xo) + A4}, < y|Xo) — ©(y)] 20 by Theorem 8 with Proposition S11 in
[54] and that sup e [P(Tn(Xo) < y[Xo) — ()| 2o by Theorem 7. By the continuous mapping

theorem/embedding theorem, we then have
d
(y — Dn) = ®(y) = <I><y + U(T)Z> —®(y), yeR,

as elements in D, based on D,, = B, + Cj, i> —o(7)Z for a standard normal variable Z. The

convergence in Proposition 13 then follows (cf. [4]). O

3.9 Technical details: central limit theorem

This section contains the technical results to prove the central limit theorem (CLT) for
projection estimator under heteroscedasticity provided in Section 3.3.1 of the main text. First,
some preliminary lemmas from functional calculus are described in Section 3.9.1. In Section 3.9.2,
we next prove the consistency of the estimator Bhn for the slope function 5. Section 3.9.3 then

completes the proofs of the CLT described in Theorem 7 of the main text.

3.9.1 Prelimimaries: functional calculus

We introduce some preliminary results from the perturbation theory or functional calculus in
functional analysis. Such techniques are now common in functional data analysis literature. We

refer to [21], Chapter VII, [23], Chapter I, or [33], Chapter 5. Since we reflect centering by
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averages in the estimation unlike the existing works such as [12, 53], the technical lemmas and
their proofs are slightly modified.

Write || - [ and || - ||gs for the operator supremum norm and Hilbert-Schmidt norm
respectively. Let B; = {z € C: |z — ;| < J;/2} be the oriented circle in the complex plane C and
set Cp,, = 2?21 Bj to define the contour integral for operator-valued functions. By the theory

from functional calculus (for the bounded linear operators) or perturbation theory, we see that

h h
thzzwjzmz:/g(zf—r) dz:m/c (21 —T) 7 ldz, (3.34)
j=1 j=1""73 fn
hn 1 hn 1
= *y-_lw = / z_l(zI — F)_ldz = z_l(zI — F)_ldz, (3.35)
hn ; i T om ; B, 2L Ch,
where ; = ¢; @ ¢; = ﬁ (2I —T')~1dz denotes the Riesz projection of I' corresponding to the

Jj-th eigenvalue «y;, which is the projection operator onto the j-th eigenfunction ¢;. One can also
get the empirical counterparts f[hn and f;nl to the above contour integral forms from the sample
covariance operator I',, with the corresponding random contours B; = {z € C : |z — 45| < Sj /2}

and éhn = U?;l l’;’j. For further purposes, we use the following notations:
Gn(z) = (21 =T) V(I = T) (2] —T)~V/%
Kn(2) = (21 =T)Y2(2I = T,,) Y21 = )V
& = (1Gn(2)lloo <1/2,V2 € Bj);
Ap, = {Vj € {L,... ha}s 135 — vl < 65/2}

The following lemmas originally come from [12] and can be generalized to the case when
covariance estimators f‘n and An are centered and when the error variances are heterogeneous.
Lemmas 11, 12, 14, 16, 17 can be proved in the same way as in [12, 53]. Lemma 13 is a
preliminary result to prove Lemma 15 and requires a slight modification due to centering in

estimation. In Lemma 15, we added new results, which are proved from the same argument as the

proof of Lemma 3 in [12].

Lemma 11. Suppose that y; is a convex function of j (which implies that 6; = v; — vj41 is

decreasing) at least for sufficiently large j. Suppose the Condition (A3) holds. Then, for
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sufficiently large j, k € N with k > j, we have

v =k, —2— < Sand 305 < (kD
Vi~ Yk k? e~

Lemma 12. Under the same assumptions of Lemma 11, we have that

D

= -

y < Cjlogj

for sufficiently large j € N.

Lemma 13. Suppose that Condition (A2) holds. We then have that

sup E((Tn — )¢y, 01)?] < @ @
jkeN Vi Vk n

Proof. Note that

(T = D)), d1)? = {(Tn = D)bj, o) — (X205, 1)}
< 2((Tn = 1), 0x)” + 2(X, 6;)*(X,, 61,
where T, =n~ 1 327 | X®2.
To check the upper bound for the first term in the above display, we observe the following

identity:
(Cn = T)obj, 1)

n 2
= {”1 > (X, ¢5) (Xi én) — <F¢jv¢k>}

i=1

n 2 n
(Z (Xi, ;) X@-,m)) —%Z<X@-,¢j> (Xi, &) (Doj, dn) + (T, )
=1 =1

*22 (X 0> (Xis o) + 072> (X, 85) (Xi, dn) (Xir, 65) (X, 1)
£
B %Z (Xi, ¢7) (Xi, on) (Do, dn) + (Dj, o).
=1

Since X; and X; are independent and

E[( X5, ) (Xi, )] = ELX %0, d1)] = (E[X )¢5, bk
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we have that
E[(T — )y, 60)°)
=0 E[(X.05)° (X, 00)°] T (D05, 600" — 2065, 60 + (D05, 0n)
=n~" (EL(X. )7 (X, 00)"] = (Do, 00)°)

<n”lymElE ] < %\/@J\/@ﬂ

Since sup;ey E[gﬁ < oo by assumption, we see that
n = 2
sup —E[(T), = T)¢j, ¢k)°] < .
j.keN Vi Vk
To investigate the next term, we first consider the case of j # k. Then, we have
E[(X, 6)%(X, éx)?]

n

=n"" Z E[(Xi, 6;)*(Xir, én)*] + 07" Z E[( X, 65)*(Xi, o))

ii! i=1

=n"Y(n? — n)y;m + nE[(X, ¢;)2(X, o) 2]}

<n 4 {(nQ — n)Y Yk + Yk \/@\/@}

<n~H(n* — n)yvk + Cnyjve}

SC’Yj’QYk
n

since sup;ey E[gjf] < 0o by assumption. Similarly, if j = k, then
E[(X, ;)]

=3n"" Y "E[(Xi, ;) (Xir, 65)°] —42 (X, 6)"
14/
<Bn~H(n* —n)y; + 073}
<ok,
n
We thus have that

77,2

E[(X, ¢,)*(X, ¢r)?] < <.

sup
j.keN V5 Vk
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Lemma 14 (Second resolvent identity). The difference between the resolvents of I'n and T can be

written as
(2 =T V= (2 =) L= (2 =T,) ([ = D) (21 = T) 7

= (2l =)' T, = D) (21 = T,) 7,

and hence,

A

(21 =T)7 = (21 =)7L = (21 = 1) Y2K,(2)Gn(2) (2] —T)7V/2,

Lemma 15. Suppose that v; is a convex function of j at least for sufficiently large j. Also,
suppose that sup ey E[f;l] < 00. Suppose that Conditions (A2)-(AS3) hold. Then, for sufficiently

large j, we have the following.

1. E [sup.cp, [Ga(2) ] < Cn™'(jlog )%
r _ 2 . .
2. E SUP-es, |(zI =T I/QXH ] < Cjlogj;

5. E |sup.ep, (=1 = T)"V2X || < C(jlog)?; and

4. E [supep [|(z1 = T)720, || < cntor .

Proof. The first and second assertions are proved in [CMS]. For the third part, with a similar

argument to the proof of Lemma 3 in [CMS], we have

2

1/2 v (14 ’kak %’52'
sup |[(=1 —T) 72X | < 4 Z
ZGB]' | 'Yk’

PI= W& Z T 254

o — vl — vl 8ilv; — ’Yk! ’
which implies that
2
_ YVk Vi Vk 7
T -D7PXN <O\ 3 p T Y G - o
z€B; Ik £k — MY — Yk Vi — Yk

< C(jlogj)*.
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For the last part, we note that

(=1 =T)"V2Un® = |I(=1 = T)7V/20, — &(=1 = 1)"2 X2

< 2||(2f —T)~Y20, |1 4 28%||(=] — T)" /2 X2, (3.36)

where U,, = n~! Yo eiXi.
To bound the first term in (3.36), note that
(=1 = 1)~ /20,
n
=2y (=L = T)7V2X| %

i=1
+n2 Z((ZI —D)"Y2X;, (21 = 1) Y2 X )esen,
i
and

sup |[(z] — F)_l/QUnHQ
ZEB]'

<n7?) <sup (=1 — r>—1/2Xi|r2) &

i=1 ZEB]'

+n2 Z (sup (I —=T)"Y2X;, (21 — F)_l/QXm) EiEql -
i ZEBJ'

This implies that

E [sup (2] —T)~Y200,|12
ZEBJ'

<n'E [sup |(z1 — F)l/QX\QzSZ]

ZEB]'

since

E [(sup (zI =T)"V2 X, (2] — 1‘)‘1/2Xi/>> 6i5i/]

ZEB]'

ZEB]'

=E [(Sup ((zI =T)"Y2X;, (21 — F)_1/2XZ~/>> E[aisi/|Xn]]
=0
from Ele;eir|Xy,] = E[ei| X |E[eq | X = Eles| Xi]E[er| Xir] = 0. By Equation (5.3) in [33], for z € Bj,

-1
H(ZI . F)_1/2||oo _ <rl%11\111 |Z N ,yl’1/2> _ ‘Z _ ’Yj’_l/2 — (5j/2)_1/2~
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This implies that

sup [|(=1 —T)~1/2)5|| Xe|?

ZEBj

E [sup (2] — r)—1/2XH?g2] <E
ZEBJ'

—-1 21 -1
< 26; E[[| Xel["] = 2tr(var[Xe])d, .
Meanwhile, to find an upper bound for the second term in (3.36), note that
E lsup Iz — F)_1/2X\|252] < sup ||(z1 — I)72|PE[| X&l|*] = 257 "E[|| X?].
ZGB]‘ ZGB]'

We see that

2

IXel? =n~* ) Xigio|| =n~t D (X5, X])eigen.

1,50 1,710,

Since E[g;|X;] = 0, we have that

E[I Xel®] =n~* Y E[(Xi X]ed .

i io
Note that E[(XZ-,X{>5Z2O] < E[|| Xsei 1| X e |l] < E[HXZ-@-OH2]1/QEH|X{51-0H2]1/2 by Cauchy-Schwarz
inequality. If i # do, E[[| Xeq]1?] = E[|| X:][?]E[e7)] < oo. If i = o,

E[|| Xie:]|?] = E[|| X¢||?] = tr(var[Xe]) < co. This implies that
E [l Xe?] <Cnt, (3.37)
and hence,
E |sup [[(z —T)7Y2X|%e?| < Cn7'6;".

z€B;

Lemma 16. Suppose the same assumptions of Lemma 15. We have that

sup,eg; [Kn(2)|locle; < 2 almost surely and P(E5) < Cn~12jlogj.

Lemma 17.
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1. We observe that

1

I, — I, = 5 {(zI = T) "' = (2 =)'}z + riglae
T Jey, n
- 1 R
Dol =Dt = o [ eI =)™ = (I =) Ydz + raallag,
Chp,
where
A 1 .
T1in hn 27TL Chn (Z TL) Z,’7
. 1 R
-1 _1 _1
Ton = th — 277”/ Chn z (ZI — Fn) dZ

2. Suppose that «y; is a convex function of j at least for sufficiently large j and that

SUpjen E[f;-l] < 0co. We then have that

hn hn
P(A5, ) < Cin 125;2 + Con I/QZjlog]
j=1 j=1

Remark 14. Instead of the fourth result in Lemma 15, one can derive a more specific upper bound
of E [supzij H(z[ - F)—1/2Un|ﬂ under some error structures. For example, if either E[e%] < oo
or E[e2|X] = > pjz(X, ¢;)? for some {pj}52, with 3722, 'yjp]z < 00, the upper bound Cjlog j
can be obtained. This determines the convergence rate on h,, for the bias term related to

<(f‘,:nl - I‘,::)Un, Xo) (cf. Proposition 18) and hence the rate for Theorem 7. This allows us to the
same growth rate n_1/2h;1/2 Z?;l(j log j)? — 0 as the ones used for the CLT under

homoscedasticity (cf. [12, 53]).

Some preliminary lemmas related to centering by sample means X = n~! o, X, and

n~t>" | &; are provided first.

€
Lemma 18. We have that E[|| X&|?] < Cn~2.

Proof. Note that

n
Xe=n"?2 Z Xiei + n=2 Z Xiey
i=1 ii!
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so that

2 2

+ on~* Z X;ey
i

ZXiEi

1=1

| X&]? <2nt

n
=207 [ D Xe|? ) (XKiei, Xoeo) | 42070 D (Kiew, Xigenr)-
i=1 i i#4! igFi))

We first see that E[|| X;&;%] = E[||X¢]|?] = tr(A) < oo and
E[(Xigi, Xiei)] = (E[Xiei], E[Xyer]) = 0. For the last sum, one can see that
E[(Xiei, Xigew )] = E[IX|I*]E[?] < oo if either (i,4') = (i, ip) or (i,i") = (i}, 40) and

E[{(Xiei, Xioei)] = 0 otherwise. This implies that E[|| X¢[]?] < Cn~2. O
Lemma 19. We have that E[(X',F,;}Xo)ﬂ =n"thy.
Proof. 1t follows from
E[(X, T}, X0)?] = n 'E[(X;, Ty, ' Xo0)?] = n ™ E[(X{?T;, ) Xo, T, Xo)
= nE[EYOUXTT X0, I [ Xo)]] = n'E[(IT), /X0, T, 1 Xo)]

=n'E[(T; X0, Xo)] = n""Eftn, (Xo)]

= hyp/n.
O
3.9.2 Concistency of the functional principal component regression (FPCR)
estimator
The asymptotics of the FPCR estimator Bhn of 3 is based on the following decomposition:
B, — 8= (T =T, U, + T3 U + (T, — 1y, )8+ 10, 8 — 8. (3.38)

In this subsection, we suppose that Conditions (A1)-(A5) in the main text hold. The following
lemmas are generalized results of Lemmas S3-S5 described in the supplement of [53] to the
heteroscedastic models. Lemmas 20-21 can be proved in the same way while Lemma 22 needs a

little more effort due to the centering.
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Lemma 20. As n — oo, we have the following:
1. [y, =Ty, oo = O (712 53], jlog 5).
. — _ hn o—1 - .
2. Hrh,} o 11hj||oo =0Op (” 12 Zj:l 53‘ Y IOgJ)-
3. (a) Conditional on Xg.

If n=1/2 Z?;l 5;/2(]' logj)3/2 — 0, then for each n >0,
P(I(Ls, — 1T, Xo]| > nlXo) = 0.
(b) Unconditional on Xj.
(M, = T,) Xoll = Op (n1/2 320, 6772 (i 1og )*/2).

4. (a) Conditional on Xj.

Ifn=1/2 Z?;l 5;1/ (jlog7)*/? — 0, then for each n > 0,
PN, =Ty Xol > nlXo) = 0.
(b) Unconditional on X.
(50 = D) Xol = Op (nY/2 520, 6712 (jlog )%/2).
Lemma 21. We have H(f,:: - F,::)URH =0Op (nil Z?;l 5j_lj logj>.

Lemma 22. In general, we have

hn
E[IT, Unll?) - Z e PN S U Sl I
j=1
Furthermore, if supjen ; YAY2¢;)1? < oo, we have that E[||T; 1U 2] < Cnt Z] 17 AL
Proof. Notice that
75, Unll? < 2|0 Xel® + 2T, Xe|?
hn hn
=2 7 2(Xe, 4,02 +2) ;% (Xe ) (3.39)

Jj=1 Jj=1
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Let &, = {X;}"; denote the observed regressors.

For the first term in (3.39), we compute its conditional expectation as

E[(X¢e, 6,)*|Xn) = n™2 > E[(Xies, ¢5)2|X0] + 172> E[(Xigi, ) (Xivewr, 65)|Xn)
i=1 15!

= n"'E[(Xe, ¢5)%| %]
since
E[(Xiei, ¢5)(Xiew, ¢5)|Xn] = (Xi, ) (Xir, ¢5)Eleies | ]
= (Xi, ¢j)( X, ¢5)Elei| Xi]E[ew | X o]

=0.
This implies that E[\|F};L1X75||2|Xn] n~t Z] 1 yj E[(X1e1,¢)%|X,]. Then, from the fact that
E[(Xe, 6)%] = E[((X)%07, 6)] = (Ady 65) = [AY26]% < Al
its general second moment bound is obtained as

_ Allso
B e = o S5 2 A2 2 < ) . Z
7j=1

For the second term in (3.39), note that

(Xe,¢;)° =n"* Z<Xi5ia¢j> + Z<Xi5i’a ;)
i=1 (e

n 2
< o4 <Z<Xi€i, ¢]>> + on~4 Z<Xi5i’v ¢J>

i=1 ii!

=op~t Z<Xi5i7 ¢j>2 +2n~* Z(Xigi’ ¢i)(Xiew, 95)
i=1 ad

+ 2n74 Z <X’i€i’7 ¢J> <X’i08i67 ¢]>
i#i’,io;ﬁié

As above, we have E[(X;e;, ¢;)%] = |[AY/2¢;]|? and E[(X;e;, ;) (X, ¢j)] = 0. For the last term
in the previous display, if either (i,4") = (io, () or (i,i') = (if,0), we have
E[(Xiew, d) (Xioesy» 05)] = E[(Xi, ¢5)%e5] = E[(X, ¢)*|E[e”]

= ;Ele’]
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and E[(Xiey, ;) (Xio€ir. ¢j)] = 0 otherwise. This implies that

hn hn

E[IT, ! XelP) < C [n® Y 4 2126017 + 072 ) 5!
J=1 Jj=1

Combinig these two results, we have that

hn hn

E(IT, UnlP) < C [ 07" D 7 2IA20)2 072 ) o
j=1 J=1

O

We state the consistency of the FPCR estimator Bhn for the slope function S in the following

theorem, which can be proved in the same way as Theorem S1 in the supplement of [53]

Theorem 9 (Consistency of the FPCR estimator). Suppose that h,,* + n_l/Qh% log h,, — 0 as
n — 0o. Then, the FPCR estimator Bhn converges to the slope function B in probability in the

sense that || B, — B 20 asn— .

Proof. First, note that the remainder term related to £ and Aj  are negligible by Lemma 17.

Then, by the decomposition (3.38), and Lemmas 20-22, we have that

18n,, = B < 1T} = TR DUl + 173Ul + 1| (T, = T, ool 181 + [1Ta, 8 — Bl

. . 1/2
=0Op n_125;1j logj | +Op n_127;2
j=1 j=1
1/2

o
+O0p |02 jlogj | +O [ | D (8.95)°

7=1 i>hp
We note the following convergences, which can be derived from some algebra. First, as n — oo,

n~1 Z?il(j log7)% < n~'h3 (log hn)? < (n~Y/2h2 log hy,)? — 0, we have

1/2

n 'y 6 tjlogi < | nTt Y 65 n Y (jlogj)? p =0
j=1 j=1 j=1

by Cauchy-Schwarz inequality. For the rest of terms in the above display, we note that

n~t Z?;l ’yj_2 <n-! Z?;l 5;2 — 0, n"1/2 Z?;ljlogj <n~Y2h2log h, — 0, and

Zj>hn<ﬁ,¢)j>2 — 0, as n — co. We therefore have that P(||3n, — 8| > 1) — 0 as n — co. O
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3.9.3 Central limit theorem

The proof of the CLT is again based on the decomposition (3.38). In this subsection, we
suppose that Conditions (A1)-(A7) in the main paper hold. Upon scaling \/n/sp, (Xo),
Section 3.9.3.1 describes the convergences of bias terms (IA‘;: — F,;})Un, (ﬂhn —1p,)B, I, -0
in (3.38) to zero, while the proof for the weak convergence of the variance term I‘,:nl Uy in (3.38) is

provided in Section 3.9.3.2. The consistency of the sample scaling $j, (Xo) is finally proved in

Section 3.9.3.3.

3.9.3.1 Bias terms

The below propositions 17-19 can be proved in the same way as [12, 53], and hence, the proofs

are omitted here.
Proposition 17. As n — oo, if n-1/2p 12 Z?;l(j log7)? — 0, we have that

2 i P
P ( mK(th - th)B,Xo>| > n‘X()) =00.

Proposition 18. As n — oo, suppose n_l/zhﬁl/2 Z?gl 5;1/2(]' log j)3/? — 0. We then have that

n A _ P
P/ —2 (' —T7Hw,, X, ‘X 0.
( Shn(Xo)K( o~ ) oll > Xo ) =

Proposition 19. For any sequence {Cx}hen such that {h=1C,}nen is non-decreasing, we have the

following moment inequality:

n

LTI, = 8, X0)?) < c% D | sup (57108, 1)°)

Hence, if sup;en (j_lgjﬂ?) < oo and n = 0((p,) as n — 0o, then we have that

n P
mmhnﬂ — 8, Xo) — 0.

3.9.3.2 Weakly convergent term

We provide the proof for the weak convergence of the variance term as described in

Proposition 15 of the main paper.
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Proof of Proposition 15 in the main paper. Let PX0 = P(-|Xy) and EX0 = E[-| X(] respectively
denote the conditional probability and expectation given the new predictor Xy. We first write
U, = Un — X & where f]n =n1 Z?:l X;e;. The contribution from the second term Xé can be

shown as negligible as follows. Note that

n 2 2
(0, XE, Xo)? <n™*2 <Z Xii FhT}X0> +nto <Z Xien, rth0> ,

i=1 i#i!
Due to the independence of the sample {(X;,Y;)}" ; and E[X¢] = 0, we have that

2

n

nTEY <ZXiai,rtho> = EX[(Xie;, T}, Xo)?)
=1

= EN[{(Xie:) 7T, Xo, T, Xo)?]
= (AT, " X0, T, ' Xo) = 51, (Xo);

similarly, since F[X] = E[Xe] = 0, the expected value of cross terms is given by

2
X0 <inei/,rhjxo> = (n* = n)EX[(Xien, T}, 1 X0)?)
i

= (n® = n)EX[(e5 X 7T, " X0, T, Xo)]
= (n?— n)E[52]<PF,;n1X0, r,;:XO>

= (n2 - n)E[eQ]thn (Xo).

These moments imply that

EXo | 1 1XE X,)?

Sh, (XO) < hn 0>

n sh, (Xo) n (n2 — n)E[€2]thﬂ (Xo)
< ,
_CShn (XQ) n3 + CShn (Xo) n4

_ _ th (XO) -1

<Cn?4+Cn 122222 — Op(n
< 5. (Xo) p(n)

due to the fact that E[t, (Xo)] = hy and Condition (A6).
We next consider the contribution from the term 0n =n! 2?21 X;e;. Write

Zin = <Xisi,F};}Xo) fori=1,...,n so that

n B n
(T 0, Xo) = (nsn, (X0)) V2 Zi.
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Notice that EX0[Z; ,,] = (E[X;ei], F;ano> =0, and set v2 = "1 | EX0 [an] To verify a Lindeberg
condition (conditional on Xj), define a quantity £, = v, 2> 1 | EX0 [an]l(|Zm] > Tvy,)] for 7 > 0.
Proposition 15 will then follow by showing that £, P, 0 holds as n — oo. For this purpose, it

suffices to establish (3.40)-(3.42) below:

nflvz = sp, (Xo), (3.40)

EXo | (v, max |Zin
1<i<n ’

4
>]i>0 as m — oo, (3.41)

—1 2
n Zi:l Zz‘,n_

gXo
sh, (Xo)

—0 as n— oo. (3.42)

By (3.40) and (3.42), it also holds that

2

EXo L)

n

-2 2

v, g Zim_ 1
i=1

as n — oo. For notational convenience, we write 4, = v, 2> ", Zgn,
B, = v;2 > Zzn]l(|Z,-7n] > 7vy), and C,, = vy, ! maxj <<y, |Zi n|. Due to a subsequence argument
(cf. [4], Theorem 20.5), the convergences in probability in (3.41)-(3.42) can be treated as almost
sure convergence along a subsequence. Along any such subsequence, it then holds that B, — 0 in
probability (with respect to PX0) by B, < A,I(C,, > 7) — 1-0 =0 and it also holds that {B,} is
uniformly integrable (with respect to PX0) due to B,, < A,, and the convergence from (3.42).

Along the subsequence, on an almost sure set, we have that £, = EX°[B,] — EX°[0] = 0, which

verifies the Lindeberg condition. That is, it follows that

n

(T L0, Xo) = {nsn, (X0)} V2N Zin =00y Zi % N(O,1),
i=1

i=1

shn (Xo)
with respect to PX0 by (3.40). As the CDF @ of the standard normal distribution is continuous,

by Polya’s theorem (cf. [2], Theorem 9.1.4), we have

sup
yeR

P ([ 03200 X0 <) — 80| Do

establishing Proposition 15.
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We next show that (3.40)-(3.42) hold. The equation (3.40) follows from
EXo [an] = <AF,;}XO, F,:SX()) = Sp,, (Xo). To prove the convergence in (3.41), we note that
1 Zinl = 18, Xies, A 2T5 Xo)| < 1812 X147, Xol
which implies that

1/2 _1
L Xoll
1 / 125 A 0
Un fgzag( [ Zim| < ”A Xieil| (n- U%)l/g

< n-1/2 AT 2x
=N e 1A, Xl
since ||A;L{L2I‘};1X0H < ||A1/2F53X0||. By Jensen’s inequality, it then holds that

1452 Xieill? = (Ay) Xiew, Xiei) = Z)\ (Xiei, ;)2

h"

< hZA (Xiei, ;)"

By the finite fourth moment assumption (A7) on Xe, we see that

E[max 1A, ng|y4}<E B, ZZ)\ (Xiei, )4 | < Cnh2,

1<i<n
=1 j=1

which implies that

4
= [(vﬁlfﬁﬁ’;zm‘)

Finally, we verify the convergence in (3.42). We note that

<n"ZE [max |Ah1/2Xi5z‘H4] <Cn7'h2 =0
1<i<n '

as n — oo.

—12 (AT X0, T3 Xo) = (A — AT, X0, T, Xo) + s, (Xo),

which implies that

n_l Z?:l Zz2,n
Shy (X0)

2

~ 2
EXo —1| | =EX Ushn (X0)™H{(An — NI, ' X, Fﬁ,}X0>‘ }

< {husn, (Xo) T PEV (A, — AlIZ](h7 2T, Xol*)
2

hn
—1/2— -1
=0Op n~12p 1 g ;
=1
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since E[||A, — A||2,] = O(n~") (cf. [32], Theorem 2.5) from the finite fourth moment assumption
(A7) and E[|T}, " Xo[1?] = 202 77 %E[(X0, 6,)%] = Y0y ;! One can find that

_ 1/2
n~1/ 2pt E;ﬁl 7]-_1 is dominated by h, 1/2 (n_l Z?ll 5]-_2> by applying Cauchy-Schwarz

inequality. Hence, due to (A5), as n — oo, we have that

2
-1\ 2
nTt Y i Zin _

Shn (X0)

gXo 1

3.9.3.3 Scaling term

We investigate the consistency of the ratio of 55, (Xo) over s, (Xo) to 1 either conditionally or
unconditionally on Xg. To obtain this consistency, two approximations of A and I'"! appear,

which complicates the proofs. The proof is based on the following decomposition of the empirical

scaling $p, (Xo):

8h,, (Xo) :<[\n,knf‘}:n1X0, fﬁ:X@

=Mk, (D) = T3 )Xo0, Ty Xo) + (R, Ty Xo, T Xo)

= (R, (T3 = T 1) Xo, (T =T Xo) + (A, (T, = T3 1) X0, T, Xo)
+ (A, Ty Xo, (T = TN Xo) + (A, T, X0, T, Xo)

= (A, (T =T X0, (T, =T Xo)
+2(Rp T, Xo, (T, = T3, 1) Xo)
+ (A g, Ty, ' X0, T, Xo)

(A, — M =T D Xo, (T3 = T3 Xo) (3.43)
+ (AT, =T, D) Xo, (T, =T, H Xo)
+2((Rn, — AT  Xo, (07 =T 1) Xo)
+2(AT, ' X, (T}, = T, 1) Xo)

+ ((An, — AT, X0,T, ' Xo) + (AT, ' X0, T, Xo).
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We see by writing &; 1, = &; — (Bx, — 3, X;) that

Anp, = A=n"1> " (Xigi,)®* = (XO)Z% — A

nkn
=1
=K —A+n"" > XP2(B, — B, Xi)° (3.44)
=1

—op~t Z{(Xiei) & Xi}<Bkn -8, Xi) - (Té)gvi”
i=1

where A, =n 1 31 (Xie;)®? and

n n n
(Xé)np, =0 Xifig, ="' Xiei =0 "> (Br, — B, X)X,
i=1

i=1 =1

— Xz - Tulf, — ) (3.45)

with Xe =n~ 13" | X;e; and r,=n"! Yo Xi®2'

In Lemmas 23-25, we study the convergence rates of each term in (3.43) by using the
decomposition (3.44) of A, , — A In the following lemmas, we suppose that 1Bk, — Bl 20 as
n — oo.

Lemma 23.
1. We have that (X&), 1, = op(1) + Op (|| Bk, — Bl|) so that (X&), Po0 asn— oo,
2. Asn — oo, if n~Lht S hm 'yj_l — 0 (which is implied by Condition (A5)), we have that

=1

_ = _ P
P(sh, (X0) " ((XE)nk,, I}, Xo)* > | Xo) — 0.

Proof. The first part follows since

(X&) n kol < IXell + 1T = Tlloo Bk, = 81 + ITllocllBe,, — Bl
= op(1) + Op (|| Bk, — 6II)
by the law of large numbers (cf. [33], Theorem 7.2).

For the second part, note that E[||[X¢||?] = O(n™!) from Theorem 2.3 of [32] under

Condition (A7) and E[HF};}X0||2] = Z?il 7]71. This implies that
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E[(Xie,lj,:anO)Q]: ( -1 Z] R ) and hence, we have that
sn,, (Xo) ™ (Xe, T, Xo)? = Op [ n™'hy, 12 .

E [sn, (o)~} (Xe, rng[))?’XO} — Op | ntn;! nyj—l ,
Next, we observe that

(Cn(Br, — B). T3, X0) = ((Br, — B), TnT}, | Xo)

and ang:Xo =n 13" (X, I‘}_L:X())Xi. By Cauchy-Schwarz inequality (for both arithmetic

mean and expectation), we have that

n 1/2 n 1/27 2
ElIE I Xol 2 < E ( z<xi,rggxo>2> ( 5 uxz-w)
=1

i=1

<E <n_1 i:(Xi,thX()y)] E [(”_1 z": |Xi||2>]
i i=1 i=1

and similarly, we have the conditional version as

=1

=1

Since (X, F,;}Xo> = Z? 175 Y X, ¢7)(Xo, ¢;) and the FPC scores &; are uncorrelated random
variables with mean zero and variance v;, we see that

E [n—l i:(X“ F}:anO>2] =n1 zn: E [(X“ F}Z}XOP]

=1 i=1

*ZZ 7 PE[(Xi, ¢5)°]E[(X0, ¢;)°]

=1 j=1

n  hn
:n_1221:hn

i=1 j=1

Finally, since E [n™! 37" | [ X;[?|X0] = E[n ™' 200, | X3l12] = E [ X|1?] = tx(T) < oo, we obtain

Efsn, (Xo)™'/2|Tul, Xol[| Xo] = O (1).
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Note that P(||6x, — 8] > n|Xo) = P(||B, — 8] > 1) — 0 and

lim limsup P(shn(Xo)_l/QanF,::XoH > M|Xp) = 0.

M—00 n—oo

This implies that
P( XV Y2UT (B — -1 P
Shy, (X0) [T (Br, — B), 1, Xo)| > nlXo) = 0.
Finally, due to the decomposition (3.45), we have the desired result.

Lemma 24.

1. We have
YD X B, — B X)) = Oe (118, = BI)
i=1
2. For each n > 0, we have

< <n—1 N X (B, — B, X»Z) Ty Xo, (01 = T >X0>

=1

P <5hn (Xo)™!

> n)XO)

hn
—op | n~Y2n 112 Z 5]-_1/2(j log j)%/? + 1
j=1

3. For each n > 0, we have

P <shn(X0)1 <<n1 > XPBr, — B, Xi>2> I}, Xo, F,;ano>

=1

> T]‘X()) i) 0.
Proof. Note that the second term in the decomposition (3.44) can be bounded as

<n ™t Y1l 1B, — B = Op (I3, - BI)

i=1

n 'Y XE By, — B, X)

i=1

which proves the first part.
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For the second part, note that

Ly _<( -1ZX®2 Br, — B, Xi) )r;,}xo,@n>

=1

=1 S (X0, Ty L X0) (Xi, Q) (Bre, — B, Xi)?

=1
—n S (X, T Xo) (X0 Qu) (XE2 (B, — B), B, — B)
=1
= <n S (X T3 Xo) (X, QudXE2 (B, — B), B, — 5>
=1

where Q,, = (f‘,:nl — F,:nl)Xo. This implies that
| Ln| < (n_l > HXiHSKXuFEonH) 1Qull1l Bk, — BI1>-
i=1
We note from Cauchy-Schwarz inequality that
E{|XG [ [(Xi, Ty Xo) 12 < E[l1 X TEL| X3l (X3, Ty Xo)?].

Since the FPC scores §; are uncorrelated random variables with mean zero and variance 1, we

have from the independence between &, = {X;}? ; and X/ that
B[l X |1*(X3, T, Xo)?] Z 7 EIIXG P (X, 65)°).
By Condition (A2) and Cauchy-Schwarz inequality, we see that
E[l1 X% (Xi, 65)°) < E[I1 X)) 2E[(Xig) "] /2 < Oy,

which implies that E[\\Xi||3|<Xi,ngX0>|] = O(hl/g) We then have

n
sh,, (Xo) ™! (n_l Z 111 (X, thlX0>|> ‘Xo

=1

E = Op(h;1/?),

under Condition (A6). Therefore, due to Lemma 20, we have the desired result.
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Lastly, note that

n
L, = < <n—1 > X2 (B, - 5,Xi>2> rthO,rhT}X0>
=1

=n"" ) (X0, T3, X0)% (Br, — B, Xi)?
=1

=n"1 3 (X0, Ty Xo) (X P2 (B, — B), B, — B)

i=1
n
= <n1 D (X T, X0) 2 X2 By, — B), Br, — B> :
1=1
This implies that

n
| Ln| < (nl > IIXi\2<XuT;§,fX0>2> 1%, = BII*.
i=1

Since the FPC scores §; are uncorrelated random variables with mean zero and variance 1, we

have from the independence between &, = {X;}!' ; and X that

hn
EflI G (X0, T X0)®] = D v ENXGIP (X5, )7
j=1

By Condition (A2) and Cauchy-Schwarz inequality, we see that
E[IXGl1* (X0, 6)%) < ENIXG 1Y) 2E[(Xa, 05)"12 < Oy,

which implies that E[|| X;||?(X;, ngXOP] = O(hy,). We then have

E [Shn(XO)l <n1 Z HXi”2<Xi,F};}X0>2> )Xo] = Op(l),

=1

under Condition (A6). Therefore, we have the desired result.

Lemma 25.
1. We have n= ' 30 {(Xigi) ® XiHBr, — B, X:) = Op(|| By, — BII)-

2. For each n > 0, we have

P << <"1 > {(Xie) ® Xi}H By, — B, Xi>> 0, Xo, (T, - F;::)X0> > U’Xo>

i=1

hn
—op n—1/2h51/2 Z(Sj_l/z(j logj)‘w +1
j=1



174
3. For each n > 0, we have

P <3hn (Xg)f1 < (nl Z{(XZEZ) ® Xz}</3kn - 57Xi>2> I’,;}XO,F};}XO>
=1

> U‘XQ> i 0.

Proof. We first observe that

nt Y {(Xiei) © Xi} By, — B, Xi)
i=1

n
<n™t ) I Xell I1X3l711Br, — Bl

i:ln » )

< (n‘l > HXZ-EH2> (n_l > HXz'H4> 1B, — Bl
i=1 i=1

=Op (||, — BI)

since E[||X¢||?] < oo and E[|| X||*] < c0.

For the second part, note that

L, = < (nl Z{(Xﬁz) ® Xz}<8kn - B,Xi>> F/::Xm Q”>
=1

=01 (B, — B, Xied) (X, T, Xo)(Xi, Q)
=1
— <n—1 Z(X,»,F,;XOMX,-, Qn) Xici, Br, — 5>
=1

where Q,, = (f‘,:nl — F}::)X(). This implies that

n
| Ln| < (n_l > |<Xi,F;ZjX(J)IIIXz‘HIIXiEiH) 1Qnlll| Br,, — Bl
i=1
We note from Cauchy-Schwarz inequality that
E[[(Xi, T Xo) 1 X[l | Xaea ] < E[1XG]12(X5, Ty Xo) 2 E[|| Xieil ).

Since the FPC scores &; are uncorrelated random variables with mean zero and variance 1, we

have from the independence between &, = {X;}? ; and X that

hn
B (X0 T X)) = >y X1 ( X, 65)7).
=1
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By Condition (A2) and Cauchy-Schwarz inequality, we see that
E[l1 X% (Xie5)?] < E[IXG[1'T2E[(Xigy)"]"/? < Oy,
which implies that E[|(X;, T}, " Xo) ||| ]| | Xeill] = O(ha'?). We then have

E[shn Xo)~ <lzrxz,r Xouxnumrr) [0

under Condition (A6). Therefore, due to Lemma 20, we have the desired result.

OP(h 1/2)’

Lastly, note that

Ln = << - Z{ (Xiei) ® Xi} Bk, — B, Xi >> 1X0,thX0>
=n"" Z<Xi’ F;:X0>2<Bkn — B, Xieq).
i=1
This implies that

n
| Ln| < (n_l > IIXz€i||<Xz',Fh,on>2> 1B, — Bl-

i=1

Since the FPC scores &; are uncorrelated random variables with mean zero and variance 1, we

have from the independence between {(Xj,;)}" ; and Xy that
El| Xie:|[(Xi, Ty, Xo)?] Z 7 Ell Xl (Xids))-
By Condition (A2) and Cauchy-Schwarz inequahty, we see that
Elll Xieill(Xi¢;)%] < Ell Xieal ] E[(Xi05)"]/? < Oy,

which implies that E[\|X¢5¢||<Xi,I’}71X0>2] = O(hy). We then have

E [shn(Xo)l ( *12 |1 X ie4 (X5, T}, ' Xo) ) ‘XO = Op(1),
i=1
under Condition (A6). Therefore, we have the desired result. O

Proposition 20. We suppose that n~'/2h, "/ 23"1 6 12 (jlogj)3/? = 0 as n — oo and

SUpjen 7;1\|A¢j||2 < 00. Then, the scaling sp, (Xo) and $p, (Xo) are asymptotically equivalent

"

in that, for any n >0,

5h, (X0)
Sh, (X0)

. 1’ > n’Xo) P,
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Proof. We obtain the following decomposition from (3.43):

3, (Xo0)
Sh, (Xo)

- 1‘ <, (X0) (R, = M) = T )Xo, (1 =T HX0) (3.46)

+ sn, (Xo) AT, =T D Xo, (T, = Ty 1 X))
+ 253, (X0) T {(Ank, — AT Xo, (T}, = T3 Xo)|
+ 283, (Xo) (AT}, Xo, (T, = T, 1) Xo)|

+ 50, (X0) T (A, — AT, X0, T Xo) .

We now investigate each term in the upper bound by using the previous lemmas. Before that, we
observe that E[||A, — A||2,] = O(n~!) by Theorem 2.5 of [32] since E[||X¢||4] < oco.

By the observation that E[||A, — A||2] = O(n~1), the first parts of each of Lemmas 23-25, and
the decomposition (3.44), we have that || Az, — Alleo P, 0 as n — 0o. Then, Lemma 20 along
with Lemma 17 implies that the first two terms in (3.46) converges to zero either conditionlly or

~1/2

unconditionally on X if n=1/2h,, Z?zl 5;1/2(3‘ log 7)3/2 — 0.

Recall that E[[|T", " Xo|?] = Z?ll 'yj*l. Since E[||[A, — A||%] = O(n~1), we have that

$ho (X0) " (A — AT} X, (T,1 = T3, 1) Xo)|
1/2

hn
<{hnsn, (Xo) " HhOp(nV2)0p | [ D A7 (T, =T )Xol
j=1

1/2

I
={Insn,(X0) " }0p | [0 R 4t {h 2T =T Xol -
j=1

Thus, as n — oo, if n=th; ! Z?;l v71 = O(1), which can be achieved from Condition (A5), and if

n_l/th_Ll/2 Z?;l 5]-_1/2(j log j)3/2 — 0, Lemma 20 implies that

St (X0) (A — AT Xo, (T = T3, 1) Xo)|
converges to zero either conditionlly or unconditionally on Xy. By the second parts of each of

Lemmas 23-25, and the decomposition (3.44), the third term in (3.46) converges to zero either

conditionally on Xj.
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For the fourth term in (3.46), we first note that E[HAF]:XOHQ] = Z;?;l yj._lﬂAqﬁsz so that

1/2

hn
h AT Xl = Op | { Bt D v A1
j=1

Thus, as n — oo, if

1/2

hn
> 6, (j1og ) = 0,
j=1

hn
el DI IO
j=1

by Lemma 20, the fourth term in (3.46) converges to zero either conditionally on Xy Note that
this condition is satisfied if supcy 7]71||A¢j|]2 < oo and n_1/2h,fl/2 Z?;l 5;1/2(]' log 7)%/? = 0 as
n — 0.
Recall that E[[|T", ' Xo|?] = Z?;l yj_l. Since E[||[A, — A||%] = O(n~1), we have that
Elhy ' [(An — AT X0, T, 1 Xo) ]

<hy 'E[[[An — Al E[IT;, Xol]
hn

—0 [ n12n1 2%—1
j=1

Meanwhile, note from Jensen’s inequality that

N N \ 1/2 N 1/2
~1/2p -1 -1 —~1/2p—1/2 -1 -1 -2 ~1 -2
SRS DL DA D DE7y B K L
j=1 j=1 j=1 j=1

Thus, under Condition (A5), we have that

S (X0) " [{(A — AT, X0, T, Xo) | = 0p(1),
Elsn, (Xo) " (A — AT, Xo, T, Xo)[| Xo] = op(1).
Finally, by the second parts of Lemma 23, third prats of each of Lemmas 24-25, and the

decomposition (3.44), the last term in (3.46) converges to zero either conditionally on Xj.

The above four arguments completes the proof along with the decomposition (3.46). O
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3.10 Technical details: validity of the paired bootstrap

In this section, we complete the proofs for the consistency of the paired bootstrap and the
failure of a naive paired bootstrap in Section 3.3.2. The proofs require bootstrap counterparts of
lemmas and the consistency of bootstrap estimator described in Sections 3.9.1-3.9.2, respectively,
which are provided in Sections 3.10.1-3.10.2. The bias terms in the decomposition (3.48)-(3.49)
given below are studied in Section 3.10.3 while the lemmas for the weak convergence of the
variance term is proved in Section 3.10.4. In Section 3.10.5, we provide the consistency of
bootstrap scaling. The propositions used to prove the failure of a naive bootstrap method are
given in Section 3.10.6. Finally, Section 3.10.7 provides the proof of the failure of both modified
and naive bootstrap methods.

We notice the following bias-variance decomposition of bootstrap quantity B;_:n — ﬁg as

B;;n - Bgn = /3;;71 - f‘[hnBQn + ﬂhntn - /8gn7 (347)
where the non-random bias part ﬂhn Bgn — Bgn in the bootstrap world vanishes if h, > g,. When

hy, < gn, the biased quantity B;n — ﬁhn Bgn can be represented with the following decomposition:

A

Bitn - ﬁhn/Bgn = (fzn)_l{f‘zégn + U;zk - Un,gn} - ﬂhntn
= (I},) MU = Ung,} + (I, = 11,) g,
= {(0%,) 7 =T MU = Ung,} + T, {Uy; = Ung,} (3.48)
+ (I, = T,) (Bg, — B) + (1T, — 13,8
— (I, =y, )(By, = B) — (Iy, — 10y, ) 5.

Here, Uy , = n~! > (X — X*)(e;

iGgn - (?)nygn) = (XTE*)TL,gn - X*<€7)n7gn Where

*

Elagn

=Y/ — (X}, B,,) are bootstrap errors with their average (£%),,4, =n ' S0, £l g, and
(X ) pg, =n P30 Xre* X*=n~' 3" X*. The non-random bias II;,, 3y, — By, is

1 Zi,gn n

expressed as

=1, — s,)(Bg, — B) + (I, — y,)B + (L, — I)(By, — B) + (I, — I)B. (3.49)
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Throughout this section, we write P* = P(-|X},, ),,) and E*[-|X},, V] for the bootstrap probability

and expectation operator, respectively.

3.10.1 Preliminaries: perturbation theory with bootstrap quantities

In this section, we study a bootstrap counterpart of the perturbation theory similar to those
in Section 3.9.1, which can be applied to our bootstrap theory. To do this, consider the following
notations:

Go(2) = (2 = 1) V2(1, — T)(=1 — 1)1/
K} (2) = (2] = D)2(2] = )7} (2] — )12
= (G (2)lle0 <1/2,V2 € Bj);
A, =AVie{l, ... ha}, |9 — vl < 65/2}
Lemma 26. Suppose that Condition (A2) holds. We then have that
E[E*[((T} — D)o on)?] _ C1 | Cy

sup < —+ ol
l,keN Nk n
Proof. Note that
(T3 = D)r, dw)? < 2((T5, = D)y, d)” + 2(X*, 1) (X, )%, (3.50)

where T% =n~1 327 (X)®2. We use a similar strategy to the proof of Lemma 13.

To bound the first term in (3.50), we start with the following decomposition:
(T3, =) (), on)°
n 2 2
{ - Z X5, on) — (Tdr, b } = { - Z Lo (XT, dr) — (Do, ¢k>}

n n

2
=n"" Z<Xfa¢z><X£'2¢k>> —%Z<X:,¢z><X:,¢k><F¢l,¢k>+<F¢z,¢k>2

=1 =1
=n"%) (X N> XS o) (XF 0k) (X ) (X, )
=1 i#t!
- Z X5, %) (D1, dr) + (Do, d1) .

i=1
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Since X} and X}, are independent (under P*), and
E (X7, o) (X, on)] = EX[((XT ® XT) (1), d)] = ((E¥[XT @ X7]) (1), dw)

= (Tnor, o1),

we have that

2

E*[((T, = T)(¢n), 1))

=n" E(XT, 002 (XT, 08)%] + ——5—(Dndt, &) — 2(Tnr, 1) (Ton, bx) + (T, 6

=n ! (E*((XF, 002 (XT,60)%] = (Pudt, 60)%) + (D = D), 002

=n~! (n‘l D (X, 00 (X, dr)® — (T, ¢k>2> + (00 = T)ér, é)

i=1

<n”! (n_l D (X, o) (X, d>k>2> + (T = D), o).

=1

This implies that

E[E*[((T5, — T)(¢n), dx)?]] < n"E[(X1, 1) * (X1, )] + E[{(Tn — T) . 1))

Notice that

E[( X1, ¢1)* (X1, ér)?]) < B[y X, )2y (X, ¢k

< B 2(X, é T ER 20, 6] < G

by Condition (A2), and

n2—n

E[{(Tn — T)(¢1), ¢x)%] = n "E[(X1, ¢1)* (X1, )] + (Lo, dr)? — 2(Tey, on) + (T, dis)”

n2

=n"! (E[<X1, &) (X1, ¢x)?] — <F¢l7¢k>2) < Cn Yy

This means that E[E*[((T — ) (), ¢%)%]] < Cn~ 'y

To bounde the second term in (3.50), we first consider the case of [ # k. Note that

(X o) (X700 =n™" Y (X7 (X5, d) (X5 o) (X, ).

1<4,! yig iy <n
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We investigate the values of J; s ;o i = EX[(X, o) (X, du) (X}, ¢k><X;Z)’ ¢r)] depending on the
quadraple (4,4, i, ().

Suppose that i,4’, 7, i(, are all distinct. We then have
Tt ity = (X, 1) (X, ).
Then, we have

E[<X7 ¢l>2<)_{’ ¢k>2]

=n"" Y E[(X5, 00)*(Xir, )] + 07 Y D ENXG, 6% (Xi, k)]

17 i=1

=n"Y{(n% — n)yy + nE[(X, o) 2(X, d1) %]}

<n~* {(n2 — MM + N \/?5*] \/?é“ﬁ] }

<n~H(n* — n)yyk + Cnyye}

<07l';/k )
n

Suppose that only two of i,4', 4, i(, are equal and the other two are distinct from the equal

value. We can divide this into three cases as follows. If i = i{, and i # i are distinct from ' = ),

then

Tiir oy, = (X, 61) < 712 (Xi, or) ) = (X®?¢1, ¢1)(Crtor, o)

Its expected value is

E[Jii o] =n°E <Z<Xi7¢l>> <Z<Xi’7¢k>2>

=1 i/ =1
= _SZE Xz7d)l Z>¢ ] +n_3ZE[<Xia¢l>2<Xi/’¢k>2]
it
= n?E[(X, ¢0)*(X, ¢r)?] + 07 (n® — n) vk

< Cn 2y + 173 (= )y

< C%’)’k‘
n
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If i = ip and i’ # 4(, are distinct from i = 4p, then
Tritinsiy, = (X, 0x)” ( ! Z X, 1) ) (X ok, b)) (Tnchr, 1)

Similarly to the previous case, we have that E[J; ;s ;, ] < Cn~ 1y, If either i = ¢, i = if),

i’ 0,1,
i’ =g, or ig = 1i(, then,
Tiit siosily = <n1 Z<Xi7¢l><Xia¢k>> (X, 1)(X, )
i=1

= (Tnor, o) (XD B1, d1).

Its expected value is
E[\Z,z’,zo,zé] = n_SE [<Z<le ¢l><X17 ¢k>> (Z<Xl” ¢l><Xl’a ¢k>)]
i=1 =1

’325 (Xi, 80 (X, 61)] + 172> E[(Xa, ¢1) (X, b} (X, 61)(Xir, )]
=1 i#

= n2E[(X, o) 2(X, pr)?)

< Cn” 2y

Suppose that three of i,4’, 7, i, are equal and the other one is distinct from the equal value.

This is divided into the following two cases. If either i = ig =i’ or i = igp = (), then

Tiit sigity = n! Z<Xi7 o) (X, bi) (X, D).
i—1

Its expected value is

E[Ti i 0] = n~’E [<Z<Xi>¢l>2<Xiy¢k>> <Z<Xi/7¢k>>]

i=1 i =
n

=02 E[(Xi, 6002 (X0, 61))
=1

= nE[(X, ) 2(X, 61

< Cn Yy
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If either ¢ = ¢/ = i{, or igp =i’ = (), then

k7i,i’,i0,i6 = n_l Z<X17 ¢k>2<X’Lv ¢l><X7 ¢l>

i=1
In a simlar way to the previous case, we have that E[7; ; ;. i /] < Cn~tyv.

Suppose that i = 7' = iy = i(, then Tiit o ity = n=ES (X, k)2 (X, ¢n)?. Hence,
E[T; a0, ) = ELX, 1) (X, 61)%) < Cyvie:
By incorporating the number of possibilities of the quadruple (4,7, 49, i), we have that
E[E"[(X™, ¢1)* (X, or)”]]

<Cn~nyy + 402 (0 k) + 20 (0 ) + 4nP (T 2yve) + nt (R 2 ye) }

<Cn .
In a similar manner, we can show the same inequality when [ = k.
Lemma 27. Suppose that Conditions (A2)-(A3) hold. For sufficiently large j, we have

E [E* [sup 1G(2)|1%| | < Cn'(jlogj)?.
2€B;

Proof. Let z € B;. Note that z = ~; + (6,;/2)e'? for some 6 € [0,27] and |z — ;| = §;/2. By

bounding the sup norm by the Hilbert-Schmidt one, we have

IG5 (2)E < G = D2 G ()60 du)
l,keN

= 1<<f:fr)(u—rrl/%l,(ufr)—l/%wf
l,keN

= 3 (5 =T )26, 2 ) 20|
l,keN

_ (T = T)(), D)
lkze:N |2 —yllz =l

Note that for z € B; and ¢ # j,

2 — vl = |5 — v + (8;/2)e”| > |5 — vl — 8;/2

2 |y —il/2 = 6;/2
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since §; = min{~y; — vj41,7j—1 — Vi } < |7 — 7| This implies that

4 . , ,
< moal— ELFE Gk # G,
1
T 4 e .
|2 = yllz = il SEE?H itl=j,k+#j,
= 49,7 if 1= j =k

Combining these three observations, the sum is separated into the three parts:

G <49 Y (= D)@ ) | 5~ (@5 = D)o | (Tn = T)(@).65)7

+ 2
%Mjm—wm—w| 8ilvj — vl 07

k#j

Then, by Lemmas 12 and 26 and, we have

2
< Cnt Z YiVk Z YiVk Vg
¥ |v; ’Yl||’Yy V| 8514 'Yk:|

E [E* [sup 1G(2) 113

ZEJ

'7] Z 732

j oy h’j ’Yk’

=Cn~! Z

k#j
< Cn~ ' {(Cjlogj)* + (j + 1)(Cjlogj) + (j + 1)}

< Cn~'(jlogj)*

h’j ’Yk:’

since /05 =75/ (; — vj+1) <+ 1. =

Lemma 28. Suppose that Conditions (A2)-(A3) hold. Then, we have for all z € B,
HK;';(Z)HOO]Igj <C and E[P*((S;‘)C)} < Cnil/zj log j.
Proof. Recall the (second) resolvednt identity for I’ and I'%:

(2] =T%) ™ — (2 =)' = (2] = 1)1 —=T) (2] —T)7!

= (2 =) YT =) (21 - T)~L.
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This implies that
Ki(2) = (21 —=T)Y2(2I = T7%)7Y(2I —T)'/2
=T+ (2 =) V2(I% =) (2 —T) 7} (2f —T)1/2
=1+ (zI =D)"V2([* =) (2l —T)"V2(21 = D)Y?(2f —T%)" (21 — I)'/?
=1+ GL(2)K,(2)

and [ = K (z) — G (2) K} (2) ={I — G}, (2) } K};(z). Recall from Theorem 3.5.5 in [33] that for
linear operator T' with ||T||ec < 1, I — T is invertible with bounded inverse and

(I -T)"'=3252,T7. Thus,
1K (2)lloolles = [T — Gi(2)} 7] T

o0 o
<SG T <32 <2
§=0 =0

For the second part, it follows from the Markov inequality that

P*((€7)°) = PG (2)lloe = 1/2,32 € Bj) < P* <zséll£’)- 1G(2) o0 = 1/2>

1/2
< 2F° sup IIGZ(Z)Hio] } :

z€B; ZEB]'

sup IIGZ(Z)Iloo] <2 {E*

By Lemma 27, we finally have that

(E[P*((£,)))* < E[P*((£;)9)] < 2B [E* lsup IG5 (21| | < Cn™'(jlogj)?,

ZEBj

ie., EP*((£)9)] < Cn%jlog}j. O
The following lemma gives a sufficient condition (on h,,) under which l’;’;‘ may be replaced with

Bj as Lemma 17 does.

Lemma 29.

1. We observe that

N 1 A B
I, —Ip, = 5 chn{(zj — ) — (2 =)z + il s
A B 1 B o B .
(707 =D =g | F MG =T = L= D) Yz L e
Chy,



186

where
I L B R
n n 27T1, Ch
1
T;n (th) —% . (ZI P*) 1dZ
h

2. Suppose that Conditions (A2) and (AS3) hold. We have that

hn hn
E[P*((A7,)9)] < Cin V2> " jlogj+ Con ) 6:2.

j=1 j=1

Proof. This is derived in a similar manner to the proof of Lemma 17. Note that
* ’7] B ’7]
(45, )° <ZP (95 — il = 6;/2) <Z 5,75
and
145 =l < W = D)es, 00| + 155 —75) = (L = D)oy, 65)-
We first notice by Lemma 26 that

[EEINE; Doy o)} <E [{E*n«f;: —r>¢j,¢j>|]}2] < EE[((F}, — T)5,6,)°]

< Cn~'v3,

e, E[E*[{(T} = D)oy, ¢5)[]] < Cn~'/2;.

Next, to study the approximation error, set ¢; = sign(q@}f, ®j). We then see that
(55, = D)(35), &) = (D005, &05) — (65, ET0;) = (705,25 5) — (95 57595)
= (3 =85, € 05) = (5 — 1) (&), &) = 1) + (3] — )
= (35 = 1)US5. &85 — 67 + (] —3)s

which implies that

5 = = (O = D)), &) = 135 = 1 (85,85 — &e| < 1) — i1l — &5
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We also observe that

(T, = T)(5), b5) — (T = T)(5), & b5)
= (T, = T)(8)), 85 — &%) + (T, — T)(85), &%) — (T — T)(85), & b5)

< |15 = TllsolléG 5 — &5l

= [{(T5 = T)(¢5). &5 — &5)
Combining these two results, we have

37 = = (0 = T)(@5), 85)|

<[5 =2 = (05 = D)), &0)| + (T = D)), ) — (T = T)(65), 05)

<147 = illles — &5l + 1115 = Tl o5 — &5
<Co; T = T
Here, we frequently used the facts that sup;ey |77 — ;] < |IT* — I'||oo and that

||g5;‘ —&jojl < 05;1||f;§ — I'||oo, which can be obtained from Lemmas 2.2-2.3 in [32].

Meanwhile, we see that
EX[IT;, — TallZ] < 2E*[|IT, — TllZ] + 2E°[|1 X)) (3.51)

where f;ﬁ =n! Z?:1(X;)®2~

To bound the first term in (3.51), note that

E*[IT;, — Cal3] < E*ITS, — Lallfis]

n
<n ' XT © X7 — Pulffisl = 0~ <n‘1 SolIxEE - fwr%)
=1

n
<n™? ) (21X = Tllfs + 41T — Dligs + 41X
i=1

since X| ® X| — Lo, .. , Xp @ X — I, are iid with mean zero under P*. By taking expectation E,

we have that

E[E[IT, — Tall3]] < On ™ H(ENIXT® = Tlls] + ENTs — Tlls] + ENIXNY)

n

= Cn~tr(var[XP?)) + 0 'E[| XY} + On~2 < On~?
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by Theorem 2.5 in [32] and the above derivation for the upper bound of E[||X||*]. This implies that

E[E(IIT;, — TIIZ]] < 2E[E*[IT, — Tull]] + 4E[ITn — T3] + 4E[1X 1))

<Cn'4+Cn?2<Cnl.

For an upper bound of the second term in (3.51), note that

2 2 2
n
n| X1 = ZHX I+ (X, Xar) §2<Z||X£k\|2> +2 [ Y (X, Xy)
i# i= i
_QZHX I+ 2 XTI+ 2 (X7 Yo (XXX, X
i1 i 'L;éi’,io #i)
(i,4")#(i0,ip)
<2Z\|X IF+6) IXIPIXEIP+2 > (XX (X5, X)) (3.52)
i 174 i0 74,
(4,8")#(i0,ip)
(i,3")#(ig,i0)

We first see that E*[|| X7 ||Y] =n~t >, || X;]|* and

XX P11 = XTI P E (X 1) ( ’12 X ||2> <n 'YX
i=1

The third term in (3.52) should be investigated more carefully. We can divide the cases into
two: the cases where just two of (i,4', 4, 4() are equal and where all of (i,4', 14, 4(,) are distinct.
Suppose that just two of (4,7, 40, i) are equal, without loss of generality, i = ig. Then, we have

that

E[(XT, X (X5, X)) = EX({(X)) 22X, X)) = (T X, X)

707
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Since one of (i,4',14() is distinct from the others and E[X] = 0, the expected value of the second

term is zero. This implies that

E[E* (X7, X3) (X5, X)) ZEHX 14+ S El(X, X

o’ £
< n 3 {nE[| X|[*] + (n? — n)E[|| X|1?)}

<Cn!
Suppose that all of (4,7, i, i) are distinct. Then,

(X, X)X, X3 )] = I1XI*.

707

As above, we see that

2 2
n
X = zuxuuzxz,x sz(zuxiw) v2 (S x)

IE= 174/

—2ZHX 1+ 2 IXGIPIX 1 +2) (X, Xo) Do (X Xir) (Xig, Xiy)

i’ i’ z;éi/,io #i)
(i,4")# (o, i)
n
<2 X 6D IXPIXAP+2 D (X Xar) (Xag, Xip),
i—1 i il o7l
(i,3")#(i0,ip)
(4,8")# (i i0)

where the expected value of the third term is zero because one of (7,7, i, i()) is distinct from the

others and E[X] = 0. This implies that

EIE*[(X7, XP)(XG, X1 < o {2nE[| X |11] + 6(n® — n)E[I1X %)}

207

< Cn2
Therefore, we have that

E[E*[IX~|1"] < On 2.
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In summary, we see that
E[P*((47)°)]

o
<CY STEE (T — 1)y, 65)]

j=1
kn
+C Y8 EE(3] — ) — (T~ Dy, 6))]l]
j=1
kn A kn
<Cn='2Y 757y + CEET[IN, — TY%] D 652
j=1 J=1
kn kn
SCn_l/2 Zjlogj +Cn~t Z (5]»_2
j=1 J=1
since 8} ;< 7/ (7 = Y1) < j + 1< jlogj. -

Remark 15. By Lemmas 28-29, the quantities related to (Sj"‘ )¢ or (A )¢ may be asymptotically
negligible by the following arguments. See Remark S1 in the supplement of [53] for a similar

discussion.

1. Let @; be any non-negative quantity (that can be either random or fixed and can depend on
n or not). Note that ]I(g;)c = 0, which implies that Qj]l(g;)c = 0. Let n > 0 be given. If
Z?;l Qjﬂ(g;)c > 1, then 2?21 Q]’H(g;)c # 0, and hence, there exists j such that ]I(gf)c £ 0.
We then see that

P D Qillepye > | < 3P (e #0) = D P((E)")
Jj=1 j=1 j

=1
hn
= 0Op n_l/QZjlogj
j=1

and
hn hn hn hn
P* ZQjH(s;)c > U‘Xo <) Pliene # O‘Xo) =D P e #0) = ) P ((£))
j=1 j=1 j=1 j=1
hn
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by Lemma 28. Thus, any quantities multiplied by ]I(g;_«)c (or their sums) are asymptotically
negligible or ignorable under the bootstrap probability P* if n=1/2 Z?gl jlogj — 0 as
n — co. This helps to theoretically guarantee that sup,cp, |57 (2)[/« is bounded above

almost surely (with upper bound not depending on j) based on Lemma 28.

2. Let @, be any non-negative quantity (that can be either random or fixed and can depend
on n or not). Note that ]IAZ = 0 implies that QnHA; = 0. Let n > 0 be given. If

Qnlac >, then Qplac # 0, and hence, [4c 7 0. We then see that

P*(Qnlaz ye >n) < PH@nla; ye # 0) <P (Iaz )e #0) = P*((A},)%)

hn hn
<Op |n 'Y 624072 jlog
7j=1 7j=1

and

P*(Qnll(4; ye > "7’X0)
<P*(Qul; - # O‘Xo) <P* (I ye # O‘XO)

=P* (I az ye #0) = P*((A4},,)°)

hn, hn
<Op | n 1251_2+n 1/222‘71055‘7
7=1 7=1

by Lemma 29. Thus, any quantities related to I As ) are also asymptotically ignorable

- e hn =2 _ hn .
under the bootstrap probability P* if n=1 Zj 1 (5j — 0 and n=1/2 ijl jlogj— 0 as
n — oo. This aspect theoretically guarantees that the bootstrap random contour @;n for

f[;‘m and (f",:n)*1 can be replaced with the fixed contour Cp,, .
A result to deal with centering issues is provided in the following lemma.

Lemma 30. Under Conditions (A1)-(A7), as n — oo, if HB% — Bl LN 0, we have that

E* (| X* (e )ngn — X(€)g,IIP] = Op(n2).
Proof. From the identity

n
Uk T . —2§ : * _k —22 : * _k
X (6*)n7gn =n XZ Ei,gn +n X’L 57;/,
=1 1#£4/
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we have that
2

2
ZX;‘ Eronl| F2n7HD X7e
i=1 i

n
=~ |Xer, 1P 20t (Xfer,  Xien) (3.53)
i= 14!

+2nt Y (Xl Xien )
i oAl

1X* () gall* < 2077

If HﬁAgH - Bl LN 0, taking the bootstrap expectaion E* on the terms in the first two sums in (3.53)

gives

E*lIX el 17 =n Z IXiig,|I* =n~" Z | Xigi — Xi(Xi, By, — B

=Y il 0t YD X By, — B+ 2073 (Kien, Xy, — )
i=1 =1

1=1

<n Y O IXasdl? + 07D D IXl 18y, — BIP + 207 I Xaell1 X171 Bg, — Bl

=1 i=1 i=1
= E[||X¢[?] + op(1) + {E[IX]I*] + op(1)}op (1) + {E[ X | X1*] + op(1)}op(1)

— 0p(1), (3.50)
where the Op(1) term does not depend on i, and
E*[(X[el,, Xpei)] = (B [Xjei L E (X en]) = [1(XE)ng, [I> = op(1)

? Zg’ ? Zgn

due to the first part of Lemma 23.

Note that
()g, =& — (X, By, — B) = Op(n™?) + Op(n™12|| B4, — B|) = Op(n™*/?) (3.55)

when HBgn - B LN 0, since X = Op(n~/2) (cf. [32], Theorem 2.3). Keeping this in mind, we now

divide the cases in the third sum in (3.53) into six cases. Suppose that i = ig and i’ = 4(,. Then,

B (X7 eh, Xie )] = (X7 en 1) = X1 X7 IP1E Ik 11%) ( _IZHX ||2> ( _IZ g>

= {E[IX|]°] + 0p(1)}Op (1) = Op(1)
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since
- igzgn _ ﬁ;@-i — (X, By — B
<nl f;e% 0! Z; 10208, — BI2 + 207" Zl 1%l — A1
— {E[?] + 0p(1)} + {E[IX %] + 0p(1)}op (1) + {EIXell] + 0p(1)}op (1)
— 0p(1).

Suppose that ¢ = i, and ¢ = ig. Then,

B (X el Xien )] = (B [X7el,, | B [XJei]) = [[(Xé)ng, I = op(1)

7 10,

by the first part of Lemma 23. Suppose that i = ig, ¢/, and i(, are distinct. Then, thanks to (3.55),

E (X} el Xien)] = E (X[ eh, Xiep )] = EV[||1X7|P]E"[7)E [

i 10<if
- (" > HXAF) ()2, = (ELIXI) + 0p(1)}Op(n") = Op(n ™).
i=1
Suppose that i = ij, ', and 7o are distinct. Then, thanks to (3.55),

B [(X7ein Xipei )] = B (X eh, Xigeig0] = (BTG eig, | BV X JE [e0])

{ o<y, ( i0%4,9n i %ign

= <(Xé)n,gan(§)gn> = OP(”_I)

since (Xé),.q, = op(1) due to Lemma 23. Suppose that i’ = ig, i, and 4, are distinct. Then,
7gn O

B [(Xen, Xiei)] = B [(X{ ey, Xpey )] = (BT [X[1E &g |, BV [ Xpen])

i 101,

= (X&)n,gu» X (8)g,) = 0p(n )
as above. Suppose that ¢’ = i(, 7, and ¢ are distinct. Then,

E* (X[ ey, X

204,

e )] = B U(Xel, Xieh)] = B [(e0) (B (X, E X))

9’

= <n1 Zé?,gn> |X[I” = Op(1)Op(n™") = Op(n™")
=1



194

since n=1 Y"1, é?’gn = Op(1) as above and X = Op(n~'/2). Suppose that 4,7, 4q, i} are all

distinct. Then, thanks to (3.55),

E*[(X[el, Xie

i) = (B XI5, B G E [ ]) = [1X (E)g, |17 = Op(n7%)

-/
%o

since X = Op(n~'/2) (cf. [32], Theorem 2.3). One can summarize the above upper bounds to

derive that

E (1 X " () ngn — X (E)g 7] < 2E*[I1X7 (F)n g, I7] + 21 X (), I

= Op(n72).

3.10.2 Consistency of the bootstrap FPCR estimator

By using the above perturbation theory in the bootstrap world, one can derive the following

bootstrap version of Lemma 20. In this subsection, we suppose that Conditions (A1)-(A5) hold.
Lemma 31. As n — oo, we have the following:
1. Ifht+ n~1/2 Z?iljlogj — 0, then for each n > 0, we have that

P* (115, = TTn,)lloe > 1) = 0.
2. If hy' + n=1/2 Z?ﬁl 5;1]' logj — 0, then for each n > 0, we have that
P00 = Tyl > 1) B0
3. If hy't +n~1/2 Z?Zl 5;/2(]' log j)3/2 — 0, then for each n > 0, we have that
P*(| (I}, — Iy, ) Xol| > n|Xo) = 0.
4. Ifhyt + 0712 Z?Zl 53-_1/2(]' log j)%/2 — 0, then for each n > 0, we have that

* % \— — P
P*(I{(T%,) ™" = T }Xoll > nlXo) = 0.
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Proof. Due to similarity, we prove only the third part. We observe from Lemma 14 that

1), — Ty, sz / {Gr=T3)7 = 1 =T dz + 1l s e
2m2/ (zI = T)7 V2K ()G (2) (2] = T) 7V 2dz + 1§, L 4z e
This implies that [|(IT; — Iy, ) Xoll < C Y217, A% + [}, ol Xol [T 43 ye> Where
= /Bj 1z = T) 72 loo I (2) oo | G (2) ool (2 = T) 2 Xo|d=.

Note that for all z € B;, |z| > v; — 6;/2 > v;/2. By Equation (5.3) of [33], for z € B;, we have

1
"(21_1—\)71/2”002 <I}£I\IIL|Z_,W’1/2> :‘Z—’}/j’ 1/2 _ (5 /2) 1/2'

Thus, by Lemma 15 and Lemma 16, we have
E*[A5Te: | Xo] = /E 12 = DI 2E ([ K3 (2) ool [ Gin () [lso] | (2T = T) 72 X || dz
J
—1/2 % * _
<c /B 55 PEIGHE) el 2T — T) Y2 Xz
= C6}% sup E*[| G (2) loc] sup [|(21 — 1)~ 1/2X,||

2€B; 2€B;

< 00} log ) sup (=1 = 1)~/ Xo .

zEJ

This implies that

E[E*[A5Te: | Xo]] < C0)/*(n™"/2j log j)E sup |[(1 = T)~2 o
zeb;

< On Y2512 (jlog j)*? < Cn~Y%jlog j,

and hence,

hn
=0p [ n7V2Y 612 (jlog j)*/?
j=1

hn
> Al | X
j=1
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By the argument of Remark 15, under P*, we see that

hn
> Al > 0| Xo | < Op(n~"/2jl0g ),

j=1
hn hn

P (ranlloe [ XolLag, > n|X0) < Op [ n7 " 672 | +-0p (0723 jlos
j=1 =

We thus have the desired results.

Lemma 32. Asn — oo, if n=* Z?nl 6; 1/2 (jlog7)*/? — 0, then for each n > 0, we have that

P (1(100%,) ™" = TR HUz = Ung, } Xo)l > 1|Xo ) = op(1).

Proof. We observe from Lemma 29 that
Ly )t =1t = %LZ/ z[—r;)—l _ (zI—I‘)—l}dz—l—rSn]I(AZn)c

=5 Z / Yol —T) V2K (2)Gh(2) (2 — )M 2dz + 13, [ Az e

This implies that

s\ — - * - A hn * *
(1)~ T HUE — (1~ T1y)An), Xo)| < C T, 43 + [, ool XollTa; e where

* 1 * * — * 2 —
Aj :/B gHKn(Z)HooHGn(Z)HooH(zI— D)2 oo[Us; = Ungu I (21 = T) 712X |dz.
J

Thus, we have

E*[ AT | Xo]
- /B [ E K ) ool G () oo T = g I (2T = ) ™2 (21 — )2 o2
J
—1/2 —1pex * * A —
<oV / T E UG oo IUf = T (2T = T) /2o |

Bj
)

<co; ' _1(E*[IIGZ(Z)Hio])l/Q(E*[IIUZZ ~ Un g, IPDV2II(=1 = T) 712 Xo|dz

<co; ' sup (E*[[|Ga (= IZDY? sup [|(z1 = T) ™2 Xo | (E*(|Uy; = Un,g, )1/

zEJ zEJ
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This implies that

hn,
E* ZA;]Ig; X,
j=1

CE Uy = Unga ) 1/225 V2 SUP(E*[HG*( 3D Sup I(=1 = T) 72 Xo].
j=1 z€bB;

Recall that U =n~1 30 (X) — X*)(e} €l gn = (E)ngn) = (X*e")ng, — X*(e%)n,g, Where

(X&) g, =0~ S0, Xfej,, . Since

ﬁn,gn =n! Z?:l(Xi — X)(éi,gn - (g)gn) = (Xé)n,gn - X(g)gna we see that

U = UngaI? < 201X )9, = (XEngall* + 201 X (E ), — X (gl (3.56)
As for the first term in (3.56), since XJej — (Xé)p,g,’s are iid with mean zero under P*, we see

that

E (1 (X*e)n g0 = (XE)n g I”] = n B (I1X7 el = (Xé)ngaI”] < n E[[XTe], 7] = Op(n )

as computed in (3.54). This means that E*[||U} — Un,gn 1?] = Op(n~1) due to Lemma 30.

By Lemma 16 and Lemma 27, we have that

25 2 sup(E*[HG*( JEDY? sup [|(z1 =)~ Xo||

j 1 ZEBJ'
—Zé V2 [sup (1165 (2) D) sup H(zf—r>1/2Xo||]
z j

hy, 1/2 1/2
<5767 E | sup E¥|G (2)]1%)] E [ sup [|(2] — )72 Xq”
eB; €B;
j=1 2EDj Al

hn hn
<O 6 P (Glog )Y (jlog )2 = n 2N 6 (jlog )2,

J=1 J=1

‘We now have from these two bounds that

hn
y XO = OP 7’L_1 Z 5;1/2(] lOgj)3/2
7=1 7j=1
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Meanwhile, by the argument of Remark 15, we see that

hn hn
pP* Z A;H(é‘;)c >nXo | =0p 77,71/2 Zjlogj
=1 j=1
We thus have the desired result. O

Lemma 33. Asn — oo, if ||Bgn - Bl L 0, then we have
hn hn
E* (1T, (Us = Ung)IP) = Op [ 073 27 2 A2 | +Op [ 072 557
=1 =1

Proof. We note that

Dl (Us = Ungo) = T (X765 )n g, = X&) + T MK (E g — X(E)gn)-

The first term in the above display is bounded as follows. Note that

— I vaou ~ = o hn — Vo ~ =
||thl((X e )ng. — XE)|I? = Zj:l 7 2<(X e )ngn — X&,¢5)% and

E*[(X*e")ng, — X&,0))%] = n B [(Xe], — X&, ;)% = n "B [((X[er,, — XE)%%¢;, ;)]
=n" Mg, 0, 05) = 0 H{(Ang, — M)y, d5) +n (A, 05),

since {X/ef, — Xé}r | are iid with mean zero under P*. Recall that ||A, ;. — Alleo 2o0if

||Bgn — B Py 0as n — oo from the proof of Proposition 20. We therefore have that
R hn
E* T, (X6 n g, — X2 = Op [ 0" D45 2 IA 2652
j=1
Since the next term is bounded as
hn,
E* 175, (X (g = X (@) IP] < I IEE 1K (g — X (P = Op (0727572
j=1
due to Lemma 30, the proof is complete. ]

Theorem 10 (Counsistency of the bootstrap FPCR estimator). Suppose that
hit +n~Y2h2 log h, — 0 and ”Bgn - B 0 asn — . Then, the bootstrap FPCR estimator

B;"Ln converges to the slope function B in the bootstrap probability in the sense that for each n > 0,

P(I31, = Bll > m) = 0.
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Proof. Based on the decompositions (3.48) and (3.49), it follows from Lemmas 20, 31-33 by using

the same argument in Theorem 9. 0

3.10.3 Bias terms

Since the regressors are resampled in the paired bootstrap scheme, we have bias terms that
are random in the bootstrap world more than the residual bootstrap causes, where these
bootstrap bias terms are associated with X;F = {X*}7 | as well as J} = {Y;*}I'_;, which appear in

the decomposition (3.48). In what follows, we suppose that Conditions (A1)-(A6) hold. For

integer j > 1, we define

. . 1/2 .

J J J

My =n""Y" 6 logl+n /2 <27,2||A1/2¢l|!2) +n7 2y " llogl (3.57)
=1 =1 =1

in general, or
i i 1/2 i
M, ;=n"" Z 51_1/2(l log1)3/? 4+ n=4/2 (Z 'Yz_l> + 712 leogl. (3.58)

=1 =1 =1

if supjen 75 1A1265]% < oo

3.10.3.1 Non-random bias terms in the bootstrap world

We treat the non-random bias terms in the bootstrap world, which are related to
f[hn Bgn - 3gn in the decomposition (3.47). Recall that these bias terms can be non-zero only

when h,, < g, since ﬁhn Bgn — Bgn = 0 if Ay, > gn, so we focus on this case here.

Proposition 21. As n — oo, we have

n

e |y (0, ~ ), = ) Xob | )

hn hn
=Op | Mg, 1, ? Y " dlogj | +0p [ 0720, > 523 (jlog)* | +op(1).
j=1

Jj=1 J>gn

Suppose a further condition sup;ey 7{1||A1/2¢j||2 < o00. Asn — oo, if

h;l + g;l + n_1/2h731/2(10g hn)gi(loggn) + n_I/th(log hn)2g71/2 — 0,
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then for each n > 0,

> ! 3 P
P (/5 (e, = 10, = 81,501 > o] %) B

Proof. This can be proved with the same argument as Proposition S8 in the supplement of [53],

and hence, the proof is omitted here. O

Lemma 34. Suppose that h,, < g, with h,/g, — 7 € (0, 1].

1. Suppose that 7 < 1. Asn — oo, if n=2(g,, — hy)? — 0,

(gn - hn)sgn((l - th)XO)_l = OP(l), and

n — hp) ! I-T1I, )X
(90 = hn) 30, ((1 =T, ) Xo) p,
hy s, (X0)

then we have

P
— 0,

sup
yeR

P (/5 Tl Xob < 9]0 ) = B(0/02n(7)

where 03, (1) =71 -1,

2. We have that

9n
9n 1, —
—Op<hn—1>+Op n 1hnlz’yj

E [{ n ((I—th)anlUn,X0>}2 ‘XO

sh, (Xo) 2
Thus, if T =1, we have
n 2
-1 .
. [{ m«j_nhn)rgn UnaX0>} ’Xol = op(1).
Proof. By using the same argument as the one in Proposition 15, we can derive
- o P
sup |P I =1y, )Ty, 'Un, X, S‘X>—<I> 027‘%0,
yeR (\/Sgn((I_th)X0)<( h )L, Uny Xo) < y|Xo (y/o*(T))

and the result follows from Slutsky theorem.

To prove the second part, note that

(I =10, )T Un, Xo)? < 2((1 — I, )T, X e, Xo)® + 2((1 — I, )T, 1 X &, Xo)2.
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The first term in the above display is bounded as follows. Since Xje;’s are iid with mean zero,
we have that
E[((I — Ty, )Ty, Un,y Xo)?| X0
=n"'E[(X;e;, T, (I — T01,) Xo)?| Xo]
=n"'E[((X&:)®*T, (I — I, ) Xo, T, (I — 11, ) Xo)| Xo]

_ *1< (]‘ IIhn)jfo, (]‘ Ilhn))(0>

= YT 2 (1 =TIy, ) Xo|* = 12 N X0, ¢;)°
i>hy

By taking expectation again, we see that

E[E[((1 — T, )T,, Un, Xo)?| Xo]] = InglE (Xo0,07)% =n""(gn — ha),

J>hn

and hence, E[(I — I, )T, Uy, X0)?| Xo] = Op(n"'(gn — hn)). From the assumption that

==Ck><z:——1>.

E[((1 — Iy, )Ty, X &, X0)*| Xo] < E[IXE]?[]IIT, (I — I1,)Xol*

h Vi, (X0)~! = Op(1), we have that

2
n R
E — (I =TI, )T ' Xe, X X
{ th(X0)<( )L, X&: 0>} ‘ ’

To bound the next term, by using Lemma 18, note that

<:Cn—%u? LT — 11, ) X%

By taking expectation again, we see that

gn
E[E[((1 — TTn, )T, X, Xo)*| Xol] < Cn 2 Y ;!
j>hn

From the assumption that h,V,, (Xo)~! = Op(1), we have that

2 In
n _
E _ " WI-T, T-'Xe X LX - ~1p-1 -1
{ th(X0)<( )l g, XE O>} o = | j;; K

Thus, as n — oo, if g, /h, — 1, we have that

E

{ M«I—th)rg—;Un,pr\Xo] = op(1).
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Proposition 22. Suppose that h,, < gn, with hy,/g, — T € (0,1]. Then, we have

n/sn, (Xo){((I — th)(ﬁgn — f), Xo) = A, + By, where the quantities A,, and By, defined as

An = An(Xo) = [ (T = Tla, ) By, — ), Xo) = B,
Bu = Ba(Xo) =\ ?Xo) (I =11, )T U, Xo)

satisfy the following.

an
_ _ — . . n
E[|An||Xo] = Op | n™ 12012 ) "6 Y2(j10g4)*? | +Op . > b2
j=1 " j>gn

and hence, if further, nil/QgZ/Q(loggn)?’ = 0(1) and ng;* D jogm ’y]ﬂ]z =o(1)
(cf. Proposition 19), then for each n > 0, we have P(|A,||Xo) o.
2. When 7 <1, asn — oo, if n=2g2 =0, (gn — hn)sg, (I — 111, ) Xo) ™" = Op(1), and

n — hp) ! I—-T10, )X
(g0 = o) 5, (( = 01,)X0) p,
hy s, (Xo)

then supyeg |P(Ba(Xo)|Xo) — ®(y/02%. (7)) 2 0. When 7 =1, we have E[B,(Xo)?|Xo] 2 0

as n — 0.

Proof. By using a similar story to the proof of Proposition S9 in the supplement of [53] along

with Lemma 34, we have the desired result. ]

3.10.3.2 Random bias terms in the bootstrap world

We treat the (random) bias terms in the decomposition (3.48). We start with finding the
convergence rate for the first random bias <(f[;‘Ln —1II,,) 8, Xo) with scaling \/n/sp, (Xo). The

proof goes in a similar way to the story in Section 3.9.3.1.
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By applying the second resolvent identity (Lemma 14) twice, we have

(21 =T%)™' — (21 =) 7!
—{(zI =T) " 4 (2 —T%) N T% =) (2] = T) 1} (I =) (2 =)}

=(2I —T) N = T) (2D = T) 7+ (2 —T3) 1T

n

=(2I =) N [% =) (2l =) 4+ (21 = T) V(I = D) (2] =) YT —D)(2f — 1)1

since all quantities are symmetric. This implies that

~ 1 N
I, — 1y, = {(z[ S Ry g r)*l} dz + il e
chn "

= S:L + R:L + TInH(AZn)C

where
1 &
x I -7 1 T* I I T 1
s; 2m;/&(z )0~ D) (T 1)z
1 & - : i
Ry =5 Z/ (2 =T) 7 (I = D) (I =T) (I = D) (21 = T},) "z,
2L =B

and 7}, = f[;‘m — = fCh (2 —T*)"'dz (cf. Lemma 29). We will see the convergences of

= (Xo) (SnB, Xo) and , /< ( <R B, Xo) (based on the decomposition (3.59)) to zero,

respectively, under the bootstrap probability P*.

—D)(zl =) YT =T)(2f =)}

(3.59)

Lemma 35. Asn — oo, if hy, — 00, we have %E[E*[(S;B,XO>Q|XO]] = o(1), which implies that

E* [( <X0> (S2 8, Xo) >2 ‘X()] — op(1).

Proof. Notice from the expansion of Xy that

o0

2
E*[(S;:8, Xo0)?| Xo] = E* <Z<X07¢l><8267¢l>> ‘Xo

=1

M

E*[(Xo, 01)*(S58, 1)1 Xo] + D E*[(Xo, ¢1) (S5 B8, dur) (Xo, ¢ur) (S8, dr) | Xo]
1Al

(X0, p)*E* (S8, 61)%| Xo] + D (X0, ¢u) (Xo, i) E*[(S B, ¢ ) Sy B, )| Xol.
1A

N
Il
—

Mg

N
Il
—
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Since Xy is independent of &, = {X;}" ; and {(Xo, ¢;) : | € N} is an uncorrelated sequence with

mean zero, this implies that
E[E*[(S8, X0)*| Xo]]
Z (Xo, 1) |E[E*[(S:8, 1) Xo])

+ Y E[(Xo, i) (Xo, b ) E[E*[(S}B, ) (S8, b)) Xo])
1AV

=S EE S8 )2
=1

Write 8; = (B, ¢;) for the projection of the slope function 8 onto ¢; for each j € N. From the

basis expansion of 3 =Y 7, By¢yp, for each | € N, we see that

2
(Sni3, 1) (Z B (S ¢la¢l’>> :

=1

To explicitly compute (S}, ¢r), note that
hn
(Skdn, dv) Z / (21 —=T)~N(I% = T)(2I — T) "¢y, dur)dz

dz

= (T, = )i, bv') ZZm/

since (21 —T)71 =372, (2 — v)~'m (cf. [33], Equation (5.2)). By using the contour integral

E=MzE=

theory in complex analysis (cf. [1], Chapter 4), one can show that
(C5=D)dor) /
Y=Y : lflgh’"<l7

(Sudus dur) = § WEaDovdu) e pr < py <,
Yir =N

0 otherwise

as the proof of Proposition 17.
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We now investigate E[E*[(S} 3, Xo)?]] depending on I. Suppose that | < h,, first. We then have

2

(SzB, )% = §jﬁ —D)ér, o)
U'>hn v
2 2
)¢lv¢l'> ¢lv¢l’>
<2 g B
l; l W lgh: s
2 2
X (T =T, dur) — o (X" o) (X", ov)
< 2;ﬁl — + 2;& po— (3.60)
2
+ 2 Z 6[ (z)la ¢l/>
U'>hnp -

where T, = n ™! 30  X®2 and T =n~' 30 (X
By taking the bootstrap expectation E* for the first term in (3.60), we have

r 2

E* Z 6 )d)lv ¢l’> X,

U>hn —w

—E* —IZ i ﬁl’ X ®X )¢l7¢l’> XO

i=1 U>hy, -

2 -
0o ~
Z (XfeX;y-T /

:n—lE* ,8[’ 1 ® 1 n)d’lv ¢l > XO

V>hn Y= ]
2
n
_ _ ¢l7¢l/
SR EED Y PO Ee s
i=1 \I'>hn -
2 2
n
2 )¢l,¢z'> . ¢z,¢l'>
o oy et T VY AT
i=1 \U'>hy, V>hn

since X} ® X} —T,’s are iid with mean zero under P*. By taking the (original) expectation E, we

now have that

2
]

. (T% —Tn) 1, o)
E|E / X
l;nﬁl M= 0
— o (X®2-T)¢ ¢>2 )1, pr) :
SznilE Z /Bl’ L P +2n*1E Z 6 1y Pl

n—

V>hn U'>hn -
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As above, the third term in (3.60) is bounded as

2 2

£ Z 5 )i, o) _E _12 Z ﬁ — D)o, our)

/ !
U>hn M i=1 U>hp -

2

—nlE Z gy (X2 —T)¢r, o)

U'>hp, -

since X®? — T’s are iid with mean zero. The upper bound for E [(Zl,>h By M) } is

i
given as
X X ’ X ¢l> <Xa¢l/><X7¢l’>}
E Zﬂ o) /¢l> =S Bl'ﬂl e l)o
U>hy, = U >hy, NN g
1/2 1/2
Sl
<€ 2 A e
i =) (v —
212 1/2
<C Z\ml

U'>hn

The second term in (3.60) is bounded in a more complicated way. We first note that

2
(X%, 6)(X*, o)
l,;B Y=
2
a5 > 0 o) (3.61)
=1 1U'>hn,
2
U T oo
£y U >hy

After taking the bootstrap expectation E*, the first term in (3.61) can be expanded as follows:

2
213> PG 00X o)
i=11'>hy
—Z Z Bl/ LE*KX?*’¢l>2<X»*,¢l/><X*a¢l’>]
=i, N g i { 0

B By
B X* o MXE by
+§)l/§hn A E* (X7, du) (X5, i) (XT o) (X5 g ))-
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Here, we note that

E[E*[(X7, ¢0) (X, O)(XT, o) (X b))
=E[E"[(XT, ¢0) (X7, )| Xo]E*[( X, ¢1) (X, dug )]

=E [(nl Z(Xi, o) (X, ¢z'>) (”1 Z(Xz‘, o) (X, ¢16>>]

=1 =1

=n"2 > E[(Xy, di)(Xi, b )(Xi, 1) (Xi, by )]

=1

+n Y E[XG, ¢ (X, b ) (Xir, d1) (X, by )]
i£i!

=n" E[(X, o) (X, dur) (X, by )]

+n2 Z E[(Xs, 1) (X, d1)|E[(Xir, @) (Xir, Py )]
i

1E[<X7 ¢l>2<Xa ¢l’><X7 (bl(’)”

since X7, ..., X, are independent, | < h,, <!, 1], and the FPC scores are uncorrelated with mean

zero, which implies that E[(X;, ¢1)(Xi, ¢)|E[(Xir, ¢1)(Xir, ¢y )] = 0. In addition, we have

E[E* (X, o0 (XS, o) (XS, )]

Z Xm(m Xzy(m <Xiv¢lg>
=E[(X, ¢1)*(X, o) (X, oy )].

Note that E[<X7 ¢l>2<X7 ¢l’> <Xa ¢l6>] < Cf)/lfY[lf/Qlez/Q since

sup ’7[_1'7[/ /’Yl/ 1/2 [<X7¢l>2<X7¢l’><X7¢l6>]
LUl eN

<sup E[y; (X, ¢1) "/ sup E[n;, *(X, ¢pr) "/ * sup E[’Yl/ (X, )]V < o0
IeN VeN IheN

by Cauchy-Schwarz inequality and Condition (A2). This implies that

5 2 12 1/2
{ {(Z Z i >¢l><Xi*v¢l/>) <Cn(z B %) -

i=11'>hy,
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To bound the second term in (3.61), note that

KZZ B ,¢l><X;,¢y>)]

£ U'>h

Z Z BZ' LE*[(X?,@HX;;’@MX%¢l’><Xz‘*67¢16>]'

/ —_— !
il ot b hy L T

This sum is divided into the following four cases. Suppose that (i,4") = (io, i(), where the number

of cases is n? — n. Then,

E[E"[(X7, ) (Xiy, ) (X5, v (X5, oy )]
=E[E*[(X7, o0) (X, du) (X5, )]
=E[E*[(X7, o) ]E* (X, dwr) (X5, )]

=E [(nl Z<X“ gf)l>2> (nl Z<X“ ¢l’><Xi7 ¢l6>>]

—2ZE (X, &) (X, d) (X, b)) + 172> (X, 1) (Xar, dur) (X, )
i=1 174

=n""E[(X, 60)*(X, (X, by )] + 177> E[(XG, ¢ |EN X, dur) (X, by
i/

:n_lE[<X7 ¢l>2<X7 ¢l’><Xa ¢l6>] + (1 - n_l)ryl’n/}l(l/ = lé)

Secondly, suppose that i = i}, and i’ = iy, where the number of cases is n? — n. Then,
Y, Supp 0 )

E[E*[(XT, o) (X, 1) (Xir, o) (X5, g )]
=B[E"[(XT, ¢u) (X7, g )IEL(X 7, 00)(Xir, pur)]

=E [(n—12<xi,¢l><xi,¢lg> (n—lZ<Xi,¢z><Xi,¢y>)]

i=1 =1
=n"2 > E[(Xi, 602 (Xi, by ) (X o)) + 072y ELXG, 60 (Xs, du ) Xir, 1) (X, b))
i=1 14
:n_lE[<X7¢l>2<X7¢l/ X ¢l QZ X17¢l Xl7¢l >} [(Xi'a¢l><Xi’7¢l/>]

14/
=n""E[(X, ¢1)* (X, oy (X, o))
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since X7, ..., X,, are independent, | < h,, <, (), and the FPC scores are uncorrelated with mean
zero, which implies that E[(X;, ¢1) (X, ¢y )]E[(Xir, 1) (Xir, ¢)] = 0. Next, we suppose that three
of (i,4',40,14() are distinct with i # ¢’ and iy # i(,, where the number of cases is 4n(n — 1)(n — 2).

Then, we see that
E* (X7 ) (X5, d0) (X du) (X )]

(n™! S (X3 00)?) (07 S (X)) (07! S (X ) it i = io

(”_1 > i1 (Xi, o) (X, ¢zg>) (n ' (X o) (n 7t I (Xay b)) i i =dg

LSS (X 00) (0 S (X a0 (X 60) (n T (X)) i =i

TSI (X 60) (S (X 60) (K 0y) ) if i = ).

One can show that
E[E (X}, o) (X, o) (X5, du) (X, oy )] = n2E[(X, ) 2(X, oy (X, )]
if either ¢/ = iy or i = i}, and

E[E"[(XT, o) (X o) (X, o) (X s oy )]

=n""E[(X, ¢1)*(X, oy (X, ¢u)] +n 7 (1 = 0"y Il = Iy)

if either ¢ = ip or ¢’ = i(,. As the last case, suppose that all of (i,7’, i, i) are distinct, where the

number of cases is n(n — 1)(n — 2)(n — 3). Then, we sce that
B (X5, o) (Xiy, o)X, ) (X5, g )]
= <n_1 an<Xz'7¢l>>2 (n_l i(XMﬁz'») (n_l i@%(ﬁzgﬁ) ,
and hence, _ _

E[E* [<Xz*7 ¢l> <X;;7 ¢l> <X:;7 ¢l’> <XZ*67 ¢Z’O>H

=n " E[(X, ) (X, g} (X, dyy)] + 02 (1 = n” Dy Il = 1).
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Note that the total number of cases of (4,7, 40, i) with ¢ # ¢ and ig # i, is
2(n% —n) +4n(n —1)(n — 2) + n(n — 1)(n — 2)(n — 3) = (n* —n)>.

By summarizing these upper bounds, we have

2
el [ X% P (e
1#i' ' >hn
Br ﬂl{, { 2(n?—n) 4dn(n—1)(n—2) n(n—1)(n—2)(n—3) }
- + 2 + 3
Vo= n n n

Ul{>hn
E[<X7¢l>2<X7¢l’><X7¢l6>]
2 — n — nn — n — n —
I o (2 g S U TIPS UE) P

n n
U'>hy,
| 1Byl A
<Cn Z |5z Pyl %711//2 1/2+C’n Z By,
V0>, N V>hy Y=
1/2_1/2
SCnZ Z 181 |”Y P
U>hy, o
Thus, the third term in (3.61) is bounded above as
2 2
2,172
X X*, oy Yy
S e LI B D
V>hn M ol il
In summary, if [ < h,,, we obtain
1/2 1/2
E[E[(Sn8, @0)*|Xoll < Cn™" | D 1Brl-— -
V>h, %'

A similar compuation can apply to the case of [ > h,, so that

71/271,/2 2 212
E[E*[(S58, X0)*| Xo]] < Cn~ IZW > 1Brl—t Y (ZWH o )

=1 U>hn = I>hn =1 —w

(3.62)

Following the same truncation technique in the proof of Proposition 2 in [12], one can derive that

E [E* [&(555,)@2‘)@” = o(1). (3.63)
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This implies that

£ %17(1)(0)@;57)(0)2))(0] = {hnsn, (Xo) ' }E* [;;

which conclude that
P (/51538 Xo) > n| X0 ) = op(1)
Sho (Xo) "

Lemma 36. Asn — oo, if h,' +n"'/?h, 1/2 Z (4log7)? — 0, we have that

(516,07 Xo| = Op(1)or(1) = (1),

p* < Shn(X JI(R;5, Xo)l > n(Xo> = op(1).

Proof. We observe that
hn 1 R . .
_Z/ (21 =T)" % =) (2] = T) " Y(T% =) (21 —T%) " tdz
= 271 B-
—1/2 v 1/2 x\—1
mZ/ (2I —=T)7Y2G% (2) (2] = 1) Y2(IF =) (2 —T7) " dz
—1/2 v _ m1/2 Ty —1
27”2/ (2 = T)7Y2G% ()3 (2] — D)2 (20 —T7) 7 Ldz
~ I T 1/2 v QK* I—T 1/2
2m§j/ o = )7V ()G () (T ~ 1) 2,
This implies that [(R} 3, Xo)| < C Z?;l Aj where
A*—/B (=1 =) 2 Xo || G () 12 G (2) ool (21 = T) 78] d.
J

Thus, by Lemma 28, we have

E*[AS

Xo] :/B (=1 = 1)~ 2 X0 [E* |G ()13l (2) ool | (21 = T)~'/2 ]|
j
< C/B (=1 = T) =2 X |[E*[| Gy (2) 12| (2T = T) /28| d=.
j
Note that for all z € By, |z| > v; — 6;/2 > v;/2. By Equation (5.3) of [33], for z € B;, we have

-1
1T =0y 2o = (il =) = 2 =yl = (5y/2)
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By Lemma 16 and Lemma 27, we see that

E[E*[A}Le: [ Xol] < CO;E

zej zej zEJ

sup [|(2I —T')~ 1/2Xo\|] [sup E*[||G (= )HQ] sup ||(=I — T)"1/28)
< C;(jlog ) {n " (jlog j)*}3; 1/ = Cn ™16} (jlog j)*/* < Cn ™" (jlog j)?

since §; < ; < C(jlogj)~!. We therefore conclude that

hn
E|E° |l AT

XOH <COn7t Z?Ql(j log )2, which implies that

i
A _ —1/23—1/2 Toe )2
,/Shn Z £ Op | n~"?h, Z(J 0g §)

7j=1

Meanwhile, by the argument of Remark 15, we see that

hn h’ﬂ
n
p AT e > ‘X —0p [ n 125 jlogj
Shn(XO)]z::l iLiene > n|Xo p Z::lj gJ

We thus have the desired result.

A bootstrap version of Proposition 17 is given as follows.

Proposition 23. Asn — oo, if h,t + Tfl/Qhﬁl/2 zh" (jlogj)? — 0, then for each n > 0, we

have that

P (g, — 100,80 > 1[0 ) = op)

Proof. By the argument of Remark 15, we see that

hn hn
P (o Il Kol e > 1[%0) < Cun~t 30072+ Con™2 ) o
n 7j=1 7=1

Thus, under Condition (A5), we have that

<‘/ | rialoas B, Xo)| > n‘X()) P.o,

and by Lemmas 35-36 and the decomposition (3.59), we have that




213

We now state and prove a bootstrap version of Proposition 18.

Proposition 24. Asn — oo, if ht + 71_1/2h;1/2 Z?”l 6; 1/2(] log j)3/% — 0, then for each

n > 0, we have that

P ( e )™ =T = D Xo) > n|X0> — op(1).

Proof. We observe from Lemma 29 that
1
(Ch )t =r,t = 5o Z/B 27t {(ZI — )7 — (2] - r)—l} dz + 3 )

QMZ/ Nl D) VR () = ) Pz L e

This implies that

~

|5, =T MU = Ung,), Xo)l < O 32520 A7 + Ir8ulloo1U7 = Un,go I Xol[ T4z e where
* 1 * * — * 2 —
Aj :/B mllKn(Z)lloollGn(Z)Hooll(zf*T) Y2 oo lU; = Ungu I (2T = T) 712X | d.
J
Thus, we have

E*[AjLe | Xo]

:/s |2 T E G (2) ool |G () oo 1 Uz = Ung 111 (21 = T) ™|l (2] — 1) ~1/2 X | d2
J

<co; ' /B Y E NG o U = Ung I (21 = T)"Y/2 X | dz
j

go(sj‘m §
B

A

ENIG D2 E NS = Ung IPDY2 1 (21 = 1) "2 Xo | d=

1/2 * * * * 3
<03, 2 sup (E*[I|G5 (2)|2) 2 sup [|(21 — T)™2 X0 | (E*[|Uy; — Un,g,,|P])1/2.

zE] ZEJ

This implies that

hn
E* ZA;]IS; X,
j=1

<CEIU; ~ Ung, I’ 1/225 i sup(E*[HG*( IZN? sup [|(=1 = T)~2 |-

j=1 2€B;
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To bound the term E*[|U — U, ,. %] in the preceding display, recall that

Up=n"t 300 (X = X9)(e] g, = (E)nga) = (X7 )ng, — X*(€%)ng, where

1,9n
(X&) g, =0 Y, Xie, - Since
Un ngn =17 200 (X = X) Eig — (€)g,) = (XE)nyg, — X()g,, we see that
1T = Unga I < 20(XFM)ng, — (XE)ng, I” + 21 X* (g — X (E)gn > (3.64)
As for the first term in (3.64), since X7ej — (X&)p.g,’s are iid with mean zero under P*, we see

that

E (X7 n g, — (Xmg, 7] = n T [ XS el g, — (XE)mg, ]

i Sign

<o B[ XG e g, 17+ [(XE)ng, I?) = Op(n™h)

i Cign

as computed in (3.54) and Lemma 23. This means that E*[||U — U, ,.[*] = Op(n~!) due to
Lemma 30.
Next, by Lemma 16 and Lemma 27, we have that

Zé V2 sup (E7[|G )2 sup [|(2I = T) "2 X

j=1 2€B;

_25 V2 [sup (|G () [%])? sup r\<zf—r>1/2Xo||]

ZGBj

Ry, 1/2 1/2
<y o (E [sup E*[HG;(z)nzo]]) (E [sup (=~ rr”?xwﬁ])
j=1

ZGB]' ZGBJ'
hn hn
“1/2, _1,. . ) ) _ -1/2, . .
<036 n  (jlog )1 A (log )2 = n V2N 6 (j1o0g )P/,
j=1 J=1
We now have from these two bounds that

hn
; Xo| =0p n*125;1/2(jlogj)3/2 )
j=1 J=1
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and hence,

hn
— n * *
A / Shn E A Hg =1/ hnShn(X()) 11 / h7nE E 1 AJH(S‘;
]:

h’IL
= Op | 712012y 671 (j10g )

j=1
Meanwhile, by the argument of Remark 15, we see that
p* n thA*]I e > Xo | =0 n‘lﬂi'lo '
sn(Xo) < jlEne > NjAo P ':1] gJ

We thus have the desired result.
The following proposition is a bootstrap version of Proposition 21.

Proposition 25. As n — oo, we have

E*[ Shn( AL nhn><69n—/a>,xo>|\X0]

—Op Mn,gnh;WZjlogj +Op | n7Y2n; 12 ZBZZjlogj + op(1).

j=1 J>gn

Suppose a further condition supjcy 7{1||A1/2¢j||2 < 00. Then, as n — oo, if
ho' + g0+ 072 (log hiu)gn (log gn) + 023/ i (log ) — 0,

then for each n > 0,

* n ~ . o
d < Shn(Xo)K(Hh" = 1,)(Bg, — B), Xo)| > 77’Xo> = 0.

Proof. Following the spirit of Lemma 17 and Remark 15, we ignore the remainder terms related

to either &5, Aj . (£7)¢, or (Aj, )°. Based on Lemmas 20-22 and 31, and the decomposition
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(3.38), one can see that

E oty (i = T (B — thﬁ),Xoﬂ‘Xo]
—E* shn(Xo)K(ﬁg" 1,,4), (1T, —th)XOH‘XO]
= 1(Bg, — M, B)|[|1(1,, — T, XOH)XO]

Shn( 0)

S I, B)|E* )X )X
-~ (X)H(ﬁgn 1 B) | E* (L5, — 10, ) Xoll| Xo
hn
=Op | Mg, 11y jlog
j=1

Meanwhile, as seen in the proof of Proposition 23, we have

f[;;n e =5 Z/ {(z2I -T%) ' = (I -1)"'}dz
= S;; + R:L + TTnH(A;‘L )c

where

=5 Z/ (zI =T)"YI* —T) (2] —T)"tdz,

Ru=55 Z/ (21 =T) YT}, =T)(2I =)~ (T}, = T)(zI - T;,) " 'dz.

Following the proof of Lemma 35, as n — oo, one can show that

2
1/2_1/2
h—E [E* [(S:(I —T1,,)8, X0)2| Xo]] < Chy, 1271 3 160l %

=1 U'>gn

1/2_1/2

<o S0 T

=1 U>hn -

which implies that

n

E*
Sh,, (Xo0)

(ST 10,08, Xl Xo = on(1),
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Next, note that ||(I — 1Ly, )B[ < />, 5]2. Finally, following the proof of Lemma 36, as

n — oo, we have that

hn,
E* [\/Shn?ixo)wzz(_]_ Hgn)ﬁvXOH > TI‘XO] =0Op n—1/2h;1/2 Z ,8]2 Z:(] logj)2 )

Jj>gn  j=1

which completes the proof. O

3.10.4 Variance term: lemmas for Proposition 16 in the main text

In what follows, we suppose that Conditions (A1)-(A7) and ||3,, — 8| P, 0 as n — 0o. Recall
Zr, = (X[ Un,gn,rngo) with Uy, g, =n 300 XFelr, and 02 =3, E*[Z;%\XO] from

1zg zzg

the proof of Proposition 16.

Lemma 37. Asn — oo, we have that n= 192 ~p s, (Xo) in the sense that

71711)2

Shn (Xo)

P

— 1| —0.

Proof. We first see that

E*[Z51X0] = E' (X el — E*[X[e], 1. T, X0)? | Xo]

i Cign i Sign

= (E"[(X[ iy, — E'[X]e g D0, Xo, T, Xo).

with E*[(X7er, — E*[Xrer, |)®2) = E*[(Xrer, )% — (E*[X7ef, ])®%. We then find that

i zg 7 27g A z7g % 1g

B [(Xery, — E'[X7 el )] = Ang,.
This implies that

E*[Zi7) X0] = (Ang, Ty, Xo, T, Xo)

= ((An,g, — NI, Xo,T}, Xo) + s, (Xo),

and hence,

—142
n- o

Shn (XO)

—Jz%w%rwmwwmwg%mﬁ%w

The result now follows from the fourth part of the proof of Proposition 20. O
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Lemma 38. Asn — oo, if n='h2 — 0 and (n_l S AT ) 184, — 5112 LN 0, then we have that

J=173
* P
E* [(ﬁﬁll@%ﬁ"‘) ‘X[,] 2.
Proof. We first see that [Z], | < [(X[e], | ,::X0>| + \((Té)n,gn,F;:Xo>]. By the second part of

Lemma 23, the second term is given as

0 (X g T Xo) | = 17 20, (X0) T2 (XE) g, T, Xo)| Z(Xh) = op(n~12).
Note that
/2
b max |(X7<7,,. T3 Xo)l < 072 max (A2, | (”/“) ,
1<i<n o8 17
where

1/2
AT X0l sn, (Xo)

15 —15

2 =1 —|—0P(1) = Op(l)

2 —
nvn n

as n — oo, since ||A; T} X012 = (An, T; 1 Xo, T ' Xo) < (AT}, Xo, Ty ' Xo) = sn, (Xo).
We now need to deal with the term n~"/2 max;<;<, A, 1/QXZ* €7 4. |I- Inspired by the identity
Xiéi,gn = Xie; — X?Q(ﬁgn - 5)7

we have that

1A X e P < 2010 2K e, + (X% (B, — B2 + 217 2(X0) 2By, — B

zgn i zgn

To bound the first term in the above display, note that
1A, X rer,, + (X022 (By, — Bt = Z MUK e, + (X)) P2 (B, — B} )

< hnZA;2 {Xielg, + (X)) (Bg, — B)}0y)*
=1
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by Jensen’s inequality. By taking the maximum and the bootstrap expectation, we have

1<i<n Eign

n2E* {max A, /Q{XZ* Yo+ (Xi*)®2(3gn —/3)}”4]

<n_2h ZZ)\ QE* [({X]e ;kgn—'_( )®2(Bgn_ﬁ)}v¢j>4]

=1 j=1
n  hp n
SR 9 W ) SERATY
i=1 j=1 i'=1
—n_2h iz)\ Xffu%
=1 j=1

From Condition (A7), we derive that

E [E*

For the next term, note that

[n_lﬂ max ||A, 1/Q{X* ton T (X;)®2(Bgn - 5)}H] < Cn”'hy.

1<i<n i ign

18, 2 (X ) %2 (B, — B)II? = ZA 52 By, — B), 1),
and hence,
E* [n*HA*”%X*)@?(Bgn - B
‘IZA X7)%?)(By, — —IZA T (Bg, — B),15)?

=Op n_lz/\j_lllﬁgn—BHQ ;

j=1
where T, = n~1 320 | X2 since E[||T,, — T||Z] < n'E[|| X1]|*] from Theorem 2.5 in [32].
In summary, we have that

4
e | (5 s )

2

hn
= Op(n™"hy) + Op Y AT 1Bg, = B +op(n”?).

O]

Lemma 39. As n — oo, we have that

E —1 Zl 1z*2 .
Sh,, (Xo0)

‘X(]] 2.
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Proof. Note that
nt Z Z2 = (AT, X0, Ty Xo) = (A, — AT, X0, T3, Xo) + s, (Xo)

where A¥ =n"1 3" (Xre €5 gn = (X)ng,)®? with its mean E* [AX] = A, ,,. Here, (X&), is

defined in (3.45). Inspired by the identity
Xiéi,gn = Xj&; — X?Q(Bgn - B)»
we see that
R n
E*[f(X] el + (X)) (B, = B)] =n"' Y f(Xies) (3.65)
for any function f : H — R. From the following decomposition
Xietg, = Xéng, = Xietg, + (X)) (Bg, = B) = (X))**(By, — B) = (X g,
we have that

(AF — A)F—IXO,F—1X0>

n

n~t Z {X7er,, + (XD)®%(By, — B)}®* — AT}, ' Xo, T, Xo) (3.66)
+n Y (X2 (By, — B), T, Xo)?
=1

+ (XE)n,g, Iy Xo)?

n
=207 D (X7l T XX B — ), Xol
n _
27! 3 X g T X0 (K T X0)
‘12 2By, — ). T Ko} (X ngs Ty Xo).

We now investigate an upper bound for each term in the preceding display.
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The first term in (3.66) is bounded as follows. By (3.65), we have that
E* (X7 el g, + (XD)¥*(Bg, — B)}*? = AT, Xo, T, Xo) || Xo)
n~t Z| {(Xie)®? — A}, Xo, T, Xo) |
<n”! Z 1(Xie:) %% = Al Xol?

Recall that E[[|(X;e;)®% — A||?] < Cn~! from Theorem 2.3 of [32] and E[||F;:X0H2] = Z?gl fyj_l.

ol

This implies that

: [E* [
hn

<on Yoy
j=1

which implies that

n

nUY ({Xper,, + (X)) (By, — B)}9? — AT}, X0, T, Xo)
=1

n! Z (Xt + (XD P By = 9) = ALy X0, T 1 X0)

1 Z7gn

E* [Shn XO

)
—Op n—1/2h;1 2%—1 :
Jj=1

where this convereges to zero under Condition (A5).

The second term in (3.66) is bounded as follows. Since

Ly,

E*[((X;)®%(By, — B). T, Xo0)?| Xo]

=S (X By, — 8),T, 1 X)?
=1

=07 (X By, — B)* (X0, Ty Xo)

= <n D (XT3 X0 X2 (B, — ). Bon — ﬂ> 7

=1

by the third part of Lemma 24, we have that s, (Xo) "L, = Op(||3,,. — BI?)-

The third term in (3.66) is bounded as

S (X0) (X&) n g, Ty X0)? = Op [ 0™ hy, 12% + Op(IlBy, — BI)
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by the second part of Lemma 23.

The fourth term in (3.66) is bounded as follows. Note that

Ln = E* (X[ €} 40 T - XM (X7)®2(Bg, — B), T, Xo)|| Xo]

7:79774

n
= 'S (X g T Xo)(XE2(By, — B), T Xo)|
i=1
n
<n! Z |(Xies, P;jXO)(X?Q(ﬂgn - B), Ff_LanO>’
i—1
n
+n”! Z<Xi®2(5gn - B), F;;}Xo)2
i=1

n
=n"" ) (X5, T}, Xo) X, By, — B)
=1

+ <”_1 > AXi, T 1 X0) X (Bg, — B). By, — 6>

i=1

i=1
n
+ (n‘lZ |IXiH2<Xth§Xo>2> 1Bs.. = 811
i=1
By the third parts of each of Lemmas 24-25, we have that s, (Xo) 'L, = OP(HB% - 8.

The fifth term in (3.66) is bounded as follows. Note that

Ly = E' (X} €} g, Ty X0) (XE) g, Ty Xo) || o]

i,gn

n
=0 [(Xifig,, Ty Xo) (XE)n.g,, Ty, Xo0)]
=1

n n
< (T T X { SO (X T )+ S IXE2 B, — ) rg:xo»}
i=1 i=1
We observe that

n

n 1/2 n 1/2
Y (Xiei, T, Xo)| < (nl > (X, r,;anO)2> <n1 Za?)
i=1 =1

i=1
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since n=1 S (| Xiei|| 2> E[| Xe]|] < oo and

n~t S (XE2(B,, — B).T;, ! Xo))|
=1

=n"" Y (X0 Ty Xo) X, (Bg, — ) < (nl > !<Xz'7T;Z:X0>!HXiH> 184, — Bl

i=1 =1
" 1/2 n 1/2
< ( z<xi,r,::xo>2> ( 3 rxiw) s — Bl
i=1 =1

Here, E[(X;, I‘,::Xoﬂ = Z;’;l Y 'E[(Xi, ¢;)2] = hy, since the FPC scores &; are uncorrelated
random variables with mean zero and variance ;. This implies that

E [”_1 Z?:1<Xi,r,::Xo>2] = h,,. Therefore, we have

nt Z [(Xies, Ty Xo)| + 07! Z (X2 (Bg,, — B), T, Xo)| = Op(hy/?).

=1 =1
Since
N 1/2
S (X0) T2 U(XE) g0 Tyt Xo) = Op | | 07yt D! +Op (|| By, — BI)
j=1
from the second part of Lemma 23, we conclude that
h 1/2
St (X0) 'Ly = Op [ | n7'0 'Y 7! + Op(||Bg,, — BII)-
j=1

The sixth term in (3.66) is bounded as follows. Note that

Ln = E (X)) (Bg,. — B), T, X0){(XE)n g, T, Xo) | X0]

=7 S X2 By, = B), T3 X0 (XE) g T Xo)
=1

= (n_l > \<Xi,Fh,}Xo>||Xi||> 185, = BIN(XE)ngs Ty Xo)l

i=1
n 1/2 n 1/2
< (n S, rh,}Xo>2> <n ) ||Xi|2) 185, = BIK(XE) g, T Xo)l.
i=1 i=1
As the previous paragraph, we conclude that
1/2

hn
$h,(X0) Ly = Op [ | 072" Y ot | 1Be, = Bl | + Op(l1Bg, — BI1P).
j=1
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In summary, we have that

. [ n Y () ’X°]

—1
shn, (Xo)
hn R
=0p | nY2n;! Zv{l +O0p [ n7'h,! 27;1 + Op(||Bg,. — BII)-
j=1

Note that Condition (A5) implies that n='h, ! 2?21 'yj_l <n~12p;t Z;‘;l ’yj_l — 0 as n — oo.

Thus, as n — oo, if |8y, — B]| — 0, we have that

S (2 ’
= S x| Bo.
! shn (Xo0) ’
O
Lemma 40. As n — oo, we have that
n 2 P
E* X g, — K@ Ti X0} ) |X .
[( ey K Eha ~ X B 1) ) o] £
Proof. From Lemma 30, we have that
n . —
E* | (X g — X (g T X0)?| X
e X Ea — KB T 0|0
<{hnsn, (X0) " HOE (| X (6 )ng, — X(E)g I7]) (A5 Ty, Xol1?)
hn
=Op(1)Op(n™")0p | h" Y 75
j=1
hn
=Op | n'hyt Y it ]
j=1

where the last big Op term converges to zero under Condition (A5). O

3.10.5 Scaling term

We investigate the consistency of the ratio of 85, (Xo) to 8p,(Xo) (or to sp,(Xo)) to 1 in

the bootstrap probability P*. The bootstrap scaling s}, | (Xo) can be decomposed in a similar way
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to the decomposition (3.43) as follows:

8 (Xo) = (A3 y. o (T1 )7 X0, ()1 Xo)
=R, {5, = T X0, (T3, )7 Xo) + (A 4, 0 T Xo, (T,) 71 Xo)
=(Ay g o A0 )T =T X, (05 ) = T Xo) + (A o AT )™ = T3 11 X0, T Xo)
(A ko DR X0, AT ) =T XY + (A g T X0, Ty Xo)
=(A3 o o A0 ) =T X, {(T5,) 7 = T 1 Xo)
+2(A g T X0, {5, = T3 Xo) + (A g, 0, Tt Xo, T, Xo)
=((Af gy g — AT )T =T X0, (T, )7 = T, 1} Xo) (3.67)
+ (AT =T X0 {(@,) 7 = Ty Xo)
+ 2((A g g — DT X0, {(T5) 7 = T 1 Xo)
2(AT}, X0, {(T,) " = T, 1} Xo)

+((Af g g — MT, X0, T Xo) + (AT, 1 X0, T Xo).

Also, with g7 =~ = <Bgn, 5, we see by putting &7 Fnagn = Eign — <ﬁzn — Bgn,XZ-*) that
A::L,kn,gn 71 Z z*Mzk kn,gn (X* *>§imgn A
n
=A% g, — ATty (XNOHEE, — By, X0 (3.68)
i=1

n
—2n‘1ZXZ‘ € gn ® XINBE, = Bgr Xi) = (XFENTL

where Ay , =n"1Y" (Xfe £f )% and

n
(X¥E ) ko gn =1 12 X} & g =" ZX* Ergn =1 Y (B — By X)X
=1
= (X*e ) ng, — (T = T)(Br. — Bga) — T(BE, — Bgn) (3.69)
with (X*e¥*)p4, =n~' Y0l Xie P

In what follows, we suppose that Conditions (A1)-(A8) hold and || ﬁgn el 2, 0 and for each

1> 0, P87, — Byull > 1) 2> 0 as n — oc.
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Lemma 41. Define A} =n=' S0 (XY — X (X}, B))®2. Then, we have
E[E*[n||As — Al|%5]] = O(1), which implies that for each n >0
P
P*(IA}, g, = Alloo > 1) = 0.

Proof. Note that
A* gn = =n! Z X/e :,gn nt Z XY — X/, B) — X:<Xi*7Bgn - /8>)®2
— A +nt Z(X: (X7, By, — B
—12 (XY = X7 (X7, 8) ® (X7 (X7, By, — B))

— nil Z(X1*<X1*7Bgn B ’8>) ® (XZ*Y;* B Xj(Xl*’ﬂ»

To see the convergence of the first term, write L = (XY — X (X}, 8))®2. Since {L}}™_, are iid

with mean E*[L¥] = n~ ' Y7 (X;&;)®? = A,, under the bootstrap probability P*, we have

n 2
n (L - A
=1

E*

Z [(I1ZF — AnllZrs] —n_QZH (Xiei)?? = Anllrs

HS i=1

<C (”_2 Z |1 Xieil* +n~ [ An — Allfs + ”_1\\/\\%13) ;
=1

which implies that
E[E*[n]| A, — Allis]] = E[IXel"] + Elnl| Ay — Allfs] + E[l|An — Allzrs] + 1Al s
=0(1)

For the rest of terms, note that

| .

<n Y IV - XEKE ) © (5 XS B~ )l
=1

_IZ (XPY7 — XHXP, B)) @ (XF(XE, By — B))

=n "1 (X0Y; — Xi(X4, B)) ® (Xi(Xi, By, — B))lloo
=1

n n n
_ 5 _ _ 5 P
<n™t Y IIXel 1 Xl 118y, — Bl < (n 1z:IIXi&'IIQ) (n 1Z||Xi!\4> 1Bgn = BIl =0
=1 =1
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- [ J

<n V3B [IGXT B, — 8) e | = _IZII o Xis By, = )% loo
=1

< (n_l > IIXi!\4> 1860 — BI* = 0.

i=1

and

nt Y (XHXT, By, — B)F
i=1

We thus have the desired result.
Lemma 42.
1. For each n > 0, we have P*(|[(X*&*)n k. 9.1l > 1) .
2. Asn — oo, if n th; ! Z?;l fyj_l — 0 (which is implied by (A5)), for each n > 0, we have

* —1/(XFax - P
P* (51, (X0) " (X E) n ki g0> Ty, X0)* > | Xo) = 0.

Proof. Note that E*[(X*e*),,4.] = E*[X[e}, ] = (X&)ny,. Since {X e 17, are iid with mean

7 z,gn i zg

(Xé)n.g,, we have

E* (X )90 — (XE)ngall’]
— * * ok Y A 2 * * ok Y A
=n"E* [ X[ €]y, — (XE)ngalP] < —E[llXG &5 gu 121 + 1 (XE)n g |I”

2

~ (n D IXigig 1P + (X )n,gn||2>
2 (2 ) -
=n { (n > Xl + Z 111185, — 6H2> + H(Xé)n’gnH?}
i:l

—Op n

from the fact that (X&), g, Poo by the first part of Lemma 23, which again implies that

(
E* (| (X*€*)n,gn ||?] o. Next, note that E*[T%] = E*[(X/)®?] =n~ 1320, XP? =T,. Since
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{(X)®2}7_ are iid with mean T',,, we have
£ (I — Tulids] = n "B [I0X)%2 = Pullirs] < ZE0X12) + Illrs)

2 [ .
== <n S I + 20T — Tl + 2HF\%S>

2
n

i=1

=Op(n™")

from the fact that E[||T,, — T'||%g] = O(n~') by Theorem 2.5 of [32], which again implies that
E*[|IT: — T|12] < E*[|IT% — T|1%5] = Op(n~'). The first part then follows from the decomposition
(3.69) and Theorem 10.
For the second part, note that
Shn (XO)_1<(XT5*)H,QWFI::X0>2
<2sp, (XO)_1<(XT€*)mgn - (Yé)n,gn7F;:X0>2
+ 2sp,, (XO)_1<(X75A)n,gna Ff:an0>2-

Since
E*[sh, (X0) " {(X*e ) ng, — (XE)ng,. T, X0)?| Xo]
<83, (X0) T E (X% ngn — (XE)nga P17 7 Xoll®
hn
=Op (7 Mha' D!
j=1

from the fact that E*[||(X*e*)n 4, — (X&)ng,1I?] = Op(1) as seen above and
Sh, (Xo)_1<(Xié)n,gn,Fg:Xo)2 20 by the second part of Lemma 23, we have

E* (s, (X0) ™ ((X*¢ ) g, I X0)2| Xo] ©+ 0. Next, note that

L, = sn, (Xo) (T = Tu) (B, = By.), Ty Xo)?
< s, (X0) M = TallZ Ty XolPl155, — By, 117

Due to the fact that E*[|I% — [',||%] = Op(n~!) as seen above, we have that

hn
E*[sn, (X0) T3 = Tull 2T Xo) 21 Xo) = Op | 07"t Y a5
j=1
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This implies that for each n > 0, P*(L3, > n) o Finally, note that

= 51, (X0) "' ITuL ' Xol* 185, — By 1%

As seen in the proof of Lemma 23, one can show that sy, (Xo)_1||fn1“};}X0H2 = Op(1). This
implies that for each n > 0, P*(L3,, > n|Xo) Poo summary, by the decomposition (3.69), we

have the desired result. O

Lemma 43. For each n > 0, as n — 0o, we have the following.
P (|t i ()= B, = By x| > ) Do
oo

2. Ifn_1/2hﬁl/2 Z?"léj 1/2(] log )32 = O(1), then

P* <8hn(Xo)_1 < <n_1 D (XH)P2Bs, — Bgns X >2> I, Xo, (T, — thl)X0> > U‘Xo) )

i=1
* — — n * Hx A * — — P
5. P (sm, (X0) ™ ( (7 Sy (X245, — B X0)?) T30/ X0, T3 X0 ) > | Xo ) B0,

Proof. Note that

n

*12 2By, — Bns X7

n
<n~' Y IXTIMIGE, — Byl
i=1

n

_1ZHX I* — ElIX1%

o0

18k, — BoulI” + ENXI'TIIBE, — Bou >

To see the consistency of || X*||* =n=t3 " | || X/||* for E[||X||*], we follows the proof of
Theorem 2.1 of [3] by using the techinical lemmas therein. Note that ds(X/, X;) — 0 almost
surely by Lemma 8.4 of [3]. Define ¢(z) = ||z||* for # € H so that dy (|| X;||*, [| X:[|*) — 0 almost

surely by Lemma 8.5 of [3]. By Lemma 8.7 of [3], it then implies that

n
di([IX[% X9 < 0™ Y d(IXF I 1601 = da(IXF )1 15011 — 0
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almost surely, where || X||4=n"13"" || X;||*. Since || X|* — E[||X||*] almost surely by the strong

law of large numbers, it almost surely happens that for each n > 0,

P*(J|X*[|4 — E[|X||*]| > 1) — 0 almost surely. Therefore, the first part follows.

For the second part, note that

L= < (n-l i(x:)%;;n - Bgn,xnz) Iy Xo, Q2>
n! z T X0) (X7, Qu)(Bh, — B X3
n! z D X0) (X7, Qo)X P28, — By B, — B
_ <n jzlw:, D X0) (XF, QU (X)) (B, — Bu): B, — ﬁ>

where Qj = ((I'; )™' —T;,")Xo. This implies that

n
Ly | < (nl > IIXZ‘\I?’I(X?,FE:XoH) Q%1% — Bga I
i=1
We note from Cauchy-Schwarz inequality that
E* {1 1P IXS Ty Xo) | Xo]? < EX[I1XG I E 161 2(X, T Xo) | Xol-

Since E*[|| XY =n~t Y00, | X 2, E[|| X||*], we have E*[||X}||*] = Op(1). Since the FPC scores
&; are uncorrelated random variables with mean zero and variance v;, we have from the

independence between &,, = {X;}"; and Xj that
E[E[1X 12X, T, Xo0) 2| Xol]

n
=E |n™" ) XX, Ty X0)? | = E[IXG]* (X0, T, Xo0)?)
=1

hn
= NG, 65)2):

j=1

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[I1X1%(X5, 65)%] < ENIXll*]2E[(Xi)'? < Cy,
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which implies that

Ek%m% (*ZMﬂ| 1%0V0

Due to Lemma 31, we have

= Op(1).

hn
E* [hy 2| Q511 X0 = Op [ n 121,23 6712 (jlog )2/
j=1

where the corresponding remainder term is negligible by following the argument in Remark 15.
Thus, the second part follows.
For the last part, note that
n
L, = < <n1 > (X5, - ﬁgn,X;*V) T Xo, r,;on>
i=1

_1 Z 1)(O <an - Bgru Xz*>2
nt Z D X0) 2 (XD ¥ (B3, = Bga): Biy, — Baa)
. < (00, = A B )
i=1
This implies that

| Ln| < (nl > Ile!2<X?7F;on>2) 18, — Bal”

=1

Since the FPC scores §; are uncorrelated random variables with mean zero and variance ;, we

have from the independence between X, = {X} ; and X, that

E[E*[I1X7 11 (X}, T, Xo)? | Xol]

n
=E [n‘l > \IXi!2<Xi,F;on>2] = E[[|X:]13(X:, T Xo)?)
=1

hn

Z 7 UENXG 12X, 65)%).

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[]1 X% (X, 65)°) < E[I X)) 2EN(XG, 65) "] /2 < Oy,
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which implies that

E* [Shn Xo)~ ( 712”){*” X 1X() ) ‘XO

Thus, we have the desired result.

= Op(1).

Lemma 44. For each n > 0, as n — 0o, we have the following.

P ([t (e, ) © X2 B, - B X7

>77)i>0.
o0

2. Ifn*1/2h7_,,1/2 Z?”léj 1/2 (jlog7)*? = O(1), then
(<< B Z{ Xierq,) ® X[ HBE, — Bgn,X») Ty, Xo, (01 = Fh,}>Xo> > n\Xa) = 0.

_ 5 5 _ - P
3. P* (s (o)™ | { (n i A(X7e1,,) © X (B, — B, X07) Tt X0, T30 X0 )| > [0 ) B
0.

Proof. We first observe that

‘12{ Xrer, ) ® XiHBE, — Bons X7

<n~! Z X7 |15 171167, = Bo |
lZIn 1/2 n
< (n 3 rrx:s*\|2> (n > \X?H“) 185, — Baull
i=1 :L=1 1o i
c <n SIS HXZ‘HZHB%H> <n > HXfH4> 185, = Ban I
=1 =1 =1

As done in part 1 of Lemma 43, one can derive that for each n > 0,

P([[ XY — E[IXY*)| > n) — 0, P*([.X*[|* — E[IX[[*]| > n) — 0,

P*(||| X*|* — E[|| X]|*]| > n) — 0 almost surely since E[||XY||?] < oo, E[||X]|?] < oo, and
E[||X|*] < oo. This implies that

*( >n)i>0.

The last two parts follow from a similar argument to Lemmas 25 and 43. O

”Z{ Xielg) ® X[ HBr, — By XJ)
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Proposition 26. Suppose that as n — oo, ||Bx, — B L 0, \|Bgn el L 0, and for each n > 0,
P*(Hﬁzn — Byl > ) 20 Asn — oo, if n1/2p, 12 Z?;l 6;1/2(3' log 7)%/? — 0, then the bootatrap

scaling 3;, (Xo) and the sample scaling 3y, (Xo) are asymptotically equivalent in that, for any

o

Proof. Similarly to the inequality (3.46), we obtain the following decomposition from (3.67):

n >0,

85, (Xo)
8h,, (Xo)

— 1‘ > n’X0> £> 0.

$hy (X0) 1‘
Shy, (Xo0)
<sn, (X0) AL g g — DA )T =T X0, {(T,) 7 = T3, 11 X0)| (3.70)

+ 8, (Xo) THHA{(T],) 7 = T 3 X0, {(T,) ™! = T 11 Xo)|
+ 285, (Xo) " (A 4 g — NI Xo, {(@5 )71 = T 11 X))

+ 283, (Xo) T (AT}, Xo, {(T5,) 7" = T}, 1 1 X0) |

+ sn, (Xo) (A A3 X0, Ty Xo) -

n,kn,gn -

Note from Lemma 41 and the first parts of Lemmas 42-44 that for each n > 0,

* (| A% P
P (HAn,kn,gn - AHOO > 77) — 0.

The first two terms in (3.70) converges to zero by Lemmas 31 and 41, in the view of
Remark 15, since for each n > 0,

* - A x ok — — ok \— — P
P* (1, (X0) " (A g — MATH) ™ = T3 Xo, {(T5,) 71 = T, 13 Xo)| > 1l Xo) = 0,

* — Mk \— — ok \— — P
P*(sn, (Xo) ' [(A{(T;,) ™" = T, 3 X0, {(T4,) ™" = T, 1} Xo)| > 0] Xo) = 0,

it 2y P 572 (log )32 — 0.
Define A3 = n~! S0 (X}Y}* — X7 (X7, 8))2 so that E[E*[n][ &}, — %] = O(1) by

Lemma 41. Note that

s, (X0) T (AT, = M), X0, {(T7,) " = T, 1 Xo)|

<{hnsn, (Xo) ™ HO 2 AT = Alloo) (0™ 2R V2T X0 1) {2, )T = Ty X1



234

Since E[HF;}XOHZ] = 2?21 *yj_l and n~th ! Z?;l ”yj_l = O(1) holds by Condition (A5),

if n_l/Qhﬁl/2 Z?;l yfl/Z(j log 7)%/? = 0, by Lemma 31, we have

* — X * — ok \— — P
P* (s, (Xo) "' [((A} — AT}, Xo, {(T,) 7" = T}, 1} Xo)| > n|Xo) — 0.
One can show that

P* (sn, (Xo) "' [((A;

T,9n

A*\T— x|\ — — P
— ATy Xo, {(T7,) ™! = T, 13 Xo)| > nlXo) = 0

by using a similar argument to the proofs of the second parts of Lemmas 43-44 and interchanging

B;“Ln — Bgn into Bgn — . This along with the second parts of Lemmas 42-44 implies that

P* (sn, (Xo) ' [{(A; AT Xo, {(T,) 7 = Ty 13 Xo)| > 0l Xo) %o,

N,kn,gn

Thus, the third term in (3.70) converges to zero.
The fourth term in (3.70) converges to zero by using the same argument to derive the
converges of the fourth term in (3.46) to zero as seen in the proof of Proposition 20.

To deal with the last term in (3.70), note that
E*[sn, (Xo)~H{(A}, = A)T, ! Xo, T, ! Xo)|| Xo]
<sn, (Xo) TE*[IIAS, — Afloc] T, ! X
hn
—Op | n=12p 1 Z,Yj—l
j=1
where n~1/2h 1 Z?;l yj_l — 0 under Condition (A5). One can show that
* — A A — — P
P*(sh, (X0) (A 4, — Ap)T X0, T Xo)| > 1| Xo) = 0

by using a similar argument to the proofs of the second parts of Lemmas 43-44 and interchanging

an — ﬁgn into ﬁgn — . This along with the second parts of Lemmas 42-44 implies that
* - A x X *\T— — P
P* (1, (X0) " H(As s g0 — AT X0, T ' Xo0)| > 1] Xo) = 0.

The above four arguments completes the proof along with the decomposition (3.70) and

Proposition 20. O
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Remark 16. The result in Proposition 26 still holds even when the truncation levels of the
estimators f, and BA;;L for computing residuals for 85, (Xo) and 8}, (Xo) are not equal, as long as
the estimators are consistent. For example, suppose that Bkn and BZ% are respectively the
estimators with distinct truncation levels k,, and k!, used for constructing the scaling 55, (Xo) and
85 (Xo). Nevertheless, the bootstrap scaling 55 (Xo) is still consistent if both Bkn and BZ; are

consistent in the sense that as n — oo, || 3, — 8| P, 0 and for cach n >0,

* (|| Q% Q P
P*(1IB%, — Bgull >n) = 0.

3.10.6 Failure of naive paired bootstrap

Note the following decomposition of the difference between the naive and our modified

bootstrap estimator:
3 3 Mk =177 P\ —1 —17) —17)
B;;n,naive - 6;:71 = (an) Un,gn = {(F;’;n) - th }U"»gn + th Unvgn'

The cross-covariance function U, 4, =n"t>"" | X;&; . between residuals and regressors can be

further expanded as follows:

A A A~ A~ A~ A~

Ung, = (I —1lg,)An = (I =1y, ) A, + (Ily, — g, ) A,
= (I =g, )Up + (I =1, ) (T = T)8 + (I - 10, )T (3.71)

~

The difference between the naive and our modified bootstrap statistics is then

n ~ ~
T;,naive(XU) - T:;(XO) = m«rzn)ilUn,gan@ = A:L + Bp + Ch,
where
* gk _ n Px \—1 =17
4= 45(00) = | [ (0, = 1) g, ), (3.72)
_ n 17 _ A
By = By (Xo) sn. (Xo) <th (z Hgn)Ana Xo), (3.73)
n _ a ~
Cn = Cn(Xo) = <Phnl (g, — Iy, ) Ap, Xo). (3.74)

Sh,, (Xo)
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(Xo) and T} (Xo) are written with the scaling s, (Xo)

n,naive

because it is enough to work with the scaling sp,, (Xo) thanks to Proposition 20. By

Propositions 27-28, both terms A} and C,, respectively from (3.72) and (3.74) converge to zero.

Meanwhile, if h,, < gy, we notice that F}:nl (I —1IIg,) = 0, which implies that the term in (3.73) is

zero and the difference T*

(Xo0) — T7*(Xo) hence converges to zero. In contrast, if h,, > gp, the

n,naive

term in (3.73) then does not disappear and is expanded as

where

n

m@ﬁ,}(l — 1, )An, Xo) = Bin + Bon + Bay,

Bin = Bin(Xo) = %Xoﬁrf?f” ~ Iy, )Un, Xo) (3.75)
Ban = Ban(X0) = 4 | s (13,10 = Tly, ) (P = 1), Xo) (3.76)
By, = Bsn(Xo) = %Xo)m;}(f — 0, )T'8, Xo). (3.77)

We will show that the term Bs, (3.77) converges to zero in Lemma 49 and that the term

Biy, + Bay, from (3.75) and (3.76) weakly converges to some normal random variable in

Proposition 31.

3.10.6.1 Convergence of A}

The following lemma is a modification of Lemma 12, which is used for the convergence of A7

from (3.72).

Lemma 45. Under the same assumptions of Lemma 11, we have that

Y < Cvjjlog
I — vl

for sufficiently large j € N.

Proof. We first decompose the sum into three terms

72
Z‘%:Tl-l-TQ-l—'En
12 " 7]|
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where
7-1:277[2 7-2:27712 and 75:27712
VI 21N e Yl & i =il
For [ < j, by the first part of Lemma 11,
W w o dd

=l - T Tli—1

for sufficiently large [, and thus,

2 . .
Vi J .2 1
T = < T =] .
Z |’7l—7j| ]Zjlj—l J Zjl(j—l)

1<i<j 1<i< 1<i<
. 1 1 ) 1
:%'JZ(ZﬂLj_l):Q’YjJZl
1<i<j 1<i<j
< Cv;jlogj.

If 7 <1 <23, by the first part of Lemma 11, jy; > Iy, and

S (e B

AR v;5°
=7 §7~<> - = -
=l v—-w  Twvvi-w o~ T\L) =5 1l-3)

for sufficiently large {. Thus, we have

2 .
l

0<Ta= 3 o <yi ), l(l]—j)

=il 152

< Cv,jlogj.

For | > 2j, since v < 725,

2 2
Y, 21525 i D152 N D0 N
=) ST Sy <y T
"YZ '7J| Vi — V25 Vi — V235 Vi — V235

1>2)

Again by the first part of Lemma 11,
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and by the second part of Lemma 11, Zz>2 v; < (2j 4 1)72;. This implies that

025

Ts < %2(2 + 1)
Vi

Finally, again by the first part of Lemma 11, we have v; > 2v9;, which implies that

T3 <7;(25 +1) < Cv;j < Cyjjlogj.

O
The term A} in (3.72) converges to zero as follows.
Proposition 27. Suppose that Conditions (A1)-(A6) and (A8) hold. As n — oo, if
hit+ gt + 07202 (log hy)? 262 (log g,) + n~Y2hT/2 (log hy,)® — 0,
then, for each n >0, we have P*(|A%| > n|Xo) 0.
Proof. Based on the decomposition of (A]mgn =n 1Y " | Xié g, in (3.71), A} can be further
decomposed as A} = 216:1 In» Where
* * n ok — —
Al = A7, (Xo) = ({(05,) 7" = Ty (I = Ty, )Un, Xo), (3.78)
shn, (X0) "
* * n Pk \— — r
A5, = 45,(Xo) = {(@5,) 7 =T, (I =Ty, )(T, = T)B, Xo), (3.79)
sh,, (Xo)
* * n Mk | — —
Az, = A3, (Xo) = ({(5,) " =T M (I =10, )TB), (3.80)
shn, (X0) "
n N ~
Af, = AL (Xo) = Iy )7t =T (A, — T, )Un, X 3.81
in = Ain(Xo) o (Xo) {(@%,) o + (g, — g, )Un, Xo), (3.81)
% A% n Mk O\ — — - -
A5n = AEm(XO) = <{(th> = thl}(rn - F)(Hgn - Hgn)B7X0>7 (382)
shn, (X0)
A% n Mk \ — — =
Ay = A(Xo) = [ — ({05, ) 7 = TR0, — Ty, )8, Xo). (3.83)
sh,, (X0)

Following the spirit of Lemma 17 and Remark 15, we ignore the remainder terms related to either
5‘7?7 c (8*) or (Azn)c
The term A7, in (3.78) converges to zero as follows. One can show that
E[|(2 — I, )Un|?] < C (07" Y (AGj.05) +072 Dy
J>gn J>9n

= o(n ™)
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by a similar argument to the one in the proof of Lemma 22. This implies that

E* |: mK{(fzn)_l - F};}}([ — Hgn)UnaXOH

sn(X0) (1 = Ty, ) UR | E*[I{(T5,) " = T, "} Xol]

hn
—op n’l/Qh;Ll/Q 25;1/2(]' logj)3/2
j=1

from Lemma 31.

The second term A3, in (3.79) is bounded above as

E*[ mwhn) I (E — D)y, — D)8, o)

0
Vs III Iy, llso T = Dlloo I BIE*I(T],) ™" = Ty 3 Xoll]

=Op (n'2h,; %) Op(n"1)0p | n 1/225 2 (j1og 1)/
Jj=1

hn
—Op n‘l/zhgm 25;1/2@. logj)3/2
J=1

Showing the convergence of the term A%, in (3.80) needs more efforts. We will use a similar
techniques to prove Proposition 23. By applying the second resolvent identity (Lemma 14) twice,

we have

(21 =T%)™' — (21 —T)7!
={(z] =T) ' + (2 =T%)"YI* =) (2] =)'} (I =) (2] —T)7 !

—(2I = T) " H% = T) (2] = T) 71+ (2 — T%) 71

n

—D) (el =D)7Y T =) (2l = T) 7!

=(zI =T) (I =T)(zI =T) ' + (eI —=T) NI} —T) (I —T) ([}, = T)(=I = T7) "

since all quantities are symmetric. This implies that

A 1 N
(fr )t -1, 1 {(zl ) (e — r)*l} dz + rialia; e

hn ~ 2m, ch
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where
—1
Si=5- Z/ Yol = T) YT = T)(2I — T) dz,
Rn=5_ Z/ Yl =T) NIy = T) (=] = T) (L), = T) (2] — 1) 'dz,
and 13, = (F* )t = 2m fch Yl — F*) ldz (cf. Lemma 29).

For the first term S,;i, we use a similar argument to that in Lemma 35. Then, one can derive

that

E[E*[(S;(I — I, )T'8, Xo)? ZWE [E*[(Si(I — Iy, )T, ¢1)7]]
=1

and (S;;(I — g, TS, é1) = Yys, W Br(Sid, ¢7) with

(CaDovon) i | < p, < g, <V

M=)
(S, of) = § WCalhondn) ¢ gy <, <
"\ —
0 otherwise.

This implies that

E[E[(S;(I — 1y, )T, Xo)*]]

1/2_1/2

Zl 1M (Zl’>gn |Bl |r7l ’Yll’n%’(fl/)> if hn < gn
=< 1/2 172 \ 2

Zl>hn m <Zl/ 1 ‘Bl’h’l 7 17 ’YL)) if hy, > In

. 1/271/2 '

Zl 1M (Zl’>gn | By | ’;z// ) if A, < gn

< 1/2 1/2
Cn~t Zl>hn Y <Zlg/n_1 ‘Bl’| o ,Ylﬁ/ﬂ > if hyp, > gn

since vy < if I < hy, < g, < I'. Hence, we conclude that

* n & 2 —0
E [Shn(XO)(Sn(I—Hgn)FB,Xo) } =op(1).

For the second term 7?* as in the proof of Lemma 36, we first see that

Ro=5— Z/ Yol —T)7V2GE (2)2K7 (2) (2] — 1)V 2dz
L
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and |(R} (I — 11, )T, Xo)| < Czh" A; where
Aj = /Bj |2 TG (2) | 1G () 26l (21 = )~ 2(1 = 11, )TBI| (21 = T) =2 Xo |l d.
By Lemmas 11 and 45, for z € B;, we have

(=1 =) ~2(1 =11, DB

:Z Z’Yzzﬁzz SZ: Bt

2 2
" 7 ’VJ
<C +
Z’ -l ’Z—’Yj| Z\’Yy 'Yl’
<C(vjjlogj+;(j+1)) < Cyjjlogj.

This implies that

E[E*[AfTe:]] < Coyn~ " (jlog §)* (v, log 4) "/ (jlog )/

< Cn~(jlogj)*2.

Thus, if n=1/2h, /> S (jlogj)*/? < Cn~Y/2h2 (log hn)®/? — 0, for each 1) > 0, we have

* n S * P
P ( Shn(XO)|<Rn(I_H!]n)FBaXO>| > 77) — 0.

The fourth term A}, is bounded as follows. One can show that
H(ﬂgn — 10y, )Unll = Op ( -t g" “J logg) by a similar argument in the proof of Lemma 20. This

implies that

E*[ X0>r<{<rhn> T, 1,0 %)
H

“\ o (g 1 (Hon = g )Unl|EZ (H(T7,) ™ =Ty 3 Xoll

n hn
=0p [ (2 jlogs | { n 2023 6% (j10g )2
~ =
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From Lemmas 20 and 31, the fifth term A7, is bounded as

F{ %nxmuﬂ ST, - D)(T, - gJ&qu

“\ 5 (Xo) ||F — Dllocl Ly, — Mg, oo IH(T,) 7" = T} Xoll]

9n hn
=0p(n*2h,; V) 0p (" Y/%)0p | 0723 " jlogj | Op |07 V2 3" 671 (j10g )

j=1 J=1
In LI
—0p [ [ 0723 jlogj | {n 2023 672 (jlog )
. p

The last term Ag,, is bounded as follows. By Lemmas 11 and 45, it follows that

(2] —T)" /2 -
H ( ) HHS Z’Z 71‘2

0 'Y?
(X ~ E:ha il

#]|—wr 2=

<C(yjjlogj+~;(j +1)) < Cv;jlogj.

By using the same argument as the one in Lemma 31, we then derive

hn
EXIT{(T},) " =T 1 Xolll = Op | 72 (jlog j)*/?
j=1
Finally, by Lemma 20, we have

E* [ mm( ) =T (I, - Hgn)ﬁon)!]

Ly, — g, [l E*IT{(T7,) " — T} Xoll]

m
adn hn
=0p [ n™2012 [ jlogs | S (jlog)*? | .
j=1 Jj=1

where the last upper bound is bounded by n~2h2 (log h,,)*/2¢2 (log gn).

3.10.6.2 Convergence of C),

The term C), in (3.74) converges to zero as follows.
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Proposition 28. Suppose that Conditions (A1)-(A6) hold. As n — o, if
h' gt 40722 gp (log 9a)® — 0,
then, for each n > 0, we have P(|Cy| > n|Xo) o.

Proof. The term C,, in (3.74) can be further expanded as C,, = C,, + Cay, + Cl,,, where

Cin = C1n(Xo) = m“m (T, — I, )Un, Xo), (3.84)
Con = Conl(X0) = 4 | -5 (15! (T, = Ty, )(F = T)5, X, (3.85)
Csn = Csp(Xo) = #XO)@;;}(H% —10,,)T'8, Xo). (3.86)

Following the spirit of Lemma 17 and Remark 15, we ignore the remainder terms related to either
g6, A5 (€1, or (A], )"

The term C,, in (3.84) converges to zero as follows. One can show that
(1L, — T1,,)Unll = Op ( -1 g” " logj> by a similar argument in the proof of Lemma 20. This

implies that

n N
El /—2 o, — 11, U, X ‘X
o T 0, = 1, )00 o) o

A -1
S,/Shn( Xo) E[ll(1Lg, — Ty, )Un[]IIT,,; Xoll

. \ 1/2
=Op | | n "2 D dlogs | | At Do
j=1 j=1
12 (h, _—o\Y%2 ...
By Cauchy-Schwarz inequality, we have Z 21y V< hy (Z 1Y > , which implies that

_ 1/2 1/4
n~1/4h, 1/4 ( ?;1 '7]71) ( 12] 17 ) . Thus, by Condition (A5), we have

n ~
E oI, —1,)U,, X X}
o T 0 = 1, )00 X)X

an
=op n_1/4h;1/42jlogj ,
j=1

where the upper bound is dominated by n_l/QhEI/ngl(log an)?.
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The term Coy, in (3.85) converges to zero as follows. By using the same argument as the one in

Lemma 20, we can show that E[||(TT,, — II,,)(T', — T')8]| Xo] = Op ( Y] logj) We then

have
E[ Shn(XO)K ny (g, =1Ly, )(T, = T)B, Xo) |‘X0]
[ -1
= Shn(X) [H( - gn)(rn—F)BH]”I‘hnXOH
B 1/2
=Op (/0,110 1ZJ10gJ or | [ D0
j=1

v N 1/2
=Op | n'2 jlogg | ha' D o
j=1 j=1

The last upper bound is the same upper bound for C1,, above, which is again dominated by

n21, g4 (log g,)2.

For the convergence of C3,, from (3.86), we will use a similar technique to prove

Proposition 17. By applying the second resolvent identity (Lemma 14) twice, we have

(21 —T,) ' = (z2I =)~

—{(zI —=T) L 4 (2 =T,) N[ = D) (2 =)'}, = T)(2f —=T)7 !
—(2I =) Y[ =) (2 =) 4 (2 = T,) (T = T)(2I = T) ([, = 1) (21 —T) 7!

A

=(zI =) N =Dzl =)' + (21 =) YT, = D) (2] =)}, = )(2f —T,)

since all quantities are symmetric. This implies that

1

A Aoy —1 —1
fly, T =50 | {GI=T0)7 = (T =) bz + rllag,

=S, +R,+ rlnHAgn

where

an
%LZ/ (21 —=T)"H[, — T)(2I —T)"dz,

gmi/ 2l =T) D = T) (I = T) (T = T) (21 — T) " Mdz,
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and ri, = ﬂgn 27” fcq (2 —T',)"'dz (cf. Lemma 17). Proposition 17 For the first term S,, we

use a similar argument to that in the proof of Proposition 2 in [12]. One can derive that

2 B,
E[(SaI'8, T},  X0)? = E (Z% (Xo, ¢1)(Sal'B, ¢z>> = 7 'E(SATB, é1)?)
=1

and

[ 00 2 foe) 2
E[(S.T8, ¢1)°] = E (stnwy,cm) =E (Zﬁ1/71'<5n¢1/,¢z>>

i I'=1 I'=1
2

e |32 oy (Eu= Do

U>hn Y=
1/271/2 2
O X B —" L
U'>hp
This implies that
. 1 271/2 71/271/2 2
E(S.T8, T, X0’ <C> 7t [ D2 |/31"’Yl’ £ o < CZ% > 1B ,
=1 V>ha, =1 \U>hn T
since vy < if I < h,, < I'. Hence, we conclude that
n
E | (SaT 8, T,/ X0)?| Xo| = op(1).
Lhn(Xo)< Wb Dy Yol | Xo| = op(1)
For the second term, as in the proof of Proposition 2 in [12], we first see that
gn
Ro= oo Z/ (2] — T)"V2G0 (2)2Kn(2) (] — T)~/2d2
and [(R,I'8,T;1Xo)| < C' 30", Aj where
4; —/B G ()3 Kn(2)llooll (21 = T)7V2TB) [[(21 = T) 2|15 Xo | d=.
i
By Lemmas 11 and 45, for z € B;, we have
S T = Rl PR
|2 ’Y|_ !Z—w! e =l | =\ s =l

< C(yjjlogj +v;(j +1)) < Crv;jlogy.
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This implies that

E[A;lg,) < C8jn" (jlog j)? (55 log /)26, 7 [ S A7

1/2

hn
<Cn'(ilog)*? | Y At
j=1

and

1/2

gn hn
Xo| <Op [ n™2h 12 "(log i)Y | D ;!

gn
n
N T Alg.
Shn(XO) J; J 5]

1/2
By Cauchy-Schwarz inequality, we have Z 21 < hl/ 2 (Z;ﬁl 7j_2> , which implies that

_ /2 1/4
n-1/Ap, 4 (Z " 7;1) ( -1 Z] 15 ) . Hence, under Condition (A5), we have

7j=1
=y In
Ajle | X,
vszo); T

“1/2p, 265 (10g g,)E. O

gn
— op [ n VA (10 )72 | |
j=1

where the upper bound is dominated by n

3.10.6.3 Weak convergence of B,

To show the weak convergence of the term B,, in (3.74), the following lemmas about scaling

terms are needed.

Lemma 46. Suppose that the conditional variance is given as 0?(X) = ZJ 1 ’yjp2§ for some

{pj}32, such that 332, vipF < oc.

1) Suppose that the FPC scores {£;}52, are independent. Then, we have
JJ5=1
_ P
ho s, (Xo) — > vjp? as n — oo.
(2) Suppose that & = EW; with E[¢Y] < oo, where {VVJ};’O:l s a sequence of independent random
7id

variables with sup ey E[W ] < oo (e.g., W; ~'N(0,1)) and is independent of §&. Then, we

have h;ts, (Xo) L E[¢4] (ijl 'yjpj) €2 asn — o0o.
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Proof. Note that the scaling can be expanded as

shn(XO) = <AF 1X05F XO <Z X0)¢] A¢]7Z X07¢J>¢ >

= Y X0, ) (X, ) (865, 6.

1<5,5'<hn
Recall that A = cov[X, ¢] = E[(X¢e)®?] = E[X®262(X)], and from the Karhunen—Loéve expansion

X =322 7,65, we have X2 = 37, vty (6; ® ). This implies that

(X2205,67) = 7%}/ €165 and
(Aj, byr) = Elo* (X)X, 650)] = 7"}/ PElE 6507 (X)),
The scaling is then written as sp, (Xo) = >21<; jr<p,, ;& El6;€0*(X)]. In both cases, we have

E¢Y] =g =1

BISi€6i] = { Ele2¢?] it j=j #1

0 otherwise,

and hence,

s (Xo) = Y GGEGGAX) = Y @@Zm [£€5:€7]

1<5,5' <hn 1<5,5' <hn
hn, o0
2016262162
= Z Z VPl E[fjfl ]5]
j=1 =1

The first part is proved as follows. Since E[{?ff] =1, we have

Sh, (Xo) = ZWEE@ §]+Z > i€

j=11eN l;éj

—Z%pj HERY +ZZW;£

7j=11=1

Note that E [| 0, 1502 (E[f] — 1)€2|] < (supjen EIEH) +1) 52, %302 < o0 and
h 2
E|[nr,? 21 <h 2y E[ ] < hy supE4<Chn—>o,
Zj@ Z up E[¢f] < C/
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ie., ht Z?il §]2 P 1. This implies that
0o hn 00 hn
= 23| S hat D el Elg] - D | + (Zw%> By oE -1
J=1 j=1 =1 j=1

= Op(hy ") +0p(1) = 0p(1),

. _1 P 0o 2
Le., hy sp,(Xo) = D272, 7P as n — oo,

The second part is similarly proved as follows. Since E[f;l] = E[§4]E[Wj4] and

E[¢2¢7) = E[¢E[WZIE[W?] = E[¢"] under (2), we have
hn
sn, (Xo) = CE[EY] [ D vl EW W2+Z > uptwy
J=1 J=11eN,l#j
hn
= EEE | Y vpl(EW]] - 1) W2+ZZW%W2
Jj=1 j=11=1

Note that E HEJ 1P (E[W4] — 1)§J2H < (supjeN E[W;-l] + 1) > ey 'yjp? < oo and

2

hn hy,
| (mat oWz 1) | < S - 1 < h sup W < €, o
j=1 Jj=1

ie., hyt 2?21 I/Vj2 P. 1. This implies that

hytsn, (Xo) = EE[ED yi07
J=1
hn
<€%E[¢Y] hlzwp] Wi -1)& | + <Z~nm> hy' Y WP -1
j=1

=0p(1){Op(h;") +op(1)} = op(1),
ie., hytsp, (Xo) LN E2E[¢Y] > 321 PG as m— oo. O

Lemma 47. Define rp,, (z) = (O, 'z, T} 'z) for x € H, where © = E[{(X®? —T)3}¥2]. We
suppose that the FPCs scores are dependent as & = EW; with W; i N(0,1) where & is a random
variable independent of {W;}32, and with finite fourth moment E[¢Y] < oo. Then, we have

hyy i, (Xo) 2 E[€4]|TY28]2€2 as n — oo.
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Proof. A direct computation gives © = E[{(X®? — I")3}®?] = E[(X®23)®?] — (I'8)®2. Note that

x5 = 5" 41 Peia 8,0

7,leN

and

(X220)%2 = 3" PPyl P €0 BBy (31 @ o).

7,0,3",1'eN

By construction of {¢;}, we have
E[¢;6¢56r) = E[EEW;WiW; W],

Since {W; }]O’;l is a sequence of independent standard normal random variables, we apply the

Isserlis formula to compute the mixed moments:
3 ifj=4=1=0
EW,WW; Wyl =491 ifj=41=Vorj=1j=Uorj=1U,j=1

0 otherwise.

\

Therefore, we have

E[(X®?8)%%)/E[¢Y] = 32736%‘@2 + )y B +2 ) BB © ¢n)

J=1 JleEN 4,leN
o

=3 767657 + |TV2B|°T 4 2(13) =
Jj=1

which implies that © = E[¢4] {3 > V28387 4+ |IT2B)°T + 2(r5)®2} — (I'3)®2. Note that

o
< > B¢ | T, X0, T 1X0> 25 (Xo, 65)%,
j=1
hn,
(T, Xo, T, Xo) = > v (X0, 05)% = th, (Xo),
7=1

((TB)**T, X0, T, Xo) = (B, T}, Xo)? Zﬁ (X0, 8,)”
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This implies that
1 060) = (]~ 1) 8203000+ EEITY 251, ().
7j=1
Since ) :2, ’yjﬁjz = |TY/23||? < 0o, as n — 0o, we have
hat S0 B3 X0, 65)%| = byt Y0y 482 < hit|TV2B)|2 — 0, which implies that
ht Z?il /8]2<X07 ®;)? Po. By the Law of Large Numbers and Slutsky’s theorem, we have

- _ P
hotth, (Xo) = Ehyt S W2 5 €2 Thus,

hn
hnth, (Xo) =(5E[£*] — Dhy "~ B2(Xo, ¢5)? + E[E]ITY?B]* Ry, t,, (X0)
j=1

P, E[gY)|ITY/28) %62,
Il

Lemma 48. Suppose that the FPC scores §; are dependent as £ = W, with W ud N(0,1) where

€ is a random variable independent of {W;}32, with finite eighth moment E[¢®] < co. Write
O = E[{(X®? —T)B}*? and (0;,(;) for the j-th eigenpair of ©. Then, we have

supjen 07 “E[(X®2 = T)B,(;)"] < o0
Proof. Recall from Lemma 47 that
0 = E[{(X®* - T)8}¥%] = Z 0G5
1Y 785657 + EIE)ITV2B)°T + (2E[¢Y] — 1)(TB) =
j=1

with E[¢4] € [1,00) so that

=(0¢,¢) = Zwl (1, ¢)% + E[EYITY 2812 IT2¢)1% + (2E[€Y] — 1)(TB, ¢;)%, (3.87)
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where [|[TV28]12 = 3202, 87, [ITV2¢112 = 3252 wildns ¢)% and (T8, ¢5) = 3272, wbild, ¢j). Note
that

Q; = 07 2(X22 — )8, ¢;) = 65 V21X, BY(X, &) — (T8, ¢,)]
= 9]'_1/2 { <Z 711/25@) (Z %1/2&(@51, Cj)) - Zwﬁl (b1, Cj)}

=0;"? Zwl oL GIEE = 1)+ 0,23 4P P Bulen, ¢ty
1Al

- 0;1/2§2Zm<¢l,<j><m2 —1)+0; % Zwﬁz (61, 5)

+0; 1/22 11/271// B, )ik -
[

Then,

Qj <Co;?

3 {Zwﬂl(% W — 1)} (3.88)

=1

. 4
+ {(52 - 1) Z%ﬁl(%@j)}

=1

4
(Z ’71/2711//251 (1, )& ) ] )

AU

We are now showing that sup;cy Q? < 00 by bounding all three terms on the right-hand side of
(3.88).

The expected value of the first term on the right-hand side in (3.88) is bounded as

o 4
E HZWBZ<¢Z,CJ‘>(W12 - 1)} ]
=1

= > M B Bia By Bra (D115 ) (Do G5) (s> ) (D15 )

l1,l2,l3,l4

x E[(WE = )(W = 1)(W — 1) (W —1)]

2
[Zwl (o1, ) (zm (&1, ¢5) ) ]
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because the term E[(I/Vlz1 — 1)(1/1/122 — 1)(VVZQ3 - 1)(VV5l — 1)] vanishes if there is one index that is not

equal to one of the other indices in {l,l2,(3,14}. Since

2
va (b0, ) (Zm mcp) <62,

we have that

~ 4
sup f;°E {522%51<¢Z7Cj>(m2 - 1)} < 0.
=1

JEN

Next, the expected value of the second term on the right-hand side in (3.88) is bounded as

- 4
E {(52 —-1) Z%ﬁz(@f)l,@)} < E[(&* - DB, ()t < 083
=

Finally, the expected value of the third term on the right-hand side in (3.88) is written as

4

EL (> 2"/ 6rion ¢ag
1Al

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
= > PP P P B B B By,
AL, Lo Al LA LA,

X <¢l1’ CJ> <¢l2’ CJ> <¢l3’ CJ> <¢l4v C]>
Y ISRIRIRIRIATAIRIAL

We have the following cases where uy,ug,us,us € {1,2,3,4} denote distinct indices.
1 If (llalll) = (l27lé) = (l3’lg) = (l4al£1)7 then E[€l1§l2£l3§l4£l’1€l’2§lé€lg] = E[£l41514/1]

2. If (Luy, U,)) = (lugy 1)) = (lug, 1l,,) and (1y,, 1) are distinct, then

U1y "uy U2y "ug u3y "ug U4 “uy

Elg} &b 1 if luy =1, 1) = luy
Bt Sty Sty €1y &2, S0, 60, 60 1 = E[Ef’uléz‘zl &, 80,1 = P s

0 otherwise.

3. If (luy s 1) = (luys 1y )5 (luss 1) = (Luy, I,,) are distinct, then

U1 “uq

E[¢), &) ] if by =y Ly = luy
[0, €ty g G0 G, G, S0, 6, ) = ELER, €7, 61,60, ] = i o

E[§l2u1 512;1 £l2u3 512;3] otherwise.
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4. T (Luy, 1yy) = (lug, 13yy)s (lug, 1hyy), and (ly,, 1,,) are distinct, then

B2, Sty St €1y S0, S

ug

&, &, ] = EI&E, & €, €, 6, 0,
.
€l € 2.6 ] il =10, =L,
E[§l3u1 filflwfl;J =0 ifly =100, =l
B[, &t Suydu, ) =0 i Ly = 1 By = g

0 otherwise.

5. I (Luy, 1))y (lugy 1), (Lug, 1L, ), and (1y,, 1, ) are all distinct, then we have the following three

U1 “uq U2 "ug U3’ "ug U4 “ug

cases that the joint moment E[, &80, &, &, &, 51&35%4] can be non-zero:

i. exactly two pairs exist among (ly,, luy, lug, luy) and exactly two pairs exist among
(T Ly Vg L )5

ii. exactly one pair exists among (ly,, luy, lus, lu,) and exactly one pair exists among
By s Vg L T )5

iii. no pairs exist among the I, but each I, must be paired to one and only one I;, (no

pairing of [, to some [y, ).

Only these cases provide non-zero contribution with

El€1u, €ty Etug Sty 1t 1, G, 0, ) = ELE7 €161 6L = EIE°] # 0.

Otherwise, the joint moment E[§;,, &,,81.., ., SIS &&4] is zero.

We are now ready to write down the expansion of the fourth power and arrange the repeated
sums by the form of the summation according to the previously derived cases, retaining only

summands with a non-zero moment. By bounding each summand by its absolute value and also
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potentially increase the number of terms to sum over, we obtain

4
!(ZW 2B %@@&) ]

[

<CY B oG
1Al

+C Y AP BB G P, G+ C Y AP i BB (s () (i, G5)
1Al I#U

+C Y w8 B (s G (D15, )
Ll I #l

+C Z 7[17[3’%'17[:’3/8?’1|ﬁl3/8lé|<¢l17Cj>2|<¢l37Cj>||<¢lévc‘j>|
l17él'1,l3;£l.’3

+ C Z 7[17l27l3714/81216l22 <¢l37<j>2<¢l47Cj>2

l1,l2,l3,l4 are distinct

+C > Vi Vi Vi V1 BE 1B Bis [ (1> G2 1Bt > G (s G5

l1,l2,l3,l4 are distinct

+C > Via Vi Vi Via | B B B Bua [1{u» G 1 ra» G 1ty G 1 G5

l1,l2,l3,l4 are distinct

(o) (E )

+C (Zw 1Bl 63)] ) (Z% 1B (1, 5) > +C (iﬁﬁm,w)?
+C<Zw o1, ;) ) (Zwﬂl>

+C(i% 41,65 ) (Zm) (;mﬂlu<¢l,<j>\>2

+C(§:wﬁz) (ZM@,@Q)Q

+C(Zm) (wa 1,j) ) (Zmﬁlu 1, ;) ) (iwwz,@\)

4
+C (Z’Yl|ﬁl||<¢la<j>|>
-1

Fach term of the last upper bound in the above display is bounded as follows.
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(i) The first term is bounded because > ;°, 723} < oo (due to >27°, vi87 = ||[T/28]|? < 00) and

Z’Yl ¢la€] (Z’Yl ¢lv<] ) <09]2

since all quantities in the sum are positive.

(ii) The third term is bounded because

(Z% B (b, G5 ) (zm) (va,cj)‘*) < 92
=1

by the upper bound for the first term.

(iii) The second term is bounded because

1/2 / s 1/2

Z% 181l {1, )P < (Z% B} {1, 5) ) (Zﬁwz,cjr‘) <o,
1/2 l:ol 1/2

S 1Bl ) < (Z 7?5?<¢Z,Cj>2> (vaﬂf‘) <0,

=1 =1 =1

where the upper bounds are obtained from the upper bounds for the first and third terms.

(iv) The fourth and sixth terms are bounded because

2
(Z% (D1, G) ) (Zwﬂl) /284 (Z% (INe) )
2
E[§4}2HF1/26H4 (Z’W<¢Z7CJ>2> S 0327

=1

where the inequality is due to (3.87).

(v) The fifth term is bounded because

o0 2 o0 o0
<Z’Yl|/5'z|<¢z,§j>!> < <Z’nﬂ12> (Z’Y!<¢I7Cj>2> = |[TY2B|2|T ¢
=1 =1 =1

and hence

o 2
(Zw (61, G5) ) (Zm) (Zwrﬂl|<<z>l,cj>> = |DV2B(IH T2
=1

E[E2I0Y 2811721t < 65
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(vi) To bound the seventh term, note that

<Z’Yl\5l! b1, Cj) ) (Zﬁl) (Z’YZQ<¢Z,CJ‘>4> < Co?
=1

due to the upper bound for the first term. We also have

o 2 o [oe)

(Z Bl cj>> < <Z wf) (Z (e, ¢j>2> = |[TY2B|2(T ¢ 17
=1 =1 =1
< E[EIT2BI TG < 6;.

It follows that

o0 2 o0 o0
<Z %<¢1,Cj>|> < (Z w) (Z’Yl(@»(j>2> = tx(I)||IT"/%¢; |1 < Co;.
=1 =1 =1

Then, the seventh term is bounded as

(Z’nﬂ?) (Z’n!ﬁl\ ING) ) <Z”ﬂ!ﬁl|! NG ) (Z%K%CM) < C3.
=1 =1
(vii) The last term is bounded as above because
o 4 0 2 /oo 2
(Z’n\ﬁd\(@&ﬁ!) < (Z’nﬁf) (Z'bez,@?) = |28 IT2¢ )
1=1 =1 1=1
< B[PP8l Ir G < 6.
We thus conclude that sup;cy Q? < 00.

Proposition 29. We have that

(I — 1, ) Xo)

2 < 1— 9n S, ( -1y
E[(B1n + Ban)®[Xo] < Op ( ™ + s (X0) +Op(n™1h)
Thus, as n — 00, if hn/gn — 7 =1 and M — 0 (which is the case under the
hn (X0)

assumptions in Lemma 46 along with hy,/gn — 7 = 1), then E[(B1, + Ban)?| Xo) 0.

Proof. Note that

(Dpr (I =1L, ) (D = 1), Xo) = ZZ’YJ Bi(Xo,8;)((Ln = T)é1, &)

j>gnl 1

|
_ Z Z j —-1/2 1/2/8l XO,¢]><( 7 )1(2;12 ¢]>

J>gn 1=1 Y
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Since {(Xo, ¢;)}32; are uncorrelated, denoting Hj; = %, we have
7] j

2
E[<F};}(I - Hgn)(r -I ﬁ XO Z 'Y] X07¢] (Z N lHl]>

J>gn
hn o)
1/2
-S| (S
j>gn l:1

By Lemma 13,

(Z% lHl]) Z’nﬁ E[HZ) + Y v/ BBy E[H); Hy )

12l

1/2 1/2
< sz [HE]+ > 2?1818 E[| Hig || H

1AV
<Zm (HE]+ 3 2% 61l By [E[HE) 2B HE )2
1AV
o (& 1/2
Zm + 3 sl | = = (Zv}”w) .
1A =1
This implies that
n 9n
P (1 - T ) (E, - D5 X < 0 (1= 22,
and hence,
E | — (I, 11 =TI, ) (T — )3, Xo) ‘X]<O (1—9”>
Shn(XO) 0 0 P hn .
Note that

(O (I =Ty, )Un, Xo) = (T}, Un, (I — 11y, ) Xo).

Write ffn =n1 Z?:l X;e; so that U,, = Un — X¢&. Then, by using the same technique used in
Proposition 15, we have

n

E
Sh, (Xo)

(U7X (1 = 110,) X0 o | = Opn ™)
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and

sh, (1 — Iy, ) Xo)
Shn (X())

n

E
Sh, (Xo)

(T O, (T — Hgn)X0>2)X0] _

We finally obtain

Sha (L =g, ) X0) _  3g,(X0) _ ' gn 9n 59 (X0)

= = i> 1—-7t=0
Sh, (X0) Shy (X0) hn hatsn, (Xo)

under the assumptions in Lemma 46 along with h, /g, — 7 = 1. O

Proposition 30. Write © = E[{(X®% —T")8}®?] and (0;,(;) for the j-th eigenpair of ©. Define

T, (T) = <9F;nla:,ljgnlx> for x € H. Suppose the following.

1. Asn — o0, hn/gn —TE (17 OO), n_l(hn - gn)2 — 07 and n_1/2<hn - gn)_l Z;L;gn 7;1 — 0;

where the last condition is implied by Condition (A5).
2. Supjen ’y;lHAl/qujHQ < 00, which is implied by E[e*] < oo along with Condition (A2).

3. (hy — gn){rn, (I = 11,,)X0) + sp, (I — I, ) X0)} L = Op(1), which holds under either

assumptions in Lemma 47.
4. supjen 05 2E[((X®? = T)8, ;)] < oo and E[| X||¥] < oc.

Then, as n — oo, we have

sup i 07

yeR

P < m(n;}(l — 10, ) (U, + (T, = T)8), Xo) < y‘XO) o)

where qn(Xo) = rp, (I — 11y, ) Xo) + sp, (I — 1, ) Xo).

Proof. Write Vo, = Z?; o V5 (X0, 5005 = (I =TIy, )T} ' Xo = T 1 (T — 11y, ) Xo,

Ziin = (XP* = 1)B, Vo), Zian = (Xici, Vo), and Ziy, = Zi1n + Zian so that

(01 (I = g, )(Uy + (D — ) B), Xo)

="' Zin — (X6, Vo) — (XE, Vou)?. (3.89)
=1
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Note that
E [ m (X228, Vi) Xo}
Qn(XO) ’ ’
<[ f{rn, (I = Tg,) Xo) + sn, (I — Iy, ) Xo)} Y20 20 V2E]| X218 Vol
1/2

hn
=Op ()n!?h; 20 Y)80p | [ S A5
j>gn

1/2

hn
=0Op nil(hn - gn)il Z'Yj_l
j=1

By the first condition, the second term in (3.89) is ignorable.

The contribution of the third term in (3.89) is also negligible as follows. Note that
n 2 2
(XE,Von)? <n™*2 <Z Xiei, ng> +n42 <Z Xiey, v0m> :
i=1 i
Due to the independence of the sample {(X;,Y;)}! ; and E[X¢] = 0, we have that

n 2
n'E <2Xi5i7%,n> ‘Xo = E[(Xies, I, Xo0)?| Xo] = E[{(Xiei)**Vo,n, Vo) Xo]
1=1

= (AVO,na VO,H) = Shn((I - Hgn)XO)
and

2
E <Z Xiew, Vb,n> ‘XO = (n2 - n)EKXiEi'v VE),”>2‘X0]
il
= (n* — n)E[(e5 X2 Vo,n, Von)*| Xo]
— (72 — )E[) (T Vo, Vi)

= (n* — n)E[e*|{tn, (X0) — tg, (X0)}.
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Since E[sp,, (I — I, ) Xo)] < C(hy — gn) due to the assumption sup,cy fyj_lHAl/QqﬁjH2 < oo and

Eltn, (X0)] = hp, it holds that

E [%(”XO)@,LT}X& X0>2‘X0]
<0p () [l =T o), (0 BTt (o) o (X))
n — gn n n
o) (5 ()
=Op(n?)

by the assumption (2).

Before showing the weak convergence of the first term in (3.89), we claim the following:

] ) -

E |||~ DX - 1)8} @ (Xie)] = Op(n™1); (3.90)
=1 o]
- . 9 Z

Ef|n ") [(Xie:) @ {(X* —T)B}] = Op(n7Y). (3.91)
=1 0 |

Set L; = {(XP? —T)B} ® (X;&;). We then observe that E[L;] = 0 and

E[IILil1%] < ENIXP? - DI 1 X el 1]
< IBIPELC Xl + ENIX: ) [ Xies 1]
< 2| BIPEIIXGI* + EIIX 7)) | Xeal?]

< 2| BIPELIX: 1 + EIXG D Xiesl )

< 2/|BIPE(1X:I1* + E[1X: 1)) 2EL| Xaes 1]/
< 2V2|BIPE(IXI1® + ENX 1)) 2El X ]2
< 4IBIPENIX:1*] 2l Xaesl| )2

< 00

by the assumption E[|| X||®] < oo and Condition (A7). Since L;’s are iid, Equation (3.90) follows

from Theorem 2.5 of [32]. Equation (3.91) can be derived at the same way.



261

To show the weak convergence of the first term in (3.89), we will derive the Lindberg
condition. Define £ = v;2Y "  EXo (22, 1(1Zi n| > nun)] for n > 0, where vy = Y7L EXo (Z7,].

The Lindeberg condition is then proved by showing the following propositions: as n — oo,

nilvfl P
P 3.92
1n(Xo) (3.9
EXo [v ! max |Zi | ] 2o, (3.93)
1<i<n
n~172 2
EXo ||——2" 1) | Do (3.94)
n- v,

We then get the desired result by the same argument as the one in Proposition 15 and
Proposition 16.

To derive the convergence in (3.92), note that

n-u;

i (Xo)

_ [ L X - T)BY @ (Xieo) Vo, Vo) + (07" 004 [(Xier) @ {(XP? — T) B} Vo, Vo) |
Qn(XO)

-1 Z (XP? -1)B} @ (Xie;)]

1,,2 ‘

SOP((h _gn -1 (

o0

n~! Z[(X@ez) ® {(X,-®2 -5}

i=1

=0p | n7Y2(hy — gn)~ Z*yj

J>gn

)IIVO,nII2

This approaches to zero by the the assumption (1).

To show the convergence in (3.93), note that

|Zin] < (0,102 (XE2 = T)8, 04, 1, Vou) + (A, 02 Xiei, A2, Vo)
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where O, 5, = Z?;gn (G ® () and Ay, p, = Z]>gn (¢ ® ;). Then,

v, ! max |Z;,
1<i<n

1/2 _ 1/2 1/2
2 maxi<icn 10,92 (X2 = D)0, Vol + 12 maxiicn 1A, 2 Xiel[[1A2, Vol

n

gnvhn
N {Qn(XO)}l/z
X (q"(XO) ) 1/2
n=lv2

1/2
|12 1/2 (y®2 _ 7, (I —1lg,)Xo)
w2 072 (22 -y { e S
1/2
—1/2 12 v f 8. (L — 11, ) Xo)
tn 11111&); ||Agn7hnX7'€Z” { Qn(XO)

1/2
% qn(Xo)
n=lv2

~1/2 —1/2 ®2 —1/2 —1/2 Qn(XO) 12
= {7 e 0712 068 = D)8l 2 e 12 il (250 )

h 1,,2
gn,Nn n Un

From Jensen’s inequality, we also see that

hn
10,12 (xE2 - T)B|? = Ze (X2 =D)8,G)? < | (o = gn) D 07 (X2 = D)8, )%,

J>gn 7>9n

which implies that

n  hn
E | max |0, ") (X7 - >ﬁ|r4] < (hn—gn) Y > 0 E[((X2 = T)B,G)"] < Cnlhn — gn)*.
=1 j>gn

At the same way, we obtain

E {max A

1<i<n ' 9noh

2 x| < Cnth g,

We therefore have that

4
X -1
E* [ v, max |Z;,]
1<i<n

which converges to zero when n=*(h,, — gn)% — 0.

= Op(n_l(hn - gn)2){1 + Op(l)},
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For the convergence in (3.94), by the assumption (2), we observe that

n_l Z?:l Zz2,n
n=lv2 -1
_ <{(én - @> + (An - A) + an + QQn}%,ru VOn)
Qn(XO)

<Op((hn = 90) ™) (10 = Bllss + [An = Alloo + [|Q1nlc + | Q2nlloc)

where ©, =n 13" {(XP? —T)8}%%, A, =7t 307 (Xie;)®?, and
an = <n1 Z[{(XZ®2 - F)ﬂ} ® (Xigi)]‘/(),na ‘/0771> ’
i=1

Qan = <”_1 > [(Xies) @ {(XP? = T) B} Vo, VOm> :

i=1
Since both {(X®? — )8} and {(X;e;)®?} are sequences of iid random elements with finite second
moments, we have E[||©,, — ©|2.] = O(n~!) and ||A, — Aljoe = O(n~1). By

Equations (3.90)-(3.91), we also have ||Q1n/lcc = O(n™!) and ||Q2n /oo = O(n™1). This implies that

1N\ 2
nTh Y i Zi,n n-1/2
T Tonm e ];g
Thus, this converges to zero by the assumption (1). ]

Proposition 31. Write © = E[{(X®% —T")8}®?] and (0;,(;) for the j-th eigenpair of ©. We

suppose the following:

1. asn — 00, hy/gn — 7 € (1,00), 1 (hy — gn)? = 0, and n=%(hy, — gn)~ Z?ﬁgn v Lso;

2. the FPC scores & are dependent as §; = EW; with W i N(0, 1) where £ is a random

variable independent of {W;}32, with finite eighth moment E[¢8] < oo;

3. the conditional variance is given as o*(X) = P yjp]§2 for some {p;}32, such that
D521 ips < oo
Then, as n — oo, we have

p
SUE |P(Bln + By, < y’XO) - (I)(y/acons(T))| — 0
ye
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where 02,,,(7) = (1= 71) (ITY2812 / 252, 3302 +1).

Proof. Define ry, (x) = <@F;:a:, anlx) for x € H, where © = E[{(X®? —T")3}®?]. Note that
37 A2 8517 = 7 N (Agy, ¢) = 7 HE[X®?%¢;, 8,) = 77 'E[(X, ¢)%¢7]

= E[§o*(X)] =D _wpElEE] < (sgg E[S/)> wpi < o0
=1 J =1

for each j € N. Thus, the second condition in Proposition 30 is satisfied. Recall from Lemma 46
that in this construction of the FPC scores, sp, ((I —1Ig,)Xo) = sp,, (Xo) — 54, (X0). By the result

in Lemma 46, we have

hn  sn,(Xo) __9n Sgn (X0)
hn —gn  hn hpn —9gn  9n

1 1 o o
3><1_71—T_1>E[54] ;w? ¢ =E[¢"] jzlwi &,

Similarly, by using the result in Lemma 47, we have

(hn - gn)_lshn((l - Hgn)XO) =

(in — 90) ™", (1 — Ty, ) Xo) 5 EE][T/25]P€2. This implies that

(hn = gn) ™ {sn, (I = Tg,) Xo) + 7, (I — T, ) Xo)}

o
P
SEEN | Yt | + T8I 5 &

j=1
and hence this satisfies the third condition in Proposition 30. Also, the last condition in
Proposition 30 is guaranteed by Lemma 48. Finally, by Lemma 46 and Lemma 47, the ratio of the

scalings converges as

Th, (I — g, )Xo) + s, (I — I, ) Xo)
Sh,, (Xo)
et (1 =T0,) Xo) + hy s, (1 = T0,,,) Xo)
ha s, (X0)

o BT8P = € + B (T2 906]) (1= 7 )¢?
Ele!) (32, 702) €

= (=) [IT2812 /> i1
j=1

and we have the desired result by Slutsky’s theorem. O
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Lemma 49. Suppose that Condition (A6) holds. For any sequence {Cn}nen such that {h™1(n b hen

1s non-decreasing, we have the following moment inequality:
n n gn
h*EK (I Iy, )T'5, X0> Cihi Z Vi Sup 1Cjﬁ]2) :
" J>gn
Hence, if supjcy (j_lgjﬁf-) < oo and n = 0((g,) as n — 0o, then we have that

n
Shy (Xo0)

(0311 — 11, )T B, Xo) — 0.
Proof. Since

T (= 11, )78, Xo)] = = Zw =i Zw GG

n

J >gn ] >gn
hn
n n _
_?i'Z%st%@=mmm:M)
gn "N j>g ]

it follows that

3.10.7 Failure of both paired bootstrap methods

This section treat the failure of both paired bootstrap methods when

T = limy—y00 hn/gn € (0,1) described in Proposition 14 in the main paper.

Proof of Proposition 14. By Lemma 46, with the same argument as the one in the proof of
Proposition 31, one can show that the sufficient conditions in Lemma 34:

(gn — hn)sg, (I —10y,)X0) ™1 = Op(1) and

n — Nn, -1 I —1I, )X
(gn —h )_fgn(( ha ) X0) P
by 8, (Xo)
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Based on the bootstrap theory developed in Sections 3.10.3-3.10.4, the (modified) bootstrap
statistics T} (Xo) is decomposed as T;;(Xo) = T, + Bdim,n, Where

var,n

* (T P P .
supyer |P*(Toarn < y|Xo) — @(y)| — 0 and sup,cg [P(Bdimn < y[Xo) — ®(y/0dim(7))| — 0 with
05..(7) =7 — 1. By using the same argument as the one in the proof of Proposition i the

(th 1-1.B i h h in th fof P ition 13 in th

main paper, we derive
* % d
P*(T;;(Xo) < ylXo) — P(Tn(Xo0) < y[Xo) = ®(y + 0aim(7)Z) — (y), yER,

as elements in D. This result also holds for the naive bootstrap construction ¥ (Xo), since it

n,naive

is equal to T;(Xo) when h,, < gp. This completes the proof. O

3.11 Additional simulation results

This section provides further simulation results in addition to those in Section 3.5 of the main
paper and the detailed simulation procedures. Section 3.11.1 contains additional results of
empirical coverage simulation under extra scenarios while further empirical rejection rates are
given in Section 3.11.2. Meanwhile, in Section 3.11.3, we provide further results for the failure of

both modified and naive paired bootstrap methods.

3.11.1 Empirical coverage probabilities of bootstrap intervals

In addition to set-ups for simulation in Section 3.5.1 of the main paper, we consider different
choices of distribution of the latent variable & among t(4), t(5), t(7), t(9), and N(0,1). Different
decay rates a,b € {1.5,2.5,3.5,4.5,5.5} for the regressor and the slope function respectively are
considered. Another error distribution is considered in addition to the centered chi-square
distribution described in Section 3.5.1 of the main paper: for a given regressor X, the dependent
error ¢ follows the centered uniform distribution U(—a(X),a(X)) where a(X) = v/3(X, p) with a
fixed function p € L%([0,1]). Here, p(t) = t> — 1.5t — 2.5 is used. In this case, the marginal
variance is varle] = (I'p, p) = Zjoil vj{p, #;)?, and hence, the we generate the corresponding

independent error from the centered uniform distribution U(—a,a) with a = 1/3(I'p, p). Due to
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similarity and brevity, we report only partial results when a € {2.5,3.5,4.5}, b = 5.5, and the
errors follow the centered chi-square distribution as described in Section 3.5.1 of the main paper.

We provide the details of simulation algorithm to examine the empirical coverage probabilities
and average widths for intervals, as these are not included in Section 3.5.1 of the main paper. At
each Monte Carlo iteration, we simulate the new predictor Xy as well as the data samples
{(X;,Y:)} . Here, the Monte Carlo simulation size M and the bootstrap resample size @) are
given as M = 1000 = ). The intervals are obtained from either residual or paired bootstrap
method. We refer to [53] and its supplement for the description of the estimates used in the
residual bootstrap method.

The simulation is conducted as follows. For each m =1,..., M, perform the following.

1. (Simulation) Simulate X; and &; with X; 4 X and € 4. respectively, where the pairs
{(Xi, i)} are independent but € may be dependent of X, and compute the response

Y, = <B,Xz>+5z fori=1,...,n.
2. (Residual bootstrap)

(a) (Residuals) Compute the residuals &; , = Y; — (B, Xi) for i =1,...,n.
(b) (Residual bootstrap) To approximate the residual bootstrap distribution, do the
following for ¢ =1,...,Q.
i. Draw independent bootstrap errors {5272-};‘:1 from the uniform distribution on the
centered residuals {&; 5, — &k, 7.

ii. Compute the bootstrap responses Y, = <Bgn, X;) + ¢, and construct the

q,

bootstrap estimate ﬁ; n, based on the bootstrap samples {(X5, Yq’fi) "

iii. Compute the bootstrap statistic

T (Xo) = (B s X0) = (Bgns X0,

th, (Xo)
where the scaling £, is defined in Equation (8) of [53] as

fh, (2) = 3201 37 (2, 65)2 for & € HL
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3. (Paired bootstrap)

(a) (Bias correction term) Compute the bias correction term
Upgn =0 " (Xi — X)(8ig, — Eg,), Where &4, = Yi — (B,,, Xi) are the residuals
for i = 1,...,n with its average &5, =n~'> 1 | & 4.

(b) (Proposed paired bootstrap) To approximate the paired bootstrap distribution, do the

following for ¢ = 1,...,Q.

i. Draw independent bootstrap pairs {(X,Y;*)}I"; from the uniform distribution on

the samples {(X;,Y;)}" .
ii. Compute the bias corrected bootstrap estimate B:;,hn and the bootstrap scaling
85 h, (Xo) based on the bootstrap samples {(X},Y;")}{; and B(}k,hn'

iii. Compute the bootstrap statistics either with or without studentization:

T (X0) = | 5y Wi Xo) = (B, Yo,
T (X0) = [ gy (s Xo) = (B Xo))
Q:n

(¢) (Naive paired bootstrap) To approximate the paired bootstrap distribution, do the

following for ¢ = 1,...,Q.

i. Draw independent bootstrap pairs {(X,Y;*)}I"; from the uniform distribution on

the samples {(X;,Y;)}7" .

ii. Compute the bootstrap estimate BZ h,, naive Without bias correction and the

bootstrap scaling §* (Xo) based on the bootstrap samples { (X, YY)},

q,hn,naive %
o
and /Bq,hn,naive :

iii. Compute the bootstrap statistics either with or without studentization:

A~

~ PBx _ n N A
TqI,Drfnaive(XO) = A7[<ﬁq,hn,naive7X0> - <69n7X0>:|7

~PB, _ n . R
Tq,n,nzdit;e(XO) = W[( Z,hn,naiveﬂ Xo) — <69n7X0>]‘
¢,hn,naive

4. For all cases, construct the following confidence intervals for (3, Xg)
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(a) (CLT)

The (symmetrized) confidence interval for (3, Xo) from CLT is

. (Xo)
Clerr = | (Bh,. Xo) — \/ 0) 21— a/25 (Bhn> Xo) +

where z1_, /5 denotes the 1 — « /2 quantile of the standard normal distribution.

21— a/2|

(b) (Residual bootstrap)

i. (Unsymmetrized intervals) Compute the /2 and 1 — /2 quantiles of
{TRB *(Xo)}¥

<6, X0> is

. i, (Xo) tn,, (X
CIRB,unSym - <6hn’X0> a WU7 <Bhn’X0> B Wl

ii. (Symmetrized intervals) Compute the 1 — /2 quantile of {]Tff* (Xo)}¢

g=1> Say L and u. Then, the unsymmetrized confidence interval for

g=1> S&Y U.

Then, the symmetrized confidence interval for (3, Xg) i

thn thn
CIpB.sym = | (Bn,, Xo) — u, (B, , X

(¢) (Proposed paired bootstrap without studentization)
Replace Tq]?f*(Xo) and tp,, (Xo) by Tff* (Xo) and §p, (Xo) respectively in the
procedure (b) to obtain CIpB ynsym and CIppB sym.

(d) (Proposed paired bootstrap with studentization)

Replace T(ff*(Xo) by Tq}?fsfd*(Xo) in the procedure (c) to obtain Clppg,,, unsym and

std>»
Clppqsym-

(e) (Naive paired bootstrap either with or without studentization)
In the above procedures in (c) and (d), replace T(ff*(Xo) and Tffstd*(Xo) by

7P Bx P B
Tq,n,naive (XO) and Tq n ;tawe(XO) to obtain CInawePB,unsym; CInaiUePB,sym:

CInaivePBstd ,UNSYm» and CInaivePBstd ,8Yym-

5. Let CI denote one of the intervals constructed above. Compute I,,, = I((5, Xo) € CI).
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The coverage probability 1 — « is then approximated by M ! Zn]\le Ip,.
Figures 3.7-3.16 provide the empirical coverage probabilities and average widths of each

interval with different tuning parameter h,, under the scenarios considered.

3.11.2 Empirical rejection rates of bootstrap testing

We describe the exact procedure of the simulation to obtain empirical rejection rates of the
bootstrap testing and provide additional results to those in Section 3.5.2. In simulation, we
generate the new predictors {ngl}le and fix them before the Monte Carlo iteration. The Monte
Carlo simulation size M and the bootstrap sample size () are again provided as M = 1000 = Q.

For each m =1,..., M, perform the following.

1. (Simulation) Simulate X; and ¢; with X; 4 X and ¢; 4 € respectively, where the pairs
{(Xi,¢ei)}l~, are independent but € may be dependent of X, and compute the response

Y= (5,Xi)+eifori=1,...,n.
2. (Test statistics) Compute the L? and maximum type test statistics

A Ho
Tn,l

2
_ E : ~Ho _
[L ’VZ,L2 = £ [Tn,l :| and [/l-/ n,max — 11';1%}([/

where Tflo = w/n/§hn(X0,l)<BhnaX0,l> foril=1,...,L.

)

3. (Paired bootstrap when not enforcing the null)

(a) (Bias correction term) Compute the bias correction term
(A]n“gn =n 30 (X — X)(éig, — Egy), Where &4, =Y; — <Bgn, X;) are the residuals
for i = 1,...,n with its average &, =n=t> 1" | & 4.

(b) (Paired bootstrap when not enforcing the null) To approximate the paired bootstrap

distribution, do the following for ¢ = 1,...,Q.

i. Draw independent bootstrap paris {(X,Y;*)}I*; from the uniform distribution on

the samples {(X;, Y;) 1.
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