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ABSTRACT

We consider functional linear regression models (FLRMs) with functional regressor and scalar

response, where the inference of the slope function is an important problem. However, even

though asymptotic inference methods exist in FLRMs, these methods are limited in applicability

because a wrong scaling factor is used; truncation bias in the limit is neglected; or only

homoscedastic errors are assumed, which may not happen in practice. Consequently, it is

necessary to develop alternative inference methods, such as bootstrap, that use the correct

scaling, accommodate possible bias, and are valid even under heteroscedasticity. In this thesis, we

introduce three bootstrap methods in FLRMs, namely the residual bootstrap, paired bootstrap,

and wild bootstrap. Their theoretical validities are established, and their performances are

numerically demonstrated. Central limit theorems for the projection are studied as well, which

are fundamental results themselves and are basis to verify bootstrap validity.
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CHAPTER 1. GENERAL INTRODUCTION

This dissertation investigates three bootstrap methods for inference in functional linear

regression models (FLRMs) with functional regressor and scalar response. Even though

asymptotic inference methods exist in FLRMs, these methods are limited to in applicability

because a wrong scaling factor is used; truncation bias in the limit is neglected; or only

homoscedastic errors are assumed, which may not happen in practice. Consequently, it is

necessary to develop alternative inference methods, such as bootstrap, that use the correct

scaling, accommodate possible bias, and are valid even under heteroscedasticity.

The following three research papers constitute the dissertation:

Paper 1: Bootstrap inference in functional linear regression models with scalar response.

Paper 2: Bootstrap inference in functional linear regression models with scalar response under

heteroscedasticity.

Paper 3: An initial theoretical work on wild bootstrap for functional linear regression.

The first two papers treat two different bootstrap methods in FLRMs under either homoscedastic

or heteroscedastic error assumptions. In either case, a suitable central limit theorem (CLT)

justifies the developed bootstrap methods. The last paper contains initial theoretical justification

for a wild bootstrap method in FLRMs.

Paper 1 considers a new residual bootstrap method in FLRMs under homoscedasticity. The

proposed residual bootstrap is theoretically shown to be consistent and is widely applicable for

constructing both confidence and prediction regions at target regressor points. The method is also

extendable to simultaneous regions, which is less tractable by normal approximation. The

establishment of the bootstrap further involves generalizing, refining, and correcting a

foundational CLT for functional linear regression.
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Paper 2 develops a new paired bootstrap method in FLRM under heteroscedasticity. A novel

CLT is established under heteroscedasticity; CLTs have not even been investigated in this case.

The paper then shows the proposed paired bootstrap provides valid inference in FLRMs under

heteroscedastic error assumptions, while it also exhibits good numerical performance in

homoscedastic cases. Interestingly, the paired bootstrap is also shown to fail if this is

implemented in a näıve way. As an application of the paired bootstrap, a novel hypothesis test for

projections is developed, which are supported both theoretically and numerically.

Paper 3 focuses on multiplier wild bootstrap as an alternative to paired bootstrap in FLRMs

under heteroscedasticity, particularly for large data cases. Since paired bootstrap repeats

computing (pseudo-)inverse covariance operators in every re-sample, wild bootstrap that uses just

residuals is beneficial in terms of computing speed. This paper provides wild bootstrap

consistency and its theoretical details.
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CHAPTER 2. BOOTSTRAP INFERENCE IN FUNCTIONAL LINEAR

REGRESSION MODELS WITH SCALAR RESPONSE

Modified from a paper accepted by the Bernoulli Journal

Hyemin Yeon1, Xiongtao Dai2, and Daniel John Nordman1

1Department of Statistics, Iowa State University

2Division of Biostatistics, University of California, Berkeley

Abstract

In fitting linear regression models for functional data, a complicating factor with regressors as

random curves is that regression estimators have complex distributions, due to issues in bias and

scaling. Bias arises because the target slope function is infinite-dimensional, while finite-sample

estimators necessarily involve truncations. To approximate sampling distributions, we develop a

residual bootstrap method. Despite the parametric regression problem, the bootstrap for

functional data requires a development that resembles resampling for nonparametric regression

with multivariate regressors. Essentially, original- and bootstrap-data estimators require

coordination in the truncation levels to remove bias (akin to tuning parameter choices). The

resulting bootstrap has wide applicability for constructing both confidence and prediction regions

at target regressor points, and with coverage properties even holding conditionally on data

regressors; the method also extends to simultaneous regions. Establishment of the bootstrap

further involves generalizing, refining, and correcting a foundational central limit theorem for

functional linear regression. Numerical studies verify our theory, showing that the bootstrap

performs better than normal approximations, and also suggest a rule of thumb for setting the

truncation levels. The bootstrap method is illustrated with an application to wheat spectrum

data.
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2.1 Introduction

Functional data analysis (FDA) has seen intensive development during the last two decades to

address fundamental data units being trajectories, surfaces, and more general functions (cf. [32]).

Overviews of FDA may be found in several reference textbooks, such as [12, 20, 21, 25, 29]. Our

work focuses on the functional linear regression model (FLRM), a generalization of the classical

linear regression model to the case where the predictor is a function. FLRM and its extensions

are highly relevant in practice and have been applied in subject areas such as bio-medicine

[15, 30] and agronomy [31], among others; see, also, [27] for a review of the applications.

The FLRM with scalar response can be written as

Y = 〈β,X〉+ ε, (2.1)

where β is a slope function and X is a random function, both taking values in a Hilbert space H

with inner product 〈·, ·〉; Y represents a scalar response; and ε is a random error with mean zero

and finite variance, that is uncorrelated with X. For example, a random function X is commonly

modeled in H = L2([0, 1]) ≡ {f : [0, 1]→ R |
∫ 1

0 f
2(t)dt <∞}, the space of all square-integrable

functions supported on [0, 1], equipped with inner product 〈f1, f2〉 ≡
∫ 1

0 f1(t)f2(t)dt for f1, f2 ∈ H.

Based on a random sample {(Yi, Xi)}ni=1 of size n from the model (2.1), estimation of the

slope function β ∈ H is challenging due to an ill-posed problem with inversion of the sample

covariance operator of {Xi}ni=1. Consequently, an estimator β̂hn of β is commonly constructed

from the functional principal components (FPCs) of this covariance operator (cf. [6, 19]). This

involves the selection of a number hn of FPCs where the corresponding eigenspace determines a

finite-dimensional approximation to the slope function β. The latter, though, is typically

infinite-dimensional and thus bias necessarily occurs in the approximation, analogous to the

nonparametric regression setting [18]. While the regression estimator β̂hn is consistent under

smoothness assumptions [19], Cardot, Mas, and Sarda [7] (herafter referred to as [CMS]) critically

showed that an(β̂hn − β) cannot converge in distribution to any non-degenerate random function

taking values in H, under any scaling sequence {an} such that an →∞ as n→∞. However,
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importantly for inference, [CMS] also showed that the projections defined as√
n/hn[〈β̂hn , X0〉 − 〈β,X0〉] can have distributional limits and satisfy a type of the Central Limit

Theorem (CLT), for X0 denoting a random regressor point that is independent of the sample. We

focus attention on such projections, noting though that the CLT involved actually requires a bit

more development. In particular, we consider the bootstrap as a device for approximating the

sampling distributions of estimated projections 〈β̂hn , X0〉 from FLRMs.

Bootstrap methods for regression models, particularly the residual bootstrap, have a long

history beginning with [14] and continuing to recent big-data regression problems (cf. [10]).

However, these cases involve finite-dimensional regression parameters, which differs from FLRMs

where the bootstrap must mimic estimation of infinite-dimensional slope function β and

accommodate the possible bias in this. Due to such difficulties, bootstrap methods for FLRMs

have not received much development outside of important works by [16, 24]. [16] established a

residual bootstrap for FLRMs in a specialized context where the target parameter was not the

projection 〈β,X0〉, but rather a biased version of this (c.f. 〈Πhnβ,X0〉 in Section 2.2). [24]

investigated properties of percentile bootstrap confidence intervals for 〈β,X0〉 under a modified

residual bootstrap procedure. Essentially, bootstrap consistency in [16, 24] are not shown to hold

conditionally on the regressors because of the dependency on the unconditional CLT developed in

[CMS]. Neither of these previous works considered prediction intervals or simultaneous inference

with bootstrap in FLRMs.

These aspects motivate us to study the residual bootstrap under a more general framework for

FLRM. Our new contributions include accounting for possible bias and treating wider inference

scenarios: calibrating either confidence regions for 〈β,X0〉 or prediction regions for a new response

Y0, whether conditionally or unconditionally on a regressor X0, and for both pointwise or

simulatenous inference cases. The bootstrap approximations also capture the distribution of

estimators (e.g., 〈β̂hn , X0〉), conditionally on the given regressors {Xi}ni=1, which goes beyond

unconditional distributions considered by the CLTs from either [CMS] or [23], or the initial

bootstrap works of either [16] or [24]. Our numerical studies also suggest that the bootstrap
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generally performs better than normal approximations and extends well to simultaneous intervals,

where normal approximations become less tractable.

While our development is heavily influenced by the CLT work of [CMS] for projections from

FLRMs, we refine and generalize those CLT results as another contribution. For a random new

regressor X0, the CLT there suggests
√
n/hn(〈β̂hn , X0〉 − 〈β,X0〉) has a normal limit, where hn

denotes a number of FPCs. However, the scaling
√
n/hn is not generally valid and should be

replaced by another scaling factor
√
n/thn(X0) depending on hn, the target regressor X0, as well

as the eigenvalues of the covariance operators in (2.1). The generalized CLT for FLRMs improves

upon [CMS] by having a unified scaling for X0 being random or given, and by further holding

conditionally on any data regressors {Xi}ni=1 rather than only unconditionally. These findings

form the basis for developing the new bootstrap results in FLRMs.

The organization of the paper is as follows. Section 2.2 outlines background on the FLRM

(2.1) as well as the regressor estimator β̂hn based on FPCs and regularization. A generalized CLT

result is presented in Section 2.3. Section 2.4 then describes the residual bootstrap method for

FLRMs and establishes its validity for both prediction and estimation. Numerical studies appear

in Section 2.5, while Section 2.6 provides a data application to illustrate the bootstrap method.

Proofs are outlined in an appendix and further included in the supplement [34]. An R package is

provided to find confidence and prediction intervals for FLRM projections based on either CLT or

residual bootstrap.

2.2 Background on estimation for FLRMs

2.2.1 Model and identifiability

We suppose that the underlying Hilbert space H is separable throughout the paper and define

the tensor product x⊗ y : H→ H between two elements x, y ∈ H as a bounded linear operator

z 7→ (x⊗ y)(z) = 〈z, x〉y, for z ∈ H. Without loss of generality, suppose that the regressor X in

the FLRM (2.1) has a finite second moment E[‖X‖2] ≡ E[〈X,X〉] <∞ and zero mean E[X] = 0,

which is common in theory development for FLRM for ease of exposition (cf. [CSM]); in general,



7

the responses and regressors in the data {(Yi, Xi)}ni=1 can be centered by their respective sample

means without affecting the results to follow. Write Γ ≡ E[X ⊗X] and ∆ ≡ E[Y X] to respectively

denote the covariance operator of X and the cross-covariance of X and Y , respectively. Then, we

have the following functional version of the normal equation as

∆ = Γβ. (2.2)

This equation will be solved to identify the parameter β ∈ H.

Let T be a bounded linear operator on H. The adjoint of T , denoted by T ∗, is defined by

〈Tx, y〉 = 〈x, T ∗y〉 for x, y ∈ H, and T is said to be self-adjoint if T = T ∗. A non-negative definite

operator is a self-adjoint operator T with the property that 〈Tx, x〉 ≥ 0 for each x ∈ H, which also

admits a square-root operator T 1/2 such that (T 1/2)2 = T 1/2T 1/2 = T . If, for any bounded

sequence {xn} ⊆ H, {Txn} has a convergent subsequence in H, then T is said to be compact.

Finally, if
∑∞

j=1 ‖Tφj‖2 <∞ holds for a complete orthonormal basis {φj} for H, then T is called

a Hilbert–Schmidt operator.

With this background, the covariance operator Γ is self-adjoint, non-negative definite, and

Hilbert-Schmidt, and hence compact [21]. By spectral decomposition for compact self-adjoint

operators, Γ admits the decomposition

Γ =

∞∑
j=1

λj(ej ⊗ ej),

where λj and ej respectively denotes the jth eigenvalue and the corresponding eigenfunction in H

for j ≥ 1. Here, {ej} forms an orthonormal system of H, and {λj} is a positive non-increasing

sequence with λj → 0 as j →∞. For the identifiability of β in (2.2), we assume that ker Γ = {0}

for simplicity of presentation as in previous works [7, 16]. The slope function is then written as

β = Γ−1∆,

where Γ−1 ≡
∑∞

j=1 λ
−1
j πj and πj ≡ ej ⊗ ej , j ≥ 1.
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For later development, we define here some additional quantities related to Γ ≡ E[X ⊗X]. For

h = 1, 2, . . . , let

Πh =
h∑
j=1

πj , (2.3)

be the projection onto the first h eigenfunctions {ej}ni=1 of Γ. Finally, for reference, the

Karhunen–Loève expansion of X is written as

X =

∞∑
j=1

√
λjξjej , (2.4)

where the FPCs {ξj} form a sequence of uncorrelated random variables with zero mean and unit

variance (cf. [21]).

2.2.2 Regression estimator and regularization

For estimating the slope β ∈ H, we consider a random sample {(Yi, Xi)}ni=1 of n paired

observations from the model (2.1), namely,

Yi = 〈β,Xi〉+ εi, i = 1, . . . , n. (2.5)

Regarding the distribution of (ε1, X1), we assume only that E[ε1|X1] = 0 and

E[ε2
1|X1] ≡ σ2

ε ∈ (0,∞) along with an accompanying property: for any integer u ≥ 0, it holds

almost surely that E[ε2
1I(|ε1| ≥ u)|X1] ≤ f(u) for a non-random function f(u) where

limu→∞ f(u) = 0 (where I(·) denotes the indicator function). Along with the conditional mean

and variance, this integrability condition with conditional second moment is mild and holds

trivially when errors εi and regressors Xi are independent as an important special case.

As counterparts to the covariances Γ and ∆ in the population normal equation (2.2), the

sample versions are defined as Γ̂n ≡ n−1
∑n

i=1(Xi ⊗Xi) and ∆̂n ≡ n−1
∑n

i=1 YiXi. Here, Γ̂n

admits spectral decomposition Γ̂n =
∑n

j=1 λ̂j π̂j where π̂j ≡ (êj ⊗ êj), in terms of the jth sample

eigenvalue λ̂j ≥ 0 and corresponding eigenvector êj ∈ H. Inverting Γ̂n is ill-posed because of the

finite-sample nature and decaying eigenvalues, which complicates a sample analog of the

parameter β = Γ−1∆. To handle this issue (cf. [5, 7, 19, 16]), a regression estimator β̂hn of β is
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defined by regularizing the inversion of Γ̂n, obtaining

β̂hn = Γ̂†hn∆̂n, (2.6)

where Γ̂†hn ≡
∑hn

j=1 λ̂
−1
j π̂j denotes a finite-sample approximation of Γ−1 ≡

∑∞
j=1 λ

−1
j πj based on a

choice hn = 1, 2, . . . of truncation level. That is, hn represents the number of eigenpairs from Γ̂n

used in estimation and may depend on the sample size n.

2.3 CLT for FLRM projections

We now describe some large-sample distributional properties of estimated projections

〈β̂hn , X0〉 for later developing bootstrap inference in Section 2.4. As mentioned in Section 2.1,

CLT results can hold for projections 〈β̂hn , X0〉 formed with a new regressor point X0 ∈ H, where

X0 may be either random or fixed. A complication, though, is that this CLT holds most readily

with biased centering 〈Πhnβ,X0〉 rather than a target of 〈β,X0〉; here Πhnβ =
∑hn

j=1〈β, ej〉ej is a

truncated version of the parameter β ≡
∑∞

j=1〈β, ej〉ej , where Πhn from (2.3) is the projection on

the first hn eigenfunctions {ej}hnj=1 of Γ. A bias occurs due to the regularization step (2.6) in β̂hn .

A further complication is that, even with biased centering 〈Πhnβ,X0〉, the CLT for 〈β̂hn , X0〉

requires some refinement from the original work of [CMS], as given next.

Let X0 be a new regressor observation under the model (2.1), independent of {(Yi, Xi)}ni=1.

[CMS] considered a CLT for the projection [〈β̂hn , X0〉 − 〈Πhnβ,X0〉] with biased centering under

mild assumptions that we also adopt. These conditions are

(A1) ker Γ = {0};

(A2) supj∈N E[ξ4
j ] <∞;

(A3)
∑∞

j=1 |〈β, ej〉| <∞;

(A4) λj = ϕ(j) holds, at least with large j, for a convex positive function ϕ : [1,∞)→ R;

(A5) supj≥1 λjj log j <∞; and
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(A6) n−1
∑hn

j=1 δ
−2
j → 0 as n→∞ for the sequence of eigengaps defined as δ1 ≡ λ1 − λ2 and

δj ≡ min{λj − λj+1, λj−1 − λj} for j ≥ 2.

In brief, Condition (A1) ensures that β is the unique solution to the normal equations (2.2).

Condition (A2) implies a finite fourth moment E[‖X‖4] <∞ for the regressor. Condition (A3)

embodies a degree of smoothness for β. Both this and the convexity of {λj} in (A4) may

potentially be relaxed, but are imposed for simplicity. Condition (A5) is a decay condition on

eigenvalues, while (A6) prescribes a decay rate on eigengaps {δj} in relation to the truncation

level hn defining the estimator β̂hn ; these conditions are applied in proofs involving perturbation

theory for functional data.

For a CLT with the FLRM projection [〈β̂hn , X0〉 − 〈Πhnβ,X0〉], or the counterpart

[〈β̂hn , X0〉 − 〈β,X0〉] with true parameter centering 〈β,X0〉, we use a scaling factor given by

{n/thn(X0)}−1/2, involving a term

thn(x) ≡
hn∑
j=1

λ−1
j 〈x, ej〉

2 = ‖(Γ†hn)1/2x‖2, x ∈ H. (2.7)

Due to regularization in defining the estimator β̂hn (cf. Section 2.2.2), the quantity (2.7)

represents a norm involving a truncated version Γ†h ≡
∑hn

j=1 λ
−1
j (ej ⊗ ej) of

Γ−1 =
∑∞

j=1 λ
−1
j (ej ⊗ ej). A sample analog of (2.7) is given as

t̂hn(x) ≡
hn∑
j=1

λ̂−1
j 〈x, êj〉

2 = ‖(Γ̂†hn)1/2x‖2, x ∈ H, (2.8)

based on sample quantities and the finite-sample approximation Γ̂†hn ≡
∑hn

j=1 λ̂
−1
j (êj ⊗ êj) of Γ−1

for defining β̂hn in (2.6).

With this scaling, our Theorem 1 next states a generalized CLT for FLRM projections under

essentially the same weak conditions intended by [CMS]. Write Xn = {X1, . . . , Xn} as the set of

observed regressors and let X0 again denote an independent regressor point under the model. In

the following, let P̃(·) denote either the conditional probability P(·|Xn, X0) or P(·|Xn), where X0

may be considered conditionally or unconditionally.
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Theorem 1 (Generalized/refined CLT for projections). Under the FLRM (2.5), suppose that

Conditions (A1)-(A6) hold along with h−1
n + n−1/2h

5/2
n (log hn)2 → 0. In addition, suppose

hnthn(X0)−1 = OP(1). Then, as n→∞, we have

(i)

sup
y∈R

∣∣∣∣P̃(√ n

thn(X0)

[
〈β̂hn , X0〉 − 〈Πhnβ,X0〉

]
≤ y
)
− Φ(y/σε)

∣∣∣∣ P−→ 0,

where Φ denotes the standard normal distribution function.

(ii) thn(X0) and t̂hn(X0) are equivalent in that, for any η > 0,

P̃

(∣∣∣∣ t̂hn(X0)

thn(X0)
− 1

∣∣∣∣ > η

)
P−→ 0.

Thus, the result in (i) also holds replacing thn(X0) by the sample version t̂hn(X0).

Let P̌ denote either the probability P(·|X0) or P, where the observed regressors Xn are

considered unconditionally. The unconditional CLT is then stated as below.

Corollary 1. Under the assumptions of Theorem 1, as n→∞, we have

sup
y∈R

∣∣∣∣P̌(√ n

thn(X0)

[
〈β̂hn , X0〉 − 〈Πhnβ,X0〉

]
≤ y
)
− Φ(y/σε)

∣∣∣∣ P−→ 0,

where the convergence above remains valid with estimated scaling t̂hn from (2.8).

Remark 1. Theorem 1 again involves biased centering 〈Πhnβ,X0〉. An analogous CLT holds with

unbiased centering 〈β,X0〉, but requires more assumptions such as those required by Theorem 3;

see Theorem 5 in the supplement. In this case, a specific example for the valid choice of the

tuning parameter hn is given in Corollary 2 in Section 2.4.2.

Theorem 1 involves a mild condition that hnthn(X0)−1 = OP(1), so the scalings thn(X0) does

not have to scale as hn. To give some examples, we provide some sufficient conditions on the

sequence {ξj} of the FPC scores for hnthn(X0)−1 = OP(1) to hold: (i) if P(τ1 ≤ |ξj | ≤ τ2) = 1,

where 0 < τ1 < τ2 <∞ for all integer j ≥ 1, or (ii) if the average h−1
n

∑hn
j=1 ξ

2
j converges to V in

distribution as n→∞ for some random variable V with P(0 < V <∞) = 1. See also a

counterexample in Remark 2.
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When the FPC scores ξj in (2.4) under the model are independent, one can show that

h−1
n thn(X0)

P−→ 1. In this special case, values of thn(X0) or hn are equivalent, and the CLT from

[CMS] will hold. However, scaling by thn(X0) is generally required for the projection-type CLT in

Theorem 1. If the regressor X has the FPC scores ξj in (4) that are dependent, then Theorem 2

of [CMS] with the scaling factor hn may not apply. A counterexample is given next, and others

are provided in Section 2.10 of the supplement.

Proposition 1. Under the FLRM (2.5), suppose that Conditions (A1)-(A6) hold along with

h−1
n + n−1/2h

5/2
n (log hn)2 → 0. In addition, suppose that X has FPC scores in (2.4) being

ξj = Wjξ, j = 1, 2, . . . , with an iid sequence {Wj} independent of ξ ∼ N(0, 1), where

P(W1 = 1) = 1/2 = P(W1 = −1). Then, for a random X0 sharing the same distribution with X,√
n

hn

[
〈β̂hn , X0〉 − 〈Πhnβ,X0〉

] d−→ |ξ0|Z0, Z0 ∼ N(0, σ2
ε), ξ0 ∼ N(0, 1),

holds as n→∞, where ξ0 and Z0 are independent variables.

The (counter-)example in Proposition 1 serves to show the scaling thn(X0) works in the CLT

while the scaling hn fails. Figure 2.1 provides a numerical illustration, based on 1000 experiments

from a FLRM with regressors X generated according to setting described in Proposition 1 (and

those described in Section 2.5 with uniform errors and a = b = 5). The figure shows that the CLT

holds for projections with the updated scaling as in Theorem 1, while the CLT fails with scaling√
n/hn, so Theorem 2 of [CMS] does not hold for the setup described in Proposition 1.

Remark 2. A reviewer suggested an example based on the model in Proposition 1 with ξj = BZj

where B follows a Bernoulli distribution is independent from Zj normally distributed. In this

case, the condition hnthn(X0)−1 = OP (1) used in the CLTs of Theorem 1–Corollary 1 fails to

hold. Further, we then have 1/2 = P (B = 0) ≤ P (thn(X0) = 0), which means that the target

quantity
√
n/thn [〈β̂hn , X0〉 − 〈β,X0〉] is not well-normalized with positive probability. This

example helps to further motivates the condition hnt
−1
hn

(X0) = OP(1).

Remark 3. [CMS] originally considered a more general way of regularization of Γ by using a

sequence {fn}∞n=1 of positive functions. If fn is set to be a reprocical, i.e., fn(x) = x−1, the FPCR
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Figure 2.1: Kernel density estimates of T1 ≡ {n/thn(X0)}1/2[〈β̂hn , X0〉 − 〈β,X0〉] with scaling

thn(X0) (solid black line, according to our result) and T2 ≡ {n/hn}1/2[〈β̂hn , X0〉 − 〈β,X0〉] with

scaling hn (dashed black line, according to [CMS]) over different sample sizes n and different

truncation levels hn depending on sample sizes. The theoretical limits N(0, σ2
ε = 2) of T1 and

|ξ0|Z0 of T2 in Proposition 1 are given for reference (red and blue solid lines, respectively).

Centering 〈β,X0〉 is used for illustration; results for biased centering 〈Πhnβ,X0〉 are similar.

estimator in [CMS] is equal to the FPCR estimator β̂hn in (2.6) as explained in Example 1

therein. The scaling term sn considered in their Theorem 2 is then exactly the same as the

truncation level hn.

Theorem 1 serves to unify the scaling needed for the projection CLT across the cases where

the target regressor X0 may be random or conditionally given. In contrast, [CMS] suggests a

scaling of
√
n/hn for random X0 and

√
n/thn(X0) for fixed X0. Our results show that scaling√

n/hn is not generally valid in the former case (Proposition 1) and regardless of how X0 is

considered, a common scaling thn(X0) or t̂hn(X0) should be used. Furthermore, Theorem 1

considerably strengthens the CLT for projections in FLRMs, because this CLT holds

conditionally on any given data regressors Xn ≡ {Xi}ni=1, rather than unconditionally as intended

in [CMS]. This feature is relevant for the residual bootstrap which can target conditional

sampling distributions for 〈β̂hn , X0〉 given data regressors Xn.

Theorem 1 cannot be deduced from Theorem 3 of [CMS], where the latter considers a fixed

new regressor x, even though they look similar. Considering the condition

supj∈N λ
−1
j 〈X0, ej〉2 <∞ of their Theorem 3 applied to a random X0, it may hold that
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P(supj∈N λ
−1
j 〈X0, ej〉2 <∞) = 0, for example, when X0 is Gaussian. Furthermore, with fixed a x,

the bias term related to 〈(Π̂hn −Πhn)β, x〉 is hard to remove as explained in Remark 5 of [CMS].

Hence, the fixed x design and the random X0 cases are not directly translatable.

2.4 Bootstrap method and results

After outlining the residual bootstrap in Section 2.4.1, Section 2.4.2 establishes the method’s

consistency for approximating the sampling distribution of regression-based projections

{n/t̂hn(X0)}1/2[〈β̂hn , X0〉 − 〈β,X0〉],

involving estimated scaling t̂hn(X0) as well as centering 〈β,X0〉 at the true parameter β ∈ H.

This justifies the bootstrap for inference about 〈β,X0〉. Section 2.4.3 then describes the bootstrap

for simultaneous confidence regions, while Section 2.4.4 establishes bootstrap prediction intervals

for new responses Y0.

2.4.1 Residual bootstrap in the FLRM

To describe the residual bootstrap in greatest generality, we consider two integer tuning

parameters kn, gn for constructing bootstrap data {(Y ∗i , Xi)}ni=1 to mimic the original

observations {(Yi, Xi)}ni=1 from (2.5). These values define estimators β̂kn , β̂gn from {(Yi, Xi)}ni=1,

which are akin to β̂hn in (2.6), but serve exclusively to create {(Y ∗i , Xi)}ni=1. With the estimator

β̂kn ≡ Γ̂†kn∆̂n, we obtain residuals ε̂i ≡ Yi − 〈β̂kn , Xi〉, i = 1, . . . , n having sample mean

¯̂εn ≡ n−1
∑n

i=1 ε̂i, and define a sample of bootstrap errors ε∗1, . . . , ε
∗
n as iid uniform draws from

{ε̂i − ¯̂εn}ni=1. The estimator β̂gn ≡ Γ̂†gn∆̂n then plays the role of the true parameter β in the

bootstrap world, and the bootstrap sample {(Y ∗i , Xi)}ni=1 is defined by

Y ∗i = 〈β̂gn , Xi〉+ ε∗i , i = 1, . . . , n,

as an analog of (2.5). Note that both original and bootstrap-recreated data share (or be equally

conditional on) the same regressors {Xi}ni=1. The bootstrap data {(Y ∗i , Xi)} then renders a

version β̂∗hn of the original data estimator β̂hn based on a common truncation level hn. Selecting a
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single kn = gn = hn is possible ([16] use kn = hn by default), but it is helpful to separate the

effects of tuning parameters in the bootstrap re-construction, as is often considered in resampling

problems with kernel estimation (cf. [13]).

Let X0 denote a new regressor under the model, independently of the data {(Yi, Xi)}ni=1. For

an observed or given value of X0, we estimate the conditional distribution of

Tn(X0) ≡
√

n

thn(X0)

[
〈β̂hn , X0〉 − 〈β,X0〉

]
with the bootstrap distribution of

T ∗n(X∗0 ) ≡
√

n

thn(X∗0 )

[
〈β̂∗hn , X

∗
0 〉 − 〈β̂gn , X∗0 〉

]
with X∗0 = X0 fixed. As a strongest result, both distributions of Tn(X0) and T ∗n(X∗0 ) are viewed

as conditional on X0 and on the same data regressors Xn ≡ {Xi}ni=1. For a different case where

X0 is unobserved and inference is intended about 〈β,X0〉 as a random projection, the distribution

of Tn(X0) can still be approximated with a bootstrap counterpart T ∗n(X∗0 ), with the change that

X∗0 is defined by a random draw from Xn; both distributions remain conditional on Xn, though

not X0.

2.4.2 Validity of residual bootstrap

To frame the bootstrap results to follow, we first provide a reference result on bootstrap

validity for a biased target 〈Πhnβ,X0〉, formed by truncating β based on a number hn of FPCs for

defining the estimator β̂hn and with Πhn ≡
∑hn

i=1(ej ⊗ ej) from (2.3).

Below let P̃ denote P(·|Xn, X0) or P(·|Xn), conditional on data regressors Xn ≡ {Xi}ni=1 with

independent X0 as potentially random or given, and denote the bootstrap probability counterpart

as P̃∗(·) ≡ P ∗(·|Xn, X∗0 = X0) or P̃∗(·) ≡ P ∗(·|Xn), respectively, where P ∗ is the bootstrap

distribution of the bootstrap data {(Y ∗i , Xi)}ni=1. Also, let Π̂hn ≡
∑hn

i=1(êj ⊗ êj), based on

estimated eigenfunctions êj (cf. Section 2.2.2), denote the sample analog of Πhn ≡
∑hn

i=1(ej ⊗ ej),

in order to define a bootstrap version Π̂hn β̂gn of the biased parameter Πhnβ with β̂gn again

playing the bootstrap role of β.
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Theorem 2. Along with assumptions of Theorem 1, suppose that the additional bootstrap

truncation kn satisfies k−1
n + n−1/2k2

n log kn + n−1
∑kn

j=1 δ
−2
j → 0. Then, as n→∞,

sup
y∈R

∣∣∣∣P̃(√ n

thn(X0)

[
〈β̂hn , X0〉 − 〈Πhnβ,X0〉

]
≤ y
)

−P̃∗
(√

n

thn(X∗0 )

[
〈β̂∗hn , X

∗
0 〉 − 〈Π̂hn β̂gn , X

∗
0 〉
]
≤ y
) ∣∣∣∣ P−→ 0,

where the above remains valid if thn is replaced by the estimated scaling t̂hn from (2.8).

Theorem 2 strengthens the main bootstrap finding of [16] for FLRMs, who considered biased

centering, with X0 as given, and P̃ without conditioning on Xn ≡ {Xi}ni=1. The bootstrap

operates under the same basic assumptions as in the biased-case CLT for projections

(Theorem 1); no extra conditions are needed for the bootstrap truncation gn, while the conditions

for kn are mild to allow consistent estimation of errors in the bootstrap. For perspective on either

the CLT (Theorem 1) or bootstrap (Theorem 2) with biased centering, note that there is no strict

requirement on the common truncation hn except that hn →∞ as sample size n→∞ under the

condition h−1
n + n−1/2h

5/2
n (log hn)2 → 0, and hn can grow quite slowly relative to n; for instance,

hn = O(n1/vh) is acceptable for any vh > 5. That is, while these results impose upper bounds on

hn, there are no lower growth rates on hn. However, in order to recover an unbiased target 〈β,X0〉

from 〈β̂hn , X0〉, the truncation level hn will, at least intuitively, need to diverge to infinity

sufficiently fast as n→∞ to adequately capture β from the approximate mean Πhnβ of β̂hn . This

is considered next.

Theorem 3 establishes bootstrap consistency for sampling distributions defined with an

unbiased centering 〈β,X0〉. Additional smoothness conditions for β are needed in the spirit of

those used by [CMS] to handle Πhnβ − β. Smoothness assumptions are also intricately related to

the truncation selections, particularly hn for the original estimator β̂hn of β and gn for bootstrap

re-creation β̂gn of β.



17

Theorem 3. Under the assumptions of Theorem 2, suppose that for some constants u, v > 0 to

be specified and a function m(j, u) ≡ max{ju,
∑j

i=1 δ
−2
i } where j = 1, 2, . . . ,

sup
j≥1
〈β, ej〉2jv−1m(j, u) <∞ (2.9)

holds, and that either (a) or (b) holds as follows:

(a) gn ≤ hn with n = O(hvnm(hn, u)) for some u > 5, v > 0;

(b) gn > hn with hn/gn → 1, n−1/2g
7/2
n (log gn)2 → 0, n = O(gvnm(gn, u)) for some u > 7,

v > 0.

Then, as n→∞, the bootstrap is valid for regression estimators 〈β̂hn , X0〉 with unbiased

centering 〈β,X0〉:

sup
y∈R

∣∣∣∣P̃(√ n

thn(X0)

[
〈β̂hn , X0〉 − 〈β,X0〉

]
≤ y
)

−P̃∗
(√

n

thn(X∗0 )

[
〈β̂∗hn , X

∗
0 〉 − 〈β̂gn , X∗0 〉

]
≤ y
) ∣∣∣∣ P−→ 0,

where the above remains valid if thn is replaced by the estimated scaling t̂hn from (2.8).

For inference about 〈β,X0〉 directly, Theorem 3 justifies the residual bootstrap, though the

choice of a truncation parameter hn (or gn if gn > hn) is more critical than for the biased target

〈Πhnβ,X0〉 case of Theorem 2. Under the type-(a) assumption in Theorem 3, the bootstrap

truncation gn for re-creating β through β̂gn can be flexibly chosen after the choice of hn (i.e., less

than hn); the truncation gn can also be larger than hn through the type-(b) assumption, though

they are asymptotically equivalent.

To build a better understanding of the truncation and parameter smoothness conditions in

Theorem 3, we may also consider a simpler setting with polynomial decay rates on eigengaps

δj � j−a (implying λj � j−a+1) and coordinate projections |〈β, ej〉| � j−b for some constants

a > 2 and b > 1 with a+ 2 < 2b; here and in the following, we write rn � sn if rn/sn is bounded

away from both zero and infinity for generic sequences rn and sn > 0. Corollary 2 is a special

recasting of Theorem 3.
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Corollary 2. Under the above polynomial decay rates, suppose (A1)-(A2) hold along with

hnthn(X0)−1 = OP(1), kn →∞, and kvkn = O(n) for some vk > max{4, (2a+ 1)}. Suppose further

that either (a) or (b) holds as follows:

(a) gn ≤ hn with n � hvhn for some max{5, (2a+ 1)} < vh < a+ 2b− 1;

(b) gn > hn with hn/gn → 1 and n � gvgn for some max{7, (2a+ 1)} < vg < a+ 2b− 1.

Then, the conclusions of Theorem 3 remain valid.

Remark 4. Theoretical rates of truncation paramters for FPCR estimators similar to hn � n1/vh

(or gn � n1/vg) are quite common and appear in previous works on asymptotic theory in FLRMs

such as [5, 19].

Corollary 2 entails that the truncation hn needs to grow in an appropriate range of rates n1/vh

prescribed by the smoothness of β and the eigendecay in the regressor covariance Γ. The

conditions of Corollary 2 also support those used in other estimation studies of the slope function

β [19] and its projection 〈β,X0〉 [5]. The theoretically best rate for hn in the former work [19] is

hn � n1/(a+2b−1) at the upper bound of the range vh ∈ (max{5, 2a+ 1}, a+ 2b− 1) of Corollary 2,

whereas the optimal rate in the latter work [5] is contained in this range. That is, estimation of

〈β,X0〉 involves a larger hn compared to slope β estimation, indicating that less smoothing is

needed for estimation of 〈β,X0〉. This latter point is essentially supported by Corollary 2 in that

bootstrap inference about 〈β,X0〉 similarly requires a sufficiently large hn in setting the estimator

β̂hn . In this sense, while the regression problem with FLRM is parametric, the bootstrap here

behaves similarly to resampling in classical nonparametric regression (cf. [17, 18]) where

bandwidths are likewise chosen to undersmooth due to bias issues. Numerical studies of the

bootstrap in Section 2.5 lead to some recipes for selecting truncations (e.g., hn, gn, kn), while

data-based truncation choices are considered in the data example of Section 2.6.

Remark 5. For simplicity, we have focused on presenting the case where a new (independent)

regressor point X0 has the same marginal distribution as that of the original data regressors

Xn ≡ {Xi}ni=1. However, the bootstrap results here can be extended to the case when X0 does not

have the same distribution. For this, we require additional conditions, similar to those of
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Section 2.3 (cf. (A1)-(A6)), but applied to an analogous Karhunen–Loève expansion (2.4) for X0

in place of X from the model (2.1). In particular, suppose that the new regressor X0 has a

Karhunen–Loève expansion X0 =
∑∞

j=1 µjζjej with eigenfunctions {ej} being the same as those

for the regressor X but possibly different eigenvalues {µj} and FPC scores {ζj}. If

supj∈N(µj/λj) <∞, the CLT Theorem 1 still holds, regardless of the distribution of the FPC

scores {ζj}, upon replacing the scaling thn(X0) there with

rhn(X0) ≡
∑hn

j=1 µ
−1
j 〈X0, ej〉2 =

∑hn
j=1 ζ

2
j ; the latter is asymptotically equivalent to hn if the FPC

scores ζj are independent. The bootstrap Theorems 2-3 results, conditional on X0 (i.e.,

X∗0 = X0), also hold replacing thn(X0) with rhn(X0); this bootstrap essentially approximates

〈(β̂hn − β), X0〉 with 〈(β̂∗hn − β̂gn), X0〉. When independent replications of X0 are further available

in this setting, then the scaling rhn(X0) can also be estimated as in (2.8), using these regressor

replicates in place of the data regressors Xn.

2.4.3 Simultaneous intervals based on bootstrap

A benefit of bootstrap inference in FLRMs is that the method extends readily to simultaneous

intervals. Let X0 ≡ {X0,j}mj=1 denote an iid collection of m ≥ 1 target regressors, independent of

the data {(Yi, Xi)}ni=1, which share the same distribution as a model regressor X (though this

may be relaxed as in Remark 5). For inference about the collection {〈β,X0,j〉}mj=1 of m

projections simultaneously, we extend the residual bootstrap to approximate the distribution of a

maximal quantity as

Mn(X0) ≡ max
1≤j≤m

√
n

t̂hn(X0,j)

∣∣∣〈β̂hn , X0,j〉 − 〈β,X0,j〉
∣∣∣ .

For observed or given values of X0, the sampling distribution of Mn(X0) may be estimated with

the bootstrap distribution of

M∗n(X ∗0 ) ≡ max
1≤j≤m

√
n

t̂hn(X∗0,j)

∣∣∣〈β̂∗hn , X∗0,j〉 − 〈β̂gn , X∗0,j〉∣∣∣ ,
with fixed X∗0,j = X0,j for j = 1, . . . ,m. The distributions of both Mn(X0) and M∗n(X ∗0 ) are

interpreted as conditional on X0 and data regressors Xn ≡ {Xi}ni=1.
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When values X0 ≡ {X0,j}mj=1 are unobserved and inference is intended about {〈β,X0,j〉}mj=1 as

random population locations, we estimate the distribution of Mn(X0) (unconditional on X0, but

conditional on Xn) with the bootstrap version M∗n(X ∗0 ) defined by X ∗0 ≡ {X∗0,j}mj=1 as an iid

sample of size m drawn uniformly from Xn. The following result justifies the bootstrap for

simultaneous inference.

Let P̃ denote P(·|Xn,X0) or P(·|Xn) with P̃∗ as the bootstrap counterpart P ∗(·|Xn,X ∗0 = X0)

or P ∗(·|Xn).

Corollary 3. Under the assumptions of Theorem 3, the bootstrap is valid for calibrating

simultaneous intervals based on the maximum Mn(X0): as n→∞,

sup
y∈R

∣∣∣P̃ (Mn(X0) ≤ y)− P̃∗ (M∗n(X ∗0 ) ≤ y)
∣∣∣ P−→ 0.

Hence, by estimating the (1− α) percentile q1−α of the maximum Mn(X0) with the quantile

q̂1−α of the bootstrap version M∗n(X ∗0 ), we may define a collection of Scheffé-type intervals

〈β̂hn , X0,j〉 ± q̂1−α

√
t̂hn(X0,j)/n, j = 1, . . . ,m,

that simultaneously cover 〈β,X0,j〉, j = 1, . . . ,m, with asymptotically guaranteed coverage 1− α

(conditionally on any data regressors Xn ≡ {Xi}ni=1).

2.4.4 Prediction intervals based on bootstrap

The residual bootstrap in FLRMs can also be used to construct intervals for capturing or

predicting the value of a future response Y0 ≡ 〈β,X0〉+ ε0 at some new regressor X0. Note that a

prediction interval for Y0 depends heavily on the exact distribution of underlying model errors ε0,

which is not true in the case of a confidence interval for 〈β,X0〉 that may be based on CLT results

instead. In this sense, the bootstrap can be attractive for setting prediction intervals without

explicit distributional assumptions about model errors.

At some observed values for regressors X0 ≡ {X0,j}mj=1, we use the bootstrap to

simultaneously predict the collection of m future responses

Y0,j ≡ 〈β,X0,j〉+ ε0,j , j = 1, . . . ,m,
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which are independent of the data {(Yi, Xi)}ni=1 and formed by independent pairs {(X0,j , ε0,j)}mj=1

under the model (2.1). Natural data-based predictors of {Y0,j}mj=1 are given by the location

estimators Ŷ0,j ≡ 〈β̂hn , X0,j〉, j = 1, . . . ,m, formed from the estimator β̂hn of β. The bootstrap

goal is then to approximate the distribution of the maximal prediction error

En(X0) ≡ max
1≤j≤m

|Y0,j − Ŷ0,j |

with the distribution of a bootstrap version

E∗n(X ∗0 ) ≡ max
1≤j≤m

|Y ∗0,j − Ŷ ∗0,j |,

to calibrate simultaneous prediction intervals for {Y0,j}mj=1; see [28] for a similar idea regarding

single m = 1 predictions from time series.

The construction of E∗n(X ∗0 ) applies the bootstrap prescription from Section 2.4.3. Bootstrap

data {(Y ∗i , Xi)}ni=1 produces a regression estimator β̂∗hn and bootstrap-analog predictions

Ŷ ∗0,j ≡ 〈β̂∗hn , X
∗
0,j〉, where we fix X∗0,j = X0,j , j = 1, . . . ,m in defining X ∗0 ≡ {X∗0,j}mj=1. Bootstrap

versions of the new responses {Y0,j}mj=1 are defined in the same fashion as the bootstrap sample

{(Y ∗i , Xi)}ni=1 itself: Y ∗0,j ≡ 〈β̂gn , X∗0,j〉+ ε∗0,j , j = 1, . . . ,m, using {ε∗0,j}mj=1 as iid draws from

centered residuals (cf. Section 2.4.2).

Corollary 4 justifies the bootstrap for prediction intervals. Because neither the quantity

En(X0) nor the error terms in (2.1) may have continuous distributions, we state bootstrap

convergence in terms of the Levy metric, say dL[En(X0), E∗n(X ∗0 )|Xn], between the distributions of

En(X0) and E∗n(X ∗0 ), conditional on the data regressors Xn.

Corollary 4. Suppose that the assumptions of either Theorem 3 or Corollary 2 hold. Then, as

n→∞, the bootstrap is consistent for the maximal prediction error: dL[En(X0), E∗n(X ∗0 )|Xn]
P−→ 0.

Simultaneous prediction intervals via bootstrap are then similar to the simultaneous

confidence intervals described in Section 2.4.3, i.e., if û1−α denotes the (1− α) percentile of the

bootstrap quantity E∗n(X ∗0 ), then a set of simultaneous prediction intervals for {Y0,j}mi=1 is given

by 〈β̂hn , X0,j〉 ± û1−α, j = 1, . . . ,m.
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2.5 Simulation studies

Section 2.5.1 describes the design of simulation studies to examine the coverage and width

properties of confidence intervals (CIs) and prediction intervals (PIs). For clarity, Section 2.5.2

summarizes findings with pointwise intervals and also provides a rule of thumb for selecting

truncations (hn, gn, kn) with the bootstrap. Section 2.5.3 then treats simultaneous intervals.

2.5.1 Simulation design

To examine intervals, random samples {(Yi, Xi)}ni=1 of size n = 50, 200, 1000 were generated

from the FLRM (2.1). Iid regressors Xn ≡ {Xi}ni=1 were generated as random curves on [0, 1]

along with n iid errors {εi}ni=1 having a uniform distribution U(−a, a) for a =
√

6, independently

of the regressors. Results for other error distributions (e.g., normal, t) were similar; see

Section 2.10 of the supplement for more details. Each regressor curve was simulated from a

truncated Karhunen–Loève expansion

X
d
=

J∑
j=1

√
λjξjej (2.10)

with J = 15; eigengaps having a polynomial decay rate δj = 3j−a of a for j ≥ 1; and basis

functions {ej}Jj=1 as the first J functions from the trigonometric basis {1, cos(2πx), sin(2πx), . . . }.

All curves were evaluated at 100 equally spaced points in [0, 1]. In (2.10), we also used

uncorrelated (but dependent) sequences {ξj} of FPC scores defined as follows: let ξj = VjWj ,

where {Wj} are iid N(0, 1) variables and, independently, let {Vj} be a stationary autoregressive

process such that each Vj ∼ N(0, 1) and Vj+1|Vj ∼ N(0.5Vj , 1.5). The slope function β was

constructed as β =
∑J

j=1wβ,j |βj |ej , with |βj | = 2j−b following a polynomial decay rate of b and

with fixed coefficients wβ,j defined by a initial random draw of J values from {−1, 1}. Level

combinations (a, b) were considered for the different polynomial rates with a ∈ {2.5, 5} and

b ∈ {2, 5}. Note that all scenarios except a = 5 and b = 2 satisfy the conditions of Corollary 2

(e.g., 2a+ 1 > a+ 2b) for guaranteeing the consistency of the bootstrap. In each scenario, the

tuning parameters hn and gn were varied in the range {1, . . . , 15} to investigate their effects on
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coverage, while the less consequential bootstrap truncation kn was chosen as kn = 2[n1/vk ] with

vk = 2a+ 1 + κk for a small κk = 0.1. For a given data set, bootstrap distributions were

approximated from 1000 Monte Carlo resamples.

2.5.2 Empirical coverage probabilities

Figure 2.2: Empirical coverages of intervals from bootstrap and normal approximation over

different truncations when n = 50, b = 2. The three columns display the CI for 〈Πhnβ,X0〉, the

CI for 〈β,X0〉, and the PI for Y0, respectively. Crosses × indicate bootstrap coverages with hn, gn
selected by a proposed rule.

We next compare CIs and PIs from bootstrap to those from CLT/normal approximations. For

each simulation run, an additional regressor X0 was generated independently of the data. Both

bootstrap and normal theory CIs were computed for biased targets 〈Πhnβ,X0〉 that vary with

truncation hn defining β̂hn , and for the location 〈β,X0〉 For each simulation combination, the

reported coverages of CIs represent the proportion of those intervals covering 〈Πhnβ,X0〉 or

〈β,X0〉 over 1000 runs. We likewise determined coverage for bootstrap and normal theory PIs for

containing a response Y0 generated at X0 in each simulation run. Normal theory PIs implicitly
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assume that model errors follow a normal distribution, which represents a common practice but is

not true for the simulation results presented here. See the supplement for further algorithmic

details on the methods and results with other data generations. A nominal level of 1− α = 0.95

was used in all scenarios.

We only present results for the smallest sample size n = 50 and slowest decay rate b = 2 for

the slope parameter β, as the most difficult cases of inference. Additional results and details are

included Section 2.10 in the supplement. Figure 2.2 displays the associated coverages of CIs and

PIs, where intervals depend on hn on the horizontal axis; the bootstrap also requires selection of

gn, denoted by different lines in Figure 2.2. We observe the following:

1. Bootstrap CIs are always superior to normal-theory CIs in terms of coverage accuracy,

provided hn and gn are appropriately chosen.

2. Supporting our theory, gn does not affect bootstrap CIs for biased targets 〈Πhnβ,X0〉; any

reasonably large hn leads to good coverage.

3. For true projections 〈β,X0〉, bootstrap CIs depend on both gn and hn. While our

Theorem 3 allows cases where gn may be either larger or smaller than hn, the simulation

results indicate that only choices with gn ≤ hn are practically relevant. Setting hn = gn

worked well for larger gn but setting hn to be slightly larger than gn seems overall preferable

for performance, particularly for small gn = 1 or 3.

4. Bootstrap PIs behave similarly to bootstrap CIs and perform much better than normal

theory-based PIs; the latter perform especially poorly due to underlying non-normal model

errors.

In all, we recommend setting hn to be slightly larger than gn in practice. Based on the

simulation results in all considered scenarios, we also propose a rule of thumb for selecting tuning

parameters hn and gn in terms of kn, namely hn = [2.21kn] and gn = [1.36kn], where [·] denotes

the nearest integer. The scaling factors were determined by a linear regression of appropriately
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Figure 2.3: Average widths of intervals from bootstrap and normal approximation over different

truncations when n = 50, b = 2. Crosses × indicate average widths with hn, gn selected by the

proposed rule. Varying gn had a negligible effect on the average widths

chosen kn vs. (hn, gn) through manual inspection over all combinations of the latter, from all

simulation scenarios, producing coverages within 0.01 of the nominal 95% level. Our rule of

thumb exhibited good coverages in Figure 2.2, as indicated by crosses there. In practice, one may

appy this procedure with kn chosen via cross-validation, for example, based on prediction error

(cf. Section 2.11 of the supplement).

Figure 2.3 also displays the average widths of intervals, where the rule of thumb tended to

produce relatively short- to moderate-width of intervals. Widths of all intervals depend on hn,

and generically increase with hn, but bootstrap truncation gn does not impact widths. However,

gn does impact the coverages of the CIs/PIs, as demonstrated in Figure 2.2, through affecting the

“centering” of the bootstrap estimates. Despite having similar average widths in Figure 2.3,

bootstrap intervals can outperform normal intervals because the bootstrap better approximates

the sampling distribution than the CLT.
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2.5.3 Coverage of simultaneous intervals

Figure 2.4: Empirical coverages of SPIs and SPIs from bootstrap over different truncations when

n = 50, b = 2, and regressors X0 are fixed. Crosses × indicate bootstrap coverages with hn, gn
selected by the proposed rule.

We next examine simultaneous confidence intervals (SCIs) and prediction intervals (SPIs) via

bootstrap, as based on Corollaries 3–4. We focus purely on bootstrap as there is no simple analog

for comparison from normal theory. For simplicity, we consider a collection of five regressors

X0 = {X0,l}5l=1 defined by the first five eigenfunctions X0,l = el, l = 1, . . . , 5, which remained fixed

for the study. From the data generated in each simulation run, SCIs were computed for the

locations {〈β,X0,l〉}5l=1, while SPIs were computed for new responses {Y0,l}5l=1 at the regressors

X0. Coverage probabilities, as averaged over 1000 simulation runs, were calculated analogously to

those in Section 2.5.2 and we likewise present results for the case n = 50 with b = 2. The

supplement summarizes results for other simulation settings, including comparisons to individual

CIs/PIs and cases of random regressors. Along lines suggested in Remark 5, note that each
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regressor X0,l can be viewed as a realization of
∑∞

j=1

√
λjξjej with FPC scores as

ξj = λ
−1/2
l I(j = l), j ≥ 1.

Figure 2.4 shows the coverage rates of SCIs/SPIs from bootstrap. Particularly under fixed

regressors here, simultaneous intervals tend to exhibit over-coverage, though coverages are often

close to nominal for a variety of truncations hn, gn. However, an important take-away is overly

small values of gn might naturally be avoided, as these can induce extreme under-coverage in

SCIs/SPIs due to issues in capturing bias across several intervals at once. Coverage rates from the

rule of thumb selections of hn and gn given in Section 2.5.2 continue to appear reasonable for

SCIs/SPIs in Figure 2.4.

2.6 Real Data Analysis

We demonstrate application of the residual bootstrap for FLRMs with a wheat spectrum

dataset Moisturespectrum from the package fds. The dataset, originally described in [22],

contains the near-infrared (NIR) reflectance spectra of 100 wheat samples, measured in 2 nm

intervals from 1100 to 2500 nm, as well as a response variable, namely the moisture content.

The regressor Xi we analyzed was the negative log-transformed absorption rates − log(R(t)),

where R(t) ∈ (0, 1) denotes the absorption rate at wavelength t over the spectrum [1100, 2500],

and the response was the associated moisture level Yi, i = 1, . . . , n. The functional regressors Xi

Figure 2.5: The uncentered NIR spectra predictor curves and the distribution of the moisture

response
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appear in Figure 2.5 along with a distributional summary of the observed responses Yi. After

obtaining centered observations Xc
i = Xi − X̄n and Y c

i = Yi − Ȳn, we apply a FLRM (2.1) and

estimate the slope parameter β.

Figure 2.6(a) and (b) show that the distributions of the first two FPC scores do not resemble

normal distributions. Additionally, the joint distribution of the first two FPCs appear to follow a

slanted v-shape, as shown in Figure 2.6(c), and thus the two FPCs are not independent. For these

data, neither Gaussianity nor independence assumption seems reasonable for the FPC scores.

However, bootstrap inference is still applicable as per our theoretical results.

Figure 2.6: Distributions of the first (a) and second (b) FPC scores, and the scatterplot of the

first versus the third FPC scores (c)

An initial bootstrap truncation parameter kn = 4 was selected via repeated cross-validation,

minimizing prediction errors over estimates from β̂kn ; the details are included in Section 2.11 of

the supplement. Using the selection rule from in Section 2.5.2, we then set hn = 9 and gn = 5.

To illustrate bootstrap-based inference conditional on target regressors X0, we consider a

collection of six hypothetical regressors X0 ≡ {X0,l}6l=1 of interest and create bootstrap intervals

for estimating the true projection, as well as predicting a new response, at these X0. Three types

of regressor collections X0 are considered: (OS) an overall shift in the magnitude; (sim) a simple

functions supported on either [1100 nm, 1400nm], [1400 nm, 1900 nm], or [1900 nm, 2500 nm];

and (SS) a sum of two simple functions in (sim). The X0 consists of six of a given type, where we

vary the type. Types (sim) and (SS) are inspired by two locations where the estimated slope
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Figure 2.7: Three collections of six hypothetical regressors (curves) for consideration; curves in

(b)-(c) partially overlap along the average curve X̄ ≡ n−1
∑n

i=1Xi

function seems to have a peak. Figure 2.7 shows the curves in each set X0 under consideration

after de-centering. The supplement provides more specific details on these curves and the

estimated slope. Using bootstrap, Table 2.1 gives the endpoints for 95% individual confidence

intervals (ICIs) and simultaneous confidence intervals (SCIs) for {〈β,X0,l〉}6l=1 along with

individual prediction intervals (IPIs) and simultaneous prediction intervals (SPIs) for new

responses at the regressors X0. To facilitate comparison to SCIs/SPIs, the ICIs/IPIs are

symmetric.

As expected, PIs are wider than the corresponding CIs. From Table 2.1(a), a higher NIR

absorption rate, i.e., a curve with lower overall magnitude, is associated with slightly less

moisture content. More interesting patterns are involved in the shape of curves or where their

peaks are located, which can be seen in Table 2.1(b)-(c). The target regressors which have a peak

in the interval [1400 nm, 1900 nm], such as Xsim,2, XSS,2, and XSS,6 provide the intervals that

contain the lowest value of moisture levels. In contrast, for target regressors having a trough on

this interval, for example, Xsim,5, XSS,3, and XSS,5, their intervals contains the largest moisture

levels. We notice that as target regressors have more pronounced peaks or troughs on this

interval, their corresponding intervals reflect lower or higher values of moisture level, respectively.

We note that the ICIs for the first and the sixth regressors among the overall-shift (OS) type

in Table 2.1(a) match their corresponding SCIs, while the remaining regressors have wider SCIs

than PIs. This is not surprising because regressors of the OS type lie in the same one-dimensional
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space, and the bootstrap procedure automatically accounts for this aspect and calibrates the SCIs

according to the two most extreme target regressor curves. It is evident that bootstrap intervals

are the widest for the category of simple functions (sim), showing that a change in the shapes of

regressors has a stronger effect on the response than a change in the overall magnitude.

Table 2.1: ICIs/IPIs and SCIs/SPIs from bootstrap at six target regressors within one of three

regressor types (OS), (sim), and (SS).

(a) Overall shifts

ICI SCI IPI SPI

XOS,1 17.65 19.97 17.65 19.97 17.62 20.00 17.44 20.18

XOS,2 17.50 18.89 17.50 18.89 17.35 19.04 16.86 19.56

XOS,3 17.34 17.81 17.34 17.81 17.04 18.11 16.21 18.94

XOS,4 16.73 17.19 16.73 17.19 16.46 17.46 15.59 18.33

XOS,5 15.64 17.04 15.64 17.04 15.47 17.21 14.97 17.71

XOS,6 14.56 16.88 14.56 16.88 14.38 17.07 14.35 17.09

(b) Simple functions

ICI SCI IPI SPI

Xsim,1 18.34 23.47 18.23 23.57 18.43 23.37 16.58 25.21

Xsim,2 8.24 16.67 7.64 17.26 8.17 16.73 8.14 16.77

Xsim,3 16.92 22.44 16.32 23.04 16.53 22.83 15.37 24.00

Xsim,4 11.06 16.21 10.96 16.31 10.92 16.35 9.32 17.95

Xsim,5 17.86 26.30 17.27 26.89 17.86 26.30 17.77 26.39

Xsim,6 12.09 17.61 11.49 18.21 11.80 17.90 10.54 19.16

(c) Sums of two simple functions

ICI SCI IPI SPI

XSS,1 17.27 18.49 17.25 18.51 17.14 18.62 15.74 20.02

XSS,2 14.05 16.88 13.85 17.08 14.12 16.81 13.32 17.60

XSS,3 17.37 21.39 17.14 21.63 17.40 21.36 17.24 21.52

XSS,4 16.05 17.26 16.02 17.29 16.01 17.30 14.51 18.79

XSS,5 17.65 20.49 17.45 20.69 17.56 20.58 16.93 21.21

XSS,6 13.14 17.16 12.90 17.40 13.04 17.26 13.01 17.29
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2.7 Proof of the generalized/refined CLT

The proof of the CLT is based on the decomposition of β̂hn − β:

β̂hn − β = (Γ̂†hn − Γ†hn)Un + Γ†hnUn + (Π̂hn −Πhn)β + Πhnβ − β, (2.11)

where Un ≡ n−1
∑n

i=1Xiεi. The main difference between our results and those of [CMS] is the

distributional convergence of the variance term, which is based on Γ†hnUn in (2.11). Lemma 8 of

[CMS] discussed this convergence, but the statement and the proof require some clarification. We

establish the following proposition, which refines their Lemma 8.

Proposition 2. Suppose that Condition (A2) and hnthn(X0)−1 = OP(1) hold. As n→∞, if

n−1h2
n → 0, then we have

sup
y∈R

∣∣∣∣P(√ n

thn(X0)
〈Γ†hnUn, X0〉 ≤ y

∣∣∣Xn, X0

)
− Φ(y/σε)

∣∣∣∣ P−→ 0.

Proof. Let EX denote conditional expectation given Xn, X0 in the following. Note that√
n

σ2
εhn
〈Γ†hnUn, X0〉 =

∑n
i=1 Zi,n where

Zi,n = σ−1
ε n−1/2h−1/2

n 〈Γ†hnXi, X0〉εi.

Then, EX [Zi,n] = σ−1
ε n−1/2h

−1/2
n 〈Γ†hnXi, X0〉EX [εi] = 0 holds by independent errors. Set

v2
n =

∑n
i=1 E

X [Z2
i,n]. Then, we may write

v2
n = n−1h−1

n

n∑
i=1

〈Xi,Γ
†
hn
X0〉2

= n−1h−1
n

n∑
i=1

〈(Xi ⊗Xi)Γ
†
hn
X0,Γ

†
hn
X0〉

= h−1
n 〈Γ̂nΓ†hnX0,Γ

†
hn
X0〉

= h−1
n {An + thn(X0)}
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where An = 〈(Γ̂n − Γ)Γ†hnX0,Γ
†
hn
X0〉. Then, by setting Li,n = 〈Γ†hnXi, X0〉, we formulate a

(conditional on Xn and X0) Lindeberg’s condition as

Ln := v−2
n

n∑
i=1

EX
[
Z2
i,nI(|Zi,n| > τvn)

]
≤ 1

σ2
εv

2
nnhn

n∑
i=1

L2
i,nE

X [ε2
i I(Hn|εi| > τ)],

where we will show that Ln converges to 0 by proving

Hn ≡
max1≤i≤n |Li,n|

vn
√
nhn

P−→ 0 (2.12)

We assume (2.12) for now and later verify that Hn
P−→ 0 as claimed. To verify the Lindeberg

condition, we note that, for a given η > 0, there exist a positive integer u = u(η) > 0 such that

f(u) < η (recalling f in Section 2.2.2) and a positive integer N such that P(Hn ≥ τu−1) < η for

n ≥ N by Hn
P−→ 0. We treat the conditional Lindeberg term Ln in two cases, depending on the

event Hn < τu−1. When this event holds, we bound Ln as

LnI(Hn < τu−1) ≤

{
1

v2
nnhn

n∑
i=1

L2
i,nE

X [ε2
i I(Hn|εi| > τ)]

}
I(Hn < τu−1)

≤ 1

v2
nnhn

n∑
i=1

L2
i,nE

X [ε2
i I(Hn|εi| > τ)I(Hn < τu−1)]

≤ E[ε2
1I(|ε1| > u)|X1] ≤ f(u) < η

using
∑n

i=1 L
2
i,n = nhnv

2
n and I(Hn|εi| > τ)I(Hn < τu−1) ≤ I(|εi| > u); the complement has

probability bounded by

P(LnI(Hn ≥ τu−1) ≥ ε) ≤ P(Hn ≥ τu−1) < η.

Consequently, we find P(Ln ≥ 2η) < η holds for n ≥ N , which verifies the Lindeberg condition

Ln
P−→ 0 as n→∞. Furthermore, by Lemma 7 in the supplement, we have An = OP(n−1/2h2

n),

while Anthn(X0)−1 = OP(n−1/2hn) by Condition hnthn(X0)−1 = OP(1). As n→∞, if n−1h2
n → 0,

we have

thn(X0)

An + thn(X0)
=

1

An/thn(X0) + 1
= 1 + oP(1). (2.13)
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From this and noting that

v−1
n

n∑
i=1

Zi,n =

√
thn(X0)

An + thn(X0)

√
n

σ2
ε thn(X0)

〈Γ†hnUn, X0〉,

we have

sup
y∈R

∣∣∣∣∣P
(
v−1
n

n∑
i=1

Zi,n ≤ y
∣∣∣Xn, X0

)
− Φ(y)

∣∣∣∣∣ P−→ 0

by the Lindeberg CLT and by Polya’s theorem (Theorem 9.1.4 of [2]), which is equivalent to

sup
y∈R

∣∣∣∣P(√ n

thn(X0)
〈Γ†hnUn, X0〉 ≤ y

∣∣∣Xn, X0

)
− Φ(y/σε)

∣∣∣∣ P−→ 0.

We next show that Hn
P−→ 0 in (2.12). Due to (2.13), to establish (2.12), it suffices to show

Mn ≡ max
1≤i≤n

|Li,n| = OP((nh2
n)1/4)

√
thn(X0), (2.14)

which then implies

Hn = OP((h2
n/n)1/4)

√
thn(X0)

An + thn(X0)

= OP((h2
n/n)1/4),

and Hn
P−→ 0 by n−1h2

n → 0 as n→∞. To establish (2.14), note that

|Li,n| =

∣∣∣∣∣∣
hn∑
j=1

λ−1
j 〈Xi, ej〉〈X0, ej〉

∣∣∣∣∣∣ ≤
√√√√ hn∑

j=1

λ−1
j 〈Xi, ej〉2

√√√√ hn∑
j=1

λ−1
j 〈X0, ej〉2

=

√√√√ hn∑
j=1

λ−1
j 〈Xi, ej〉2

√
thn(X0).

Also, we have by Jensen inequality that hn∑
j=1

λ−1
j 〈Xi, ej〉2

2

≤ hn
hn∑
j=1

(
λ−1
j 〈Xi, ej〉2

)2
= hn

hn∑
j=1

λ−2
j 〈Xi, ej〉4.

By the finite fourth moment assumption (A2), we see that

E

max
1≤i≤n

hn∑
j=1

λ−2
j 〈Xi, ej〉4

 ≤ E

 n∑
i=1

hn∑
j=1

λ−2
j 〈Xi, ej〉4

 ≤ nhnC,
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which implies that, max1≤i≤n
∑hn

j=1 λ
−2
j 〈Xi, ej〉4 = OP(nhn). Therefore, we have that

Mn ≤

hn max
1≤i≤n

hn∑
j=1

λ−2
j 〈Xi, ej〉4

1/4√
thn(X0) = OP((nh2

n)1/4)
√
thn(X0),

proving (2.14).

Proof of Theorem 1. The theorem follows by applying Proposition 2, Propositions 17-18 in the

supplement, the decomposition (2.11), and Polya’s theorem (Theorem 9.1.4 of [2]).

Proof of Proposition 1. It suffices to show the weak covergence of the variance term√
n/hn〈Γ†hnUn, X0〉. For any given regressor X, the FPCs ξj are uncorrelated with mean zero,

variance one, and finite fourth moments, and hence satisfy the assumptions involved. However,

these are not independent due to their common component ξ. To derive the weak convergence

result, we first notice that h−1
n thn(X0) = ξ2

0 , where ξ0 denotes the copy of ξ for defining X0, which

is independent of the data {(Yi, Xi)}ni=1. Then, by applying Theorem 1 with the bounded

convergence theorem, noting also P(ξ0 = 0) = 0, we find

lim
n→∞

P

(√
n

hn
〈Γ†hnUn, X0〉 ≤ y

)
= lim
n→∞

E

[
P

(
|ξ0|
√

n

thn(X0)
〈Γ†hnUn, X0〉 ≤ y

∣∣∣X0,Xn
)]

=E

[
Φ

(
y

σε|ξ0|

)]
= P(|ξ0|Z0 ≤ y/σε),

where Z0 ∼ N(0, 1) denote a random variable independent of ξ0.

2.8 Validity of the residual bootstrap

The Mallow’s metric [3] is applied to show that some key distributional components have the

same limits in both bootstrap and original data worlds. The Mallows metric, denoted by d2, is a

metric between either two distributions on a separable Banach spaces B or two random variables

that can be valued in B. The Mallows metric between two probability distributions P and Q on B

is defined as

d2(P,Q) = inf
U ′∼P,V ′∼Q

(E[‖U ′ − V ′‖2])1/2,
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where (U ′, V ′) denote any pair of two B-valued random variables with P and Q being the

marginal distributions of U ′ and V ′, respectively. With abuse of notation, the Mallows metric

between (the laws of) two random variables U and V taking values in B is similarly defined by

d2(U, V ) = inf
U ′

d
=U,V ′

d
=V

(E[‖U ′ − V ′‖2])1/2.

See Section 8 of [3] for more details. Let dX2 denote the Mallows metric defined via the

conditional expectation EX given Xn and X0.

We divide the proof of validity of the residual bootstrap into two cases, namely, with or

without the bias. Unless otherwise stated, we impose the assumptions in Theorem 2. We first

notice the following decomposition of bootstrap quantity

β̂∗hn − β̂gn = Γ̂†hn∆̂∗n − β̂gn = Γ̂†hnΓ̂nβ̂gn + Γ̂†hnU
∗
n − β̂gn

= Γ̂†hnU
∗
n + Π̂hn β̂gn − β̂gn .

Here, β̂∗hn − Π̂hn β̂gn = Γ̂†hnU
∗
n represents the variance part whereas Π̂hn β̂gn − β̂gn is the bias part

in the bootstrap world. We hence compare these variance and bias parts between the real and the

bootstrap worlds.

Thus, we will show that
√

n
thn (X0)〈Γ̂

†
hn
Un, X0〉 and

√
n

thn (X0)〈Γ̂
†
hn
U∗n, X0〉 conditional on

X1, . . . , Xn and X0 has the same distributional limit by proving the Mallows metric between them

converges to zero in probability.

Proposition 3. The Mallows metric between the variance terms conditional on Xn and X0

satisfies

dX2

(√
n

thn(X0)
〈Γ̂†hnUn, X0〉,

√
n

thn(X0)
〈Γ̂†hnU

∗
n, X0〉

)2

=

OP

n−1/2h−1
n

hn∑
j=1

(j log j)2

+ 1

 d2(F, F̂n)2,

where F and F̂n denote the distribution functions of errors {εi}ni=1 and the centered residuals

{ε̂i − ¯̂ε}ni=1, respectively. Thus, as n→∞, if n−1/2h2
n(log hn)2 = O(1), and d2(F, F̂n)→ 0, then

the conditional Mallows metric converges to zero in probability.
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Proof. The proof is along the lines of the proof of Theorem 4.1 in [26]. Since the infimum in the

Mallows metric is attained due to Lemma 8.1 of [3], there exists iid (ε′i, ε
∗
i
′)’s such that

1. ε′i ∼ F , ε∗i
′ ∼ F̂n,

2. (ε′i, ε
∗
i
′) is independent of Xi, and

3. EX [(ε′i − ε∗i
′)2] = E[(ε′i − ε∗i

′)2] = d2(F, F̂n)2.

Then, we have

dX2

(√
n

thn(X0)
〈Γ̂†hnUn, X0〉,

√
n

thn(X0)
〈Γ̂†hnU

∗
n, X0〉

)2

≤ n

thn(X0)
EX
[
〈Γ̂†hn(U ′n − U∗n

′), X0〉2
]

where U ′n = n−1
∑n

i=1Xiε
′
i and U∗n

′ = n−1
∑n

i=1Xiε
∗
i
′. Note that

EX
[
〈Γ̂†hn(U ′n − U∗n

′), X0〉2
]

=EX

{n−1
n∑
i=1

〈Γ̂†hnXi, X0〉(ε′i − ε∗i
′)

}2


=n−2
n∑
i=1

〈Γ̂†hnXi, X0〉2d2(F, F̂n)2.

Also, note that

n−1
n∑
i=1

〈Γ̂†hnXi, X0〉2 = n−1
n∑
i=1

〈(Xi ⊗Xi)Γ̂
†
hn
X0, Γ̂

†
hn
X0〉 = 〈ΓnΓ̂†hnX0, Γ̂

†
hn
X0〉

= 〈Γ̂†hnX0, X0〉 = t̂hn(X0),

and thus

dX2

(√
n

thn(X0)
〈Γ̂†hnUn, X0〉,

√
n

thn(X0)
〈Γ̂†hnU

∗
n, X0〉

)2

≤ t̂hn(X0)

thn(X0)
d2(F, F̂n)2.

By Proposition 8 in the supplement, we have

t̂hn(X0)/thn(X0) = 1 +OP

(
n−1/2h−1

n

∑hn
j=1(j log j)2

)
, and thus, we conclude that

dX2

(√
n

thn(X0)
〈Γ̂†hnUn, X0〉,

√
n

thn(X0)
〈Γ̂†hnU

∗
n, X0〉

)2

=

OP

n−1/2h−1
n

hn∑
j=1

(j log j)2

+ 1

 d2(F, F̂n)2.
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Proof of Theorem 2. We consider here the bootstrap approximation conditional on X∗0 = X0, and

the supplement treats the unconditional (on X0) bootstrap case. Write

v̂n ≡
√
n/thn(X0)〈Γ̂†hnUn, X0〉 and

v̂∗n ≡
√
n/thn(X0)〈Γ̂†hnU

∗
n, X0〉 =

√
n/thn(X0)[〈β̂∗hn , X0〉 − 〈Π̂hn β̂gn , X0〉].

By consistency of the bootstrap error (cf. Theorem 6 in the supplement), under the assumptions

in Theorem 2, we have dX2 (v̂n, v̂
∗
n)

P−→ 0 as n→∞. Meanwhile, to show the convergence of v̂n in

the Mallows metric, note that

EX [〈Γ̂†hnUn, X0〉2] = n−2
n∑
i=1

EX [〈Xiεi, Γ̂
†
hn
X0〉2] + n−2

∑
i 6=i′

EX [〈Xiεi, Γ̂
†
hn
X0〉〈Xi′εi′ ,Γ

†
hn
X0〉]

=
σ2
ε

n2

n∑
i=1

〈Xi, Γ̂
†
hn
X0〉2 =

σ2
ε

n2

n∑
i=1

〈(Xi ⊗Xi)Γ̂
†
hn
X0, Γ̂

†
hn
X0〉

=
σ2
ε

n
〈X0, Γ̂

†
hn
X0〉 =

σ2
ε

n
t̂hn(X0),

which implies that as n→∞,

EX [v̂2
n] = σ2

ε

t̂hn(X0)

thn(X0)

P−→ σ2
ε

by Proposition 8 in the supplement. Therefore, by Lemma 8.3 of [3], Proposition 2, Proposition 17

in the supplement, and Slutksy’s theorem (Theorem 9.1.6 of [2]), as n→∞, we have

dX2 (v̂n, Z)
P−→ 0, which implies that dX2 (v̂∗n, Z)

P−→ 0, where Z ∼ N(0, σ2
ε). Therefore, we have the

desired result by Theorem 1, Lemma 8.3 of [3], and Polya’s theorem (Theorem 9.1.4 of [2]).

To deal with the bias terms in the real and bootstrap worlds, let

bn ≡
√
n/thn(X0)[〈Πhnβ,X0〉 − 〈β,X0〉] and b̂n ≡

√
n/thn(X0)[〈Π̂hn β̂gn , X0〉 − 〈β̂gn , X0〉]. The

difference between bias terms is

Π̂hn β̂gn − Π̂gn = (Π̂hn −Πhn)(β̂gn − β) + (Π̂hn −Πhn)β + (Πhn − I)(β̂gn − β) + (Πhn − I)β.

(2.15)

Proof of Theorem 3. We suppose for now and later verify b̂n
P−→ 0 as n→∞. Conditional on X0

and following the proof of Theorem 2, we have dX2 (v̂∗n, Z)
P−→ 0. By using a subsequence argument
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(cf. Theorem 20.5 of [4]) and Slutksy’s theorem (Theorem 9.1.6 of [2]), one can show that√
n

thn(X0)
[〈β̂∗hn , X0〉 − 〈β̂gn , X0〉] = v̂∗n + b̂n

d−−−→
n→∞

N(0, σ2
ε)

along the subsequence, pointwise on an almost sure set. In other words, as n→∞, we have

sup
y∈R

∣∣∣∣P∗(√ n

thn(X0)
[〈β̂∗hn , X

∗
0 〉 − 〈β̂gn , X∗0 〉] ≤ y|Xn, X∗0 = X0

)
− Φ(y/σε)

∣∣∣∣ P−→ 0

by Polya’s theorem (Theorem 9.1.4 of [2]). Using the above, the proof for the unconditional (on

X0) bootstrap version in Theorem 3 follows by the argument used for Theorem 2 in this same

case.

It suffices to show that b̂n
P−→ 0 as n→∞. We first suppose that gn ≤ hn, which implies that

b̂n = 0. Due to Theorem 2, it is enough to show that√
n

thn(X0)
〈Πhnβ − β,X0〉

P−→ 0

as n→∞. Thus, the desired result follows from Lemma 9 in the supplement after applying

Condition (2.9).

We now suppose that gn > hn for the second part. The proof is based on the decomposition

(2.15) of the difference between bias terms. Due to Propositions 11-12 in the supplement, if

gn/hn → 1, one can show that

EX
[√

n

thn(X0)
|〈(Π̂hn −Πhn)(β̂gn − β), X0〉|

]

=OP

Mn,gnh
−1/2
n

hn∑
j=1

j log j

+OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

 ,

where for integer j ≥ 1, Mn,j is defined as

Mn,j = n−1
j∑
l=1

δ
−1/2
l (l log l)3/2 + n−1/2

(
j∑
l=1

γ−1
l

)1/2

+ n−1/2
j∑
l=1

l log l, (2.16)

and

EX
[√

n

thn(X0)
|〈(I −Πhn)(β̂gn − β), X0〉|

]

=OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)2

+OP

√ n

hn

∑
j>gn

γjβ2
j

 .
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Finally, the result follows again from Lemma 9 in the supplement after applying Condition (2.9),

along with the condition n−1/2g
7/2
n (log gn)2 → 0.

2.9 Technical details

In this section, we complete the proofs for the main results of the paper. After some

preliminary results related to the perturbation theory in functional analysis, we provide proofs for

our generalized CLT and the residual bootstrap in Sections 2.3-2.4, respectively, of the main

paper.

Recall that β̂hn − β is decomposed as follows:

β̂hn − β = (Γ̂†hn − Γ†hn)Un + Γ†hnUn + (Π̂hn −Πhn)β + Πhnβ − β. (2.17)

To deal with the bias terms related to (Γ̂†hn − Γ†hn)Un and (Π̂hn −Πhn)β, we apply perturbation

theory or functional calculus as seen in many existing works such as Cardot, Mas, and Sarda [7]

(referred to as [CMS] hereafter) or [9]. We refer to Chapter VII of [11] or Chapter 5 of [21] for an

overview.

Write ‖ · ‖∞ for the operator norm, namely ‖A‖∞ ≡ sup‖v‖=1 ‖Av‖. Let

Bj = {z ∈ C : |z − λj | = δj/2} be the oriented circle in the complex plane C and set Cn =
⋃hn
j=1 Bj

to define the contour integral for operator-valued functions. By the theory from functional

calculus (for the bounded linear operators) or perturbation theory, we see that

Πhn =

hn∑
j=1

πj =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1dz =
1

2πι

∫
Cn

(zI − Γ)−1dz,

Γ†hn =
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1dz =

1

2πι

∫
Cn
z−1(zI − Γ)−1dz

where πj = 1
2πι

∫
(zI − Γ)−1dz denotes the Riesz projection of Γ to corresponding to the j-th

eigenvalue λj , which is the projection operator onto the j-th eigenfunction ej . One can also get

the empirical counterparts π̂j , Π̂hn , and Γ̂†hn from the sample covariance operator Γ̂n with the

corresponding random contours B̂j = {z ∈ C : |z − λ̂j | = δ̂j/2} and Ĉn =
⋃hn
j=1 B̂j . For later

development, write random operator-valued functions Gn(z) = (zI − Γ)−1/2(Γ̂n − Γ)(zI − Γ)−1/2,
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Kn(z) = (zI − Γ)1/2(zI − Γ̂n)−1(zI − Γ)1/2, and event Ej = (‖Gn(z)‖∞ < 1/2, ∀z ∈ Bj). Due to

the frequent uses, we state the following lemma without proof, which corresponds to Lemmas 1-4

in Section 6.1 of [CMS].

Lemma 1. Suppose that Conditions (A2) and (A4) in the main paper hold. We have the

following:

1. For sufficiently large j, k ∈ N with k < j, we have

jλj ≥ kλk,
λj

λj − λk
≤ k

k − j
, and

∑
j≥k

λj ≤ (k + 1)λk.

2. For sufficiently large j ∈ N,
∑

l 6=j
λl

|λj−λj | ≤ Cj log j.

3. For sufficiently large j, we have

E

[
sup
z∈Bj
‖Gn(z)‖2∞

]
≤ Cn−1(j log j)2

and

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X1‖2

]
≤ Cj log j.

4. We have that supz∈Bj ‖Kn(z)‖∞IEj ≤ C almost surely and P(Ecj ) ≤ Cn−1/2j log j.

Write event An = {∀j ∈ {1, . . . , hn}, |λ̂j − λj | < δj/2} for each n ∈ N. The Lemma 5 of [CMS]

explains that the random contours B̂j in the integrals can be replaced by the population

counterparts Bj asymptotically based on the asymptotic ignorability of P(An). However, we

technically refine this result to incorporate a certain approximation error omitted in previous

proofs (cf. page 344 of [CMS]). Specifically, [CMS] approximated |λ̂j − λ| by |〈(Γ̂n − Γ)ej , ej〉|

while ignoring the approximation error |λ̂j − λj − 〈(Γ̂n − Γ)ej , ej〉|. However, this approximation

error may not be negligible, which requires an additional condition related to both the truncation

parameter hn and the eigengaps {δj}. Hence, we state the following lemma separately and

provide its proof.
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Lemma 2.

1. It holds that

Π̂hn −Πhn =
1

2πι

∫
Cn
{(zI − Γ̂n)−1 − (zI − Γ)−1}dz + r1nIAc

n
,

Γ̂†hn − Γ†hn =
1

2πι

∫
Cn
z−1{(zI − Γ̂n)−1 − (zI − Γ)−1}dz + r2nIAc

n
,

where

r1n = Π̂hn −
1

2πι

∫
Cn

(zI − Γ̂n)−1dz,

r2n = Γ̂†hn −
1

2πι

∫
Cn
z−1(zI − Γ̂n)−1dz.

2. Suppose that Conditions (A2) and (A4) in the main paper hold. We then have that

P(Acn) ≤ C1n
−1

hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

j log j.

Proof. On An, since λ̂j lies in Bj , we have

Π̂hn =
1

2πι

∫
Ĉhn

(zI − Γ̂n)−1dz

=
1

2πι

∫
Cn

(zI − Γ̂n)−1dz.

This implies that {
Π̂hn −

1

2πι

∫
Cn

(zI − Γ̂n)−1dz

}
IAn = 0,

and hence,

Π̂hn −Πhn =
1

2πι

∫
Cn
{(zI − Γ̂n)−1 − (zI − Γ)−1}dz + r1nIAc

n
,

where r1n = Π̂hn − 1
2πι

∫
Cn(zI − Γ̂n)−1dz. One can derive the second equality for Γ̂†hn with the

remainder term r2n = Γ̂†hn −
1

2πι

∫
Cn z

−1(zI − Γ̂n)−1dz in the same way.

For the second part, We first claim that

|λ̂j − λj − 〈(Γ̂n − Γ)ej , ej〉| ≤ Cδ−1
j ‖Γ̂n − Γ‖2∞. (2.18)
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To see this, set ĉj = sign(〈êj , ej〉). Note that

〈(Γ̂n − Γ)êj , ĉjej〉 = 〈Γ̂nêj , ĉjej〉 − 〈êj , ĉjΓej〉 = 〈λ̂j êj , ĉjej〉 − 〈êj , ĉjλjej〉

= (λ̂j − λj)〈êj , ĉjej〉 = (λ̂j − λj)(〈êj , ĉjej〉 − 1) + (λ̂j − λj)

= (λ̂j − λj)〈êj , ĉjej − êj〉+ (λ̂j − λj),

which implies that

|λ̂j − λj − 〈(Γ̂n − Γ)êj , ĉjej〉| = |λ̂j − λj ||〈êj , êj − ĉjej〉| ≤ |λ̂j − λj |‖êj − ĉjej‖

On the other hand, we have

|〈(Γ̂n − Γ)ej , ej〉 − 〈(Γ̂n − Γ)êj , ĉjej〉|

=|〈(Γ̂n − Γ)ej , ej − ĉj êj〉+ 〈(Γ̂n − Γ)ej , ĉj êj〉 − 〈(Γ̂n − Γ)êj , ĉjej〉|

=|〈(Γ̂n − Γ)ej , ĉjej − êj〉| ≤ ‖Γ̂n − Γ‖∞‖ĉjej − êj‖

Combining these two results, by Lemmas 2.2 and 2.3 of [20], we have

|λ̂j − λj − 〈(Γ̂n − Γ)ej , ej〉|

≤|λ̂j − λj − 〈(Γ̂n − Γ)êj , ĉjej〉|+ |〈(Γ̂n − Γ)êj , ĉjej〉 − 〈(Γ̂n − Γ)ej , ej〉|

≤|λ̂j − λj |‖êj − ĉjej‖+ ‖Γ̂n − Γ‖∞‖ĉjej − êj‖ ≤ Cδ−1
j ‖Γ̂n − Γ‖2∞,

which verifies the inequality (2.18).

Note that

P(Acn) ≤
hn∑
j=1

P(|λ̂j − λj | ≥ δj/2) ≤ 2

hn∑
j=1

δ−1
j E[|λ̂j − λj |]
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by Markov inequality. We also have E[〈(Γ̂n − Γ)ej , ej〉2] ≤ Cn−1λ2
j (cf. page 341 of [CMS]). Then,

by the inequality (2.18) derived above, Theorem 2.5 of [20], and Lemma 1, we have that

P(Acn) ≤ C1

hn∑
j=1

δ−2
j E[‖Γ̂n − Γ‖2∞] + C2

hn∑
j=1

δ−1
j E[|〈(Γ̂n − Γ)ej , ej〉|]

≤ C1n
−1

hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

δ−1
j λj

≤ C1n
−1

hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

(j + 1)

≤ C1n
−1

hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

j log j.

Remark 6. From the following section, we investiage the rates of convergence of different

quantities based on perturbation theory. In the proofs, the quantities related to either Ecj or Acn

will be negligible due to the following arguments.

1. Let Qj be any non-negative quantity (that can be either random or fixed and can depend on

n or not). Note that IEcj = 0 implies that QjIEcj = 0. Let η > 0 be given. If
∑hn

j=1QjIEcj > η,

then
∑hn

j=1QjIEcj 6= 0, and hence, there exists j such that IEcj 6= 0.

(a) Suppose either P̃ = P or P̃ = P(·|X0). We then see that

P̃

 hn∑
j=1

QjIEcj > η

 ≤ hn∑
j=1

P̃(IEcj 6= 0) =

hn∑
j=1

P̃(Ecj ) =

hn∑
j=1

P(Ecj )

≤ Cn−1/2
hn∑
j=1

j log j

by Lemma 1.

(b) Suppose either P̃ = P(·|Xn) or P̃ = P(·|Xn, X0). We then see that

P̃

 hn∑
j=1

QjIEcj > η

 ≤ hn∑
j=1

P̃(IEcj 6= 0) =

hn∑
j=1

P̃(Ecj ) =

hn∑
j=1

Ẽ[IEcj ] =

hn∑
j=1

IEcj
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and for each η′ > 0,

P

 hn∑
j=1

IEcj > η′

 ≤ hn∑
j=1

P(IEcj 6= 0) =

hn∑
j=1

P(Ecj ) ≤ Cn−1/2
hn∑
j=1

j log j

by Lemma 1.

Thus, any quantities related to IEcj (or their sums) are asymptotically negligible or ignorable

under any choice of conditional probabilities P̃ if n−1/2
∑hn

j=1 j log j → 0 as n→∞. This

helps to theoretically guarantee that supz∈Bj ‖Kn(z)‖∞ is bounded above almost surely

(with upper bound not depending on j) based on Lemma 1.

2. Let Qn be any non-negative quantity (that can be either random or fixed and can depend

on n or not). Note that IAc
n

= 0 implies that QnIAc
n

= 0. Let η > 0 be given. If QnIAc
n
> η,

then QnIAc
n
6= 0, and hence, IAc

n
6= 0.

(a) Suppose either P̃ = P or P̃ = P(·|X0). We then see that

P̃(QnIAc
n
> η) ≤ P̃(QnIAc

n
6= 0) ≤ P̃(IAc

n
6= 0) = P̃(Acn) = P(Acn)

≤ C1n
−1

hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

j log j.

(b) Suppose either P̃ = P(·|Xn) or P̃ = P(·|Xn, X0). We then see that

P̃(QnIAc
n
> η) ≤ P̃(QnIAc

n
6= 0) ≤ P̃(IAc

n
6= 0) = P̃(Acn) = Ẽ[IAc

n
] = IAc

n
,

and for each η′ > 0,

P(IAc
n
> η′) ≤ P(IAc

n
6= 0) = P(Acn) ≤ C1n

−1
hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

j log j.

Thus, due to Lemma 17, any quantities related to IAc
n

are also asymptotically ignorable

under any choice of conditional probabilities P̃ if n−1
∑hn

j=1 δ
−2
j → 0 and

n−1/2
∑hn

j=1 j log j → 0 as n→∞. This aspect theoretically guarantees that the random

contour Ĉhn for Π̂hn and Γ̂†hn can be replaced with the fixed contour Cn.

In what follows, we suppose that Conditions from (A1) to (A6) and hnthn(X0)−1 = OP(1)

hold unless otherwise stated.
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2.9.1 Preliminaries

Before presenting the main theory, the following lemmas concern the differences Π̂hn −Πhn and

Γ̂†hn −Γ†hn between the sample and population operators and are introduced due to frequent usage.

Most of these follow from similar arguments as in Proposition 3 in [CMS], but all the proofs will

be provided. For conditional arguments, the lemmas are provded either conditionally or

unconditionally given on Xn and X0. In what follows, EX [·] = E[·|Xn, X0] and PX(·) = P(·|Xn, X0)

denotes the conditional expectation and conditional probability, respectively, given Xn and X0.

Lemma 3. As n→∞, if n−1/2
∑hn

j=1 j log j → 0, we have the following.

1. ‖Π̂hn −Πhn‖∞ = OP

(
n−1/2

∑hn
j=1 j log j

)
.

2. ‖Γ̂†hn − Γ†hn‖∞ = OP

(
n−1/2

∑hn
j=1 δ

−1/2
j (j log j)3/2

)
.

3. ‖(Π̂hn −Πhn)X0‖ = OP

(
n−1/2

∑hn
j=1 j log j

)
.

4. ‖(Γ̂†hn − Γ†hn)X0‖ = OP

(
n−1/2

∑hn
j=1 δ

−1/2
j (j log j)3/2

)
.

Proof. Only the last part is proved, as the remaining parts are similar. We observe that

Γ̂†hn − Γ†hn =
1

2πι

hn∑
j=1

∫
Bj
z−1

{
(zI − Γ̂n)−1 − (zI − Γ)−1

}
dz + r2nIAn

=
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ̂n)−1(Γ̂n − Γ)(zI − Γ)−1dz + r2nIAn

=
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1/2Kn(z)Gn(z)(zI − Γ)−1/2dz + r2nIAn .

This implies that ‖(Γ̂†hn − Γ†hn)X0‖ ≤ C
∑hn

j=1Aj + ‖r2nX0‖IAn where

Aj =

∫
Bj
|z|−1‖(zI − Γ)−1/2‖∞‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2X0‖dz.

Note that for all z ∈ Bj , |z| ≥ λj − δj/2 ≥ λj/2. By the equation (5.3) of [21], for z ∈ Bj , we have

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − λl|1/2

)−1

= |z − λj |−1/2 = (δj/2)−1/2.
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Thus, by Lemma 1, we have

E[AjIEj ] =

∫
Bj
λ−1
j ‖zI − Γ‖−1/2

∞ E[‖Kn(z)‖∞IEj‖Gn(z)‖∞]E[‖(zI − Γ)−1/2X0‖]dz

≤ C
∫
Bj
λ−1
j δ
−1/2
j E[‖Gn(z)‖∞]E[‖(zI − Γ)−1/2X0‖]dz

≤ Cλ−1
j δ

1/2
j (n−1/2j log j)(j log j)1/2 ≤ Cn−1/2δ

−1/2
j (j log j)3/2,

and hence,

E

 hn∑
j=1

AjIEj

 = O

n−1/2
hn∑
j=1

δ
−1/2
j (j log j)3/2

 .

Consequently, we have the desired result by following the argument in Remark 6 on the reaminder

terms related to Ecj and Acn.

Lemma 4. As n→∞, if n−1/2
∑hn

j=1 j log j −−−→
n→∞

0, we have the following.

1. EX [‖(Γ̂†hn − Γ†hn)Un‖] = OP

(
n−1

∑hn
j=1 δ

−1/2
j (j log j)3/2

)
. Hence, as n→∞, if

n−1
hn∑
j=1

δ
−1/2
j (j log j)3/2 → 0,

then for each η > 0, we have

PX(‖(Γ̂†hn − Γ†hn)Un‖ > η)
P−→ 0.

2. ‖(Γ̂†hn − Γ†hn)Un‖ = OP

(
n−1

∑hn
j=1 δ

−1/2
j (j log j)3/2

)
.

Proof. We observe that

Γ̂†hn − Γ†hn =
1

2πι

hn∑
j=1

∫
Bj

z−1
{

(zI − Γ̂n)−1 − (zI − Γ)−1
}
dz + r2nIAn

=
1

2πι

hn∑
j=1

∫
Bj

z−1(zI − Γ̂n)−1(Γ̂n − Γ)(zI − Γ)−1dz + r2nIAn

=
1

2πι

hn∑
j=1

∫
Bj

z−1(zI − Γ)−1/2Kn(z)Gn(z)(zI − Γ)−1/2dz + r2nIAn .

This implies that ‖(Γ̂†hn − Γ†hn)Un‖ ≤ C
∑hn

j=1Aj + ‖r2nUn‖IAn where

Aj =

∫
Bj

1

|z|
‖(zI − Γ)−1/2‖∞‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2Un‖dz.
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1. Notice that

EX
[
‖(zI − Γ)−1/2Un‖2

]
= σ2

εn
−2

n∑
i=1

‖(zI − Γ)−1/2Xi‖2,

and

E

[
sup
z∈Bj

EX
[
‖(zI − Γ)−1/2Un‖2

]]
= σ2

εn
−1E

[
sup
z∈Bj
‖(zI − Γ)−1/2X1‖2

]
≤ Cn−1j log j

by Lemma 1. Note that for all z ∈ Bj , |z| ≥ λj − δj/2 ≥ λj/2. By the equation (5.3) of [21],

for z ∈ Bj , we have

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − λl|1/2

)−1

= |z − λj |−1/2 = (δj/2)−1/2.

Thus, we have

hn∑
j=1

EX [Aj ]IEj ≤ C
hn∑
j=1

diam(Bj)δ−1
j δ

−1/2
j sup

z∈Bj
‖Kn(z)‖∞IEj

× sup
z∈Bj
‖Gn(z)‖∞ sup

z∈Bj
EX
[
‖(zI − Γ)−1/2Un‖

]
≤ C

hn∑
j=1

δ
−1/2
j sup

z∈Bj
‖Gn(z)‖∞ sup

z∈Bj
EX
[
‖(zI − Γ)−1/2Un‖

]
,

and

E

 hn∑
j=1

EX [Aj ]IEj

 ≤ C hn∑
j=1

δ
−1/2
j

√√√√E

[
sup
z∈Bj
‖Gn(z)‖2∞

]√√√√E

[
sup
z∈Bj

EX
[
‖(zI − Γ)−1/2Un‖

]2]

≤ C
hn∑
j=1

δ
−1/2
j n−1/2j log jn−1/2(j log j)1/2 = Cn−1

hn∑
j=1

δ
−1/2
j (j log j)3/2.

This entails that as n→∞, if n−1
∑hn

j=1 δ
−1/2
j (j log j)3/2 → 0, then

∑hn
j=1 E

X [Aj ]IEj
P−→ 0.

2. A similar argument applies here. Note that for all z ∈ Bj , |z| ≥ λj − δj/2 ≥ λj/2. By the

equation (5.3) of [21], for z ∈ Bj , we have

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − λl|1/2

)−1

= |z − λj |−1/2 = (δj/2)−1/2.
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Thus, we have

E[AjIEj ] =

∫
Bj
|z|−1‖(zI − Γ)−1/2‖∞E[‖Kn(z)‖∞IEj‖Gn(z)‖∞‖(zI − Γ)−1/2Un‖]dz

≤ C
∫
Bj
λ−1
j δ
−1/2
j E[‖Gn(z)‖∞‖(zI − Γ)−1/2Un‖]dz

≤ C
∫
Bj
λ−1
j δ
−1/2
j

√
E[‖Gn(z)‖2∞]

√
E[‖(zI − Γ)−1/2Un‖2]dz

≤ Cδ−1/2
j

δj
λj

(n−1/2j log j){n−1/2(j log j)1/2} = Cn−1δ
−1/2
j (j log j)3/2.

We therefore conclude that E
[∑hn

j=1AjIEj
]
≤ Cn−1

∑hn
j=1 δ

−1/2
j (j log j)3/2, which implies

hn∑
j=1

AjIEj = OP

n−1
hn∑
j=1

δ
−1/2
j (j log j)3/2

 .

Consequently, we have the desired result by following the argument in Remark 6 on the

reaminder terms related to Ecj and Acn.

Lemma 5. We have the following.

1. EX [‖Γ̂†hnUn‖
2] = OP

(
n−1

∑hn
j=1 λ

−1
j

)
. Hence, as n→∞, if n−1

∑hn
j=1 λ

−1
j → 0, then for any

η > 0,

PX(‖Γ̂†hnUn‖ > η)
P−→ 0.

2. ‖Γ†hnUn‖ = OP

(
n−1/2

√∑hn
j=1 λ

−1
j

)
.

Proof.

1. Note that

EX [‖Γ̂†hnUn‖
2] = EX

∥∥∥∥∥n−1
n∑
i=1

Γ̂†hnXiεi

∥∥∥∥∥
2
 = n−2

n∑
i=1

EX [ε2
i ]‖Γ̂

†
hn
Xi‖2

= σ2
εn
−2

n∑
i=1

∥∥∥∥∥∥
hn∑
j=1

λ−1
j 〈Xi, ej〉 ej

∥∥∥∥∥∥
2

=
σ2
ε

n2

n∑
i=1

hn∑
j=1

λ−2
j 〈Xi, ej〉2 ,
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which implies that

E
[
EX [‖Γ̂†hnUn‖

2]
]

=
σ2
ε

n2

n∑
i=1

hn∑
j=1

λ−1
j =

σ2
ε

n

hn∑
j=1

λ−1
j .

We thus have the desired result.

2. We first note that ‖Γ†hnUn‖
2 =

∥∥∥∑hn
j=1 λ

−1
j 〈Un, ej〉 ej

∥∥∥2
=
∑hn

j=1 λ
−2
j 〈Un, ej〉

2 and

E[〈Un, ej〉2] = E

(n−1
n∑
i=1

εi 〈Xi, ej〉

)2


= n−2
n∑
i=1

E[ε2
i 〈Xi, ej〉2] + n−2

∑
i 6=i′

E[εiε
′
i 〈Xi, ej〉 〈Xi′ , ej〉].

= n−2
n∑
i=1

E[E[ε2
i 〈Xi, ej〉2 |Xi]] + n−2

∑
i 6=i′

E[E[εiε
′
i 〈Xi, ej〉 〈Xi′ , ej〉 |Xi, Xi′ ]]

= n−2
n∑
i=1

E[〈Xi, ej〉2 E[ε2
i |Xi]] + n−2

∑
i 6=i′

E[〈Xi, ej〉 〈Xi′ , ej〉E[εi|Xi]E[ε′i|Xi′ ]]

= n−2
n∑
i=1

σ2
εE[〈Xi, ej〉2] =

σ2
ε

n
E[〈X1, ej〉] =

σ2
ε

n
λj .

This implies that

E
[
‖Γ†hnUn‖

2
]

=

hn∑
j=1

λ−2
j E[〈Un, ej〉2] ≤ Cn−1

hn∑
j=1

λ−1
j ,

and hence, ‖Γ†hnUn‖ = OP

(
n−1/2

√∑hn
j=1 λ

−1
j

)
.

Theorem 4 (Consistency of the FPC estimator). As n→∞, if n−1/2h2
n log hn → 0, then we

have ‖β̂hn − β‖
P−→ 0.
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Proof. Note that the remainder terms related to Ecj and Acn are negligible by following the

argument in Remark 6. Then, by Lemmas 3-5 and the decomposition (3.38), we see that

‖β̂hn − β‖ ≤ ‖(Γ̂
†
hn
− Γ†hn)Un‖+ ‖Γ†hnUn‖+ ‖(Π̂hn −Πhn)β‖+ ‖(Πhn − I)β‖

= OP

n−1
hn∑
j=1

δ
−1/2
j (j log j)3/2

+OP

√√√√n−1

hn∑
j=1

λ−1
j

 (2.19)

+OP

n−1/2
hn∑
j=1

j log j

+O

√∑
j>hn

〈β, ej〉2
 .

Note from Cauchy-Schwarz inequality that
(∑hn

j=1 δ
−1
j

)2
≤ hn

∑hn
j=1 δ

−2
j , which implies thatn−1/2h−1/2

n

hn∑
j=1

δ−1
j

2

= n−1h−1
n

 hn∑
j=1

δ−1
j

2

≤ n−1
hn∑
j=1

δ−2
j .

We also have that
(∑hn

j=1 δ
−1/2
j

)2
≤ hn

∑hn
j=1 δ

−1
j , which implies thatn−1/4h−3/4

n

hn∑
j=1

δ
−1/2
j

2

= n−1/2h−3/2
n

 hn∑
j=1

δ
−1/2
j

2

≤ n−1/2h−1/2
n

hn∑
j=1

δ−1
j .

Thus, under Condition (A6), as n→∞, we have n−1/2h
−1/2
n

∑hn
j=1 δ

−1
j → 0 and

n−1/4h
−3/4
n

∑hn
j=1 δ

−1/2
j → 0. The first term in (2.19) is bounded as

n−1
hn∑
j=1

δ
−1/2
j (j log j)3/2

≤n−1h3/2
n (log hn)3/2

hn∑
j=1

δ
−1/2
j =

n−1/4h−3/4
n

hn∑
j=1

δ
−1/2
j

 {n−3/4h9/4
n (log hn)3/2}

=o(1)

{
h3
n(log hn)2

n

}3/4

.

Next, the second term in (2.19) is bounded as

n−1
hn∑
j=1

λ−1
j ≤

n−1/2h−1/2
n

hn∑
j=1

δ−1
j

 (n−1/2h1/2
n ) = o(1)

(
hn
n

)1/2

.

Finally, the third term in (2.19) is bounded as

n−1/2
hn∑
j=1

j log j ≤ n−1/2h2
n log hn =

{
h4
n(log hn)2

n

}1/2

.
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Thus, as n→∞, if n−1/2h2
n log hn → 0, we have that ‖β̂hn − β‖

P−→ 0.

Corollary 5. As n→∞, if β̂hn
P−→ β, then we have that σ̂2

ε ≡ n−1
∑n

i=1(Yi − 〈β̂hn , Xi〉)2 P−→ σ2
ε .

Proof. We may expand

σ̂2
ε = n−1

n∑
i=1

(Yi − 〈β̂hn , Xi〉)2 = n−1
n∑
i=1

(〈β − β̂hn , Xi〉+ εi)
2

= n−1
n∑
i=1

(〈β − β̂hn , Xi〉)2 + 2n−1
n∑
i=1

εi(〈β − β̂hn , Xi〉) + n−1
n∑
i=1

ε2
i . (2.20)

By using the weak law of large numbers, the first and second terms in (2.20) converge to zero in

probability as∣∣∣∣∣n−1
n∑
i=1

(〈β − β̂hn , Xi〉)2

∣∣∣∣∣ ≤ n−1
n∑
i=1

‖Xi‖2‖β̂hn − β‖2 = {E[X2
1 ] + oP(1)}oP(1) = oP(1)

and∣∣∣∣∣n−1
n∑
i=1

εi(〈β − β̂hn , Xi〉)

∣∣∣∣∣ ≤ n−1
n∑
i=1

|εi|‖Xi‖‖β̂hn − β‖ = {E[|ε1|‖X1‖] + oP(1)}oP(1) = oP(1),

respectively. Thus, since n−1
∑n

i=1 ε
2
i

P−→ σ2
ε , we have σ̂2

ε
P−→ σ2

ε .

2.9.2 The generalized/refined CLT

2.9.2.1 Random bias terms

We first deal with the bias terms in the decomposition (3.38). We call the biases from

(Π̂hn −Πhn)β and (Γ̂†hn − Γ†hn)Un the first and second random bias terms, respectively, and that

from Πhnβ − β the non-random bias from now on.

Proposition 4. As n→∞, if n−1/2h
−1/2
n

∑hn
j=1(j log j)2 → 0, then we have√

n

thn(X0)

〈
(Π̂hn −Πhn)β,X0

〉
P−→ 0.

Proof. Note from the Proposition 2 of [CMS] that√
n

thn(X0)

〈
(Π̂hn −Πhn)β,X0

〉
=

√
hn

thn(X0)

√
n

hn

〈
(Π̂hn −Πhn)β,X0

〉

=

√
hn

thn(X0)

oP (1) +OP

n−1/2h−1/2
n

hn∑
j=1

(j log j)2


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if n−1/2
∑hn

j=1 j log j → 0, as n→∞. We thus have the desired result.

The proof of the following proposition about the second random bias cannot be directly

obtained from Proposition 3 of [CMS] even though they have the same structure. There are

subtle modifications because of conditioning on Xn and X0.

Proposition 5. As n→∞, if n−1/2h
−1/2
n

∑hn
j=1(j log j)2 → 0, for any η > 0,

PX
(∣∣∣∣√ n

thn(X0)

〈
(Γ̂†hn − Γ†hn)Un, X0

〉∣∣∣∣ > η

)
P−→ 0

Proof. As seen in the proof of Proposition 3 of [CMS], we observe that

〈(Γ̂†hn − Γ†hn)Un, X0〉

=
1

2πι

hn∑
j=1

∫
Bj
z−1

〈{
(zI − Γ̂n)−1 − (zI − Γ)−1

}
Un, X0

〉
dz + 〈r2nUn, X0〉IAn

=
1

2πι

hn∑
j=1

∫
Bj
z−1

〈
(zI − Γ̂n)−1(Γ̂n − Γ)(zI − Γ)−1Un, X0

〉
dz + 〈r2nUn, X0〉IAn

=
1

2πι

hn∑
j=1

∫
Bj
z−1

〈
(zI − Γ)−1/2Kn(z)Gn(z)(zI − Γ)−1/2Un, X0

〉
dz + 〈r2nUn, X0〉IAn

=
1

2πι

hn∑
j=1

∫
Bj
z−1

〈
Kn(z)Gn(z)(zI − Γ)−1/2Un, (zI − Γ)−1/2X0

〉
dz + 〈r2nUn, X0〉IAn

This implies that
∣∣∣〈(Γ̂†hn − Γ†hn)Un, X0〉

∣∣∣ ≤ C∑hn
j=1Aj + |〈r2nUn, X0〉|IAn where

Aj =

∫
Bj
|z|−1‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2Un‖‖(zI − Γ)−1/2X0‖dz.

Notice that

EX
[
‖(zI − Γ)−1/2Un‖2

]
= σ2

εn
−2

n∑
i=1

‖(zI − Γ)−1/2Xi‖2,

and

E

[
sup
z∈Bj

EX
[
‖(zI − Γ)−1/2Un‖2

]]
= σ2

εn
−1E

[
sup
z∈Bj
‖(zI − Γ)−1/2X1‖2

]
≤ Cn−1j log j.
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This implies that

E

[
sup
z∈Bj

∥∥∥(zI − Γ)−1/2X0

∥∥∥2
sup
z∈Bj

EX
[
‖(zI − Γ)−1/2Un‖2

]]

=E

[
sup
z∈Bj

∥∥∥(zI − Γ)−1/2X0

∥∥∥2
]
E

[
sup
z∈Bj

EX
[
‖(zI − Γ)−1/2Un‖2

]]

≤Cn−1(j log j)2.

by independence bewteen X0 and Xn. Then, by using the third and fourth parts of Lemma 1,

hn∑
j=1

EX [Aj ]IEj ≤ C
hn∑
j=1

diam(Bj)δ−1
j sup

z∈Bj
‖Gn(z)‖∞ sup

z∈Bj
‖(zI − Γ)−1/2X0‖ sup

z∈Bj
EX
[
‖(zI − Γ)−1/2Un‖

]

≤ C

√√√√ hn∑
j=1

sup
z∈Bj
‖Gn(z)‖2∞

√√√√ hn∑
j=1

sup
z∈Bj
‖(zI − Γ)−1/2X0‖2 sup

z∈Bj
EX
[
‖(zI − Γ)−1/2Un‖2

]
.

From Lemma 1, we have E
[∑hn

j=1 supz∈Bj ‖Gn(z)‖2∞
]
≤ Cn−1

∑hn
j=1(j log j)2, which implies that

√√√√ hn∑
j=1

sup
z∈Bj
‖Gn(z)‖2∞ = OP

n−1/2


hn∑
j=1

(j log j)2


1/2
 .

We then bound the remaining term by

E

 hn∑
j=1

sup
z∈Bj

∥∥∥(zI − Γ)−1/2X0

∥∥∥2
sup
z∈Bj

EX
[
‖(zI − Γ)−1/2Un‖2

] ≤ Cn−1
hn∑
j=1

(j log j)2

from the independence between Xn and X0, which implies that√√√√ hn∑
j=1

sup
z∈Bj
‖(zI − Γ)−1/2X0‖2 sup

z∈Bj
EX
[
‖(zI − Γ)−1/2Un‖2

]
= OP

n−1/2


hn∑
j=1

(j log j)2


1/2
 .

Therefore, we have

EX

√ n

thn(X0)

hn∑
j=1

AjIEj

 = OP

n−1/2h−1/2
n

hn∑
j=1

(j log j)2


and the desired result by following the argument in Remark 6 on the reaminder terms related to

Ecj and Acn.

In addition, Proposition 18 holds even when X0 = X1 with the help of the following lemma.
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Lemma 6. Under the same assumptions of Lemma 1, we have

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖4

]
≤ C(j log j)2.

Proof. Note that

sup
z∈Bj
‖(zI − Γ)−1/2X‖4 ≤ 4

∑
k 6=j

λkξ
2
k

|λj − λk|
+
λjξ

2
j

δj

2

= 4

 ∑
l 6=k,j 6=k

λlλkξ
2
l ξ

2
k

|λj − λl||λj − λk|
+
∑
k 6=j

λjλkξ
2
j ξ

2
k

δj |λj − λk|
+
λ2
jξ

4
j

δ2
j

 .

Due to Condition (A2) and Lemma 1, we have that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖4

]
≤ C

 ∑
l 6=k,j 6=k

λlλk
|λj − λl||λj − λk|

+
∑
k 6=j

λjλk
δj |λj − λk|

+
λ2
j

δ2
j


= C


∑
k 6=j

λk
|λj − λk|

2

+
λj
δj

∑
k 6=j

λk
|λj − λk|

+
λ2
j

δ2
j


≤ C

{
(Cj log j)2 + (j + 1)(Cj log j) + (j + 1)2

}
≤ C(j log j)2.

Proposition 6. Proposition 18 holds even when X0 = X1.

Proof. As seen in the proof of Proposition 18, we have

|〈(Γ̂†hn − Γ†hn)Un, X1〉| ≤ C
∑hn

j=1Aj + |〈r2nUn, X1〉|IAn where

Aj =

∫
Bj
|z|−1‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2Un‖‖(zI − Γ)−1/2X1‖dz.

By taking the expectation EX , we have

EX [Aj ] =

∫
Bj
|z|−1‖Kn(z)‖∞‖Gn(z)‖∞EX [‖(zI − Γ)−1/2Un‖]‖(zI − Γ)−1/2X1‖dz

≤ σε
∫
Bj
|z|−1‖Kn(z)‖∞‖Gn(z)‖∞

{
n−2

n∑
i=1

‖(zI − Γ)−1/2Xi‖2
}1/2

‖(zI − Γ)−1/2X1‖dz.
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By Lemmas 1 and 6, it holds that

E

[
n∑
i=1

‖(zI − Γ)−1/2Xi‖2‖(zI − Γ)−1/2X1‖2
]

=E[‖(zI − Γ)−1/2X1‖4] +
∑
i 6=1

E[‖(zI − Γ)−1/2Xi‖2]E[‖(zI − Γ)−1/2X1‖2]

≤Cn(j log j)2.

This implies that

E

EX
 hn∑
j=1

AjIEj


≤C

hn∑
j=1

∫
Bj
|z|−1E

‖Gn(z)‖∞

{
n−2

n∑
i=1

‖(zI − Γ)−1/2Xi‖2
}1/2

‖(zI − Γ)−1/2X1‖

 dz
≤Cn−1

hn∑
j=1

∫
Bj
|z|−1E[‖Gn(z)‖2∞]1/2E

[
n∑
i=1

‖(zI − Γ)−1/2Xi‖2‖(zI − Γ)−1/2X1‖2
]1/2

dz

≤Cn−1
hn∑
j=1

(j log j)2

by a similar argument to the proof of Proposition 18. We finally have the desired result by

following the argument of Remark 6.

2.9.2.2 Variance terms

To prove the weak convergence of the variance term
√
n/thn(X0)〈Γ†hnUn, X0〉 in Proposition 2

in the main paper, we need the following lemma.

Lemma 7. We have that An ≡ 〈(Γ̂n − Γ)Γ†hnX0,Γ
†
hn
X0〉 = OP(n−1/2h2

n).
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Proof. Note that An = n−1
∑n

i=1Bi,n where

Bi,n =

〈
(Xi ⊗Xi − Γ)

hn∑
j=1

λ−1
j 〈X0, ej〉 ej ,

hn∑
l=1

λ−1
l 〈X0, el〉 el

〉

=

hn∑
j,l

λ−1
j λ−1

l 〈X0, ej〉 〈X0, el〉 〈(Xi ⊗Xi − Γ)ej , el〉

=

hn∑
j,l

λ−1
j λ−1

l 〈X0, ej〉 〈X0, el〉 (〈Xi, ej〉 〈Xi, el〉 − 〈Γej , el〉)

=

hn∑
j,l

λ
−1/2
j λ

−1/2
l ξ0jξ0l

(
λ

1/2
j λ

1/2
l ξijξil − λjI(j = l)

)

=

hn∑
j,l

ξ0jξ0l{ξijξil − I(j = l)}

and ξij = λ
−1/2
j 〈Xi, ej〉 so that ξij has mean 0 and variance 1, and E[ξijξil] = 0. Let

Ji,j,l = ξ0jξ0l{ξijξil − I(j = l)}. We next establish and bound the expected value of Bi,n along

three cases presented below. Note that E[Ji,j,l] = E[ξ2
0j(ξ

2
ij − 1)] = E[ξ2

0j ]E[(ξ2
ij − 1)] = 0 if j = l

and E[Ji,j,l] = E[ξ0jξ0lξijξil] = E[ξ0jξ0l]E[ξijξil] = 0 if j 6= l. This implies that E[Bi,n] = 0.

Next, to bound the second moments of Bi,n, note that Bi,nBi′,n =
∑

j,l,j′,l′ Ji,j,lJi′,j′,l′ . we now

study the expected values of the products Ji,j,lJi′,j′,l′ depending on (j, l, j′, l′). We consider the

first case of i 6= i′. We have

E[Ji,j,lJi′,j′,l′ ] = E[ξ2
0j(ξ

2
ij − 1)ξ2

0j′(ξ
2
i′j′ − 1)] = E[ξ2

0jξ
2
0j′ ]E[(ξ2

ij − 1)]E[(ξ2
i′j′ − 1)] = 0

if j = l and j′ = l′,

E[Ji,j,lJi′,j′,l′ ] = E[ξ2
0j(ξ

2
ij − 1)ξ0j′ξ0l′ξi′j′ξi′l′ ] = E[ξ2

0jξ0j′ξ0l′ ]E[(ξ2
ij − 1)]E[ξi′j′ξi′l′ ] = 0

if j = l and j′ 6= l′, and

E[Ji,j,lJi′,j′,l′ ] = E[ξ0jξ0lξijξilξ0j′ξ0l′ξij′ξil′ ] = E[ξ0jξ0lξ0j′ξ0l′ ]E[ξijξil]E[ξij′ξil′ ] = 0

if j 6= l and j′ 6= l′. This implies that E[Bi,nBi′,n] = 0 if i 6= i′.
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For the other cases with i = i′, we can bound E[Ji,j,lJi′,j′,l′ ] by using the finite fourth moment

assumption supj∈N λ
−2
j E[〈X, ej〉4] <∞ as below. We have

E[Ji,j,lJi,j′,l′ ] = E[ξ2
0j(ξ

2
ij − 1)ξ2

0j′(ξ
2
ij′ − 1)] = E[ξ2

0jξ
2
0j′ ]E[(ξ2

ij − 1)(ξ2
ij′ − 1)]

= E[ξ2
0jξ

2
0j′ ](E[ξ2

ijξ
2
ij′ ]− 1)

≤
√

E[ξ4
0j ]E[ξ4

0j′ ]
√
E[ξ4

ij ]E[ξ4
ij′ ] ≤ C

if j = l and j′ = l′,

E[Ji,j,lJi,j′,l′ ] = E[ξ2
0j(ξ

2
ij − 1)ξ0j′ξ0l′ξij′ξil′ ] = E[ξ2

0jξ0j′ξ0l′ ]E[(ξ2
ij − 1)ξij′ξil′ ]

= E[ξ2
0jξ0j′ξ0l′ ]E[ξ2

ijξij′ξil′ ]

≤
√
E[ξ4

0j ]
√

E[ξ2
0j′ξ

2
0l′ ]
√
E[ξ4

ij ]
√
E[ξ2

ij′ξ
2
il′ ]

≤
√

E[ξ4
0j ]
(
E[ξ4

0j′ ]E[ξ4
0l′ ]
)1/4√

E[ξ4
ij ]
(
E[ξ4

ij′ ]E[ξ4
il′ ]
)1/4

≤ C

if j = l and j′ 6= l′, and

E[Ji,j,lJi,j′,l′ ] = E[ξ0jξ0lξijξilξ0j′ξ0l′ξij′ξil′ ] = E[ξ0jξ0lξ0j′ξ0l′ ]E[ξijξilξij′ξil′ ]

≤
(
E[ξ4

0j ]E[ξ4
0l]E[ξ4

0j′ ]E[ξ4
0l′ ]
)1/4 (

E[ξ4
ij ]E[ξ4

il]E[ξ4
ij′ ]E[ξ4

il′ ]
)1/4

≤ C

if j 6= l and j′ 6= l′. By combining the bound from above, we find

E[B2
i,n] =

∑
j,l,j′,l′ E[Ji,j,lJi,j′,l′ ] ≤

∑
j,l,j′,l′ C = Ch4

n. Since E[A2
n] = n−2

∑n
i=1 E[B2

i,n] ≤ Cn−1h4
n, we

hence derive that An = OP(n−1/2h2
n).

Proposition 7. Proposition 2 in the main paper also holds even when X0 = X1.

Proof. Denoting An ≡ 〈(Γ̂n − Γ)Γ†hnX1,Γ
†
hn
X1〉, we have that

thn(X1)−1|An| ≤ thn(X1)−1‖Γ̂n − Γ‖‖Γ†hnX1‖2 = OP

n−1/2h−1
n

hn∑
j=1

λ−1
j


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due to E[‖Γ̂n − Γ‖2] ≤ n−1E[‖X1‖4] from Theorem 2.5 of [20] and

E[‖Γ†hnX1‖2] =
∑hn

j=1 λ
−2
j E[〈X1, ej〉2] =

∑hn
j=1 λ

−1
j . Thus, under Condition (A5), we have that

thn(X1)−1An = oP(1) since

n−1/2h−1
n

hn∑
j=1

λ−1
j ≤ n

−1/2h−1/2
n

hn∑
j=1

δ−1
j ≤

n−1
hn∑
j=1

δ−2
j

1/2

→ 0.

The proof of Proposition 2 can be completed with X0 = X1 by the same argument.

2.9.2.3 Scaling terms

We now provide the proof for the second part of Theorem 1 in the main paper, which

guarantees the interchangeability of thn(X0) and t̂hn(X0) in the asymptotics. We exclude the case

conditional on both Xn and X0, as the cases with P̃ = P and P̃ = P(·|Xn, X0) indicate the same

result. We re-write the statement for preciseness.

Proposition 8. Suppose that n−1/2h−1
n

∑hn
j=1(j log j)2 → 0 as n→∞. The scaling thn(X0) and

t̂hn(X0) are equivalent in that, for any η > 0,

P̃

(∣∣∣∣ t̂hn(X0)

thn(X0)
− 1

∣∣∣∣ > η

)
P−→ 0,

where P̃ denotes one of the conditional probabilities P, P(·|Xn), or P(·|X0).

Proof. We first observe

t̂hn(X0) = 〈Γ̂†hnX0, X0〉 = 〈(Γ̂†hn − Γ†hn)X0, X0〉+ thn(X0)

so that

t̂hn(X0)

thn(X0)
− 1 = thn(X0)−1〈(Γ̂†hn − Γ†hn)X0, X0〉.

To use the perturbation theory, note that

Γ̂†hn − Γ†hn =
1

2πι

hn∑
j=1

∫
Bj
z−1

{
(zI − Γ̂n)−1 − (zI − Γ)−1

}
dz + r2nIAc

n

=
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1/2Kn(z)Gn(z)(zI − Γ)−1/2dz + r2nIAc

n
.
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This implies that ‖〈(Γ̂†hn − Γ†hn)X0, X0〉‖ ≤ C
∑hn

j=1Aj + |〈r2nX0, X0〉|IAc
n
, where

Aj =

∫
Bj
|z|−1‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2X0‖2dz.

Note that for all z ∈ Bj , |z| ≥ λj − δj/2 ≥ λj/2. We now study the convergence rates in

probability either conditionally on X0 or Xn, or unconditionally on both by using the third and

fourth parts of Lemma 1.

1. Consider the unconditional case. By the third and fourth parts of Lemma 1, we have

E[AjIEj ] ≤
∫
Bj
λ−1
j E[‖Kn(z)‖∞IEj‖Gn(z)‖∞]E[‖(zI − Γ)−1/2X0‖2]dz

≤ C
∫
Bj
λ−1
j E[‖Gn(z)‖∞]E[‖(zI − Γ)−1/2X0‖2]dz

= Cδjλ
−1
j (n−1/2j log j)(j log j)

≤ Cn−1/2(j log j)2.

This implies that E
[∑hn

j=1AjIEj
]
≤ Cn−1/2

∑hn
j=1(j log j)2, and hence,

thn(X0)−1
hn∑
j=1

AjIEj = OP

n−1/2
hn∑
j=1

(j log j)2

 .

2. Consider the case conditional on X0. By the third and fourth parts of Lemma 1, we have

EX0 [AjIEj ] ≤
∫
Bj
λ−1
j E[‖Kn(z)‖∞IEj‖Gn(z)‖∞]‖(zI − Γ)−1/2X0‖2dz

≤ C
∫
Bj
λ−1
j E[‖Gn(z)‖∞]‖(zI − Γ)−1/2X0‖2dz

= Cδjλ
−1
j sup

z∈Bj
E[‖Gn(z)‖∞] sup

z∈Bj
‖(zI − Γ)−1/2X0‖2

≤ C(n−1/2j log j) sup
z∈Bj
‖(zI − Γ)−1/2X0‖2.

This implies that

E

EX0

 hn∑
j=1

AjIEj

 ≤ Cn−1/2
hn∑
j=1

j log jE

[
sup
z∈Bj
‖(zI − Γ)−1/2X0‖2

]

≤ Cn−1/2
hn∑
j=1

(j log j)2,
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and hence, EX0

[
thn(X0)−1

∑hn
j=1AjIEj

]
= OP

(
n−1/2h−1

n

∑hn
j=1(j log j)2

)
.

3. Consider the case conditional on Xn. By the third and fourth parts of Lemma 1, we have

EXn [AjIEj ] ≤
∫
Bj
λ−1
j ‖Kn(z)‖∞IEj‖Gn(z)‖∞E[‖(zI − Γ)−1/2X0‖2]dz

≤ C(j log j)

∫
Bj
λ−1
j ‖Kn(z)‖∞IEj‖Gn(z)‖∞dz

= C(j log j) sup
z∈Bj
‖Kn(z)‖∞IEj‖Gn(z)‖∞.

This implies that

E

EXn

 hn∑
j=1

AjIEj

 ≤ C hn∑
j=1

(j log j)E

[
sup
z∈Bj
‖Kn(z)‖∞IEj‖Gn(z)‖∞

]

≤ C
hn∑
j=1

(j log j)E

[
sup
z∈Bj
‖Gn(z)‖∞

]

≤ Cn−1/2
hn∑
j=1

(j log j)2,

and hence, EXn

[
h−1
n

∑hn
j=1AjIEj

]
= OP

(
n−1/2h−1

n

∑hn
j=1(j log j)2

)
.

We now suppose that n−1/2h−1
n

∑hn
j=1(j log j)2 → 0 as n→∞, and let η > 0 be given. From

the fact that

lim
M→∞

lim sup
n→∞

PXn(hnthn(X0)−1 > M) = lim
M→∞

lim sup
n→∞

P(hnthn(X0)−1 > M) = 0,

we have

PXn

thn(X0)−1
hn∑
j=1

AjIEj > η


≤PXn

(
hnthn(X0)−1 > M

)
+ PXn

h−1
n

hn∑
j=1

AjIEj > η/M


≤PXn

(
hnthn(X0)−1 > M

)
+
M

η
EXn

h−1
n

hn∑
j=1

AjIEj


for each M > 0. Let {n′} be a subsequence of {n}. Then, since EXn

[
h−1
n

∑hn
j=1AjIEj

]
P−→ 0

as n→∞, there exists a further subsequence {n′′} ⊆ {n′} of {n} and an almost sure set
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D ∈ F (i.e., P(D) = 1) such that EXn′′
[
h−1
n′′
∑hn′′

j=1 AjIEj
]
→ 0 on D. On D, we see that

lim sup
n′′→∞

PXn′′

thn′′ (X0)−1

hn′′∑
j=1

AjIEj > η

 ≤ lim sup
n′′→∞

PXn′ (hn′′thn′′ (X0)−1 > M)→ 0

as M →∞. Since this holds for each subsequence {n′} ⊆ {n}, as n→∞, if

n−1/2h−1
n

∑hn
j=1(j log j)2 → 0, we have that

PXn

thn(X0)−1
hn∑
j=1

AjIEj > η

 P−→ 0.

We finally have the desired result by following the argument in Remark 6 on the reaminder terms

related to Ecj and Acn.

Proposition 9. The unconditional result in Proposition 8 holds even when X0 = X1.

Proof. As seen above, we have ‖〈(Γ̂†hn − Γ†hn)X1, X1〉‖ ≤ C
∑hn

j=1Aj + |〈r2nX1, X1〉|IAc
n
, where

Aj =

∫
Bj
|z|−1‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2X1‖2dz.

This implies that

E[AjIEj ] ≤ C
∫
Bj
λ−1
j E[‖Gn(z)‖∞‖(zI − Γ)−1/2X1‖2]dz

= Cλ−1
j sup

z∈Bj
E[‖Gn(z)‖2∞]1/2E[‖(zI − Γ)−1/2X0‖4]1/2

≤ Cn−1/2(j log j)2.

by Lemmas 1 and 6. We finally have the desired result by the same argument as

Proposition 8.

2.9.2.4 An example of uncorrelated but dependent FPC scores

We provide the proof that {ξj} constructed in Proposition 1 in the main paper are not

independent for the reference.
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Lemma 8. Let {Wj} be a sequence of iid random variables defined as

P(Wj = 1) = 1/2 = P(Wj = −1) and ξ ∼ N(0, 1), which is independent of {Wj} and suppose that

X has the FPC scores in its Karhunen-Loève expansion defined as ξj = Wjξ for j = 1, 2, . . . .

Then, the sequence {ξj} forms a white noise with (uniformly) finite fourth moments, but the

random variables in {ξj} are dependent.

Proof. One can show that this example satisfies the condition that the random variables ξj are

uncorrelated with mean zero, variance one, and finite fourth moments. To see their dependence,

assume that ξj and ξj′ are independent where j 6= j′. Then, by the properties of normal

distributions, ξj + ξj′ should be normally distributed. However, since ξj + ξj′ = (Wj +Wj′)ξ, we

have

P(ξj + ξj′ = 0) = P((Wj +Wj′ = 0) ∪ (ξ = 0)) = 1− P((Wj +Wj′ = 0)c ∩ (ξ = 0)c)

= 1− P((Wj +Wj′ = 0)c)P((ξ = 0)c) = 1− P((Wj +Wj′ = 0)c)

= P(Wj +Wj′ = 0)) = P(Wj = 1 = −Wj′) + P(Wj = −1 = −Wj′)

=

(
1

2

)2

+

(
1

2

)2

=
1

2
,

which is the contradiction to the fact that the normal distribution is continuous. Thus, for each

distinct j, j′, ξj and ξj′ are not independent.

2.9.2.5 Proof of unconditional CLT

Proof of the unconditional result on X0 of Theorem 1 in the main paper. From Theorem 1, for

each y ∈ R, we obtain P(T biasn (X0) ≤ y|Xn, X0)
P−→ Φ(y/σε) as n→∞ where

T biasn (X0) ≡
√
n/thn(X0)[〈β̂hn , X0〉 − 〈Πhnβ,X0〉],

implying that

P(T biasn (X0) ≤ y|Xn) = E[P(T biasn (X0) ≤ y|Xn, X0)|Xn]
P−→ E[Φ(y/σe)|Xn] = Φ(y/σε)
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as n→∞ due to a subsequence argument (cf. Theorem 20.5 of [4]) and Theorem 9.5.1 of [2]. By

using Polya’s theorem (Theorem 9.1.4 of [2]) again, as n→∞, we finally have

sup
y∈R
|P(T biasn (X0) ≤ y|Xn)− Φ(y/σε)|

P−→ 0. (2.21)

Proof of Corollary 1 in the main paper. It can be shown by a similar argument to the above proof

for the unconditional CLT on X0.

2.9.2.6 The unbiased CLT

One can achieve the CLT for unbiased centering 〈β,X0〉 as an analog of the residual bootstrap

for unbiased centering 〈β,X0〉. For this, the non-random bias should be controlled via the

smoothness assumption on the slope function β. Recall that the condition B(u, v) depends on

generic constants v, u > 0 and a function m(j, u) ≡ max{ju,
∑j

i=1 δ
−2
i } of integer j ≥ 1.

Condition B(u, v) : supj≥1〈β, ej〉2jv−1m(j, u) <∞.

Lemma 9. We see that

n

hn
E[〈Πhnβ − β,X0〉2] ≤ n

hvn max
{
hun,
∑hn

j=1 δ
−2
j

}
∑
j>hn

λj

 sup
j∈N

[
〈β, ej〉2jv−1m(j, u)

]
for v, u > 0, and hence, under Conditions B(u, v), as n→∞, if

n = O
(
hvn max

{
hun,
∑hn

j=1 δ
−2
j

})
, we have that

√
n

thn (X0)〈Πhnβ − β,X0〉
P−→ 0.

Proof. We first notice that n
hn

E[〈Πhnβ − β,X0〉2] = n
hn

∑
j>hn

λj 〈β, ej〉2 . We first see that

n

hn

∑
j>hn

λj 〈β, ej〉2 =
n

hn

∑
j>hn

λj

(
jv−1

j∑
l=1

δ−2
l

)−1(
jv−1

j∑
l=1

δ−2
l

)
〈β, ej〉2

≤ n

hvn
∑hn

j=1 δ
−2
j

∑
j>hn

λj

 sup
j∈N

[
jv−1

(
j∑
l=1

δ−2
l

)
〈β, ej〉2

]
.
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Also,

n

hn

∑
j>hn

λj 〈β, ej〉2 =
n

hn

∑
j>hn

λj(j
v−1+u)−1jv−1+u〈β, ej〉2

≤ n

hv+u
n

∑
j>hn

λj

 sup
j∈N

[
jv−1ju〈β, ej〉2

]
.

We thus have the desired inequality and convergence of the non-random bias term in probability

from the assumption hnthn(X0)−1 = OP(1) and the Chebyshev inequality.

In what follows, P̃ denotes either P(·|Xn) or P(·|Xn, X0) as Theorem 1 in the main paper.

Theorem 5 (Unbiased CLT). Under the assumptions of Theorem 1 in the main paper, suppose

that n = O(m(hn, u)) holds with Condition B(u, v) for some u > 5 and v > 0. Then, as n→∞,

sup
y∈R

∣∣∣∣P̃(√ n

thn(X0)
[〈β̂hn , X0〉 − 〈β,X0〉] ≤ y

)
− Φ(y/σε)

∣∣∣∣ P−→ 0,

where the above also holds with the sample version t̂hn(X0) of thn(X0).

Proof. It follows from Theorem 1 in the main paper and Lemma 9.

Under polynomial decay rates on eigengaps δj � j−a (implying λj � j−a+1) and coordinate

projections |〈β, ej〉| � j−b for some constants a > 2 and b > 1, one can derive the following

corollary; here and in the following, we write rn � sn if rn/sn is bounded away from both zero

and infinity for generic sequences rn and sn > 0.

Corollary 6. Under the above polynomial decay rates, suppose (A1)-(A2) along with

hnthn(X0)−1 = OP(1). If n � hvhn for some max{5, (2a+ 1)} < vh < a+ 2b− 1, then the

conclusions of Theorem 5 remain valid.

Proof. The dominating term for the non-random bias is

n

hn

∑
j>hn

λj 〈β, ej〉2 ≤ Cnh−1
n

∑
j>hn

j−a−2b � nh−a−2b+1
n .
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Suppose that n � hvhn where vh = {5 ∨ (2a+ 1)}+ κh for κh > 0. Then, we get the convergences

n−1/2h
5/2
n (log hn)2 → 0 and n−1

∑hn
j=1 δ

−2
j � n−1h2a+1

n → 0 as n→∞. We thus now check the

convergence of the remaining non-random bias term. Since

nh−a−2b+1
n =

n

hvhn
hvh−(a+2b−1)
n ,

if vh < a+ 2b− 1, then the upper bound of the non-random bias term satisfies

n
hn

∑
j>hn

λj 〈β, ej〉2 = o(1), and the result follows by Lemma 9.

2.9.3 Validity of the residual bootstrap

To establish the consistency of the bootstrap error distribution, let F be the common

cumulative distribution function (CDF) of the errors {εi}ni=1. Also, let Fn and F̂n denote the

empirical distributions of the errors {εi}ni=1 and the centered residuals {ε̂i − ¯̂ε}ni=1, respectively.

Theorem 6. As n→∞, if ‖β̂kn − β‖
P−→ 0, then we have d2(F̂ , F )

P−→ 0.

Proof. The proof is along the lines of the proof of Theorem 3.1 in [26]. By Lemma 8.4 of [3],

d2(Fn, F )
a.s.−−−→
n→∞

0. Note that

d2(Fn, F̂n)2 ≤ n−1
n∑
i=1

{εi − (ε̂i − ¯̂ε)}2 ≤ C

{
n−1

n∑
i=1

(εi − ε̂i)2 + (¯̂ε)2

}
.

Since (¯̂ε)2 = (¯̂ε− ε̄+ ε̄)2 ≤ C{(¯̂ε− ε̄)2 + ε̄2} and

(¯̂ε− ε̄)2 =

{
n−1

n∑
i=1

(ε̂i − εi)

}2

≤ n−1
n∑
i=1

(ε̂i − εi)2,

we have

d2(Fn, F̂n)2 ≤ C

{
n−1

n∑
i=1

(εi − ε̂i)2 + ε̄2

}
.

As n→∞, since ε̄→ E[ε1] = 0 almost surely, it suffices to show that n−1
∑n

i=1(εi − ε̂i)2 P−→ 0. We

observe that

n−1
n∑
i=1

(εi − ε̂i)2 = n−1
n∑
i=1

〈β̂kn − β,Xi〉2 ≤ ‖β̂kn − β‖2n−1
n∑
i=1

‖Xi‖2
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since ε̂i − εi = 〈β̂kn − β,Xi〉. As n→∞, since n−1
∑n

i=1 ‖Xi‖2 → E[‖X1‖2] <∞ almost surely,

and ‖β̂kn − β‖ = oP(1), we have the consistency of bootstrap error distribution as follows:

d2(F̂n, F ) ≤ d2(F̂n, Fn) + d2(Fn, F ) ≤ C

√√√√n−1

n∑
i=1

(εi − ε̂i)2 + ε̄2 + d2(Fn, F )

≤ C

√√√√‖β̂kn − β‖2
(
n−1

n∑
i=1

‖Xi‖2
)

+ ε̄2 + d2(Fn, F )
P−→ 0.

The following propisition helps to prove the bootstrap consistency unconditional on X0.

Proposition 10. Proposition 3 holds even when X0 = X1.

Proof. It follows from Proposition 9 along with the same argument of the proof of Proposition 3

in the main paper.

Proof of the unconditional result of Theorem 2 in the main paper. One can show that as n→∞,

EX [v̂2
n(X1)] = σ2

ε

t̂hn(X1)

thn(X1)

P−→ σ2
ε ,

where v̂n(X1) ≡
√
n/thn(X1)〈Γ̂†hnUn, X1〉, by using Proposition 9 and the same argument in the

proof of Theorem 2. Therefore, the argument in the proof of Theorem 2 works even with X0 = X1

by Propositions 6-7 and 10, and we obtain

sup
y∈R
|P∗(v̂∗n(X∗0 ) ≤ y|Xn, X∗0 = X1)− Φ(y/σε)|

P−→ 0, (2.22)

where

v̂∗n(X∗0 ) ≡
√
n/thn(X∗0 )〈Γ̂†hnU

∗
n, X

∗
0 〉 =

√
n/thn(X∗0 )[〈β̂∗hn , X

∗
0 〉 − 〈Π̂gn β̂gn , X

∗
0 〉].

The bootstrap distribution of v̂∗n(X∗0 ) unconditional on X∗0 is given as

Ĝn(y) ≡ P∗(v̂∗n(X∗0 ) ≤ y|Xn) = E∗[P∗(v̂∗n(X∗0 ) ≤ y|Xn, X∗0 )] = n−1
n∑
i=1

Ĝn(y|Xi)
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where Ĝn(y|Xi) ≡ P∗(v̂∗n(X∗0 ) ≤ y|Xn, X∗0 = Xi) denotes the bootstrap distribution of v̂∗n(X∗0 )

conditional on X∗0 = Xi. We then have from the bounded convergence theorem and (2.22) that

E

[
sup
y∈R
|Ĝn(y)− Φ(y/σε)|

]
≤ n−1

n∑
i=1

E

[
sup
y∈R
|Ĝn(y|Xi)− Φ(y/σε)|

]

= E

[
sup
y∈R
|Ĝn(y|X1)− Φ(y/σε)|

]
→ 0

using that supy∈R |Ĝn(y|X1)−Φ(y/σε)|
d
= supy∈R |Ĝn(y|Xi)−Φ(y/σε)| for each i = 1, . . . , n. This

implies that

sup
y∈R
|Ĝn(y)− Φ(y/σε)|

P−→ 0. (2.23)

Consequently, we have the desired result by (2.21) and (2.23).

We now only need to show the detailed convergence rates that appear in Theorem 3 in the

main paper. The decomposition of the bootstrap bias term is re-stated here:

Π̂hn β̂gn − Π̂gn = (Π̂hn −Πhn)(β̂gn − β) + (Π̂hn −Πhn)β + (Πhn − I)(β̂gn − β) + (Πhn − I)β.

(2.24)

In (2.24), the quantities related to second and fourth terms can be dealt with by Proposition 17

and Lemma 9. In what follows, we investigate the rates of convergence of the quantities related to

the first and third terms in (2.24). Before seeing the details, the following two lemmas will be

proved.

Lemma 10. Suppose that gn > hn, {tgn(X0)− thn(X0)}−1 = OP(1), and n−1/2(gn − hn)2 → 0, as

n→∞. Then, as n→∞, we have we have

sup
y∈R

∣∣∣∣PX (√ n

tgn(X0)− thn(X0)

〈
(I −Πhn)Γ†gnUn, X0

〉
≤ y
)
− Φ(y/σε)

∣∣∣∣ P−→ 0.

Proof. The argument of the proof is similar to that in Proposition 2 in the main paper. Note that

〈Γ†gnUn, (I −Πhn)X0〉 =
∑n

i=1 Zi,n where Zi,n = n−1〈Γ†gnXi, (I −Πhn)X0〉εi. Note that
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EX [Zi,n] = 0 and

v2
n =

n∑
i=1

EX [Z2
i,n] =

σ2
ε

n2

n∑
i=1

〈
Γ†gnXi, (I −Πhn)X0

〉2

=
σ2
ε

n

〈
ΓnΓ†gn(I −Πhn)X0,Γ

†
gn(I −Πhn)X0

〉
=
σ2
ε

n
(An + tgn((I −Πhn)X0))

where An ≡ 〈(Γn − Γ)Γ†gn(I −Πhn)X0,Γ
†
gn(I −Πhn)X0〉 and

tgn((I −Πhn)X0) =
〈

Γ†gn(I −Πhn)X0, (I −Πhn)X0

〉
.

with

Γ†gn(I −Πhn)X0 =

gn∑
j=1

λ−1
j 〈(I −Πhn)X0, ej〉 ej =

gn∑
j=1

∑
l>hn

λ−1
j 〈X0, el〉 〈el, ej〉 ej

=

gn∑
j>hn

λ−1
j 〈X0, ej〉 ej .

We can write An = n−1
∑n

i=1Bi,n where

Bi,n ≡
〈

(Xi ⊗Xi − Γ)Γ†gn(I −Πhn)X0,Γ
†
gn(I −Πhn)X0

〉
.

By applying the same argument as the proof of Lemma 7, we have

Bi,n =
∑gn

j,l>hn
ξ0jξ0l {ξijξil − I(j = l)}, and thus,

E[A2
n] ≤ Cn−1(gn − hn)4,

which implies that An = OP (n−1/2(gn − hn)2). We next observe that

tgn((I −Πhn)X0) =

〈
gn∑

j>hn

λ−1
j 〈X0, ej〉 ej ,

∑
l>hn

〈X0, el〉 el

〉
=

gn∑
j>hn

λ−1
j 〈X0, ej〉2

tgn(X0)− thn(X0).

Then, E[tgn((I −Πhn)X0)] = gn − hn, which implies that tgn((I −Πhn)X0) = OP (gn − hn). As

n→∞, since {tgn(X0)− thn(X0)}−1 = OP(1) and n−1/2(gn − hn)2 → 0 by the assumptions, we

have

tgn((I −Πhn)X0)

An + tgn((I −Πhn)X0)
= 1 + oP (1),
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and the Lindeberg condition is satisfied by applying the same argument as the proof of

Proposition 2 in the main paper. Since

v−1
n

n∑
i=1

Zi,n =

√
n

σε(An + tgn((I −Πhn)X0))

〈
Γ†gnUn, (I −Πhn)X0

〉
=

√
tgn((I −Πhn)X0)

An + tgn((I −Πhn)X0)

√
n

σεtgn((I −Πhn)X0)

〈
Γ†gnUn, (I −Πhn)X0

〉
,

we finally have

sup
y∈R

∣∣∣∣PX (√ n

tgn(X0)− thn(X0)

〈
(I −Πhn)Γ†gnUn, X0

〉
≤ y
)
− Φ(y/σε)

∣∣∣∣ P−→ 0

as n→∞.

The second term in (2.24) is bounded as follows.

Proposition 11. Suppose that gn > hn with hn →∞ as n→∞. Then, as n→∞, we have

EX
[√

n

thn(X0)
|〈(Π̂hn −Πhn)(β̂gn − β), X0〉|

]

=OP

Mn,gnh
−1/2
n

hn∑
j=1

j log j

+OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

+ oP(1),

where for integer j ≥ 1, Mn,j is defined as

Mn,j = n−1
j∑
l=1

δ
−1/2
l (l log l)3/2 + n−1/2

(
j∑
l=1

λ−1
l

)1/2

+ n−1/2
j∑
l=1

l log l. (2.25)

Therefore, if n−1g4
n(log gn)2h3

n(log hn)2 → 0 (which is implied by g
vg
n = O(n) for some vg > 7),

then for each η > 0,

PX
(√

n

thn(X0)
|〈(Π̂hn −Πhn)(β̂gn − β), X0〉| > η

)
P−→ 0.
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Proof. Following the spirit of Remark 6, we ignore the remainder terms related to either Ecj or

Acn. Based on Lemmas 3-5 and the decomposition (3.38), one can see that

EX
[√

n

thn(X0)
|〈(Π̂hn −Πhn)(β̂gn −Πhnβ), X0〉|

]
=EX

[√
n

thn(X0)
|〈(β̂gn −Πhnβ), (Π̂hn −Πhn)X0〉|

]
≤EX

[√
n

thn(X0)
‖(β̂gn −Πhnβ)‖‖(Π̂hn −Πhn)X0‖

]

=OP

Mn,gnh
−1/2
n

hn∑
j=1

j log j

 .

Meanwhile, to bound the remaining part related to 〈(Π̂hn −Πhn)(I −Πgn), X0〉, we have

Π̂hn −Πhn =
1

2πι

hn∑
j=1

∫
Bj

{
(zI − Γn)−1 − (zI − Γ)−1

}
dz

= Sn +Rn + r1nIAc
n

as seen in the proof of Proposition 2 in [CMS], where

Sn =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1(Γn − Γ)(zI − Γ)−1dz,

Rn =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1(Γn − Γ)(zI − Γ)−1(Γn − Γ)(zI − Γn)−1dz.

Following the proof of Proposition 2 in [CMS], as n→∞, one can show that

n

hn
E
[
〈Sn(I −Πgn)β,X0〉2

]
≤ Ch−1

n

hn∑
l=1

λl

∑
l′>gn

|βl′ |
λ

1/2
l λ

1/2
l′

λl − λl′

2

≤ Ch−1
n

hn∑
l=1

λl

∑
l′>hn

|βl′ |
λ

1/2
l λ

1/2
l′

λl − λl′

2

→ 0,

which implies that
√

n
hn
〈Sn(I −Πgn)β,X0〉

P−→ 0. Second, note that ‖(I −Πgn)β‖ ≤
√∑

j>gn
β2
j .

Thus, following the proof of Proposition 2 in [CMS], as n→∞, we have

√
n

hn
〈Rn(I −Πgn)β,X0〉 = OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

+ oP(1),
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where the latter oP(1) is related to the event sets Ecj . Hence, as n→∞, we have that

√
n

thn(X0)

∣∣∣〈(Π̂hn −Πhn)(I −Πgn)β,X0〉
∣∣∣ = oP(1) +OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

 .

It now suffice to show that the convergence rete n−1g4
n(log gn)2h3

n(log hn)2 → 0 implies the

result. We observe from Cauchy-Schwarz inequality that as n→∞, if n−1
∑gn

j=1 δ
−2
j → 0, thenn−1/2g−1/2

n

gn∑
j=1

δ−1
j

2

= n−1g−1
n

 gn∑
j=1

δ−1
j

2

≤ n−1
gn∑
j=1

δ−2
j → 0,

n−1/4g−3/4
n

gn∑
j=1

δ
−1/2
j

2

= n−1/2g−3/2
n

 gn∑
j=1

δ
−1/2
j

2

≤ n−1/2g−1/2
n

gn∑
j=1

δ−1
j → 0.

From these, we have the desired result by showing that each term in Mn,gnh
−1/2
n

∑hn
j=1 log hn is

dominated by n−1g4
n(log gn)2h3

n(log hn)2 as follows.

1. The first term in Mn,gnh
−1/2
n

∑hn
j=1 log hn is bounded by

n−1


gn∑
j=1

δ
−1/2
j (j log j)3/2


h−1/2

n

hn∑
j=1

j log j


≤n−1g3/2

n (log gn)3/2

 gn∑
j=1

δ
−1/2
j

h3/2
n log hn

=

n−1/4g−3/4
n

gn∑
j=1

δ
−1/2
j

{n−3/4g9/4
n (log gn)3/2h3/2

n log hn

}

=o(1)

{
g3
n(log gn)2h2

n(log hn)4/3

n

}3/4

.
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2. The second term in Mn,gnh
−1/2
n

∑hn
j=1 log hn is bounded by

n−1/2

 gn∑
j=1

λ−1
j

1/2h−1/2
n

hn∑
j=1

j log j


≤n−1/2

 gn∑
j=1

δ−1
j

1/2

h3/2
n log hn

=

n−1/2g−1/2
n

gn∑
j=1

δ−1
j

1/2

n−1/4g1/4
n h3/2

n log hn

=o(1)

{
gnh

6
n(log hn)4

n

}1/4

.

3. The third term in Mn,gnh
−1/2
n

∑hn
j=1 log hn is bounded by

n−1/2


gn∑
j=1

j log j


h−1/2

n

hn∑
j=1

j log j


≤n−1/2g2

n log gnh
3/2
n log hn

=

{
g4
n(log gn)2h3

n(log hn)2

n

}1/2

.

The third term in (2.24) is bounded as follows.

Proposition 12. Suppose that gn > hn with hn →∞ as n→∞. As n→∞, if gn/hn → 1, we

have that

EX
[√

n

thn(X0)
|〈(I −Πhn)(β̂gn − β), X0〉|

]

=OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)2

+ oP(1) +OP

√ n

hn

∑
j>gn

λjβ2
j

 .

Therefore, if further, n−1/2h
5/2
n (log hn)2 → 0 (implied by n−1/2g

5/2
n (log gn)2 → 0) and Condition

B(u, v) are satisfied, then for each η > 0,

PX
(√

n

thn(X0)
|〈(I −Πhn)(β̂gn − β), X0〉| > η

)
P−→ 0.
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Proof. One can imagine that this can be verifed in a similar manner to the proof of the

generalized CLT because the target quantity is here the projection onto a truncated new predictor

(I −Πhn)X0 at the truncation level hn. We again study each term in this quantity based on the

decomposition (3.38).

1. The term
√
n/thn(X0)〈(I −Πhn)(Γ̂†gn − Γ†gn)Un, X0 is bounded as follows. Note that

(I −Πhn)X0 =
∑

l>hn
〈X0, el〉el. One can see that

‖(zI − Γ)−1/2(I −Πhn)X0‖2

=

∥∥∥∥∥∥
∑
l>hn

〈X0, el〉(zI − Γ)−1/2el

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
l>hn

〈X0, el〉(z − λl)−1/2el

∥∥∥∥∥∥
2

=
∑
l>hn

〈X0, el〉2(z − λl)−1 =
∑
l>hn

λlξ
2
l

|z − λl|
,

which implies that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2(I −Πhn)X0‖2

]
≤ Cj log j

as done by Lemma 1. Then, by a similar argument to the proof of Proposition 18, we have

EX
[√

n

thn(X0)
〈(I −Πhn)(Γ̂†gn − Γ†gn)Un, X0〉

]
= OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)2

 ,

√
n

thn(X0)
〈(I −Πhn)(Γ̂†gn − Γ†gn)Un, X0〉 = OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)2

 .

2. The term
√
n/thn(X0)〈(I −Πhn)Γ†gnUn, X0〉 is bounded as follows. Notice that√

n

thn(X0)
〈(I −Πhn)Γ†gnUn, X0〉

=

√
tgn(X0)− thn(X0)

thn(X0)

√
n

tgn(X0)− thn(X0)
〈Γ†gnUn, (I −Πhn)X0〉

=

√
tgn(X0)

thn(X0)
− 1

√
n

tgn(X0)− thn(X0)
〈Γ†gnUn, (I −Πhn)X0〉.

Suppose that gn/hn → 1 as n→∞. Then,

tgn(X0)

thn(X0)
− 1 =

hn
thn(X0)

tgn(X0)− thn(X0)

gn − hn
gn − hn
hn

= OP(1)OP(1)o(1) = oP(1).
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This implies from Lemma 10 that for any η > 0,

PX
(√

n

thn(X0)

∣∣∣〈(I −Πhn)Γ†gnUn, X0〉
∣∣∣ > η

)
−−−→
n→∞

0

as n→∞.

3. The term
√
n/thn(X0)〈(I −Πhn)(Π̂gn −Πgn)β,X0〉 is bounded as follows. As seen in the

proof of Proposition 17, we have

Π̂gn −Πgn =
1

2πι

gn∑
j=1

∫
Bj

{
(zI − Γn)−1 − (zI − Γ)−1

}
dz

= Sgn +Rgn + r1nIAc
n
,

where

Sgn =
1

2πι

gn∑
j=1

∫
Bj

(zI − Γ)−1(Γn − Γ)(zI − Γ)−1dz,

Rgn =
1

2πι

gn∑
j=1

∫
Bj

(zI − Γ)−1(Γn − Γ)(zI − Γ)−1(Γn − Γ)(zI − Γn)−1dz.

Following the proof of Proposition 2 in [CMS], we have

n

hn
E
[
〈Sgnβ, (I −Πhn)X0〉2

]
≤Ch−1

n

gn∑
l>hn

λl

∑
l′>gn

|βl′ |

√
λlλl′

λl − λl′

2

+ Ch−1
n

∑
l>gn

λl

∑
l′≤gn

|βl′ |
√
λlλl′

λl − λl′

2

.

If gn/hn = O(1), then as n→∞, we have that n
hn

E
[
〈Sgnβ, (I −Πhn)X0〉2

]
→ 0 as seen in

their proof, which implies that
√

n
hn
〈Sgnβ, (I −Πhn)X0

P−→ 0. Next, note that

(I −Πhn)X0 =
∑

l>hn
〈X0, el〉el. One can see that

‖(zI − Γ)−1/2(I −Πhn)X1‖2

=

∥∥∥∥∥∥
∑
l>hn

〈X1, el〉(zI − Γ)−1/2el

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
l>hn

〈X1, el〉(z − λl)−1/2el

∥∥∥∥∥∥
2

=
∑
l>hn

〈X1, el〉2(z − λl)−1 =
∑
l>hn

λlξ
2
l

|z − λl|

≤
∞∑
l=1

λlξ
2
l

|z − λl|
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which implies that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2(I −Πhn)X1‖2

]
≤ Cj log j

in a similar fashion to Lemma 1. Thus, following the proof of Proposition 2 in [CMS], as

n→∞, we have

√
n

hn
〈Rgnβ, (I −Πhn)X0〉 = OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)2

+ oP(1).

By (a) and (b), if gn/hn = O(1), we have

√
n

thn(X0)
〈(I −Πhn)(Π̂gn −Πgn)β,X0〉 = oP(1) +OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)2

 .

4. The term
√
n/thn(X0)〈(I −Πhn)(Πgn − I)β = −(I −Πhn)(I −Πgn)β,X0〉 is bounded as

follows. Notice that (I −Πhn)(I −Πgn) = I −Πhn∨gn = I −Πgn since gn > hn. Since

〈(I −Πgn)β,X0〉 =
∑

j>gn
βj〈X0, ej〉, we have

E [|〈(I −Πhn)(Πgn − I)β,X0〉|] ≤
√
E
[
|〈(I −Πgn)β,X0〉|2

]
=

√∑
j>gn

λjβ2
j ,

which gives us

√
n

thn(X0)
〈(I −Πhn)(Πgn − I)β,X0〉 = OP

√ n

hn

∑
j>gn

λjβ2
j

 .

Proof of Corollary 2 in the main paper. We first notice that kvkn = O(n) implies that

n−1/2k2
n(log kn)→ 0 and n−1

∑kn
j=1 δ

−2
j � n−1k2a+1

n → 0 as n→∞. This guarantees the

consistency of bootstrap error distribution in Theorem 6. The first part under gn ≤ hn follows

from the same argument as the proof of Corollary 6. We apply the same argument for the second

part. The dominating term for the non-random bias is here

n

hn

∑
j>gn

λj 〈β, ej〉2 ≤ Cng−1
n

∑
j>gn

j−a−2b � ng−a−2b+1
n .
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Suppose that n � gvgn where vg = {7 ∨ (2a+ 1)}+ κg for κg > 0. Then, we get the convergences

n−1/2g
7/2
n (log gn)(log hn)→ 0 and n−1

∑gn
j=1 δ

−2
j � n−1g2a+1

n → 0 as n→∞. Since

ng−a−2b+1
n =

n

g
vg
n
g
vg−(a+2b−1)
n ,

if vg < a+ 2b− 1, then it holds that n
hn

∑
j>gn

λj 〈β, ej〉2 = o(1), and the result follows by

Lemma 9.

Proofs of Corollary 3 in the main paper. One can show the asymptotic normality and the

bootstrap consistency for any linear combination
∑n0

i0=1 ai0Xi0 following the same argument of

those for single new predictor. The result of Corollary 3 then follows by the Wold device

(Theorem 10.4.5 of [2]) and the continuous mapping theorem (Theorem 9.4.2 of [2]).

Proof of Corollary 4 in the main paper. We first consider the individaul prediction of response Y0

with single new predictor X0. To establish the result, the proof is based on a subsequence

argument (cf. Theorem 20.5 of [4]). Let {n′} ⊆ {n} be a subsequence of {n}. Then, due to

Theorems 5-6 and Theorem 3 in the main paper (where distributional convergence holds

conditionally on X0 and X∗0 = X0 and thereby also when removing conditioning on X0), there

exists a further subsequence {n′′} and an almost sure event D ∈ F such that

supy∈R |P(Tn′′ ≤ y|Xn′′)− Φ(y/σε)| → 0, supy∈R |P∗(T ∗n′′ ≤ y|Xn′′)− Φ(y/σε)| → 0,√
n′′/thn′′ (X0)→∞, and d2(F̂n′′ , F )→ 0 as n′′ →∞ on D, where

Tn′′ ≡
√
n/thn′′ (X0)[〈β̂hn′′ , X0〉 − 〈β,X0〉],

T ∗n′′ ≡
√
n/thn′′ (X0)[〈β̂∗hn′′ , X0〉 − 〈β̂gn′′ , X0〉],

and F̂n′′ denotes the empirical distribution function of the centered residuals, while F denotes the

distribution function of an error ε0. It then holds that 〈β̂hn′′ , X0〉 − 〈β,X0〉
d−→ 0 and

〈β̂∗hn′′ , X
∗
0 〉 − 〈β̂gn′′ , X

∗
0 〉

d−→ 0 along the sequences {P(·|Xn′′)} and {P∗(·|Xn′′)}, respectively, on D.

This implies by Slutksy’s theorem (Theorem 9.1.6 of [2]) that

Y0 − Ŷ0 = 〈β,X0〉 − 〈β̂hn′′ , X0〉+ ε0
d−→ ε0,

Y ∗0 − Ŷ ∗0 = 〈β̂gn′′ , X0〉 − 〈β̂∗hn′′ , X0〉+ ε∗0
d−→ ε0,
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as n′′ →∞ along the sequences {P(·|Xn′′)} and {P∗(·|Xn′′)}, respectively, on D, using that the

conditional distribution of ε0 given Xn is F (the unconditional distribution of ε0) by independence

while the bootstrap distribution of ε∗0 is F̂n′′ (which converges weakly to F ). Since convergence in

the Levy metric is equivalent to weak convergence (cf. Problem 9.18 of [2]), we have

dL(Y0 − Ŷ0|Xn′′ , Y ∗0 − Ŷ ∗0 |Xn′′) ≤ dL(Y0 − Ŷ0|Xn′′ , ε0) + dL(Y ∗0 − Ŷ ∗0 |Xn′′ , ε0)→ 0

as n′′ → 0 on D. Due to Theorem 20.5 of [4], we derive dL(Y0 − Ŷ0|Xn, Y ∗0 − Ŷ ∗0 |Xn)
P−→ 0 as

n→∞. Simultaneous prediction result follows from the same argument as the proof of

Corollary 3.

2.10 Additional simulation results

2.10.1 Other scenarios under consideration

In addition to the set-ups for simulation described in Section 2.5.1 of the main paper, we

consider the following choices of FPC scores to obtain uncorrelated (but possibly dependent)

sequence and error distributions:

(FPC1) Define ξj = ξWj where ξ ∼ N(0, 1) and Wj are iid with P(Wj = 1) = 1/2 = P(Wj = −1).

(FPC2) Define ξj = ξWj where ξ ∼ N(0, 1), Wj
iid∼ N(0, 1), and ξ and {Wj} are independent.

(FPC3) let ξj = VjWj , where {Wj} are iid N(0, 1) variables and, independently, let {Vj} be a

stationary autoregressive process such that each Vj ∼ N(0, 1) and Vj+1|Vj ∼ N(0.5Vj , 1.5).

(E1) εi
iid∼ N(0, σ2

ε) with σ2
ε = 2.

(E2) εi
iid∼ t(νε) with σ2

ε = 2 and νε = 4.

(E3) εi
iid∼ U(−a, a) with a =

√
6 so that σ2

ε = 2.

It can be shown that the random variables in the sequence {ξj} are uncorrelated but not

independent because E[ξ2
j ξ

2
j′ ] 6= E[ξ2

j ]E[ξ2
j′ ] for each distinct j, j′ ∈ N Since all the results show a
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similar pattern, we report only the results from the third types (FPC3) and (E3) of FPC scores

and error term, respectively, considered above.

2.10.2 Sampling distributions

The finite sampling distributions of the target quantities
√
n/thn(X0)[〈β̂hn , X0〉 − 〈β,X0〉] and√

n/hn[〈β̂hn , X0〉 − 〈β,X0〉] are investigated in this section based on the scenarios described as

above and in Section 2.5.1 of the main paper. In addition to Figure 2.1 of the main paper,

Figures-2.8-2.11 show the kernel-estimated densities of these sampling distributions with different

choice of tuning parameters hn ∈ {1, . . . , 15} and M = 1000 Monte Carlo simulation size.

For each m = 1, . . . ,M , perform the following.

1. Simulate independent X1, . . . , Xn with Xi
d
= X and εi

iid∼ N(0, 1) for i = 1, . . . , n, and

independently simulate X0
d
= X and ε0 ∼ N(0, 1). Then, generate Y1, . . . , Yn and Y0 as

Yi = 〈β,Xi〉+ εi for i = 1, . . . , n and Y0 = 〈β,X0〉 = ε0.

2. Compute Γ†hn , Π†hn , Γ̂†hn , Π̂hn , ∆n, Un, and β̂hn to get the components in the decomposition

of β̂hn − β:

β̂hn − β = (Γ̂†hn − Γ†hn)Un + Γ†hnUn + (Π̂hn −Πhn)β + Πhnβ − β.

The tuning parameter hn is here given as hn = [n1/vk ] where vk = 2a+ 1 + κk for some

small κk > 0 and [a] denote the nearest integer of a ∈ R. We also compute thn(X0) and

t̂hn(X0). For further purposes, some quantities for prediction are also computed:

Ŷ0 =
〈
β̂hn , X0

〉
and ε̂0 = Y0 − Ŷ0.

3. Store the following quantities.

- Variance term: Γ†hnUn.

- Random bias term 1: (Γ̂†hn − Γ†hn)Un.

- Random bias term 2: (Π̂hn −Πhn)β.

- Non-random bias term: Πhnβ − β.
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- Truncated and non-truncated roots: β̂hn −Πhnβ and β̂hn − β.

- Scaling factors: thn(X0), t̂hn(X0) and hn.

- Ŷ0 and ε̂0.

Although we store all the quantities, for brevity, we only show the pictures for our main quantities

T1 ≡
√
n/thn(X0)[〈β̂hn , X0〉 − 〈β,X0〉] and T2 ≡

√
n/hn[〈β̂hn , X0〉 − 〈β,X0〉] in Figures 2.8-2.11.

2.10.3 Coverage rates when the new predictor is random

We will examine the empirical coverage rates and average widths for intervals when the new

predictor X0 is random, as these were not included in Section 2.5.2 of the main paper. At each

Monte Carlo iteration, we simulate the new predictor X0 (along with the corresponding error ε0)

as well as the data samples {(Xi, Yi)}ni=1. Here, the Monte Carlo simulation size M and the

bootstrap sample size Q are given as M = 1000 = Q. Figures 2.12-2.13 shows the empirical

coverage rates and average widths for each interval when the new predictor X0 is random.

The simulation are conducted as follows. For each m = 1, . . . ,M , perform the following.

1. (Simulation) Simulate Xi with Xi
d
= X and εi

d
= ε, where {(Xi, εi)}ni=1 are independent, and

compute Yi = 〈β,Xi〉+ εi for i = 1, . . . , n. Also, for prediction purpose, simulate X0
d
= X

and ε0
d
= ε, where (X0, ε0) is independent of {(Xi, εi)}ni=1, and compute Y0 = 〈β,X0〉+ ε0.

2. (Residuals) Compute the residuals ε̂i = Yi − 〈β̂kn , Xi〉 and the centered residuals ε̃i = ε̂i − ¯̂ε

for i = 1, . . . , n.

3. (Residual bootstrap) To approximate the bootstrap distribution, do the following for each

q = 1, . . . , Q.

(a) Draw independent bootstrap error {ε∗q,i}ni=1 and ε∗q,0 from the uniform distribution on

the centered residuals {ε̃i}ni=1.

(b) Compute the bootstrap responses Y ∗q,i = 〈β̂gn , Xi〉+ ε∗q,i, and construct the bootstrap

estimate β̂∗q,hn based on the bootstrap samples {(Xi, Y
∗
q,i)}ni=1.
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(c) For prediction purporse, set Y ∗q,0 = 〈β̂gn , X0〉+ ε∗q,0 from the estimate β̂gn , and compute

the bootstrap prediction error ε̂∗q,0 = Ŷ ∗q,0 − Y ∗q,0 to approximate the prediction error

ε̂0 = Ŷ0 − Y0 where Ŷ ∗q,0 = 〈β̂∗q,hn , X0〉 and Ŷ0 = 〈β̂hn , X0〉.

4. (Intervals based on the residual bootstrap)

For all cases, construct the following confidence intervals for 〈Πhnβ,X0〉 and for 〈β,X0〉 and

prediction intervals for Y0 based on the residual bootstrap.

(a) Compute the α/2 and 1− α/2 quantiles of {〈β̂∗q,hn − Π̂hn β̂gn , X0〉}Qq=1, say l and u.

Then, the confidence interval for 〈Πhnβ,X0〉 is

CItrunc =
[
〈β̂hn , X0〉 − u, 〈β̂hn , X0〉 − l

]
.

(b) Compute the α/2 and 1− α/2 quantiles of {〈β̂∗q,hn − β̂gn , Xm,0〉}Qq=1, say l and u. Then,

the confidence interval for 〈β,X0〉 is

CI =
[
〈β̂hn , X0〉 − u, 〈β̂hn , X0〉 − l

]
.

(c) Compute the α/2 and 1− α/2 quantiles of {ε̂∗q,0}
Q
q=1, say l and u. Then, the prediction

interval for Y0 is

PI =
[
Ŷ0 − u, Ŷ0 − l

]
.

5. (Intervals based on the central limit theorem) For all cases, construct the following

confidence intervals for 〈Πhnβ,X0〉 and for 〈β,X0〉 and prediction intervals for Y0 based on

central limit theorem.

(a) The confidence interval for 〈Πhnβ,X0〉 is

CItrunc =

〈β̂hn , X0〉 − σ̂εz1−α/2

√
t̂hn(X0)

n
, 〈β̂hn , X0〉+ σ̂εz1−α/2

√
t̂hn(X0)

n

 .
(b) The confidence interval for 〈β,Xm,0〉 is

CI =

〈β̂hn , X0〉 − σ̂εz1−α/2

√
t̂hn(X0)

n
, 〈β̂hn , X0〉+ σ̂εz1−α/2

√
t̂hn(X0)

n

 .
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(c) The prediction interval for Y0 is

PI =

Ŷ0 − σ̂εz1−α/2

√
t̂hn(X0)

n
+ 1, Ŷ0 + σ̂εz1−α/2

√
t̂hn(X0)

n
+ 1

 .
6. Let T0 denote the target quantity, either 〈Πhnβ,X0〉, 〈β,X0〉, or Y0, and I denote the

corresponding interval constructed above, i.e., either CItrunc, CI, or PI, for each method

(one of the residual bootstrap and the central limit theorem). Compute Im = I(T0 ∈ I).

The coverage probability 1− α is then approximated by M−1
∑M

m=1 Im.

Figures 2.12-2.13 respectively provide an illustration of empirical coverage rates and average

widths for each interval with different tuning parameters hn and gn under the scenarios

considered.

2.10.4 Coverage rates when the new predictor is fixed

In addition to the results in Section 2.5.3 of the main paper, we provide further coverage

probabilities and average widths for the following intervals when the new predictors {X0,i0}
n0
i0=1

are fixed.

- Individual confidence intervals (ICIs) for 〈Πhnβ,X0〉 and 〈β,X0〉 based on residual bootstrap

and central limit theorem. These are referred to as ICI trunc and ICI, respectively.

- Individual prediction intervals (IPIs) for Y0 = 〈β,X0〉+ ε0 based on residual bootstrap and

central limit theorem. This is referred to as IPI.

- Simultaneous confidence intervals (SCIs) for 〈Πhnβ,X0〉 and 〈β,X0〉 based on residual

bootstrap either with or without studentization. These are referred to as SCI trunc and SCI

without studentization and SCI trunc std and SCI std with studentization, respectively.

- Simultaneous prediction intervals (SPIs) for Y0 = 〈β,X0〉+ ε0 based on residual bootstrap

either with or without studentization. These are SPI trunc std and SPI std with

studentization, respectively.
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As seen in the below construction, the SCI std and SPI are constructed based on Corollaries 3-4

in the main paper. However, in practice, it turns out from our simulation that the studentization

does not have a substantial effect in terms of empirical coverage rates and average widths.

In contrast to the case when the new predictor is random, here we simulate the new predictors

{X0,i0}
n0
i0=1 and fix it before the Monte Carlo iteration. We now describe the detailed procedure of

simulation. The Monte Carlo simulation size M and the bootstrap sample size Q are again

provided as M = 1000 = Q. Given the new predictors {X0,i0}
n0
i0=1, for each m = 1, . . . ,M ,

perform the following.

1. (Simulation) Simulate Xi with Xi
d
= X and εi

d
= ε, where {(Xi, εi)}ni=1 are independent, and

compute Yi = 〈β,Xi〉+ εi for i = 1, . . . , n. Also, for prediction purpose, simulate

independent ε0,i0
d
= ε for i0 = 1, . . . , n0, where {ε0,i0}

n0
i0=1 is independent of {(Xi, εi)}ni=1,

and compute Y0,i0 = 〈β,X0,i0〉+ ε0,i0 for i0 = 1, . . . , n0.

2. (Residuals) Compute the residuals ε̂i = Yi − 〈β̂kn , Xi〉 and the centered residuals ε̃i = ε̂i − ¯̂ε

for i = 1, . . . , n.

3. (Residual bootstrap) For q = 1, . . . , Q, do the following.

(a) Draw independent bootstrap error ε∗q,i for i = 1, . . . , n and ε∗q,0,i0 from the uniform

distribution on the centered residuals {ε̃i}ni=1

(b) Compute the bootstrap responses Y ∗q,i = 〈β̂gn , Xi〉+ ε∗q,i from the estimate β̂gn , and

construct the bootstrap estimate β̂∗q,hn based on the bootstrap samples {(Xi, Y
∗
q,i)}ni=1.

(c) For prediction purporse, for each i0 = 1, . . . , n0, set Y ∗q,0,i0 = 〈β̂gn , X0,i0〉+ ε∗q,0,i0 , and

compute the bootstrap prediction error ε̂∗q,0,i0 = Ŷ ∗q,0,i0 − Y
∗
q,0,i0

to approximate the

prediction error ε̂0,i0 = Ŷ0,i0 − Y0,i0 where Ŷ ∗q,0,i0 = 〈β̂∗q,hn , X0,i0〉 and Ŷ0,i0 = 〈β̂hn , X0,i0〉.

4. (Intervals based on the residual bootstrap) Construct the following intervals based on the

residual bootstrap.

(a) ICIs for {〈Πhnβ,X0,i0〉}
n0
i0=1.
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Compute the 100(1−α/2)% and 100(α/2)% quantiles of {〈β̂∗q,hn − Π̂q,hn β̂gn , X0,i0〉}
Q
q=1,

say ui0 and li0 . Then, the ICIs for {〈Πhnβ,X0,i0〉}
n0
i0=1 are

ICItrunci0 =
[
〈β̂hn , X0,i0〉 − ui0 , 〈β̂hn , X0,i0〉 − li0

]
.

(b) ICIs for {〈β,X0,i0〉}
n0
i0=1.

Compute the 100(1− α/2)% and 100(α/2)% quantiles of {〈β̂∗q,hn − β̂gn , X0,i0〉}
Q
q=1, say

ui0 and li0 . Then, the ICIs for {〈β,X0,i0〉}
n0
i0=1 are

ICIi0 =
[
〈β̂hn , X0,i0〉 − ui0 , 〈β̂hn , X0,i0〉 − li0

]
.

(c) SCIs for {〈Πhnβ,X0,i0〉}
n0
i0=1.

Compute the 100(1− α/2)% quantile of {max1≤i0≤n0 |〈β̂∗q,hn − Π̂hn β̂gn , X0,i0〉|}
Q
q=1, say

u. Then, the SCIs for {〈Πhnβ,X0,i0〉}
n0
i0=1 are

SCItrunci0 =
[
〈β̂hn , X0〉 − u, 〈β̂hn , X0〉+ u

]
.

(d) SCIs for {〈β,X0,i0〉}
n0
i0=1.

Compute the 100(1− α/2)% quantile of {max1≤i0≤n0 |〈β̂∗q,hn − β̂gn , X0,i0〉|}
Q
q=1, say u.

Then, the SCIs for {〈β,X0,i0〉}
n0
i0=1 are

SCIi0 =
[
〈β̂hn , X0〉 − u, 〈β̂hn , X0〉+ u

]
.

(e) Studentized SCIs for {〈Πhnβ,X0,i0〉}
n0
i0=1.

Compute the 100(1− α/2)% quantile of max
1≤i0≤n0

|〈β̂∗q,hn − Π̂hn β̂gn , X0,i0〉|√
t̂hn(X0,i0)


Q

q=1

,

say u. Then, the studentized SCIs for {〈Πhnβ,X0,i0〉}
n0
i0=1 are

SCItrunc,stdi0
=

[
〈β̂hn , X0〉 −

√
t̂hn(X0,i0)u, 〈β̂hn , X0〉+

√
t̂hn(X0,i0)u

]
.

(f) Studentized SCIs for {〈β,X0,i0〉}
n0
i0=1.
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Compute the 100(1− α/2)% quantile of max
1≤i0≤n0

∣∣∣〈β̂∗q,hn − β̂gn , X0,i0〉
∣∣∣√

t̂hn(X0,i0)


Q

q=1

,

say u. Then, the studentized SCIs for {〈β,X0,i0〉}
n0
i0=1 are

SCIstdi0 =

[
〈β̂hn , X0〉 −

√
t̂hn(X0,i0)u, 〈β̂hn , X0〉+

√
t̂hn(X0,i0)u

]
.

(g) IPIs for {Y0,i0}
n0
i0=1.

Compute the 100(1− α/2)% and 100(α/2)% quantiles of {ε̂∗q,0,i0}
Q
q=1, say ui0 and li0 .

Then, the IPIs for {Y0,i0}
n0
i0=1 are

IPIi0 = [Ŷ0,i0 − ui0 , Ŷ0,i0 − li0 ].

(h) SPIs for {Y0,i0}
n0
i0=1

Compute the 100(1− α/2)% quantile of
{

max1≤i0≤n0

∣∣∣Y ∗0,i0,q − Ŷ ∗0,i0,q∣∣∣}Qq=1
, say u.

Then, the SPIs for {Y0,i0}
n0
i0=1 are

SPIi0 = [Ŷ0,i0 − u, Ŷ0,i0 + u].

(i) Studentized SPIs for {Y0,i0}
n0
i0=1

Compute the 100(1− α/2)% quantile of max
1≤i0≤n0

∣∣∣Y ∗0,i0,q − Ŷ ∗0,i0,q∣∣∣√
t̂hn(X0,i0)/n+ 1


Q

q=1

,

say u. Then, the studentized SPIs for {Y0,i0}
n0
i0=1 are

SPIstdm =

[
Ŷ0,i0 −

√
t̂hn(X0,i0)/n+ 1u, Ŷ0,i0 +

√
t̂hn(X0,i0)/n+ 1u

]
.

5. (Intervals based on central limit theorem) For each case, construct the following intervals

based on central limit theorem.
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(a) ICIs for {〈Πhnβ,X0,i0〉}
n0
i0=1:

ICItrunci0 =

〈β̂hn , X0,i0〉 − z1−α/2

√
t̂hn(X0,i0)

n
, 〈β̂hn , X0,i0〉+ z1−α/2

√
t̂hn(X0,i0)

n

 .
(b) ICIs for {〈β,X0,i0〉}

n0
i0=1:

ICIi0 =

〈β̂hn , X0,i0〉 − z1−α/2

√
t̂hn(X0,i0)

n
, 〈β̂hn , X0,i0〉+ z1−α/2

√
t̂hn(X0,i0)

n

 .
(c) IPIs for {Y0,i0}

n0
i0=1:

IPIi0 =

Ŷ0,i0 − z1−α/2

√
t̂hn(X0,i0)

n
+ 1, Ŷ0,i0 + z1−α/2

√
t̂hn(X0,i0)

n
+ 1

 .
6. Let {T0,i0}

n0
i0=1 denote the target quantities, either {〈Πhnβ,X0,i0〉}

n0
i0=1, {〈β,X0,i0〉}

n0
i0=1, or

{Y0,i0}
n0
i0=1. Also, {IIi0}

n0
i0=1 denote the corresponding individual intervals constructed

above, i.e., either {ICItrunci0
}n0
i0=1, {ICIi0}

n0
i0=1, or {IPIi0}

n0
i0=1, for each method (one of the

residual bootstrap and the central limit theorem). Finally, {SIi0}
n0
i0=1 denote the

corresponding simultaneous intervals constructed above, that are either studentized or not,

i.e., either {SCItrunci0
}n0
i0=1, {SCIi0}

n0
i0=1, {SCItrunc,stdi0

}n0
i0=1, or {SCIstdi0 }

n0
i0=1.

The coverage probabilities for individual intervals are approximated by

1− α̂i0 = M−1
M∑
m=1

I(T0,i0 ∈ IIi0)

for each i0 = 1, . . . , n0, and those for simultaneous intervals are approximately computed as

1− α̂ = M−1
M∑
m=1

I(T0,i0 ∈ SIi0 , ∀i0 = 1, . . . , n0).

We have the results for two sets of new predictors. One consists of the first five eigenfunctions

V1 = {e1, . . . , e5}. Figures 2.14-2.16 show the empirical coverage rates of ICIs for

{〈Πhnβ,X0,i0〉}
n0
i0=1, ICIs for {〈β,X0,i0〉}

n0
i0=1, and IPIs for {Y0,i0}

n0
i0=1, respectively, while the

corresponding average widths are displayed in Figures 2.17-2.18. Note that the widths of ICIs for

the truncated and original projections are equal due to their construction based on residual
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bootstrap. Empirical coverage rates of SCIs for {〈Πhnβ,X0,i0}
n0
i0=1, SCIs for {〈β,X0,i0}

n0
i0=1, and

SPIs for {Y0,i0}
n0
i0=1 are provided in Figure 2.19. In Figure 2.20, we illustrate the average widths

of non-studentized SCIs and SPIs. As these are not based on studentization, the widths do not

depend on each of the new predictors. Meanwhile, the average wdiths of studentized SCIs and

SPIs are given in Figures 2.21-2.22 since studentization causes the widths to depend on the new

predictors. As above, the widths of studentized SCIs for the truncated and original projections

are equal. In the other set V2, the new predictors X0,i0 are independently drawn from the model

X
d
=
∑J

j=1

√
λjξjej introduced in Section 2.5.1 of the main paper. Figures 2.23-2.31 shows the

results for V2 where the panels are arranged in the same order as the figures for V1.

2.11 Additional details regarding real data analysis

In this section, we provide further background for real data analysis on wheat moisture data

from Section 2.6 of the main paper.

2.11.1 Selection of the tuning parameter kn by using a cross-validation method

based on prediction error

When we conduct the residual bootstrap procedure in practice, one can choose the tuning

parameter kn for determining residuals by a cross-validation method based on a certain measure

such as the prediction error. We refer to [1] for a general overview of cross-validation methods. In

our real data analysis, the procedure of selecting kn is as follows. For a given kn and each

m = 1, . . . ,M , perform the following.

1. Divide the samples into training and testing samples with sizes ntr and ntest, respectively,

with ntr + ntest = n. Write Itr and Itest for the corresponding index sets.

2. Compute the estimator β̂kn,tr with the tuning parameter kn based on the training sample

{(Xi, Yi) : i ∈ Itr}.
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3. Compute the prediction error PEm(kn) = n−1
test

∑
i∈Itest(Yi − 〈β̂kn,tr, Xi〉)2 of β̂kn,tr based on

the testing sample {(Xi, Yi) : i ∈ Itest}.

We now compute the estimate P̂E(kn) of the true prediction error as

P̂E(kn) ≡M−1
M∑
m=1

PEm(kn).

Among some pilot tuning parameters (e.g., {1, . . . , 20}) for kn, one can choose one that minimizes

the estimated prediction error P̂E(kn).

2.11.2 Symmetrized intervals based on the residual bootstrap

One may construct a symmetrized version of individual confidence or prediction intervals

based on the residual bootstrap. For simplicity, we describe this only with ICI for untrucated

projection 〈β,X0〉 and IPI for the new response Y0. We first supppose that we have the bootstrap

samples, which provides the bootstrap estimators {β̂∗hn,q}
Q
q=1 and the bootstrap new response

{Y ∗q,0}
Q
q=1, where Q denotes the Monte Carlo size to approximate the bootstrap distribution.

Then, the symmetrized ICI/IPI are obtained as follows.

1. (ICI) Compute the 100(1− α/2)% quantiles of {|〈β̂∗hn,q − β̂gn , X0〉|}Qq=1, say u. Then, the

symmetrized confidence interval for 〈β,X0〉 is

ICI =
[
〈β̂hn , X0〉 − u, 〈β̂hn , X0〉+ u

]
.

2. (IPI) Compute the 100(1− α/2)% quantiles of {|Ŷ ∗q,0 − Y ∗q,0}
Q
q=1, say u, where

Ŷ ∗q,0 ≡ 〈β̂∗hn,q, X0〉. Then, the symmetrized confidence interval for Y0 is

IPI =
[
〈β̂hn , X0〉 − u, 〈β̂hn , X0〉+ u

]
.

2.11.3 New predictor functions under consideration

The following functions are the new regressor functions that are considered in the real data

analysis as described in Figure 2.7 of the main paper.
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1. Overall shift: XOS,1(t) = 0.25, XOS,2(t) = 0.15, XOS,3(t) = 0.05, XOS,4(t) = −0.05,

XOS,5(t) = −0.15, XOS,6(t) = −0.25

2. Simiple functions: write I1(t) = I(t ≤ 1400), I2(t) = I(1400 < t ≤ 1900), I3(t) = I(t > 1900),

and define Xsim,1 = 0.1 · I1, Xsim,2 = 0.1 · I2, Xsim,3 = 0.1 · I3, Xsim,4 = −0.1 · I1,

Xsim,5 = −0.1 · I2, Xsim,6 = −0.1 · I3.

3. Sums of two simple functions:

- XSS,1 = 0.1 · I1 + 0.05 · I2, XSS,2 = 0.1 · I2 + 0.05 · I3, XSS,3 = 0.1 · I3 + 0.05 · I1,

- XSS,4 = −XSS,1, XSS,5 = −XSS,2, XSS,6 = −XSS,3.

2.11.4 Estimated slop function for the wheat data

In Figure 2.32, we provide an illustration of the estimated slope functions used in bootstrap

inference with different tuning parameters kn = 4, hn = 9, and gn = 5.

Figure 2.32: Estimated slope functions with the selected tuning parameters kn = 4, hn = 9, and

gn = 5
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[10] Dezeure, R., Bühlmann, P., and Zhang, C.-H. High-dimensional simultaneous
inference with the bootstrap. Test 26, 4 (2017), 685–719.

[11] Dunford, N., and Schwartz, J. T. Linear Operators, Part 1: General Theory, vol. 10.
John Wiley & Sons, 1988.

[12] Ferraty, F., and Vieu, P. Nonparametric Functional Data Analysis: Theory and
Practice. Springer Science & Business Media, 2006.

[13] Franke, J., and Hardle, W. On bootstrapping kernel spectral estimates. The Annals of
Statistics (1992), 121–145.

[14] Freedman, D. A. Bootstrapping regression models. The Annals of Statistics 9, 6 (1981),
1218–1228.

[15] Gervini, D. Dynamic retrospective regression for functional data. Technometrics 57, 1
(Jan. 2015), 26–34. Publisher: Taylor & Francis.



114
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[20] Horváth, L., and Kokoszka, P. Inference for Functional Data with Applications,
vol. 200. Springer Science & Business Media, 2012.

[21] Hsing, T., and Eubank, R. Theoretical Foundations of Functional Data Analysis, with an
Introduction to Linear Operators, vol. 997. John Wiley & Sons, 2015.

[22] Kalivas, J. H. Two data sets of near infrared spectra. Chemometrics and Intelligent
Laboratory Systems 37, 2 (1997), 255–259.

[23] Khademnoe, O., and Hosseini-Nasab, S. M. E. On asymptotic distribution of
prediction in functional linear regression. Statistics 50, 5 (2016a), 974–990.

[24] Khademnoe, O., and Hosseini-Nasab, S. M. E. On properties of percentile bootstrap
confidence intervals for prediction in functional linear regression. Journal of Statistical
Planning and Inference 170 (2016b), 129–143.

[25] Kokoszka, P., and Reimherr, M. Introduction to Functional Data Analysis. CRC Press,
2017.

[26] Kreiss, J.-P., and Franke, J. Bootstrapping stationary autoregressive moving-average
models. Journal of Time Series Analysis 13, 4 (1992), 297–317.

[27] Morris, J. S. Functional regression. Annual Review of Statistics and Its Application 2
(2015), 321–359.

[28] Pan, L., and Politis, D. N. Bootstrap prediction intervals for linear, nonlinear and
nonparametric autoregressions. Journal of Statistical Planning and Inference 177 (2016),
1–27.

[29] Ramsay, J., and Silverman, B. W. Functional Data Analysis. Springer Series in
Statistics. Springer-Verlag New York, 2005.



115

[30] Ratcliffe, S. J., Leader, L. R., and Heller, G. Z. Functional data analysis with
application to periodically stimulated foetal heart rate data. I: functional regression.
Statistics in Medicine 21, 8 (Apr. 2002), 1103–1114.

[31] Schlenker, W., and Roberts, M. J. Nonlinear temperature effects indicate severe
damages to U.S. crop yields under climate change. Proceedings of the National Academy of
Sciences 106, 37 (Sept. 2009), 15594–15598. Publisher: National Academy of Sciences
Section: Social Sciences.

[32] Wang, J.-L., Chiou, J.-M., and Müller, H.-G. Functional data analysis. Annual
Review of Statistics and its Application 3 (2016), 257–295.

[33] Wu, C.-F. J. Jackknife, bootstrap and other resampling methods in regression analysis. the
Annals of Statistics 14, 4 (1986), 1261–1295.

[34] Yeon, H., Dai, X., and Nordman, D. J. Supplement to “bootstrap inference in
functional linear regression models with scalar response”.



116

CHAPTER 3. BOOTSTRAP INFERENCE IN FUNCTIONAL LINEAR

REGRESSION MODELS WITH SCALAR RESPONSE UNDER

HETEROSCEDASTICITY

Modified from a manuscript submitted to the Annals of Statistics

Hyemin Yeon1, Xiongtao Dai2, and Daniel John Nordman1

1Department of Statistics, Iowa State University

2Division of Biostatistics, University of California, Berkeley

Abstract

Inference for functional linear models in the presence of heteroscedastic errors has received

insufficient attention given its practical importance; in fact, even a central limit theorem has not

been studied in this case. At issue, conditional mean (projection of the slope function) estimates

have complicated sampling distributions due to the infinite dimensional regressors, which create

truncation bias and scaling problems that are compounded by non-constant variance under

heteroscedasticity. As a foundation for distributional inference, we establish a central limit

theorem for the estimated projection under general dependent errors, and subsequently we

develop a paired bootstrap method to approximate sampling distributions. The proposed paired

bootstrap does not follow the standard bootstrap algorithm for finite dimensional regressors, as

this version fails outside of a narrow window for implementation with functional regressors. The

reason owes to a bias with functional regressors in a naive bootstrap construction. Our bootstrap

proposal incorporates debiasing and thereby attains much broader validity and flexibility with

truncation parameters for inference under heteroscedasticity; even when the naive approach may

be valid, the proposed bootstrap method performs better numerically. The bootstrap is applied to

construct confidence intervals for projections and for conducting hypothesis tests for the slope
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function. Our theoretical results on bootstrap consistency are demonstrated through simulation

studies and also illustrated with real data examples.

3.1 Introduction

In classical linear models, bootstrap methods have been developed for several decades under

either homoscedastic or heteroscedastic error assumptions. [22] first studied residual and paired

bootstrap methods for approximating the sampling distribution of the least square estimator in

multiple linear regression models. These bootstraps are intended, respectively, for handling

homoscedastic or heteroscedastic error cases. Both bootstrap methods have been investigated in

other contexts as well, for example, in nonparametric [29] or high-dimensional [20] regression

problems.

Figure 3.1: Estimated standard deviations for each region over different truncation levels used in

estimation

In a functional linear regression model (FLRM), bootstrap inference is likewise valuable but

also more complicated due to the infinite dimensionality of the underlying function space. A main

issue with functional regressors is that a truncation bias arises in estimators of the conditional

mean, because of the infinite dimensional regressor and slope function involved, which imposes

challenges for even central limit theorems [12, 53]. Existing works on both the central limit



118

theorem (CLT) and (residual/wild) bootstrap for functional linear regression models (FLRMs)

have focused exclusively on homogeneous error variance models [25, 53], while either avoiding or

accommodating this bias issue. In fact, beyond homoscedasticity assumptions, more stringent

conditions of independence between regressors and errors are also commonly imposed in FLRM

literature [6] and especially for hypothesis testing [8, 11, 31, 40, 41]. However, heteroscedastic

error variances are commonly observed in practice. For illustration, Figure 3.1 shows the

estimated standard deviations of residuals from an FLRM fit to a Canadian weather dataset

(cf. Section 3.6) over different geographical regions. Each regressor curve represents averaged

daily temperatures measured at a different location contained in one of the four regions in

Canada: Atlantic, Continental, Pacific, and Arctic regions, where the associated response is the

total annual precipitation on the log scale. As variances appear to differ across regions, it seems

natural here to avoid homoscedastic error models.

To the best of our knowledge, heteroscedastic error conditions have not received much formal

consideration in the FLRM literature, with perhaps the exception of work on weighted least

squares by [19], which does not discuss distributional inference. For example, while a CLT for

projection estimates is again available for FLRMs in the homoscedastic case [12, 34, 53], a

counterpart foundational result does not yet exist under heteroscedasticity. One might further

anticipate that previous bootstrap theory under homoscedasticity does not directly apply for the

inference in FLRMs under heteroscedasticity. We show this to be the case, which necessitates our

new development of a CLT and resampling theorems. As in the homoscedastic setting, resampling

approximations in FLRMs are remarkably valuable under heteroscedasticity for capturing

complicated sampling distributions of mean estimators, as current bootstraps from the

homoscedastic case become invalid [25, 35, 53].

To bootstrap FLRMs in the presence of heteroscedastic errors, a paired bootstrap method can

be considered, similar to the paired bootstrap for usual multiple linear regression models [22].

Paired bootstrap has indeed been applied for different inference in FLRMs [43, 46, 51], though

without any theoretical development or justification. This latter point is important, because we
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show here that, surprisingly, a naive/standard implementation of paired bootstrap, adopted

directly from the usual multiple regression case, can fail to provide valid inference for mean

estimates under FLRMs if the truncation parameters are not set appropriately in a certain

narrow and restricted way, in contrast to the case of finite-dimensional multiple linear regression

[22]. In fact, as sample sizes increase with mean estimators in FLRMs, the distance between naive

paired bootstrap and true sampling distributions may not converge to zero as typically expected,

but rather can converge in distribution to a random number supported on [0, 1] unless associated

tuning parameters are set in a specific manner. The problem arises from a construction bias in

the bootstrap world with FLRMs which relates to, but is a separate issue from, the truncation

bias inherent to the FPCR estimator β̂hn of the slope. Such failure of bootstrap due to bias issues

has been observed in other bootstrap works with complicated regressions, such as nonparametric

[29, 30, 55], quantile [50], penalized linear [14, 15, 7], and high-dimensional linear [20] regression

models, though the approaches of correcting bootstrap bias can differ. In some problems, the

extent of the bias in paired bootstrap is such that this bootstrap must be discarded (cf. [29, 30]).

This motivates our new development of paired bootstrap for FLRMs with heteroscedastic errors,

which remedies the bias problem by modifying a bootstrap estimating equation to define a

bootstrap estimator.

Under a general heteroscedastic error assumption, we study asymptotic and bootstrap

inference in FLRMs with scalar response, along with providing its theoretical validity. In

particular, we first establish a CLT for the projection estimator of 〈β,X0〉 with X0 being a

(random) new regressor function. This serves as the foundation for our bootstrap results and

more broadly, justification of asymptotic inference for FLRMs under dependent errors. Our main

bootstrap result is to develop a modified paired bootstrap to approximate the sampling

distribution. We estimate the projection via the functional principal component regression

(FPCR) estimator β̂hn of the slope function β [9, 5, 28, 12, 25, 34, 35, 53], where hn denotes a

truncation level involved in the estimation procedure. For flexibility and also for better practical

performance, we allow additional truncation parameters gn, kn to be introduced, and possibly
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vary from hn, for defining important quantities in the bootstrap formulation, where gn arises to

estimate bootstrap centering and kn is applied to estimate a scaling factor in studentization. The

modified paired bootstrap incorporates an important debiasing step in order to accommodate a

general combination of such truncation parameters. In the process of establishing a paired

bootstrap, we also derive a new central limit theorem for the projection 〈β,X0〉 in FLRMs,

involving an appropriate scaling for capturing different conditional error variances. In

heteroscedastic cases, our numerical studies suggest that the paired bootstrap performs better

than the residual bootstrap and normal approximation, while also maintaining good coverage in

homoscedastic cases. The proposed paired bootstrap also numerically outperforms the naive

version even when the latter is appropriately tuned. We consider intervals from studentization

steps to obtain pivotal limits for use in bootstrap approximations. A rule of thumb for selecting

the tuning parameters involved in the bootstrap procedure is further provided.

As an application of the paired bootstrap method, we treat a testing problem about the

possible orthogonality of the slope function β to subspaces spanned by a collection of target

functional regressors. In this problem, the bootstrap combines several simultaneous estimation

steps into one test, which would otherwise be distributionally intractable through normal

approximations. The bootstrap construction also has the advantage of enforcing the null

hypothesis in re-creating a reference distribution for testing, which can be useful for controlling

size and boosting power. Our development in this testing problem is distinguishable from the

previous works on hypothesis testing in FLRMs [8, 11, 31, 40, 41]: the latter tests are limited to

independent error scenarios and often restrict claims to global nullity β = 0 or other specific

projections of the slope function β based on the cross-covariance between regressor and response.

In contrast, by considering a general heteroscedastic setting, our work allows for formal

hypothesis tests with FLRMs to be further justified under dependence between regressors and

errors. Our testing method also allows hypotheses about β be defined from projections with more

arbitrarily specified functional regressors. This is useful in practice for assessing how projections

of β may differ from zero as predictor levels are varied, which may not be addressable by a global
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test of β, e.g., to examine effects of a hotter year on precipitation, or a higher winter/summer

temperature contrast.

Section 3.2 describes the paired bootstrap method in FLRMs with scalar response under

heteroscedasticity, along with a modification for general validity. Section 3.3 provides the main

distributional results regarding estimated projections regarding the consistency of the paired

bootstrap method and the failure of the naive bootstrap. With suitable scaling, a general CLT is

also established, which is useful for framing studentized versions of statistics. We then give a

consistent bootstrap procedure in Section 3.4 for testing the orthogonality over the slope function

to linear subspaces. Numerical results are provided in Section 3.5, while Section 3.6 illustrates the

paired bootstrap method with a real dataset that potentially have heteroscedasticity; an extra

data application is provided in the supplement [54]. Some proofs for the main results are given in

Appendix, while further details of the proofs and extended numerical results can be found in the

supplement [54]. An R package is provided to construct confidence intervals for FLRM

projections and to test the nullity of the projection of β based on paired bootstrap.

3.2 Description of FLRMs and bootstrap

We start with the description of functional linear regression models (FLRMs) under

heteroscedastic error variances in Section 3.2.1, and the paired bootstrap for estimated

projections appears in Section 3.2.2.

3.2.1 FLRMs under heteroscedasticity

Consider the following FLRM

Y = α+ 〈β,X〉+ ε, (3.1)

where Y is a scalar-valued response; X is a regressor function taking values in a separable Hilbert

space H with inner product 〈·, ·〉; α is the intercept; and β ∈ H is the slope function. The error

term ε has E[ε|X] = 0 but its distribution can otherwise depend on X; for example, heterogeneous
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conditional variances of the error ε given the regressor X is allowed, that is, σ2(X) ≡ E[ε2|X] may

depend on the regressor X. As α = E[Y ]− 〈β,E[X]〉 holds in (3.1), without loss of generality, we

assume that E[X] = 0 and E[Y ] = 0 so that α = 0 for purposes of developing estimation of the

slope function β. The FLRM is then written as

Y = 〈β,X〉+ ε. (3.2)

Define the tensor product x⊗ y : H×H→ H between two elements x, y ∈ H as a bounded

linear operator z 7→ (x⊗ y)(z) = 〈z, x〉y for z ∈ H. Under the assumption E[‖X‖2] <∞ where

‖ · ‖ is the induced norm in H, the covariance operator Γ ≡ E[(X ⊗X)] is self-adjoint,

non-negative definite, and Hilbert–Schmidt, and hence, compact (cf. [33]). Then, Γ admits the

following spectral decomposition

Γ =
∞∑
j=1

γjπj

with πj ≡ φj ⊗ φj , where γj and φj are the j-th eigenvalue and eigenfunction of Γ for j = 1, 2, . . . .

Here, the set {φj} of eigenfunctions is an orthonormal system of H and {γj} is a non-negative

non-increasing sequence with γj → 0 as j →∞. The functional version of normal equations is

written as

∆ = Γβ (3.3)

from the model (3.2), where ∆ ≡ E[Y X] is the cross-covariance function between X and Y .

Under the model identifiability assumption ker Γ = {0} [9, 10, 12] (see Assumption (A.1) of

Section 3.3.1), the slope function is then given as

β = Γ−1∆.

The functional principal component regression (FPCR) estimator of β has been widely studied

in the literature [5, 9, 12, 28]. To define the estimator, we suppose that the data pairs

{(Xi, Yi)}ni=1 are independently and identically distributed under the FLRM (3.2), that is,

Yi = 〈β,Xi〉+ εi, i = 1, . . . , n. (3.4)
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The sample versions of Γ and ∆ are defined as Γ̂n ≡ n−1
∑n

i=1(Xi − X̄)⊗2 and

∆̂n ≡ n−1
∑n

i=1(Yi − Ȳ )(Xi − X̄), where X̄ ≡ n−1
∑n

i=1Xi, Ȳ ≡ n−1
∑n

i=1 Yi, and x⊗2 ≡ x⊗ x for

x ∈ H. The sample covariance operator Γ̂n also admits spectral decomposition Γ̂n =
∑n

j=1 γ̂j π̂j

with π̂j ≡ φ̂j ⊗ φ̂j , where γ̂j ≥ 0 is the j-th sample eigenvalue and φ̂j ∈ H is the corresponding

eigenfunction. By regularizing the inversion of Γ̂n, the FPCR estimator of β is defined as

β̂hn ≡ Γ̂−1
hn

∆̂n (3.5)

where Γ̂−1
hn
≡
∑hn

j=1 γ̂
−1
j π̂j is a finite approximation of Γ−1 ≡

∑∞
j=1 γ

−1
j πj . Here, hn is the number

of eigenpairs used in estimation, which represents a truncation level [5, 9, 12, 28].

3.2.2 Paired bootstrap procedure

For FLRMs with homoscedastic errors, the residual bootstrap is natural [25, 53], where this

bootstrap re-creates data, e.g., Y ∗i = 〈Xi, β̂hn〉+ ε∗i , through bootstrap error terms ε∗ as

independent draws from an appropriate set of residuals. However, under heteroscedastic errors, a

different bootstrap approach is necessary, akin to the standard multiple regression case with

Eucliean vectors [22]. Similar to that setting for capturing response variances that may differ

conditionally over regressors, we consider a paired bootstrap (PB) method for inference in

FLRMs. To the best of our knowledge, the theory for PB in FLRMs has been studied only once

by [24], but their application does not consider the slope function or its projections and the errors

therein are homoscedastic in variance. For estimating means or projections under the FLRM with

heteroscedastic errors, we explain next how the PB generally requires careful consideration in

order to be valid.

To implement the PB, we draw the pairs {(X∗i , Y ∗i )}ni=1 uniformly from the original data

{(Xi, Yi)}ni=1 with replacement. The bootstrap counterparts of sample moments are then given as

Γ̂∗n ≡ n−1
∑n

i=1(X∗i − X̄∗)⊗2 and ∆̂∗n ≡ n−1
∑n

i=1(Y ∗i − Ȳ ∗)(X∗i − X̄∗) where X̄∗ ≡ n−1
∑n

i=1X
∗
i

and Ȳ ∗ ≡ n−1
∑n

i=1 Y
∗
i . From the spectral decomposition of Γ̂∗n, we define a regularized inverse of
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Γ̂∗n with trunction level hn as

(Γ̂∗hn)−1 ≡
hn∑
j=1

(γ̂∗j )−1(φ̂∗j ⊗ φ̂∗j ),

where γ̂∗j and φ̂∗j are the j-th eigenvalue and the corresponding eigenfunction of Γ̂∗n. This

represents a direct bootstrap analog of (Γ̂hn)−1 in (3.5).

An initial, though naive, bootstrap version β̂∗hn,naive of the FPCR estimator β̂hn can be found

as

β̂∗hn,naive ≡ (Γ̂∗hn)−1∆̂∗n

by directly imitating the definition of β̂hn in (3.5) with bootstrap data. The validity of this naive

bootstrap, though, requires caution. The issue is that, in the bootstrap world, we need to define

bootstrap version β∗ of the true parameter β and, for flexibility, one might consider a FPCR

estimator β∗ ≡ β̂gn ≡ Γ̂−1
gn ∆̂n determined by a general truncation level gn in (3.5). It turns out

that the naive bootstrap estimator β̂∗hn,naive must be restricted to a bootstrap parameter β∗ ≡ β̂gn

defined by gn = hn. The reason is due to a type of construction bias in the naive bootstrap,

related to mimicking the linear structure in the model (3.2). Unless the bootstrap parameter β∗ is

specifically chosen as β̂hn , which imposes limitations for implementation and numerical

performance, the naive bootstrap construction will be biased with a provably substantial and

adverse effect on inference (cf. Proposition 13).

In order to define a more versatile bootstrap version β̂∗hn of the FPCR estimator β̂hn , we begin

from a general estimator, say β̂gn , to play the role β∗ of the slope function β in the bootstrap

world; again β̂gn denotes an FPCR estimator similar to β̂hn from (3.5) but based on a truncation

gn rather than hn. The level of truncation gn used in a bootstrap version β∗ = β̂gn of β becomes a

consideration because β is infinite dimensional while any FPCR estimator β̂gn is

finite-dimensional. It is possible to choose gn = hn, though more flexibility with β∗ = β̂gn for gn

smaller than hn can later provide a better re-creation of β in the PB approximation than the

original data estimator β̂hn . However, regardless of the estimator β̂gn used to mimic β, the PB

analog β̂∗hn of the original-data estimator β̂hn needs to be appropriately defined to avoid a
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construction bias in resampling. To correct this resampling bias, we adapt a modification of [48]

for defining bootstrap M-estimators through adjusted bootstrap estimating equations; see also

[37, 39] or [38], Section 4.3. It is non-trivial that this adjustment device should apply for PB in

the FLRM case; in fact, this approach has not been applied in other bootstrap contexts where, for

varying reasons, bootstrap construction has bias (e.g., nonparametric regression; [16]; lasso;

[14, 15, 7]; high-dimensional regression; [20]).

To define a modified bootstrap version β̂∗hn of the FPCR estimator β̂hn , we first observe that

the slope function β = Γ−1∆ can be prescribed as the solution to the estimating equation

E[Ψi(β;µX , µY )] = 0 where

Ψi(β;µX , µY ) ≡ (Xi − µX)(Yi − µY )− (Xi − µX)⊗2β (3.6)

is an estimating function with µX ≡ E[X] and µY ≡ E[Y ]. A direct bootstrap counterpart of this

estimating function is given by, say,

Ψ̌∗i (β; X̄, Ȳ ) ≡ (X∗i − X̄)(Y ∗i − Ȳ )− (X∗i − X̄)⊗2β,

where X̄ ≡ n−1
∑n

i=1Xi and Ȳ ≡ n−1
∑n

i=1 Yi. A key observation is that, while β = Γ−1∆ is the

solution to the equation E[Ψi(β;µX , µY )] = 0, an estimator β̂gn ≡ Γ̂−1
gn ∆̂n, playing the role of β in

the bootstrap world, will not generally be a solution to the equation

∆̂n − Γ̂nβ ≡ E∗[Ψ̌∗i (β; X̄, Ȳ )] = 0

due to the finite dimensionality of β̂gn , where E∗[·] ≡ E[·|Dn] denotes the bootstrap expectation

conditional on the data Dn ≡ {(Xi, Yi)}ni=1. That is, due to truncation, Γ̂−1
gn does not generally

match the inverse of Γ̂n ≡ n−1
∑n

i=1(Xi − X̄)⊗2 for any finite truncation gn. However, by starting

from an estimator β̂gn ≡ Γ̂−1
gn ∆̂n, we may adjust a bootstrap-level estimating function to be

Ψ∗i (β; X̄, Ȳ ) ≡ Ψ̌∗i (β; X̄, Ȳ )− E∗[Ψ̌∗i (β̂gn ; X̄, Ȳ )]

= (X∗i − X̄)(Y ∗i − Ȳ )− (X∗i − X̄)⊗2β − Ûn,gn ,
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where

E∗[Ψ̌∗i (β̂gn ; X̄, Ȳ )] ≡ Ûn,gn ≡
1

n

n∑
i=1

(Xi − X̄)(ε̂i,gn − ¯̂εgn) (3.7)

has a closed form expression as the cross covariance between the regressors {Xi}ni=1 and the

residuals {ε̂i,gn}ni=1, ε̂i,gn ≡ Yi−〈β̂gn , Xi〉 arising from the estimator β̂gn , with ¯̂εgn ≡ n−1
∑n

i=1 ε̂i,gn

above. These corrected bootstrap estimating functions have bootstrap expectation of

E∗[Ψ∗i (β; X̄, Ȳ )] = ∆̂n − Γ̂nβ − Ûn,gn ,

which equals zero at β = β̂gn in the bootstrap world. Consequently, β̂gn as the solution to

E∗[Ψ∗i (β; X̄, Ȳ )] = 0 mimics true slope function β = Γ−1∆ solving E[Ψi(β;µX , µY )] = 0.

By replacing X̄ and Ȳ in Ψ∗i (β; X̄, Ȳ ) with bootstrap data counterparts X̄∗ ≡ n−1
∑n

i=1X
∗
i

and Ȳ ∗ ≡ n−1
∑n

i=1 Y
∗
i (in analog to the original estimator β̂hn defined by using X̄ and Ȳ in place

of µX and µY ), a PB version β̂∗hn of the FPCR estimator β̂hn is defined by the solution of the

empirical bootstrap-data estimating equation

0 =
1

n

n∑
i=1

Ψ∗i (β; X̄∗, Ȳ ∗) = ∆̂∗n − Γ̂∗nβ − Ûn,gn ,

upon regularization of (Γ̂∗n)−1, where Γ̂∗n ≡ n−1
∑n

i=1(X∗i − X̄∗)⊗2 and

∆̂∗n ≡ n−1
∑n

i=1(Y ∗i − Ȳ ∗)(X∗i − X̄∗) are averages from the bootstrap sample. Hence, the PB

re-creation of the FPCR estimator is then given by

β̂∗hn ≡ (Γ̂∗hn)−1(∆̂∗n − Ûn,gn). (3.8)

The construction in (3.8) matches how the original estimator β̂hn = Γ̂−1
hn

∆̂n from (3.5) is the

solution of 0 = n−1
∑n

i=1 Ψi(β; X̄, Ȳ ) = ∆̂n − Γ̂nβ, based on (3.6), upon similar regularization

with truncation level hn. The combination (β̂∗hn , β̂gn) in PB then serves to mimic (β̂hn , β) for

inference about the FLRM.

3.3 Distributional results under heteroscedasticity

Section 3.3.1 first describes a CLT for estimated projections 〈β̂hn , X0〉 under the FLRM with

heteroscedasticity. While novel and of potential interest in its own right, the CLT helps to
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develop the appropriate scaling needed for statistics and to also frame some baseline assumptions

that are useful for bootstrap. Section 3.3.2 establishes the consistency of PB for distributional

approximations. For comparison, Section 3.3.3 then provides a formal result to show that the

naive implementation of bootstrap is generally invalid without restrictive conditions on truncation

parameters.

3.3.1 CLT for the projections under heteroscedasticity

Let X0 denote a new regressor under the model, which is independent of {(Xi, Yi)}ni=1 and

identically distributed as X1. For an observed or given value of X0 (i.e., conditional on X0), we

consider the sampling distribution of the difference√
n

shn(X0)
[〈β̂hn , X0〉 − 〈β,X0〉], (3.9)

between estimated 〈β̂hn , X0〉 and true 〈β,X0〉 projections. Above shn(X0) denotes a scaling

factor, based on Γ−1
hn
≡
∑hn

j=1 γ
−1
j πj , which is defined as

shn(x) ≡ 〈ΛΓ−1
hn
x,Γ−1

hn
x〉 = ‖Λ1/2Γ−1

hn
x‖2, x ∈ H, (3.10)

and involves the covariance operator Λ ≡ E[(Xε)⊗2] of Xε, where T 1/2 denotes a self-adjoint

square-root operator of a non-negative definite bounded linear operator T on H such that

(T 1/2)2 = T 1/2T 1/2 = T . A sample counterpart of (3.10) is given as

ŝhn(x) ≡ 〈Λ̂n,knΓ̂−1
hn
x, Γ̂−1

hn
x〉 = ‖Λ̂1/2

n,kn
Γ̂−1
hn
x‖2, x ∈ H, (3.11)

where Λ̂n,kn ≡ n−1
∑n

i=1

(
Xiε̂i,kn − n−1

∑n
i=1Xiε̂i,kn

)⊗2
is an estimate of Λ based on residuals

ε̂i,kn ≡ Yi − 〈β̂kn , Xi〉; for generality, here kn represents another tuning parameter used only to

compute residuals {ε̂i,kn}ni=1 for estimated scaling ŝhn(x) in (3.11).

Under either scaling factors shn(X0) and ŝhn(X0), we next show a CLT for the projection

parameter 〈β,X0〉 in Theorem 7, where the limiting distribution is standard normal under the

scaling. For describing the CLT, some technical assumptions are listed.

(A1) ker Γ = {0}, where ker Γ ≡ {x ∈ H : Γx = 0} ;
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(A2) supj∈N γ
−2
j E[〈X,φj〉4] <∞;

(A3) γj is a convex function of j ≥ J (which implies that γj − γj+1 is decreasing) for some integer

J ≥ 1;

(A4) supj∈N γjj log j <∞;

(A5) n−1
∑hn

j=1 δ
−2
j → 0 as n→∞;

(A6) hnshn(X)−1 = OP(1);

(A7) supj∈N λ
−2
j E[〈Xε,ψj〉4] <∞, where λj and ψj are the j-th eigenvalue–eigenfunction pair of

Λ;

(A8) supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞.

Condition (A1) is necessary for the model identifiability [9, 10, 12]. Conditions (A2) and (A7)

ensure that X and Xε respectively have finite fourth moments. Conditions (A3)-(A5) are

technical assumptions related to the decay behaviors of eigenvalues {γj} and eigengaps {δj},

where for (A4) we define δ1 ≡ γ1 − γ2 and δj ≡ min{γj − γj+1, γj−1 − γj} for j ≥ 2; such

conditions are weak and are generally used to simplify proofs involving perturbation theory for

functional data [12]. Condition (A6) provides a mild lower bound for scaling shn(X0), where a

similar assumption is needed in the homoscedastic setting; see [53] for a related discussion.

Condition (A8) is a technical condition that balances the eignedecay of Γ and the decay rate of Λ

in terms of {φj}∞j=1. When Condition (A2) holds, sufficient conditions for (A8) can also be

developed by assuming moment structures on the error and regressors; for example,

Condition (A8) follows if either E[ε4] <∞ or σ2(X) ≡ E[ε2|X] =
∑∞

j=1 ρ
2
j 〈X,φj〉2 for some

{ρj}∞j=1 such that
∑∞

j=1 γjρ
2
j <∞. The statement of the CLT also involves the following

condition,

Condition B(u) : supj∈N j
−1m(j, u)〈β, φj〉2 <∞,

depending on a generic constant u > 0 and function m(j, u) of integer j ≥ 1 defined as

m(j, u) = max

{
ju,

j∑
l=1

δ−2
l

}
. (3.12)
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Condition B(u) is generally mild and helps to remove bias in the limiting distribution of the

statistics from (3.9) by balancing the decay rates of eigenvalues and the Fourier coefficients of the

slope function β, as described further in Remark 9 below.

A CLT for the projection in FLRMs under heteroscedasticity is a new development in the

FLRM literature, as given in the following theorem.

Theorem 7. Suppose that Conditions (A1)-(A7) hold along with h−1
n + n−1/2h

7/2
n (log hn)3 → 0 as

n→∞. We further supppose n = O(m(hn, u)) along with Condition B(u) for some u > 7. Then,

as n→∞,

(i)

sup
y∈R

∣∣∣∣P(√ n

shn(X0)
[〈β̂hn , X0〉 − 〈β,X0〉] ≤ y

∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0,

where Φ denotes the standard normal distribution function.

(ii) Additionally, if ‖β̂kn − β‖
P−→ 0 and Condition (A8) hold, then ŝhn(X0) and shn(X0) are

asymptotically equivalent in that, for any η > 0,

P

(∣∣∣∣ ŝhn(X0)

shn(X0)
− 1

∣∣∣∣ > η
∣∣∣X0

)
P−→ 0,

and the result in (i) also holds upon replacing shn(X0) by the sample version ŝhn(X0).

Theorem 7 generalizes the CLT for projections in FLRMs [12, 53] from the homoscedastic case

to broader heteroscedastic cases. When the errors are homoscedastic, i.e., E[ε2|X] ≡ σ2
ε ∈ (0,∞),

then the covariance operator of εX becomes Λ = σ2
εΓ and the scaling in (3.11) reduces to

shn(X0) = σ2
ε thn(X0), where thn(x) ≡ ‖Γ−1/2

hn
x‖2 for x ∈ H. In this case, the result (i) in

Theorem 7 matches the CLT under homoscedasticity [12, 53].

From Theorem 7, estimated projections 〈β̂hn , X0〉 with data-based scaling ŝhn(X0) are

asymptotically pivotal and, hence, an asymptotic normal approximation may be applied to

calibrate inference about 〈β,X0〉. However, resampling becomes useful for improving

distributional approximations in FLRMs under heteroscedasticity, due to the complicated impacts
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of truncation hn in finite samples. The next section establishes the validity of the proposed PB

method.

Remark 7. A sufficient condition for β̂kn to be consistent for β in Theorem 7(ii) is that

k−1
n + n−1/2k2

n log kn → 0 as n→∞; see Theorem S1 of [54] for details. Theorem 7(ii) may be

further generalized by replacing β̂kn used for constructing the estimated scaling ŝhn(X0) with a

general consistent estimator of β.

Remark 8. Under certain conditions on the error structure, the rate on the truncation level hn

can be weakened to a lesser rate sufficient for obtaining a CLT under homoscedasticity. For

instance, the rate h−1
n + n−1/2h

5/2
n (log hn)2 → 0 is sufficient for Theorem 7 if either E[ε4] <∞ or

E[ε2|X] =
∑∞

j=1 ρ
2
j 〈X,φj〉2 for some {ρj}∞j=1 with

∑∞
j=1 γjρ

2
j <∞. This is the same rate as the

ones assumed for the CLTs under homoscedasticity provided in [12, 53]. See Remark S1 in [54] for

more details.

Remark 9. In Theorem 7 and Theorem 8 to follow, the Conditions n = O(m(hn, u)) (or

n = O(m(gn, u))) and B(u) are necessary only for removing bias in limit distribution of√
n/shn(X0)[〈β̂hn , X0〉 − 〈β,X0〉] due to truncation hn; that is, without these conditions, the

asymptotic results would hold upon replacing 〈β,X0〉 with a biased centering 〈Πhnβ,X0〉, where

Πhn denotes the projection on the first hn eigenfunctions {φj}hnj=1 of Γ and Πhnβ ≡
∑hn

j=1〈β, φj〉φj

is a truncated version of the slope β ≡
∑∞

j=1〈β, φj〉φj . Such conditions are common for balancing

the decay rates of eigenvalues and the Fourier coefficients of the slope function in the removal of

bias 〈(Πhn − I)β,X0〉 from truncation. See [12, 53] for further discussion.

3.3.2 Consistency of the paired bootstrap (PB)

Based on scaling from the CLT for estimated projections in (3.13), we next consider PB

approximations for the distribution of the studentized-type quantity

Tn(X0) ≡
√

n

ŝhn(X0)
[〈β̂hn , X0〉 − 〈β,X0〉], (3.13)

conditional on a given regressor X0, involving estimated scaling ŝn(X0) from the data (3.11).
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Based on the scaling factor ŝn(X0), one direct bootstrap counterpart of (3.13) is then given as

T ∗n,ŝ(X0) ≡
√

n

ŝhn(X0)
[〈β̂∗hn , X0〉 − 〈β̂gn , X0〉] (3.14)

with the same fixed X0 fixed, where (β̂∗hn , β̂gn) denote the bootstrap analogs (3.8) of the FPCR

estimator β̂hn and true slope β. Due to the shared scaling, this bootstrap version essentially

approximates [〈β̂hn , X0〉 − 〈β,X0〉] with [〈β̂∗hn , X0〉 − 〈β̂gn , X0〉].

To apply the bootstrap principle further, though, one might also consider a different bootstrap

formulation of the studentized statistic (3.13) that aims to re-create the estimated scaling ŝhn(X0)

from bootstrap data. Recall that construction of ŝhn(·) in (3.11) involves residuals from a FPCR

estimator β̂kn with a generic bandwidth kn. A bootstrap version of scaling factor is then defined,

in analog to (3.11), as

ŝ∗hn(x) ≡ 〈Λ̂∗n,kn,gn(Γ̂∗hn)−1x, (Γ̂∗hn)−1x〉 = ‖(Λ̂∗n,kn,gn)1/2(Γ̂∗hn)−1x‖2, x ∈ H, (3.15)

where Λ̂∗n,kn,gn ≡ n
−1
∑n

i=1

(
X∗i ε̂

∗
i,kn
− n−1

∑n
i=1X

∗
i ε̂
∗
i,kn

)⊗2
is a bootstrap estimator of the

covariance Λ based on bootstrap residuals ε̂∗i,kn ≡ Y
∗
i − 〈β̂∗kn , X

∗
i 〉 from a bootstrap FPCR

estimator β̂∗kn ≡ (Γ̂∗kn)−1(∆̂∗n − Ûn,gn); the latter is akin to (3.8) with tuning parameter kn. A

studentized bootstrap counterpart of (3.13), with estimated bootstrap scaling ŝ∗hn(X0), is then

given as

T ∗n,ŝ∗(X0) ≡
√

n

ŝ∗hn(X0)
[〈β̂∗hn , X0〉 − 〈β̂gn , X0〉]. (3.16)

Theorem 8 establishes the consistency of the PB method for the sampling distribution of the

studentized projection estimator in (3.13) under heteroscedasticity. Let P∗ ≡ P(·|Dn) denotes the

bootstrap probability conditional on the sample Dn ≡ {(Xi, Yi)}ni=1.

Theorem 8. Suppose that Conditions (A1)-(A8) hold and that n−1
∑hn

j=1 λ
−1
j = O(1) and

k−1
n + n−1/2k2

n log kn → 0 as n→∞. Along with Condition B(u) for some u > 7, we further

suppose that τ ≡ limn→∞ hn/gn ≥ 1, g−1
n + n−1/2h

7/2
n (log hn)3 → 0, and n = O(m(hn, u)). Then,

as n→∞, the paired bootstrap (PB) is valid for the distribution of the studentized projection
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estimator Tn ≡
√
n/ŝhn(X0)[〈β̂hn , X0〉 − 〈β,X0〉]:

sup
y∈R
|P∗ (T ∗n(X0) ≤ y|X0)− P (Tn(X0) ≤ y|X0)| P−→ 0,

where T ∗n(X0) denotes either T̂ ∗n,ŝ(X0) from (3.14) or T ∗n,ŝ∗(X0) from (3.16).

Theorem 8 conditions for the PB are similar to those for the CLT itself from Theorem 7,

though additional mild assumptions (i.e., τ ≡ limn→∞ hn/gn ≥ 1) appear to govern the second

truncation gn used in PB in conjunction with the original data truncation hn. Namely, the

truncation level gn, for defining the bootstrap rendition β̂gn of the true parameter β, may differ

from the other truncation level hn for defining the original FPCR estimator β̂hn , though gn may

not be larger than hn asymptotically (see also Proposition 14). This coordination of truncation

levels is generally required for the bootstrap to be asymptotically correct, which allows the

bootstrap to control the bias type described in Remark 9. In practice, we recommend choosing a

slightly smaller gn than hn. In particular, we give a rule of thumb for selecting hn and gn in

Section 3.5, which performs well as illustrated numerically.

3.3.3 Limitations of naive bootstrap

As described in Section 3.2.2, a naive bootstrap formulation β̂∗hn,naive ≡ (Γ̂∗hn)−1∆̂∗n of the

FPCR estimator will not be generally be valid for approximating the distribution a projection

estimator Tn ≡
√
n/ŝhn(X0)[〈β̂hn , X0〉 − 〈β,X0〉] in (3.13) unless bootstrap centering parameter

β∗ ≡ β̂gn is narrowly chosen. That is, unlike with the PB method of Section 3.3.2 which is

consistent when τ ≡ limn→∞ hn/gn ≥ 1 holds, the naive bootstrap in contrast can fail if

τ ≡ limn→∞ hn/gn > 1. This aspect arises due to an extra construction bias created in the naive

bootstrap definition of β̂∗hn,naive, particularly under heteroscedasticity. As a formal illustration,

Proposition 13 considers a bootstrap quantity

T ∗n,naive(X0) ≡
√

n

ŝhn(X0)
[〈β̂∗hn,naive, X0〉 − 〈β̂gn , X0〉] (3.17)

that differs from a valid bootstrap version T ∗n,ŝ(X0) in (3.14) by using the naive bootstrap

estimator β̂∗hn,naive in place of the proposed β̂∗hn . In doing so, T ∗n,naive(X0) cannot capture the
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distribution of Tn(X0) if the heteroscedasticity is strong enough. Proposition 13 provides a

general illustrative data example where the naive bootstrap method provably fails, which stands

in contrast to the consistency of the modified PB from Theorem 8.

In the following, let D denote the space of all real-valued functions on [−∞,∞] that are right

continuous with left limits, which we equip with the Skorokhod metric (cf. [4]).

Proposition 13. Suppose Theorem 8 assumptions along with n−1/2h
9/2
n (log hn)6 = o(1) and

τ ≡ limn→∞ hn/gn > 1. We further suppose conditions (a)-(b) as follows:

(a) the conditional variance of the error ε given the regressor X is

σ2(X) ≡ E[ε2|X] =
∑∞

j=1 ρ
2
j 〈X,φj〉2 for some {ρj}∞j=1 with

∑∞
j=1 γjρ

2
j <∞;

(b) X has functional principal component (FPC) scores as γ
−1/2
j 〈X,φj〉 = ξWj for j ≥ 1, where

{Wj} denote iid standard normal variables and, independently, ξ is a random variable with

finite eighth moment E[ξ8] <∞;

Then, the naive bootstrap version T ∗n,naive(X0) of Tn ≡
√
n/ŝhn(X0)[〈β̂hn , X0〉 − 〈β,X0〉] satisfies

that, as n→∞,

P∗(T ∗n,naive(X0) ≤ y|X0)− P(Tn(X0) ≤ y|X0)
d−→ Φ

(
y + σ(τ)Z

)
− Φ(y), y ∈ R,

as elements in D, where Z denotes a standard normal variable with distribution function Φ and

σ(τ) > 0 denotes a constant (cf. (3.18)). Thus, the naive bootstrap is inconsistent.

Remark 10. A take-away from Proposition 13 is that the naive bootstrap can fail with simple

regressor structures, such as Gaussian X (i.e., ξ = 1 above), though Condition (b) of

Proposition 13 serves to accommodate a larger class of regressor distributions with potential

dependence among FPCs.

Remark 11. The naive bootstrap (3.17) in Proposition 13 can be shown to be valid upon

restricting τ ≡ limn→∞ hn/gn = 1, which in case σ(τ) = 0 (cf. (3.18)) so that the distributional

limit becomes zero in the result. Essentially, bootstrap centering β∗ ≡ β̂gn must be confined to
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the original FRCR estimator β̂hn (i.e., gn = hn). Further, neither the proposed or naive PB

approach is generally valid if τ ≡ limn→∞ hn/gn < 1 (cf. Proposition 14).

By Proposition 13, for increasing n, the distance between the true distribution function of the

studentized projection estimator Tn(X0) and that of the naive bootstrap approximation

T ∗n,naive(X0) does not converge to zero at any point on the real line, but rather behaves as a

randomly drawn number in (−1, 0) or (0, 1) at each y ∈ R. A similar bias issue, though, does not

arise with standard applications of PB to regular finite-dimensional linear regression models

(cf. [22]). A way to envision the bias of the naive bootstrap in FLRMs is as follows. From the

proof of Proposition 13 and due to a construction bias, quantiles from the naive bootstrap

approximation T ∗n,naive(X0) in (3.17) are shifted from those of a valid bootstrap approximation

T ∗n,ŝ(X0) in (3.14) by a random contribution, say Bn, that depends on the original data but not

the bootstrap sample; in large samples, this bias amount Bn ≈ T ∗n,naive(X0)− T ∗n,ŝ(X0) acts like a

draw from a normal distribution with mean 0 and variance

σ2(τ) ≡ (1− τ−1)

‖Γ1/2β‖2
/ ∞∑

j=1

γjρ
2
j + 1

 (3.18)

where τ ≡ limn→∞ hn/gn ≥ 1 and so is non-ignorable if τ > 1. See the supplement [54] for more

details. This bias behavior can also be observed practically. Figure 3.2 contains a numerical

illustration based on 1000 experiments generated from an FLRM with regressor X and error ε as

described in Proposition 13. We examine the resulting distribution of the construction bias Bn in

the naive approach when hn/gn > 1. Figure 3.2 shows the distribution of this term Bn is

remarkably different from zero in small samples, even when hn = gn + 1. The bias Bn is

non-ignorable and becomes quite influential as the ratio hn/gn becomes larger. The latter

observation matches the theoretical result in (3.18), underling Proposition 13, in that the

distributional spread of bias Bn is greater as the ratio hn/gn increases. Further simulation results

in Section 3.5.1 indicate that naive bootstrap intervals also tend to over-cover.

For clarity, both naive and modified PB may fail if τ ≡ limn→∞ hn/gn < 1 due to a different

source of bias (i.e., apart from the construction of the bootstrap estimator β̂∗hn), which relates to

centering in the CLT (cf. Remark 9). This bias does not vanish if hn/gn < 1, which arises because
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Figure 3.2: Kernel density estimates of a construction bias Bn in the naive bootstrap. Plots have

a common x-axis, and the bias is zero when gn = hn.

any estimator β̂gn , playing the role of the true slope β in the bootstrap world, cannot capture the

infinite dimensionality of β. This failure is illustrated in Proposition 14, with details in the

supplement [54].

Proposition 14. Suppose the assumptions of Theorem 8 along with τ ≡ limn→∞ hn/gn ∈ (0, 1).

We further suppose Conditions (a) and (b) in Proposition 13. Then, as n→∞, both naive

T ∗n,naive(X0) and modified T ∗n(X0) bootstrap renditions of Tn ≡
√
n/ŝhn(X0)[〈β̂hn , X0〉 − 〈β,X0〉]

fail to provide asymptotically correct distributional approximations. Namely, the convergence in

Proposition 13 holds for T ∗n,naive(X0) upon redefining σ(τ) there as
√
τ−1 − 1 > 0, and this same

result holds also for T ∗n(X0).

To summarize our bootstrap distributional results, the asymptotic ratio

τ ≡ limn→∞ hn/gn ∈ (0,∞) plays a significant role in PB methods. If hn is asymptotically larger

than gn with τ > 1, our modified PB is applicable (Theorem 8) while the naive PB may provably

fail (Proposition 13), even with simple FPC scores. If τ = 1, both PB methods work, though the

naive one requires a stronger tuning parameter condition n−1/2h
9/2
n (log hn)6 = O(1)

(cf. Remark 11). Thus, the naive PB requires asymptotic equivalence of hn and gn and becomes
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invalid when hn is asymptotically larger than gn. In contrast, the modified PB enjoys additional

flexibility in setting hn and gn, which will be shown to result in better numerical performance in

Section 3.5. Namely, simulation evidence indicates that our modified PB produces good and

stable coverages over different hn ≥ gn, while the performance of the naive PB can be more

sensitive to the ratio hn/gn. Finally, if hn is asymptotically smaller than gn with τ < 1, both PB

methods might fail due to the bias from the finite dimensionality of the estimator β̂gn , serving as

the bootstrap rendition of the true slope parameter β (Proposition 14).

Remark 12. The bootstrap theory in Theorem 8 and Proposition 13 can be generalized in that

the ratio hn/gn need not have a convergent limit, and τ ≡ limn→∞ hn/gn may be replaced by

τ ≡ lim infn→∞ hn/gn.

3.4 Hypothesis tests for projections onto finite-dimensional subspaces

The testing of the association between the functional regressor X and the scalar response Y in

FLRMs has drawn much recent attention in the literature. [8] first proposed a global test of β = 0

by assessing the covariance operator for ∆ = 0, and several works have similarly considered

various global tests [11, 24, 31, 40, 41]. In contrast, [36] and [49] focused on testing of

〈β, φ1〉 = · · · = 〈β, φL〉 = 0 for some pre-fixed integer L, where {φj}∞j=1 denotes the set of

eigenfunctions of Γ ≡ E[(X − E[X])⊗2]. However, none of these previous works applies to testing

the orthogonality of β to generally specified regressor points. In this testing problem with

FLRMs, though, the proposed PB method from Section 3.2 can be adapted to assess projections

of the slope function β onto subspaces spanned by general directions.

To frame the testing problem, let X0 ≡ {X0,l}Ll=1 denote a collection of regressors

X0,1, . . . , X0,L under consideration, for some integer L ≥ 1. Letting ΠX0β denote the projection of

the slope function β onto the linear subspace span(X0) ⊆ H spanned by X0, we wish to test the

null hypothesis

H0 : ΠX0β = 0 against H1 : H0 is not true,
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regarding the orthogonality of β to span(X0). The null hypothesis is equivalently stated as

〈β,X0,l〉 = 0 for all l = 1, . . . , L. As the bootstrap results in Section 3.3 apply for a given

regressor X0, a PB-based testing procedure can be formulated to assess this type of hypothesis.

An advantage is that this approach provides a specific test of whether regression effects exist in

any pre-defined directions, while a global test about β (e.g., based on the covariance ∆) is not

amenable to this purpose. Additionally, essentially all of the previous works on hypothesis testing

for FLRMs rely on independent error assumptions, while our bootstrap-based testing procedure

provides a first work on addressing such testing problems in FLRMs under dependent errors and

heteroscedasticity.

To describe test statistics, write

T
H0
n,l ≡

√
n

ŝhn(X0,l)
〈β̂hn , X0,l〉, l = 1, . . . , L, (3.19)

to denote the studentized projection estimator (3.13) for each direction with centering

〈X0,l, β〉 = 0 under the null hypothesis. We may define test statistics by combining these

direction-based statistics as

Wn,L2 ≡
L∑
l=1

[
T

H0
n,l

]2
and Wn,max ≡ max

1≤l≤L

∣∣∣TH0
n,l

∣∣∣ , (3.20)

representing L2- or L∞-type norms. Large values of such statistics then provide evidence against

the null hypothesis. While both test statistics are well-defined with non-degenerate limit

distributions under the null hypothesis, these limit laws are complicated under heteroscedasticity,

depending intricately on covariances between estimated projections. Consequently, these limit

distributions are impractical for direct use. However, the sampling distributions of test statistics

can be viably approximated with the proposed PB method and, in fact, there exist two ways of

implementing the bootstrap here: by enforcing the null hypothesis at the bootstrap level or not.

If we do not enforce the null hypothesis in the bootstrap world, then we essentially adopt the

same PB procedure described in Section 3.3.2 (i.e., Theorem 8). That is, we may formulate

studentized bootstrap quantities, similar to (3.16), as

T ∗n,l,ŝ∗ ≡
√

n

ŝ∗hn(X0,l)
[〈β̂∗hn , X0,l〉 − 〈β̂gn , X0,l〉], l = 1, . . . , L
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based on the same bootstrap sample {(X∗i , Y ∗i )}ni=1 and a common estimator β̂gn playing the

bootstrap role of β. The bootstrap test statistics are then given by

W ∗n,L2 ≡
L∑
l=1

[
T ∗n,l,ŝ∗

]2
and W ∗n,max ≡ max

1≤l≤L

∣∣T ∗n,l,ŝ∗∣∣ , (3.21)

To enforce the null hypothesis in the bootstrap world, we modify the PB procedure described

in Section 3.2.2, letting β̃gn ≡ β̂gn −ΠX0 β̂gn rather than β̂gn denote the bootstrap analog of the

slope β. Here β̃gn denotes a version of β̂gn after removing its projection ΠX0 β̂gn onto the subspace

spanned by X0. With this change, it holds that ΠX0 β̃gn = 0 and so β̃gn mimics the same property

ΠX0β = 0 of the true parameter β under H0. To formulate bootstrap data, we also write a

response variable Ỹi ≡ Yi − 〈ΠX0 β̂gn , Xi〉 after removing a projection contribution from ΠX0 β̂gn

with respect to Xi. A PB sample {(X∗i , Ỹ ∗i )}ni=1 is defined by iid draws from the empirical

distribution of {(Xi, Ỹi)}ni=1, and the same development from Section 3.2.2 then applies with the

change that Y ∗i , β̂gn , Ȳ there become Ỹ ∗i , β̃gn , ¯̃Y ≡ n−1
∑n

i=1 Ỹi = Ȳ − 〈ΠX0 β̂gn , X̄〉. That is, a

baseline estimating function becomes

Ψ̌∗i (β; X̄, ¯̃Y ) ≡ (X∗i − X̄)(Ỹ ∗i −
¯̃Y )− (X̃∗i − X̄)⊗2β,

and its bootstrap expectation at β̃gn is E∗[Ψ̌∗i (β̃gn ; X̄, ¯̃Y )] ≡ Ûn,gn , similar to (3.7); a

mean-corrected estimating function is then Ψ∗i (β; X̄, ¯̃Y ) ≡ Ψ̌∗i (β; X̄, ¯̃Y )− Ûn,gn ; and the bootstrap

version β̃∗hn of the original FPCR estimator β̂n is the (regularized) solution to the bootstrap

empirical average n−1
∑n

i=1 Ψ̌∗i (β; X̄∗, ¯̃Y ∗) = 0 with X̄∗ ≡ n−1
∑n

i=1X
∗
i and ¯̃Y ∗ ≡ n−1

∑n
i=1 Ỹ

∗
i

from the bootstrap sample. The bootstrap estimator then has a closed form as

β̃∗hn ≡ (Γ̂∗hn)−1(∆̃∗n − Ûn,gn)

in parallel to (3.8) with ∆̃∗n ≡ n−1
∑n

i=1(Ỹ ∗i −
¯̃Y ∗)(X∗i − X̄∗) in place of

∆̂∗n ≡ n−1
∑n

i=1(Y ∗i − Ȳ ∗)(X∗i − X̄∗). When enforcing the null hypothesis at the bootstrap level,

bootstrap versions of test statistics in (3.20) are then given by

W ∗n,L2 ≡
L∑
l=1

[
T
∗H0
n,l

]2
and W ∗n,max ≡ max

1≤l≤L

∣∣∣T ∗H0
n,l

∣∣∣ , (3.22)
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with

T
∗H0
n,l ≡

√
n

s̃∗hn(X0,l)
〈β̃∗hn , X0,l〉, l = 1, . . . , L,

denoting the bootstrap rendition of the estimated projection quantities T
H0
n,l from (3.19) under H0.

Above s̃∗hn denotes estimated scaling, akin to ŝhn , computed from the bootstrap sample

{(X∗i , Ỹ ∗i )}ni=1.

The following result guarantees that, under the null hypothesis H0 : ΠX0β = 0, the

distribution of test statistics Wn,L2 and Wn,max in (3.20) can be approximated by either bootstrap

approach: enforcing H0 as in (3.22) or not as in (3.21).

Corollary 7. Let Wn denote a test statistic Wn,L2 or Wn,max and let W ∗n denote its paired

bootstrap counterpart, computed either as in (3.21) or (3.22). Under the assumptions of

Theorem 8, if the null hypothesis H0 : ΠX0β = 0 holds, then

sup
w∈R
|P∗(W ∗n ≤ w|X0)− P(Wn ≤ w|X0)| P−→ 0 as n→∞.

While both implementations (3.21)-(3.22) of PB are valid for testing, numerical studies

suggest that enforcing the null hypothesis (3.22) can have better performance in both size and

power. This is explored further in Section 3.5.2.

3.5 Simulation studies

Section 3.5.1 summarizes numerical studies of the PB and other methods for calibrating

confidence intervals for projections in FLRMs. A rule of thumb for selecting the tuning

parameters (kn, hn, gn) in the bootstrap procedure is also examined. Section 3.5.2 then

investigates the performance of the bootstrap test from Section 3.4 regarding projections.

3.5.1 Performance of bootstrap intervals

Here we examine, through simulation, PB confidence intervals for a projection 〈β,X0〉. To

describe the data generation, we independently simulate n curves Xn = {Xi}ni=1 from a truncated
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Karhunen–Loève expansion:

X
d
=

J∑
j=1

√
γjξjφj (3.23)

with J = 15. Above {φj : j = 1, . . . , J} denote the first J of the Fourier basis functions

{1, sin(2πt), cos(2πt), . . . } on [0, 1]. The FPC scores are defined as ξj = ξWj , where Wj
iid∼ N(0, 1)

and ξ follows a t(ν) distribution with chosen degrees of freedom ν ∈ {4, 5, 7, 9,∞}. This entails

that FPC scores are uncorrelated, but dependent. The eigengaps in (3.23) are defined with a

polynomial decay rate involving a parameter a > 0, namely γj − γj+1 = 2j−a, j ≥ 1 where

γ1 =
∑∞

j=1 j
−a. Using the same basis functions, the slope parameter is set to β =

∑J
j=1 βjφj ,

where βj = 3j−bWβ,j has a polynomial decay involving a rate parameter b > 0 and the terms Wβ,j

are fixed upon drawing these as iid from a distribution P(Wβ,j = 1) = 1/2 = P(Wβ,j = −1). We

consider various scenarios involving different polynomial rates and sample sizes:

a, b ∈ {1.5, 2.5, 3.5, 4.5, 5.5} and n ∈ {50, 200, 1000}. For brevity, we report some representative

numerical results here, though full results can be found in the supplement [54]. All the function

values are evaluated at 100 equally-spaced time grid points in [0, 1]. Response values {Yi}ni=1 are

then generated through the FLRM (3.4) as follows. To consider both homoscedastic and

heteroscedastic scenarios, errors εi are generated to be either independent from or dependent on

the regressors Xi. For a given generated regressor Xi, a dependent error εi is simulated from a

chi-square distribution χ2(ν(Xi))− ν(Xi) with ν(Xi) ≡ ‖Xi‖2/2 degrees of freedom. In this

heteroscedastic case, the conditional variance of an error depends on the regressor value Xi, and

the marginal variance of an error is var[ε2
i ] = tr (Γ) =

∑J
j=1 γj . Due to the latter, we also generate

errors εi with the same marginal variance, independently from regressors Xi, with a centered

chi-square distribution χ2(ν)− ν with ν ≡ tr (Γ) /2 degrees of freedom in homoscedastic cases.

The supplement [54] provides further results with other error distributions, which are

qualitatively similar. In each simulation run, a regressor X0 for projection estimation is also

generated by (3.23).

We consider both PB and naive PB implementations for computing two-sided 95% intervals

for a projection 〈X0, β〉. In the original data FPCR estimator β̂hn from (3.5) and estimated
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scaling ŝn from (3.11), we varied the range of the truncation parameters hn, gn ∈ {1, . . . , 15} and

we set kn = 2[n1/v] with v = 2a+ 1 + v1 for a small v1 = 0.1 for consistent estimation of β̂kn in

scaling (3.11) (cf. Theorem S1 of the supplement [54]). To recall, kn is used to reconstruct the

residual as used in the scaling factor (3.11), gn is for constructing the bootstrap centering, and hn

is the truncation used by the actual and bootstrap estimators (see Theorem 8). For simplicity

here, we focus on symmetrized intervals in the PB implementation involving bootstrap

studentization (e.g., T ∗n,ŝ∗(X0) in (3.16)) as well as a naive PB counterpart defined by replacing

scaling ŝhn(X0) in (3.17) with a bootstrap sample counterpart ŝ∗hn(X0) from

β̂∗kn,naive = (Γ̂∗kn)−1∆̂∗n; further comparisons with non-studentized versions of PB (e.g., T ∗n,ŝ(X0) in

(3.14)) or non-symmetrized intervals can be found in the supplement [54], though bootstrap

studentization steps tend to induce the best performances. For comparison, we also consider

intervals based on normal approximations with estimated scaling ŝn (Theorem 7) or residual

bootstrap (RB) (cf. [53]). For each generated data set, bootstrap distributions are approximated

by 1000 Monte Carlo resamples.

We also propose a rule of thumb for setting the tuning parameters based on simulations for all

the parameter combinations. We suggest to set gn = kn and hn = [1.113kn] being a slightly larger

value than gn; the value of kn can be selected in practice by cross-validation minimizing the

prediction errors. Our rule of thumb is found by considering all scenarios and truncation levels

producing coverages of PB intervals within 1% from the nominal level 95%, and running linear

regression of response (hn, gn) on kn. This rule targets to make appropriate choices of (hn, gn), as

most critical to performance of PB, in relation to kn. Setting gn = kn aligns with the appropriate

choices for the RB [53].

For each 95% interval procedure for 〈X0, β〉, empirical coverages were approximated by 1000

simulation runs over each data generating model and sample size. Figure 3.3 displays observed

coverage rates from different methods under a few selected scenarios when a = 2.5, b = 5.5 and

ξ ∼ t(5); see the supplement [54] for results over all scenarios. For clarity, the results in Figure 3.3
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focus on the case that gn = kn for both PB and RB while varying hn. Coverages for the PB

method under the proposed rule of thumb are indicated using crosses in Figure 3.3 for reference.

Figure 3.3: Empirical coverage rates of 95% intervals for 〈β,X0〉 from CLT (black), RB (green),

PB with studentization (red), and naive PB with studentization (blue), over various truncations

hn when the decay rates for γj − γj+1 and βj are set to be a = 2.5 and b = 5.5 and the latent

variable for the FPC scores is ξ ∼ t(5). In particular, for errors dependent on regressors (lower

panels), the coverage curves of CLT/RB intervals are cropped as these perform poorly. Crosses ×
indicate coverage rates with hn selected by the proposed rule.

As a first observation from Figure 3.3, the coverages from intervals based directly on normal

approximation (CLT) exhibit sensitivity to the truncation level hn and also under coverage,

particularly when the sample size is small. Under heteroscedasticity, both the CLT and RB

methods perform quite poorly and lie at least partially outside of the charting regions in

Figure 3.3. In fact, RB is not asymptotically valid in this case and the coverages are quite low to

the extent that coverage curves do not appear in the figure, even for large sample sizes n = 1000.

In contrast, PB intervals perform much better under the heteroscedastic models. For independent

errors, while RB assumes and uses the true model structure (homoscedasticity) and PB does not,
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the PB method has very similar performance to RB for large sample sizes (n = 1000) and exhibits

comparable performance for smaller samples (n = 50 or 200). Our rule of thumb provides

reasonable coverages in most cases for PB intervals.

Figure 3.4 displays the corresponding average widths of intervals, which generally increase

with hn. Importantly, this figure indicates that intervals from RB and CLT approximations are

often overly narrow under heteroscedasticity, which relates to the low coverages in Figure 3.3.

Figures 3.3-3.4 also demonstrate that our rule of thumb seems to suggest an optimal truncation

hn in the sense that the corresponding intervals balance good coverage rates with lowest average

widths. Finally, while the naive PB implementation is asymptotically invalid in the sense of

Proposition 13, the latter finding also suggests that the bias in the naive PB should translate to

over-coverage for symmetrized intervals in Figure 3.3. Even for large sample sizes n = 1000, naive

PB intervals tend to over-cover projections, while their average widths are larger than those from

the proposed PB. Moreover, the coverages of naive PB intervals are unstable against the choice of

truncation level hn while our modified PB produces stable coverages close to the nominal level for

all hn ≥ gn and moderate to large sample sizes n = 200 and 1000. The over-coverage problem in

the naive PB also worsens as truncation levels hn deviate from the case hn = gn. This can be

interpreted as the construction bias from the naive bootstrap negatively impacts this method,

even as the sample size increases.

Remark 13. To investigate the effect of the moments of the regressor X on interval performance,

we also varied the distribution of ξ in (3.23) over different t(ν) cases with ν ∈ {4, 5, 7, 9,∞},

where t(4) provides an example that does not satisfy (A2). Figures in Section S3.1 of the

supplement [54] show that, under heteroscedasticity, both unsymmetrized and symmetrized

intervals from the proposed PB (either with or without bootstrap studentization steps) are fairly

robust to the moment of X, while the RB is quite sensitive to the number of finite moments of X;

the coverages of the RB method tend to increase to the nominal level as more moments for ξ

become available, though the coverages remain quite low. However, regardless of the available
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Figure 3.4: Average widths of 95% intervals for 〈β,X0〉 from methods over different truncation hn
when the decay rates for γj − γj+1 and βj are set to be a = 2.5 and b = 5.5 and the latent variable

for the FPC scores is ξ ∼ t(5): RB (green), PB with studentization (red), and naive PB with

studentization (blue). Crosses × indicate coverage rates with hn selected by the proposed rule.

moments for ξ, the PB method with bootstrap studentization (3.16) performs well in most cases

based on our rule of thumb.

3.5.2 Performance of bootstrap tests of projections

We now turn our attention to the testing problem discussed in Section 3.4. We investigate the

empirical rejection rates of the bootstrap testing procedure when enforcing a null hypothesis of

projection orthogonality, with bootstrap statistics from (3.21), or otherwise, with bootstrap

statistics from (3.22).

The data generation for purposes of study are generally the same as considered in

Section 3.5.1 with ξ ∼ N(0, 1) and a = 2.5, with the exception that we modify the definition of the

slope function β to describe different hypotheses. For testing, the target predictors are considered
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as X0 ≡ {φj}6j=1 based on the first six Fourier basis functions and we wish to assess the

orthogonality of β to the subspace spanned by X0 (i.e., ΠX0β = 0). Under the null hypothesis, the

slope function is defined as βH0 ≡
∑

j≥6Wβ,j |βj |φj , while the true data-generating slope is

defined as βH1 ≡ (1− p)βH0 + p
∑6

j=1Wβ,j |βj |φj in terms of a proportion p ∈ {0, 0.1, . . . , 0.9, 1}

for prescribing a sequence of alternative hypotheses; here |βj | = cj−b holds with c = 50 and

b = 3.5, and the value p = 0 renders the null hypothesis with the slope βH0 .

We consider bootstrap tests of H0 : ΠX0β = 0 based on a nominal size 5%. For each simulated

dataset, 1000 bootstrap resamples are used to approximate the distribution of test statistics in

(3.20). Truncation parameters hn and gn are again selected by the rule of thumb suggested in

Section 3.5.1 based on kn. Using 1000 simulation runs for each data generation scenario (level of

p) and sample size n, we compute rejection rates by the proportion of times that an original test

statistic exceeds the 95th percentile of bootstrap test distribution. The supplement [54] contains

more details and findings over different sample sizes n ∈ {50, 200, 400, 600, 800, 1000} as well as

both test statistic forms from (3.20); we present results for n = 50 here with maximum or L∞

statistic form Wn,max, as other results are qualitatively similar.

Figure 3.5: Empirical rejection rates (when n = 50) of the bootstrap testing procedure as the

degree/proportion p ∈ {0, 0.25, 0.50, 0.75, 1} of the alternative increases (only p = 0 corresponds

to a true null hypothesis). The test may enforce the null hypothesis (red) or not (blue) in the

bootstrap. The black horizontal line represents the nominal 0.05 size.
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The resulting empirical rejection rates are summarized in Figure 3.5. As perhaps expected,

the power of the test increases with the degree p of how much the null hypothesis is violated,

whether enforcing the null hypothesis (3.22) or not (3.21) in bootstrap. However, enforcing the

null hypothesis maintains size better (i.e., when p = 0), which then also leads to slightly better

power here. Another advantage to bootstrap enforcement of the null hypothesis is less sensitivity

to choices of truncation parameters hn, gn. Results in the supplement [54] indicate that honoring

the null hypothesis in bootstrap typically ensures good performance in testing as truncations

hn, gn are varied, which is not equally true for the bootstrap version that does not enforce the null

(e.g., small gn).

3.6 Real data analysis

Figure 3.6: Daily temperature curves of locations in four different regions. Each black curve

corresponds to the averaged in one location over 1964 to 1990, and the regional average curves are

denoted in bold pink lines.

Bootstrap intervals and tests for projections are demonstrated with applications to Canadian

weather data; another data application to medfly data is given in Section S4.2 of the supplement

[54]. We analyze the Canadian weather dataset from the R package fda consisting of daily

temperature and precipitation at 35 different locations in Canada [cf. 45]. The regressor Xi is the

daily temperature on each day averaged over 1960 to 1994, and the response Yi is the log of total

annual precipitation with base 10. Here, i indexes the n = 35 weather stations that record the
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temperatures and precipitations. The regressor curves Xi are displayed in Figure 3.6, where the

thicker lines represent the average for four different regions in Canada, namely, Atlantic,

Continental, Pacific, and Arctic regions. The new predictors X0 ≡ {X0,l}4l=1 under consideration

for bootstrap inference are selected as these four average curves in each region as illustration. The

centered observations are obtained as Xc
i = Xi − X̄, Y c

i = Yi − Ȳ , and Xc
0,l = X0,l − X̄ before

bootstrap inference. We will conduct inference of projections based on the proposed PB when the

new (centered) daily temperatures are taken from X c0 ≡ {Xc
0,l}4l=1.

Each weather station is located in one of the four regions, where each region exhibits a

different pattern as shown in Figure 3.6. This leads us to suspect the existence of different

conditional variance of errors in FLRM (3.2). To investigate the heteroscedasticity, we estimate

the variance from residuals for each region as σ̂r,kn =
{
n−1
r

∑
i∈Ir(Y c

i − 〈β̂kn , Xc
i 〉)2

}1/2
, where Ir

and nr, respectively, denote the index set of and the number of location in the rth region. Here,

the estimator β̂kn used for computing residuals is constructed from the combined data

Dcn ≡ {(Xc
i , Y

c
i )}ni=1 over all four regions. As shown in Figure 3.1, homoscedastic error models

seems implausible for this dataset. A similar conclusion is deduced from the residual plots given

in Section 4.1 of the supplement.

Applying different bootstrap methods, the endpoints of 95% (symmetrized) confidence

intervals for the (centered) projections {〈β,Xc
0,l〉}4l=1 are given in Table 3.1. Here, the less

consequential tuning parameter kn = 2 was selected via repeated cross-validation, which

minimizes prediction errors over estimates from β̂kn , while hn = 2 and gn = 2 was then chosen by

the rule of thumb suggested in Section 3.5.1. The supplement provides further results with

different tuning parameter choices. As expected under possible heteroscedasticity and shown in

Table 3.1, the results for residual bootstrap (RB) are quite different from those for PB, whether

the latter is based on bootstrap studentization as in (3.16) (denoted as PB std) or not as in (3.16)

(denoted as PB). This distinction is also seen from a comparison of interval lengths in Table 3.1.

Compared to the overall average, the Pacific region has the highest range of annual precipitation

while the Continental region exhibits less precipitation with relatively narrow widths for both
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Table 3.1: 95% symmetrized confidence intervals for projections {〈β,Xc
0,l〉}4l=1 from RB, PB, and

PB with studentization for Canadian weather dataset. The ratios of widths of RB intervals to

widths of either PB or PB std intervals are given in the parentheses.

RB PB PB std

Atlantic [ 0.06, 0.11] [ 0.05, 0.12] (1.32) [ 0.05, 0.12] (1.29)

Continental [-0.19, -0.08] [-0.18, -0.09] (0.84) [-0.19, -0.08] (1.03)

Pacific [ 0.18, 0.36] [ 0.19, 0.35] (0.91) [ 0.18, 0.36] (1.03)

Artic [-0.49, -0.19] [-0.58, -0.09] (1.61) [-0.57, -0.10] (1.55)

regions. The annual precipitation of the Atlantic and Arctic regions are respectively in either

higher or lower range than the overall average, but with wider widths.

We apply our bootstrap testing procedure to this dataset for testing the null H0 : ΠX c
0
β = 0.

Note that, because the regressors X c0 ≡ {Xc
0,l}4l=1 are centered by an overall average, this

assessment is equivalent, in ANOVA fashion, to testing the null hypothesis of the equality of

means across the four regions. The corresponding p-values are given in Table 3.2. All PB-based

test statistics used strongly support that the slope function β is not orthogonal to the space

spanned by the predictors X c0 . That is, the data suggest that the true (uncentered) rainfall mean

responses {〈β,X0,l〉}4l=1 are not equal at each regional mean curve and cannot be simultaneously

equal to a common mean response 〈β, X̄〉 at the global mean curve. This finding supports the

region-wise PB intervals in Table 3.1.

Table 3.2: P-values for bootstrap testing of the null hypothesis H0 : ΠX c
0
β = 0 with different

statistics for Canadian weather dataset.

Enforcing the null FALSE TRUE

L2 0.000 0.001

Max 0.000 0.002
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3.7 On establishing the CLT

We briefly outline of the proof of the CLT in Theorem 7; more technical details are provided

in the supplement [54].

Proof of Theorem 7. The proof uses the following bias-variance decomposition of the functional

principal component estimator β̂hn with respect to the true slope parameter β:

β̂hn − β = bn + Γ−1
hn
Un, (3.24)

where, upon scaling
√
n/shn(X0), the quantity Γ−1

hn
Un determines the normal limit while a

remainder/bias term bn ≡ β̂hn − β − Γ−1
hn
Un converges to zero in probability. Above

Un ≡ n−1
∑n

i=1(Xi − X̄)(εi − ε̄) represents the cross-covariance between the regressors

Xn ≡ {Xi}ni=1 and the errors {εi}ni=1, with X̄ ≡ n−1
∑n

i=1Xi and ε̄ ≡ n−1
∑n

i=1 εi, and further

Γ−1
hn
≡
∑hn

j=1 γ
−1
j πj denotes a truncated version of the inverse covariance operator

Γ−1 ≡
∑∞

j=1 γ
−1
j πj with πj ≡ φj ⊗ φj for integer j ≥ 1. The supplement [54] shows that, as

n→∞,

P

(√
n

shn(X0)
|〈bn, X0〉| > η

∣∣∣X0

)
P−→ 0 (3.25)

holds for each η > 0. The distributional convergence of the term Γ−1
hn
Un is stated in the following

proposition, where the proof is deferred to the supplement [54].

Proposition 15. Suppose that Conditions (A5)-(A7) hold. As n→∞, if n−1h2
n → 0 holds, then

sup
y∈R

∣∣∣∣P(√ n

shn(X0)
〈Γ−1
hn
Un, X0〉 ≤ y

∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0.

Theorem 7 then follows from (3.25) and Proposition 15 under the decomposition (3.38); see

also Propositions S1-S3 in the supplement [54].

3.8 On proofs for the paired bootstrap

We sketch the proofs of Theorem 8 (consistency of the paired bootstrap) and Proposition 13

(inconsistency of naive paired bootstrap); further details appear in the supplement [54].
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Proof of Theorem 8. To show bootstrap consistency, we consider a bootstrap-level decomposition,

similar to (3.38), as

β̂∗hn − β̂gn = b∗n + Γ−1
hn

(U∗n − Ûn,gn) (3.26)

where b∗n is a bias term, Ûn,gn is the bias correction from (3.7), and

U∗n ≡ n−1
∑n

i=1(X∗i − X̄∗)(ε∗i,gn − ε̄
∗
gn) denotes the sample cross covariance between the bootstrap

regressors {X∗i }ni=1 and the bootrstrap errors {ε∗i,gn}
n
i=1, where X̄∗ ≡ n−1

∑n
i=1X

∗
i and

ε̄∗gn ≡ n
−1
∑n

i=1 ε
∗
i,gn

from ε∗i,gn ≡ Y
∗
i − 〈β̂gn , X∗i 〉. Proposition 16 shows that, upon scaling, the

distribution of Γ−1
hn

(U∗n − Ûn,gn) under bootstrap probability P∗(·|X0) converges to a standard

normal distribution.

Proposition 16. Suppose that Conditions (A1)-(A7) hold, and that ‖β̂gn − β‖
P−→ 0 and

n−1
∑hn

j=1 λ
−1
j = O(1) as n→∞. Then, as n→∞,

sup
y∈R

∣∣∣∣P∗(√ n

shn(X0)
〈Γ−1
hn

(U∗n − Ûn,gn), X0〉 ≤ y
∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0.

The supplement [54] then establishes that a scaled projection involving

b∗n ≡ β̂∗hn − β̂gn − Γ−1
hn

(U∗n − Ûn,gn) from (3.26) converges to zero in bootstrap probability P∗(·|X0),

namely,

P∗
(√

n

shn(X0)
|〈b∗n, X0〉| > η

∣∣∣X0

)
P−→ 0, (3.27)

as n→∞, for each η > 0. Using a subsequence argument (cf. [4], Theorem 20.5) for bootstrap

distributions along with Slutsky’s theorem, Theorem 8 then follows from (3.27) in combination

with Proposition 16 and (3.26); see also Propositions S5-S9 in the supplement [54].

Proof of Proposition 16. We write Z∗i,n = 〈X∗i ε∗i,gn − Ũn,gn ,Γ
−1
hn
X0〉 with Ũn,gn ≡ n−1

∑n
i=1X

∗
i ε
∗
i,gn

so that E∗[Z∗i,n|X0] = 0 and√
n

shn(X0)
〈Γ−1
hn

(U∗n − Ûn,gn), X0〉 (3.28)

={nshn(X0)}−1/2
n∑
i=1

Z∗i,n −
√

n

shn(X0)
〈X̄∗ε̄∗gn − X̄ ¯̂εgn ,Γ

−1
hn
X0〉,
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where ¯̂εgn ≡ n−1
∑n

i=1 ε̂i,gn with ε̂i,gn ≡ Yi − 〈β̂gn , Xi〉. Conditional on X0, define the bootstrap

variance v̂2
n ≡

∑n
i=1 E

∗[Z∗2i,n|X0] and a bootstrap version of the Lindeberg condition as

L̂n ≡ v̂−2
n

∑n
i=1 E

∗[Z∗2i,nI(|Z∗i,n| > τv̂n)|X0] for given τ > 0. To establish a bootstrap CLT, we use

assertions (3.29)-(3.32) below, proved in Section S2.4 of the supplement [54]: as n→∞,

E∗

[{√
n

shn(X0)
〈X̄∗ε̄∗ − X̄ ¯̂ε,Γ−1

hn
X0〉

}2 ∣∣∣X0

]
P−→ 0; (3.29)

n−1v̂2
n

shn(X0)

P−→ 1; (3.30)

E∗

[(
v̂−1
n max

1≤i≤n
|Z∗i,n|

)4 ∣∣∣X0

]
P−→ 0; (3.31)

E∗

[∣∣∣∣∣n−1
∑n

i=1 Z
∗2
i,n

shn(X0)
− 1

∣∣∣∣∣ ∣∣∣X0

]
P−→ 0. (3.32)

Results in (3.30) and (3.32) further yield that

E∗

[∣∣∣∣∣v̂−2
n

n∑
i=1

Z∗2i,n − 1

∣∣∣∣∣ ∣∣∣X0

]
P−→ 0. (3.33)

We next write A∗n ≡ v̂−2
n

∑n
i=1 Z

∗2
i,n, B∗n ≡ v̂−2

n

∑n
i=1 Z

∗2
i,nI(|Z∗i,n| > ηv̂n), and

C∗n ≡ v̂−1
n max1≤i≤n |Z∗i,n|. Using a subsequence argument on an almost sure set and conditional

on X0 (cf. [4], Theorem 20.5), one can verify that (i) B∗n → 0 holds in bootstrap probability

P∗(·|X0), because B∗n ≤ A∗nI(C∗n > τ)→ 1 · 0 in bootstrap probability from (3.31) and (3.33); and

also that (ii) {B∗n} is uniformly integrable with respect to P∗(·|X0), because B∗n ≤ A∗n holds and

{A∗n} is likewise uniformly integrable by (3.33). When (i)-(ii) hold, then

L̂n = E∗(B∗n|X0)→ E∗(0|X0) = 0 follows along the same subsequence almost surely. Hence, we

conclude that the Lindeberg term L̂n converges to zero in probability (cf. [2], Theorem 9.5.1).

This fact, together with (3.29) and the expansion in (3.28), yields

sup
y∈R

∣∣∣∣P∗(√ n

shn(X0)
〈Γ−1
hn

(U∗n − Ûn,gn), X0〉 ≤ y
∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0

by Polya’s theorem and the continuity of the standard normal distribution function Φ.

Proof of Proposition 13. By Propositions S11-S15 and Lemma S39 in the supplement [54], the

naive bootstrap construction T ∗n,naive(X0) can be written as
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T ∗n,naive(X0) = T ∗n,ŝ(X0) +A∗n +Bn + Cn, where T ∗n,ŝ(X0) is the PB quantity from (3.14);

A∗n ≡ A∗n(X0) is a bootstrap error term that converges to zero in bootstrap probability if

n−1/2h4
n(log hn)7/2 → 0; Bn ≡ Bn(X0) represents a bias-type term that does not depend on the

bootstrap sample and satisfies supy∈R |P(Bn ≤ y|X0)− Φ(y/σ(τ))| P−→ 0 with limit variance σ2(τ)

from (3.18); and Cn ≡ Cn(X0) is a negligible term that converges to zero if

n−1/2h
9/2
n (log hn)6 → 0. By writing Dn ≡ Bn + Cn and applying the triangle inequality, we find∣∣∣∣∣sup
y∈R
|P∗(T ∗n,naive(X0) ≤ y|X0)− P(Tn(X0) ≤ y|X0)| − sup

y∈R
|Φ(y −Dn)− Φ(y)|

∣∣∣∣∣ P−→ 0,

using that supy∈R |P∗(T ∗n,ŝ(X0) +A∗n ≤ y|X0)− Φ(y)| P−→ 0 by Theorem 8 with Proposition S11 in

[54] and that supy∈R |P(Tn(X0) ≤ y|X0)− Φ(y)| P−→ 0 by Theorem 7. By the continuous mapping

theorem/embedding theorem, we then have

Φ(y −Dn)− Φ(y)
d−→ Φ

(
y + σ(τ)Z

)
− Φ(y), y ∈ R,

as elements in D, based on Dn ≡ Bn + Cn
d−→ −σ(τ)Z for a standard normal variable Z. The

convergence in Proposition 13 then follows (cf. [4]).

3.9 Technical details: central limit theorem

This section contains the technical results to prove the central limit theorem (CLT) for

projection estimator under heteroscedasticity provided in Section 3.3.1 of the main text. First,

some preliminary lemmas from functional calculus are described in Section 3.9.1. In Section 3.9.2,

we next prove the consistency of the estimator β̂hn for the slope function β. Section 3.9.3 then

completes the proofs of the CLT described in Theorem 7 of the main text.

3.9.1 Prelimimaries: functional calculus

We introduce some preliminary results from the perturbation theory or functional calculus in

functional analysis. Such techniques are now common in functional data analysis literature. We

refer to [21], Chapter VII, [23], Chapter I, or [33], Chapter 5. Since we reflect centering by
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averages in the estimation unlike the existing works such as [12, 53], the technical lemmas and

their proofs are slightly modified.

Write ‖ · ‖∞ and ‖ · ‖HS for the operator supremum norm and Hilbert-Schmidt norm

respectively. Let Bj = {z ∈ C : |z − γj | ≤ δj/2} be the oriented circle in the complex plane C and

set Chn =
∑hn

j=1 Bj to define the contour integral for operator-valued functions. By the theory

from functional calculus (for the bounded linear operators) or perturbation theory, we see that

Πhn =

hn∑
j=1

πj =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1dz =
1

2πι

∫
Chn

(zI − Γ)−1dz, (3.34)

Γ−1
hn

=

hn∑
j=1

γ−1
j πj =

1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1dz =

1

2πι

∫
Chn

z−1(zI − Γ)−1dz, (3.35)

where πj = φj ⊗ φj = 1
2πι

∫
(zI − Γ)−1dz denotes the Riesz projection of Γ corresponding to the

j-th eigenvalue γj , which is the projection operator onto the j-th eigenfunction φj . One can also

get the empirical counterparts Π̂hn and Γ̂−1
hn

to the above contour integral forms from the sample

covariance operator Γ̂n with the corresponding random contours B̂j = {z ∈ C : |z − γ̂j | ≤ δ̂j/2}

and Ĉhn =
⋃hn
j=1 B̂j . For further purposes, we use the following notations:

Gn(z) = (zI − Γ)−1/2(Γ̂n − Γ)(zI − Γ)−1/2;

Kn(z) = (zI − Γ)1/2(zI − Γ̂n)−1(zI − Γ)1/2;

Ej = (‖Gn(z)‖∞ < 1/2, ∀z ∈ Bj);

Ahn = {∀j ∈ {1, . . . , hn}, |γ̂j − γj | < δj/2}.

The following lemmas originally come from [12] and can be generalized to the case when

covariance estimators Γ̂n and ∆̂n are centered and when the error variances are heterogeneous.

Lemmas 11, 12, 14, 16, 17 can be proved in the same way as in [12, 53]. Lemma 13 is a

preliminary result to prove Lemma 15 and requires a slight modification due to centering in

estimation. In Lemma 15, we added new results, which are proved from the same argument as the

proof of Lemma 3 in [12].

Lemma 11. Suppose that γj is a convex function of j (which implies that δj = γj − γj+1 is

decreasing) at least for sufficiently large j. Suppose the Condition (A3) holds. Then, for
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sufficiently large j, k ∈ N with k > j, we have

jγj ≥ kγk,
γj

γj − γk
≤ k

k − j
, and

∑
j≥k

γj ≤ (k + 1)γk.

Lemma 12. Under the same assumptions of Lemma 11, we have that∑
l 6=j

γl
|γl − γj |

≤ Cj log j

for sufficiently large j ∈ N.

Lemma 13. Suppose that Condition (A2) holds. We then have that

sup
j,k∈N

E[〈(Γ̂n − Γ)φj , φk〉2]

γjγk
≤ C1

n
+
C2

n2
.

Proof. Note that

〈(Γ̂n − Γ)φj , φk〉2 = {〈(Γ̃n − Γ)φj , φk〉 − 〈X̄⊗2φj , φk〉}2

≤ 2〈(Γ̃n − Γ)φj , φk〉2 + 2〈X̄, φj〉2〈X̄, φk〉2,

where Γ̃n ≡ n−1
∑n

i=1X
⊗2
i .

To check the upper bound for the first term in the above display, we observe the following

identity:

〈(Γ̃n − Γ)φj , φk〉2

=

{
n−1

n∑
i=1

〈Xi, φj〉 〈Xi, φk〉 − 〈Γφj , φk〉

}2

=n−2

(
n∑
i=1

〈Xi, φj〉 〈Xi, φk〉

)2

− 2

n

n∑
i=1

〈Xi, φj〉 〈Xi, φk〉 〈Γφj , φk〉+ 〈Γφj , φk〉2

=n−2
n∑
i=1

〈Xi, φj〉2 〈Xi, φk〉2 + n−2
∑
i 6=i′
〈Xi, φj〉 〈Xi, φk〉 〈Xi′ , φj〉 〈Xi′ , φk〉

− 2

n

n∑
i=1

〈Xi, φj〉 〈Xi, φk〉 〈Γφj , φk〉+ 〈Γφj , φk〉2 .

Since Xi and Xi′ are independent and

E[〈Xi, φj〉〈Xi, φk〉] = E[〈X⊗2φj , φk〉] = 〈E[X⊗2]φj , φk〉

= 〈Γφj , φk〉



155

we have that

E[〈(Γ̃n − Γ)φj , φk〉2]

=n−1E[〈X,φj〉2 〈X,φk〉2] +
n2 − n
n2

〈Γφj , φk〉2 − 2 〈Γφj , φk〉2 + 〈Γφj , φk〉2

=n−1
(
E[〈X,φj〉2 〈X,φk〉2]− 〈Γφj , φk〉2

)
≤n−1γjγkE[ξ2

j ξ
2
k] ≤ γjγk

n

√
E[ξ4

j ]
√
E[ξ4

k].

Since supj∈N E[ξ4
j ] <∞ by assumption, we see that

sup
j,k∈N

n

γjγk
E[〈(Γ̃n − Γ)φj , φk〉2] <∞.

To investigate the next term, we first consider the case of j 6= k. Then, we have

E[〈X̄, φj〉2〈X̄, φk〉2]

=n−4
∑
i 6=i′

E[〈Xi, φj〉2〈Xi′ , φk〉2] + n−4
n∑
i=1

E[〈Xi, φj〉2〈Xi, φk〉2]

=n−4{(n2 − n)γjγk + nE[〈X,φj〉2〈X,φk〉2]}

≤n−4

{
(n2 − n)γjγk + nγjγk

√
E[ξ4

j ]
√
E[ξ4

k]

}
≤n−4{(n2 − n)γjγk + Cnγjγk}

≤Cγjγk
n2

since supj∈N E[ξ4
j ] <∞ by assumption. Similarly, if j = k, then

E[〈X̄, φj〉4]

=3n−4
∑
i 6=i′

E[〈Xi, φj〉2〈Xi′ , φj〉2] + n−4
n∑
i=1

E[〈Xi, φj〉4]

≤3n−4{(n2 − n)γ2
j + nγ2

j }

≤Cγjγk
n2

.

We thus have that

sup
j,k∈N

n2

γjγk
E[〈X̄, φj〉2〈X̄, φk〉2] <∞.
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Lemma 14 (Second resolvent identity). The difference between the resolvents of Γ̂n and Γ can be

written as

(zI − Γ̂n)−1 − (zI − Γ)−1 = (zI − Γ̂n)−1(Γ̂n − Γ)(zI − Γ)−1

= (zI − Γ)−1(Γ̂n − Γ)(zI − Γ̂n)−1,

and hence,

(zI − Γ̂n)−1 − (zI − Γ)−1 = (zI − Γ)−1/2Kn(z)Gn(z)(zI − Γ)−1/2.

Lemma 15. Suppose that γj is a convex function of j at least for sufficiently large j. Also,

suppose that supj∈N E[ξ4
j ] <∞. Suppose that Conditions (A2)-(A3) hold. Then, for sufficiently

large j, we have the following.

1. E
[
supz∈Bj ‖Gn(z)‖2∞

]
≤ Cn−1(j log j)2;

2. E
[
supz∈Bj

∥∥(zI − Γ)−1/2X
∥∥2
]
≤ Cj log j;

3. E
[
supz∈Bj ‖(zI − Γ)−1/2X‖4

]
≤ C(j log j)2; and

4. E
[
supz∈Bj

∥∥(zI − Γ)−1/2Un
∥∥2
]
≤ Cn−1δ−1

j .

Proof. The first and second assertions are proved in [CMS]. For the third part, with a similar

argument to the proof of Lemma 3 in [CMS], we have

sup
z∈Bj
‖(zI − Γ)−1/2X‖4 ≤ 4

∑
k 6=j

γkξ
2
k

|γj − γk|
+
γjξ

2
j

δj

2

= 4

 ∑
l 6=k,j 6=k

γlγkξ
2
l ξ

2
k

|γj − γl||γj − γk|
+
∑
k 6=j

γjγkξ
2
j ξ

2
k

δj |γj − γk|
+
γ2
j ξ

4
j

δ2
j

 ,

which implies that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖4

]
≤ C

 ∑
l 6=k,j 6=k

γlγk
|γj − γl||γj − γk|

+
∑
k 6=j

γjγk
δj |γj − γk|

+
γ2
j

δ2
j


≤ C(j log j)2.
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For the last part, we note that

‖(zI − Γ)−1/2Un‖2 = ‖(zI − Γ)−1/2Ũn − ε̄(zI − Γ)−1/2X̄‖2

≤ 2‖(zI − Γ)−1/2Ũn‖2 + 2ε̄2‖(zI − Γ)−1/2X̄‖2, (3.36)

where Ũn ≡ n−1
∑n

i=1 εiXi.

To bound the first term in (3.36), note that

‖(zI − Γ)−1/2Ũn‖2

=n−2
n∑
i=1

‖(zI − Γ)−1/2Xi‖2ε2
i

+ n−2
∑
i 6=i′
〈(zI − Γ)−1/2Xi, (zI − Γ)−1/2Xi′〉εiεi′ ,

and

sup
z∈Bj
‖(zI − Γ)−1/2Ũn‖2

≤n−2
n∑
i=1

(
sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2

)
ε2
i

+ n−2
∑
i 6=i′

(
sup
z∈Bj
〈(zI − Γ)−1/2Xi, (zI − Γ)−1/2Xi′〉

)
εiεi′ .

This implies that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2Ũn‖2

]
≤ n−1E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2ε2

]
since

E

[(
sup
z∈Bj
〈(zI − Γ)−1/2Xi, (zI − Γ)−1/2Xi′〉

)
εiεi′

]

=E

[(
sup
z∈Bj
〈(zI − Γ)−1/2Xi, (zI − Γ)−1/2Xi′〉

)
E[εiεi′ |Xn]

]

=0

from E[εiεi′ |Xn] = E[εi|Xn]E[εi′ |Xn] = E[εi|Xi]E[εi′ |Xi′ ] = 0. By Equation (5.3) in [33], for z ∈ Bj ,

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − γl|1/2

)−1

= |z − γj |−1/2 = (δj/2)−1/2.
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This implies that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2ε2

]
≤ E

[
sup
z∈Bj
‖(zI − Γ)−1/2‖2∞‖Xε‖2

]

≤ 2δ−1
j E[‖Xε‖2] = 2tr(var[Xε])δ−1

j .

Meanwhile, to find an upper bound for the second term in (3.36), note that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X̄‖2ε̄2

]
≤ sup

z∈Bj
‖(zI − Γ)−1/2‖2E[‖X̄ε̄‖2] = 2δ−1

j E[‖X̄ε̄‖2].

We see that

‖X̄ε̄‖2 = n−4

∥∥∥∥∥∥
∑
i,i0

Xiεi0

∥∥∥∥∥∥
2

= n−4
∑

i,i′,i0,i′0

〈Xi, X
′
i〉εi0εi′0 .

Since E[εi|Xi] = 0, we have that

E[‖X̄ε̄‖2] = n−4
∑
i,i′,i0

E[〈Xi, X
′
i〉ε2

i0 ].

Note that E[〈Xi, X
′
i〉ε2

i0
] ≤ E[‖Xiεi0‖‖X ′iεi0‖] ≤ E[‖Xiεi0‖2]1/2E[‖X ′iεi0‖2]1/2 by Cauchy-Schwarz

inequality. If i 6= i0, E[‖Xiεi0‖2] = E[‖Xi‖2]E[ε2
i0

] <∞. If i = i0,

E[‖Xiεi‖2] = E[‖Xε‖2] = tr(var[Xε]) <∞. This implies that

E
[
‖X̄ε̄‖2

]
≤ Cn−1, (3.37)

and hence,

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X̄‖2ε̄2

]
≤ Cn−1δ−1

j .

Lemma 16. Suppose the same assumptions of Lemma 15. We have that

supz∈Bj ‖Kn(z)‖∞IEj ≤ 2 almost surely and P(Ecj ) ≤ Cn−1/2j log j.

Lemma 17.
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1. We observe that

Π̂hn −Πhn =
1

2πι

∫
Chn
{(zI − Γ̂n)−1 − (zI − Γ)−1}dz + r1nIAc

hn
,

Γ̂−1
hn
− Γ−1

hn
=

1

2πι

∫
Chn

z−1{(zI − Γ̂n)−1 − (zI − Γ)−1}dz + r2nIAc
hn
,

where

r1n = Π̂hn −
1

2πι

∫
Chn

(zI − Γ̂n)−1dz,

r2n = Γ̂−1
hn
− 1

2πι

∫
Chn

z−1(zI − Γ̂n)−1dz.

2. Suppose that γj is a convex function of j at least for sufficiently large j and that

supj∈N E[ξ4
j ] <∞. We then have that

P(Achn) ≤ C1n
−1

hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

j log j.

Remark 14. Instead of the fourth result in Lemma 15, one can derive a more specific upper bound

of E
[
supz∈Bj

∥∥(zI − Γ)−1/2Un
∥∥2
]

under some error structures. For example, if either E[ε4] <∞

or E[ε2|X] =
∑∞

j=1 ρ
2
j 〈X,φj〉2 for some {ρj}∞j=1 with

∑∞
j=1 γjρ

2
j <∞, the upper bound Cj log j

can be obtained. This determines the convergence rate on hn for the bias term related to

〈(Γ̂−1
hn
− Γ−1

hn
)Un, X0〉 (cf. Proposition 18) and hence the rate for Theorem 7. This allows us to the

same growth rate n−1/2h
−1/2
n

∑hn
j=1(j log j)2 → 0 as the ones used for the CLT under

homoscedasticity (cf. [12, 53]).

Some preliminary lemmas related to centering by sample means X̄ ≡ n−1
∑n

i=1Xi and

ε̄ ≡ n−1
∑n

i=1 εi are provided first.

Lemma 18. We have that E[‖X̄ε̄‖2] ≤ Cn−2.

Proof. Note that

X̄ε̄ = n−2
n∑
i=1

Xiεi + n−2
∑
i 6=i′

Xiεi′
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so that

‖X̄ε̄‖2 ≤ 2n−4

∥∥∥∥∥
n∑
i=1

Xiεi

∥∥∥∥∥
2

+ 2n−4

∥∥∥∥∥∥
∑
i 6=i′

Xiεi′

∥∥∥∥∥∥
2

= 2n−4

 n∑
i=1

‖Xiεi‖2 +
∑
i 6=i′
〈Xiεi, Xi′εi′〉

+ 2n−4
∑

i 6=i′,i0 6=i′0

〈Xiεi′ , Xi0εi′0〉.

We first see that E[‖Xiεi‖2] = E[‖Xε‖2] = tr(Λ) <∞ and

E[〈Xiεi, Xi′εi′〉] = 〈E[Xiεi],E[Xi′εi′ ]〉 = 0. For the last sum, one can see that

E[〈Xiεi′ , Xi0εi′0〉] = E[‖X‖2]E[ε2] <∞ if either (i, i′) = (i0, i
′
0) or (i, i′) = (i′0, i0) and

E[〈Xiεi′ , Xi0εi′0〉] = 0 otherwise. This implies that E[‖X̄ε̄‖2] ≤ Cn−2.

Lemma 19. We have that E[〈X̄,Γ−1
hn
X0〉2] = n−1hn.

Proof. It follows from

E[〈X̄,Γ−1
hn
X0〉2] = n−1E[〈Xi,Γ

−1
hn
X0〉2] = n−1E[〈X⊗2

i Γ−1
hn
X0,Γ

−1
hn
X0]

= n−1E[EX0 [〈X⊗2
i Γ−1

hn
X0,Γ

−1
hn
X0〉]] = n−1E[〈ΓΓ−1

hn
X0,Γ

−1
hn
X0〉]

= n−1E[〈Γ−1
hn
X0, X0〉] = n−1E[thn(X0)]

= hn/n.

3.9.2 Concistency of the functional principal component regression (FPCR)

estimator

The asymptotics of the FPCR estimator β̂hn of β is based on the following decomposition:

β̂hn − β = (Γ̂−1
hn
− Γ−1

hn
)Un + Γ−1

hn
Un + (Π̂hn −Πhn)β + Πhnβ − β. (3.38)

In this subsection, we suppose that Conditions (A1)-(A5) in the main text hold. The following

lemmas are generalized results of Lemmas S3-S5 described in the supplement of [53] to the

heteroscedastic models. Lemmas 20-21 can be proved in the same way while Lemma 22 needs a

little more effort due to the centering.
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Lemma 20. As n→∞, we have the following:

1. ‖Π̂hn −Πhn‖∞ = OP

(
n−1/2

∑hn
j=1 j log j

)
.

2. ‖Γ̂−1
hn
− Γ−1

hn
‖∞ = OP

(
n−1/2

∑hn
j=1 δ

−1
j j log j

)
.

3. (a) Conditional on X0.

If n−1/2
∑hn

j=1 δ
1/2
j (j log j)3/2 → 0, then for each η > 0,

P(‖(Π̂hn −Πhn)X0‖ > η|X0)
P−→ 0.

(b) Unconditional on X0.

‖(Π̂hn −Πhn)X0‖ = OP

(
n−1/2

∑hn
j=1 δ

1/2
j (j log j)3/2

)
.

4. (a) Conditional on X0.

If n−1/2
∑hn

j=1 δ
−1/2
j (j log j)3/2 → 0, then for each η > 0,

P(‖(Γ̂−1
hn
− Γ−1

hn
)X0‖ > η|X0)

P−→ 0.

(b) Unconditional on X0.

‖(Γ̂−1
hn
− Γ−1

hn
)X0‖ = OP

(
n−1/2

∑hn
j=1 δ

−1/2
j (j log j)3/2

)
.

Lemma 21. We have ‖(Γ̂−1
hn
− Γ−1

hn
)Un‖ = OP

(
n−1

∑hn
j=1 δ

−1
j j log j

)
.

Lemma 22. In general, we have

E[‖Γ−1
hn
Un‖2] ≤ C

n−1
hn∑
j=1

γ−2
j ‖Λ

1/2φj‖2 + n−2
hn∑
j=1

γ−1
j

 .

Furthermore, if supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞, we have that E[‖Γ−1

hn
Un‖2] ≤ Cn−1

∑hn
j=1 γ

−1
j .

Proof. Notice that

‖Γ−1
hn
Un‖2 ≤ 2‖Γ−1

hn
Xε‖2 + 2‖Γ−1

hn
X̄ε̄‖2

= 2

hn∑
j=1

γ−2
j 〈Xε, φj〉

2 + 2

hn∑
j=1

γ−2
j 〈X̄ε̄, φj〉

2. (3.39)
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Let Xn ≡ {Xi}ni=1 denote the observed regressors.

For the first term in (3.39), we compute its conditional expectation as

E[〈Xε, φj〉2|Xn] = n−2
n∑
i=1

E[〈Xiεi, φj〉2|Xn] + n−2
∑
i 6=i′

E[〈Xiεi, φj〉〈Xi′εi′ , φj〉|Xn]

= n−1E[〈Xε, φj〉2|Xn]

since

E[〈Xiεi, φj〉〈Xi′εi′ , φj〉|Xn] = 〈Xi, φj〉〈Xi′ , φj〉E[εiεi′ |Xn]

= 〈Xi, φj〉〈Xi′ , φj〉E[εi|Xi]E[εi′ |Xi′ ]

= 0.

This implies that E[‖Γ−1
hn
Xε‖2|Xn] = n−1

∑hn
j=1 γ

−2
j E[〈X1ε1, φj〉2|Xn]. Then, from the fact that

E[〈Xε, φj〉2] = E[〈(Xε)⊗2φj , φj〉] = 〈Λφj , φj〉 = ‖Λ1/2φj‖2 ≤ ‖Λ‖∞,

its general second moment bound is obtained as

E[‖Γ−1
hn
Xε‖2] = n−1

hn∑
j=1

γ−2
j ‖Λ

1/2φj‖2 ≤
‖Λ‖∞
n

hn∑
j=1

γ−2
j .

For the second term in (3.39), note that

〈X̄ε̄, φj〉2 = n−4

 n∑
i=1

〈Xiεi, φj〉+
∑
i 6=i′
〈Xiεi′ , φj〉

2

≤ 2n−4

(
n∑
i=1

〈Xiεi, φj〉

)2

+ 2n−4

∑
i 6=i′
〈Xiεi′ , φj〉

2

= 2n−4
n∑
i=1

〈Xiεi, φj〉2 + 2n−4
∑
i 6=i′
〈Xiεi, φj〉〈Xi′εi′ , φj〉

+ 2n−4
∑

i 6=i′,i0 6=i′0

〈Xiεi′ , φj〉〈Xi0εi′0 , φj〉.

As above, we have E[〈Xiεi, φj〉2] = ‖Λ1/2φj‖2 and E[〈Xiεi, φj〉〈Xi′εi′ , φj〉] = 0. For the last term

in the previous display, if either (i, i′) = (i0, i
′
0) or (i, i′) = (i′0, i0), we have

E[〈Xiεi′ , φj〉〈Xi0εi′0 , φj〉] = E[〈Xi, φj〉2ε2
i′ ] = E[〈X,φj〉2]E[ε2]

= γjE[ε2]
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and E[〈Xiεi′ , φj〉〈Xi0εi′0 , φj〉] = 0 otherwise. This implies that

E[‖Γ−1
hn
X̄ε̄‖2] ≤ C

n−3
hn∑
j=1

γ−2
j ‖Λ

1/2φj‖2 + n−2
hn∑
j=1

γ−1
j

 .

Combinig these two results, we have that

E[‖Γ−1
hn
Un‖2] ≤ C

n−1
hn∑
j=1

γ−2
j ‖Λ

1/2φj‖2 + n−2
hn∑
j=1

γ−1
j

 .

We state the consistency of the FPCR estimator β̂hn for the slope function β in the following

theorem, which can be proved in the same way as Theorem S1 in the supplement of [53]

Theorem 9 (Consistency of the FPCR estimator). Suppose that h−1
n + n−1/2h2

n log hn → 0 as

n→∞. Then, the FPCR estimator β̂hn converges to the slope function β in probability in the

sense that ‖β̂hn − β‖
P−→ 0 as n→∞.

Proof. First, note that the remainder term related to Ecj and Achn are negligible by Lemma 17.

Then, by the decomposition (3.38), and Lemmas 20-22, we have that

‖β̂hn − β‖ ≤ ‖(Γ̂−1
hn
− Γ−1

hn
)Un‖+ ‖Γ−1

hn
Un‖+ ‖(Π̂hn −Πhn)‖∞‖β‖+ ‖Πhnβ − β‖

= OP

n−1
hn∑
j=1

δ−1
j j log j

+OP


n−1

hn∑
j=1

γ−2
j

1/2


+OP

n−1/2
hn∑
j=1

j log j

+O


∑
j>hn

〈β, φj〉2
1/2


We note the following convergences, which can be derived from some algebra. First, as n→∞,

n−1
∑hn

j=1(j log j)2 ≤ n−1h3
n(log hn)2 ≤ (n−1/2h2

n log hn)2 → 0, we have

n−1
hn∑
j=1

δ−1
j j log j ≤

n−1
hn∑
j=1

δ−2
j

1/2n−1
hn∑
j=1

(j log j)2

→ 0

by Cauchy-Schwarz inequality. For the rest of terms in the above display, we note that

n−1
∑hn

j=1 γ
−2
j ≤ n−1

∑hn
j=1 δ

−2
j → 0, n−1/2

∑hn
j=1 j log j ≤ n−1/2h2

n log hn → 0, and∑
j>hn
〈β, φj〉2 → 0, as n→∞. We therefore have that P(‖β̂hn − β‖ > η)→ 0 as n→∞.
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3.9.3 Central limit theorem

The proof of the CLT is again based on the decomposition (3.38). In this subsection, we

suppose that Conditions (A1)-(A7) in the main paper hold. Upon scaling
√
n/shn(X0),

Section 3.9.3.1 describes the convergences of bias terms (Γ̂−1
hn
− Γ−1

hn
)Un, (Π̂hn −Πhn)β, Πhnβ − β

in (3.38) to zero, while the proof for the weak convergence of the variance term Γ−1
hn
Un in (3.38) is

provided in Section 3.9.3.2. The consistency of the sample scaling ŝhn(X0) is finally proved in

Section 3.9.3.3.

3.9.3.1 Bias terms

The below propositions 17-19 can be proved in the same way as [12, 53], and hence, the proofs

are omitted here.

Proposition 17. As n→∞, if n−1/2h
−1/2
n

∑hn
j=1(j log j)2 → 0, we have that

P

(√
n

shn(X0)
|〈(Π̂hn −Πhn)β,X0〉| > η

∣∣∣X0

)
P−→ 0.

Proposition 18. As n→∞, suppose n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0. We then have that

P

(√
n

shn(X0)
|〈(Γ̂−1

hn
− Γ−1

hn
)Un, X0〉| > η

∣∣∣X0

)
P−→ 0.

Proposition 19. For any sequence {ζh}h∈N such that {h−1ζh}h∈N is non-decreasing, we have the

following moment inequality:

n

hn
E[〈Πhnβ − β,X0〉2] ≤ n

ζhn

∑
j>hn

γj

 sup
j∈N

(
j−1ζj〈β, φj〉2

)
.

Hence, if supj∈N

(
j−1ζjβ

2
j

)
<∞ and n = O(ζhn) as n→∞, then we have that√

n

shn(X0)
〈Πhnβ − β,X0〉

P−→ 0.

3.9.3.2 Weakly convergent term

We provide the proof for the weak convergence of the variance term as described in

Proposition 15 of the main paper.
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Proof of Proposition 15 in the main paper. Let PX0 ≡ P (·|X0) and EX0 ≡ E[·|X0] respectively

denote the conditional probability and expectation given the new predictor X0. We first write

Un = Ũn − X̄ε̄ where Ũn ≡ n−1
∑n

i=1Xiεi. The contribution from the second term X̄ε̄ can be

shown as negligible as follows. Note that

〈Γ−1
hn
X̄ε̄,X0〉2 ≤ n−42

〈
n∑
i=1

Xiεi,Γ
−1
hn
X0

〉2

+ n−42

〈∑
i 6=i′

Xiεi′ ,Γ
−1
hn
X0

〉2

.

Due to the independence of the sample {(Xi, Yi)}ni=1 and E[Xε] = 0, we have that

n−1EX0

〈 n∑
i=1

Xiεi,Γ
−1
hn
X0

〉2
 = EX0 [〈Xiεi,Γ

−1
hn
X0〉2]

= EX0 [〈(Xiεi)
⊗2Γ−1

hn
X0,Γ

−1
hn
X0〉2]

= 〈ΛΓ−1
hn
X0,Γ

−1
hn
X0〉 = shn(X0);

similarly, since E[X] = E[Xε] = 0, the expected value of cross terms is given by

EX0

〈∑
i 6=i′

Xiεi′ ,Γ
−1
hn
X0

〉2
 = (n2 − n)EX0 [〈Xiεi′ ,Γ

−1
hn
X0〉2]

= (n2 − n)EX0 [〈ε2
i′X
⊗2
i Γ−1

hn
X0,Γ

−1
hn
X0〉]

= (n2 − n)E[ε2]〈ΓΓ−1
hn
X0,Γ

−1
hn
X0〉

≡ (n2 − n)E[ε2]thn(X0).

These moments imply that

EX0

[
n

shn(X0)
〈Γ−1
hn
X̄ε̄,X0〉2

]
≤C n

shn(X0)

shn(X0)

n3
+ C

n

shn(X0)

(n2 − n)E[ε2]thn(X0)

n4

≤Cn−2 + Cn−1 thn(X0)

shn(X0)
= OP(n−1)

due to the fact that E[thn(X0)] = hn and Condition (A6).

We next consider the contribution from the term Ũn ≡ n−1
∑n

i=1Xiεi. Write

Zi,n = 〈Xiεi,Γ
−1
hn
X0〉 for i = 1, . . . , n so that√

n

shn(X0)
〈Γ−1
hn
Ũn, X0〉 = (nshn(X0))−1/2

n∑
i=1

Zi,n.
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Notice that EX0 [Zi,n] = 〈E[Xiεi],Γ
−1
hn
X0〉 = 0, and set v2

n ≡
∑n

i=1 E
X0 [Z2

i,n]. To verify a Lindeberg

condition (conditional on X0), define a quantity Ln ≡ v−2
n

∑n
i=1 E

X0 [Z2
i,nI(|Zi,n| > τvn)] for τ > 0.

Proposition 15 will then follow by showing that Ln
P−→ 0 holds as n→∞. For this purpose, it

suffices to establish (3.40)-(3.42) below:

n−1v2
n = shn(X0), (3.40)

EX0

[(
v−1
n max

1≤i≤n
|Zi,n|

)4
]

P−→ 0 as n→∞, (3.41)

EX0

∣∣∣∣∣n−1
∑n

i=1 Z
2
i,n

shn(X0)
− 1

∣∣∣∣∣
2
 P−→ 0 as n→∞. (3.42)

By (3.40) and (3.42), it also holds that

EX0

∣∣∣∣∣v−2
n

n∑
i=1

Z2
i,n − 1

∣∣∣∣∣
2
 P−→ 0

as n→∞. For notational convenience, we write An = v−2
n

∑n
i=1 Z

2
i,n,

Bn = v−2
n

∑n
i=1 Z

2
i,nI(|Zi,n| > τvn), and Cn = v−1

n max1≤i≤n |Zi,n|. Due to a subsequence argument

(cf. [4], Theorem 20.5), the convergences in probability in (3.41)-(3.42) can be treated as almost

sure convergence along a subsequence. Along any such subsequence, it then holds that Bn → 0 in

probability (with respect to PX0) by Bn ≤ AnI(Cn > τ)→ 1 · 0 = 0 and it also holds that {Bn} is

uniformly integrable (with respect to PX0) due to Bn ≤ An and the convergence from (3.42).

Along the subsequence, on an almost sure set, we have that Ln = EX0 [Bn]→ EX0 [0] = 0, which

verifies the Lindeberg condition. That is, it follows that√
n

shn(X0)
〈Γ−1
hn
Ũn, X0〉 = {nshn(X0)}−1/2

n∑
i=1

Zi,n = v−1
n

n∑
i=1

Zi,n
d−→ N(0, 1),

with respect to PX0 by (3.40). As the CDF Φ of the standard normal distribution is continuous,

by Polya’s theorem (cf. [2], Theorem 9.1.4), we have

sup
y∈R

∣∣∣∣PX0

(√
n

shn(X0)
〈Γ−1
hn
Ũn, X0〉 ≤ y

)
− Φ(y)

∣∣∣∣ P−→ 0,

establishing Proposition 15.
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We next show that (3.40)-(3.42) hold. The equation (3.40) follows from

EX0 [Z2
i,n] = 〈ΛΓ−1

hn
X0,Γ

−1
hn
X0〉 = shn(X0). To prove the convergence in (3.41), we note that

|Zi,n| = |〈Λ−1/2
hn

Xiεi,Λ
1/2
hn

Γ−1
hn
X0〉| ≤ ‖Λ−1/2

hn
Xiεi‖‖Λ1/2

hn
Γ−1
hn
X0‖,

which implies that

v−1
n max

1≤i≤n
|Zi,n| ≤ n−1/2 max

1≤i≤n
‖Λ−1/2

hn
Xiεi‖

‖Λ1/2
hn

Γ−1
hn
X0‖

(n−1v2
n)1/2

≤ n−1/2 max
1≤i≤n

‖Λ−1/2
hn

Xiεi‖.

since ‖Λ1/2
hn

Γ−1
hn
X0‖ ≤ ‖Λ1/2Γ−1

hn
X0‖. By Jensen’s inequality, it then holds that

‖Λ−1/2
hn

Xiεi‖2 = 〈Λ−1
hn
Xiεi, Xiεi〉 =

hn∑
j=1

λ−1
j 〈Xiεi, ψj〉2

≤

√√√√hn

hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4.

By the finite fourth moment assumption (A7) on Xε, we see that

E

[
max

1≤i≤n
‖Λ−1/2

hn
Xiεi‖4

]
≤ E

hn n∑
i=1

hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4

 ≤ Cnh2
n,

which implies that

EX0

[(
v−1
n max

1≤i≤n
|Zi,n|

)4
]
≤ n−2E

[
max

1≤i≤n
‖Λ−1/2

hn
Xiεi‖4

]
≤ Cn−1h2

n → 0

as n→∞.

Finally, we verify the convergence in (3.42). We note that

n−1
n∑
i=1

Z2
i,n = 〈Λ̃nΓ−1

hn
X0,Γ

−1
hn
X0〉 = 〈(Λ̃n − Λ)Γ−1

hn
X0,Γ

−1
hn
X0〉+ shn(X0),

which implies that

EX0

∣∣∣∣∣n−1
∑n

i=1 Z
2
i,n

shn(X0)
− 1

∣∣∣∣∣
2
 = EX0

[∣∣∣shn(X0)−1〈(Λ̃n − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉

∣∣∣2]

≤ {hnshn(X0)−1}2EX0 [‖Λ̃n − Λ‖2∞](h−2
n ‖Γ−1

hn
X0‖4)

= OP

n−1/2h−1
n

hn∑
j=1

γ−1
j

2
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since E[‖Λ̃n − Λ‖2∞] = O(n−1) (cf. [32], Theorem 2.5) from the finite fourth moment assumption

(A7) and E[‖Γ−1
hn
X0‖2] =

∑hn
j=1 γ

−2
j E[〈X0, φj〉2] =

∑hn
j=1 γ

−1
j . One can find that

n−1/2h−1
n

∑hn
j=1 γ

−1
j is dominated by h

−1/2
n

(
n−1

∑hn
j=1 δ

−2
j

)1/2
by applying Cauchy-Schwarz

inequality. Hence, due to (A5), as n→∞, we have that

EX0

∣∣∣∣∣n−1
∑n

i=1 Z
2
i,n

shn(X0)
− 1

∣∣∣∣∣
2
 P−→ 0.

3.9.3.3 Scaling term

We investigate the consistency of the ratio of ŝhn(X0) over shn(X0) to 1 either conditionally or

unconditionally on X0. To obtain this consistency, two approximations of Λ and Γ−1 appear,

which complicates the proofs. The proof is based on the following decomposition of the empirical

scaling ŝhn(X0):

ŝhn(X0) =〈Λ̂n,knΓ̂−1
hn
X0, Γ̂

−1
hn
X0〉

=〈Λ̂n,kn(Γ̂−1
hn
− Γ−1

hn
)X0, Γ̂

−1
hn
X0〉+ 〈Λ̂n,knΓ−1

hn
X0, Γ̂

−1
hn
X0〉

=〈Λ̂n,kn(Γ̂−1
hn
− Γ−1

hn
)X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉+ 〈Λ̂n,kn(Γ̂−1

hn
− Γ−1

hn
)X0,Γ

−1
hn
X0〉

+ 〈Λ̂n,knΓ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉+ 〈Λ̂n,knΓ−1

hn
X0,Γ

−1
hn
X0〉

=〈Λ̂n,kn(Γ̂−1
hn
− Γ−1

hn
)X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉

+ 2〈Λ̂n,knΓ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉

+ 〈Λ̂n,knΓ−1
hn
X0,Γ

−1
hn
X0〉

=〈(Λ̂n,kn − Λ)(Γ̂−1
hn
− Γ−1

hn
)X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉 (3.43)

+ 〈Λ(Γ̂−1
hn
− Γ−1

hn
)X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉

+ 2〈(Λ̂n,kn − Λ)Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉

+ 2〈ΛΓ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉

+ 〈(Λ̂n,kn − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉+ 〈ΛΓ−1

hn
X0,Γ

−1
hn
X0〉.
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We see by writing ε̂i,kn = εi − 〈β̂kn − β,Xi〉 that

Λ̂n,kn − Λ = n−1
n∑
i=1

(Xiε̂i,kn)⊗2 − (Xε̂)⊗2
n,kn
− Λ

= Λ̃n − Λ + n−1
n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2 (3.44)

− 2n−1
n∑
i=1

{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉 − (Xε̂)⊗2
n,kn

where Λ̃n ≡ n−1
∑n

i=1(Xiεi)
⊗2 and

(Xε̂)n,kn ≡ n−1
n∑
i=1

Xiε̂i,kn = n−1
n∑
i=1

Xiεi − n−1
n∑
i=1

〈β̂kn − β,Xi〉Xi

= Xε− Γ̃n(β̂kn − β) (3.45)

with Xε ≡ n−1
∑n

i=1Xiεi and Γ̃n ≡ n−1
∑n

i=1X
⊗2
i .

In Lemmas 23-25, we study the convergence rates of each term in (3.43) by using the

decomposition (3.44) of Λ̂n,kn − Λ In the following lemmas, we suppose that ‖β̂kn − β‖
P−→ 0 as

n→∞.

Lemma 23.

1. We have that (Xε̂)n,kn = oP(1) +OP(‖β̂kn − β‖) so that (Xε̂)n,kn
P−→ 0 as n→∞.

2. As n→∞, if n−1h−1
n

∑hn
j=1 γ

−1
j → 0 (which is implied by Condition (A5)), we have that

P(shn(X0)−1〈(Xε̂)n,kn ,Γ−1
hn
X0〉2 > η|X0)

P−→ 0.

Proof. The first part follows since

‖(Xε̂)n,kn‖ ≤ ‖Xε‖+ ‖Γ̃n − Γ‖∞‖β̂kn − β‖+ ‖Γ‖∞‖β̂kn − β‖

= oP(1) +OP(‖β̂kn − β‖)

by the law of large numbers (cf. [33], Theorem 7.2).

For the second part, note that E[‖Xε‖2] = O(n−1) from Theorem 2.3 of [32] under

Condition (A7) and E[‖Γ−1
hn
X0‖2] =

∑hn
j=1 γ

−1
j . This implies that
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E[〈Xε,Γ−1
hn
X0〉2] = O

(
n−1

∑hn
j=1 γ

−1
j

)
, and hence, we have that

shn(X0)−1〈Xε,Γ−1
hn
X0〉2 = OP

n−1h−1
n

hn∑
j=1

γ−1
j

 ,

E
[
shn(X0)−1〈Xε,Γ−1

hn
X0〉2

∣∣∣X0

]
= OP

n−1h−1
n

hn∑
j=1

γ−1
j

 ,

Next, we observe that

〈Γ̃n(β̂kn − β),Γ−1
hn
X0〉 = 〈(β̂kn − β), Γ̃nΓ−1

hn
X0〉

and Γ̃nΓ−1
hn
X0 = n−1

∑n
i=1〈Xi,Γ

−1
hn
X0〉Xi. By Cauchy-Schwarz inequality (for both arithmetic

mean and expectation), we have that

E[‖Γ̃nΓ−1
hn
X0‖]2 ≤ E

(n−1
n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

)1/2(
n−1

n∑
i=1

‖Xi‖2
)1/2

2

≤ E

[(
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

)]
E

[(
n−1

n∑
i=1

‖Xi‖2
)]

and similarly, we have the conditional version as

E[‖Γ̃nΓ−1
hn
X0‖|X0]2 ≤ E

[(
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

)∣∣∣X0

]
E

[(
n−1

n∑
i=1

‖Xi‖2
)∣∣∣X0

]
.

Since 〈Xi,Γ
−1
hn
X0〉 =

∑hn
j=1 γ

−1
j 〈Xi, φj〉〈X0, φj〉 and the FPC scores ξj are uncorrelated random

variables with mean zero and variance γj , we see that

E

[
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

]
= n−1

n∑
i=1

E
[
〈Xi,Γ

−1
hn
X0〉2

]
= n−1

n∑
i=1

hn∑
j=1

γ−2
j E[〈Xi, φj〉2]E[〈X0, φj〉2]

= n−1
n∑
i=1

hn∑
j=1

1 = hn.

Finally, since E
[
n−1

∑n
i=1 ‖Xi‖2|X0

]
= E

[
n−1

∑n
i=1 ‖Xi‖2

]
= E

[
‖X‖2

]
= tr(Γ) <∞, we obtain

E[shn(X0)−1/2‖Γ̃nΓ−1
hn
X0‖|X0] = OP(1).
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Note that P(‖β̂kn − β‖ > η|X0) = P(‖β̂kn − β‖ > η)→ 0 and

lim
M→∞

lim sup
n→∞

P(shn(X0)−1/2‖Γ̃nΓ−1
hn
X0‖ > M |X0) = 0.

This implies that

P(shn(X0)−1/2|〈Γ̃n(β̂kn − β),Γ−1
hn
X0〉| > η|X0)

P−→ 0.

Finally, due to the decomposition (3.45), we have the desired result.

Lemma 24.

1. We have

n−1
n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2 = OP

(
‖β̂kn − β‖2

)
.

2. For each η > 0, we have

P

(
shn(X0)−1

∣∣∣∣∣
〈(

n−1
n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2

)
Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0

〉∣∣∣∣∣ > η
∣∣∣X0

)

=oP

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2 + 1

 .

3. For each η > 0, we have

P

(
shn(X0)−1

∣∣∣∣∣
〈(

n−1
n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2

)
Γ−1
hn
X0,Γ

−1
hn
X0

〉∣∣∣∣∣ > η
∣∣∣X0

)
P−→ 0.

Proof. Note that the second term in the decomposition (3.44) can be bounded as∥∥∥∥∥n−1
n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2

∥∥∥∥∥ ≤ n−1
n∑
i=1

‖Xi‖4‖β̂kn − β‖2 = OP(‖β̂kn − β‖2),

which proves the first part.
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For the second part, note that

Ln ≡

〈(
n−1

n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2

)
Γ−1
hn
X0, Qn

〉

=n−1
n∑
i=1

〈Xi,Γ
−1
hn
X0〉〈Xi, Qn〉〈β̂kn − β,Xi〉2

=n−1
n∑
i=1

〈Xi,Γ
−1
hn
X0〉〈Xi, Qn〉〈X⊗2

i (β̂kn − β), β̂kn − β〉

=

〈
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉〈Xi, Qn〉X⊗2

i (β̂kn − β), β̂kn − β

〉

where Qn ≡ (Γ̂−1
hn
− Γ−1

hn
)X0. This implies that

|Ln| ≤

(
n−1

n∑
i=1

‖Xi‖3|〈Xi,Γ
−1
hn
X0〉|

)
‖Qn‖‖β̂kn − β‖2.

We note from Cauchy-Schwarz inequality that

E[‖Xi‖3|〈Xi,Γ
−1
hn
X0〉|]2 ≤ E[‖Xi‖4]E[‖Xi‖2〈Xi,Γ

−1
hn
X0〉2].

Since the FPC scores ξj are uncorrelated random variables with mean zero and variance 1, we

have from the independence between Xn ≡ {Xi}ni=1 and X0 that

E[‖Xi‖2〈Xi,Γ
−1
hn
X0〉2] =

hn∑
j=1

γ−1
j E[‖Xi‖2〈Xi, φj〉2].

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[‖Xi‖2〈Xi, φj〉2] ≤ E[‖Xi‖4]1/2E[〈Xiφj〉4]1/2 ≤ Cγj ,

which implies that E[‖Xi‖3|〈Xi,Γ
−1
hn
X0〉|] = O(h

1/2
n ). We then have

E

[
shn(X0)−1

(
n−1

n∑
i=1

‖Xi‖3|〈Xi,Γ
−1
hn
X0〉|

)∣∣∣X0

]
= OP(h−1/2

n ),

under Condition (A6). Therefore, due to Lemma 20, we have the desired result.
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Lastly, note that

Ln ≡

〈(
n−1

n∑
i=1

X⊗2
i 〈β̂kn − β,Xi〉2

)
Γ−1
hn
X0,Γ

−1
hn
X0

〉

=n−1
n∑
i=1

〈Xi,Γ
−1
hn
X0〉2〈β̂kn − β,Xi〉2

=n−1
n∑
i=1

〈Xi,Γ
−1
hn
X0〉2〈X⊗2

i (β̂kn − β), β̂kn − β〉

=

〈
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2X⊗2

i (β̂kn − β), β̂kn − β

〉
.

This implies that

|Ln| ≤

(
n−1

n∑
i=1

‖Xi‖2〈Xi,Γ
−1
hn
X0〉2

)
‖β̂kn − β‖2.

Since the FPC scores ξj are uncorrelated random variables with mean zero and variance 1, we

have from the independence between Xn ≡ {Xi}ni=1 and X0 that

E[‖Xi‖2〈Xi,Γ
−1
hn
X0〉2] =

hn∑
j=1

γ−1
j E[‖Xi‖2〈Xi, φj〉2].

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[‖Xi‖2〈Xi, φj〉2] ≤ E[‖Xi‖4]1/2E[〈Xi, φj〉4]1/2 ≤ Cγj ,

which implies that E[‖Xi‖2〈Xi,Γ
−1
hn
X0〉2] = O(hn). We then have

E

[
shn(X0)−1

(
n−1

n∑
i=1

‖Xi‖2〈Xi,Γ
−1
hn
X0〉2

)∣∣∣X0

]
= OP(1),

under Condition (A6). Therefore, we have the desired result.

Lemma 25.

1. We have n−1
∑n

i=1{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉 = OP(‖β̂kn − β‖).

2. For each η > 0, we have

P

(〈(
n−1

n∑
i=1

{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉

)
Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0

〉
> η

∣∣∣X0

)

=oP

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2 + 1

 .
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3. For each η > 0, we have

P

(
shn(X0)−1

∣∣∣∣∣
〈(

n−1
n∑
i=1

{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉2
)

Γ−1
hn
X0,Γ

−1
hn
X0

〉∣∣∣∣∣ > η
∣∣∣X0

)
P−→ 0.

Proof. We first observe that∥∥∥∥∥n−1
n∑
i=1

{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉

∥∥∥∥∥
≤n−1

n∑
i=1

‖Xiε‖‖Xi‖2‖β̂kn − β‖

≤

(
n−1

n∑
i=1

‖Xiε‖2
)1/2(

n−1
n∑
i=1

‖Xi‖4
)
‖β̂kn − β‖

=OP(‖β̂kn − β‖)

since E[‖Xε‖2] <∞ and E[‖X‖4] <∞.

For the second part, note that

Ln ≡

〈(
n−1

n∑
i=1

{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉

)
Γ−1
hn
X0, Qn

〉

= n−1
n∑
i=1

〈β̂kn − β,Xiεi〉〈Xi,Γ
−1
hn
X0〉〈Xi, Qn〉

=

〈
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉〈Xi, Qn〉Xiεi, β̂kn − β

〉

where Qn ≡ (Γ̂−1
hn
− Γ−1

hn
)X0. This implies that

|Ln| ≤

(
n−1

n∑
i=1

|〈Xi,Γ
−1
hn
X0〉|‖Xi‖‖Xiεi‖

)
‖Qn‖‖β̂kn − β‖

We note from Cauchy-Schwarz inequality that

E[|〈Xi,Γ
−1
hn
X0〉|‖Xi‖‖Xiεi‖]2 ≤ E[‖Xi‖2〈Xi,Γ

−1
hn
X0〉2]E[‖Xiεi‖2].

Since the FPC scores ξj are uncorrelated random variables with mean zero and variance 1, we

have from the independence between Xn ≡ {Xi}ni=1 and X0 that

E[‖Xi‖2〈Xi,Γ
−1
hn
X0〉2] =

hn∑
j=1

γ−1
j E[‖Xi‖2〈Xi, φj〉2].
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By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[‖Xi‖2〈Xiφj〉2] ≤ E[‖Xi‖4]1/2E[〈Xiφj〉4]1/2 ≤ Cγj ,

which implies that E[|〈Xi,Γ
−1
hn
X0〉|‖Xi‖‖Xiεi‖] = O(h

1/2
n ). We then have

E

[
shn(X0)−1

(
n−1

n∑
i=1

|〈Xi,Γ
−1
hn
X0〉|‖Xi‖‖Xiεi‖

)∣∣∣X0

]
= OP(h−1/2

n ),

under Condition (A6). Therefore, due to Lemma 20, we have the desired result.

Lastly, note that

Ln ≡

〈(
n−1

n∑
i=1

{(Xiεi)⊗Xi}〈β̂kn − β,Xi〉

)
Γ−1
hn
X0,Γ

−1
hn
X0

〉

=n−1
n∑
i=1

〈Xi,Γ
−1
hn
X0〉2〈β̂kn − β,Xiεi〉.

This implies that

|Ln| ≤

(
n−1

n∑
i=1

‖Xiεi‖〈Xi,Γ
−1
hn
X0〉2

)
‖β̂kn − β‖.

Since the FPC scores ξj are uncorrelated random variables with mean zero and variance 1, we

have from the independence between {(Xi, εi)}ni=1 and X0 that

E[‖Xiεi‖〈Xi,Γ
−1
hn
X0〉2] =

hn∑
j=1

γ−1
j E[‖Xiεi‖〈Xiφj〉2].

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[‖Xiεi‖〈Xiφj〉2] ≤ E[‖Xiεi‖2]1/2E[〈Xiφj〉4]1/2 ≤ Cγj ,

which implies that E[‖Xiεi‖〈Xi,Γ
−1
hn
X0〉2] = O(hn). We then have

E

[
shn(X0)−1

(
n−1

n∑
i=1

‖Xiεi‖〈Xi,Γ
−1
hn
X0〉2

)∣∣∣X0

]
= OP(1),

under Condition (A6). Therefore, we have the desired result.

Proposition 20. We suppose that n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0 as n→∞ and

supj∈N γ
−1
j ‖Λφj‖2 <∞. Then, the scaling shn(X0) and ŝhn(X0) are asymptotically equivalent

in that, for any η > 0,

P

(∣∣∣∣ ŝhn(X0)

shn(X0)
− 1

∣∣∣∣ > η
∣∣∣X0

)
P−→ 0.



176

Proof. We obtain the following decomposition from (3.43):∣∣∣∣ ŝhn(X0)

shn(X0)
− 1

∣∣∣∣ ≤shn(X0)−1|〈(Λ̂n,kn − Λ)(Γ̂−1
hn
− Γ−1

hn
)X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉| (3.46)

+ shn(X0)−1|〈Λ(Γ̂−1
hn
− Γ−1

hn
)X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉|

+ 2shn(X0)−1|〈(Λ̂n,kn − Λ)Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉|

+ 2shn(X0)−1|〈ΛΓ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉|

+ shn(X0)−1|〈(Λ̂n,kn − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉|.

We now investigate each term in the upper bound by using the previous lemmas. Before that, we

observe that E[‖Λ̃n − Λ‖2∞] = O(n−1) by Theorem 2.5 of [32] since E[‖Xε‖4] <∞.

By the observation that E[‖Λ̃n − Λ‖2∞] = O(n−1), the first parts of each of Lemmas 23-25, and

the decomposition (3.44), we have that ‖Λ̂n,kn − Λ‖∞
P−→ 0 as n→∞. Then, Lemma 20 along

with Lemma 17 implies that the first two terms in (3.46) converges to zero either conditionlly or

unconditionally on X0 if n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0.

Recall that E[‖Γ−1
hn
X0‖2] =

∑hn
j=1 γ

−1
j . Since E[‖Λ̃n − Λ‖2∞] = O(n−1), we have that

shn(X0)−1|〈(Λ̃n − Λ)Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉|

≤{hnshn(X0)−1}h−1
n OP(n−1/2)OP


 hn∑
j=1

γ−1
j

1/2
 ‖(Γ̂−1

hn
− Γ−1

hn
)X0‖

={hnshn(X0)−1}OP


n−1h−1

n

hn∑
j=1

γ−1
j

1/2
 {h−1/2

n ‖(Γ̂−1
hn
− Γ−1

hn
)X0‖}.

Thus, as n→∞, if n−1h−1
n

∑hn
j=1 γ

−1
j = O(1), which can be achieved from Condition (A5), and if

n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0, Lemma 20 implies that

shn(X0)−1|〈(Λ̃n − Λ)Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0〉|

converges to zero either conditionlly or unconditionally on X0. By the second parts of each of

Lemmas 23-25, and the decomposition (3.44), the third term in (3.46) converges to zero either

conditionally on X0.
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For the fourth term in (3.46), we first note that E[‖ΛΓ−1
hn
X0‖2] =

∑hn
j=1 γ

−1
j ‖Λφj‖2 so that

h−1/2
n ‖ΛΓ−1

hn
X0‖ = OP


h−1

n

hn∑
j=1

γ−1
j ‖Λφj‖

2

1/2
 .

Thus, as n→∞, if

n−1/2h−1
n

 hn∑
j=1

γ−1
j ‖Λφj‖

2

1/2
hn∑
j=1

δ
−1/2
j (j log j)3/2 → 0,

by Lemma 20, the fourth term in (3.46) converges to zero either conditionally on X0 Note that

this condition is satisfied if supj∈N γ
−1
j ‖Λφj‖2 <∞ and n−1/2h

−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0 as

n→∞.

Recall that E[‖Γ−1
hn
X0‖2] =

∑hn
j=1 γ

−1
j . Since E[‖Λ̃n − Λ‖2∞] = O(n−1), we have that

E[h−1
n |〈(Λ̃n − Λ)Γ−1

hn
X0,Γ

−1
hn
X0〉|]

≤h−1
n E[‖Λ̃n − Λ‖∞]E[‖Γ−1

hn
X0‖2]

=O

n−1/2h−1
n

hn∑
j=1

γ−1
j

 .

Meanwhile, note from Jensen’s inequality that

n−1/2h−1
n

hn∑
j=1

γ−1
j ≤ n

−1/2h−1/2
n

hn∑
j=1

γ−1
j ≤

n−1
hn∑
j=1

γ−2
j

1/2

≤

n−1
hn∑
j=1

δ−2
j

1/2

Thus, under Condition (A5), we have that

shn(X0)−1|〈(Λ̃n − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉| = oP(1),

E[shn(X0)−1|〈(Λ̃n − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉||X0] = oP(1).

Finally, by the second parts of Lemma 23, third prats of each of Lemmas 24-25, and the

decomposition (3.44), the last term in (3.46) converges to zero either conditionally on X0.

The above four arguments completes the proof along with the decomposition (3.46).
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3.10 Technical details: validity of the paired bootstrap

In this section, we complete the proofs for the consistency of the paired bootstrap and the

failure of a naive paired bootstrap in Section 3.3.2. The proofs require bootstrap counterparts of

lemmas and the consistency of bootstrap estimator described in Sections 3.9.1-3.9.2, respectively,

which are provided in Sections 3.10.1-3.10.2. The bias terms in the decomposition (3.48)-(3.49)

given below are studied in Section 3.10.3 while the lemmas for the weak convergence of the

variance term is proved in Section 3.10.4. In Section 3.10.5, we provide the consistency of

bootstrap scaling. The propositions used to prove the failure of a naive bootstrap method are

given in Section 3.10.6. Finally, Section 3.10.7 provides the proof of the failure of both modified

and naive bootstrap methods.

We notice the following bias-variance decomposition of bootstrap quantity β̂∗hn − β̂gn as

β̂∗hn − β̂gn = β̂∗hn − Π̂hn β̂gn + Π̂hn β̂gn − β̂gn , (3.47)

where the non-random bias part Π̂hn β̂gn − β̂gn in the bootstrap world vanishes if hn ≥ gn. When

hn < gn, the biased quantity β̂∗hn − Π̂hn β̂gn can be represented with the following decomposition:

β̂∗hn − Π̂hn β̂gn = (Γ̂∗hn)−1{Γ̂∗nβ̂gn + U∗n − Ûn,gn} − Π̂hn β̂gn

= (Γ̂∗hn)−1{U∗n − Ûn,gn}+ (Π̂∗hn − Π̂hn)β̂gn

= {(Γ̂∗hn)−1 − Γ−1
hn
}{U∗n − Ûn,gn}+ Γ−1

hn
{U∗n − Ûn,gn} (3.48)

+ (Π̂∗hn −Πhn)(β̂gn − β) + (Π̂∗hn −Πhn)β

− (Π̂hn −Πhn)(β̂gn − β)− (Π̂hn −Πhn)β.

Here, U∗n,gn ≡ n
−1
∑n

i=1(X∗i − X̄∗)(ε∗i,gn − (ε∗)n,gn) = (X∗ε∗)n,gn − X̄∗(ε∗)n,gn where

ε∗i,gn ≡ Y
∗
i − 〈X∗i , β̂gn〉 are bootstrap errors with their average (ε∗)n,gn ≡ n−1

∑n
i=1 ε

∗
i,gn

and

(X∗ε∗)n,gn ≡ n−1
∑n

i=1X
∗
i ε
∗
i,gn

, X̄∗ ≡ n−1
∑n

i=1X
∗
i . The non-random bias Π̂hn β̂gn − β̂gn is

expressed as

Π̂hn β̂gn − β̂gn = (Π̂hn −Πhn + Πhn − I)β̂gn

=(Π̂hn −Πhn)(β̂gn − β) + (Π̂hn −Πhn)β + (Πhn − I)(β̂gn − β) + (Πhn − I)β. (3.49)
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Throughout this section, we write P∗ = P(·|Xn,Yn) and E∗[·|Xn,Yn] for the bootstrap probability

and expectation operator, respectively.

3.10.1 Preliminaries: perturbation theory with bootstrap quantities

In this section, we study a bootstrap counterpart of the perturbation theory similar to those

in Section 3.9.1, which can be applied to our bootstrap theory. To do this, consider the following

notations:

G∗n(z) = (zI − Γ)−1/2(Γ̂∗n − Γ)(zI − Γ)−1/2;

K∗n(z) = (zI − Γ)1/2(zI − Γ̂∗n)−1(zI − Γ)1/2;

E∗j = (‖G∗n(z)‖∞ < 1/2, ∀z ∈ Bj);

A∗hn = {∀j ∈ {1, . . . , hn}, |γ̂∗j − γj | < δj/2}.

Lemma 26. Suppose that Condition (A2) holds. We then have that

sup
l,k∈N

E[E∗[〈(Γ̂∗n − Γ)φl, φk〉2]]

γlγk
≤ C1

n
+
C2

n2
.

Proof. Note that

〈(Γ̂∗n − Γ)φl, φk〉2 ≤ 2〈(Γ̃∗n − Γ)φl, φk〉2 + 2〈X̄∗, φl〉2〈X̄∗, φk〉2, (3.50)

where Γ̃∗n ≡ n−1
∑n

i=1(X∗i )⊗2. We use a similar strategy to the proof of Lemma 13.

To bound the first term in (3.50), we start with the following decomposition:

〈(Γ̃∗n − Γ)(φl), φk〉2

=

{
n−1

n∑
i=1

〈(X∗i )⊗2φl, φk〉 − 〈Γφl, φk〉

}2

=

{
n−1

n∑
i=1

〈X∗i , φl〉〈X∗i , φk〉 − 〈Γφl, φk〉

}2

=n−2

(
n∑
i=1

〈X∗i , φl〉〈X∗i , φk〉

)2

− 2

n

n∑
i=1

〈X∗i , φl〉〈X∗i , φk〉〈Γφl, φk〉+ 〈Γφl, φk〉2

=n−2
n∑
i=1

〈X∗i , φl〉2〈X∗i , φk〉2 + n−2
∑
i 6=i′
〈X∗i , φl〉〈X∗i , φk〉〈X∗i′ , φl〉〈X∗i′ , φk〉

− 2

n

n∑
i=1

〈X∗i , φl〉〈X∗i , φk〉〈Γφl, φk〉+ 〈Γφl, φk〉2.
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Since X∗i and X∗i′ are independent (under P ∗), and

E∗[〈X∗i , φl〉〈X∗i , φk〉] = E∗[〈(X∗1 ⊗X∗1 )(φl), φk〉] = 〈(E∗[X∗1 ⊗X∗1 ])(φl), φk〉

= 〈Γ̂nφl, φk〉,

we have that

E∗[〈(Γ̃∗n − Γ)(φl), φk〉2]

=n−1E∗[〈X∗1 , φl〉2〈X∗1 , φk〉2] +
n2 − n
n2

〈Γ̂nφl, φk〉2 − 2〈Γ̂nφl, φk〉〈Γφl, φk〉+ 〈Γφl, φk〉2

=n−1
(
E∗[〈X∗1 , φl〉2〈X∗1 , φk〉2]− 〈Γ̂nφl, φk〉2

)
+ 〈(Γ̂n − Γ)φl, φk〉2

=n−1

(
n−1

n∑
i=1

〈Xi, φl〉2〈Xi, φk〉2 − 〈Γ̂nφl, φk〉2
)

+ 〈(Γ̂n − Γ)φl, φk〉2

≤n−1

(
n−1

n∑
i=1

〈Xi, φl〉2〈Xi, φk〉2
)

+ 〈(Γ̂n − Γ)φl, φk〉2.

This implies that

E[E∗[〈(Γ̃∗n − Γ)(φl), φk〉2]] ≤ n−1E[〈X1, φl〉2〈X1, φk〉2] + E[〈(Γ̂n − Γ)φl, φk〉2].

Notice that

E[〈X1, φl〉2〈X1, φk〉2] ≤ γlγkE[γ−1
l 〈X1, φl〉2γ−1

k 〈X1, φk〉2]

≤ γlγk
√

E[γ−2
l 〈X1, φl〉4]

√
E[γ−2

l 〈X1, φk〉4] ≤ Cγlγk

by Condition (A2), and

E[〈(Γ̂n − Γ)(φl), φk〉2] = n−1E[〈X1, φl〉2〈X1, φk〉2] +
n2 − n
n2

〈Γφl, φk〉2 − 2〈Γφl, φk〉2 + 〈Γφl, φk〉2

= n−1
(
E[〈X1, φl〉2〈X1, φk〉2]− 〈Γφl, φk〉2

)
≤ Cn−1γlγk.

This means that E[E∗[〈(Γ̃∗n − Γ)(φl), φk〉2]] ≤ Cn−1γlγk.

To bounde the second term in (3.50), we first consider the case of l 6= k. Note that

〈X̄∗, φl〉2〈X̄∗, φk〉2 = n−4
∑

1≤i,i′,i0,i′0≤n

〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φk〉〈X∗i′0 , φk〉.
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We investigate the values of Ji,i′,i0,i′0 ≡ E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φk〉〈X∗i′0 , φk〉] depending on the

quadraple (i, i′, i0, i
′
0).

Suppose that i, i′, i0, i
′
0 are all distinct. We then have

Ji,i′,i0,i′0 = 〈X̄, φl〉2〈X̄, φk〉2.

Then, we have

E[〈X̄, φl〉2〈X̄, φk〉2]

=n−4
∑
i 6=i′

E[〈Xi, φl〉2〈Xi′ , φk〉2] + n−4
n∑
i=1

E[〈Xi, φl〉2〈Xi, φk〉2]

=n−4{(n2 − n)γlγk + nE[〈X,φl〉2〈X,φk〉2]}

≤n−4

{
(n2 − n)γlγk + nγlγk

√
E[ξ4

l ]
√
E[ξ4

k]

}
≤n−4{(n2 − n)γlγk + Cnγlγk}

≤Cγlγk
n2

.

Suppose that only two of i, i′, i0, i
′
0 are equal and the other two are distinct from the equal

value. We can divide this into three cases as follows. If i′ = i′0 and i 6= i0 are distinct from i′ = i′0,

then

Ji,i′,i0,i′0 = 〈X̄, φl〉2
(
n−1

n∑
i=1

〈Xi, φk〉2
)

= 〈X̄⊗2φl, φl〉〈Γ̃nφk, φk〉.

Its expected value is

E[Ji,i′,i0,i′0 ] = n−3E

( n∑
i=1

〈Xi, φl〉

)2( n∑
i′=1

〈Xi′ , φk〉2
)

= n−3
n∑
i=1

E[〈Xi, φl〉2〈Xi, φk〉2] + n−3
∑
i 6=i′

E[〈Xi, φl〉2〈Xi′ , φk〉2]

= n−2E[〈X,φl〉2〈X,φk〉2] + n−3(n2 − n)γlγk

≤ Cn−2γlγk + n−3(n2 − n)γlγk

≤ Cγlγk
n

.
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If i = i0 and i′ 6= i′0 are distinct from i = i0, then

Ji,i′,i0,i′0 = 〈X̄, φk〉2
(
n−1

n∑
i=1

〈Xi, φl〉2
)

= 〈X̄⊗2φk, φk〉〈Γ̃nφl, φl〉.

Similarly to the previous case, we have that E[Ji,i′,i0,i′0 ] ≤ Cn−1γlγk. If either i = i′, i = i′0,

i′ = i0, or i0 = i′0, then,

Ji,i′,i0,i′0 =

(
n−1

n∑
i=1

〈Xi, φl〉〈Xi, φk〉

)
〈X̄, φl〉〈X̄, φk〉

= 〈Γ̃nφl, φk〉〈X̄⊗2φl, φk〉.

Its expected value is

E[Ji,i′,i0,i′0 ] = n−3E

[(
n∑
i=1

〈Xi, φl〉〈Xi, φk〉

)(
n∑

i′=1

〈Xi′ , φl〉〈Xi′ , φk〉

)]

= n−3
n∑
i=1

E[〈Xi, φl〉2〈Xi, φk〉2] + n−3
∑
i 6=i′

E[〈Xi, φl〉〈Xi, φk〉〈Xi′ , φl〉〈Xi′ , φk〉]

= n−2E[〈X,φl〉2〈X,φk〉2]

≤ Cn−2γlγk.

Suppose that three of i, i′, i0, i
′
0 are equal and the other one is distinct from the equal value.

This is divided into the following two cases. If either i = i0 = i′ or i = i0 = i′0, then

Ji,i′,i0,i′0 = n−1
n∑
i=1

〈Xi, φl〉2〈Xi, φk〉〈X̄, φk〉.

Its expected value is

E[Ji,i′,i0,i′0 ] = n−2E

[(
n∑
i=1

〈Xi, φl〉2〈Xi, φk〉

)(
n∑

i′=1

〈Xi′ , φk〉

)]

= n−2
n∑
i=1

E[〈Xi, φl〉2〈Xi, φk〉2]

= n−1E[〈X,φl〉2〈X,φk〉2]

≤ Cn−1γlγk.
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If either i = i′ = i′0 or i0 = i′ = i′0, then

Ji,i′,i0,i′0 = n−1
n∑
i=1

〈Xi, φk〉2〈Xi, φl〉〈X̄, φl〉.

In a simlar way to the previous case, we have that E[Ji,i′,i0,i′0 ] ≤ Cn−1γlγk.

Suppose that i = i′ = i0 = i′0, then Ji,i′,i0,i′0 = n−1
∑n

i=1〈Xi, φk〉2〈Xi, φl〉2. Hence,

E[Ji,i′,i0,i′0 ] = E[〈X,φl〉2〈X,φk〉2] ≤ Cγlγk.

By incorporating the number of possibilities of the quadruple (i, i′, i0, i
′
0), we have that

E[E∗[〈X̄∗, φl〉2〈X̄∗, φk〉2]]

≤Cn−4{nγlγk + 4n2(n−1γlγk) + 2n3(n−1γlγk) + 4n3(n−2γlγk) + n4(n−2γlγk)}

≤Cn−2γlγk.

In a similar manner, we can show the same inequality when l = k.

Lemma 27. Suppose that Conditions (A2)-(A3) hold. For sufficiently large j, we have

E

[
E∗

[
sup
z∈Bj
‖G∗n(z)‖2∞

]]
≤ Cn−1(j log j)2.

Proof. Let z ∈ Bj . Note that z = γj + (δj/2)eιθ for some θ ∈ [0, 2π] and |z − γj | = δj/2. By

bounding the sup norm by the Hilbert-Schmidt one, we have

‖G∗n(z)‖2∞ ≤ ‖G∗n(z)‖2HS =
∑
l,k∈N

|〈G∗n(z)φl, φk〉|2

=
∑
l,k∈N

∣∣∣〈(Γ̂∗n − Γ)(zI − Γ)−1/2φl, (zI − Γ)−1/2φk〉
∣∣∣2

=
∑
l,k∈N

∣∣∣〈(Γ̂∗n − Γ)(z − γl)−1/2φl, (z − γk)−1/2φk〉
∣∣∣2

=
∑
l,k∈N

〈(Γ̂∗n − Γ)(φl), φk〉2

|z − γl||z − γk|
.

Note that for z ∈ Bj and i 6= j,

|z − γi| = |γj − γi + (δj/2)eιθ| ≥ |γj − γi| − δj/2

≥ |γj − γi|/2 ≥ δj/2
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since δj = min{γj − γj+1, γj−1 − γj} ≤ |γj − γi|. This implies that

1

|z − γl||z − γk|



≤ 4
|γj−γl||γj−γk| if l 6= j, k 6= j,

≤ 4
δj |γj−γk| if l = j, k 6= j,

= 4δ−2
j if l = j = k.

Combining these three observations, the sum is separated into the three parts:

sup
z∈Bj
‖G∗n(z)‖2∞ ≤ 4

 ∑
l 6=j,k 6=j

〈(Γ̂∗n − Γ)(φl), φk〉2

|γj − γl||γj − γk|
+
∑
k 6=j

〈(Γ̂∗n − Γ)(φj), φk〉2

δj |γj − γk|
+
〈(Γ̂∗n − Γ)(φj), φj〉2

δ2
j

 .

Then, by Lemmas 12 and 26 and, we have

E

[
E∗

[
sup
z∈Bj
‖G∗n(z)‖2∞

]]
≤ Cn−1

 ∑
l 6=j,k 6=j

γlγk
|γj − γl||γj − γk|

+
∑
k 6=j

γjγk
δj |γj − γk|

+
γ2
j

δ2
j


= Cn−1


∑
k 6=j

γk
|γj − γk|

2

+
γj
δj

∑
k 6=j

γk
|γj − γk|

+
γ2
j

δ2
j


≤ Cn−1

{
(Cj log j)2 + (j + 1)(Cj log j) + (j + 1)2

}
≤ Cn−1(j log j)2

since γj/δj = γj/(γj − γj+1) ≤ j + 1.

Lemma 28. Suppose that Conditions (A2)-(A3) hold. Then, we have for all z ∈ Bj,

‖K∗n(z)‖∞IEj ≤ C and E[P∗((E∗j )c)] ≤ Cn−1/2j log j.

Proof. Recall the (second) resolvednt identity for Γ and Γ̂∗n:

(zI − Γ̂∗n)−1 − (zI − Γ)−1 = (zI − Γ̂∗n)−1(Γ̂∗n − Γ)(zI − Γ)−1

= (zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ̂∗n)−1.
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This implies that

K∗n(z) = (zI − Γ)1/2(zI − Γ̂∗n)−1(zI − Γ)1/2

= I + (zI − Γ)−1/2(Γ̂∗n − Γ)(zI − Γ̂∗n)−1(zI − Γ)1/2

= I + (zI − Γ)−1/2(Γ̂∗n − Γ)(zI − Γ)−1/2(zI − Γ)1/2(zI − Γ̂∗n)−1(zI − Γ)1/2

= I +G∗n(z)K∗n(z)

and I = K∗n(z)−G∗n(z)K∗n(z) = {I −G∗n(z)}K∗n(z). Recall from Theorem 3.5.5 in [33] that for

linear operator T with ‖T‖∞ < 1, I − T is invertible with bounded inverse and

(I − T )−1 =
∑∞

j=0 T
j . Thus,

‖K∗n(z)‖∞IE∗j =
∥∥{I −G∗n(z)}−1

∥∥
∞ IE∗j

≤
∞∑
j=0

‖G∗n(z)‖j∞ IE∗j ≤
∞∑
j=0

2−j ≤ 2.

For the second part, it follows from the Markov inequality that

P∗((E∗j )c) = P∗(‖G∗n(z)‖∞ ≥ 1/2, ∃z ∈ Bj) ≤ P∗

(
sup
z∈Bj
‖G∗n(z)‖∞ ≥ 1/2

)

≤ 2E∗

[
sup
z∈Bj
‖G∗n(z)‖∞

]
≤ 2

{
E∗

[
sup
z∈Bj
‖G∗n(z)‖2∞

]}1/2

.

By Lemma 27, we finally have that

(E[P∗((E∗j )c)])2 ≤ E[P∗((E∗j )c)2] ≤ 2E

[
E∗

[
sup
z∈Bj
‖G∗n(z)‖2∞

]]
≤ Cn−1(j log j)2,

i.e., E[P∗((E∗j )c)] ≤ Cn−1/2j log j.

The following lemma gives a sufficient condition (on hn) under which B̂∗j may be replaced with

Bj as Lemma 17 does.

Lemma 29.

1. We observe that

Π̂∗hn −Πhn =
1

2πι

∫
Chn
{(zI − Γ̂∗n)−1 − (zI − Γ)−1}dz + r∗1nI(A∗hn )c ,

(Γ̂∗hn)−1 − Γ−1
hn

=
1

2πι

∫
Chn

z−1{(zI − Γ̂∗n)−1 − (zI − Γ)−1}dz + r∗2nI(A∗hn )c ,
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where

r∗1n = Π̂∗hn −
1

2πι

∫
Chn

(zI − Γ̂∗n)−1dz,

r∗2n = (Γ̂∗hn)−1 − 1

2πι

∫
Chn

z−1(zI − Γ̂∗n)−1dz.

2. Suppose that Conditions (A2) and (A3) hold. We have that

E[P∗((A∗hn)c)] ≤ C1n
−1/2

hn∑
j=1

j log j + C2n
−1

hn∑
j=1

δ−2
j .

Proof. This is derived in a similar manner to the proof of Lemma 17. Note that

P∗((A∗hn)c) ≤
kn∑
j=1

P∗(|γ̂∗j − γj | ≥ δj/2) ≤
kn∑
j=1

E∗[|γ̂∗j − γj |]
δj/2

and

|γ̂∗j − γj | ≤ |〈(Γ̂∗n − Γ)φj , φj〉|+ |(γ̂∗j − γj)− 〈(Γ̂∗n − Γ)φj , φj〉|.

We first notice by Lemma 26 that

{
E[E∗[|〈(Γ̂∗n − Γ)φj , φj〉|]]

}2
≤ E

[{
E∗[|〈(Γ̂∗n − Γ)φj , φj〉|]

}2
]
≤ E[E∗[〈(Γ̂∗n − Γ)φj , φj〉2]]

≤ Cn−1γ2
j ,

i.e., E[E∗[|〈(Γ̂∗n − Γ)φj , φj〉|]] ≤ Cn−1/2γj .

Next, to study the approximation error, set ĉ∗j = sign(φ̂∗j , φj). We then see that

〈(Γ̂∗n − Γ)(φ̂∗j ), ĉ
∗
jφj〉 = 〈Γ̂∗nφ̂∗j , ĉ∗jφj〉 − 〈φ̂∗j , ĉ∗jΓφj〉 = 〈γ̂∗j φ̂∗j , ĉ∗jφj〉 − 〈φ̂∗j , ĉ∗jγjφj〉

= (γ̂∗j − γj)〈φ̂∗j , ĉ∗jφj〉 = (γ̂∗j − γj)(〈φ̂∗j , ĉ∗jφj〉 − 1) + (γ̂∗j − γj)

= (γ̂∗j − γj)(〈φ̂∗j , ĉ∗jφj − φ̂∗j 〉) + (γ̂∗j − γj),

which implies that

∣∣∣γ̂∗j − γj − 〈(Γ̂∗n − Γ)(φ̂∗j ), ĉ
∗
jφj〉

∣∣∣ = |γ̂∗j − γj |
∣∣∣〈φ̂∗j , φ̂∗j − ĉ∗jφj〉∣∣∣ ≤ |γ̂∗j − γj |‖φ̂∗j − ĉ∗jφj‖.
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We also observe that∣∣∣〈(Γ̂∗n − Γ)(φj), φj〉 − 〈(Γ̂∗n − Γ)(φ̂∗j ), ĉ
∗
jφj〉

∣∣∣
=
∣∣∣〈(Γ̂∗n − Γ)(φj), φj − ĉ∗j φ̂∗j 〉+ 〈(Γ̂∗n − Γ)(φj), ĉ

∗
j φ̂
∗
j 〉 − 〈(Γ̂∗n − Γ)(φ̂∗j ), ĉ

∗
jφj〉

∣∣∣
=
∣∣∣〈(Γ̂∗n − Γ)(φj), ĉ

∗
jφj − φ̂∗j 〉

∣∣∣ ≤ ‖Γ̂∗n − Γ‖∞‖ĉ∗jφj − φ̂∗j‖

Combining these two results, we have∣∣∣γ̂∗j − γj − 〈(Γ̂∗n − Γ)(φj), φj〉
∣∣∣

≤
∣∣∣γ̂∗j − γj − 〈(Γ̂∗n − Γ)(φ̂∗j ), ĉ

∗
jφj〉

∣∣∣+
∣∣∣〈(Γ̂∗n − Γ)(φ̂∗j ), ĉ

∗
jφj〉 − 〈(Γ̂∗n − Γ)(φj), φj〉

∣∣∣
≤|γ̂∗j − γj |‖φ̂∗j − ĉ∗jφj‖+ ‖Γ̂∗n − Γ‖∞‖ĉ∗jφj − φ̂∗j‖

≤Cδ−1
j ‖Γ̂

∗
n − Γ‖2∞.

Here, we frequently used the facts that supj∈N |γ̂∗j − γj | ≤ ‖Γ̂∗n − Γ‖∞ and that

‖φ̂∗j − ĉ∗jφj‖ ≤ Cδ
−1
j ‖Γ̂∗n − Γ‖∞, which can be obtained from Lemmas 2.2-2.3 in [32].

Meanwhile, we see that

E∗[‖Γ̂∗n − Γ̂n‖2∞] ≤ 2E∗[‖Γ̃∗n − Γ̂n‖2∞] + 2E∗[‖X̄∗‖4] (3.51)

where Γ̃∗n ≡ n−1
∑n

i=1(X∗i )⊗2.

To bound the first term in (3.51), note that

E∗[‖Γ̃∗n − Γ̂n‖2∞] ≤ E∗[‖Γ̃∗n − Γ̂n‖2HS ]

≤n−1E∗[‖X∗1 ⊗X∗1 − Γ̂n‖2HS ] = n−1

(
n−1

n∑
i=1

‖X⊗2
i − Γ̂n‖2HS

)

≤n−2
n∑
i=1

(2‖X⊗2
i − Γ‖2HS + 4‖Γ̃n − Γ‖2HS + 4‖X̄‖4)

since X∗1 ⊗X∗1 − Γ̂n, . . . , X
∗
n⊗X∗n− Γ̂n are iid with mean zero under P ∗. By taking expectation E,

we have that

E[E∗[‖Γ̃∗n − Γ̂n‖2∞]] ≤ Cn−1(E[‖X⊗2
1 − Γ‖2HS ] + E[‖Γ̃n − Γ‖2HS ] + E[‖X̄‖4])

= Cn−1{tr(var[X⊗2
1 ]) + n−1E[‖X1‖4]}+ Cn−2 ≤ Cn−1
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by Theorem 2.5 in [32] and the above derivation for the upper bound of E[‖X̄‖4]. This implies that

E[E∗[‖Γ̃∗n − Γ‖2∞]] ≤ 2E[E∗[‖Γ̃∗n − Γ̂n‖2∞]] + 4E[‖Γ̃n − Γ‖2∞] + 4E[‖X̄‖4])

≤ Cn−1 + Cn−2 ≤ Cn−1.

For an upper bound of the second term in (3.51), note that

n4‖X̄∗‖4 =

 n∑
i=1

‖X∗i ‖2 +
∑
i 6=i′
〈Xi, Xi′〉

2

≤ 2

(
n∑
i=1

‖X∗i ‖2
)2

+ 2

∑
i 6=i′
〈Xi, Xi′〉

2

= 2

n∑
i=1

‖X∗i ‖4 + 2
∑
i 6=i′
‖X∗i ‖2‖X∗i′‖2 + 2

∑
i 6=i′
〈X∗i , X∗i′〉2 + 2

∑
i 6=i′,i0 6=i′0

(i,i′)6=(i0,i′0)

〈X∗i , X∗i′〉〈X∗i0 , X
∗
i′0
〉

≤ 2

n∑
i=1

‖X∗i ‖4 + 6
∑
i 6=i′
‖X∗i ‖2‖X∗i′‖2 + 2

∑
i 6=i′,i0 6=i′0

(i,i′)6=(i0,i′0)
(i,i′)6=(i′0,i0)

〈X∗i , X∗i′〉〈X∗i0 , X
∗
i′0
〉. (3.52)

We first see that E∗[‖X∗i ‖4] = n−1
∑n

i=1 ‖Xi‖4 and

E∗[‖X∗i ‖2‖X∗i′‖2] = E∗[‖X∗i ‖2]E∗[‖X∗i′‖2] =

(
n−1

n∑
i=1

‖Xi‖2
)2

≤ n−1
n∑
i=1

‖Xi‖4.

The third term in (3.52) should be investigated more carefully. We can divide the cases into

two: the cases where just two of (i, i′, i0, i
′
0) are equal and where all of (i, i′, i0, i

′
0) are distinct.

Suppose that just two of (i, i′, i0, i
′
0) are equal, without loss of generality, i = i0. Then, we have

that

E∗[〈X∗i , X∗i′〉〈X∗i0 , X
∗
i′0
〉] = E∗[〈(X∗i )⊗2X∗i′ , X

∗
i′0
〉] = 〈Γ̃nX̄, X̄〉

= n−1
n∑
i=1

〈Xi, X̄〉2 = n−3
n∑
i=1

(
n∑

i′=1

〈Xi, Xi′〉

)2

= n−3
n∑
i=1

 n∑
i′=1

〈Xi, Xi′〉2 +
∑
i′ 6=i′0

〈Xi, Xi′〉〈Xi, Xi′0
〉

 .
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Since one of (i, i′, i′0) is distinct from the others and E[X] = 0, the expected value of the second

term is zero. This implies that

E[E∗[〈X∗i , X∗i′〉〈X∗i0 , X
∗
i′0
〉]] = n−3

 n∑
i=1

E[‖Xi‖4] +
∑
i 6=i′

E[〈Xi, Xi′〉2]


≤ n−3{nE[‖X‖4] + (n2 − n)E[‖X‖2]2}

≤ Cn−1.

Suppose that all of (i, i′, i0, i
′
0) are distinct. Then,

E∗[〈X∗i , X∗i′〉〈X∗i0 , X
∗
i′0
〉] = ‖X̄‖4.

As above, we see that

n4‖X̄‖4 =

 n∑
i=1

‖Xi‖2 +
∑
i 6=i′
〈Xi, Xi′〉

2

≤ 2

(
n∑
i=1

‖Xi‖2
)2

+ 2

∑
i 6=i′
〈Xi, Xi′〉

2

= 2
n∑
i=1

‖Xi‖4 + 2
∑
i 6=i′
‖Xi‖2‖Xi′‖2 + 2

∑
i 6=i′
〈Xi, Xi′〉2 + 2

∑
i 6=i′,i0 6=i′0

(i,i′) 6=(i0,i′0)

〈Xi, Xi′〉〈Xi0 , Xi′0
〉

≤ 2

n∑
i=1

‖Xi‖4 + 6
∑
i 6=i′
‖Xi‖2‖Xi′‖2 + 2

∑
i 6=i′,i0 6=i′0

(i,i′)6=(i0,i′0)
(i,i′)6=(i′0,i0)

〈Xi, Xi′〉〈Xi0 , Xi′0
〉,

where the expected value of the third term is zero because one of (i, i′, i0, i
′
0) is distinct from the

others and E[X] = 0. This implies that

E[E∗[〈X∗i , X∗i′〉〈X∗i0 , X
∗
i′0
〉]] ≤ n−4{2nE[‖X‖4] + 6(n2 − n)E[‖X‖2]2}

≤ Cn−2.

Therefore, we have that

E[E∗[‖X̄∗‖4]] ≤ Cn−2.
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In summary, we see that

E[P∗((A∗n)c)]

≤C
kn∑
j=1

δ−1
j E[E∗[|〈(Γ̂∗n − Γ)φj , φj〉|]]

+ C

kn∑
j=1

δ−1
j E[E∗[|(γ̂∗j − γj)− 〈(Γ̂∗n − Γ)φj , φj〉|]]

≤Cn−1/2
kn∑
j=1

δ−1
j γj + CE[E∗[‖Γ̂∗n − Γ‖2∞]]

kn∑
j=1

δ−2
j

≤Cn−1/2
kn∑
j=1

j log j + Cn−1
kn∑
j=1

δ−2
j

since δ−1
j γj ≤ γj/(γj − γj+1) ≤ j + 1 ≤ j log j.

Remark 15. By Lemmas 28-29, the quantities related to (E∗j )c or (A∗hn)c may be asymptotically

negligible by the following arguments. See Remark S1 in the supplement of [53] for a similar

discussion.

1. Let Qj be any non-negative quantity (that can be either random or fixed and can depend on

n or not). Note that I(E∗j )c = 0, which implies that QjI(E∗j )c = 0. Let η > 0 be given. If∑hn
j=1QjI(E∗j )c > η, then

∑hn
j=1QjI(E∗j )c 6= 0, and hence, there exists j such that I(E∗j )c 6= 0.

We then see that

P∗

 hn∑
j=1

QjI(E∗j )c > η

 ≤ hn∑
j=1

P∗(I(E∗j )c 6= 0) =

hn∑
j=1

P∗((E∗j )c)

= OP

n−1/2
hn∑
j=1

j log j


and

P∗

 hn∑
j=1

QjI(E∗j )c > η
∣∣∣X0

 ≤ hn∑
j=1

P∗(I(E∗j )c 6= 0
∣∣∣X0) =

hn∑
j=1

P∗(I(E∗j )c 6= 0) =

hn∑
j=1

P∗((E∗j )c)

= OP

n−1/2
hn∑
j=1

j log j


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by Lemma 28. Thus, any quantities multiplied by I(E∗j )c (or their sums) are asymptotically

negligible or ignorable under the bootstrap probability P∗ if n−1/2
∑hn

j=1 j log j → 0 as

n→∞. This helps to theoretically guarantee that supz∈Bj ‖K
∗
n(z)‖∞ is bounded above

almost surely (with upper bound not depending on j) based on Lemma 28.

2. Let Qn be any non-negative quantity (that can be either random or fixed and can depend

on n or not). Note that IAc
hn

= 0 implies that QnIAc
hn

= 0. Let η > 0 be given. If

QnIAc
hn
> η, then QnIAc

hn
6= 0, and hence, IAc

hn
6= 0. We then see that

P∗(QnI(A∗hn )c > η) ≤ P∗(QnI(A∗hn )c 6= 0) ≤ P∗(I(A∗hn )c 6= 0) = P∗((A∗hn)c)

≤ OP

n−1
hn∑
j=1

δ−2
j + n−1/2

hn∑
j=1

j log j


and

P∗(QnI(A∗hn )c > η
∣∣∣X0)

≤P∗(QnI(A∗hn )c 6= 0
∣∣∣X0) ≤ P∗(I(A∗hn )c 6= 0

∣∣∣X0)

=P∗(I(A∗hn )c 6= 0) = P∗((A∗hn)c)

≤OP

n−1
hn∑
j=1

δ−2
j + n−1/2

hn∑
j=1

j log j


by Lemma 29. Thus, any quantities related to I(A∗hn )c are also asymptotically ignorable

under the bootstrap probability P∗ if n−1
∑hn

j=1 δ
−2
j → 0 and n−1/2

∑hn
j=1 j log j → 0 as

n→∞. This aspect theoretically guarantees that the bootstrap random contour Ĉ∗hn for

Π̂∗hn and (Γ̂∗hn)−1 can be replaced with the fixed contour Chn .

A result to deal with centering issues is provided in the following lemma.

Lemma 30. Under Conditions (A1)-(A7), as n→∞, if ‖β̂gn − β‖
P−→ 0, we have that

E∗[‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2] = OP(n−2).

Proof. From the identity

X̄∗(ε∗)n,gn = n−2
n∑
i=1

X∗i ε
∗
i,gn + n−2

∑
i 6=i′

X∗i ε
∗
i′ ,
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we have that

‖X̄∗(ε∗)n,gn‖2 ≤ 2n−4

∥∥∥∥∥
n∑
i=1

X∗i ε
∗
i,gn

∥∥∥∥∥
2

+ 2n−4

∥∥∥∥∥∥
∑
i 6=i′

X∗i ε
∗
i′

∥∥∥∥∥∥
2

= 2n−4
n∑
i=1

‖X∗i ε∗i,gn‖
2 + 2n−4

∑
i 6=i′
〈X∗i ε∗i,gn , X

∗
i′ε
∗
i′〉 (3.53)

+ 2n−4
∑

i 6=i′,i0 6=i′0

〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉.

If ‖β̂gn − β‖
P−→ 0, taking the bootstrap expectaion E∗ on the terms in the first two sums in (3.53)

gives

E∗[‖X∗i ε∗i,gn‖
2] = n−1

n∑
i=1

‖Xiε̂i,gn‖2 = n−1
n∑
i=1

‖Xiεi −Xi〈Xi, β̂gn − β〉‖2

= n−1
n∑
i=1

‖Xiεi‖2 + n−1
n∑
i=1

‖X⊗2
i (β̂gn − β)‖2 + 2n−1

n∑
i=1

〈Xiεi, X
⊗2
i (β̂gn − β)〉

≤ n−1
n∑
i=1

‖Xiεi‖2 + n−1
n∑
i=1

‖Xi‖4‖β̂gn − β‖2 + 2n−1
n∑
i=1

‖Xiεi‖‖Xi‖2‖β̂gn − β‖

= E[‖Xε‖2] + oP(1) + {E[‖X‖4] + oP(1)}oP(1) + {E[‖Xε‖‖X‖2] + oP(1)}oP(1)

= OP(1), (3.54)

where the OP(1) term does not depend on i, and

E∗[〈X∗i ε∗i,gn , X
∗
i′ε
∗
i′〉] = 〈E∗[X∗i ε∗i,gn ],E∗[X∗i′ε

∗
i′ ]〉 = ‖(Xε̂)n,gn‖2 = oP(1)

due to the first part of Lemma 23.

Note that

(¯̂ε)gn = ε̄− 〈X̄, β̂gn − β〉 = OP(n−1/2) +OP(n−1/2‖β̂gn − β‖) = OP(n−1/2) (3.55)

when ‖β̂gn − β‖
P−→ 0, since X̄ = OP(n−1/2) (cf. [32], Theorem 2.3). Keeping this in mind, we now

divide the cases in the third sum in (3.53) into six cases. Suppose that i = i0 and i′ = i′0. Then,

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = E∗[‖X∗i ε∗i′‖2] = E∗[‖X∗i ‖2]E∗[‖ε∗i′‖2] =

(
n−1

n∑
i=1

‖Xi‖2
)(

n−1
n∑
i=1

ε̂2
i,gn

)

= {E[‖X‖2] + oP(1)}OP(1) = OP(1)
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since

n−1
n∑
i=1

ε̂2
i,gn = n−1

n∑
i=1

(εi − 〈Xi, β̂gn − β〉)2

≤ n−1
n∑
i=1

ε2
i + n−1

n∑
i=1

‖Xi‖2‖β̂gn − β‖2 + 2n−1
n∑
i=1

‖Xiεi‖‖β̂gn − β‖

= {E[ε2] + oP(1)}+ {E[‖X‖2] + oP(1)}oP(1) + {E[‖Xε‖] + oP(1)}oP(1)

= OP(1).

Suppose that i = i′0 and i′ = i0. Then,

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = 〈E∗[X∗i ε∗i,gn ],E∗[X∗i′ε

∗
i′ ]〉 = ‖(Xε̂)n,gn‖2 = oP(1)

by the first part of Lemma 23. Suppose that i = i0, i′, and i′0 are distinct. Then, thanks to (3.55),

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = E∗[〈X∗i ε∗i′ , X∗i ε∗i′0〉] = E∗[‖X∗i ‖2]E∗[ε∗i′ ]E

∗[ε∗i′0
]

=

(
n−1

n∑
i=1

‖Xi‖2
)

(¯̂ε)2
gn = {E[‖X‖2] + oP(1)}OP(n−1) = OP(n−1).

Suppose that i = i′0, i′, and i0 are distinct. Then, thanks to (3.55),

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = E∗[〈X∗i ε∗i′ , X∗i0ε

∗
i,gn〉] = 〈E∗[X∗i ε∗i,gn ],E∗[X∗i0 ]E∗[ε∗i′ ]〉

= 〈(Xε̂)n,gn , X̄(¯̂ε)gn〉 = oP(n−1)

since (Xε̂)n,gn = oP(1) due to Lemma 23. Suppose that i′ = i0, i, and i′0 are distinct. Then,

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = E∗[〈X∗i ε∗i′ , X∗i′ε∗i′0〉] = 〈E∗[X∗i ]E∗[ε∗i′0

],E∗[X∗i′ε
∗
i′ ]〉

= 〈(Xε̂)n,gn , X̄(¯̂ε)gn〉 = oP(n−1)

as above. Suppose that i′ = i′0, i, and i0 are distinct. Then,

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = E∗[〈X∗i ε∗i′ , X∗i0ε

∗
i′〉] = E∗[(ε∗i′)

2]〈E∗[X∗i ],E∗[X∗i0 ]〉

=

(
n−1

n∑
i=1

ε̂2
i,gn

)
‖X̄‖2 = OP(1)OP(n−1) = OP(n−1)
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since n−1
∑n

i=1 ε̂
2
i,gn

= OP(1) as above and X̄ = OP(n−1/2). Suppose that i, i′, i0, i
′
0 are all

distinct. Then, thanks to (3.55),

E∗[〈X∗i ε∗i′ , X∗i0ε
∗
i′0
〉] = 〈E∗[X∗i ]E∗[ε∗i′ ],E

∗[X∗i0 ]E∗[ε∗i′0
]〉 = ‖X̄(¯̂ε)gn‖2 = OP(n−2)

since X̄ = OP(n−1/2) (cf. [32], Theorem 2.3). One can summarize the above upper bounds to

derive that

E∗[‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2] ≤ 2E∗[‖X̄∗(ε∗)n,gn‖2] + 2‖X̄(¯̂ε)gn‖2

= OP(n−2).

3.10.2 Consistency of the bootstrap FPCR estimator

By using the above perturbation theory in the bootstrap world, one can derive the following

bootstrap version of Lemma 20. In this subsection, we suppose that Conditions (A1)-(A5) hold.

Lemma 31. As n→∞, we have the following:

1. If h−1
n + n−1/2

∑hn
j=1 j log j → 0, then for each η > 0, we have that

P∗(‖(Π̂∗hn −Πhn)‖∞ > η)
P−→ 0.

2. If h−1
n + n−1/2

∑hn
j=1 δ

−1
j j log j → 0, then for each η > 0, we have that

P∗(‖(Γ̂∗hn)−1 − Γ−1
hn
‖∞ > η)

P−→ 0.

3. If h−1
n + n−1/2

∑hn
j=1 δ

1/2
j (j log j)3/2 → 0, then for each η > 0, we have that

P∗(‖(Π̂∗hn −Πhn)X0‖ > η|X0)
P−→ 0.

4. If h−1
n + n−1/2

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0, then for each η > 0, we have that

P∗(‖{(Γ̂∗hn)−1 − Γ−1
hn
}X0‖ > η|X0)

P−→ 0.
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Proof. Due to similarity, we prove only the third part. We observe from Lemma 14 that

Π̂∗hn −Πhn =
1

2πι

hn∑
j=1

∫
Bj

{
(zI − Γ̂∗n)−1 − (zI − Γ)−1

}
dz + r∗1nI(A∗hn )c

=
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1/2K∗n(z)G∗n(z)(zI − Γ)−1/2dz + r∗1nI(A∗hn )c .

This implies that ‖(Π̂∗hn −Πhn)X0‖ ≤ C
∑hn

j=1A
∗
j + ‖r∗1n‖∞‖X0‖I(A∗hn )c , where

A∗j =

∫
Bj
‖(zI − Γ)−1/2‖∞‖K∗n(z)‖∞‖G∗n(z)‖∞‖(zI − Γ)−1/2X0‖dz.

Note that for all z ∈ Bj , |z| ≥ γj − δj/2 ≥ γj/2. By Equation (5.3) of [33], for z ∈ Bj , we have

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − γl|1/2

)−1

= |z − γj |−1/2 = (δj/2)−1/2.

Thus, by Lemma 15 and Lemma 16, we have

E∗[A∗j IE∗j |X0] =

∫
Bj
‖zI − Γ‖−1/2

∞ E∗[‖K∗n(z)‖∞IE∗j ‖G
∗
n(z)‖∞]‖(zI − Γ)−1/2X0‖dz

≤ C
∫
Bj
δ
−1/2
j E∗[‖G∗n(z)‖∞]‖(zI − Γ)−1/2X0‖dz

= Cδ
1/2
j sup

z∈Bj
E∗[‖G∗n(z)‖∞] sup

z∈Bj
‖(zI − Γ)−1/2X0‖

≤ Cδ1/2
j (n−1/2j log j) sup

z∈Bj
‖(zI − Γ)−1/2X0‖.

This implies that

E[E∗[A∗j IE∗j |X0]] ≤ Cδ1/2
j (n−1/2j log j)E

[
sup
z∈Bj
‖(zI − Γ)−1/2X0‖

]

≤ Cn−1/2δ
1/2
j (j log j)3/2 ≤ Cn−1/2j log j,

and hence,

E∗

 hn∑
j=1

AjIEj
∣∣∣X0

 = OP

n−1/2
hn∑
j=1

δ
1/2
j (j log j)3/2

 .
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By the argument of Remark 15, under P∗, we see that

P∗

 hn∑
j=1

A∗j I(E∗j )c > η
∣∣∣X0

 ≤ OP(n−1/2j log j),

P∗(‖r2n‖∞‖X0‖IAc
hn
> η

∣∣∣X0) ≤ OP

n−1
hn∑
j=1

δ−2
j

+OP

n−1/2
hn∑
j=1

j log j

 .

We thus have the desired results.

Lemma 32. As n→∞, if n−1
∑hn

j=1 δ
−1/2
j (j log j)3/2 → 0, then for each η > 0, we have that

P∗
(
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}{U∗n − Ûn,gn}, X0〉| > η

∣∣∣X0

)
= oP(1).

Proof. We observe from Lemma 29 that

(Γ̂∗hn)−1 − Γ−1
hn

=
1

2πι

hn∑
j=1

∫
Bj
z−1

{
(zI − Γ̂∗n)−1 − (zI − Γ)−1

}
dz + r∗2nI(A∗hn )c

=
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1/2K∗n(z)G∗n(z)(zI − Γ)−1/2dz + r∗2nI(A∗hn )c .

This implies that

|〈{(Γ̂∗hn)−1 − Γ−1
hn
}{U∗n − (I − Π̂gn)∆̂n}, X0〉| ≤ C

∑hn
j=1A

∗
j + ‖r∗2n‖∞‖Un‖‖X0‖I(A∗hn )c where

A∗j =

∫
Bj

1

|z|
‖K∗n(z)‖∞‖G∗n(z)‖∞‖(zI − Γ)−1/2‖∞‖U∗n − Ûn,gn‖‖(zI − Γ)−1/2X0‖dz.

Thus, we have

E∗[A∗j IE∗j |X0]

=

∫
Bj
|z|−1E∗[‖K∗n(z)‖∞IE∗j ‖G

∗
n(z)‖∞‖U∗n − Ûn,gn‖]‖(zI − Γ)−1/2‖∞‖(zI − Γ)−1/2X0‖dz

≤Cδ−1/2
j

∫
Bj
γ−1
j E∗[‖G∗n(z)‖∞‖U∗n − Ûn,gn‖]‖(zI − Γ)−1/2X0‖dz

≤Cδ−1/2
j

∫
Bj
δ−1
j (E∗[‖G∗n(z)‖2∞])1/2(E∗[‖U∗n − Ûn,gn‖2])1/2‖(zI − Γ)−1/2X0‖dz

≤Cδ−1/2
j sup

z∈Bj
(E∗[‖G∗n(z)‖2∞])1/2 sup

z∈Bj
‖(zI − Γ)−1/2X0‖(E∗[‖U∗n − Ûn,gn‖2])1/2.
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This implies that

E∗

 hn∑
j=1

A∗j IE∗j
∣∣∣X0


≤C(E∗[‖U∗n − Ûn,gn‖2])1/2

hn∑
j=1

δ
−1/2
j sup

z∈Bj
(E∗[‖G∗n(z)‖2∞])1/2 sup

z∈Bj
‖(zI − Γ)−1/2X0‖.

Recall that U∗n ≡ n−1
∑n

i=1(X∗i − X̄∗)(ε∗i,gn − (ε∗)n,gn) = (X∗ε∗)n,gn − X̄∗(ε∗)n,gn where

(X∗ε∗)n,gn ≡ n−1
∑n

i=1X
∗
i ε
∗
i,gn

. Since

Ûn,gn ≡ n−1
∑n

i=1(Xi − X̄)(ε̂i,gn − (¯̂ε)gn) = (Xε̂)n,gn − X̄(¯̂ε)gn , we see that

‖U∗n − Ûn,gn‖2 ≤ 2‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2 + 2‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2. (3.56)

As for the first term in (3.56), since X∗i ε
∗
i,gn
− (Xε̂)n,gn ’s are iid with mean zero under P∗, we see

that

E∗[‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2] = n−1E∗[‖X∗i ε∗i,gn − (Xε̂)n,gn‖2] ≤ n−1E∗[‖X∗i ε∗i,gn‖
2] = OP(n−1)

as computed in (3.54). This means that E∗[‖U∗n − Ûn,gn‖2] = OP(n−1) due to Lemma 30.

By Lemma 16 and Lemma 27, we have that

E

 hn∑
j=1

δ
−1/2
j sup

z∈Bj
(E∗[‖G∗n(z)‖2∞])1/2 sup

z∈Bj
‖(zI − Γ)−1/2X0‖


=

hn∑
j=1

δ
−1/2
j E

[
sup
z∈Bj

(E∗[‖G∗n(z)‖2∞])1/2 sup
z∈Bj
‖(zI − Γ)−1/2X0‖

]

≤
hn∑
j=1

δ
−1/2
j

(
E

[
sup
z∈Bj

E∗[‖G∗n(z)‖2∞]

])1/2(
E

[
sup
z∈Bj
‖(zI − Γ)−1/2X0‖2

])1/2

≤C
hn∑
j=1

δ
−1/2
j {n−1(j log j)2}1/2(j log j)1/2 = n−1/2

hn∑
j=1

δ
−1/2
j (j log j)3/2.

We now have from these two bounds that

E∗

 hn∑
j=1

A∗j IE∗j
∣∣∣X0

 = OP

n−1
hn∑
j=1

δ
−1/2
j (j log j)3/2

 .
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Meanwhile, by the argument of Remark 15, we see that

P∗

 hn∑
j=1

A∗j I(E∗j )c > η
∣∣∣X0

 = OP

n−1/2
hn∑
j=1

j log j

 .

We thus have the desired result.

Lemma 33. As n→∞, if ‖β̂gn − β‖
P−→ 0, then we have

E∗[‖Γ−1
hn

(U∗n − Ûn,gn)‖2] = OP

n−1
hn∑
j=1

γ−2
j ‖Λ

1/2φj‖2
+OP

n−2
hn∑
j=1

γ−2
j

 .

Proof. We note that

Γ−1
hn

(U∗n − Ûn,gn) = Γ−1
hn

((X∗ε∗)n,gn −Xε̂) + Γ−1
hn

(X̄∗(ε∗)n,gn − X̄(¯̂ε)gn).

The first term in the above display is bounded as follows. Note that

‖Γ−1
hn

((X∗ε∗)n,gn −Xε̂)‖2 =
∑hn

j=1 γ
−2
j 〈(X∗ε∗)n,gn −Xε̂, φj〉2 and

E∗[〈(X∗ε∗)n,gn −Xε̂, φj〉2] = n−1E∗[〈X∗i ε∗i,gn −Xε̂, φj〉
2] = n−1E∗[〈(X∗i ε∗i,gn −Xε̂)

⊗2φj , φj〉]

= n−1〈Λ̂n,gnφj , φj〉 = n−1〈(Λ̂n,gn − Λ)φj , φj〉+ n−1〈Λφj , φj〉,

since {X∗i ε∗i,gn −Xε̂}
n
i=1 are iid with mean zero under P∗. Recall that ‖Λ̂n,gn − Λ‖∞

P−→ 0 if

‖β̂gn − β‖
P−→ 0 as n→∞ from the proof of Proposition 20. We therefore have that

E∗[‖Γ−1
hn

((X∗ε∗)n,gn −Xε̂)‖2] = OP

n−1
hn∑
j=1

γ−2
j ‖Λ

1/2φj‖2
 .

Since the next term is bounded as

E∗[‖Γ−1
hn

(X̄∗(ε∗)n,gn − X̄(¯̂ε)gn)‖2] ≤ ‖Γ−1
hn
‖2∞E∗[‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2] = OP

n−2
hn∑
j=1

γ−2
j


due to Lemma 30, the proof is complete.

Theorem 10 (Consistency of the bootstrap FPCR estimator). Suppose that

h−1
n + n−1/2h2

n log hn → 0 and ‖β̂gn − β‖
P−→ 0 as n→∞. Then, the bootstrap FPCR estimator

β̂∗hn converges to the slope function β in the bootstrap probability in the sense that for each η > 0,

P∗(‖β̂∗hn − β‖ > η)
P−→ 0.
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Proof. Based on the decompositions (3.48) and (3.49), it follows from Lemmas 20, 31-33 by using

the same argument in Theorem 9.

3.10.3 Bias terms

Since the regressors are resampled in the paired bootstrap scheme, we have bias terms that

are random in the bootstrap world more than the residual bootstrap causes, where these

bootstrap bias terms are associated with X ∗n ≡ {X∗i }ni=1 as well as Y∗n ≡ {Y ∗i }ni=1, which appear in

the decomposition (3.48). In what follows, we suppose that Conditions (A1)-(A6) hold. For

integer j ≥ 1, we define

Mn,j ≡ n−1
j∑
l=1

δ−1
l l log l + n−1/2

(
j∑
l=1

γ−2
l ‖Λ

1/2φl‖2
)1/2

+ n−1/2
j∑
l=1

l log l (3.57)

in general, or

Mn,j ≡ n−1
j∑
l=1

δ
−1/2
l (l log l)3/2 + n−1/2

(
j∑
l=1

γ−1
l

)1/2

+ n−1/2
j∑
l=1

l log l. (3.58)

if supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞.

3.10.3.1 Non-random bias terms in the bootstrap world

We treat the non-random bias terms in the bootstrap world, which are related to

Π̂hn β̂gn − β̂gn in the decomposition (3.47). Recall that these bias terms can be non-zero only

when hn < gn since Π̂hn β̂gn − β̂gn = 0 if hn ≥ gn, so we focus on this case here.

Proposition 21. As n→∞, we have

E

[√
n

shn(X0)
|〈(Π̂hn −Πhn)(β̂gn − β), X0〉|

∣∣∣X0

]

=OP

Mn,gnh
−1/2
n

hn∑
j=1

j log j

+OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

+ oP(1).

Suppose a further condition supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞. As n→∞, if

h−1
n + g−1

n + n−1/2h3/2
n (log hn)g2

n(log gn) + n−1/2h3
n(log hn)2g1/2

n → 0,
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then for each η > 0,

P

(√
n

shn(X0)
|〈(Π̂hn −Πhn)(β̂gn − β), X0〉| > η

∣∣∣X0

)
P−→ 0.

Proof. This can be proved with the same argument as Proposition S8 in the supplement of [53],

and hence, the proof is omitted here.

Lemma 34. Suppose that hn < gn with hn/gn → τ ∈ (0, 1].

1. Suppose that τ < 1. As n→∞, if n−1/2(gn − hn)2 → 0,

(gn − hn)sgn((I −Πhn)X0)−1 = OP(1), and

(gn − hn)−1sgn((I −Πhn)X0)

h−1
n shn(X0)

P−→ 1,

then we have

sup
y∈R

∣∣∣∣P(√ n

shn(X0)
〈Γ−1
hn
Un, X0〉 ≤ y

∣∣∣X0

)
− Φ(y/σ2

dim(τ))

∣∣∣∣ P−→ 0,

where σ2
dim(τ) ≡ τ−1 − 1.

2. We have that

E

[{√
n

shn(X0)
〈(I −Πhn)Γ−1

gn Un, X0〉
}2 ∣∣∣X0

]
= OP

(
gn
hn
− 1

)
+OP

n−1h−1
n

gn∑
j>hn

γj

 .

Thus, if τ = 1, we have

E

[{√
n

shn(X0)
〈(I −Πhn)Γ−1

gn Un, X0〉
}2 ∣∣∣X0

]
= oP(1).

Proof. By using the same argument as the one in Proposition 15, we can derive

sup
y∈R

∣∣∣∣P(√ n

sgn((I −Πhn)X0)
〈(I −Πhn)Γ−1

gn Un, X0〉 ≤ y
∣∣∣X0

)
− Φ(y/σ2(τ))

∣∣∣∣ P−→ 0,

and the result follows from Slutsky theorem.

To prove the second part, note that

〈(I −Πhn)Γ−1
gn Un, X0〉2 ≤ 2〈(I −Πhn)Γ−1

gn Xε,X0〉2 + 2〈(I −Πhn)Γ−1
gn X̄ε̄,X0〉2.
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The first term in the above display is bounded as follows. Since Xiεi’s are iid with mean zero,

we have that

E[〈(I −Πhn)Γ−1
gn Un, X0〉2|X0]

=n−1E[〈Xiεi,Γ
−1
gn (I −Πhn)X0〉2|X0]

=n−1E[〈(Xiεi)
⊗2Γ−1

gn (I −Πhn)X0,Γ
−1
gn (I −Πhn)X0〉|X0]

=n−1〈ΓΓ−1
gn (I −Πhn)X0,Γ

−1
gn (I −Πhn)X0〉

=n−1‖Γ−1/2
gn (I −Πhn)X0‖2 = n−1

gn∑
j>hn

γ−1
j 〈X0, φj〉2.

By taking expectation again, we see that

E[E[〈(I −Πhn)Γ−1
gn Un, X0〉2|X0]] = n−1

gn∑
j>hn

γ−1
j E[〈X0, φj〉2] = n−1(gn − hn),

and hence, E[〈(I −Πhn)Γ−1
gn Un, X0〉2|X0] = OP(n−1(gn − hn)). From the assumption that

hnVhn(X0)−1 = OP(1), we have that

E

[{√
n

Vhn(X0)
〈(I −Πhn)Γ−1

gn Xε,X0〉
}2 ∣∣∣X0

]
= OP

(
gn
hn
− 1

)
.

To bound the next term, by using Lemma 18, note that

E[〈(I −Πhn)Γ−1
gn X̄ε̄,X0〉2|X0] ≤ E[‖X̄ε̄‖2‖]‖Γ−1

gn (I −Πhn)X0‖2

≤ Cn−2‖Γ−1
gn (I −Πhn)X0‖2.

By taking expectation again, we see that

E[E[〈(I −Πhn)Γ−1
gn X̄ε̄,X0〉2|X0]] ≤ Cn−2

gn∑
j>hn

γ−1
j .

From the assumption that hnVhn(X0)−1 = OP(1), we have that

E

[{√
n

Vhn(X0)
〈(I −Πhn)Γ−1

gn X̄ε̄,X0〉
}2 ∣∣∣X0

]
= OP

n−1h−1
n

gn∑
j>hn

γ−1
j

 .

Thus, as n→∞, if gn/hn → 1, we have that

E

[{√
n

Vhn(X0)
〈(I −Πhn)Γ−1

gn Un, X0〉
}2 ∣∣∣X0

]
= oP(1).
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Proposition 22. Suppose that hn < gn with hn/gn → τ ∈ (0, 1]. Then, we have√
n/shn(X0)〈(I −Πhn)(β̂gn − β), X0〉 = An +Bn where the quantities An and Bn defined as

An ≡ An(X0) =

√
n

shn(X0)
〈(I −Πhn)(β̂gn − β), X0〉 −Bn,

Bn ≡ Bn(X0) =

√
n

shn(X0)
〈(I −Πhn)Γ−1

gn Un, X0〉

satisfy the following.

1.

E[|An||X0] = OP

n−1/2h−1/2
n

gn∑
j=1

δ
−1/2
j (j log j)3/2

+OP

√ n

hn

∑
j>gn

γjβ2
j

 ,

and hence, if further, n−1/2g
7/2
n (log gn)3 = O(1) and ng−1

n

∑
j>gn

γjβ
2
j = o(1)

(cf. Proposition 19), then for each η > 0, we have P(|An||X0)
P−→ 0.

2. When τ < 1, as n→∞, if n−1/2g2
n → 0, (gn − hn)sgn((I −Πhn)X0)−1 = OP(1), and

(gn − hn)−1sgn((I −Πhn)X0)

h−1
n shn(X0)

P−→ 1,

then supy∈R |P(Bn(X0)|X0)−Φ(y/σ2
dim(τ))| P−→ 0. When τ = 1, we have E[Bn(X0)2|X0]

P−→ 0

as n→∞.

Proof. By using a similar story to the proof of Proposition S9 in the supplement of [53] along

with Lemma 34, we have the desired result.

3.10.3.2 Random bias terms in the bootstrap world

We treat the (random) bias terms in the decomposition (3.48). We start with finding the

convergence rate for the first random bias 〈(Π̂∗hn −Πhn)β,X0〉 with scaling
√
n/shn(X0). The

proof goes in a similar way to the story in Section 3.9.3.1.
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By applying the second resolvent identity (Lemma 14) twice, we have

(zI − Γ̂∗n)−1 − (zI − Γ)−1

={(zI − Γ)−1 + (zI − Γ̂∗n)−1(Γ̂∗n − Γ)(zI − Γ)−1}(Γ̂∗n − Γ)(zI − Γ)−1

=(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1 + (zI − Γ̂∗n)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1

=(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1 + (zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ̂∗n)−1

since all quantities are symmetric. This implies that

Π̂∗hn −Πhn =
1

2πι

∫
Chn

{
(zI − Γ̂∗n)−1 − (zI − Γ)−1

}
dz + r1nI(A∗hn )c

= S∗n +R∗n + r∗1nI(A∗hn )c (3.59)

where

S∗n =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1dz,

R∗n =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ̂∗n)−1dz,

and r∗1n = Π̂∗hn −
1

2πι

∫
Chn

(zI − Γ̂∗n)−1dz (cf. Lemma 29). We will see the convergences of√
n

shn (X0)〈S
∗
nβ,X0〉 and

√
n

shn (X0)〈R
∗
nβ,X0〉 (based on the decomposition (3.59)) to zero,

respectively, under the bootstrap probability P∗.

Lemma 35. As n→∞, if hn →∞, we have n
hn

E[E∗[〈S∗nβ,X0〉2|X0]] = o(1), which implies that

E∗

[(√
n

shn(X0)
〈S∗nβ,X0〉

)2 ∣∣∣X0

]
= oP(1).

Proof. Notice from the expansion of X0 that

E∗[〈S∗nβ,X0〉2|X0] = E∗

( ∞∑
l=1

〈X0, φl〉〈S∗nβ, φl〉

)2 ∣∣∣X0


=
∞∑
l=1

E∗[〈X0, φl〉2〈S∗nβ, φl〉2|X0] +
∑
l 6=l′

E∗[〈X0, φl〉〈S∗nβ, φl′〉〈X0, φl′〉〈S∗nβ, φl′〉|X0]

=

∞∑
l=1

〈X0, φl〉2E∗[〈S∗nβ, φl〉2|X0] +
∑
l 6=l′
〈X0, φl〉〈X0, φl′〉E∗[〈S∗nβ, φl′〉〈S∗nβ, φl′〉|X0].
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Since X0 is independent of Xn = {Xi}ni=1 and {〈X0, φl〉 : l ∈ N} is an uncorrelated sequence with

mean zero, this implies that

E[E∗[〈S∗nβ,X0〉2|X0]]

=
∞∑
l=1

E[〈X0, φl〉2]E[E∗[〈S∗nβ, φl〉2|X0]]

+
∑
l 6=l′

E[〈X0, φl〉〈X0, φl′〉]E[E∗[〈S∗nβ, φl′〉〈S∗nβ, φl′〉|X0]]

=
∞∑
l=1

γlE[E∗[〈S∗nβ, φl〉2]].

Write βj = 〈β, φj〉 for the projection of the slope function β onto φj for each j ∈ N. From the

basis expansion of β =
∑∞

l′=1 βl′φl′ , for each l ∈ N, we see that

〈S∗nβ, φl〉2 =

( ∞∑
l′=1

βl′〈S∗nφl, φl′〉

)2

.

To explicitly compute 〈S∗nφl, φl′〉, note that

〈S∗nφl, φl′〉 =

hn∑
j=1

1

2πι

∫
Bj
〈(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1φl, φl′〉dz

= 〈(Γ̂∗n − Γ)φl, φl′〉
hn∑
j=1

1

2πι

∫
Bj

1

z − γl
1

z − γl′
dz

since (zI − Γ)−1 =
∑∞

l=1(z − γl)−1πl (cf. [33], Equation (5.2)). By using the contour integral

theory in complex analysis (cf. [1], Chapter 4), one can show that

〈S∗nφl, φl′〉 =



〈(Γ̂∗n−Γ)φl,φl′ 〉
γl−γl′

if l ≤ hn < l′,

〈(Γ̂∗n−Γ)φl,φl′ 〉
γl′−γl

if l′ ≤ hn < l,

0 otherwise

as the proof of Proposition 17.



205

We now investigate E[E∗[〈S∗nβ,X0〉2]] depending on l. Suppose that l ≤ hn first. We then have

〈S∗nβ, φl〉2 =

 ∞∑
l′>hn

βl′
〈(Γ̂∗n − Γ)φl, φl′〉

γl − γl′

2

≤2

 ∞∑
l′>hn

βl′
〈(Γ̂∗n − Γ̃n)φl, φl′〉

γl − γl′

2

+ 2

 ∞∑
l′>hn

βl′
〈(Γ̃n − Γ)φl, φl′〉

γl − γl′

2

≤4

 ∞∑
l′>hn

βl′
〈(Γ̃∗n − Γ̃n)φl, φl′〉

γl − γl′

2

+ 4

 ∞∑
l′>hn

βl′
〈X̄∗, φl〉〈X̄∗, φl′〉

γl − γl′

2

(3.60)

+ 2

 ∞∑
l′>hn

βl′
〈(Γ̃n − Γ)φl, φl′〉

γl − γl′

2

where Γ̃n ≡ n−1
∑n

i=1X
⊗2
i and Γ̃∗n ≡ n−1

∑n
i=1(X∗i )⊗2.

By taking the bootstrap expectation E∗ for the first term in (3.60), we have

E∗

 ∞∑
l′>hn

βl′
〈(Γ̃∗n − Γ̃n)φl, φl′〉

γl − γl′

2 ∣∣∣X0


=E∗

n−1
n∑
i=1

∞∑
l′>hn

βl′
〈(X∗i ⊗X∗i − Γ̃n)φl, φl′〉

γl − γl′

2 ∣∣∣X0


=n−1E∗

 ∞∑
l′>hn

βl′
〈(X∗1 ⊗X∗1 − Γ̃n)φl, φl′〉

γl − γl′

2 ∣∣∣X0


=n−1

n−1
n∑
i=1

 ∞∑
l′>hn

βl′
〈(X⊗2

i − Γ̃n)φl, φl′〉
γl − γl′

2
≤2n−2

n∑
i=1

 ∞∑
l′>hn

βl′
〈(X⊗2

i − Γ)φl, φl′〉
γl − γl′

2

+ 2n−1

 ∞∑
l′>hn

βl′
〈(Γ̃n − Γ)φl, φl′〉

γl − γl′

2

since X∗i ⊗X∗i − Γ̃n’s are iid with mean zero under P ∗. By taking the (original) expectation E, we

now have that

E

E∗
 ∞∑

l′>hn

βl′
〈(Γ̃∗n − Γ̃n)φl, φl′〉

γl − γl′

2 ∣∣∣X0


≤2n−1E

 ∞∑
l′>hn

βl′
〈(X⊗2 − Γ)φl, φl′〉

γl − γl′

2+ 2n−1E

 ∞∑
l′>hn

βl′
〈(Γ̃n − Γ)φl, φl′〉

γl − γl′

2 .
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As above, the third term in (3.60) is bounded as

E

 ∞∑
l′>hn

βl′
〈(Γ̃n − Γ)φl, φl′〉

γl − γl′

2 =E

n−1
n∑
i=1

∞∑
l′>hn

βl′
〈(X⊗2

i − Γ)φl, φl′〉
γl − γl′

2
=n−1E

 ∞∑
l′>hn

βl′
〈(X⊗2 − Γ)φl, φl′〉

γl − γl′

2
since X⊗2

i − Γ’s are iid with mean zero. The upper bound for E

[(∑∞
l′>hn

βl′
〈(X⊗2−Γ)φl,φl′ 〉

γl−γl′

)2
]

is

given as

E

∑
l′>hn

βl′
〈X,φl〉〈X,φl′〉

γl − γl′

2 =
∑

l′,l′0>hn

βl′βl′0

E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉]
(γl − γl′)(γl − γl′0)

≤C
∑

l′,l′0>hn

βl′βl′0

γlγ
1/2
l′ γ

1/2
l′0

(γl − γl′)(γl − γl′0)

≤C

∑
l′>hn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

.

The second term in (3.60) is bounded in a more complicated way. We first note that∑
l′>hn

βl′
〈X̄∗, φl〉〈X̄∗, φl′〉

γl − γl′

2

≤2n−4

 n∑
i=1

∑
l′>hn

βl′

γl − γl′
〈X∗i , φl〉〈X∗i , φl′〉

2

(3.61)

+ 2n−4

∑
i 6=i′

∑
l′>hn

βl′

γl − γl′
〈X∗i , φl〉〈X∗i′ , φl′〉

2

.

After taking the bootstrap expectation E∗, the first term in (3.61) can be expanded as follows:

E∗

 n∑
i=1

∑
l′>hn

βl′

γl − γl′
〈X∗i , φl〉〈X∗i , φl′〉

2
=

n∑
i=1

∑
l′,l′0>hn

βl′

γl − γl′
βl′0

γl − γl′0
E∗[〈X∗i , φl〉2〈X∗i , φl′〉〈X∗i , φl′0〉]

+
∑
i 6=i0

∑
l′,l′0>hn

βl′

γl − γl′
βl′0

γl − γl′0
E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X

∗
i , φl′〉〈X∗i0 , φl′0〉].
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Here, we note that

E[E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i , φl′〉〈X∗i0 , φl′0〉]]

=E[E∗[〈X∗i , φl〉〈X∗i , φl′〉|X0]E∗[〈X∗i0 , φl〉〈X
∗
i0 , φl′0〉]]

=E

[(
n−1

n∑
i=1

〈Xi, φl〉〈Xi, φl′〉

)(
n−1

n∑
i=1

〈Xi, φl〉〈Xi, φl′0〉

)]

=n−2
n∑
i=1

E[〈Xi, φl〉〈Xi, φl′〉〈Xi, φl〉〈Xi, φl′0〉]

+ n−2
∑
i 6=i′

E[〈Xi, φl〉〈Xi, φl′〉〈Xi′ , φl〉〈Xi′ , φl′0〉]

=n−1E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉]

+ n−2
∑
i 6=i′

E[〈Xi, φl〉〈Xi, φl′〉]E[〈Xi′ , φl〉〈Xi′ , φl′0〉]

=n−1E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉]

since X1, . . . , Xn are independent, l ≤ hn < l′, l′0, and the FPC scores are uncorrelated with mean

zero, which implies that E[〈Xi, φl〉〈Xi, φl′〉]E[〈Xi′ , φl〉〈Xi′ , φl′0〉] = 0. In addition, we have

E[E∗[〈X∗i , φl〉2〈X∗i , φl′〉〈X∗i , φl′0〉]]

=E

[
n−1

n∑
i=1

〈Xi, φl〉2〈Xi, φl′〉〈Xi, φl′0〉

]

=E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉].

Note that E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉] ≤ Cγlγ
1/2
l′ γ

1/2
l′0

since

sup
l,l′,l′0∈N

γ−1
l γ

−1/2
l′ γ

−1/2
l′0

E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉]

≤ sup
l∈N

E[γ−2
l 〈X,φl〉

4]1/2 sup
l′∈N

E[γ−2
l′ 〈X,φl′〉

4]1/4 sup
l′0∈N

E[γ−2
l′0
〈X,φl′0〉

4]1/4 <∞

by Cauchy-Schwarz inequality and Condition (A2). This implies that

E

E∗
 n∑

i=1

∑
l′>hn

βl′

γl − γl′
〈X∗i , φl〉〈X∗i , φl′〉

2 ≤ Cn
∑
l′>hn

βl′
γ

1/2
l γ

1/2
l′

γl − γl′

2

.



208

To bound the second term in (3.61), note that

E∗

∑
i 6=i′

∑
l′>hn

βl′

γl − γl′
〈X∗i , φl〉〈X∗i′ , φl′〉

2
=

∑
i 6=i′,i0 6=i′0

∑
l′,l′0>hn

βl′

γl − γl′
βl′0

γl − γl′0
E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X

∗
i′ , φl′〉〈X∗i′0 , φl′0〉].

This sum is divided into the following four cases. Suppose that (i, i′) = (i0, i
′
0), where the number

of cases is n2 − n. Then,

E[E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]]

=E[E∗[〈X∗i , φl〉2〈X∗i′ , φl′〉〈X∗i′ , φl′0〉]]

=E[E∗[〈X∗i , φl〉2]E∗[〈X∗i′ , φl′〉〈X∗i′ , φl′0〉]]

=E

[(
n−1

n∑
i=1

〈Xi, φl〉2
)(

n−1
n∑
i=1

〈Xi, φl′〉〈Xi, φl′0〉

)]

=n−2
n∑
i=1

E[〈Xi, φl〉2〈Xi, φl′〉〈Xi, φl′0〉] + n−2
∑
i 6=i′

E[〈Xi, φl〉2〈Xi′ , φl′〉〈Xi′ , φl′0 ]

=n−1E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉] + n−2
∑
i 6=i′

E[〈Xi, φl〉2]E[〈Xi′ , φl′〉〈Xi′ , φl′0 ]

=n−1E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉] + (1− n−1)γlγl′I(l′ = l′0).

Secondly, suppose that i = i′0 and i′ = i0, where the number of cases is n2 − n. Then,

E[E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]]

=E[E∗[〈X∗i , φl〉〈X∗i , φl′0〉]E[〈X∗i′ , φl〉〈X∗i′ , φl′〉]]

=E

[(
n−1

n∑
i=1

〈Xi, φl〉〈Xi, φl′0

)(
n−1

n∑
i=1

〈Xi, φl〉〈Xi, φl′〉

)]

=n−2
n∑
i=1

E[〈Xi, φl〉2〈Xi, φl′0〉〈Xi, φl′〉] + n−2
∑
i 6=i′

E[〈Xi, φl〉〈Xi, φl′0〉〈Xi′ , φl〉〈Xi′ , φl′〉]

=n−1E[〈X,φl〉2〈X,φl′0〉〈X,φl′〉] + n−2
∑
i 6=i′

E[〈Xi, φl〉〈Xi, φl′0〉]E[〈Xi′ , φl〉〈Xi′ , φl′〉]

=n−1E[〈X,φl〉2〈X,φl′0〉〈X,φl′〉]
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since X1, . . . , Xn are independent, l ≤ hn < l′, l′0, and the FPC scores are uncorrelated with mean

zero, which implies that E[〈Xi, φl〉〈Xi, φl′0〉]E[〈Xi′ , φl〉〈Xi′ , φl′〉] = 0. Next, we suppose that three

of (i, i′, i0, i
′
0) are distinct with i 6= i′ and i0 6= i′0, where the number of cases is 4n(n− 1)(n− 2).

Then, we see that

E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]

=



(
n−1

∑n
i=1〈Xi, φl〉2

) (
n−1

∑n
i=1〈Xi, φl′〉

) (
n−1

∑n
i=1〈Xi, φl′0〉

)
if i = i0(

n−1
∑n

i=1〈Xi, φl〉〈Xi, φl′0〉
) (
n−1

∑n
i=1〈Xi, φl〉

) (
n−1

∑n
i=1〈Xi, φl′〉

)
if i = i′0(

n−1
∑n

i=1〈Xi, φl〉
) (
n−1

∑n
i=1〈Xi, φl〉〈Xi, φl′〉

) (
n−1

∑n
i=1〈Xi, φl′0〉

)
if i′ = i0(

n−1
∑n

i=1〈Xi, φl〉
)2 (

n−1
∑n

i=1〈Xi, φl′〉〈Xi, φl′0〉
)

if i′ = i′0.

One can show that

E[E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]] = n−2E[〈X,φl〉2〈X,φl′0〉〈X,φl′〉]

if either i′ = i0 or i = i′0 and

E[E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]]

=n−2E[〈X,φl〉2〈X,φl′0〉〈X,φl′〉] + n−1(1− n−1)γlγl′I(l′ = l′0)

if either i = i0 or i′ = i′0. As the last case, suppose that all of (i, i′, i0, i
′
0) are distinct, where the

number of cases is n(n− 1)(n− 2)(n− 3). Then, we see that

E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]

=

(
n−1

n∑
i=1

〈Xi, φl〉

)2(
n−1

n∑
i=1

〈Xi, φl′〉〉

)(
n−1

n∑
i=1

〈Xi, φl′0〉

)
,

and hence,

E[E∗[〈X∗i , φl〉〈X∗i0 , φl〉〈X
∗
i′ , φl′〉〈X∗i′0 , φl′0〉]]

=n−3E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉] + n−2(1− n−1)γlγl′I(l′ = l′0).
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Note that the total number of cases of (i, i′, i0, i
′
0) with i 6= i′ and i0 6= i′0 is

2(n2 − n) + 4n(n− 1)(n− 2) + n(n− 1)(n− 2)(n− 3) = (n2 − n)2.

By summarizing these upper bounds, we have

E

E∗
∑

i 6=i′

∑
l′>hn

βl′

γl − γl′
〈X∗i , φl〉〈X∗i′ , φl′〉

2
=

∑
l′,l′0>hn

βl′

γl − γl′
βl′0

γl − γl′0

{
2(n2 − n)

n
+

4n(n− 1)(n− 2)

n2
+
n(n− 1)(n− 2)(n− 3)

n3

}

× E[〈X,φl〉2〈X,φl′〉〈X,φl′0〉]

+
∑
l′>hn

(
βl′

γl − γl′

)2{
(n2 − n) +

2n(n− 1)(n− 2)

n
+
n(n− 1)(n− 2)(n− 3)

n2

}
(1− n−1)γlγl′

≤Cn
∑

l′,l′0>hn

|βl′ |
γl − γl′

|βl′0 |
γl − γl′0

γlγ
1/2
l′ γ

1/2
l′0

+ Cn2
∑
l′>hn

(
βl′γ

1/2
l γ

1/2
l′

γl − γl′

)2

≤Cn2

∑
l′>hn

|βl′ |γ
1/2
l γ

1/2
l′

γl − γl′

2

.

Thus, the third term in (3.61) is bounded above as

E

E∗
∑

l′>hn

βl′
〈X̄∗, φl〉〈X̄∗, φl′〉

γl − γl′

2 ∣∣∣X0

 ≤ Cn−2

∑
l′>hn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

.

In summary, if l ≤ hn, we obtain

E[E∗[〈S∗nβ, φl〉2|X0]] ≤ Cn−1

∑
l′>hn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

.

A similar compuation can apply to the case of l > hn so that

E[E∗[〈S∗nβ,X0〉2|X0]] ≤ Cn−1
hn∑
l=1

γl

∑
l′>hn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

+ Cn−1
∑
l>hn

γl

(
hn∑
l′=1

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

)2

.

(3.62)

Following the same truncation technique in the proof of Proposition 2 in [12], one can derive that

E

[
E∗
[
n

hn
〈S∗nβ,X0〉2

∣∣∣X0

]]
= o(1). (3.63)
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This implies that

E∗
[

n

shn(X0)
〈S∗nβ,X0〉2

∣∣∣X0

]
= {hnshn(X0)−1}E∗

[
n

hn
〈S∗nβ,X0〉2

∣∣∣X0

]
= OP(1)oP(1) = oP(1),

which conclude that

P∗
(√

n

shn(X0)
|〈S∗nβ,X0〉| > η

∣∣∣X0

)
= oP(1).

Lemma 36. As n→∞, if h−1
n + n−1/2h

−1/2
n

∑hn
j=1(j log j)2 → 0, we have that

P∗
(√

n

shn(X0)
|〈R∗nβ,X0〉| > η

∣∣∣X0

)
= oP(1).

Proof. We observe that

R∗n =

hn∑
j=1

1

2πι

∫
Bj

(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ̂∗n)−1dz

=
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1/2G∗n(z)(zI − Γ)−1/2(Γ̂∗n − Γ)(zI − Γ̂∗n)−1dz

=
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1/2G∗n(z)2(zI − Γ)1/2(zI − Γ̂∗n)−1dz

=
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1/2G∗n(z)2K∗n(z)(zI − Γ)−1/2dz.

This implies that |〈R∗nβ,X0〉| ≤ C
∑hn

j=1A
∗
j where

A∗j =

∫
Bj
‖(zI − Γ)−1/2X0‖‖G∗n(z)‖2∞‖K∗n(z)‖∞‖(zI − Γ)−1/2β‖dz.

Thus, by Lemma 28, we have

E∗[A∗j IE∗j |X0] =

∫
Bj
‖(zI − Γ)−1/2X0‖E∗

[
‖G∗n(z)‖2∞‖K∗n(z)‖∞IE∗j

]
‖(zI − Γ)−1/2β‖dz.

≤ C
∫
Bj
‖(zI − Γ)−1/2X0‖E∗[‖G∗n(z)‖2∞]‖(zI − Γ)−1/2β‖dz.

Note that for all z ∈ Bj , |z| ≥ γj − δj/2 ≥ γj/2. By Equation (5.3) of [33], for z ∈ Bj , we have

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − γl|1/2

)−1

= |z − γj |−1/2 = (δj/2)−1/2.
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By Lemma 16 and Lemma 27, we see that

E[E∗[A∗j IE∗j |X0]] ≤ CδjE

[
sup
z∈Bj
‖(zI − Γ)−1/2X0‖

]
E

[
sup
z∈Bj

E∗[‖G∗n(z)‖2∞

]
sup
z∈Bj
‖(zI − Γ)−1/2β‖

≤ Cδj(j log j)1/2{n−1(j log j)2}δ−1/2
j = Cn−1δ

1/2
j (j log j)5/2 ≤ Cn−1(j log j)2

since δj ≤ γj ≤ C(j log j)−1. We therefore conclude that

E
[
E∗
[∑hn

j=1A
∗
j IE∗j

∣∣∣X0

]]
≤ Cn−1

∑hn
j=1(j log j)2, which implies that

E∗

√ n

shn(X0)

hn∑
j=1

A∗j IE∗j
∣∣∣X0

 = OP

n−1/2h−1/2
n

hn∑
j=1

(j log j)2

 .

Meanwhile, by the argument of Remark 15, we see that

P∗

√ n

shn(X0)

hn∑
j=1

A∗j I(E∗j )c > η
∣∣∣X0

 = OP

n−1/2
hn∑
j=1

j log j

 .

We thus have the desired result.

A bootstrap version of Proposition 17 is given as follows.

Proposition 23. As n→∞, if h−1
n + n−1/2h

−1/2
n

∑hn
j=1(j log j)2 → 0, then for each η > 0, we

have that

P∗
(√

n

shn(X0)
|〈(Π̂∗hn −Πhn)β,X0〉| > η

∣∣∣X0

)
= oP(1).

Proof. By the argument of Remark 15, we see that

P∗
(√

n

shn(X0)
‖β‖‖r∗1n‖∞‖X0‖I(A∗hn )c > η

∣∣∣X0

)
≤ C1n

−1
hn∑
j=1

δ−2
j + C2n

−1/2
hn∑
j=1

j log j.

Thus, under Condition (A5), we have that

P∗
(√

n

shn(X0)
|〈r∗1nI(A∗hn )cβ,X0〉| > η

∣∣∣X0

)
P−→ 0,

and by Lemmas 35-36 and the decomposition (3.59), we have that

P∗
(√

n

shn(X0)
|〈(Π̂∗hn −Πhn)β,X0〉| > η

∣∣∣X0

)
= oP(1).
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We now state and prove a bootstrap version of Proposition 18.

Proposition 24. As n→∞, if h−1
n + n−1/2h

−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0, then for each

η > 0, we have that

P∗
(√

n

shn(X0)
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}{U∗n − Ûn,gn}, X0〉| > η

∣∣∣X0

)
= oP(1).

Proof. We observe from Lemma 29 that

(Γ̂∗hn)−1 − Γ−1
hn

=
1

2πι

hn∑
j=1

∫
Bj
z−1

{
(zI − Γ̂∗n)−1 − (zI − Γ)−1

}
dz + r∗2nI(A∗hn )c

=
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1/2K∗n(z)G∗n(z)(zI − Γ)−1/2dz + r∗2nI(A∗hn )c .

This implies that

|〈{(Γ̂∗hn)−1 − Γ−1
hn
}(U∗n − Ûn,gn), X0〉| ≤ C

∑hn
j=1A

∗
j + ‖r∗2n‖∞‖U∗n − Ûn,gn‖‖X0‖I(A∗hn )c where

A∗j =

∫
Bj

1

|z|
‖K∗n(z)‖∞‖G∗n(z)‖∞‖(zI − Γ)−1/2‖∞‖U∗n − Ûn,gn‖‖(zI − Γ)−1/2X0‖dz.

Thus, we have

E∗[A∗j IE∗j |X0]

=

∫
Bj
|z|−1E∗[‖K∗n(z)‖∞IE∗j ‖G

∗
n(z)‖∞‖U∗n − Ûn,gn‖]‖(zI − Γ)−1/2‖∞‖(zI − Γ)−1/2X0‖dz

≤Cδ−1/2
j

∫
Bj
γ−1
j E∗[‖G∗n(z)‖∞‖U∗n − Ûn,gn‖]‖(zI − Γ)−1/2X0‖dz

≤Cδ−1/2
j

∫
Bj
δ−1
j (E∗[‖G∗n(z)‖2∞])1/2(E∗[‖U∗n − Ûn,gn‖2])1/2‖(zI − Γ)−1/2X0‖dz

≤Cδ−1/2
j sup

z∈Bj
(E∗[‖G∗n(z)‖2∞])1/2 sup

z∈Bj
‖(zI − Γ)−1/2X0‖(E∗[‖U∗n − Ûn,gn‖2])1/2.

This implies that

E∗

 hn∑
j=1

A∗j IE∗j
∣∣∣X0


≤C(E∗[‖U∗n − Ûn,gn‖2])1/2

hn∑
j=1

δ
−1/2
j sup

z∈Bj
(E∗[‖G∗n(z)‖2∞])1/2 sup

z∈Bj
‖(zI − Γ)−1/2X0‖.
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To bound the term E∗[‖U∗n − Ûn,gn‖2] in the preceding display, recall that

U∗n ≡ n−1
∑n

i=1(X∗i − X̄∗)(ε∗i,gn − (ε∗)n,gn) = (X∗ε∗)n,gn − X̄∗(ε∗)n,gn where

(X∗ε∗)n,gn ≡ n−1
∑n

i=1X
∗
i ε
∗
i,gn

. Since

Ûn,gn ≡ n−1
∑n

i=1(Xi − X̄)(ε̂i,gn − (¯̂ε)gn) = (Xε̂)n,gn − X̄(¯̂ε)gn , we see that

‖U∗n − Ûn,gn‖2 ≤ 2‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2 + 2‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2. (3.64)

As for the first term in (3.64), since X∗i ε
∗
i,gn
− (Xε̂)n,gn ’s are iid with mean zero under P∗, we see

that

E∗[‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2] = n−1E∗[‖X∗i ε∗i,gn − (Xε̂)n,gn‖2]

≤ 2n−1(E∗[‖X∗i ε∗i,gn‖
2] + ‖(Xε̂)n,gn‖2) = OP(n−1)

as computed in (3.54) and Lemma 23. This means that E∗[‖U∗n − Ûn,gn‖2] = OP(n−1) due to

Lemma 30.

Next, by Lemma 16 and Lemma 27, we have that

E

 hn∑
j=1

δ
−1/2
j sup

z∈Bj
(E∗[‖G∗n(z)‖2∞])1/2 sup

z∈Bj
‖(zI − Γ)−1/2X0‖


=

hn∑
j=1

δ
−1/2
j E

[
sup
z∈Bj

(E∗[‖G∗n(z)‖2∞])1/2 sup
z∈Bj
‖(zI − Γ)−1/2X0‖

]

≤
hn∑
j=1

δ
−1/2
j

(
E

[
sup
z∈Bj

E∗[‖G∗n(z)‖2∞]

])1/2(
E

[
sup
z∈Bj
‖(zI − Γ)−1/2X0‖2

])1/2

≤C
hn∑
j=1

δ
−1/2
j {n−1(j log j)2}1/2(j log j)1/2 = n−1/2

hn∑
j=1

δ
−1/2
j (j log j)3/2.

We now have from these two bounds that

E∗

 hn∑
j=1

A∗j IE∗j
∣∣∣X0

 = OP

n−1
hn∑
j=1

δ
−1/2
j (j log j)3/2

 ,
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and hence,

E∗

√ n

shn(X0)

hn∑
j=1

A∗j IE∗j

 =
√
hnshn(X0)−1

√
n

hn
E∗

 hn∑
j=1

A∗j IE∗j


= OP

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2

 .

Meanwhile, by the argument of Remark 15, we see that

P∗

√ n

shn(X0)

hn∑
j=1

A∗j I(E∗j )c > η
∣∣∣X0

 = OP

n−1/2
hn∑
j=1

j log j

 .

We thus have the desired result.

The following proposition is a bootstrap version of Proposition 21.

Proposition 25. As n→∞, we have

E∗
[√

n

shn(X0)
|〈(Π̂∗hn −Πhn)(β̂gn − β), X0〉|

∣∣∣X0

]

=OP

Mn,gnh
−1/2
n

hn∑
j=1

j log j

+OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

+ oP(1).

Suppose a further condition supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞. Then, as n→∞, if

h−1
n + g−1

n + n−1/2h3/2
n (log hn)g2

n(log gn) + n−1/2g1/2
n h3

n(log hn)2 → 0,

then for each η > 0,

P∗
(√

n

shn(X0)
|〈(Π̂∗hn −Πhn)(β̂gn − β), X0〉| > η

∣∣∣X0

)
P−→ 0.

Proof. Following the spirit of Lemma 17 and Remark 15, we ignore the remainder terms related

to either Ecj , Achn , (E∗j )c, or (A∗hn)c. Based on Lemmas 20-22 and 31, and the decomposition
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(3.38), one can see that

E∗
[√

n

shn(X0)
|〈(Π̂∗hn −Πhn)(β̂gn −Πhnβ), X0〉|

∣∣∣X0

]
=E∗

[√
n

shn(X0)
|〈(β̂gn −Πhnβ), (Π̂∗hn −Πhn)X0〉|

∣∣∣X0

]
≤E∗

[√
n

shn(X0)
‖(β̂gn −Πhnβ)‖‖(Π̂∗hn −Πhn)X0‖

∣∣∣X0

]
=

√
n

shn(X0)
‖(β̂gn −Πhnβ)‖E∗[‖(Π̂∗hn −Πhn)X0‖

∣∣∣X0]

=OP

Mn,gnh
−1/2
n

hn∑
j=1

j log j

 .

Meanwhile, as seen in the proof of Proposition 23, we have

Π̂∗hn −Πhn =
1

2πι

hn∑
j=1

∫
Bj

{
(zI − Γ∗n)−1 − (zI − Γ)−1

}
dz

= S∗n +R∗n + r∗1nI(A∗hn )c

where

S∗n =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1(Γ∗n − Γ)(zI − Γ)−1dz,

R∗n =
1

2πι

hn∑
j=1

∫
Bj

(zI − Γ)−1(Γ∗n − Γ)(zI − Γ)−1(Γ∗n − Γ)(zI − Γ∗n)−1dz.

Following the proof of Lemma 35, as n→∞, one can show that

n

hn
E
[
E∗
[
〈S∗n(I −Πgn)β,X0〉2|X0

]]
≤ Ch−1

n

hn∑
l=1

γl

∑
l′>gn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

≤ Ch−1
n

hn∑
l=1

γl

∑
l′>hn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

→ 0,

which implies that

E∗
[

n

shn(X0)
〈S∗n(I −Πgn)β,X0〉2

∣∣∣X0

]
= oP(1).
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Next, note that ‖(I −Πgn)β‖ ≤
√∑

j>gn
β2
j . Finally, following the proof of Lemma 36, as

n→∞, we have that

E∗
[√

n

shn(X0)
|〈R∗n(I −Πgn)β,X0〉| > η

∣∣∣X0

]
= OP

n−1/2h−1/2
n

√∑
j>gn

β2
j

hn∑
j=1

(j log j)2

 ,

which completes the proof.

3.10.4 Variance term: lemmas for Proposition 16 in the main text

In what follows, we suppose that Conditions (A1)-(A7) and ‖β̂gn − β‖
P−→ 0 as n→∞. Recall

Z∗i,n = 〈X∗i ε∗i,gn − Ũn,gn ,Γ
−1
hn
X0〉 with Ũn,gn ≡ n−1

∑n
i=1X

∗
i ε
∗
i,gn

and v̂2
n ≡

∑n
i=1 E

∗[Z∗2i,n|X0] from

the proof of Proposition 16.

Lemma 37. As n→∞, we have that n−1v̂2
n ∼P shn(X0) in the sense that∣∣∣∣ n−1v̂2
n

shn(X0)
− 1

∣∣∣∣ P−→ 0.

Proof. We first see that

E∗[Z∗2i,n|X0] = E∗[〈X∗i ε∗i,gn − E∗[X∗i ε
∗
i,gn ],Γ−1

hn
X0〉2|X0]

= 〈E∗[(X∗i ε∗i,gn − E∗[X∗i ε
∗
i,gn ])⊗2]Γ−1

hn
X0,Γ

−1
hn
X0〉.

with E∗[(X∗i ε
∗
i,gn
− E∗[X∗i ε

∗
i,gn

])⊗2] = E∗[(X∗i ε
∗
i,gn

)⊗2]− (E∗[X∗i ε
∗
i,gn

])⊗2. We then find that

E∗[(X∗i ε
∗
i,gn − E∗[X∗i ε

∗
i,gn ])⊗2] = Λ̂n,gn .

This implies that

E∗[Z∗2i,n|X0] = 〈Λ̂n,gnΓ−1
hn
X0,Γ

−1
hn
X0〉

= 〈(Λ̂n,gn − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉+ shn(X0),

and hence, ∣∣∣∣ n−1v̂2
n

shn(X0)
− 1

∣∣∣∣ = shn(X0)−1|〈(Λ̂n,gn − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉|.

The result now follows from the fourth part of the proof of Proposition 20.
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Lemma 38. As n→∞, if n−1h2
n → 0 and

(
n−1

∑hn
j=1 λ

−1
j

)
‖β̂gn − β‖2

P−→ 0, then we have that

E∗

[(
v̂−1
n max

1≤i≤n
|Z∗i,n|

)4 ∣∣∣X0

]
P−→ 0.

Proof. We first see that |Z∗i,n| ≤ |〈X∗i ε∗i,gn ,Γ
−1
hn
X0〉|+ |〈(Xε̂)n,gn ,Γ−1

hn
X0〉|. By the second part of

Lemma 23, the second term is given as

v̂−1
n |〈(Xε̂)n,gn ,Γ−1

hn
X0〉| = n−1/2shn(X0)−1/2|〈(Xε̂)n,gn ,Γ−1

hn
X0〉|

√
shn(X0)

n−1v2
h

= oP(n−1/2).

Note that

v̂−1
n max

1≤i≤n
|〈X∗i ε∗i,gn ,Γ

−1
hn
X0〉| ≤ n−1/2 max

1≤i≤n
‖Λ−1/2

hn
X∗i ε

∗
i,gn‖

(
‖Λ1/2

hn
Γ−1
hn
X0‖2

n−1v̂2
n

)1/2

,

where

‖Λ1/2
hn

Γ−1
hn
X0‖2

n−1v̂2
n

≤ shn(X0)

n−1v̂2
n

= 1 + oP(1) = OP(1)

as n→∞, since ‖Λ1/2
hn

Γ−1
hn
X0‖2 = 〈ΛhnΓ−1

hn
X0,Γ

−1
hn
X0〉 ≤ 〈ΛΓ−1

hn
X0,Γ

−1
hn
X0〉 = shn(X0).

We now need to deal with the term n−1/2 max1≤i≤n ‖Λ−1/2
hn

X∗i ε
∗
i,gn
‖. Inspired by the identity

Xiε̂i,gn = Xiεi −X⊗2
i (β̂gn − β),

we have that

‖Λ−1/2
hn

X∗i ε
∗
i,gn‖

2 ≤ 2‖Λ−1/2
hn
{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}‖2 + 2‖Λ−1/2

hn
(X∗i )⊗2(β̂gn − β)‖2.

To bound the first term in the above display, note that

‖Λ−1/2
hn
{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}‖4 =

 hn∑
j=1

λ−1
j 〈{X

∗
i ε
∗
i,gn + (X∗i )⊗2(β̂gn − β)}, ψj〉2

2

≤ hn
hn∑
j=1

λ−2
j 〈{X

∗
i ε
∗
i,gn + (X∗i )⊗2(β̂gn − β)}, ψj〉4
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by Jensen’s inequality. By taking the maximum and the bootstrap expectation, we have

n−2E∗
[

max
1≤i≤n

‖Λ−1/2
hn
{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}‖4

]
≤n−2hn

n∑
i=1

hn∑
j=1

λ−2
j E∗[〈{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}, ψj〉4]

=n−2hn

n∑
i=1

hn∑
j=1

λ−2
j

(
n−1

n∑
i′=1

〈Xi′εi′ , ψj〉4
)

=n−2hn

n∑
i=1

hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4.

From Condition (A7), we derive that

E

[
E∗

[[
n−1/2 max

1≤i≤n
‖Λ−1/2

hn
{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}‖

]4
]]
≤ Cn−1h2

n.

For the next term, note that

‖Λ−1/2
hn

(X∗i )⊗2(β̂gn − β)‖2 =

hn∑
j=1

λ−1
j 〈(X

∗
i )⊗2(β̂gn − β), ψj〉2,

and hence,

E∗[n−1‖Λ−1/2
hn

(X∗i )⊗2(β̂gn − β)‖2]

=n−1
hn∑
j=1

λ−1
j 〈E

∗[(X∗i )⊗2](β̂gn − β), ψj〉2 = n−1
hn∑
j=1

λ−1
j 〈Γ̃n(β̂gn − β), ψj〉2

=OP

n−1
hn∑
j=1

λ−1
j ‖β̂gn − β‖

2

 ,

where Γ̃n ≡ n−1
∑n

i=1X
⊗2
i , since E[‖Γ̃n − Γ‖2∞] ≤ n−1E[‖X1‖4] from Theorem 2.5 in [32].

In summary, we have that

E∗

[(
v̂−1
n max

1≤i≤n
|Z∗i,n|

)4 ∣∣∣X0

]
= OP(n−1h2

n) +OP


n−1

hn∑
j=1

λ−1
j

 ‖β̂gn − β‖2


2+ oP(n−2).

Lemma 39. As n→∞, we have that

E∗

[∣∣∣∣∣n−1
∑n

i=1 Z
∗2
i,n

shn(X0)
− 1

∣∣∣∣∣ ∣∣∣X0

]
P−→ 0.
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Proof. Note that

n−1
n∑
i=1

Z∗2i,n = 〈Λ̂∗nΓ−1
hn
X0,Γ

−1
hn
X0〉 = 〈(Λ̂∗n − Λ)Γ−1

hn
X0,Γ

−1
hn
X0〉+ shn(X0)

where Λ̌∗n ≡ n−1
∑n

i=1(X∗i ε
∗
i,gn
− (Xε̂)n,gn)⊗2 with its mean E∗[Λ̌∗n] = Λ̂n,gn . Here, (Xε̂)n,gn is

defined in (3.45). Inspired by the identity

Xiε̂i,gn = Xiεi −X⊗2
i (β̂gn − β),

we see that

E∗[f(X∗i ε
∗
i,gn + (X∗i )⊗2(β̂gn − β))] = n−1

n∑
i=1

f(Xiεi) (3.65)

for any function f : H→ R. From the following decomposition

X∗i ε
∗
i,gn − (Xε̂)n,gn = X∗i ε

∗
i,gn + (X∗i )⊗2(β̂gn − β)− (X∗i )⊗2(β̂gn − β)− (Xε̂)n,gn ,

we have that

〈(Λ̂∗n − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉

=n−1
n∑
i=1

〈[{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}⊗2 − Λ]Γ−1
hn
X0,Γ

−1
hn
X0〉 (3.66)

+ n−1
n∑
i=1

〈(X∗i )⊗2(β̂gn − β),Γ−1
hn
X0〉2

+ 〈(Xε̂)n,gn ,Γ−1
hn
X0〉2

− 2n−1
n∑
i=1

〈X∗i ε∗i,gn ,Γ
−1
hn
X0〉〈(X∗i )⊗2(β̂gn − β),Γ−1

hn
X0〉

− 2n−1
n∑
i=1

〈X∗i ε∗i,gn ,Γ
−1
hn
X0〉〈(Xε̂)n,gn ,Γ−1

hn
X0〉

+ 2n−1
n∑
i=1

〈(X∗i )⊗2(β̂gn − β),Γ−1
hn
X0〉〈(Xε̂)n,gn ,Γ−1

hn
X0〉.

We now investigate an upper bound for each term in the preceding display.
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The first term in (3.66) is bounded as follows. By (3.65), we have that

E∗[|〈[{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}⊗2 − Λ]Γ−1
hn
X0,Γ

−1
hn
X0〉||X0]

=n−1
n∑
i=1

|〈{(Xiεi)
⊗2 − Λ}Γ−1

hn
X0,Γ

−1
hn
X0〉|

≤n−1
n∑
i=1

‖(Xiεi)
⊗2 − Λ‖‖Γ−1

hn
X0‖2

Recall that E[‖(Xiεi)
⊗2 − Λ‖2] ≤ Cn−1 from Theorem 2.3 of [32] and E[‖Γ−1

hn
X0‖2] =

∑hn
j=1 γ

−1
j .

This implies that

E

[
E∗

[∣∣∣∣∣n−1
n∑
i=1

〈[{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}⊗2 − Λ]Γ−1
hn
X0,Γ

−1
hn
X0〉

∣∣∣∣∣ ∣∣∣X0

]]

≤Cn−1/2
hn∑
j=1

γ−1
j ,

which implies that

E∗

[
shn(X0)−1

∣∣∣∣∣n−1
n∑
i=1

〈[{X∗i ε∗i,gn + (X∗i )⊗2(β̂gn − β)}⊗2 − Λ]Γ−1
hn
X0,Γ

−1
hn
X0〉

∣∣∣∣∣ ∣∣∣X0

]

=OP

n−1/2h−1
n

hn∑
j=1

γ−1
j

 ,

where this convereges to zero under Condition (A5).

The second term in (3.66) is bounded as follows. Since

Ln ≡ E∗[〈(X∗i )⊗2(β̂gn − β),Γ−1
hn
X0〉2|X0]

= n−1
n∑
i=1

〈X⊗2
i (β̂gn − β),Γ−1

hn
X0〉2

= n−1
n∑
i=1

〈Xi, β̂gn − β〉2〈Xi,Γ
−1
hn
X0〉2

=

〈
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2X⊗2

i (β̂gn − β), β̂gn − β

〉
,

by the third part of Lemma 24, we have that shn(X0)−1Ln = OP(‖β̂gn − β‖2).

The third term in (3.66) is bounded as

shn(X0)−1〈(Xε̂)n,gn ,Γ−1
hn
X0〉2 = OP

n−1h−1
n

hn∑
j=1

γ−1
j

+OP(‖β̂gn − β‖2)
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by the second part of Lemma 23.

The fourth term in (3.66) is bounded as follows. Note that

Ln ≡ E∗[|〈X∗i ε∗i,gn ,Γ
−1
hn
X0〉〈(X∗i )⊗2(β̂gn − β),Γ−1

hn
X0〉||X0]

= n−1
n∑
i=1

|〈Xiε̂i,gn ,Γ
−1
hn
X0〉〈X⊗2

i (β̂gn − β),Γ−1
hn
X0〉|

≤ n−1
n∑
i=1

|〈Xiεi,Γ
−1
hn
X0〉〈X⊗2

i (β̂gn − β),Γ−1
hn
X0〉|

+ n−1
n∑
i=1

〈X⊗2
i (β̂gn − β),Γ−1

hn
X0〉2

= n−1
n∑
i=1

|〈〈Xi,Γ
−1
hn
X0〉2Xiεi, β̂gn − β〉|

+

〈
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2X⊗2

i (β̂gn − β), β̂gn − β

〉

≤

(
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2‖Xiεi‖

)
‖β̂gn − β‖

+

(
n−1

n∑
i=1

‖Xi‖2〈Xi,Γ
−1
hn
X0〉2

)
‖β̂gn − β‖2

By the third parts of each of Lemmas 24-25, we have that shn(X0)−1Ln = OP(‖β̂gn − β‖).

The fifth term in (3.66) is bounded as follows. Note that

Ln ≡ E∗[|〈X∗i ε∗i,gn ,Γ
−1
hn
X0〉〈(Xε̂)n,gn ,Γ−1

hn
X0〉||X0]

= n−1
n∑
i=1

|〈Xiε̂i,gn ,Γ
−1
hn
X0〉〈(Xε̂)n,gn ,Γ−1

hn
X0〉|

≤ |〈(Xε̂)n,gn ,Γ−1
hn
X0〉|

{
n−1

n∑
i=1

|〈Xiεi,Γ
−1
hn
X0〉|+ n−1

n∑
i=1

|〈X⊗2
i (β̂gn − β),Γ−1

hn
X0〉|

}

We observe that

n−1
n∑
i=1

|〈Xiεi,Γ
−1
hn
X0〉| ≤

(
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

)1/2(
n−1

n∑
i=1

ε2
i

)1/2
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since n−1
∑n

i=1 ‖Xiεi‖
P−→ E[‖Xε‖] <∞ and

n−1
n∑
i=1

|〈X⊗2
i (β̂gn − β),Γ−1

hn
X0〉|

=n−1
n∑
i=1

|〈〈Xi,Γ
−1
hn
X0〉Xi, (β̂gn − β)〉| ≤

(
n−1

n∑
i=1

|〈Xi,Γ
−1
hn
X0〉|‖Xi‖

)
‖β̂gn − β‖

≤

(
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

)1/2(
n−1

n∑
i=1

‖Xi‖2
)1/2

‖β̂gn − β‖.

Here, E[〈Xi,Γ
−1
hn
X0〉2] =

∑hn
j=1 γ

−1
j E[〈Xi, φj〉2] = hn since the FPC scores ξj are uncorrelated

random variables with mean zero and variance γj . This implies that

E
[
n−1

∑n
i=1〈Xi,Γ

−1
hn
X0〉2

]
= hn. Therefore, we have

n−1
n∑
i=1

|〈Xiεi,Γ
−1
hn
X0〉|+ n−1

n∑
i=1

|〈X⊗2
i (β̂gn − β),Γ−1

hn
X0〉| = OP(h1/2

n ).

Since

shn(X0)−1/2|〈(Xε̂)n,gn ,Γ−1
hn
X0〉| = OP


n−1h−1

n

hn∑
j=1

γ−1
j

1/2
+OP(‖β̂gn − β‖)

from the second part of Lemma 23, we conclude that

shn(X0)−1Ln = OP


n−1h−1

n

hn∑
j=1

γ−1
j

1/2
+OP(‖β̂gn − β‖).

The sixth term in (3.66) is bounded as follows. Note that

Ln ≡ E∗[|〈(X∗i )⊗2(β̂gn − β),Γ−1
hn
X0〉〈(Xε̂)n,gn ,Γ−1

hn
X0〉||X0]

= n−1
n∑
i=1

|〈X⊗2
i (β̂gn − β),Γ−1

hn
X0〉〈(Xε̂)n,gn ,Γ−1

hn
X0〉|

=

(
n−1

n∑
i=1

|〈Xi,Γ
−1
hn
X0〉|‖Xi‖

)
‖β̂gn − β‖|〈(Xε̂)n,gn ,Γ−1

hn
X0〉|

≤

(
n−1

n∑
i=1

〈Xi,Γ
−1
hn
X0〉2

)1/2(
n−1

n∑
i=1

‖Xi‖2
)1/2

‖β̂gn − β‖|〈(Xε̂)n,gn ,Γ−1
hn
X0〉|.

As the previous paragraph, we conclude that

shn(X0)−1Ln = OP


n−1h−1

n

hn∑
j=1

γ−1
j

1/2

‖β̂gn − β‖

+OP(‖β̂gn − β‖2).
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In summary, we have that

E∗

[∣∣∣∣∣n−1
∑n

i=1(Z∗i,n)2

shn(X0)
− 1

∣∣∣∣∣ ∣∣∣X0

]

=OP

n−1/2h−1
n

hn∑
j=1

γ−1
j

+OP

n−1h−1
n

hn∑
j=1

γ−1
j

+OP(‖β̂gn − β‖).

Note that Condition (A5) implies that n−1h−1
n

∑hn
j=1 γ

−1
j ≤ n−1/2h−1

n

∑hn
j=1 γ

−1
j → 0 as n→∞.

Thus, as n→∞, if ‖β̂gn − β‖ → 0, we have that

E∗

[∣∣∣∣∣n−1
∑n

i=1(Z∗i,n)2

shn(X0)
− 1

∣∣∣∣∣ ∣∣∣X0

]
P−→ 0.

Lemma 40. As n→∞, we have that

E∗

[(√
n

shn(X0)
〈X̄∗(ε∗)n,gn − X̄(¯̂ε)gn ,Γ

−1
hn
X0〉

)2 ∣∣∣X0

]
P−→ 0.

Proof. From Lemma 30, we have that

E∗
[

n

shn(X0)
〈X̄∗(ε∗)n,gn − X̄(¯̂ε)gn ,Γ

−1
hn
X0〉2

∣∣∣X0

]
≤{hnshn(X0)−1}(nE∗[‖X̄∗(ε∗)n,gn − X̄(¯̂ε)gn‖2])(h−1

n ‖Γ−1
hn
X0‖2)

=OP(1)OP(n−1)OP

h−1
n

hn∑
j=1

γ−1
j


=OP

n−1h−1
n

hn∑
j=1

γ−1
j

 ,

where the last big OP term converges to zero under Condition (A5).

3.10.5 Scaling term

We investigate the consistency of the ratio of ŝ∗kn,hn,gn(X0) to ŝhn(X0) (or to shn(X0)) to 1 in

the bootstrap probability P∗. The bootstrap scaling ŝ∗hn(X0) can be decomposed in a similar way
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to the decomposition (3.43) as follows:

ŝ∗hn(X0) = 〈Λ̂∗n,kn,gn(Γ̂∗hn)−1X0, (Γ̂
∗
hn)−1X0〉

=〈Λ̂n,kn{(Γ̂∗hn)−1 − Γ−1
hn
}X0, (Γ̂

∗
hn)−1X0〉+ 〈Λ̂∗n,kn,gnΓ−1

hn
X0, (Γ̂

∗
hn)−1X0〉

=〈Λ̂∗n,kn,gn{(Γ̂
∗
hn)−1 − Γ−1

hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉+ 〈Λ̂∗n,kn,gn{(Γ̂

∗
hn)−1 − Γ−1

hn
}X0,Γ

−1
hn
X0〉

+ 〈Λ̂∗n,kn,gnΓ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉+ 〈Λ̂∗n,kn,gnΓ−1

hn
X0,Γ

−1
hn
X0〉

=〈Λ̂∗n,kn,gn{(Γ̂
∗
hn)−1 − Γ−1

hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉

+ 2〈Λ̂∗n,kn,gnΓ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉+ 〈Λ̂∗n,kn,gnΓ−1

hn
X0,Γ

−1
hn
X0〉

=〈(Λ̂∗n,kn,gn − Λ){(Γ̂∗hn)−1 − Γ−1
hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉 (3.67)

+ 〈Λ{(Γ̂∗hn)−1 − Γ−1
hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉

+ 2〈(Λ̂∗n,kn,gn − Λ)Γ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉

+ 2〈ΛΓ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉

+ 〈(Λ̂∗n,kn,gn − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉+ 〈ΛΓ−1

hn
X0,Γ

−1
hn
X0〉.

Also, with ε∗i,gn = Y ∗i − 〈β̂gn , X∗i 〉, we see by putting ε̂∗i,kn,gn = ε∗i,gn − 〈β̂
∗
kn
− β̂gn , X∗i 〉 that

Λ̂∗n,kn,gn − Λ =n−1
n∑
i=1

(X∗i ε̂
∗
i,kn,gn)⊗2 − (X∗ε̂∗)⊗2

n,kn,gn
− Λ

=Λ̃∗n,gn − Λ + n−1
n∑
i=1

(X∗i )⊗2〈β̂∗kn − β̂gn , X
∗
i 〉2 (3.68)

− 2n−1
n∑
i=1

(X∗i ε
∗
i,gn ⊗X

∗
i )〈β̂∗kn − β̂gn , X

∗
i 〉 − (X∗ε̂∗)⊗2

n,kn,gn

where Λ̃∗n,gn ≡ n
−1
∑n

i=1(X∗i ε
∗
i,gn

)⊗2 and

(X∗ε̂∗)n,kn,gn ≡ n−1
n∑
i=1

X∗i ε̂
∗
i,kn,gn = n−1

n∑
i=1

X∗i ε
∗
i,gn − n

−1
n∑
i=1

〈β̂∗kn − β̂gn , X
∗
i 〉X∗i

= (X∗ε∗)n,gn − (Γ̃∗n − Γ)(β̂∗kn − β̂gn)− Γ(β̂∗kn − β̂gn) (3.69)

with (X∗ε∗)n,gn ≡ n−1
∑n

i=1X
∗
i ε
∗
i,gn

.

In what follows, we suppose that Conditions (A1)-(A8) hold and ‖β̂gn − β‖
P−→ 0 and for each

η > 0, P∗(‖β̂∗kn − β̂gn‖ > η)
P−→ 0 as n→∞.
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Lemma 41. Define Λ̌∗n ≡ n−1
∑n

i=1(X∗i Y
∗
i −X∗i 〈X∗i , β〉)⊗2. Then, we have

E[E∗[n‖Λ̌∗n − Λ‖2HS ]] = O(1), which implies that for each η > 0

P∗(‖Λ̃∗n,gn − Λ‖∞ > η)
P−→ 0.

Proof. Note that

Λ̃∗n,gn ≡ n
−1

n∑
i=1

(X∗i ε
∗
i,gn)⊗2 = n−1

n∑
i=1

(X∗i Y
∗
i −X∗i 〈X∗i , β〉 −X∗i 〈X∗i , β̂gn − β〉)⊗2

= Λ̌∗n + n−1
n∑
i=1

(X∗i 〈X∗i , β̂gn − β〉)⊗2

− n−1
n∑
i=1

(X∗i Y
∗
i −X∗i 〈X∗i , β〉)⊗ (X∗i 〈X∗i , β̂gn − β〉)

− n−1
n∑
i=1

(X∗i 〈X∗i , β̂gn − β〉)⊗ (X∗i Y
∗
i −X∗i 〈X∗i , β〉)

To see the convergence of the first term, write L∗i = (X∗i Y
∗
i −X∗i 〈X∗i , β〉)⊗2. Since {L∗i }ni=1 are iid

with mean E∗[L∗i ] = n−1
∑n

i=1(Xiεi)
⊗2 ≡ Λ̃n under the bootstrap probability P∗, we have

E∗

∥∥∥∥∥n−1
n∑
i=1

(L∗i − Λ̃n)

∥∥∥∥∥
2

HS

 = n−1
n∑
i=1

E∗[‖L∗i − Λ̃n‖2HS ] = n−2
n∑
i=1

‖(Xiεi)
⊗2 − Λ̃n‖2HS

≤ C

(
n−2

n∑
i=1

‖Xiεi‖4 + n−1‖Λ̃n − Λ‖2HS + n−1‖Λ‖2HS

)
,

which implies that

E[E∗[n‖Λ̌∗n − Λ‖2HS ]] = E[‖Xε‖4] + E[n‖Λ̃n − Λ‖2HS ] + E[‖Λ̃n − Λ‖2HS ] + ‖Λ‖2HS

= O(1)

For the rest of terms, note that

E∗

[∥∥∥∥∥n−1
n∑
i=1

(X∗i Y
∗
i −X∗i 〈X∗i , β〉)⊗ (X∗i 〈X∗i , β̂gn − β〉)

∥∥∥∥∥
∞

]

≤n−1
n∑
i=1

E∗
[
‖(X∗i Y ∗i −X∗i 〈X∗i , β〉)⊗ (X∗i 〈X∗i , β̂gn − β〉)‖∞

]
=n−1

n∑
i=1

‖(XiYi −Xi〈Xi, β〉)⊗ (Xi〈Xi, β̂gn − β〉)‖∞

≤n−1
n∑
i=1

‖Xiεi‖‖Xi‖2‖β̂gn − β‖ ≤

(
n−1

n∑
i=1

‖Xiεi‖2
)(

n−1
n∑
i=1

‖Xi‖4
)
‖β̂gn − β‖

P−→ 0
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and

E∗

[∥∥∥∥∥n−1
n∑
i=1

(X∗i 〈X∗i , β̂gn − β〉)⊗2

∥∥∥∥∥
∞

]

≤n−1
n∑
i=1

E∗
[
‖(X∗i 〈X∗i , β̂gn − β〉)⊗2‖∞

]
= n−1

n∑
i=1

‖(Xi〈Xi, β̂gn − β〉)⊗2‖∞

≤

(
n−1

n∑
i=1

‖Xi‖4
)
‖β̂gn − β‖2

P−→ 0.

We thus have the desired result.

Lemma 42.

1. For each η > 0, we have P∗(‖(X∗ε̂∗)n,kn,gn‖ > η)
P−→ 0.

2. As n→∞, if n−1h−1
n

∑hn
j=1 γ

−1
j → 0 (which is implied by (A5)), for each η > 0, we have

P∗(shn(X0)−1〈(X∗ε̂∗)n,kn,gn ,Γ−1
hn
X0〉2 > η|X0)

P−→ 0.

Proof. Note that E∗[(X∗ε∗)n,gn ] = E∗[X∗i ε
∗
i,gn

] = (Xε̂)n,gn . Since {X∗i ε∗i,gn}
n
i=1 are iid with mean

(Xε̂)n,gn , we have

E∗
[
‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2

]
=n−1E∗

[
‖X∗i ε∗i,gn − (Xε̂)n,gn‖2

]
≤ 2

n
E∗[‖X∗i ε∗i,gn‖

2] + ‖(Xε̂)n,gn‖2

=
2

n

(
1

n

n∑
i=1

‖Xiε̂i,gn‖2 + ‖(Xε̂)n,gn‖2
)

≤ 2

n

{(
2

n

n∑
i=1

‖Xiεi‖2 +
2

n

n∑
i=1

‖Xi‖4‖β̂gn − β‖2
)

+ ‖(Xε̂)n,gn‖2
}

=OP(n−1)

from the fact that (Xε̂)n,gn
P−→ 0 by the first part of Lemma 23, which again implies that

E∗[‖(X∗ε∗)n,gn‖2]
P−→ 0. Next, note that E∗[Γ̃∗n] = E∗[(X∗i )⊗2] = n−1

∑n
i=1X

⊗2
i = Γ̃n. Since
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{(X∗i )⊗2}ni=1 are iid with mean Γ̃n, we have

E∗
[
‖Γ̃∗n − Γ̃n‖2HS

]
= n−1E∗

[
‖(X∗i )⊗2 − Γ̃n‖2HS

]
≤ 2

n
(E∗[‖X∗i ‖2] + ‖Γ̃n‖2HS)

=
2

n

(
n−1

n∑
i=1

‖Xi‖2 + 2‖Γ̃n − Γ‖2HS + 2‖Γ‖2HS

)

= OP(n−1)

from the fact that E[‖Γ̃n − Γ‖2HS ] = O(n−1) by Theorem 2.5 of [32], which again implies that

E∗[‖Γ̃∗n − Γ‖2∞] ≤ E∗[‖Γ̃∗n − Γ‖2HS ] = OP(n−1). The first part then follows from the decomposition

(3.69) and Theorem 10.

For the second part, note that

shn(X0)−1〈(X∗ε∗)n,gn ,Γ−1
hn
X0〉2

≤2shn(X0)−1〈(X∗ε∗)n,gn − (Xε̂)n,gn ,Γ
−1
hn
X0〉2

+ 2shn(X0)−1〈(Xε̂)n,gn ,Γ−1
hn
X0〉2.

Since

E∗[shn(X0)−1〈(X∗ε∗)n,gn − (Xε̂)n,gn ,Γ
−1
hn
X0〉2|X0]

≤shn(X0)−1E∗[‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2]‖Γ−1
hn
X0‖2

=OP

n−1h−1
n

hn∑
j=1

γ−1
j


from the fact that E∗[‖(X∗ε∗)n,gn − (Xε̂)n,gn‖2] = OP(1) as seen above and

shn(X0)−1〈(Xε̂)n,gn ,Γ−1
hn
X0〉2

P−→ 0 by the second part of Lemma 23, we have

E∗[shn(X0)−1〈(X∗ε∗)n,gn ,Γ−1
hn
X0〉2|X0]

P−→ 0. Next, note that

L∗1n ≡ shn(X0)−1〈(Γ̃∗n − Γ̃n)(β̂∗kn − β̂gn),Γ−1
hn
X0〉2

≤ shn(X0)−1‖Γ̃∗n − Γ̃n‖2∞‖Γ−1
hn
X0‖2‖β̂∗kn − β̂gn‖

2.

Due to the fact that E∗[‖Γ̃∗n − Γ̃n‖2∞] = OP(n−1) as seen above, we have that

E∗[shn(X0)−1‖Γ̃∗n − Γ̃n‖2∞‖Γ−1
hn
X0〉‖2|X0] = OP

n−1h−1
n

hn∑
j=1

γ−1
j

 .
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This implies that for each η > 0, P∗(L∗1n > η)
P−→ 0. Finally, note that

L∗2n ≡ shn(X0)−1〈Γ̃n(β̂∗kn − β̂gn),Γ−1
hn
X0〉2

= shn(X0)−1‖Γ̃nΓ−1
hn
X0‖2‖β̂∗kn − β̂gn‖

2.

As seen in the proof of Lemma 23, one can show that shn(X0)−1‖Γ̃nΓ−1
hn
X0‖2 = OP(1). This

implies that for each η > 0, P∗(L∗2n > η|X0)
P−→ 0. In summary, by the decomposition (3.69), we

have the desired result.

Lemma 43. For each η > 0, as n→∞, we have the following.

1. P∗
(∥∥∥n−1

∑n
i=1(X∗i )⊗2〈β̂kn − β̂gn , X∗i 〉2

∥∥∥
∞
> η

)
P−→ 0.

2. If n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 = O(1), then

P∗

(
shn(X0)−1

〈(
n−1

n∑
i=1

(X∗i )⊗2〈β̂∗kn − β̂gn , X
∗
i 〉2
)

Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0

〉
> η

∣∣∣X0

)
P−→ 0.

3. P∗
(
shn(X0)−1

〈(
n−1

∑n
i=1(X∗i )⊗2〈β̂∗kn − β̂gn , X

∗
i 〉2
)

Γ−1
hn
X0,Γ

−1
hn
X0

〉
> η

∣∣∣X0

)
P−→ 0.

Proof. Note that ∥∥∥∥∥n−1
n∑
i=1

(X∗i )⊗2〈β̂kn − β̂gn , X∗i 〉2
∥∥∥∥∥
∞

≤n−1
n∑
i=1

‖X∗i ‖4‖β̂∗kn − β̂gn‖
2

≤

∣∣∣∣∣n−1
n∑
i=1

‖X∗i ‖4 − E[‖X‖4]

∣∣∣∣∣ ‖β̂∗kn − β̂gn‖2 + E[‖X‖4]‖β̂∗kn − β̂gn‖
2.

To see the consistency of ‖X∗‖4 ≡ n−1
∑n

i=1 ‖X∗i ‖4 for E[‖X‖4], we follows the proof of

Theorem 2.1 of [3] by using the techinical lemmas therein. Note that d4(X∗i , Xi)→ 0 almost

surely by Lemma 8.4 of [3]. Define φ(x) = ‖x‖4 for x ∈ H so that d1(‖X∗i ‖4, ‖Xi‖4)→ 0 almost

surely by Lemma 8.5 of [3]. By Lemma 8.7 of [3], it then implies that

d1(‖X∗‖4, ‖X‖4) ≤ n−1
n∑
i=1

d1(‖X∗i ‖4, ‖Xi‖4) = d1(‖X∗i ‖4, ‖X∗i ‖4)→ 0
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almost surely, where ‖X‖4 ≡ n−1
∑n

i=1 ‖Xi‖4. Since ‖X‖4 → E[‖X‖4] almost surely by the strong

law of large numbers, it almost surely happens that for each η > 0,

P∗(|‖X∗‖4 − E[‖X‖4]| > η)→ 0 almost surely. Therefore, the first part follows.

For the second part, note that

L∗n ≡

〈(
n−1

n∑
i=1

(X∗i )⊗2〈β̂∗kn − β̂gn , X
∗
i 〉2
)

Γ−1
hn
X0, Q

∗
n

〉

=n−1
n∑
i=1

〈X∗i ,Γ−1
hn
X0〉〈X∗i , Q∗n〉〈β̂∗kn − β̂gn , Xi〉2

=n−1
n∑
i=1

〈X∗i ,Γ−1
hn
X0〉〈X∗i , Q∗n〉〈(X∗i )⊗2(β̂∗kn − β̂gn), β̂∗kn − β̂gn〉

=

〈
n−1

n∑
i=1

〈X∗i ,Γ−1
hn
X0〉〈X∗i , Q∗n〉(X∗i )⊗2(β̂∗kn − β̂gn), β̂∗kn − β̂gn

〉

where Q∗n ≡ ((Γ̂∗hn)−1 − Γ−1
hn

)X0. This implies that

|L∗n| ≤

(
n−1

n∑
i=1

‖X∗i ‖3|〈X∗i ,Γ−1
hn
X0〉|

)
‖Q∗n‖‖β̂∗kn − β̂gn‖

2.

We note from Cauchy-Schwarz inequality that

E∗[‖X∗i ‖3|〈X∗i ,Γ−1
hn
X0〉||X0]2 ≤ E∗[‖X∗i ‖4]E∗[‖X∗i ‖2〈X∗i ,Γ−1

hn
X0〉2|X0].

Since E∗[‖X∗i ‖4] = n−1
∑n

i=1 ‖Xi‖4
P−→ E[‖X‖4], we have E∗[‖X∗i ‖4] = OP(1). Since the FPC scores

ξj are uncorrelated random variables with mean zero and variance γj , we have from the

independence between Xn ≡ {Xi}ni=1 and X0 that

E[E∗[‖X∗i ‖2〈X∗i ,Γ−1
hn
X0〉2|X0]]

=E

[
n−1

n∑
i=1

‖Xi‖2〈Xi,Γ
−1
hn
X0〉2

]
= E[‖Xi‖2〈Xi,Γ

−1
hn
X0〉2]

=

hn∑
j=1

γ−1
j E[‖Xi‖2〈Xi, φj〉2].

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[‖Xi‖2〈Xi, φj〉2] ≤ E[‖Xi‖4]1/2E[〈Xiφj〉4]1/2 ≤ Cγj ,
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which implies that

E∗

[
h1/2
n shn(X0)−1

(
n−1

n∑
i=1

‖X∗i ‖3|〈X∗i ,Γ−1
hn
X0〉|

)∣∣∣X0

]
= OP(1).

Due to Lemma 31, we have

E∗[h−1/2
n ‖Q∗n‖|X0] = OP

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)2/3


where the corresponding remainder term is negligible by following the argument in Remark 15.

Thus, the second part follows.

For the last part, note that

L∗n ≡

〈(
n−1

n∑
i=1

(X∗i )⊗2〈β̂∗kn − β̂gn , X
∗
i 〉2
)

Γ−1
hn
X0,Γ

−1
hn
X0

〉

=n−1
n∑
i=1

〈X∗i ,Γ−1
hn
X0〉2〈β̂∗kn − β̂gn , X

∗
i 〉2

=n−1
n∑
i=1

〈X∗i ,Γ−1
hn
X0〉2〈(X∗i )⊗2(β̂∗kn − β̂gn), β̂∗kn − β̂gn〉

=

〈
n−1

n∑
i=1

〈X∗i ,Γ−1
hn
X0〉2(X∗i )⊗2(β̂∗kn − β̂gn), β̂∗kn − β̂gn

〉
.

This implies that

|Ln| ≤

(
n−1

n∑
i=1

‖X∗i ‖2〈X∗i ,Γ−1
hn
X0〉2

)
‖β̂∗kn − β̂gn‖

2.

Since the FPC scores ξj are uncorrelated random variables with mean zero and variance γj , we

have from the independence between Xn ≡ {X∗i }ni=1 and X0 that

E[E∗[‖X∗i ‖2〈X∗i ,Γ−1
hn
X0〉2|X0]]

=E

[
n−1

n∑
i=1

‖Xi‖2〈Xi,Γ
−1
hn
X0〉2

]
= E[‖Xi‖2〈Xi,Γ

−1
hn
X0〉2]

=

hn∑
j=1

γ−1
j E[‖Xi‖2〈Xi, φj〉2].

By Condition (A2) and Cauchy-Schwarz inequality, we see that

E[‖Xi‖2〈Xi, φj〉2] ≤ E[‖Xi‖4]1/2E[〈Xi, φj〉4]1/2 ≤ Cγj ,
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which implies that

E∗

[
shn(X0)−1

(
n−1

n∑
i=1

‖X∗i ‖2〈X∗i ,Γ−1
hn
X0〉2

)∣∣∣X0

]
= OP(1).

Thus, we have the desired result.

Lemma 44. For each η > 0, as n→∞, we have the following.

1. P∗
(∥∥∥n−1

∑n
i=1{(X∗i ε∗i,gn)⊗X∗i }〈β̂∗kn − β̂gn , X

∗
i 〉
∥∥∥
∞
> η

)
P−→ 0.

2. If n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 = O(1), then

P∗

(〈(
n−1

n∑
i=1

{(X∗i ε∗i,gn)⊗X∗i }〈β̂∗kn − β̂gn , Xi〉

)
Γ−1
hn
X0, (Γ̂

−1
hn
− Γ−1

hn
)X0

〉
> η

∣∣∣X0

)
P−→ 0.

3. P∗
(
shn(X0)−1

∣∣∣〈(n−1
∑n

i=1{(X∗i ε∗i,gn)⊗Xi}〈β̂∗kn − β̂gn , X
∗
i 〉2
)

Γ−1
hn
X0,Γ

−1
hn
X0

〉∣∣∣ > η
∣∣∣X0

)
P−→

0.

Proof. We first observe that∥∥∥∥∥n−1
n∑
i=1

{(X∗i ε∗i,gn)⊗X∗i }〈β̂∗kn − β̂gn , X
∗
i 〉

∥∥∥∥∥
∞

≤n−1
n∑
i=1

‖X∗i ε∗‖‖X∗i ‖2‖β̂∗kn − β̂gn‖

≤

(
n−1

n∑
i=1

‖X∗i ε∗‖2
)1/2(

n−1
n∑
i=1

‖X∗i ‖4
)
‖β̂∗kn − β̂gn‖

≤C

(
n−1

∑
i=1

‖X∗i Y ∗i ‖2 + n−1
n∑
i=1

‖X∗i ‖2‖β̂gn‖

)1/2(
n−1

n∑
i=1

‖X∗i ‖4
)
‖β̂∗kn − β̂gn‖.

As done in part 1 of Lemma 43, one can derive that for each η > 0,

P∗(|‖X∗Y ∗‖2 − E[‖XY ‖2]| > η)→ 0, P∗(|‖X∗‖2 − E[‖X‖2]| > η)→ 0,

P∗(|‖X∗‖4 − E[‖X‖4]| > η)→ 0 almost surely since E[‖XY ‖2] <∞, E[‖X‖2] <∞, and

E[‖X‖4] <∞. This implies that

P∗

(∥∥∥∥∥n−1
n∑
i=1

{(X∗i ε∗i,gn)⊗X∗i }〈β̂∗kn − β̂gn , X
∗
i 〉

∥∥∥∥∥
∞

> η

)
P−→ 0.

The last two parts follow from a similar argument to Lemmas 25 and 43.
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Proposition 26. Suppose that as n→∞, ‖β̂kn − β‖
P−→ 0, ‖β̂gn − β‖

P−→ 0, and for each η > 0,

P∗(‖β̂∗kn − β̂gn‖ > η)
P−→ 0. As n→∞, if n−1/2h

−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0, then the bootatrap

scaling ŝ∗hn(X0) and the sample scaling ŝhn(X0) are asymptotically equivalent in that, for any

η > 0,

P∗
(∣∣∣∣ ŝ∗hn(X0)

ŝhn(X0)
− 1

∣∣∣∣ > η
∣∣∣X0

)
P−→ 0.

Proof. Similarly to the inequality (3.46), we obtain the following decomposition from (3.67):∣∣∣∣ ŝ∗hn(X0)

shn(X0)
− 1

∣∣∣∣
≤shn(X0)−1|〈(Λ̂∗n,kn,gn − Λ){(Γ̂∗hn)−1 − Γ−1

hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉| (3.70)

+ shn(X0)−1|〈Λ{(Γ̂∗hn)−1 − Γ−1
hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉|

+ 2shn(X0)−1|〈(Λ̂∗n,kn,gn − Λ)Γ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉|

+ 2shn(X0)−1|〈ΛΓ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉|

+ shn(X0)−1|〈(Λ̂∗n,kn,gn − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉|.

Note from Lemma 41 and the first parts of Lemmas 42-44 that for each η > 0,

P∗(‖Λ̂∗n,kn,gn − Λ‖∞ > η)
P−→ 0.

The first two terms in (3.70) converges to zero by Lemmas 31 and 41, in the view of

Remark 15, since for each η > 0,

P∗(shn(X0)−1|〈(Λ̂∗n,kn,gn − Λ){(Γ̂∗hn)−1 − Γ−1
hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉| > η|X0)

P−→ 0,

P∗(shn(X0)−1|〈Λ{(Γ̂∗hn)−1 − Γ−1
hn
}X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉| > η|X0)

P−→ 0,

if n−1/2h
−1/2
n

∑hn
j=1 δ

−1/2
j (j log j)3/2 → 0.

Define Λ̌∗n ≡ n−1
∑n

i=1(X∗i Y
∗
i −X∗i 〈X∗i , β〉)⊗2 so that E[E∗[n‖Λ̌∗n − Λ‖2HS ]] = O(1) by

Lemma 41. Note that

shn(X0)−1|〈(Λ̌∗n − Λ)Γ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉|

≤{hnshn(X0)−1}(n1/2‖Λ̌∗n − Λ‖∞)(n−1/2h−1/2
n ‖Γ−1

hn
X0‖){h−1/2

n ‖(Γ̂∗hn)−1 − Γ−1
hn
}X0‖}
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Since E[‖Γ−1
hn
X0‖2] =

∑hn
j=1 γ

−1
j and n−1h−1

n

∑hn
j=1 γ

−1
j = O(1) holds by Condition (A5),

if n−1/2h
−1/2
n

∑hn
j=1 γ

−1/2
j (j log j)3/2 → 0, by Lemma 31, we have

P∗(shn(X0)−1|〈(Λ̌∗n − Λ)Γ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉| > η|X0)

P−→ 0.

One can show that

P∗(shn(X0)−1|〈(Λ̃∗n,gn − Λ̌∗n)Γ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉| > η|X0)

P−→ 0

by using a similar argument to the proofs of the second parts of Lemmas 43-44 and interchanging

β̂∗hn − β̂gn into β̂gn − β. This along with the second parts of Lemmas 42-44 implies that

P∗(shn(X0)−1|〈(Λ̂∗n,kn,gn − Λ̌∗n)Γ−1
hn
X0, {(Γ̂∗hn)−1 − Γ−1

hn
}X0〉| > η|X0)

P−→ 0.

Thus, the third term in (3.70) converges to zero.

The fourth term in (3.70) converges to zero by using the same argument to derive the

converges of the fourth term in (3.46) to zero as seen in the proof of Proposition 20.

To deal with the last term in (3.70), note that

E∗[shn(X0)−1|〈(Λ̌∗n − Λ)Γ−1
hn
X0,Γ

−1
hn
X0〉||X0]

≤shn(X0)−1E∗[‖Λ̌∗n − Λ‖∞]‖Γ−1
hn
X0‖2

=OP

n−1/2h−1
n

hn∑
j=1

γ−1
j


where n−1/2h−1

n

∑hn
j=1 γ

−1
j → 0 under Condition (A5). One can show that

P∗(shn(X0)−1|〈(Λ̃∗n,gn − Λ̌∗n)Γ−1
hn
X0,Γ

−1
hn
X0〉| > η|X0)

P−→ 0

by using a similar argument to the proofs of the second parts of Lemmas 43-44 and interchanging

β̂∗hn − β̂gn into β̂gn − β. This along with the second parts of Lemmas 42-44 implies that

P∗(shn(X0)−1|〈(Λ̂∗n,kn,gn − Λ̌∗n)Γ−1
hn
X0,Γ

−1
hn
X0〉| > η|X0)

P−→ 0.

The above four arguments completes the proof along with the decomposition (3.70) and

Proposition 20.
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Remark 16. The result in Proposition 26 still holds even when the truncation levels of the

estimators β̂kn and β̂∗kn for computing residuals for ŝhn(X0) and ŝ∗hn(X0) are not equal, as long as

the estimators are consistent. For example, suppose that β̂kn and β̂∗k′n are respectively the

estimators with distinct truncation levels kn and k′n used for constructing the scaling ŝhn(X0) and

ŝ∗hn(X0). Nevertheless, the bootstrap scaling ŝ∗hn(X0) is still consistent if both β̂kn and β̂∗k′n are

consistent in the sense that as n→∞, ‖β̂kn − β‖
P−→ 0 and for each η > 0,

P∗(‖β̂∗kn − β̂gn‖ > η)
P−→ 0.

3.10.6 Failure of naive paired bootstrap

Note the following decomposition of the difference between the naive and our modified

bootstrap estimator:

β̂∗hn,naive − β̂
∗
hn = (Γ̂∗hn)−1Ûn,gn = {(Γ̂∗hn)−1 − Γ−1

hn
}Ûn,gn + Γ−1

hn
Ûn,gn .

The cross-covariance function Ûn,gn ≡ n−1
∑n

i=1Xiε̂i,gn between residuals and regressors can be

further expanded as follows:

Ûn,gn = (I − Π̂gn)∆̂n = (I −Πgn)∆̂n + (Πgn − Π̂gn)∆̂n

= (I −Πgn)Un + (I −Πgn)(Γ̂n − Γ)β + (I −Πgn)Γβ (3.71)

+ (Πgn − Π̂gn)Un + (Πgn − Π̂gn)(Γ̂n − Γ)β + (Πgn − Π̂gn)Γβ.

The difference between the naive and our modified bootstrap statistics is then

T ∗n,naive(X0)− T ∗n(X0) =

√
n

shn(X0)
〈(Γ̂∗hn)−1Ûn,gn , X0〉 = A∗n +Bn + Cn,

where

A∗n ≡ A∗n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}Ûn,gn , X0〉, (3.72)

Bn ≡ Bn(X0) =

√
n

shn(X0)
〈Γ−1
hn

(I −Πgn)∆̂n, X0〉, (3.73)

Cn ≡ Cn(X0) =

√
n

shn(X0)
〈Γ−1
hn

(Πgn − Π̂gn)∆̂n, X0〉. (3.74)
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Here, the bootstrap statistics T ∗n,naive(X0) and T ∗n(X0) are written with the scaling shn(X0)

because it is enough to work with the scaling shn(X0) thanks to Proposition 20. By

Propositions 27-28, both terms A∗n and Cn respectively from (3.72) and (3.74) converge to zero.

Meanwhile, if hn ≤ gn, we notice that Γ−1
hn

(I −Πgn) = 0, which implies that the term in (3.73) is

zero and the difference T ∗n,naive(X0)− T ∗n(X0) hence converges to zero. In contrast, if hn > gn, the

term in (3.73) then does not disappear and is expanded as√
n

shn(X0)
〈Γ−1
hn

(I −Πgn)∆̂n, X0〉 = B1n +B2n +B3n,

where

B1n ≡ B1n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(I −Πgn)Un, X0〉 (3.75)

B2n ≡ B2n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(I −Πgn)(Γ̂n − Γ)β,X0〉 (3.76)

B3n ≡ B3n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(I −Πgn)Γβ,X0〉. (3.77)

We will show that the term B3n (3.77) converges to zero in Lemma 49 and that the term

B1n +B2n from (3.75) and (3.76) weakly converges to some normal random variable in

Proposition 31.

3.10.6.1 Convergence of A∗n

The following lemma is a modification of Lemma 12, which is used for the convergence of A∗n

from (3.72).

Lemma 45. Under the same assumptions of Lemma 11, we have that

∑
l 6=j

γ2
l

|γl − γj |
≤ Cγjj log j

for sufficiently large j ∈ N.

Proof. We first decompose the sum into three terms

∑
l 6=j

γ2
l

|γl − γj |
= T1 + T2 + T3,
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where

T1 =
∑

1≤l<j

γ2
l

|γl − γj |
, T2 =

∑
j<l≤2j

γ2
l

|γl − γj |
, and T3 =

∑
l>2j

γ2
l

|γl − γj |
.

For l < j, by the first part of Lemma 11,

γ2
l

|γl − γj |
= γj

γl
γj

γl
γl − γj

≤ γj
j

l

j

j − l

for sufficiently large l, and thus,

T1 =
∑

1≤l<j

γ2
l

|γl − γj |
≤ γj

∑
1≤l<j

j

l

j

j − l
= γjj

2
∑

1≤l<j

1

l(j − l)

= γjj
∑

1≤l<j

(
1

l
+

1

j − l

)
= 2γjj

∑
1≤l<j

1

l

≤ Cγjj log j.

If j < l ≤ 2j, by the first part of Lemma 11, jγj ≥ lγl and

γ2
l

|γl − γj |
=

γ2
l

γj − γl
= γj

γl
γj

γl
γj

γj
γj − γl

≤ γj
(
j

l

)2 l

l − j
=

γjj
2

l(l − j)

for sufficiently large l. Thus, we have

0 ≤ T2 =
∑

j<l≤2j

γ2
l

|γl − γj |
≤ γjj

∑
j<l≤2j

j

l(l − j)

≤ γjj
∑

j<l≤2j

(
−1

l
+

1

l − j

)
= γjj

 j∑
l=1

1

l
−
∑

j<l≤2j

1

l


≤ Cγjj log j.

For l > 2j, since γl ≤ γ2j ,

T3 =
∑
l>2j

γ2
l

|γl − γj |
≤
∑

l>2j γ
2
l

γj − γ2j
≤ γ2j

∑
l>2j γl

γj − γ2j
≤ γj

∑
l>2j γl

γj − γ2j

Again by the first part of Lemma 11,

1

γj − γ2j
≤ 2j

2j − j
1

γj
=

2

γj



238

and by the second part of Lemma 11,
∑

l>2j γj ≤ (2j + 1)γ2j . This implies that

T3 ≤ γj2(2j + 1)
γ2j

γj
.

Finally, again by the first part of Lemma 11, we have γj ≥ 2γ2j , which implies that

T3 ≤ γj(2j + 1) ≤ Cγjj ≤ Cγjj log j.

The term A∗n in (3.72) converges to zero as follows.

Proposition 27. Suppose that Conditions (A1)-(A6) and (A8) hold. As n→∞, if

h−1
n + g−1

n + n−1/2h2
n(log hn)3/2g2

n(log gn) + n−1/2h7/2
n (log hn)3 → 0,

then, for each η > 0, we have P∗(|A∗n| > η|X0)
P−→ 0.

Proof. Based on the decomposition of Ûn,gn ≡ n−1
∑n

i=1Xiε̂i,gn in (3.71), A∗n can be further

decomposed as A∗n =
∑6

l=1A
∗
ln, where

A∗1n ≡ A∗1n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}(I −Πgn)Un, X0〉, (3.78)

A∗2n ≡ A∗2n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}(I −Πgn)(Γ̂n − Γ)β,X0〉, (3.79)

A∗3n ≡ A∗3n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}(I −Πgn)Γβ〉, (3.80)

A∗4n ≡ A∗4n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}(Π̂gn −Πgn)Un, X0〉, (3.81)

A∗5n ≡ A∗5n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}(Γ̂n − Γ)(Π̂gn −Πgn)β,X0〉, (3.82)

A∗6n ≡ A∗6n(X0) =

√
n

shn(X0)
〈{(Γ̂∗hn)−1 − Γ−1

hn
}Γ(Π̂gn −Πgn)β,X0〉. (3.83)

Following the spirit of Lemma 17 and Remark 15, we ignore the remainder terms related to either

Ecj , Achn , (E∗j )c, or (A∗hn)c.

The term A∗1n in (3.78) converges to zero as follows. One can show that

E[‖(I −Πhn)Un‖2] ≤ C

n−1
∑
j>gn

〈Λφj , φj〉+ n−2
∑
j>gn

γj


= o(n−1)
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by a similar argument to the one in the proof of Lemma 22. This implies that

E∗
[√

n

shn(X0)
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}(I −Πgn)Un, X0〉|

]
≤
√

n

shn(X0)
‖(I −Πgn)Un‖E∗[‖{(Γ̂∗hn)−1 − Γ−1

hn
}X0‖]

=oP

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2


from Lemma 31.

The second term A∗2n in (3.79) is bounded above as

E∗
[√

n

shn(X0)
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}(Γ̂n − Γ)(Πhn − I)β,X0〉|

]
≤
√

n

shn(X0)
‖I −Πgn‖∞‖Γ̂n − Γ‖∞‖β‖E∗[‖{(Γ̂∗hn)−1 − Γ−1

hn
}X0‖]

=OP(n1/2h−1/2
n )OP(n−1/2)OP

n−1/2
hn∑
j=1

δ
−1/2
j (j log j)3/2


=OP

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2

 .

Showing the convergence of the term A∗3n in (3.80) needs more efforts. We will use a similar

techniques to prove Proposition 23. By applying the second resolvent identity (Lemma 14) twice,

we have

(zI − Γ̂∗n)−1 − (zI − Γ)−1

={(zI − Γ)−1 + (zI − Γ̂∗n)−1(Γ̂∗n − Γ)(zI − Γ)−1}(Γ̂∗n − Γ)(zI − Γ)−1

=(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1 + (zI − Γ̂∗n)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1

=(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1 + (zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ̂∗n)−1

since all quantities are symmetric. This implies that

(Γ̂∗hn)−1 − Γ−1
hn

=
1

2πι

∫
Chn

z−1
{

(zI − Γ̂∗n)−1 − (zI − Γ)−1
}
dz + r1nI(A∗hn )c

= S∗n +R∗n + r∗2nI(A∗hn )c
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where

Š∗n =
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1dz,

Ř∗n =
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ)−1(Γ̂∗n − Γ)(zI − Γ̂∗n)−1dz,

and r∗2n = (Γ̂∗hn)−1 − 1
2πι

∫
Chn

z−1(zI − Γ̂∗n)−1dz (cf. Lemma 29).

For the first term Š∗n, we use a similar argument to that in Lemma 35. Then, one can derive

that

E[E∗[〈Š∗n(I −Πgn)Γβ,X0〉2]] =
∞∑
l=1

γlE[E∗[〈Š∗n(I −Πgn)Γβ, φl〉2]]

and 〈Š∗n(I −Πgn)Γβ, φl〉 =
∑

l′>gn
γl′βl′〈Š∗nφl, φ′l〉 with

〈Š∗nφl, φ′l〉 =



〈(Γ̂∗n−Γ)φl,φl′ 〉
γl(γl−γl′ )

if l ≤ hn ≤ gn < l′

〈(Γ̂∗n−Γ)φl,φl′ 〉
γl′ (γl′−γl)

if gn < l′ ≤ hn < l

0 otherwise.

This implies that

E[E∗[〈Š∗n(I −Πgn)Γβ,X0〉2]]

≤


Cn−1

∑hn
l=1 γl

(∑
l′>gn

|βl′ |γl′
γ
1/2
l γ

1/2

l′
γl(γl−γl′ )

)2

if hn ≤ gn

Cn−1
∑

l>hn
γl

(∑gn
l′=1 |βl′ |γl′

γ
1/2
l γ

1/2

l′
γl′ (γl′−γl)

)2

if hn > gn

≤


Cn−1

∑hn
l=1 γl

(∑
l′>gn

|βl′ |
γ
1/2
l γ

1/2

l′
γl−γl′

)2

if hn ≤ gn

Cn−1
∑

l>hn
γl

(∑gn
l′=1 |βl′ |

γ
1/2
l γ

1/2

l′
γl′−γl

)2

if hn > gn

since γl′ ≤ γl if l ≤ hn ≤ gn < l′. Hence, we conclude that

E∗
[

n

shn(X0)
〈Š∗n(I −Πgn)Γβ,X0〉2

]
= oP(1).

For the second term Ř∗n, as in the proof of Lemma 36, we first see that

Ř∗n =
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1/2G∗n(z)2K∗n(z)(zI − Γ)−1/2dz
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and |〈Ř∗n(I −Πgn)Γβ,X0〉| ≤ C
∑hn

j=1Aj where

Aj =

∫
Bj
|z|−1‖K∗n(z)‖∞‖G∗n(z)‖2∞‖(zI − Γ)−1/2(I −Πgn)Γβ‖‖(zI − Γ)−1/2X0‖dz.

By Lemmas 11 and 45, for z ∈ Bj , we have

‖(zI − Γ)−1/2(I −Πgn)Γβ‖2

=
∑
l>gn

γ2
l β

2
l

|z − γl|
≤
∞∑
l=1

γ2
l β

2
l

|z − γl|

≤C

∑
l 6=j

γ2
l

|z − γl|
+

γ2
j

|z − γj |

 ≤ C
∑
l 6=j

γ2
l

|γj − γl|
+
γ2
j

δj


≤C(γjj log j + γj(j + 1)) ≤ Cγjj log j.

This implies that

E[E∗[A∗j IE∗j ]] ≤ Cδjn−1(j log j)2(γjj log j)1/2(j log j)1/2

≤ Cn−1(j log j)3/2.

Thus, if n−1/2h
−1/2
n

∑hn
j=1(j log j)3/2 ≤ Cn−1/2h2

n(log hn)3/2 → 0, for each η > 0, we have

P∗
(√

n

shn(X0)
|〈Ř∗n(I −Πgn)Γβ,X0〉| > η

)
P−→ 0.

The fourth term A∗4n is bounded as follows. One can show that

‖(Π̂gn −Πgn)Un‖ = OP

(
n−1

∑gn
j=1 j log j

)
by a similar argument in the proof of Lemma 20. This

implies that

E∗
[√

n

shn(X0)
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}(Π̂gn −Πgn)Un, X0〉|

]
≤
√

n

shn(X0)
‖(Π̂gn −Πgn)Un‖E∗[‖{(Γ̂∗hn)−1 − Γ−1

hn
}X0‖]

=OP

n−1/2
gn∑
j=1

j log j

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2


 .
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From Lemmas 20 and 31, the fifth term A∗5n is bounded as

E∗
[√

n

shn(X0)
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}(Γ̂n − Γ)(Π̂gn −Πgn)β,X0〉|

]
≤
√

n

shn(X0)
‖Γ̂n − Γ‖∞‖Π̂gn −Πgn‖∞E∗[‖{(Γ̂∗hn)−1 − Γ−1

hn
}X0‖]

=OP(n1/2h−1/2
n )OP(n−1/2)OP

n−1/2
gn∑
j=1

j log j

OP

n−1/2
hn∑
j=1

δ
−1/2
j (j log j)3/2


=OP

n−1/2
gn∑
j=1

j log j

n−1/2h−1/2
n

hn∑
j=1

δ
−1/2
j (j log j)3/2


 .

The last term A∗6n is bounded as follows. By Lemmas 11 and 45, it follows that

‖Γ(zI − Γ)−1/2‖2HS =
∞∑
l=1

γ2
l

|z − γl|2

≤C

∑
l 6=j

γ2
l

|z − γl|
+

γ2
j

|z − γj |

 ≤ C
∑
l 6=j

γ2
l

|γj − γl|
+
γ2
j

δj


≤C(γjj log j + γj(j + 1)) ≤ Cγjj log j.

By using the same argument as the one in Lemma 31, we then derive

E∗[‖Γ{(Γ̂∗hn)−1 − Γ−1
hn
}X0‖] = OP

n−1/2
hn∑
j=1

(j log j)3/2

 .

Finally, by Lemma 20, we have

E∗
[√

n

shn(X0)
|〈{(Γ̂∗hn)−1 − Γ−1

hn
}Γ(Π̂gn −Πgn)β,X0〉|

]
≤
√

n

shn(X0)
‖Π̂gn −Πgn‖∞E∗[‖Γ{(Γ̂∗hn)−1 − Γ−1

hn
}X0‖]

=OP

n−1/2h−1/2
n

 gn∑
j=1

j log j

 hn∑
j=1

(j log j)3/2

 ,

where the last upper bound is bounded by n−1/2h2
n(log hn)3/2g2

n(log gn).

3.10.6.2 Convergence of Cn

The term Cn in (3.74) converges to zero as follows.
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Proposition 28. Suppose that Conditions (A1)-(A6) hold. As n→∞, if

h−1
n + g−1

n + n−1/2h−1/2
n g5

n(log gn)6 → 0,

then, for each η > 0, we have P(|Cn| > η|X0)
P−→ 0.

Proof. The term Cn in (3.74) can be further expanded as Cn = C1n + C2n + C3n, where

C1n ≡ C1n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(Πgn − Π̂gn)Un, X0〉, (3.84)

C2n ≡ C2n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(Πgn − Π̂gn)(Γ̂n − Γ)β,X0〉, (3.85)

C3n ≡ C3n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(Πgn − Π̂gn)Γβ,X0〉. (3.86)

Following the spirit of Lemma 17 and Remark 15, we ignore the remainder terms related to either

Ecj , Achn , (E∗j )c, or (A∗hn)c.

The term C1n in (3.84) converges to zero as follows. One can show that

‖(Πgn − Π̂gn)Un‖ = OP

(
n−1

∑gn
j=1 j log j

)
by a similar argument in the proof of Lemma 20. This

implies that

E

[√
n

shn(X0)
|〈Γ−1

hn
(Πgn − Π̂gn)Un, X0〉|

∣∣∣X0

]
≤
√

n

shn(X0)
E[‖(Πgn − Π̂gn)Un‖]‖Γ−1

hn
X0‖

=OP


n−1/2

gn∑
j=1

j log j

h−1
n

hn∑
j=1

γ−1
j

1/2
 .

By Cauchy-Schwarz inequality, we have
∑hn

j=1 γ
−1
j ≤ h

1/2
n

(∑hn
j=1 γ

−2
j

)1/2
, which implies that

n−1/4h
−1/4
n

(∑hn
j=1 γ

−1
j

)1/2
≤
(
n−1

∑hn
j=1 γ

−2
j

)1/4
. Thus, by Condition (A5), we have

E

[√
n

shn(X0)
|〈Γ−1

hn
(Πgn − Π̂gn)Un, X0〉|

∣∣∣X0

]

=oP

n−1/4h−1/4
n

gn∑
j=1

j log j

 ,

where the upper bound is dominated by n−1/2h
−1/2
n g4

n(log gn)2.
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The term C2n in (3.85) converges to zero as follows. By using the same argument as the one in

Lemma 20, we can show that E[‖(Πgn − Π̂gn)(Γ̂n − Γ)β‖|X0] = OP

(
n−1

∑gn
j=1 j log j

)
. We then

have

E

[√
n

shn(X0)
|〈Γ−1

hn
(Πgn − Π̂gn)(Γ̂n − Γ)β,X0〉|

∣∣∣X0

]
≤
√

n

shn(X0)
E[‖(Πgn − Π̂gn)(Γ̂n − Γ)β‖]‖Γ−1

hn
X0‖

=OP(n1/2h−1/2
n )OP

n−1
gn∑
j=1

j log j

OP


 hn∑
j=1

γ−1
j

1/2


=OP

n−1/2
gn∑
j=1

j log j

h−1
n

hn∑
j=1

γ−1
j

1/2
 .

The last upper bound is the same upper bound for C1n above, which is again dominated by

n−1/2h
−1/2
n g4

n(log gn)2.

For the convergence of C3n from (3.86), we will use a similar technique to prove

Proposition 17. By applying the second resolvent identity (Lemma 14) twice, we have

(zI − Γ̂n)−1 − (zI − Γ)−1

={(zI − Γ)−1 + (zI − Γ̂n)−1(Γ̂n − Γ)(zI − Γ)−1}(Γ̂n − Γ)(zI − Γ)−1

=(zI − Γ)−1(Γ̂n − Γ)(zI − Γ)−1 + (zI − Γ̂n)−1(Γ̂n − Γ)(zI − Γ)−1(Γ̂n − Γ)(zI − Γ)−1

=(zI − Γ)−1(Γ̂n − Γ)(zI − Γ)−1 + (zI − Γ)−1(Γ̂n − Γ)(zI − Γ)−1(Γ̂n − Γ)(zI − Γ̂n)−1

since all quantities are symmetric. This implies that

Π̂gn −Πgn =
1

2πι

∫
Cgn

{
(zI − Γ̂n)−1 − (zI − Γ)−1

}
dz + r1nIAc

hn

= Sn +Rn + r1nIAc
gn

where

Sn =
1

2πι

gn∑
j=1

∫
Bj

(zI − Γ)−1(Γ̂n − Γ)(zI − Γ)−1dz,

Rn =
1

2πι

gn∑
j=1

∫
Bj

(zI − Γ)−1(Γ̂n − Γ)(zI − Γ)−1(Γ̂n − Γ)(zI − Γ̂n)−1dz,
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and r1n = Π̂gn − 1
2πι

∫
Cgn

(zI − Γ̂n)−1dz (cf. Lemma 17). Proposition 17 For the first term Sn, we

use a similar argument to that in the proof of Proposition 2 in [12]. One can derive that

E[〈SnΓβ,Γ−1
hn
X0〉2] = E

( hn∑
l=1

γ−1
l 〈X0, φl〉〈SnΓβ, φl〉

)2
 =

hn∑
l=1

γ−1
l E[〈SnΓβ, φl〉2]

and

E[〈SnΓβ, φl〉2] = E

( ∞∑
l′=1

βl′〈SnΓφl′ , φl〉

)2
 = E

( ∞∑
l′=1

βl′γl′〈Snφl′ , φl〉

)2


= E

 ∞∑
l′>hn

βl′γl′
〈(Γ̂n − Γ)φl′ , φl

γl − γl′

2
≤ C

∑
l′>hn

|βl′ |γl′
γ

1/2
l γ

1/2
l′

γl − γl′

2

This implies that

E[〈SnΓβ,Γ−1
hn
X0〉2] ≤ C

hn∑
l=1

γ−1
l

∑
l′>hn

|βl′ |γl′
γ

1/2
l γ

1/2
l′

γl − γl′

2

≤ C
hn∑
l=1

γl

∑
l′>hn

|βl′ |
γ

1/2
l γ

1/2
l′

γl − γl′

2

since γl′ ≤ γl if l ≤ hn < l′. Hence, we conclude that

E

[
n

shn(X0)
〈SnΓβ,Γ−1

hn
X0〉2

∣∣∣X0

]
= oP(1).

For the second term, as in the proof of Proposition 2 in [12], we first see that

Rn =
1

2πι

gn∑
j=1

∫
Bj

(zI − Γ)−1/2Gn(z)2Kn(z)(zI − Γ)−1/2dz

and |〈RnΓβ,Γ−1
gn X0〉| ≤ C

∑hn
j=1Aj where

Aj =

∫
Bj
‖Gn(z)‖2∞‖Kn(z)‖∞‖(zI − Γ)−1/2Γβ‖‖(zI − Γ)−1/2‖‖Γ−1

hn
X0‖dz.

By Lemmas 11 and 45, for z ∈ Bj , we have

‖(zI − Γ)−1/2Γβ‖2 =

∞∑
l=1

γ2
l β

2
l

|z − γl|
≤ C

∑
l 6=j

γ2
l

|z − γl|
+

γ2
j

|z − γj |

 ≤ C
∑
l 6=j

γ2
l

|γj − γl|
+
γ2
j

δj


≤ C(γjj log j + γj(j + 1)) ≤ Cγjj log j.
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This implies that

E[AjIEj ] ≤ Cδjn−1(j log j)2(γjj log j)1/2δ
−1/2
j

 hn∑
j=1

γ−1
j

1/2

≤ Cn−1(j log j)3/2

 hn∑
j=1

γ−1
j

1/2

,

and

E

√ n

shn(X0)

gn∑
j=1

AjIEj
∣∣∣X0

 ≤ OP

n−1/2h−1/2
n

gn∑
j=1

(j log j)3/2

 hn∑
j=1

γ−1
j

1/2
 .

By Cauchy-Schwarz inequality, we have
∑hn

j=1 γ
−1
j ≤ h

1/2
n

(∑hn
j=1 γ

−2
j

)1/2
, which implies that

n−1/4h
−1/4
n

(∑hn
j=1 γ

−1
j

)1/2
≤
(
n−1

∑hn
j=1 γ

−2
j

)1/4
. Hence, under Condition (A5), we have

E

√ n

shn(X0)

gn∑
j=1

AjIEj
∣∣∣X0

 = oP

n−1/4h−1/4
n

gn∑
j=1

(j log j)3/2

 ,

where the upper bound is dominated by n−1/2h
−1/2
n g5

n(log gn)6.

3.10.6.3 Weak convergence of Bn

To show the weak convergence of the term Bn in (3.74), the following lemmas about scaling

terms are needed.

Lemma 46. Suppose that the conditional variance is given as σ2(X) ≡
∑∞

j=1 γjρ
2
jξ

2
j for some

{ρj}∞j=1 such that
∑∞

j=1 γjρ
2
j <∞.

(1) Suppose that the FPC scores {ξj}∞j=1 are independent. Then, we have

h−1
n shn(X0)

P−→
∑∞

j=1 γjρ
2
j as n→∞.

(2) Suppose that ξj = ξWj with E[ξ4] <∞, where {Wj}∞j=1 is a sequence of independent random

variables with supj∈N E[W 4
j ] <∞ (e.g., Wj

iid∼ N(0, 1)) and is independent of ξ. Then, we

have h−1
n shn(X0)

P−→ E[ξ4]
(∑∞

j=1 γjρ
2
j

)
ξ2 as n→∞.
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Proof. Note that the scaling can be expanded as

shn(X0) ≡ 〈ΛΓ−1
hn
X0,Γ

−1
hn
X0〉 =

〈
hn∑
j=1

γ−1
j 〈X0, φj〉Λφj ,

hn∑
j=1

γ−1
j 〈X0, φj〉φj

〉

=
∑

1≤j,j′≤hn

γ−1
j γ−1

j′ 〈X0, φj〉〈X0, φj′〉〈Λφj , φ′j〉.

Recall that Λ ≡ cov[X, ε] = E[(Xε)⊗2] = E[X⊗2σ2(X)], and from the Karhunen–Loève expansion

X =
∑∞

j=1 γ
1/2
j ξjφj , we have X⊗2 =

∑
j,j′∈N γ

1/2
j γ

1/2
j′ ξjξj′(φj ⊗ φj′). This implies that

〈X⊗2φj , φj′〉 = γ
1/2
j γ

1/2
j′ ξjξj′ and

〈Λφj , φj′〉 = E[σ2(X)〈X⊗2φj , φj′〉] = γ
1/2
j γ

1/2
j′ E[ξjξj′σ

2(X)].

The scaling is then written as shn(X0) =
∑

1≤j,j′≤hn ξjξj′E[ξjξj′σ
2(X)]. In both cases, we have

E[ξjξj′ξ
2
l ] =



E[ξ4
j ] if j = j′ = l

E[ξ2
j ξ

2
l ] if j = j 6= l

0 otherwise,

and hence,

shn(X0) =
∑

1≤j,j′≤hn

ξjξj′E[ξjξj′σ
2(X)] =

∑
1≤j,j′≤hn

ξjξj′
∞∑
l=1

γlρ
2
l E[ξjξj′ξ

2
l ]

=

hn∑
j=1

∞∑
l=1

γlρ
2
l E[ξ2

j ξ
2
l ]ξ2

j .

The first part is proved as follows. Since E[ξ2
j ξ

2
l ] = 1, we have

shn(X0) =

hn∑
j=1

γjρ
2
jE[ξ4

j ]ξ2
j +

hn∑
j=1

∑
l∈N,l 6=j

γlρ
2
l ξ

2
j

=

hn∑
j=1

γjρ
2
j (E[ξ4

j ]− 1)ξ2
j +

hn∑
j=1

∞∑
l=1

γlρ
2
l ξ

2
j .

Note that E
[∣∣∣∑hn

j=1 γjρ
2
j (E[ξ4

j ]− 1)ξ2
j

∣∣∣] ≤ (supj∈N E[ξ4
j ] + 1

)∑∞
j=1 γjρ

2
j <∞ and

E

h−1
n

hn∑
j=1

ξ2
j − 1

2 ≤ h−2
n

hn∑
j=1

E[(ξ2
j − 1)2] ≤ h−1

n sup
j∈N

E[ξ4
j ] ≤ C/hn → 0,
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i.e., h−1
n

∑hn
j=1 ξ

2
j

P−→ 1. This implies that∣∣∣∣∣∣h−1
n shn(X0)−

∞∑
j=1

γjρ
2
j

∣∣∣∣∣∣ ≤ h−1
n

∣∣∣∣∣∣
hn∑
j=1

γjρ
2
j (E[ξ4

j ]− 1)ξ2
j

∣∣∣∣∣∣+

( ∞∑
l=1

γlρ
2
l

)∣∣∣∣∣∣h−1
n

hn∑
j=1

ξ2
j − 1

∣∣∣∣∣∣
= OP(h−1

n ) + oP(1) = oP(1),

i.e., h−1
n shn(X0)

P−→
∑∞

j=1 γjρ
2
j as n→∞.

The second part is similarly proved as follows. Since E[ξ4
j ] = E[ξ4]E[W 4

j ] and

E[ξ2
j ξ

2
l ] = E[ξ4]E[W 2

j ]E[W 2
l ] = E[ξ4] under (2), we have

shn(X0) = ξ2E[ξ4]

 hn∑
j=1

γjρ
2
jE[W 4

j ]W 2
j +

hn∑
j=1

∑
l∈N,l 6=j

γlρ
2
lW

2
j


= ξ2E[ξ4]

 hn∑
j=1

γjρ
2
j (E[W 4

j ]− 1)W 2
j +

hn∑
j=1

∞∑
l=1

γlρ
2
lW

2
j

 .

Note that E
[∣∣∣∑hn

j=1 γjρ
2
j (E[W 4

j ]− 1)ξ2
j

∣∣∣] ≤ (supj∈N E[W 4
j ] + 1

)∑∞
j=1 γjρ

2
j <∞ and

E

h−1
n

hn∑
j=1

W 2
j − 1

2 ≤ h−2
n

hn∑
j=1

E[(W 2
j − 1)2] ≤ h−1

n sup
j∈N

E[W 4
j ] ≤ C/hn → 0,

i.e., h−1
n

∑hn
j=1W

2
j

P−→ 1. This implies that∣∣∣∣∣∣h−1
n shn(X0)− ξ2E[ξ4]

∞∑
j=1

γjρ
2
j

∣∣∣∣∣∣
≤ξ2E[ξ4]

h−1
n

∣∣∣∣∣∣
hn∑
j=1

γjρ
2
j (E[W 4

j ]− 1)ξ2
j

∣∣∣∣∣∣+

( ∞∑
l=1

γlρ
2
l

)∣∣∣∣∣∣h−1
n

hn∑
j=1

W 2
j − 1

∣∣∣∣∣∣


=OP(1){OP(h−1
n ) + oP(1)} = oP(1),

i.e., h−1
n shn(X0)

P−→ ξ2E[ξ4]
∑∞

j=1 γjρ
2
j as n→∞.

Lemma 47. Define rhn(x) ≡ 〈ΘΓ−1
hn
x,Γ−1

hn
x〉 for x ∈ H, where Θ ≡ E[{(X⊗2 − Γ)β}⊗2]. We

suppose that the FPCs scores are dependent as ξj = ξWj with Wj
iid∼ N(0, 1) where ξ is a random

variable independent of {Wj}∞j=1 and with finite fourth moment E[ξ4] <∞. Then, we have

h−1
n rhn(X0)

P−→ E[ξ4]‖Γ1/2β‖2ξ2 as n→∞.
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Proof. A direct computation gives Θ = E[{(X⊗2 − Γ)β}⊗2] = E[(X⊗2β)⊗2]− (Γβ)⊗2. Note that

X⊗2β =
∑
j,l∈N

γ
1/2
j γ

1/2
l ξjξlβjφl

and

(X⊗2β)⊗2 =
∑

j,l,j′,l′∈N
γ

1/2
j γ

1/2
l γ

1/2
j′ γ

1/2
l′ ξjξlξj′ξl′βjβj′(φl ⊗ φl′).

By construction of {ξj}, we have

E[ξjξlξj′ξl′ ] = E[ξ4]E[WjWlWj′Wl′ ].

Since {Wj}∞j=1 is a sequence of independent standard normal random variables, we apply the

Isserlis formula to compute the mixed moments:

E[WjWlWj′Wl′ ] =



3 if j = j′ = l = l′

1 if j = j′, l = l′ or j = l, j′ = l′ or j = l′, j′ = l

0 otherwise.

Therefore, we have

E[(X⊗2β)⊗2]/E[ξ4] = 3
∞∑
j=1

γ2
j β

2
jφ
⊗2
j +

∑
j,l∈N

γjγlβ
2
jφ
⊗2
l + 2

∑
j,l∈N

γjγlβjβl(φj ⊗ φl)

= 3

∞∑
j=1

γ2
j β

2
jφ
⊗2
j + ‖Γ1/2β‖2Γ + 2(Γβ)⊗2,

which implies that Θ = E[ξ4]
{

3
∑∞

j=1 γ
2
j β

2
jφ
⊗2
j + ‖Γ1/2β‖2Γ + 2(Γβ)⊗2

}
− (Γβ)⊗2. Note that

〈 ∞∑
j=1

γ2
j β

2
jφ
⊗2
j

Γ−1
hn
X0,Γ

−1
hn
X0

〉
=

hn∑
j=1

β2
j 〈X0, φj〉2,

〈ΓΓ−1
hn
X0,Γ

−1
hn
X0〉 =

hn∑
j=1

γ−1
j 〈X0, φj〉2 = thn(X0),

〈(Γβ)⊗2Γ−1
hn
X0,Γ

−1
hn
X0〉 = 〈Γβ,Γ−1

hn
X0〉2 =

hn∑
j=1

β2
j 〈X0, φj〉2.
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This implies that

rhn(X0) = (5E[ξ4]− 1)

hn∑
j=1

β2
j 〈X0, φj〉2 + E[ξ4]‖Γ1/2β‖2thn(X0).

Since
∑∞

j=1 γjβ
2
j = ‖Γ1/2β‖2 <∞, as n→∞, we have

E
[
h−1
n

∑hn
j=1 β

2
j 〈X0, φj〉2

]
= h−1

n

∑hn
j=1 γjβ

2
j ≤ h−1

n ‖Γ1/2β‖2 → 0, which implies that

h−1
n

∑hn
j=1 β

2
j 〈X0, φj〉2

P−→ 0. By the Law of Large Numbers and Slutsky’s theorem, we have

h−1
n thn(X0) = ξ2h−1

n

∑hn
j=1W

2
j

P−→ ξ2. Thus,

hnrhn(X0) =(5E[ξ4]− 1)h−1
n

hn∑
j=1

β2
j 〈X0, φj〉2 + E[ξ4]‖Γ1/2β‖2h−1

n thn(X0)

P−→ E[ξ4]‖Γ1/2β‖2ξ2.

Lemma 48. Suppose that the FPC scores ξj are dependent as ξj = ξWj with Wj
iid∼ N(0, 1) where

ξ is a random variable independent of {Wj}∞j=1 with finite eighth moment E[ξ8] <∞. Write

Θ ≡ E[{(X⊗2 − Γ)β}⊗2] and (θj , ζj) for the j-th eigenpair of Θ. Then, we have

supj∈N θ
−2
j E[〈(X⊗2 − Γ)β, ζj〉4] <∞

Proof. Recall from Lemma 47 that

Θ = E[{(X⊗2 − Γ)β}⊗2] =
∞∑
j=1

θjζ
⊗2
j

= 3E[ξ4]

∞∑
j=1

γ2
j β

2
jφ
⊗2
j + E[ξ3]‖Γ1/2β‖2Γ + (2E[ξ4]− 1)(Γβ)⊗2

with E[ξ4] ∈ [1,∞) so that

θj = 〈Θζj , ζj〉 = 3E[ξ4]

∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2 + E[ξ4]‖Γ1/2β‖2‖Γ1/2ζj‖2 + (2E[ξ4]− 1)〈Γβ, ζj〉2, (3.87)
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where ‖Γ1/2β‖2 =
∑∞

l=1 γlβ
2
l , ‖Γ1/2ζj‖2 =

∑∞
j=1 γl〈φl, ζj〉2, and 〈Γβ, ζj〉 =

∑∞
l=1 γlβl〈φl, ζj〉. Note

that

Qj ≡ θ−1/2
j 〈(X⊗2 − Γ)β, ζj〉 = θ

−1/2
j [〈X,β〉〈X, ζj〉 − 〈Γβ, ζj〉]

= θ
−1/2
j

{( ∞∑
l=1

γ
1/2
l βlξl

)( ∞∑
l=1

γ
1/2
l ξl〈φl, ζj〉

)
−
∞∑
l=1

γlβl〈φl, ζj〉

}

= θ
−1/2
j

∞∑
l=1

γlβl〈φl, ζj〉(ξ2
l − 1) + θ

−1/2
j

∑
l 6=l′

γ
1/2
l γ

1/2
l′ βl′〈φl, ζj〉ξlξl′

= θ
−1/2
j ξ2

∞∑
l=1

γlβl〈φl, ζj〉(W 2
l − 1) + θ

−1/2
j (ξ2 − 1)

∞∑
l=1

γlβl〈φl, ζj〉

+ θ
−1/2
j

∑
l 6=l′

γ
1/2
l γ

1/2
l′ βl′〈φl, ζj〉ξlξl′ .

Then,

Q4
j ≤Cθ−2

j

[
ξ8

{ ∞∑
l=1

γlβl〈φl, ζj〉(W 2
l − 1)

}4

(3.88)

+

{
(ξ2 − 1)

∞∑
l=1

γlβl〈φl, ζj〉

}4

+

∑
l 6=l′

γ
1/2
l γ

1/2
l′ βl′〈φl, ζj〉ξlξl′

4 ]
.

We are now showing that supj∈NQ
4
j <∞ by bounding all three terms on the right-hand side of

(3.88).

The expected value of the first term on the right-hand side in (3.88) is bounded as

E

{ ∞∑
l=1

γlβl〈φl, ζj〉(W 2
l − 1)

}4


=
∑

l1,l2,l3,l4

γl1γl2γl3γl4βl1βl2βl3βl4〈φl1 , ζj〉〈φl2 , ζj〉〈φl3 , ζj〉〈φl4 , ζj〉

× E[(W 2
l1 − 1)(W 2

l2 − 1)(W 2
l3 − 1)(W 2

l4 − 1)]

≤C

 ∞∑
l=1

γ4
l β

4
l 〈φl, ζj〉4 +

( ∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2

)2
 .
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because the term E[(W 2
l1
− 1)(W 2

l2
− 1)(W 2

l3
− 1)(W 2

l4
− 1)] vanishes if there is one index that is not

equal to one of the other indices in {l1, l2, l3, l4}. Since

∞∑
l=1

γ4
l β

4
l 〈φl, ζj〉4 ≤

( ∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2

)2

≤ θ2
j ,

we have that

sup
j∈N

θ−2
j E

{ξ2
∞∑
l=1

γlβl〈φl, ζj〉(W 2
l − 1)

}4
 <∞.

Next, the expected value of the second term on the right-hand side in (3.88) is bounded as

E

{(ξ2 − 1)
∞∑
l=1

γlβl〈φl, ζj〉

}4
 ≤ E[(ξ2 − 1)4]〈Γβ, ζj〉4 ≤ Cθ2

j .

Finally, the expected value of the third term on the right-hand side in (3.88) is written as

E

∑
l 6=l′

γ
1/2
l γ

1/2
l′ βl′〈φl, ζj〉ξlξl′

4
=

∑
l1 6=l′1,l2 6=l′2,l3 6=l′3,l4 6=l′4

γ
1/2
l1
γ

1/2
l2
γ

1/2
l3
γ

1/2
l4
γ

1/2
l′1
γ

1/2
l′2
γ

1/2
l′3
γ

1/2
l′4
βl′1βl′2βl′3βl′4

× 〈φl1 , ζj〉〈φl2 , ζj〉〈φl3 , ζj〉〈φl4 , ζj〉

× E[ξl1ξl2ξl3ξl4ξl′1ξl′2ξl′3ξl′4 ].

We have the following cases where u1, u2, u3, u4 ∈ {1, 2, 3, 4} denote distinct indices.

1. If (l1, l
′
1) = (l2, l

′
2) = (l3, l

′
3) = (l4, l

′
4), then E[ξl1ξl2ξl3ξl4ξl′1ξl′2ξl′3ξl′4 ] = E[ξ4

l1
ξ4
l′1

].

2. If (lu1 , l
′
u1) = (lu2 , l

′
u2) = (lu3 , l

′
u3) and (lu4 , l

′
u4) are distinct, then

E[ξlu1 ξlu2 ξlu3 ξlu4 ξl′u1
ξl′u2

ξl′u3
ξl′u4

] = E[ξ3
lu1
ξ3
l′u1
ξlu4 ξl′u4

] =


E[ξ4

lu1
ξ4
l′u1

] if lu1 = l′u4 , l
′
u1 = lu4

0 otherwise.

3. If (lu1 , l
′
u1) = (lu2 , l

′
u2), (lu3 , l

′
u3) = (lu4 , l

′
u4) are distinct, then

E[ξlu1 ξlu2 ξlu3 ξlu4 ξl′u1
ξl′u2

ξl′u3
ξl′u4

] = E[ξ2
lu1
ξ2
l′u1
ξ2
lu3
ξ2
l′u3

] =


E[ξ4

lu1
ξ4
l′u1

] if lu1 = l′u3 , l
′
u1 = lu3

E[ξ2
lu1
ξ2
l′u1
ξ2
lu3
ξ2
l′u3

] otherwise.
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4. If (lu1 , l
′
u1) = (lu2 , l

′
u2), (lu3 , l

′
u3), and (lu4 , l

′
u4) are distinct, then

E[ξlu1 ξlu2 ξlu3 ξlu4 ξl′u1
ξl′u2

ξl′u3
ξl′u4

] = E[ξ2
lu1
ξ2
l′u1
ξlu3 ξl′u3

ξlu4 ξl′u4
]

=



E[ξ2
lu1
ξ2
l′u1
ξ2
lu3
ξ2
l′u3

] if lu3 = l′u4 , l
′
u3 = lu4

E[ξ3
lu1
ξ3
l′u1
ξlu4 ξl′u4

] = 0 if lu1 = l′u3 , l
′
u1 = lu3

E[ξ3
lu1
ξ3
l′u1
ξlu3 ξl′u3

] = 0 if lu1 = l′u4 , l
′
u1 = lu4

0 otherwise.

5. If (lu1 , l
′
u1), (lu2 , l

′
u2), (lu3 , l

′
u3), and (lu4 , l

′
u4) are all distinct, then we have the following three

cases that the joint moment E[ξlu1 ξlu2 ξlu3 ξlu4 ξl′u1
ξl′u2

ξl′u3
ξl′u4

] can be non-zero:

i. exactly two pairs exist among (lu1 , lu2 , lu3 , lu4) and exactly two pairs exist among

(l′u1 , l
′
u2 , l

′
u3 , l

′
u4);

ii. exactly one pair exists among (lu1 , lu2 , lu3 , lu4) and exactly one pair exists among

(l′u1 , l
′
u2 , l

′
u3 , l

′
u4);

iii. no pairs exist among the luk but each luk must be paired to one and only one l′um (no

pairing of luk to some lum).

Only these cases provide non-zero contribution with

E[ξlu1 ξlu2 ξlu3 ξlu4 ξl′u1
ξl′u2

ξl′u3
ξl′u4

] = E[ξ2
l1ξ

2
l2ξ

2
l3ξ

2
l4 ] = E[ξ8] 6= 0.

Otherwise, the joint moment E[ξlu1 ξlu2 ξlu3 ξlu4 ξl′u1
ξl′u2

ξl′u3
ξl′u4

] is zero.

We are now ready to write down the expansion of the fourth power and arrange the repeated

sums by the form of the summation according to the previously derived cases, retaining only

summands with a non-zero moment. By bounding each summand by its absolute value and also
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potentially increase the number of terms to sum over, we obtain

E

∑
l 6=l′

γ
1/2
l γ

1/2
l′ βl′〈φl, ζj〉ξlξl′

4
≤C

∑
l 6=l′

γ2
l γ

2
l′β

4
l′〈φl, ζj〉4

+ C
∑
l 6=l′

γ2
l γ

2
l′ |βlβ3

l′ ||〈φl, ζj〉|3|〈φl′ , ζj〉|+ C
∑
l 6=l′

γ2
l γ

2
l′β

2
l β

2
l′〈φl, ζj〉2〈φl′ , ζj〉2

+ C
∑

l1 6=l′1,l3 6=l′3

γl1γl3γl′1γl′3β
2
l′1
β2
l′3
〈φl1 , ζj〉2〈φl3 , ζj〉2

+ C
∑

l1 6=l′1,l3 6=l′3

γl1γl3γl′1γl′3β
2
l′1
|βl3βl′3 |〈φl1 , ζj〉

2|〈φl3 , ζj〉||〈φl′3 , ζj〉|

+ C
∑

l1,l2,l3,l4 are distinct

γl1γl2γl3γl4β
2
l1β

2
l2〈φl3 , ζj〉

2〈φl4 , ζj〉2

+ C
∑

l1,l2,l3,l4 are distinct

γl1γl2γl3γl4β
2
l1 |βl2βl3 |〈φl2 , ζj〉

2|〈φl3 , ζj〉||〈φl4 , ζj〉|

+ C
∑

l1,l2,l3,l4 are distinct

γl1γl2γl3γl4 |βl1βl2βl3βl4 ||〈φl1 , ζj〉||〈φl2 , ζj〉||〈φl3 , ζj〉||〈φl4 , ζj〉|

≤C

( ∞∑
l=1

γ2
l 〈φl, ζj〉4

)( ∞∑
l=1

γ2
l β

4
l

)

+ C

( ∞∑
l=1

γ2
l |βl||〈φl, ζj〉|3

)( ∞∑
l=1

γ2
l |βl|3|〈φl, ζj〉|

)
+ C

( ∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2

)2

+ C

( ∞∑
l=1

γl〈φl, ζj〉2
)2( ∞∑

l=1

γlβ
2
l

)2

+ C

( ∞∑
l=1

γl〈φl, ζj〉2
)(∑

l=1

γlβ
2
l

)( ∞∑
l=1

γl|βl||〈φl, ζj〉|

)2

+ C

( ∞∑
1=1

γlβ
2
l

)2( ∞∑
l=1

γl〈φl, ζj〉2
)2

+ C

( ∞∑
l=1

γlβ
2
l

)( ∞∑
l=1

γl|βl|〈φl, ζj〉2
)( ∞∑

l=1

γl|βl||〈φl, ζj〉|

)( ∞∑
l=1

γl|〈φl, ζj〉|

)

+ C

( ∞∑
l=1

γl|βl||〈φl, ζj〉|

)4

Each term of the last upper bound in the above display is bounded as follows.
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(i) The first term is bounded because
∑∞

l=1 γ
2
l β

4
l <∞ (due to

∑∞
l=1 γlβ

2
l = ‖Γ1/2β‖2 <∞) and

∞∑
l=1

γ2
l 〈φl, ζj〉4 ≤

( ∞∑
l=1

γl〈φl, ζj〉2
)2

≤ Cθ2
j

since all quantities in the sum are positive.

(ii) The third term is bounded because( ∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2

)2

≤

( ∞∑
l=1

γ2
l β

4
l

)( ∞∑
l=1

γ2
l 〈φl, ζj〉4

)
≤ Cθ2

j

by the upper bound for the first term.

(iii) The second term is bounded because

∞∑
l=1

γ2
l |βl||〈φl, ζj〉|3 ≤

( ∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2

)1/2( ∞∑
l=1

γ2
l 〈φl, ζj〉4

)1/2

≤ Cθ3/2
j ,

∞∑
l=1

γ2
l |βl|3|〈φl, ζj〉| ≤

( ∞∑
l=1

γ2
l β

2
l 〈φl, ζj〉2

)1/2( ∞∑
l=1

γ2
l β

4
l

)1/2

≤ Cθ1/2
j ,

where the upper bounds are obtained from the upper bounds for the first and third terms.

(iv) The fourth and sixth terms are bounded because( ∞∑
l=1

γl〈φl, ζj〉2
)2( ∞∑

l=1

γlβ
2
l

)2

= ‖Γ1/2β‖4
( ∞∑
l=1

γl〈φl, ζj〉2
)2

≤ E[ξ4]2‖Γ1/2β‖4
( ∞∑
l=1

γl〈φl, ζj〉2
)2

≤ θ2
j ,

where the inequality is due to (3.87).

(v) The fifth term is bounded because( ∞∑
l=1

γl|βl||〈φl, ζj〉|

)2

≤

( ∞∑
l=1

γlβ
2
l

)( ∞∑
l=1

γl〈φl, ζj〉2
)

= ‖Γ1/2β‖2‖Γ1/2ζj‖2

and hence( ∞∑
l=1

γl〈φl, ζj〉2
)(∑

l=1

γlβ
2
l

)( ∞∑
l=1

γl|βl|〈φl, ζj〉

)2

= ‖Γ1/2β‖4‖Γ1/2ζj‖4

≤ E[ξ4]2‖Γ1/2β‖4‖Γ1/2ζj‖4 ≤ θ2
j .
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(vi) To bound the seventh term, note that( ∞∑
l=1

γl|βl|〈φl, ζj〉2
)2

≤

( ∞∑
l=1

β2
l

)( ∞∑
l=1

γ2
l 〈φl, ζj〉4

)
≤ Cθ2

j

due to the upper bound for the first term. We also have( ∞∑
l=1

γl|βl||〈φl, ζj〉|

)2

≤

( ∞∑
l=1

γlβ
2
l

)( ∞∑
l=1

γl〈φl, ζj〉2
)

= ‖Γ1/2β‖2‖Γ1/2ζj‖2

≤ E[ξ4]‖Γ1/2β‖2‖Γ1/2ζj‖2 ≤ θj .

It follows that( ∞∑
l=1

γl|〈φl, ζj〉|

)2

≤

( ∞∑
l=1

γl

)( ∞∑
l=1

γl〈φl, ζj〉2
)

= tr(Γ)‖Γ1/2ζj‖2 ≤ Cθj .

Then, the seventh term is bounded as( ∞∑
l=1

γlβ
2
l

)( ∞∑
l=1

γl|βl|〈φl, ζj〉2
)( ∞∑

l=1

γl|βl||〈φl, ζj〉|

)( ∞∑
l=1

γl|〈φl, ζj〉|

)
≤ Cθ2

j .

(vii) The last term is bounded as above because( ∞∑
l=1

γl|βl||〈φl, ζj〉|

)4

≤

( ∞∑
l=1

γlβ
2
l

)2( ∞∑
l=1

γl〈φl, ζj〉2
)2

= ‖Γ1/2β‖4‖Γ1/2ζj‖4

≤ E[ξ4]2‖Γ1/2β‖4‖Γ1/2ζj‖4 ≤ θ2
j .

We thus conclude that supj∈NQ
4
j <∞.

Proposition 29. We have that

E[(B1n +B2n)2|X0] ≤ OP

(
1− gn

hn

)
+
shn((I −Πgn)X0)

shn(X0)
+OP(n−1).

Thus, as n→∞, if hn/gn → τ = 1 and
shn ((I−Πgn )X0)

shn (X0)

P−→ 0 (which is the case under the

assumptions in Lemma 46 along with hn/gn → τ = 1), then E[(B1n +B2n)2|X0]
P−→ 0.

Proof. Note that

〈Γ−1
hn

(I −Πgn)(Γ̂n − Γ)β,X0〉 =

hn∑
j>gn

∞∑
l=1

γ−1
j βl〈X0, φj〉〈(Γ̂n − Γ)φl, φj〉

=

hn∑
j>gn

∞∑
l=1

γ
−1/2
j γ

1/2
l βl〈X0, φj〉

〈(Γ̂n − Γ)φl, φj〉
γ

1/2
l γ

1/2
j
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Since {〈X0, φj〉}∞j=1 are uncorrelated, denoting Hlj ≡
〈(Γ̂n−Γ)φl,φj〉
γ
1/2
l γ

1/2
j

, we have

E[〈Γ−1
hn

(I −Πgn)(Γ̂n − Γ)β,X0〉2] =

hn∑
j>gn

γ−1
j E[〈X0, φj〉2]E

( ∞∑
l=1

γ
1/2
l βlHlj

)2


=

hn∑
j>gn

E

( ∞∑
l=1

γ
1/2
l βlHlj

)2
 .

By Lemma 13,

E

( ∞∑
l=1

γ
1/2
l βlHlj

)2
 =

∞∑
l=1

γlβ
2
l E[H2

lj ] +
∑
l 6=l′

γ
1/2
l γ

1/2
l′ βlβl′E[HljHl′j ]

≤
∞∑
l=1

γlβ
2
l E[H2

lj ] +
∑
l 6=l′

γ
1/2
l γ

1/2
l′ |βl||βl′ |E[|Hlj ||Hl′j |]

≤
∞∑
l=1

γlβ
2
l E[H2

lj ] +
∑
l 6=l′

γ
1/2
l γ

1/2
l′ |βl||βl′ |E[H2

lj ]
1/2E[H2

l′j ]
1/2

≤ C

n

 ∞∑
l=1

γlβ
2
l +

∑
l 6=l′

γ
1/2
l γ

1/2
l′ |βl||βl′ |

 =
C

n

( ∞∑
l=1

γ
1/2
l |βl|

)1/2

.

This implies that

n

hn
E[〈Γ−1

hn
(I −Πgn)(Γ̂n − Γ)β,X0〉2] ≤ C

(
1− gn

hn

)
,

and hence,

E

[
n

shn(X0)
〈Γ−1
hn

(I −Πgn)(Γ̂n − Γ)β,X0〉2
∣∣∣X0

]
≤ OP

(
1− gn

hn

)
.

Note that

〈Γ−1
hn

(I −Πgn)Un, X0〉 = 〈Γ−1
hn
Un, (I −Πgn)X0〉.

Write Ũn ≡ n−1
∑n

i=1Xiεi so that Un = Ũn − X̄ε̄. Then, by using the same technique used in

Proposition 15, we have

E

[
n

shn(X0)
〈Γ−1
hn
X̄ε̄, (I −Πgn)X0〉2

∣∣∣X0

]
= OP(n−1)
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and

E

[
n

shn(X0)
〈Γ−1
hn
Ũn, (I −Πgn)X0〉2

∣∣∣X0

]
=
shn((I −Πgn)X0)

shn(X0)
.

We finally obtain

shn((I −Πgn)X0)

shn(X0)
= 1− sgn(X0)

shn(X0)
= 1− gn

hn

g−1
n sgn(X0)

h−1
n shn(X0)

P−→ 1− τ−1 = 0

under the assumptions in Lemma 46 along with hn/gn → τ = 1.

Proposition 30. Write Θ ≡ E[{(X⊗2 − Γ)β}⊗2] and (θj , ζj) for the j-th eigenpair of Θ. Define

rhn(x) ≡ 〈ΘΓ−1
hn
x,Γ−1

hn
x〉 for x ∈ H. Suppose the following.

1. As n→∞, hn/gn → τ ∈ (1,∞), n−1(hn − gn)2 → 0, and n−1/2(hn − gn)−1
∑hn

j>gn
γ−1
j → 0,

where the last condition is implied by Condition (A5).

2. supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞, which is implied by E[ε4] <∞ along with Condition (A2).

3. (hn − gn){rhn((I −Πgn)X0) + shn((I −Πgn)X0)}−1 = OP(1), which holds under either

assumptions in Lemma 47.

4. supj∈N θ
−2
j E[〈(X⊗2 − Γ)β, ζj〉4] <∞ and E[‖X‖8] <∞.

Then, as n→∞, we have

sup
y∈R

∣∣∣∣P(√ n

qn(X0)
〈Γ−1
hn

(I −Πgn)(Un + (Γ̂n − Γ)β), X0〉 ≤ y
∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0,

where qn(X0) ≡ rhn((I −Πgn)X0) + shn((I −Πgn)X0).

Proof. Write V0,n ≡
∑hn

j>gn
γ−1
j 〈X0, φj〉φj = (I −Πgn)Γ−1

hn
X0 = Γ−1

hn
(I −Πgn)X0,

Zi,1n ≡ 〈(X⊗2
i − Γ)β, V0,n〉, Zi,2n ≡ 〈Xiεi, V0,n〉, and Zi,n = Zi,1n + Zi,2n so that

〈Γ−1
hn

(I −Πgn)(Un + (Γ̂n − Γ)β), X0〉

=n−1
n∑
i=1

Zi,n − 〈X̄⊗2β, V0,n〉 − 〈X̄ε̄, V0,n〉2. (3.89)
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Note that

E

[√
n

qn(X0)
|〈X̄⊗2β, V0,n〉|

∣∣∣X0

]
≤[hn{rhn((I −Πgn)X0) + shn((I −Πgn)X0)}−1]1/2n1/2h−1/2

n E[‖X̄‖2]‖β‖‖V0,n‖

=OP(1)n1/2h−1/2
n O(n−1)‖β‖OP


 hn∑
j>gn

γ−1
j

1/2


=OP


n−1(hn − gn)−1

hn∑
j=1

γ−1
j

1/2
 .

By the first condition, the second term in (3.89) is ignorable.

The contribution of the third term in (3.89) is also negligible as follows. Note that

〈X̄ε̄, V0,n〉2 ≤ n−42

〈
n∑
i=1

Xiεi, V0,n

〉2

+ n−42

〈∑
i 6=i′

Xiεi′ , V0,n

〉2

.

Due to the independence of the sample {(Xi, Yi)}ni=1 and E[Xε] = 0, we have that

n−1E

〈 n∑
i=1

Xiεi, V0,n

〉2 ∣∣∣X0

 = E[〈Xiεi,Γ
−1
hn
X0〉2|X0] = E[〈(Xiεi)

⊗2V0,n, V0,n〉2|X0]

= 〈ΛV0,n, V0,n〉 = shn((I −Πgn)X0)

and

E

〈∑
i 6=i′

Xiεi′ , V0,n

〉2 ∣∣∣X0

 = (n2 − n)E[〈Xiεi′ , V0,n〉2|X0]

= (n2 − n)E[〈ε2
i′X
⊗2
i V0,n, V0,n〉2|X0]

= (n2 − n)E[ε2]〈ΓV0,n, V0,n〉

= (n2 − n)E[ε2]{thn(X0)− tgn(X0)}.
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Since E[shn((I −Πgn)X0)] ≤ C(hn − gn) due to the assumption supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞ and

E[thn(X0)] = hn, it holds that

E

[
n

qn(X0)
〈Γ−1
hn
X̄ε̄,X0〉2

∣∣∣X0

]
≤OP

(
n

hn − gn

)[
shn((I −Πgn)X0)

n3
+

(n2 − n)E[ε2]{thn(X0)− tgn(X0)}
n4

]
=OP

(
n

hn − gn

){
OP

(
hn − gn
n3

)
+OP

(
hn − gn
n2

)}
=OP(n−2)

by the assumption (2).

Before showing the weak convergence of the first term in (3.89), we claim the following:

E

∥∥∥∥∥n−1
n∑
i=1

[{(X⊗2
i − Γ)β} ⊗ (Xiεi)]

∥∥∥∥∥
2

∞

 = OP(n−1); (3.90)

E

∥∥∥∥∥n−1
n∑
i=1

[(Xiεi)⊗ {(X⊗2
i − Γ)β}]

∥∥∥∥∥
2

∞

 = OP(n−1). (3.91)

Set Li ≡ {(X⊗2
i − Γ)β} ⊗ (Xiεi). We then observe that E[Li] = 0 and

E[‖Li‖2∞] ≤ E[‖X⊗2
i − Γ‖2∞‖β‖2‖Xiεi‖2]

≤ ‖β‖2E[(‖Xi‖2 + E[‖Xi‖2])2‖Xiεi‖2]

≤ 2‖β‖2E[(‖Xi‖4 + E[‖Xi‖2]2)‖Xiεi‖2]

≤ 2‖β‖2E[(‖Xi‖4 + E[‖Xi‖4])‖Xiεi‖2]

≤ 2‖β‖2E[(‖Xi‖4 + E[‖Xi‖4])2]1/2E[‖Xiεi‖4]1/2

≤ 2
√

2‖β‖2E[(‖Xi‖8 + E[‖Xi‖4]2)]1/2E[‖Xiεi‖4]1/2

≤ 4‖β‖2E[‖Xi‖8]1/2E[‖Xiεi‖4]1/2

<∞

by the assumption E[‖X‖8] <∞ and Condition (A7). Since Li’s are iid, Equation (3.90) follows

from Theorem 2.5 of [32]. Equation (3.91) can be derived at the same way.
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To show the weak convergence of the first term in (3.89), we will derive the Lindberg

condition. Define L = v−2
n

∑n
i=1 E

X0 [Z2
i,nI(|Zi,n| > ηvn)] for η > 0, where v2

n =
∑n

i=1 E
X0 [Z2

i,n].

The Lindeberg condition is then proved by showing the following propositions: as n→∞,

n−1v2
n

qn(X0)

P−→ 1; (3.92)

EX0

[
v−1
n max

1≤i≤n
|Zi,n|4

]
P−→ 0; (3.93)

EX0

∣∣∣∣∣n−1Z2
i,n

n−1v2
n

− 1

∣∣∣∣∣
2
 P−→ 0. (3.94)

We then get the desired result by the same argument as the one in Proposition 15 and

Proposition 16.

To derive the convergence in (3.92), note that∣∣∣∣ n−1v2
n

qn(X0)
− 1

∣∣∣∣
=

∣∣〈n−1
∑n

i=1[{(X⊗2
i − Γ)β} ⊗ (Xiεi)]V0,n, V0,n

〉
+
〈
n−1

∑n
i=1[(Xiεi)⊗ {(X⊗2

i − Γ)β}]V0,n, V0,n

〉∣∣
qn(X0)

≤OP((hn − gn)−1)

(∥∥∥∥∥n−1
n∑
i=1

[{(X⊗2
i − Γ)β} ⊗ (Xiεi)]

∥∥∥∥∥
∞

+

∥∥∥∥∥n−1
n∑
i=1

[(Xiεi)⊗ {(X⊗2
i − Γ)β}]

∥∥∥∥∥
∞

)
‖V0,n‖2

=OP

n−1/2(hn − gn)−1
hn∑
j>gn

γ−1
j

 .

This approaches to zero by the the assumption (1).

To show the convergence in (3.93), note that

|Zi,n| ≤ 〈Θ−1/2
gn,hn

(X⊗2
i − Γ)β,Θgn,hnV0,n〉+ 〈Λ−1/2

gn,hn
Xiεi,Λ

1/2
gn,hn

V0,n〉
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where Θgn,hn ≡
∑hn

j>gn
θj(ζj ⊗ ζj) and Λgn,hn ≡

∑hn
j>gn

λj(ψj ⊗ ψj). Then,

v−1
n max

1≤i≤n
|Zi,n|

≤
n−1/2 max1≤i≤n ‖Θ−1/2

gn,hn
(X⊗2

i − Γ)β‖‖Θgn,hnV0,n‖+ n−1/2 max1≤i≤n ‖Λ−1/2
gn,hn

Xiεi‖‖Λ1/2
gn,hn

V0,n‖
{qn(X0)}1/2

×
(
qn(X0)

n−1v2
n

)1/2

=

[
n−1/2 max

1≤i≤n
‖Θ−1/2

gn,hn
(X⊗2

i − Γ)β‖
{
rhn((I −Πgn)X0)

qn(X0)

}1/2

+ n−1/2 max
1≤i≤n

‖Λ−1/2
gn,hn

Xiεi‖
{
shn((I −Πgn)X0)

qn(X0)

}1/2
]

×
(
qn(X0)

n−1v2
n

)1/2

=

{
n−1/2 max

1≤i≤n
‖Θ−1/2

gn,hn
(X⊗2

i − Γ)β‖+ n−1/2 max
1≤i≤n

‖Λ−1/2
gn,hn

Xiεi‖
}(

qn(X0)

n−1v2
n

)1/2

.

From Jensen’s inequality, we also see that

‖Θ−1/2
gn,hn

(X⊗2
i − Γ)β‖2 =

hn∑
j>gn

θ−1
j 〈(X

⊗2
i − Γ)β, ζj〉2 ≤

√√√√(hn − gn)

hn∑
j>gn

θ−2
j 〈(X

⊗2
i − Γ)β, ζj〉4,

which implies that

E

[
max

1≤i≤n
‖Θ−1/2

gn,hn
(X⊗2

i − Γ)β‖4
]
≤ (hn − gn)

n∑
i=1

hn∑
j>gn

θ−2
j E[〈(X⊗2

i − Γ)β, ζj〉4] ≤ Cn(hn − gn)2.

At the same way, we obtain

E

[
max

1≤i≤n
‖Λ−1/2

gn,hn
Xiεi‖4

]
≤ Cn(hn − gn)2.

We therefore have that

EX0

[(
v−1
n max

1≤i≤n
|Zi,n|

)4
]

= OP(n−1(hn − gn)2){1 + oP(1)},

which converges to zero when n−1(hn − gn)2 → 0.
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For the convergence in (3.94), by the assumption (2), we observe that∣∣∣∣∣n−1
∑n

i=1 Z
2
i,n

n−1v2
n

− 1

∣∣∣∣∣
=

∣∣∣∣∣〈{(Θ̃n −Θ) + (Λ̃n − Λ) +Q1n +Q2n}V0,n, V0,n〉
qn(X0)

∣∣∣∣∣
≤OP((hn − gn)−1)(‖Θ̃n −Θ‖∞ + ‖Λ̃n − Λ‖∞ + ‖Q1n‖∞ + ‖Q2n‖∞)‖V0,n‖2,

where Θ̃n ≡ n−1
∑n

i=1{(X
⊗2
i − Γ)β}⊗2, Λ̃n ≡ n−1

∑n
i=1(Xiεi)

⊗2, and

Q1n ≡

〈
n−1

n∑
i=1

[{(X⊗2
i − Γ)β} ⊗ (Xiεi)]V0,n, V0,n

〉
,

Q2n ≡

〈
n−1

n∑
i=1

[(Xiεi)⊗ {(X⊗2
i − Γ)β}]V0,n, V0,n

〉
.

Since both {(X⊗2
i − Γ)β} and {(Xiεi)

⊗2} are sequences of iid random elements with finite second

moments, we have E[‖Θ̃n −Θ‖2∞] = O(n−1) and ‖Λ̃n − Λ‖∞ = O(n−1). By

Equations (3.90)-(3.91), we also have ‖Q1n‖∞ = O(n−1) and ‖Q2n‖∞ = O(n−1). This implies that∣∣∣∣∣n−1
∑n

i=1 Z
2
i,n

n−1v2
n

− 1

∣∣∣∣∣ = OP

n−1/2(hn − gn)−1
hn∑
j>gn

γ−1
j

 .

Thus, this converges to zero by the assumption (1).

Proposition 31. Write Θ ≡ E[{(X⊗2 − Γ)β}⊗2] and (θj , ζj) for the j-th eigenpair of Θ. We

suppose the following:

1. as n→∞, hn/gn → τ ∈ (1,∞), n−1(hn − gn)2 → 0, and n−1/2(hn − gn)−1
∑hn

j>gn
γ−1
j → 0;

2. the FPC scores ξj are dependent as ξj = ξWj with Wj
iid∼ N(0, 1) where ξ is a random

variable independent of {Wj}∞j=1 with finite eighth moment E[ξ8] <∞;

3. the conditional variance is given as σ2(X) ≡
∑∞

j=1 γjρ
2
jξ

2
j for some {ρj}∞j=1 such that∑∞

j=1 γjρ
2
j <∞.

Then, as n→∞, we have

sup
y∈R
|P(B1n +B2n ≤ y|X0)− Φ(y/σcons(τ))| P−→ 0
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where σ2
cons(τ) ≡ (1− τ−1)

(
‖Γ1/2β‖2

/∑∞
j=1 γjρ

2
j + 1

)
.

Proof. Define rhn(x) ≡ 〈ΘΓ−1
hn
x,Γ−1

hn
x〉 for x ∈ H, where Θ ≡ E[{(X⊗2 − Γ)β}⊗2]. Note that

γ−1
j ‖Λ

1/2φj‖2 = γ−1
j 〈Λφj , φj〉 = γ−1

j 〈E[X⊗2ε2]φj , φj〉 = γ−1
j E[〈X,φj〉2ε2]

= E[ξ2
jσ

2(X)] =

∞∑
l=1

γlρ
2
l E[ξ2

j ξ
2
l ] ≤ (sup

j∈N
E[ξ4

j ])
∞∑
l=1

γlρ
2
l <∞

for each j ∈ N. Thus, the second condition in Proposition 30 is satisfied. Recall from Lemma 46

that in this construction of the FPC scores, shn((I −Πgn)X0) = shn(X0)− sgn(X0). By the result

in Lemma 46, we have

(hn − gn)−1shn((I −Πgn)X0) =
hn

hn − gn
shn(X0)

hn
− gn
hn − gn

sgn(X0)

gn

P−→
(

1

1− τ−1
− 1

τ − 1

)
E[ξ4]

 ∞∑
j=1

γjρ
2
j

 ξ2 = E[ξ4]

 ∞∑
j=1

γjρ
2
j

 ξ2.

Similarly, by using the result in Lemma 47, we have

(hn − gn)−1rhn((I −Πgn)X0)
P−→ E[ξ4]‖Γ1/2β‖2ξ2. This implies that

(hn − gn)−1{shn((I −Πgn)X0) + rhn((I −Πgn)X0)}

P−→ E[ξ4]


 ∞∑
j=1

γjρ
2
j

+ ‖Γ1/2β‖2
 ξ2

and hence this satisfies the third condition in Proposition 30. Also, the last condition in

Proposition 30 is guaranteed by Lemma 48. Finally, by Lemma 46 and Lemma 47, the ratio of the

scalings converges as

rhn((I −Πgn)X0) + shn((I −Πgn)X0)

shn(X0)

=
h−1
n rhn((I −Πgn)X0) + h−1

n shn((I −Πgn)X0)

h−1
n shn(X0)

P−→
E[ξ4]‖Γ1/2β‖2(1− τ−1)ξ2 + E[ξ4]

(∑∞
j=1 γjρ

2
j

)
(1− τ−1)ξ2

E[ξ4]
(∑∞

j=1 γjρ
2
j

)
ξ2

= (1− τ−1)

‖Γ1/2β‖2
/ ∞∑

j=1

γjρ
2
j + 1

 ,

and we have the desired result by Slutsky’s theorem.
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Lemma 49. Suppose that Condition (A6) holds. For any sequence {ζh}h∈N such that {h−1ζh}h∈N

is non-decreasing, we have the following moment inequality:

n

hn
E[〈Γ−1

hn
(I −Πgn)Γβ,X0〉2] ≤ n

ζgn

gn
hn

 hn∑
j>gn

γj

 sup
j∈N

(
j−1ζjβ

2
j

)
.

Hence, if supj∈N

(
j−1ζjβ

2
j

)
<∞ and n = O(ζgn) as n→∞, then we have that√

n

shn(X0)
〈Γ−1
hn

(I −Πgn)Γβ,X0〉
P−→ 0.

Proof. Since

n

hn
E[〈Γ−1

hn
(I −Πgn)Γβ,X0〉2] =

n

hn

hn∑
j>gn

γjβ
2
j =

n

hn

hn∑
j>gn

γj(j
−1ζj)

−1(j−1ζj)β
2
j

≤ n

ζgn

gn
hn

 hn∑
j>gn

γj

 sup
j∈N

(
j−1ζjβ

2
j

)
= O(1)o(1) = o(1)

it follows that

n

shn(X0)
〈Γ−1
hn

(I −Πgn)Γβ,X0〉2 =
hn

shn(X0)

n

hn
〈Γ−1
hn

(I −Πgn)Γβ,X0〉2

= OP(1)oP(1) = oP(1).

3.10.7 Failure of both paired bootstrap methods

This section treat the failure of both paired bootstrap methods when

τ ≡ limn→∞ hn/gn ∈ (0, 1) described in Proposition 14 in the main paper.

Proof of Proposition 14. By Lemma 46, with the same argument as the one in the proof of

Proposition 31, one can show that the sufficient conditions in Lemma 34:

(gn − hn)sgn((I −Πhn)X0)−1 = OP(1) and

(gn − hn)−1sgn((I −Πhn)X0)

h−1
n shn(X0)

P−→ 1.
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Based on the bootstrap theory developed in Sections 3.10.3-3.10.4, the (modified) bootstrap

statistics T ∗n(X0) is decomposed as T ∗n(X0) = T ∗var,n +Bdim,n, where

supy∈R |P∗(T ∗var,n ≤ y|X0)− Φ(y)| P−→ 0 and supy∈R |P(Bdim,n ≤ y|X0)− Φ(y/σdim(τ))| P−→ 0 with

σ2
dim(τ) ≡ τ−1 − 1. By using the same argument as the one in the proof of Proposition 13 in the

main paper, we derive

P∗(T ∗n(X0) ≤ y|X0)− P(Tn(X0) ≤ y|X0)
d−→ Φ(y + σdim(τ)Z)− Φ(y), y ∈ R,

as elements in D. This result also holds for the naive bootstrap construction T ∗n,naive(X0), since it

is equal to T ∗n(X0) when hn < gn. This completes the proof.

3.11 Additional simulation results

This section provides further simulation results in addition to those in Section 3.5 of the main

paper and the detailed simulation procedures. Section 3.11.1 contains additional results of

empirical coverage simulation under extra scenarios while further empirical rejection rates are

given in Section 3.11.2. Meanwhile, in Section 3.11.3, we provide further results for the failure of

both modified and naive paired bootstrap methods.

3.11.1 Empirical coverage probabilities of bootstrap intervals

In addition to set-ups for simulation in Section 3.5.1 of the main paper, we consider different

choices of distribution of the latent variable ξ among t(4), t(5), t(7), t(9), and N(0, 1). Different

decay rates a, b ∈ {1.5, 2.5, 3.5, 4.5, 5.5} for the regressor and the slope function respectively are

considered. Another error distribution is considered in addition to the centered chi-square

distribution described in Section 3.5.1 of the main paper: for a given regressor X, the dependent

error ε follows the centered uniform distribution U(−a(X), a(X)) where a(X) =
√

3〈X, ρ〉 with a

fixed function ρ ∈ L2([0, 1]). Here, ρ(t) = t3 − 1.5t− 2.5 is used. In this case, the marginal

variance is var[ε] = 〈Γρ, ρ〉 =
∑∞

j=1 γj〈ρ, φj〉2, and hence, the we generate the corresponding

independent error from the centered uniform distribution U(−a, a) with a =
√

3〈Γρ, ρ〉. Due to
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similarity and brevity, we report only partial results when a ∈ {2.5, 3.5, 4.5}, b = 5.5, and the

errors follow the centered chi-square distribution as described in Section 3.5.1 of the main paper.

We provide the details of simulation algorithm to examine the empirical coverage probabilities

and average widths for intervals, as these are not included in Section 3.5.1 of the main paper. At

each Monte Carlo iteration, we simulate the new predictor X0 as well as the data samples

{(Xi, Yi)}ni=1. Here, the Monte Carlo simulation size M and the bootstrap resample size Q are

given as M = 1000 = Q. The intervals are obtained from either residual or paired bootstrap

method. We refer to [53] and its supplement for the description of the estimates used in the

residual bootstrap method.

The simulation is conducted as follows. For each m = 1, . . . ,M , perform the following.

1. (Simulation) Simulate Xi and εi with Xi
d
= X and εi

d
= ε respectively, where the pairs

{(Xi, εi)}ni=1 are independent but ε may be dependent of X, and compute the response

Yi = 〈β,Xi〉+ εi for i = 1, . . . , n.

2. (Residual bootstrap)

(a) (Residuals) Compute the residuals ε̂i,kn = Yi − 〈β̂kn , Xi〉 for i = 1, . . . , n.

(b) (Residual bootstrap) To approximate the residual bootstrap distribution, do the

following for q = 1, . . . , Q.

i. Draw independent bootstrap errors {ε∗q,i}ni=1 from the uniform distribution on the

centered residuals {ε̂i,kn − ¯̂εkn}ni=1.

ii. Compute the bootstrap responses Y ∗q,i = 〈β̂gn , Xi〉+ ε∗q,i, and construct the

bootstrap estimate β̂∗q,hn based on the bootstrap samples {(Xi, Y
∗
q,i)}ni=1.

iii. Compute the bootstrap statistic

T̂RB∗q,n (X0) ≡
√

n

t̂hn(X0)
[〈β̂∗q,hn , X0〉 − 〈β̂gn , X0〉],

where the scaling t̂hn is defined in Equation (8) of [53] as

t̂hn(x) =
∑hn

j=1 γ̂
−1
j 〈x, φ̂j〉2 for x ∈ H.
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3. (Paired bootstrap)

(a) (Bias correction term) Compute the bias correction term

Ûn,gn = n−1
∑n

i=1(Xi − X̄)(ε̂i,gn − ¯̂εgn), where ε̂i,gn = Yi − 〈β̂gn , Xi〉 are the residuals

for i = 1, . . . , n with its average ¯̂εgn = n−1
∑n

i=1 ε̂i,gn .

(b) (Proposed paired bootstrap) To approximate the paired bootstrap distribution, do the

following for q = 1, . . . , Q.

i. Draw independent bootstrap pairs {(X∗i , Y ∗i )}ni=1 from the uniform distribution on

the samples {(Xi, Yi)}ni=1.

ii. Compute the bias corrected bootstrap estimate β̂∗q,hn and the bootstrap scaling

ŝ∗q,hn(X0) based on the bootstrap samples {(X∗i , Y ∗i )}ni=1 and β̂∗q,hn .

iii. Compute the bootstrap statistics either with or without studentization:

T̂PB∗q,n (X0) ≡
√

n

ŝhn(X0)
[〈β̂∗q,hn , X0〉 − 〈β̂gn , X0〉],

T̂PBstd∗
q,n (X0) ≡

√
n

ŝ∗q,hn(X0)
[〈β̂∗q,hn , X0〉 − 〈β̂gn , X0〉].

(c) (Naive paired bootstrap) To approximate the paired bootstrap distribution, do the

following for q = 1, . . . , Q.

i. Draw independent bootstrap pairs {(X∗i , Y ∗i )}ni=1 from the uniform distribution on

the samples {(Xi, Yi)}ni=1.

ii. Compute the bootstrap estimate β̂∗q,hn,naive without bias correction and the

bootstrap scaling ŝ∗q,hn,naive(X0) based on the bootstrap samples {(X∗i , Y ∗i )}ni=1

and β̂∗q,hn,naive.

iii. Compute the bootstrap statistics either with or without studentization:

T̂PB∗q,n,naive(X0) ≡
√

n

ŝhn(X0)
[〈β̂∗q,hn,naive, X0〉 − 〈β̂gn , X0〉],

T̂PBstd∗
q,n,naive(X0) ≡

√
n

ŝ∗q,hn,naive(X0)
[〈β̂∗q,hn,naive, X0〉 − 〈β̂gn , X0〉].

4. For all cases, construct the following confidence intervals for 〈β,X0〉
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(a) (CLT)

The (symmetrized) confidence interval for 〈β,X0〉 from CLT is

CICLT =

〈β̂hn , X0〉 −

√
t̂hn(X0)

n
z1−α/2, 〈β̂hn , X0〉+

√
t̂hn(X0)

n
z1−α/2

 ,
where z1−α/2 denotes the 1− α/2 quantile of the standard normal distribution.

(b) (Residual bootstrap)

i. (Unsymmetrized intervals) Compute the α/2 and 1− α/2 quantiles of

{T̂RB∗q,n (X0)}Qq=1, say l and u. Then, the unsymmetrized confidence interval for

〈β,X0〉 is

CIRB,unsym =

〈β̂hn , X0〉 −

√
t̂hn(X0)

n
u, 〈β̂hn , X0〉 −

√
t̂hn(X0)

n
l


ii. (Symmetrized intervals) Compute the 1− α/2 quantile of {|T̂RB∗q,n (X0)|}Qq=1, say u.

Then, the symmetrized confidence interval for 〈β,X0〉 is

CIRB,sym =

〈β̂hn , X0〉 −

√
t̂hn(X0)

n
u, 〈β̂hn , X0〉+

√
t̂hn(X0)

n
u


(c) (Proposed paired bootstrap without studentization)

Replace T̂RB∗q,n (X0) and t̂hn(X0) by T̂PB∗q,n (X0) and ŝhn(X0) respectively in the

procedure (b) to obtain CIPB,unsym and CIPB,sym.

(d) (Proposed paired bootstrap with studentization)

Replace T̂PB∗q,n (X0) by T̂PBstd∗
q,n (X0) in the procedure (c) to obtain CIPBstd,unsym and

CIPBstd,sym.

(e) (Naive paired bootstrap either with or without studentization)

In the above procedures in (c) and (d), replace T̂PB∗q,n (X0) and T̂PBstd∗
q,n (X0) by

T̂PB∗q,n,naive(X0) and T̂PBstd∗
q,n,naive(X0) to obtain CInaivePB,unsym, CInaivePB,sym,

CInaivePBstd,unsym, and CInaivePBstd,sym.

5. Let CI denote one of the intervals constructed above. Compute Im = I(〈β,X0〉 ∈ CI).
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The coverage probability 1− α is then approximated by M−1
∑M

m=1 Im.

Figures 3.7-3.16 provide the empirical coverage probabilities and average widths of each

interval with different tuning parameter hn under the scenarios considered.

3.11.2 Empirical rejection rates of bootstrap testing

We describe the exact procedure of the simulation to obtain empirical rejection rates of the

bootstrap testing and provide additional results to those in Section 3.5.2. In simulation, we

generate the new predictors {Xp
0,l}

L
l=1 and fix them before the Monte Carlo iteration. The Monte

Carlo simulation size M and the bootstrap sample size Q are again provided as M = 1000 = Q.

For each m = 1, . . . ,M , perform the following.

1. (Simulation) Simulate Xi and εi with Xi
d
= X and εi

d
= ε respectively, where the pairs

{(Xi, εi)}ni=1 are independent but ε may be dependent of X, and compute the response

Yi = 〈β,Xi〉+ εi for i = 1, . . . , n.

2. (Test statistics) Compute the L2 and maximum type test statistics

Wn,L2 ≡
L∑
l=1

[
T̂H0
n,l

]2
and Wn,max ≡ max

1≤l≤L

∣∣∣T̂H0
n,l

∣∣∣ ,
where T̂H0

n,l ≡
√
n/ŝhn(X0,l)〈β̂hn , X0,l〉 for l = 1, . . . , L.

3. (Paired bootstrap when not enforcing the null)

(a) (Bias correction term) Compute the bias correction term

Ûn,gn = n−1
∑n

i=1(Xi − X̄)(ε̂i,gn − ¯̂εgn), where ε̂i,gn = Yi − 〈β̂gn , Xi〉 are the residuals

for i = 1, . . . , n with its average ¯̂εgn = n−1
∑n

i=1 ε̂i,gn .

(b) (Paired bootstrap when not enforcing the null) To approximate the paired bootstrap

distribution, do the following for q = 1, . . . , Q.

i. Draw independent bootstrap paris {(X∗i , Y ∗i )}ni=1 from the uniform distribution on

the samples {(Xi, Yi)}ni=1.
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ii. Compute the bias corrected bootstrap estimate β̂∗q,hn and the bootstrap scaling

ŝ∗q,hn(Xp
0,l) based on the bootstrap samples {(X∗i , Y ∗i )}ni=1

iii. Compute the bootstrap statistics with studentization:

T ∗q,n,l ≡
√

n

ŝ∗q,hn(Xp
0,l)

[〈β̂∗q,hn , X
p
0,l〉 − 〈β̂gn , X

p
0,l〉]

for each l = 1, . . . , L.

iv. Compute the bootstrap L2 and maximum type test statistics

W ∗q,n,L2 ≡
L∑
l=1

[
T̂ ∗q,n,l

]2
and W ∗q,n,max ≡ max

1≤l≤L

∣∣∣Ŝ∗q,n,l∣∣∣ .
4. (Paired bootstrap when enforcing the null)

(a) (Enforcing the null) Compute the estimate β̃gn = β̂gn −ΠX0 β̂gn and the responses

Ỹi = Yi − 〈ΠX0 β̂gn , Xi〉 when enforcing the null.

(b) (Bias correction term) Compute the bias correction term

Ũn,gn = n−1
∑n

i=1(Xi − X̄)(ε̃i,gn − ¯̃εgn), where ε̃i,gn = Yi − 〈β̃gn , Xi〉 are the residuals

for i = 1, . . . , n with its average ¯̃εgn = n−1
∑n

i=1 ε̃i,gn .

(c) (Paired bootstrap) To approximate the paired bootstrap distribution, do the following

for q = 1, . . . , Q.

i. Draw independent bootstrap paris {(X̃∗i , Ỹ ∗i )}ni=1 from the uniform distribution on

the samples {(Xi, Ỹi)}ni=1.

ii. Compute the bias corrected bootstrap estimate β̃∗q,hn and the bootstrap scaling

s̃∗q,hn(Xp
0,l) based on the bootstrap samples {(X̃∗i , Ỹ ∗i )}ni=1

iii. Compute the bootstrap statistics with studentization:

T
∗H0
q,n,l ≡

√
n

s̃∗q,hn(Xp
0,l)

[〈β̃∗q,hn , X
p
0,l〉 − 〈β̂gn , X

p
0,l〉]

for each l = 1, . . . , L.

iv. Compute the bootstrap L2 and maximum type test statistics

W
∗H0

q,n,L2 ≡
L∑
l=1

[
T
∗H0
q,n,l

]2
and W ∗H0

q,n,max ≡ max
1≤l≤L

∣∣∣T ∗H0
q,n,l

∣∣∣ .
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5. Let u denote the 1− α quantiles of either {W ∗q,n,L2}Qq=1, {W ∗q,n,max}
Q
q=1, {W ∗H0

q,n,L2}Qq=1, or

{W ∗H0
q,n,max}Qq=1, and Wn denote the corresponding test statistic from the data samples. Then,

check if the test statistic Wn is in the rejection region (u,∞) by computing Im = I(Wn > u).

The rejection rates for each test statistic are then approximated by M−1
∑M

m=1 Im.

Figure 3.17 shows the empirical rejection rates of bootstrap testing when enforcing the null

(red) or not (blue) with different sample sizes n and different degrees p of the alternative. The

tuning parameters hn and gn are selected by our rule of thumb. Meanwhile, Figure 3.18 exhibits

the empirical rejection rates of both methods when gn is selected by our rule of thumb while hn

varies over {1, . . . , 15}. Here, due to similarity, we only report the results when the sample size is

n = 50, the latent variable ξ follows the standard normal distribution, and the test statistics is of

maximum-type.

3.11.3 Sampling distributions of non-negligible bias terms

In this Section, we provide extended simulation results as shown in Figure 3.2 of the main

paper. We find distributions of non-negligible bias terms in Lemma 34 and Section 3.10.6.3, which

are re-defined as follows:

Bdim,n ≡ Bdim,n(X0) =

√
n

shn(X0)
〈(I −Πhn)Γ−1

gn Un, X0〉, (3.95)

Bcons,n ≡ Bcons,n(X0) =

√
n

shn(X0)
〈Γ−1
hn

(I −Πgn)∆̂n, X0〉. (3.96)

Recall from Lemma 34 and Proposition 31 that the non-negligible bias terms Bdim,n and Bcons,n

weakly converges to normal distributions with asymptotic variances σ2
dim(τ) ≡ τ−1 − 1 and

σ2
cons(τ) ≡ (1− τ−1)

(
‖Γ1/2β‖2

/∑∞
j=1 γjρ

2
j + 1

)
, respectively. These results can be also

demonstrated numerically in Figures 3.19-3.20. As the forms of limiting variances σ2
dim(τ) and

σ2
cons(τ) indicate, the distributions of each bias term are more influential and spread more widely,

when the ratio hn/gn gets far from 1. Due to similarity, we provide only the results when

(n, gn) = (200, 4), (n, gn) = (1000, 6), and the error is dependent on the regressor, under the same

scenario for the results in Figure 3.3 of the main paper.
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3.12 Additional details regarding real data applications

We provide further results from data analysis on Canadian weather dataset from Section 3.6

of the main paper another data application for medfly dataset. For both datasets, we provide the

following over different truncation parameters: residual plots, estimated prediction errors from

cross-validation, confidence intervals for projections from each bootstrap method, ratios of widths

of residual bootstrap intervals to widths of paired bootstrap intervals either with or without

studentization, and p-values from the bootstrap testing procedures. The cross-validation method

used here is the same as the one described in Section S3.1 of the supplement of [53].

3.12.1 Canadian weather dataset

Figure 3.21 shows plots of squared residuals ε̂2
i,kn
≡ n−1

∑n
i=1(Y c

i − 〈β̂kn , Xc
i 〉)2 versus

predicted values Ŷ c
i,kn
≡ 〈β̂kn , Xc

i 〉 over different truncation parameters kn ∈ {1, . . . , 20}.

Figure 3.22 shows estimated prediction errors P̂E(kn) (cf. Section S3.1 of the supplement of

[53]) of FPCR estimator β̂kn by cross-validation over different truncation parameters

kn ∈ {1, . . . , 20}.

In Figure 3.23, we provide (symmetrized) confidence intervals for (centered) projections

{〈β,Xc
0,l〉}4l=1 from each bootstrap method for different truncation parameters hn ∈ {1, . . . , 18}.

The results when hn ∈ {19, 20} are omitted due to the relatively wide widths of the corresponding

confidence intervals. Here, we set kn = 2 = gn as described in ?? of the main paper. The plots of

width ratios over different truncation parameters hn ∈ {1, . . . , 20} are also given in Figure 3.24.

Figure 3.25 displays further p-values from bootstrap testing procedures are provided when

truncation parameter hn varies over {1, . . . , 20}.

3.12.2 Medfly dataset

3.12.2.1 Main results

We next examine a medfly dataset, as considered in some previous contexts [17, 44, 52, 47].

We adopt a version of the dataset made available in the R package fdapace; the full dataset with
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Figure 3.22: Estimated prediction errors P̂E(kn) of FPCR estimator β̂kn by cross-validation over

different truncation parameters kn ∈ {1, . . . , 20} for Canadian weather dataset.

its experimental background is described in [13]. For 789 female Mediterranean fruit flies

(medflies, Ceratitis capitata), each regressor curve Xi represents daily measurements of the

number of eggs laid by a medfly in the first 25 days of life while the response Yi is the total

remaining number of eggs laid during a lifetime. Randomly selected subsamples with different

sample sizes n ∈ {50, 150, . . . , 650, 789} are also chosen to study the effect of the sample size on

the bootstrap intervals.

We investigate whether the variability in the responses might depend on the type of start to a

medfly’s egg-laying, as potentially suggesting heteroscedastic errors in a FLRM (3.2). To do this,

we classify a medfly as a slow starter if it lays a first egg after ten days; otherwise, the medfly is

called an early starter. Ten representative curves for both early and slow starters are provided in

Figure 3.26 along with average curves from the whole data. To check for heteroscedasticity, we

examine the estimated standard deviation for either early or slow starters, which is provided in

Figure 3.27 for various subsampled datasets. This shows that the homoscedastic error assumption

appears inappropriate in general, in which case only the PB method would be applicable.

Similar to previous analyses of these data, we use average curves for either early and slow

starters as new predictors. We add also two additional predictor curves based on [44], who
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intervals either with or without studentization over different truncation parameters

hn ∈ {1, . . . , 20} with kn = 2 = gn for Canadian weather dataset.
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Figure 3.25: P-values from bootstrap testing procedures over different truncation parameters

hn ∈ {1, . . . , 20} with kn = 2 = gn for Canadian weather dataset.
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Figure 3.26: Randomly selected ten observed curves of medfly dataset in each group of either

early or slow starters with their average curves denoted in thicker pink lines.

classify the medfly curves into two groups: long- and short-lived medflies. This gives four

regressor curves, given in Figure 3.28, determined by the groupwise averages. At these predictors,

(symmetrized) confidence intervals for mean responses are provided in Figure 3.29 for different

subsample sizes and bootstrap methods; as in Section 3.6, the data observations and new

predictors are centered by the averages of each subsample before analysis and we consider RB as

well as two PB versions (PB, PB std). Interval widths depend on the predictor curve (medfly

group), though these decrease as the sample size increases. Slow starters have intervals with the

widest ranges, including the highest and lowest values of total number of eggs laid, while intervals

for early starters intervals are located around small egg totals, relative to the overall average. The

intervals for long- and short-lived group predictors possess relatively narrow widths and center on

closer to zero.

Figure 3.30 shows the results from bootstrap tests of whether the projections of the slope

function onto the space spanned by four (centered) predictors X c0 ≡ {Xc
0,l}4l=1 may be zero. The

maximum type test statistic from (3.20) is reported, as the other test form is similar. Bootstrap

tests conclusively reject the null hypothesis, which strongly supports that the slope function is not

orthogonal to the spanned by the predictors under consideration.
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Figure 3.27: Estimated standard deviations of either early or slow starter groups over different

truncation levels for medfly dataset.

3.12.2.2 Extra results

We provide the same plots for medfly dataset as shown in Section 3.12.1.

Figure 3.31 shows plots of squared residuals ε̂2
i,kn

versus predicted values Ŷi,kn ≡ 〈β̂kn , Xi〉 over

different truncation parameters kn ∈ {1, . . . , 5}.

Figure 3.32 shows estimated prediction errors P̂E(kn) (cf. Section S3.1 of the supplement of

[53]) of FPCR estimator β̂kn by cross-validation over different truncation parameters

kn ∈ {1, . . . , 20}.

In Figure 3.33, we provide confidence intervals for projections {〈β,Xc
0,l〉}4l=1 from each

bootstrap method for different truncation parameters hn ∈ {1, . . . , 20}. Here, kn = gn are chosen

as the truncation level that gives the minimum prediction error (cf. Figure 3.32) for each

subsample size. The plots of width ratios over different truncation parameters hn ∈ {1, . . . , 20}

are also given in Figure 3.34.
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Figure 3.28: New regressor curves under considerations for medfly dataset.

Figure 3.35 displays further p-values from max-type bootstrap testing procedures are provided

when truncation parameter hn varies over {1, . . . , 20}.
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Figure 3.29: Bootstrap confidence intervals for projections {〈β,Xc
0,l〉}4l=1

from each subsample in medfly dataset.
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Figure 3.30: P-values from bootstrap testing of the null hypothesis H0 : ΠX c
0
β = 0 with different

sample size in medfly dataset, where the maximum type statistics are used.
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Figure 3.31: Scatterplots of squared residuals ε̂2
i,kn

versus predicted values Ŷ c
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≡ 〈β̂kn , Xc

i 〉 over

different truncation parameters kn ∈ {1, . . . , 20} for subsamples of medfly dataset.
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Figure 3.32: Estimated prediction errors P̂E(kn) of FPCR estimator β̂kn by cross-validation over
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Figure 3.35: P-values from max-type bootstrap testing procedures over different truncation

parameters hn ∈ {1, . . . , 20} with gn = kn for subsamples of medfly dataset.
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Abstract

This paper is an initial theoretical work on wild bootstrap for functional linear regression. In

functional linear regression model, the inference under heteroscedastic error assumptions have not

received much attention. We propose a multiplier wlid bootstrap method to approximate

sampling distributions, which is expected to be computationally fast. Its theoretical validity is

provided under mild assumptions.

4.1 Introduction

Researchers have paid attention to the inference of the slope function in functional linear

regression models (FLRMs). A common approach is to use an estimator based on functional

principal component analysis (FPCA) (cf. Section 2). With such estimators, central limit

theorems (CLTs) have been established [6, 18, 19], which are the foundation for asymptotic

inference. Based on some CLT, [9, 18, 19] have developed different bootstrap methods in FLRMs.

Despite of increasing attention, inference in heteroscedastic FLRMs has been rarely studied.

To the best of our knowledge, only [19] considers inference in FLRMs, where the conditional

variances of the errors are heterogeneous, who proposes a paired bootstrap (PB) to incorporate

such heteroscedastic errors. However, in large samples, a PB method may become
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computationally burdensome due to repeated computations of (pseudo-)inverses in estimation.

This challenge motivates us to develop alternative resampling method for large data cases.

Wild bootstrap has been suggested as an alternative to paired bootstrap in classical regression

problems [17, 14, 10, 15, 8, 9, 7], but not in FLRMs under heteroscedasticity. We propose a wild

bootstrap method for the FLRM setting, particularly by using multipliers. In principle, the

bootstrap errors in wild bootstrap mimic the true errors by equating their moments and the

corresponding powers of residuals (cf. Section 3). The proposed wild bootstrap is theoretical valid

to approximate the sampling distribution.

This paper is organized as follows. In Section 4.2, we provide a brief overview of FLRMs and

an estimation approach based on FPCA. Section 4.3 then describes the procedure of the proposed

wild bootstrap and its theoretical validity. Section 4.4 finally devotes theoretical details.

4.2 Functional linear regression models

We consider the following FLRM with scalar response

Y = 〈β,X〉+ ε, (4.1)

where Y is a scalar response; X is a functional regressor; and β is the slope function. Here, the

slope function is assumed to lie in a separable Hilbert space H with inner product 〈·, ·〉 and X is a

random function that take values in H. The error ε is commonly assumed to have zero mean as

E[ε|X] = 0. Without loss of generality, we assume that E[X] = 0 and E[Y ] = 0. Write

Γ ≡ E[X ⊗X] and ∆ ≡ E[XY ] for the covariance operator of X and the cross-covariance function

of X and Y , respectively. Here, ⊗ denotes the tensor product between two elements in H, which is

defined as (x⊗ y)(z) = 〈z, x〉y for x, y, z ∈ H. The normal equations for FLRM (4.1) is written as

∆ = Γβ. (4.2)

Then, the slope function is given as β = Γ−1∆ under the following assumption, which justifies the

model identifiability [4, 5, 6]:
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(M) ker Γ = {0}.

For estimation, we suppose n pairs {(Xi, Yi)}ni=1 are randomly generated from the FLRM

(4.1), namely,

Yi = 〈β,Xi〉+ εi, i = 1, . . . , n. (4.3)

The sample versions of Γ and ∆ are defined as Γ̂n ≡ n−1
∑n

i=1(Xi − X̄)⊗2 and

∆̂n ≡ n−1
∑n

i=1(Xi − X̄)(Yi − Ȳ ), where X̄ ≡ n−1
∑n

i=1Xi, Ȳ ≡ n−1
∑n

i=1 Yi, and x⊗2 ≡ x⊗ x for

x ∈ H. The sample covariance operator Γ̂n admits spectral decomposition Γ̂n =
∑n

j=1 γ̂j(φ̂j ⊗ φ̂j),

where γ̂j ≥ 0 is the j-th sample eigenvalue and φ̂j ∈ H is the corresponding eigenfunction. By

regularizing the inversion of Γ̂n, a regression estimator β̂hn of β is defined as

β̂hn ≡ Γ̂−1
hn

∆̂n, (4.4)

where Γ̂−1
hn
≡
∑hn

j=1 γ̂
−1
j (φ̂j ⊗ φ̂j) is a pseudo-inverse of Γ̂n. Here, the truncation level hn

represents the number of eigenpairs used in estimation.

Let X0 denote a new regressor under the model, which is independent of {(Xi, Yi)}ni=1. For an

observed or a given value of X0, we consider the sampling distribution of the projection statistic

Tn(X0) ≡
√

n

shn(X0)
[〈β̂hn , X0〉 − 〈β,X0〉]. (4.5)

Here, the scaling factor shn(X0) is defined as

shn(x) ≡ 〈ΛΓ−1
hn
x,Γ−1

hn
x〉, x ∈ H,

where Λ ≡ E[(Xε)⊗2] is the covariance operator of Xε and Γ−1
hn
≡
∑hn

j=1 γ
−1
j (φj ⊗ φj) denotes a

truncated inverse of Γ based on the eigenpairs {(γj , φj)}∞j=1 of Γ.

4.3 Wild bootstrap

To implement the wild bootstrap (WB), we consider another tuning parameter kn to

construct residuals ε̂i ≡ Yi − 〈β̂kn , Xi〉, i = 1, . . . , n, from the estimator β̂kn ≡ Γ̂−1
kn

∆̂n akin to
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(4.4). We then define bootstrap errors {ε∗i }ni=1 independently drawn from an arbitrary

distribution with E∗[ε∗i ] = 0 and E∗[(ε∗i )
2] = ε̂2

i for i = 1, . . . , n. Here, E∗ denotes the bootstrap

expectation operator. The bootstrap responses {Y ∗i }ni=1 are defined by

Y ∗i = 〈β̂gn , Xi〉+ ε∗i , i = 1, . . . , n,

where the estimator β̂gn ≡ Γ̂−1
gn ∆̂n plays the role of the true parameter β in the bootstrap world.

The bootstrap version β̂∗hn of the original data estimator β̂hn is finally defined based on the

bootstrap data {(Xi, Y
∗
i )}ni=1 with the same truncation level hn.

For constructing bootstrap errors, we particularly consider multiplier wild bootstrap. Namely,

the bootstrap errors {ε∗i }ni=1 are defined as ε∗i ≡Wiε̂i for some iid copies {Wi}ni=1 of a random

variable W with E[W ] = 0 and E[W 2] = 1 that are independent of the data sample {(Xi, Yi)}ni=1.

One of the most popular choices of the multipliers {Wi}ni=1 is the following two points distribution

[3, 10, 11, 15, 16]:

P

(
Wi = −

√
5− 1

2

)
=

√
5 + 1

2
√

5
= 1− P

(
Wi =

√
5 + 1

2

)
.

As a continuous multiplier distribution, [10, 15] consider the multipliers defined as

Wi = Vi/2 + (V 2
i − 1)/2 where the variables {Vi}ni=1 are iid standard normal variables. These two

types of multipliers ensures that E∗[(ε∗i )
3] = ε̂3

i as well as E∗[ε∗i ] = 0 and E∗[(ε∗i )
2] = ε̂2

i . We might

simply consider standard normal variables as multipliers as well.

We list the technical conditions for bootstrap consistency below. We define the eigengaps

{δj}∞j=1 as δ1 ≡ γ1 − γ2 and δj ≡ min{γj − γj+1, γj−1 − γj} for j ≥ 2.

(A1) supj∈N γ
−2
j E[〈X,φj〉4] <∞;

(A2) γj is a convex function of j ≥ J for some integer J ≥ 1;

(A3) supj∈N γjj log j <∞;

(A4) n−1
∑hn

j=1 δ
−2
j → 0 as n→∞;

(A5) hnshn(X)−1 = OP(1);
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(A6) supj∈N λ
−2
j E[〈Xε,ψj〉4] <∞, where λj and ψj are the j-th eigenvalue–eigenfunction pair of

Λ;

(A7) supj∈N γ
−1
j ‖Λ1/2φj‖2 <∞.

Conditions (A1) and (A6) ensure that X and Xε respectively have finite fourth moments.

Conditions (A2)-(A4) are technical assumptions related to the decay behaviors of eigenvalues {γj}

and eigengaps {δj}. Condition (A5) provides a mild lower bound for scaling shn(X0).

Condition (A7) is a technical condition that balances the eignedecay of Γ and the decay rate of Λ

in terms of {φj}∞j=1. In addition to Conditions (A1)-(A7), the following condition is imposed to

remove bias in the limit:

Condition B(u) : supj∈N j
−1m(j, u)〈β, φj〉2 <∞,

depending on a generic constant u > 0 and function m(j, u) of integer j ≥ 1 defined as

m(j, u) = max

{
ju,

j∑
l=1

δ−2
l

}
. (4.6)

We estimate the sampling distribution of Tn(X0) from (4.5) with the bootstrap distribution of

T ∗n(X0) ≡
√

n

shn(X0)
[〈β̂∗hn , X0〉 − 〈β̂gn , X0〉]. (4.7)

Theorem 11. Suppose that Conditions (A1)-(A7) and (M) hold, k−1
n + n−1/2k2

n log k → 0, and

there exists δ ∈ (0, 2] such that E[‖X‖4+2δ], E[|W |2+δ] <∞, and n−δ/2h
δ/2
n
∑hn

j=1 λ
−1−δ/2
j = O(1).

Along with Condition B(u) for some u > 7, we further suppose that τ ≡ limn→∞ hn/gn ≥ 1,

g−1
n + n−1/2h

7/2
n (log hn)4 → 0, and n = O(m(hn, u)). Then, as n→∞, the wild bootstrap (WB)

projection estimator T ∗n(X0) from (4.7) approximates the projection estimator Tn from (4.5) in

the sense that

sup
y∈R
|P∗(T ∗n(X0) ≤ y|X0)− P(Tn(X0) ≤ y|X0)| P−→ 0.

Proof. This is proved by Propositions 32 and 33 based on decompositions (4.8) and (4.9) along

with convergence results in [18] and [19].
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4.4 Technical details

The proof of Theorem 11 is based on the following decompositions:

β̂hn − β = Γ−1
hn
Un + (Γ̂−1

hn
− Γ−1

hn
)Un + (Π̂hn −Πhn)β + Πhnβ − β, (4.8)

β̂∗hn − β̂gn = Γ−1
hn
U∗n + (Γ̂−1

hn
− Γ−1

hn
)U∗n + Π̂hn β̂gn − β̂gn . (4.9)

The convergences of bias terms in Tn(X0) and T ∗n(X0) related to (Γ̂−1
hn
− Γ−1

hn
)Un, (Π̂hn −Πhn)β,

Πhnβ − β, and Π̂hn β̂gn − β̂gn are provided in the supplement (Section S1.3 and the results

involving Equation (S15)) of [19]. The weak convergence of the term related to Γ−1
hn
Un is given in

Proposition 3 of [19] and its supplement (Section S1.3). In Section 4.4.1, we prove the bootstrap

bias term related to (Γ̂−1
hn
− Γ−1

hn
)U∗n converges to zero by using the perturbation theory [6, 18, 19].

Then, Section 4.4.2 devotes to prove the weak convergence of the bootstrap variance term related

to Γ−1
hn
U∗n by verifying the Lyapunov condition.

4.4.1 Bias term

Lemma 50. Write Ũ∗n ≡ n−1
∑n

i=1Xiε
∗
i . Then, we have

E∗

[
sup
z∈Bj
‖(zI − Γ)−1/2Ũ∗n‖2

]
≤ Q1jn +Q2jn‖β̂kn − β‖2,

where Q1jn and Q2jn are non-negative random variables such that

E[Q1jn] ≤


Cn−1δ−1

j in general when E[|Xε‖2] <∞

Cn−1j log j if either E[ε2|X] = σ2
ε ∈ (0,∞) or E[ε4] <∞,

and E[Q2jn] ≤ Cn−1j log j.

Proof. Note that

‖(zI − Γ)−1/2Ũ∗n‖2

=n−2
n∑
i=1

‖(zI − Γ)−1/2Xi‖2(ε∗i )
2

+ n−2
n∑
i=1

〈(zI − Γ)−1/2Xi, (zI − Γ)−1/2Xi′〉ε∗i ε∗i′ ,
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which implies that

sup
z∈Bj
‖(zI − Γ)−1/2Ũ∗n‖2

≤n−2
n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2(ε∗i )

2

+ n−2
n∑
i=1

sup
z∈Bj
〈(zI − Γ)−1/2Xi, (zI − Γ)−1/2Xi′〉ε∗i ε∗i′ .

Since E∗[(ε∗i )
2] = ε̂2

i,kn
for each i and E∗[ε∗i ε

∗
i′ ] = 0 if i 6= i′, we have

E∗

[
sup
z∈Bj
‖(zI − Γ)−1/2Ũ∗n‖2

]
≤ n−2

n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2ε̂2

i,kn

≤2n−2
n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2ε2

i + 2n−2
n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2〈β̂kn − β,Xi〉2

=2n−2
n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2ε2

i + 2

〈(
n−2

n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2X⊗2

i

)
(β̂kn − β), β̂kn − β

〉
(4.10)

The first term in (4.10) is differently bounded depending on the error assumption. We first

consider general case with E[‖Xε‖2] <∞. Recall by [13, Equation (5.3)], for z ∈ Bj ,

‖(zI − Γ)−1/2‖∞ =

(
min
l∈N
|z − γl|1/2

)−1

= |z − γj |−1/2 = (δj/2)−1/2.

This implies that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2ε2

]
≤ E

[
sup
z∈Bj
‖(zI − Γ)−1/2‖∞‖Xε‖2

]

≤ 2δ−1
j E[‖Xε‖2] = 2tr(var[Xε])δ−1

j .

Next, under homoscedasticity with E[ε2|X] = σ2
ε , we have that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2ε2

]
= σ2

εE

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2

]
≤ Cj log j.

Last, under heteroscedasticity with E[ε4] <∞, by Cauchy-Schwarz inequality, we have that

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2ε2

]
≤

√√√√E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖4

]√
E[ε4]

≤ Cj log j.
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We thus have that

E

[
n−2

n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2ε2

i

]

≤


Cn−1δ−1

j in general when E[|Xε‖2] <∞

Cn−1j log j if either E[ε2|X] = σ2
ε ∈ (0,∞) or E[ε4] <∞.

The second term in (4.10) is bounded as

E

[∣∣∣∣∣n−2
n∑
i=1

sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2X⊗2

i

∣∣∣∣∣
]

≤n−1E

[
sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2‖Xi‖2

]

≤n−1E

[
sup
z∈Bj
‖(zI − Γ)−1/2Xi‖4

]1/2

E[‖Xi‖4]1/2

≤Cn−1j log j

by the third part of Lemma 15. This completes the proof.

Lemma 51. Write U∗n ≡ n−1
∑n

i=1(Xi− X̄)(ε∗i − ε̄∗) = n−1
∑n

i=1Xiε
∗
i − X̄ε̄∗. Then, we have that

E∗

[
sup
z∈Bj
‖(zI − Γ)−1/2U∗n‖2

]
≤ Q1jn +Q2jn‖β̂kn − β‖2 +RnQ2jn,

where Q1jn, Q2jn, Q3jn, and Rn are non-negative random variables such that

E[Q1jn] ≤


Cn−1δ−1

j in general when E[|Xε‖2] <∞

Cn−1j log j if either E[ε2|X] = σ2
ε ∈ (0,∞) or E[ε4] <∞,

E[Q2jn] ≤ Cn−1j log j, E[Q3jn] ≤ Cj log j, and Rn = OP(n−1).

Proof. Note that

‖(zI − Γ)−1/2U∗n‖2 ≤ 2‖(zI − Γ)−1/2Ũ∗n‖2 + 2(ε̄∗)2‖(zI − Γ)−1/2X̄‖2. (4.11)

The first term in (4.11) is bounded based on Lemma 50. For the second term in (4.11), note that

E∗[(ε̄∗)2] = n−2
n∑
i=1

E∗[(ε∗i )
2] + n−2

∑
i 6=i′

E∗[ε∗i ε
∗
i′ ] = n−2

n∑
i=1

ε̂2
i,kn = OP(n−1)
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if ‖β̂kn − β‖
P−→ 0, since

n−1
n∑
i=1

ε̂2
i,kn = n−1

n∑
i=1

(εi − 〈Xi, β̂kn − β〉)2

≤ n−1
n∑
i=1

ε2
i + n−1

n∑
i=1

‖Xi‖2‖β̂kn − β‖2 + 2n−1
n∑
i=1

‖Xiεi‖‖β̂kn − β‖

= {E[ε2] + oP(1)}+ {E[‖X‖2] + oP(1)}oP(1) + {E[‖Xε‖] + oP(1)}oP(1)

= OP(1).

Meanwhile, by Jensen’s inequality, we have

E

[
sup
z∈Bj
‖(zI − Γ)−1/2X̄‖2

]

≤n−1
n∑
i=1

E

[
sup
z∈Bj
‖(zI − Γ)−1/2Xi‖2

]
= E

[
sup
z∈Bj
‖(zI − Γ)−1/2X‖2

]

≤Cj log j.

This completes the proof.

Proposition 32. Suppose Conditions (A1)-(A6) hold. As n→∞, we further suppose either

1. n−1/2h
−1/2
n

(∑hn
j=1 δ

−1
j j log j

)1/2 {∑hn
j=1(j log j)2

}1/2
→ 0 in general when E[‖Xε‖2] <∞; or

2. n−1/2h
−1/2
n

∑hn
j=1(j log j)2 → 0 if either E[ε2|X] ≡ σ2

ε ∈ (0,∞) or E[ε4] <∞.

Wh then have that

P∗
(√

n

shn(X0)
|〈(Γ̂−1

hn
− Γ−1

hn
)U∗n, X0〉| > η

∣∣∣X0

)
P−→ 0

for each η > 0. Both convergence rates hold if n−1/2h
7/2
n (log hn)4 = O(1).

Proof. We observe from Lemma 14 that

Γ̂−1
hn
− Γ−1

hn
=

1

2πι

hn∑
j=1

∫
Bj
z−1

{
(zI − Γ̂n)−1 − (zI − Γ)−1

}
dz + r2nIAc

hn

=
1

2πι

hn∑
j=1

∫
Bj
z−1(zI − Γ)−1/2Kn(z)Gn(z)(zI − Γ)−1/2dz + r2nIAc

hn
.
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This implies that |〈(Γ̂−1
hn
− Γ−1

hn
)U∗n, X0〉| ≤ C

∑hn
j=1Aj + ‖r2n‖∞‖U∗n‖‖X0‖IAc

hn
, where

Aj =

∫
Bj

1

|z|
‖(zI − Γ)−1/2X0‖‖Kn(z)‖∞‖Gn(z)‖∞‖(zI − Γ)−1/2U∗n‖dz.

Note that

E∗[AjIEj ]

≤Cdiam(Bj)δ−1
j sup

z∈Bj
‖Kn(z)‖∞IEj sup

z∈Bj
‖Gn(z)‖∞ sup

z∈Bj
‖(zI − Γ)−1/2X0‖E∗

[
sup
z∈Bj
‖(zI − Γ)−1/2U∗n‖

]

≤CV1jnV2jnE
∗

[
sup
z∈Bj
‖(zI − Γ)−1/2U∗n‖2

]1/2

,

where

V1jn ≡ sup
z∈Bj
‖(zI − Γ)−1/2X0‖ and V2jn ≡ sup

z∈Bj
‖Kn(z)‖∞IEj sup

z∈Bj
‖Gn(z)‖∞.

Then,

E∗

 hn∑
j=1

AjIEj

 ≤ C hn∑
j=1

V1jnV2jnE
∗

[
sup
z∈Bj
‖(zI − Γ)−1/2U∗n‖2

]1/2

≤ C

 hn∑
j=1

V 2
1jn

1/2 hn∑
j=1

V 2
2jnE

∗

[
sup
z∈Bj
‖(zI − Γ)−1/2U∗n‖2

]1/2

.

By Lemma 15 and Lemma 16,

E

 hn∑
j=1

V 2
1jn

 ≤ C hn∑
j=1

(j log j)2.

Also, note by Lemma 51 and the independence between {(Xi, Yi)}ni=1 and X0 that

E

 hn∑
j=1

V 2
2jnQ1jn

 ≤

Cn−2

∑hn
j=1 δ

−1
j (j log j)2 in general when E[|Xε‖2] <∞

Cn−2
∑hn

j=1(j log j)3 if either E[ε2|X] = σ2
ε ∈ (0,∞) or E[ε4] <∞,
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E
[∑hn

j=1 V
2

2jnQ2jn

]
≤ Cn−2

∑hn
j=1(j log j)3, and E

[∑hn
j=1 V

2
2jnQ3jn

]
≤ C

∑hn
j=1(j log j)3. This

implies that

hn∑
j=1

V 2
2jnE

∗

[
sup
z∈Bj
‖(zI − Γ)−1/2U∗n‖2

]

≤
hn∑
j=1

V 2
2jnQ1jn +

hn∑
j=1

V 2
2jnQ2jn‖β̂kn − β‖2 +

hn∑
j=1

V 2
2jnQ3jnRn

=


OP

(
n−2

∑hn
j=1 δ

−1
j (j log j)2

)
in general when E[|Xε‖2] <∞

OP

(
n−2

∑hn
j=1(j log j)3

)
if either E[ε2|X] = σ2

ε ∈ (0,∞) or E[ε4] <∞,

Therefore,

E∗

√ n

shn(X0)

hn∑
j=1

AjIEj



=



OP

(
n−1/2h

−1/2
n

{∑hn
j=1 δ

−1
j (j log j)2

}1/2 {∑hn
j=1(j log j)2

}1/2
)

in general when E[|Xε‖2] <∞

OP

(
n−1/2h

−1/2
n

{∑hn
j=1(j log j)3

}1/2 {∑hn
j=1(j log j)2

}1/2
)

if either E[ε2|X] = σ2
ε ∈ (0,∞) or E[ε4] <∞,

and by following the argument of Remark 6, we have the desired result. Note that

n−1/4h
1/4
n

(∑hn
j=1 δ

−1
j

)1/2
≤
(
n−1

∑hn
j=1 δ

−2
j

)1/4
→ 0 by Cauchy-Schwarz inequality. It then

follows that

n−1/2h−1/2
n


hn∑
j=1

δ−1
j (j log j)2


1/2

hn∑
j=1

(j log j)2


1/2

≤n−1/2h2
n(log hn)2

 hn∑
j=1

δ−1
j

1/2

= n−1/4h7/4
n (log hn)2n−1/4h−1/4

n

 hn∑
j=1

δ−1
j

1/2

=o({n−1/2h7/2
n (log hn)4}1/2)
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and

n−1/2h−1/2
n


hn∑
j=1

(j log j)3


1/2

hn∑
j=1

(j log j)2


1/2

≤ n−1/2h3
n(log hn)5/2

≤ o(n−1/2h7/2
n (log hn)4).

This proves the last assertion.

4.4.2 Weak convergence of variance term

Lemma 52. As n→∞, if ‖β̂kn − β‖
P−→ 0, we have that E∗[‖X̄ε̄∗‖2] = OP(n−2), where

X̄ ≡ n−1
∑n

i=1Xi and ε̄∗ ≡ n−1
∑n

i=1 ε
∗
i .

Proof. Note that

(ε̄∗)2 = n−2
n∑
i=1

(ε∗i )
2 + n−2

∑
i 6=i′

ε∗i ε
∗
i′ ,

which implies that E∗[(ε̄∗)2] = n−2
∑n

i=1 ε̂
2
i,kn

. Since

n−1
n∑
i=1

ε̂2
i,kn = n−1

n∑
i=1

(εi − 〈Xi, β̂kn − β〉)2

≤ n−1
n∑
i=1

ε2
i + n−1

n∑
i=1

‖Xi‖2‖β̂kn − β‖2 + 2n−1
n∑
i=1

‖Xiεi‖‖β̂kn − β‖

= {E[ε2] + oP(1)}+ {E[‖X‖2] + oP(1)}oP(1) + {E[‖Xε‖] + oP(1)}oP(1)

= OP(1),

we have that E∗[(ε̄∗)2] = OP(n−1). Finally, since X̄ = OP(n−1/2) [cf. 12, Theorem 2.3], we

conclude that E∗[‖X̄ε̄∗‖2] = ‖X̄‖2E∗[(ε̄∗)2] = OP(n−2).

Lemma 53. As n→∞, we have

E∗
[

n

shn(X0)
〈X̄ε̄∗,Γ−1

hn
X0〉2

∣∣∣X0

]
= oP(1),

where X̄ ≡ n−1
∑n

i=1Xi and ε̄∗ ≡ n−1
∑n

i=1 ε
∗
i .
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Proof. Note from Jensen’s inequality that

n−1/2h−1
n

hn∑
j=1

γ−1
j ≤ n

−1/2h−1/2
n

hn∑
j=1

γ−1
j ≤

n−1
hn∑
j=1

γ−2
j

1/2

≤

n−1
hn∑
j=1

δ−2
j

1/2

From Lemma 52, since E[‖Γ−1
hn
X0‖2] =

∑hn
j=1 γ

−1
j , we have that

E∗
[

n

shn(X0)
〈X̄ε̄∗,Γ−1

hn
X0〉2

∣∣∣X0

]
≤{hnshn(X0)−1}(nE∗[‖X̄ε̄∗‖2])(h−1

n ‖Γ−1
hn
X0‖2)

=OP(1)OP(n−1)OP

h−1
n

hn∑
j=1

γ−1
j


=OP

n−1h−1
n

hn∑
j=1

γ−1
j

 = oP(n−1/2)

by Condition (A5).

Proposition 33. Suppose that n−δ/2h
δ/2
n
∑hn

j=1 λ
−(2+δ)/2
j = O(1) and E[‖X‖4+2δ] <∞ hold for

some δ ∈ (0, 2], ‖β̂kn − β‖
P−→ 0 as n→∞, and Condition (A7) hold. Then, as n→∞, if

n−δ/2h
(2+δ)/2
n → 0, we have that

sup
y∈R

∣∣∣∣P∗(√ n

shn(X0)
〈Γ−1
hn
U∗n, X0〉 ≤ y

∣∣∣X0

)
− Φ(y)

∣∣∣∣ P−→ 0,

where Φ denotes the cumulative distribution function of the standard normal distribution.

Proof. The bootstrap variance term is v∗n ≡
√
n/shn(X0)〈Γ−1

hn
U∗n, X0〉 where

U∗n ≡ n−1
∑n

i=1(Xi − X̄)(ε∗i − ε̄∗) = n−1
∑n

i=1Xiε
∗
i − X̄ε̄∗. We know that the latter term related

to X̄ε̄∗ is negligible due to Lemma 53. Write Z∗i,n ≡ 〈Xiε
∗
i ,Γ
−1
hn
X0〉 so that E∗[Z∗i,n|X0] = 0 and

E∗[(Z∗i,n)2|X0] = 〈Xiε̂i,kn ,Γ
−1
hn
X0〉2.

We first derive that

n−1v̂2
n ∼P shn(X0), (4.12)

in the sense that

n−1v̂2
n

shn(X0)

P−→ 1.
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Note that

n−1v̂2
n ≡ n−1

n∑
i=1

E∗[(Z∗i,n)2|X0] = n−1
n∑
i=1

〈Xiε̂i,kn ,Γ
−1
hn
X0〉2

= n−1
n∑
i=1

〈(Xiε̂i,kn)⊗2Γ−1
hn
X0,Γ

−1
hn
X0〉

=

〈(
n−1

n∑
i=1

(Xiε̂i,kn)⊗2 − Λ

)
Γ−1
hn
X0,Γ

−1
hn
X0

〉
+ shn(X0).

Thus, Proposition 20 proves (4.12).

Write Ln = Ln,δ ≡ v̂
−(2+δ)
n

∑n
i=1 E

∗[|Z∗i,n|2+δ|X0] for the Lyapunov term. We will show that

Ln
P−→ 0 (4.13)

Note that

Ln = v̂−(2+δ)
n

n∑
i=1

E∗[|Z∗i,n|2+δ|X0] ≤ v̂−(2+δ)
n

n∑
i=1

E∗[‖Λ−1/2
hn

Xiε
∗
i ‖2+δ|X0]‖Λ1/2

hn
Γ−1
hn
X0‖2+δ

=

(
‖Λ1/2

hn
Γ−1
hn
X0‖2

n−1v̂2
n

)(2+δ)/2

n−δ/2E∗

[
n−1

n∑
i=1

‖Λ−1/2
hn

Xiε
∗
i ‖2+δ

∣∣∣X0

]
.

Since

‖Λ1/2
hn

Γ−1
hn
X0‖2

n−1v̂2
n

≤
‖Λ1/2Γ−1

hn
X0‖2

n−1v̂2
n

=
shn(X0)

n−1v̂2
n

P−→ 1,

we have

‖Λ1/2
hn

Γ−1
hn
X0‖2

n−1v̂2
n

= OP(1).

Note by Lyapunov inequality thath−1
n

hn∑
j=1

a2
j

1/2

≤

h−1
n

hn∑
j=1

a2+δ
j

1/(2+δ)

⇐⇒

h−1
n

hn∑
j=1

a2
j

(2+δ)/2

≤ h−1
n

hn∑
j=1

a2+δ
j

⇐⇒

 hn∑
j=1

a2
j

(2+δ)/2

≤ hδ/2n

hn∑
j=1

a2+δ
j
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We then have

E∗[‖Λ−1/2
hn

Xiε
∗
i ‖2+δ] = ‖Λ−1/2

hn
Xiε̂i,kn‖2+δE[|W |2+δ]

=E[|W |2+δ]

 hn∑
j=1

λ−1
j 〈Xε̂i,kn , ψj〉

2

(2+δ)/2

≤ E[|W |2+δ]hδ/2n

∑
j=1

λ
−(2+δ)/2
j |〈Xiε̂i,kn , ψj〉|2+δ

≤E[|W |2+δ]21+δhδ/2n

hn∑
j=1

λ
−(2+δ)/2
j |〈Xi(ε̂i,kn − εi), ψj〉|2+δ

+ E[|W |2+δ]21+δhδ/2n

hn∑
j=1

λ
−(2+δ)/2
j |〈Xiεi, ψj〉|2+δ (4.14)

from Jensen’s inequality with form(
x+ y

2

)a
≤ xa + ya

2
, ∀a > 0, x, y ≥ 0.

Since ε̂i,kn − εi = −〈β̂kn − β,Xi〉, the first term in (4.14) is

hδ/2n

hn∑
j=1

λ
−(2+δ)/2
j |〈Xi(ε̂i,kn − εi), ψj〉|2+δ

=hδ/2n

hn∑
j=1

λ
−(2+δ)/2
j |〈X⊗2

i (β̂kn − β), ψj〉|2+δ = hδ/2n

hn∑
j=1

λ
−(2+δ)/2
j |〈β̂kn − β,X⊗2

i ψj〉|2+δ

≤hδ/2n

hn∑
j=1

λ
−(2+δ)/2
j ‖β̂kn − β‖2+δ‖Xi‖4+2δ.

Again, for δ ∈ (0, 2], note by Lyapunov inequality thath−1
n

hn∑
j=1

a2+δ
j

1/(2+δ)

≤

h−1
n

hn∑
j=1

a4
j

1/4

⇐⇒ h−1
n

hn∑
j=1

a2+δ
j ≤

h−1
n

hn∑
j=1

a4
j

(2+δ)/4

⇐⇒ hδ/2n

hn∑
j=1

a2+δ
j ≤ h(2+δ)/4

n

 hn∑
j=1

a4
j

(2+δ)/4

.

The second term in (4.14) is then

hδ/2n

∑
j=1

λ
−(2+δ)/2
j |〈Xiεi, ψj〉|2+δ ≤ h(2+δ)/4

n

 hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4

(2+δ)/4

.
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Thus,

n−δ/2E∗

[
n−1

n∑
i=1

‖Λ−1/2
hn

Xiε
∗
i ‖2+δ

∣∣∣X0

]

≤E[|W |2+δ]21+δ

n−δ/2hδ/2n

hn∑
j=1

λ
−(2+δ)/2
j

(n−1
n∑
i=1

‖Xi‖4+2δ

)
‖β̂kn − β‖2+δ (4.15)

+ E[|W |2+δ]21+δn−δ/2h(2+δ)/4
n n−1

n∑
i=1

 hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4

(2+δ)/4

.

The first term in (4.15) converges to zero in probability since n−δ/2h
δ/2
n
∑hn

j=1 λ
−(2+δ)/2
j = O(1),

E[‖X‖4+2δ] <∞, and ‖β̂kn − β‖
P−→ 0. In addition, since supj∈N λ

−2
j E[〈Xε,ψj〉4] <∞, by

Lyapunov inequality,

E


 hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4

(2+δ)/4
 ≤

E

 hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4

(2+δ)/4

≤ Ch(2+δ)/4
n ,

and hence, the second term in (4.15) is bounded as

E

n−δ/2h(2+δ)/4
n n−1

n∑
i=1

 hn∑
j=1

λ−2
j 〈Xiεi, ψj〉4

(2+δ)/4
 ≤ Cn−δ/2h(2+δ)/2

n .

Therefore, as n→∞, since n−δ/2h
(2+δ)/2
n → 0, then the second term converges to zero in

probability, which verifies (4.13).

Finally, by combining Slutsky’s theorem, Polya’s theorem [1, Theorem 9.1.4], a subsequence

argument [2, Theorem 20.5], Lemma 53, and (4.12), (4.13), we conclude the desired result.
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[12] Horváth, L., and Kokoszka, P. Inference for functional data with applications, vol. 200.
Springer Science & Business Media, 2012.

[13] Hsing, T., and Eubank, R. Theoretical foundations of functional data analysis, with an
introduction to linear operators, vol. 997. John Wiley & Sons, 2015.

[14] Liu, R. Y. Bootstrap procedures under some non-iid models. The annals of statistics 16, 4
(1988), 1696–1708.

[15] Mammen, E. Bootstrap and wild bootstrap for high dimensional linear models. The annals
of statistics 21, 1 (1993), 255–285.

[16] Mammen, E. Resampling methods for nonparametric regression. Smoothing and Regression:
Approaches, Computation, and Application (2000), 425–450.

[17] Wu, C.-F. J. Jackknife, bootstrap and other resampling methods in regression analysis. the
Annals of Statistics 14, 4 (1986), 1261–1295.

[18] Yeon, H., Dai, X., and Nordman, D. J. Bootstrap inference in functional linear
regression models with scalar response. accepted by Bernoulli Journal (2022).

[19] Yeon, H., Dai, X., and Nordman, D. J. Bootstrap inference in functional linear
regression models with scalar response under heteroscedasticity.



323

CHAPTER 5. GENERAL CONCLUSION

This dissertation presents different bootstrap methods for inference in functional linear

regression models (FLRMs). Central limit theorems for projection are studied as well, which are

fundamental results themselves and are basis to verify bootstrap validity.

In Chapter 2, we developed a residual bootstrap in FLRMs with scalar responses and random

functional regressors X. At a new target regressor X0, inference about projections 〈β,X0〉 or

future responses Y0 is often useful, but it is often complicated to obtain the sampling distributions

of regression estimators in FLRMs due to bias issues. We established theory to show that the

bootstrap captures these sampling distributions, even conditionally on the observed set of data

regressors {Xi}ni=1. In the bootstrap framework, the target regressor X0 may be treated as given

or unobserved, and bootstrap inference also extends to simultaneous inference at a collection

X0 ≡ {X0,l}ml=1 of regressors. In contrast, the simultaneous inference through normal theory-based

approaches alone is often intractable in practice. Numerical studies also showed that the

bootstrap outperforms intervals based on normal approximations when the latter applies. We also

provided a rule of thumb for choosing the tuning parameters involved in the bootstrap for

FLRMs, which was shown to exhibit good performance in simulations and was applied to a real

data illustration. In developing the bootstrap, we refined a foundational central limit theorem for

estimating projections 〈β,X0〉 in FLRMs.

In Chapter 3, we have developed a paired bootstrap (PB) for inference in FLRMs with general

heteroscedastic errors. As a preliminary result, a central limit theorem under heteroscedasticity

was established for estimated projections 〈β,X0〉 of the slope function β onto a new predictor X0,

along with appropriate scaling shn(X0) for self-normalization. Further, the projection of a

functional principal component estimator β̂hn onto a new predictor X0 can be successfully

approximated by the PB for improved inference in finite samples. As such estimators β̂hn in
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FLRMs involve truncation parameters hn, a modified PB estimator was proposed to allow valid

distributional approximations with the greatest possible flexibility in such truncation parameters

for bootstrap. In contrast, a naive implementation of PB (i.e., adapted directly from standard

multiple regression) can be shown to have less validity in application and becomes viable only for

much narrower configuration of truncation parameters. The PB approach was also adapted to

formulate new tests for assessing the orthogonality of the slope function to a subspace spanned by

pre-selected regressor curves. Numerical studies showed that the existing residual bootstrap can

fail under heterocedasticity, while PB can perform well in this context for interval estimation as

well as for testing. We suggested also a PB implementation based on bootstrap studentization

steps and provided a rule of thumb for selecting the two main tuning parameters (truncaton

levels) involved in the PB.

In Chapter 4, we developed a wild bootstrap (WB) as an alternative of PB in Chapter 3. The

proposed WB has computational advantages since it avoids repetition of spectral decompositions

in PB procedure. The bootstrap consistency in mild assumptions are provided. As future work,

the consistency of a bootstrap scaling should be verified to get valid inference when using a

studentized statistic. The confidence interval from WB should also be numerically demonstrated

by simulation studies; we expect that there are some large sample cases where WB might

outperform PB though this may not always be the case.

Potential extensions of interest might include bootstrap methods in other functional linear

models such as FLRMs with functional response or generalized functional linear models.
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