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Assessing Risk in Different Types of Supply Chains with a Dynamic Fault
Tree

Abstract

Supply chain risk analysis is an important field in operations management and logistics. Identifying those
risks, assessing the probability of those risks, and understanding how those risks change if mitigation
strategies are implemented contribute to better supply chain risk management. Reliability analysis has
a long tradition of assessing the probability of failure, and fault trees are typically used to understand
how the failure of individual components can lead to system failure within an engineered system. More
recently, fault trees have been proposed to assess the probability of a supply chain failure. Dynamic fault
trees, which are relatively new in reliability analysis, model the dependency among possible component
failure and how these probabilities change over time. This paper applies dynamic fault trees to model
supply chain risk for different types of supply chains. The dynamic fault tree allows a firm to model
complex interactions among suppliers and understand how those interactions impact its risk. The model
incorporates an information system that relays information about the status of suppliers to the firm, and
this information system could also fail. A Markov chain model and Monte Carlo simulation are used to
numerically assess supply chain risk as modeled by these dynamic fault trees.

Keywords: risk analysis, supply chain risk, dynamic fault tree, Markov chain, Monte Carlo simulation

1. Introduction

Supply chains are vulnerable to disruptions due to globalization, the complexity of supply chains, and
the frequency of disruptive events. Risks to a supply chain can stem from major disruptions, delays, fore-
cast uncertainty, intellectual property, procurement actions, inventory, and capacity constraints (Chopra
and Sodhi, 2004). Different events can threaten a supply chain, including internal sources (e.g., human5

errors, improper operations, communication problems) and external sources (e.g., natural disasters, ter-
rorism, economic difficulties). For example, at the beginning of 2018, the fast-food chicken chain KFC
apologized for running out of chicken in the United Kingdom (UK). Three weeks after the announcement,
nearly 3 percent of KFC’s restaurants in the UK remained closed. The source of problem was KFC’s
new approach for logistics. KFC switched from their prior logistics provider to DHL for warehousing10

and transportation and Quick Service Logistics for software for its information system. The collabora-
tion among these three entities to manage a complex supply chain failed, and the new software system
seemed to work incorrectly (Wilding, 2018). This example demonstrates the importance of being able
to anticipate and manage supply chain risk and recover from breakdowns and disruptions. Supply chain
risk management depends on having a comprehensive understanding and a thorough analysis of risks in15

a supply chain. Identifying and modelling risks can generate insight into the likelihood and severity of
different risks in the supply chain and lead to proactive strategies that mitigate various sources of risks
(Sodhi, 2014; Sheffi, 2005).

Supply chain risk management strategies usually include having multiple suppliers (Parlar and Perry,
1996; Currie, 1998), holding inventory, and responding quickly to problems (Christopher, 2000). Ac-20

curate inventory information can enhance supply chain performance (Fleisch and Tellkamp, 2005). An
information system also plays a significant role in a supply chain. The information system is a real-time
sharing and processing production information within a supply chain and can generate closer coordination
between partners in a supply chain (Wu et al., 2006). In 2000, a plant in Philips Electronics experienced
a fire. On of Philips’ major customers, Nokia, quickly received information about Philips’ difficulties via25

its computer. This ability allowed Nokia managers to respond quickly. A quality information system can
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increase supply chain flexibility (Gunasekaran and Ngai, 2004; Pereira, 2009; Williamson, Harrison, and
Jordan, 2004) and enable a firm to more quickly mitigate risk by adjusting its inventory or coordinating
different components (Yu, Yan, and Edwin Cheng, 2001; Lee, So, and Tang, 2000).

Several models have been proposed to help firms quantify the risk in their supply. More recently,30

fault trees have been used to estimate the probability of failure within a supply chain. Fault trees are
used to model the reliability of engineered systems by showing the logical relationship between the input
events and the output event. Sherwin et al. (Sherwin, Medal, and Lapp, 2016) develop a fault tree for
a low volume, high value supply chain to model the likelihood of a delay in material flow and evaluate
the benefits of different mitigation strategies. However, this type of static fault tree is unable to depict35

complex interactions between components in a supply chain in which those interactions may change over
time. For example, the information system may relay that one supplier has encountered production
difficulties to the firm’s production manager. The production manager could use that information to
manage the risk and avoid a disruption. This type of interaction between an information system, suppliers,
and the production manager cannot be represented by a static fault tree.40

A dynamic fault tree (DFT) has been recently introduced in reliability analysis in order to model
components whose probabilities of failure change over time and when those probabilities are dependent
on each other (Rao et al., 2009; Huang, Wang, and Liu, 2012). This paper extends the use of DFTs to
assess supply chain risk, specifically for two types of supply chains. One supply chain is a main-backup
supply chain in which a firm sources from a single supplier but can purchase from a backup supplier if the45

main supplier has production difficulties. The other type of supply chain is a mutual assistance supply
chain in which a firm sources from two suppliers simultaneously. Both types of supply chains rely on an
information system to relay information about the status of the supplier to the firm, but the information
system can also fail.

This paper makes several unique contributions for supply chain risk analysis. First, the DFT represents50

a new model for two types supply chains risk analysis. Second, the Markov chain based on the DFT
provides a mathematical model to calculate the expected time to failure of the supply chain as a function
of the individual components’ failure rates and repair rates. Finally, a Monte Carlo simulation is used to
obtain a full probabilistic description of the time to failure and delivery time of the supply chain.

The rest of this study is organized as following ways: Section 2 reviews the literature in supply chain55

risk analysis and DFTs. Section 3 introduces the DFT for the two types of supply chains. Section 4
presents an illustrative example, including the analytical and the simulation methods for numerically
calculating the failure rates and delivery times for the supply chains. Finally, conclusions are presented
in Section 5.

2. Literature Review60

The frequency of natural disasters and man-made accidents has increased during the past decades in
industrialized countries (Coleman, 2006). Natural disasters, terrorism, and other unpredictable events
increase the risk faced by globalized supply chains (Stewart, 1995; Brown et al., 2006; Chopra, Reinhardt,
and Mohan, 2007). In addition, firms face less extreme risks such as suppliers who fail to deliver according
to schedule or who have quality problems. Supply chain risk has been extensively studied in the literature,65

both from a qualitative and quantitative point of view. Qualitative studies often assess the likelihood of
a risky event according to different levels, such as a rare event and likely event (Raj Sinha, Whitman,
and Malzahn, 2004) and the severity of risk is often categorized from low severity to high severity
(Norrman and Jansson, 2004). Qualitative studies usually recommend strategies for mitigating supply
chain risk, such as postponement, speculation, hedging, and avoidance (Giannakis and Louis, 2011; Manuj70

and Mentzer, 2008; Giunipero and Aly Eltantawy, 2004; Christopher and Lee, 2004). Quantitative risk
analysis estimates the probability of risky events based on past data (Tuncel and Alpan, 2010; Kleindorfer
and Saad, 2005) and use mathematical models to determine the optimal strategies to manage and mitigate
risks (Tomlin, 2006; Klibi, Martel, and Guitouni, 2010). Models for supply chain risk management may
assess the value of holding additional inventory, purchasing from multiple suppliers, locating additional75

facilities, and moving production to another facility (Cui, Ouyang, and Shen, 2010; Schmitt and Singh,
2009; MacKenzie, Barker, and Santos, 2014; MacKenzie, Santos, and Barker, 2012).
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Tools used in reliability engineering may be applicable to supply chain risk management. Failure
Mode Effect Analysis and data mining have been suggested to identify and forecast risks in a supply
chain (Zsidisin and Ritchie, 2008). Aqlan and Lam (Aqlan and Lam, 2015) propose that fault trees could80

be used to assess supply chain risk, and Sherwin et al. (Sherwin, Medal, and Lapp, 2016) design a fault
tree to analyze the risk of delay in a low volume, high value supply chain. Low volume, high value supply
chains such as airline manufacturing and nuclear power plant construction often have unique requirements
that differ from mass-production supply chains. Using fault trees to model the risk in a low volume, high
value supply chain is particularly appropriate because the fault tree can be used to assess the probability85

that the high-value product is delayed. The model developed by Sherwin et al. (Sherwin, Medal, and
Lapp, 2016) is the only application that we know of in the literature that explicitly uses fault trees to
model supply chain risk.

Fault trees in reliability are usually static and assume constant and independent probabilities and do
not account for the sequence of failure events. In reality, the probability of a supplier failure may change90

over time, and one supplier’s delay can influence the likelihood that another supplier is delayed. Sherwin
et al. (Sherwin, Medal, and Lapp, 2016) do not consider the dependency and interplay between basic
events which may impact supply chain risk. In the modern supply chain, information sharing among
firms and other interactions occur that can mitigate risk, and a lack of information sharing can increase
the risk. A DFT can better model these interactions over time than a traditional static fault tree. DFTs95

have been used in reliability analysis for complex engineering systems or computer systems, such as an
aircraft power supply system (Huang, Wang, and Liu, 2012), a fault-tolerant flight control system (Yiping
and Minghua, 1999), and a floating offshore wind turbine (Zhang et al., 2016). DFTs have not been used
to model supply chain risk, and this paper presents a novel contribution by being the first to explore the
use of DFTs for supply chain risk and disruptions.100

There are many other commonly used methods for assessing the probability of failure when a system is
complex and changes over time, such as dynamic Bayesian networks (DBNs) and artificial neural networks
(ANNs). However, the DFT method has some unique advantages over other methods. ANNs are good to
model non-linear and self-organizing systems. ANNs typically require a good set of data whereas a DFT
might not require such an extensive set of data, and a DFT can be supplemented by eliciting information105

from experts. ANNs also contain hidden layers, which can be difficult to interpret and explain. Similar
to a DFT, the DBN can model dependency and failure sequences. In a DBN, each node represents a
certain meaning and is easily interpreted. Both DBNs and DFTs require knowledge of components in the
system and of the relationships and dependencies among components. The major difference between a
DFT and a DBN is that a DFT primarily relies on Boolean logic to model the failure relationships among110

components while a DBN uses conditional probabilities. It may be easier to understand and model the
relationships among components using Boolean logic (e.g., the supply chain fails if two of three suppliers
fail) than estimating conditional probabilities for all of the components. Overall, DFTs may be easier
and more intuitive and require less data than ANNs and DBNs in modelling the dynamic mechanisms of
a system (Zheng and Liu, 2009; Khakzad, Khan, and Amyotte, 2011; Angelopoulos and Cussens, 2008).115

Analytical and simulation methods can be used to solve DFTs and calculate the probability of failure.
Boudali et al. (Boudali, Crouzen, and Stoelinga, 2007) present the use of continuous-time Markov
Chains to solve DFTs. Because the number of states and transition probabilities increase exponentially
with the number of basic events, an efficient approximate Markov model has been suggested for DFTs
(Yevkin, 2015). Other analytical methods for DFTs focus on generating the minimal cut set or using a120

binary decision diagram (Tang and Dugan, 2004; Cui et al., 2013) or translating a DFT to a Bayesian
probabilistic network (Boudali and Duga, 2005; Montani et al., 2006). Since some DFTs are too complex
for these analytical methods, Monte Carlo simulation has also been used to solve DFTs (Rao et al.,
2009; Dai, Wang, and Jiao, 2011; Zhang and Chan, 2012). Simulations can enable more complex actions
such as testing and maintenance for components, allow for dependent events, and use non-exponential125

probability distributions. MatCarloRe (Manno et al., 2012) integrates a fault tree into a Monte Carlo
Simulink tool, but this tool only handles exponential, Weibull, and uniform distributions.

This article adopts the use of DFT from reliability analysis by modelling supply chain risk with a DFT.
The logic relationship among suppliers, inventory, and information systems is represented by dynamic
gates within the fault tree. We use Markov chains to analyze the DFT of supply chains. The failure130
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rate of each supply chain is calculated using the Markov chain. Monte Carlo simulation is then used to
calculate the probability the supply chain is late and to determine a probabilistic distribution over the
actual delivery time of the supply chain.

3. Model

A supply chain’s complexity can refer to the interconnectedness and interdependencies among compo-135

nents in a supply chain. A change in one element or component can induce changes in other components
within the supply chain (Christopher, 2012). Different factors, such as parallel interactions, diversity of
products, and the number of connections between nodes in the network, can increase complexity in a sup-
ply chain (Wilding, 1998; Vachon and Klassen, 2002; Choi, Dooley, and Rungtusanatham, 2001; Bozarth
et al., 2009). This paper considers that the supply chain consists of suppliers, an information system, and140

inventory. The complexity of this supply chain mainly derives from the interaction and connectedness
among these components. The interaction between different components in the supply chain changes
over time. DFTs are useful to model dynamic factors, such as interactions in the supply chain. Different
dynamic gates can be used to model different types of interactions. The model assumes that the different
components and the interactions among these components can be identified. In reality, especially with145

very complicated supply chains, identifying all of the interactions can be challenging and quantifying or
modelling these interactions may be even more difficult. If new suppliers or other components are added
to supply chain, unknown relationships and interactions may be introduced to the supply chain. For
example, the effect of one component’s failure on other components may not be known, and failures that
are assumed to be independent may actually be dependent.150

Based on many real supply chain cases, the main three relationships between multiple suppliers
are competitive supplier-supplier relationship, cooperative supplier-supplier relationship and co-opetitive
supplier-supplier relationship (Choi et al., 2002; Choi and Krause, 2006). This paper constructs different
DFTs for two typical supply chains by using five dynamic gates. The first type of supply chain repre-
sents a competitive relationship. If suppliers have a competitive relationship, they may not have direct155

communication and share information, and the firm chooses multiple suppliers. In this paper, a com-
petitive relationship exists in a main-backup supply chain in which a firm sources from a single supplier
but can source from a secondary supplier if the first supplier has problems. The second type of supply
chain represents a cooperative relationship. If the cooperative relationship exists between suppliers, the
suppliers will work together and have a close relationship. They will communicate with each other and160

share information. In this paper, a cooperative relationship exists in a mutual-assistance supply chain
in which a firm sources from two suppliers. Although both suppliers have requirements to deliver the
same product to the firm, if one supplier has problems, the other supplier may be able to increase its
production rate. The DFTs for both types of supply chains can represent a high-volume supply chain,
such as the food, clothing, or automobile industry, or a low-volume supply chain which produces one unit165

at a time, such as an airplane supply chain.

3.1. Main-Backup Supply Chain

A main-backup supply chain consists of a firm and a single or main supplier. The model assumes an
information system informs the firm about the status of the main supplier’s progress toward completing
its order for the firm. If the firm receives information that the supplier has production difficulties, the170

firm will contact a backup supplier who can potentially fulfill the order. The backup supplier may also
experience a failure or delay, however. The firm may also have inventory to mitigate the effects of
any supply disruption. Finally, the model also captures the possibility that the the information system
might fail in which case the firm would not be informed as quickly about the main supplier’s production
difficulties (Chopra and Sodhi, 2004).175

A static fault tree consists of AND and OR gates. A DFT uses AND and OR gates but also introduces
dynamic gates for modelling the reliability of a complex system over time. As depicted in Figure 1, the
dynamic gates are: (i) the priority AND (PAND) gate, (ii) the sequence enforcing (SEQ) gate, (iii) the
functional dependency (FDEP) gate, (iv) the spare (SPARE) gate and (v) the load sharing (LS) gate.
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Each of these gates and their uses will be described in conjunction with the model to assess the risk of a180

main-backup supply chain and the risk of a mutual-assistance supply chain.

Figure 1: Dynamic Gates

Figure 2: Dynamic Fault Tree for Main-Backup Supply Chain

This model has one main supplier, one backup supplier, an information system, and inventory in the
supply chain. Figure 2 depicts the DFT for this supply chain. The PAND gate captures the failure of
the output event when all basic events have failed in a pre-assigned order (from left to right in graphical
notation). In the supply chain model, if the information system fails (event A) before the main supplier185

fails (event B), the information system will not alert the firm of the main supplier’s difficulty. However,
if the main supplier fails while the information is functioning correctly, the information system will alert
the firm, who can source from the backup supplier. The PAND gate captures this relationship because
the PAND gate only induces failure if A fails before B, but the system functions if B fails before A.

The FDEP gate depicts the events that are dependent upon a trigger event. In the supply chain190

model, if the information system fails (event A) before the main supplier fails (event B), then the failure
information of the main supplier is not relayed to the firm or the backup supplier. In that case, the
backup supplier will fail to be activated. The backup supplier’s failure to activate (event C) would then
be triggered by the occurrence of A, whose relationship is represented by the FDEP gate. The SPARE
gate fails only when the number of surviving components is less than the minimum required (Manno195

et al., 2012). The SPARE gate models one or more principal components that can be replaced by one
or more redundant components. In this supply chain, the main supplier and backup supplier can be
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considered as redundant components. If both the main supplier and the backup supplier fail to produce,
the firm will not receive its supplies. The backup supplier can also fail even if the information system
works correctly. An OR gate connects the PAND gate, the FDEP gate, and the SPARE gate. The OR200

gate connects the two failure modes in the main-backup supply chain. First, if the information system
fails before the main supplier fails, the supply chain fails if the main supplier fails. The other failure
scenario occurs if both the main supplier and backup supplier fail.

This OR gate is connected to the failure of inventory (event D) via the SEQ gate. A firm may have
inventory or think it may have inventory which could be used if the firm fails to receive supply. The205

inventory may have quality problems, or the inventory could have been recently used without any record
being made that the inventory has been used. The SEQ gate represents that the OR gate and inventory
need to fail in a particular order. Failure in the supply chain occurs if the supply does not arrive and
then inventory is not available.

3.2. Mutual-Assistance Supply Chain210

Companies may have multiple suppliers to manufacture the same product simultaneously (Sculli and
Wu, 1981; Chung, Talluri, and Narasimhan, 2010). If one supplier fails, the other supplier may be able to
increase its production quantity or production rate. In a closely integrated supply chain, an information
system could relay information about the status of each supplier to the firm and perhaps between the
suppliers. We name this relationship a mutual-assistance supply chain. The unique relationship of these215

two suppliers is mutual help and simultaneous work. The mutual-assistance supply chain could also apply
to two facilities owned by a single firm, and each facility produces the same product. Since a single firm
directs both facilities, if one facility encounters production difficulties, the other facility could quickly be
alerted and increase its production. We assume that inventory is not available in the mutual-assistance
supply chain although the DFT could be extended to include inventory, similar to the main-backup supply220

chain.
The DFT for the mutual assistance supply chain is constructed according to different manufacturing

scenarios and the structure of supply chain. If both suppliers manufacture a single unit for a low volume
supply chain, the two suppliers work independently to manufacture the same product, but each supplier
might have a different due date. If both suppliers manufacture products for a high volume supply chain,225

the two suppliers might both be delivering several units of the same product at the same time.
The SPARE gate is used to model the relationship between the main supplier and the backup supplier

in the main-backup supply chain. In the previous model, the backup supplier will only start to meet
the firm’s order if the main supplier fails, but in the mutual-assistance supply chain, the two suppliers
work simultaneously. We use a LS gate, as shown in Figure 1, to represent the relationship between230

these two suppliers. The LS gate fails only when both basic events fail, but these basic events may be
probabilistically dependent. When one of basic event occurs (i.e., one of the suppliers fails), the likelihood
that the other supplier will fail may increase because the latter is increasing its production quantity or
production rate.

The model of the mutual-assistance supply chain considers two suppliers and an information system.235

In Figure 3, the DFT has one PAND gate with three basic events: the failure of the information system
(event A), the failure of one supplier (event B), and the failure of the other supplier (event C). Similar to
the main-backup supplier model, if the information system fails before either supplier fails, then the firm
will not be notified about a supplier’s production difficulties. Consequently, the other supplier will not be
instructed to increase its production quantity or rate. The PAND gate provides the relationship between240

the information system failure and the production disruption of one of the two suppliers. Since both
suppliers are working simultaneously, the two suppliers are connected via an OR gate. If the information
system has failed, the failure of only one supplier is necessary to include supply chain failure. The FDEP
gate is triggered by the information system’s failure, and the dependent events are the production of the
suppliers. Each supplier acts as a backup supplier to the other one, which is captured in the LS gate.245

An OR gate is used to connect the PAND gate, the FDEP gate, and the LS gate. The total failure of
the supply chain (the OR gate) occurs if both suppliers fail or if one of the two suppliers fails given the
information system fails first.
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Figure 3: Dynamic Fault Tree for Mutual-Assistance Supply Chain

4. Illustrative Example

As is typical with DFTs, we translate each of the DFTs described previously to a Markov chain model.250

The Markov chain can be analytically solved to calculate the expected time to failure (Verma, Srividya,
and Karanki, 2010). The Markov model is used to assess the impact of the components’ failure rates
and repair rates on the expected time to failure. Firms care about more than just the expected time to
failure in the supply chain, however, and they also want to know when their product will be delivered.
This illustrative example extends the Markov chain model to simulate the delivery time of the supply255

chain. Sensitivity analysis is performed on the parameters in order to demonstrate where the firm may
want to focus its attention in order to mitigate its risk.

4.1. Main-Backup Supply Chain

A continuous-time Markov chain demonstrates the transition between different states of the supply
chain based on the DFT. Since inventory is assumed to only be used if neither supplier can deliver on260

its order and does not impact the suppliers’ failure, inventory is excluded from the Markov chain. The
expected time to failure of a supply chain can be calculated from the corresponding Markov chain if the
time to failure and time to repair follow exponential distributions.

Figure 4 shows the Markov chain for the main-backup supply chain as derived from the DFT in
Figure 2. Each state in the Markov chain is defined by the three components (A is the information265

system, B is the main supplier, and C is the backup supplier) and whether each component is in an
operating or failed state. In the figure, an arrow pointing down indicates the component is in a failed
state. State 1 is the initial state of the main-backup supply chain in which all components operate. The
times to failure and times to repair for each of the three components follow an exponential distribution.
The failure rate is given by λX where X is the component A, B, or C, and the rate of repair is given by270

µX . The failure rate of the backup supplier C depends on whether or not the main supplier is operating.
We assume the failure rate of the backup supplier increases if the main supplier has failed because the
backup supplier has additional work to compensate for the failure of main supplier. If the main supplier
is in a failed state, the failure rate of the backup supplier is λC . If the main supplier is in an operating
state, the failure rate of the backup supplier is αλC where 0 < α < 1. Thus, state 1 transitions to state 4275

with failure rate αλC because the main supplier B is operating, but state 3 transitions to system failure
with failure rate λC because the main supplier has failed.
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Figure 4: Markov Chain of the Main-Backup Supply Chain

As described in the DFT, the failure state in the Markov chain occurs if (i) the main supplier fails
when the information system has already failed, or (ii) the main supplier and backup supplier both fail.
The first type of failure occurs in Figure 4 when the system is in state 2 (the information system has280

failed) and then the main supplier fails. The second type of failure occurs in the figure when the system
is in state 3 (the main supplier has failed) or state 6 (the information system and main supplier have
failed) and the backup supplier fails. The second type of failure also occurs when the system is in state 4
(the backup supplier has failed) and the main supplier fails. If the system is in state 5 (the information
system and backup supplier have failed) and then the main supplier fails, failure occurs for both reasons285

(i) and (ii). In this manner, the Markov chain replicates the failure modes depicted in the DFT.
Translating the DFT to the Markov chain and assuming exponentially distributed failure and repair

times enables us to mathematically describe the expected time to failure for the main-backup supply
chain. The expected time to failure given that the system is in state i is denoted by E[TF |at state i], and
the expected time to state i given that the next transition is from state j to state i is denoted by E[Ti|j-i].290

If the information system fails first, the system will transition from state 1 to state 2 with probability
λA

λA+λB+αλC
. The expected time to transition from state 1 to state 2 is E[T2|1-2]. Given the system is in

state 2, the expected time to failure is E[TF |at state 2]. Similarly, the probability the main supplier fails
first equals λB

λA+λB+αλC
, and the probability the backup supplier fails first equals αλC

λA+λB+αλC
. Given

the system transitions from state 1 to state i, the expected time to failure equals the expected time to295

transition from state 1 to state i, E[Ti|1-i], plus the expected time to failure given the system is in state
i, E[TF |at state i]. Given that all components are initially operating, the expected time from state 1 to
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the failure state, E[TF |at state 1], is as follows:

E[TF |at state 1] =
λA

λA + λB + αλC
(E[TF |at state 2] + E[T2|1-2])

+
λB

λA + λB + αλC
(E[TF |at state 3] + E[T3|1-3])

+
αλC

λA + λB + αλC
(E[TF |at state 4] + E[T4|1-4])

(1)

where

E[T2|1-2]) = E[T3|1-3] = E[T4|1-4]) =
1

λA + λB + αλC

Given that the system transitions from state 1 to another state, the expected time of that transition
equals the expected time that the system exits state 1. This expected transition time is the reciprocal of300

the sum of the failure rates.
Appendix A provides the expected times to failure given the system is in each one of the additional

states (states 2 through 6). Combining these five equations with equation 1 enables us to calculate
E[TF |at state 1]. The complicated closed-formula for calculating E[TF |at state 1] provides little insight
into the expected failure time, but a simple numerical example can demonstrate the impact of these305

parameters on the expected time to failure of the supply chain.
We assume that the mean time to failure of each component is 200 hours, and the mean time to repair

each component is 48 hours. Then λA = λB = λC = 1
200 , µA = µB = µC = 1

48 . We assume α = 0.5.
With these parameters, the expected time to failure equals 587 hours. Figure 5 depicts the sensitivity of
the expected time to failure for each parameter. Not surprisingly, the expected time to failure increases310

as the failure rate of each component decreases and as the repair rate of each component increases. As
α decreases, the failure rate of the backup supplier C decreases, and the supply chain’s expected time to
failure increases.

The expected time to failure is convex with respect to λA, λB , λC , and α. This means that the
marginal decrease in the expected time to failure is greater when the failure rates are small than when315

failure rates are large. The expected time to failure is concave with respect to µA, µB , and µC , which
signifies that the marginal increase in the expected time to failure is greater when the repair rates are
small than when the repair rates are large. This effect is most noticeable with respect to the failure
rates. The expected time to failure of a system where failure follows an exponential distribution equals
the reciprocal of the system’s failure rate. The expected time to failure of the supply chain exhibits a320

similar shape in relation to the failure rate of each component.
The supply chain’s expected time to failure is most sensitive to the main supplier’s failure rate λB .

This is reasonable because the failure of the supply chain only occurs if the main supplier has failed. The
expected time to failure is more sensitive to the backup supplier’s failure rate λC than the information
system’s failure rate λA. This is due in large part to the PAND gate in the DFT. For failure to occur325

due to the information system, the information system must fail before the main supplier fails. Since the
supply chain continues to operate if the information system fails after the main supplier fails, the effect
of the information system’s failure rate on the expected time to failure is limited.

The supply chain’s expected time to failure is equally sensitive to the repair rate for both the infor-
mation system µA and the main supplier µB . The expected time to failure is less sensitive to the backup330

supplier’s repair rate µC . The backup supplier’s repair rate has the smallest impact on the expected time
to failure because the backup supplier fails less frequently than either the information system or main
supplier. The failure rate for the backup supplier αλC is less than λA or λB .

A Monte Carlo simulation of the Markov chain model based on the DFT generates a full probability
distribution of the supply chain’s failure time, depicted in Figure 6. The simulation also does not consider335

inventory in supply chain. The simulation time is conducted for 86,400 hours or 10 years, during which
118 supply chain failures occur. The distribution is heavily skewed right, and approximately half of the
failures occur in less than 1000 hours. A small probability exists that the failure time will be greater than
2500 hours. This simulation demonstrates that although the expected time to failure is 587 hours, the
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Figure 5: Sensitivity of the Expected Time to Failure for Different Parameters in Main-Backup Supply Chain

expected time is heavily influenced by the right tail. The supply chain is very likely to fail well before340

the expected time to failure.
The simulation can also be used to calculate the delivery time for the product. Since inventory is

not delivered, we ignore the role of inventory in this section. We only consider the failure and repair of
suppliers and the failure of the information system. As discussed earlier, we measure the time to failure
and time to repair for the two suppliers and the information system. The standard delivery time is the
time it takes for the main supplier to deliver the product if the supplier does not fail. If a supplier fails
and then recovers, we assume the supplier can increase its rate of production in order to make up for
lost time. The parameter k, where 0 < k < 1, is used to represent the extent to which the supplier can
increase its rate of production after recovering from a failure. If a supplier fails or encounters production
difficulties, the actual delivery time is calculated by equation (2).

actual delivery time = time to failure + time to repair

+ k ∗ (standard delivery time− time to failure)
(2)

The backup supplier only starts working on the product if the main supplier fails. The delivery time of
the backup supplier includes the time when it is idle. The standard delivery time is set to 200 hours in
the simulation, which equals the mean time to failure of the main supplier, and k = 0.5. If the actual345

delivery calculated with equation (2) is shorter than the standard delivery time, we assume the actual
delivery time equals the standard delivery time. After simulating the supply chain for 10 years, Figure 7
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Figure 6: Histogram of Simulated Time to Failure of the Main-Backup Supply Chain

and Figure 8 depict the histograms of delivery time for the main and backup suppliers, respectively. If
the backup supplier is not used, the delivery time to the firm is the delivery time for the main supplier.
If the backup supplier is activated, the delivery time to the firm is the shorter delivery time for the main350

supplier and the backup supplier. The delivery time to the firm is depicted in Figure 9.
204 deliveries occur in the simulation. The mean delivery time to the firm is 209 hours, and the

standard deviation is 20 hours. Deliveries arrive late 23.0% of the time. The backup supplier is not
activated if the information system fails before the main supplier fails. The backup supplier is activated
in 55.0% of the deliveries, but the delivery time of the backup supplier is shorter than the main supplier’s355

delivery time in only 3.9% of the deliveries. Thus, although the backup supplier is frequently activated,
it usually is a waste of money for the firm because the main supplier recovers more quickly. Controlling
the failure of the main supplier is more important than engaging with the backup supplier.

4.2. Mutual-Assistance Supply Chain

A similar analysis is conducted for the mutual-assistance supply chain in which two suppliers are360

simultaneously manufacturing a product. The DFT in Figure 3 is translated to the Markov chain model
depicted in Figure 10. Each state in the Markov chain is defined by the three components and whether
each component is in an operating or failed state. In the figure, an arrow pointing down indicates the
component is in a failed state. A is the information system, and B and C are the two suppliers which
operate simultaneously. These components begin in an operational state, as depicted in state 1. As with365

the main-backup supply chain, the times to failure and times to repair for each of the three components
follow an exponential distribution where λA, λB , and λC are the failure rates and µA, µB , and µC are
the repair rates. If the information system does not fail, the failure rate of each supplier depends on
whether or not the other supplier is operating. We assume the failure rate of one supplier increases if the
other supplier has failed because that supplier has additional work to compensate for the failure of the370

other supplier. If one supplier is in a failed state, the failure rate of the other supplier is λX/β where X
is the supplier B or C and 0 < β < 1. Thus, state 1 transitions to state 3 with failure rate λB because
the suppliers B and C are operating, but state 4 transitions to system failure with failure rate λB/β
because supplier C has already failed. If the information system fails first, state 1 transitions to state 2
with failure rate λA. In this situation, once one supplier fails, the supply chain will fail. Thus, state 2375

transitions to system failure with failure rate λB + λC .
As described in the DFT, the failure state in the Markov chain occurs if both suppliers fail given the

information system operates, or if one of two suppliers fails given the information system fails first. The
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Figure 7: Simulated Actual Delivery Time of Main Supplier
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Figure 8: Simulated Actual Delivery Time of Backup Supplier
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Figure 9: Simulated Actual Overall Delivery Time of Supply Chain
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Figure 10: Markov Chain of the Mutual-Assistance Supply Chain

top arrow pointing into the failure in Figure 10 indicates that one of two suppliers has failed. Other
arrows pointing into the failure in Figure 10 indicates that the second supplier has failed. Similar to the380

main-backup supply chain, we can use the Markov chain to calculate the expected time to failure. This
requires writing the equation for the expected time to failure given that the supply chain is in state i for
each of 6 states in the supply chain. Given that all components are initially operating, the expected time
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from state 1 to the failure state, E[TF |at state 1], is as follows:

E[TF |at state 1] =
λA

λA + λB + λC
(E[TF |at state 2] + E[T2|1-2])

+
λB

λA + λB + λC
(E[TF |at state 3] + E[T3|1-3])

+
λC

λA + λB + λC
(E[TF |at state 4] + E[T4|1-4])

(3)

where

E[T2|1-2]) = E[T3|1-3] = E[T4|1-4]) =
1

λA + λB + λC

Given that the system transitions from state 1 to another state, the expected time of that transition385

equals the expected time the system exits state 1. This expected transition time is the reciprocal of the
sum of the failure rates. Appendix B provides the expected times to failure given the system is in each
one of the additional states (states 2 through 6). Combining these five equations with equation 3, we can
calculate E[TF |at state 1].

A numerical example demonstrates the impact of these parameters on the expected time to failure390

of the supply chain. The mean time to failure of each component is 200 hours, and the mean time to
repair for each component is 48 hours. Then λA = λB = λC = 1

200 and µA = µB = µC = 1
48 . We assume

β = 0.5. With these parameters, the expected time to failure equals 437 hours.
Figure 11 depicts the sensitivity of the expected time to failure for each parameter. The expected time

to failure increases as the failure rates of two suppliers decrease and as the repair rates of two suppliers395

increase. The expected time to failure is equally sensitive to the failure rates of two suppliers, λB and
λC , and equally sensitive to the repair rates of the two suppliers, µB and µC . Since the two suppliers
are identical entities within the supply chain and work simultaneously, their failure and repair rates have
identical impacts on supply chain’s expected time to failure. The expected time to failure increases very
rapidly if the supplier’s failure rate is less than 0.005. The expected time to failure is less sensitive to400

the information system’s failure rate λA and repair rate µA. The information system’s failure rate has
less impact than the suppliers’ failure rates because the supply chain does not fail if the information
system fails after one of the suppliers fails. As β increases, the failure rate of one supplier if the other
supplier has already failed decreases. Consequently, the supply chain’s expected time to failure increases
in approximately a linear fashion.405

A Monte Carlo simulation of the Markov chain model based on the DFT provides a full probability
distribution of the supply chain’s failure time. The histogram of the simulated failure time of the mutual-
assistance supply chain is shown in Figure 12. The distribution is skewed right. The time to failure is
heavily influenced by extreme values in the distribution. The supply chain is very likely to fail before the
expected time failure.410

Similar to the main-backup supply chain, we simulate the delivery time for the mutual-assistance
supply chain, and equation (2) is used to calculate the actual delivery time if a supplier has production
difficulties. The standard delivery time is set to 200 hours in the simulation, which equals the mean time
to failure of each supplier, and k = 0.5. Since each supplier is identical, the simulated delivery time of
one of the suppliers is shown in Figure 13. As with the main-backup supply chain, the overall delivery415

time to the firm is the minimum delivery time of the two suppliers, as depicted in Figure 14.
The mean of the actual delivery time is 202 hours, or about 8.5 days. The standard deviation is

9 hours. Although the parameters for the main-backup supply chain and the mutual-assistance supply
chain are the same, the mutual-assistance supply chain needs less time to deliver products since both
suppliers are working simultaneously in the mutual-assistance supply chain. Only 6% of trials in the420

mutual-assistance supply chain have late deliveries, compared with 23% in the main-backup supply chain.
Although both types of supply chain have a supplier failing about 1/3 of the time, the firm usually receives
its order by the due date in the mutual-assistance supply chain. In the main-backup supply chain, the
delivery is late almost 75% of the time in which the main supplier encounters a failure. The main-backup
supply chain has a larger probability of being late than in the mutual-assistance supply chain because425
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Figure 11: Sensitivity of the Expected Time to Failure for Different Parameters in Mutual-Assistance Supply Chain

the mutual-assistance supply chain has two suppliers working simultaneously.

5. Conclusions

This paper is the first to model and assess risk in a supply chain using DFTs. Two types of supply
chains are analyzed: the main-backup supply chain in which a backup supplier can be engaged in case the
main supplier has production difficulties and the mutual-assistance supply chain in which a firm sources430

from two suppliers simultaneously. The PAND gate, the FDEP gate, the SPARE gate, the LS gate, and
the SEQ gate enable the DFT to model the complex interactions among components in order to assess
the reliability of a system over time. Applying these concepts to a supply chain incorporates the use
of an information system that relays information about the main supplier to the firm. The models are
illustrated using Markov chains and Monte Carlo simulation for a low-volume supply chain. Some simple435

examples are presented to illustrate how a firm could use these models and simulations to quantify its
risk and mitigate its risk.

In this paper, a low-volume supply chain is a supply chain that manufactures a single product during
a period of time, such as an airplane or nuclear power plant components. It can take several months or
even longer time to manufacture such a product. High-volume supply chains, such as a food, clothing,440

or automotive supply chain, produce thousands of products in a short time. High-volume supply chains
are interested in delivering multiple units in time. The DFTs used in this paper can be extended to a
high-volume supply chain by assuming that the failure of supply chain occurs when multiple units are
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Figure 12: Histogram of Simulated Time to Failure of the Mutual-Assistance Supply Chain
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Figure 13: Histogram of Simulated Actual Delivery Time of One Supplier
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Figure 14: Histogram of Simulated Actual Overall Delivery Time of Supply Chain

not made or delivered. The Markov chain models and Monte Carlo simulations can also be used to solve
DFTs modelling the risk of a high-volume supply chain.445

Since this paper represents the first model of supply chain risk using DFTs, the supply chain models
in this paper are relatively simple. These simple models are presented in order to demonstrate how
the dynamic gates could be used within a fault tree to model supply chain risk and how this model
could be applied to different types of supply chains. Future research can extend the DFTs to more
realistic representations of supply chains with many more suppliers and multiple echelons. This will450

enable supply chain managers to assess the risk in those supply chains, understand how the risk changes
over time, explore the dependencies among different entities in the supply chain, and help them determine
the best risk management strategies. Second, the models in this paper assume exponential distributions,
and future research could explore the implications of using other types of distributions including Weibull,
uniform, and gamma distributions. Finally, in the case of a real supply chain, data could be used to fit455

distributions and understand the dependencies among suppliers.
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Appendix A. The Expected Time from Different States to Failure State in the Main-
Backup Supply Chain

E[TF |at state 2] =
λB

λB + αλC + µA
(E[TF |2-F])

+
αλC

λB + αλC + µA
(E[TF |at state 5] + E[T5|2-5])

+
µA

λB + αλC + µA
(E[TF |at state 1] + E[T1|2-1])

E[TF |2-F] = E[T5|2-5] = E[T1|2-1] =
1

λB + αλC + µA

(A.1)

460

E[TF |at state 3] =
λC

λA + λC + µB
(E[TF |3-F])

+
µB

λA + λC + µB
(E[TF |at state 1] + E[T1|3-1])

+
λA

λA + λC + µB
(E[TF |at state 6] + E[T6|3-6])

E[TF |3-F] = E[T1|3-1] = E[T6|3-6] =
1

λA + λC + µB

(A.2)

E[TF |at state 4] =
λB

λA + λB + µC
(E[TF |4-F])

+
λA

λA + λB + µC
(E[TF |at state 5] + E[T5|4-5])

+
µC

λA + λB + µC
(E[TF |at state 1] + E[T1|4-1])

E[TF |4-F] = E[T5|4-5] = E[T1|4-1] =
1

λA + λB + µC

(A.3)

E[TF |at state 5] =
λB

µA + λB + µC
(E[TF |5-F])

+
µA

µA + λB + µC
(E[TF |at state 4] + E[T4|5-4])

+
µC

µA + λB + µC
(E[TF |at state 2] + E[T2|5-2])

E[TF |5-F] = E[T4|5-4] = E[T2|5-2] =
1

muA + λB + µC

(A.4)

465
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E[TF |at state 6] =
λC

µA + µB + λC
(E[TF |6-F])

+
µB

µA + µB + λC
(E[TF |at state 2] + E[T2|6-2])

+
µA

µA + µB + λC
(E[TF |at state 3] + E[T3|6-3])

E[TF |6-F] = E[T2|6-2] = E[T3|6-3] =
1

µA + µB + λC

(A.5)
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Appendix B. The Expected Time from Different States to Failure State in the Mutual-
Assistance Supply Cahin470

E[TF |at state 2] =
λB + λC

λB + λC + µA
(E[TF |2-F])

+
µA

λB + λC + µA
(E[TF |at state 1] + E[T1|2-1])

E[TF |2-F] = E[T1|2-1] =
1

λB + λC + µA

(B.1)

E[TF |at state 3] =
λC/β

λA + λC/β + µB
(E[TF |3-F])

+
λA

λA + λC/β + µB
(E[TF |at state 5] + E[T5|3-5])

+
µB

λA + λC/β + µB
(E[TF |at state 1] + E[T1|3-1])

E[TF |3-F] = E[T5|3-5] = E[T1|3-1] =
1

λA + λC/β + µB

(B.2)

E[TF |at state 4] =
λB/β

λA + λB/β + µC
(E[TF |4-F])

+
λA

λA + λB/β + µC
(E[TF |at state 6] + E[T6|4-6])

+
µC

λA + λB/β + µC
(E[TF |at state 1] + E[T1|4-1])

E[TF |4-F] = E[T6|4-6] = E[T1|4-1] =
1

λA + λB/β + µC

(B.3)

475

E[TF |at state 5] =
λC/β

µA + λC/β + µB
(E[TF |5-F])

+
µB

µA + λC/β + µB
(E[TF |at state 2] + E[T2|5-2])

+
µA

µA + λC/β + µB
(E[TF |at state 3] + E[T3|5-3])

E[TF |5-F] = E[T2|5-2] = E[T3|5-3] =
1

µA + λC/β + µB

(B.4)
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E[TF |at state 6] =
λB/β

µA + λB/β + µC
(E[TF |6-F])

+
µC

µA + λB/β + µC
(E[TF |at state 2] + E[T2|6-2])

+
µA

µA + λB/β + µC
(E[TF |at state 4] + E[T4|6-4])

E[TF |6-F] = E[T2|6-2] = E[T4|6-4] =
1

µA + λB/β + µC

(B.5)

480
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Tuncel, Gonca and Gülgün Alpan (2010). “Risk assessment and management for supply chain networks:
A case study”. In: Computers in industry 61.3, pp. 250–259.

Vachon, Stephan and Robert D Klassen (2002). “An exploratory investigation of the effects of supply
chain complexity on delivery performance”. In: IEEE Transactions on engineering management 49.3,
pp. 218–230.595

Verma, Ajit Kumar, Ajit Srividya, and Durga Rao Karanki (2010). Reliability and safety engineering.
Vol. 43. Springer.

Wilding, Richard (1998). “The supply chain complexity triangle: uncertainty generation in the supply
chain”. In: International Journal of Physical Distribution & Logistics Management 28.8, pp. 599–616.

— (2018). KFC: an important MBA case study. https://www.cips.org/en/supply-management/600

opinion/2018/february/kfc-an-important-mba-case-study/.
Williamson, Elizabeth A, David K Harrison, and Mike Jordan (2004). “Information systems develop-

ment within supply chain management”. In: International Journal of Information Management 24.5,
pp. 375–385.

Wu, Fang et al. (2006). “The impact of information technology on supply chain capabilities and firm605

performance: A resource-based view”. In: Industrial Marketing Management 35.4, pp. 493–504.
Yevkin, Olexandr (2015). “An efficient approximate Markov chain method in dynamic fault tree analysis”.

In: Quality and Reliability Engineering International.
Yiping, Yao and Cheng Minghua (1999). “The application on dynamic fault tree analysis for dissimilar

fault-tolerant flight control system”. In: Digital Avionics Systems Conference, 1999. Proceedings. 18th.610

Vol. 1. IEEE, 3–B.
Yu, Zhenxin, Hong Yan, and TC Edwin Cheng (2001). “Benefits of information sharing with supply chain

partnerships”. In: Industrial management & Data systems 101.3, pp. 114–121.
Zhang, Peng and Ka Wing Chan (2012). “Reliability evaluation of phasor measurement unit using Monte

Carlo dynamic fault tree method”. In: IEEE Transactions on Smart Grid 3.3, pp. 1235–1243.615

Zhang, Xu et al. (2016). “Floating offshore wind turbine reliability analysis based on system grading and
dynamic FTA”. In: Journal of Wind Engineering and Industrial Aerodynamics 154, pp. 21–33.

Zheng, Xiaoping and Mengting Liu (2009). “An overview of accident forecasting methodologies”. In:
Journal of Loss Prevention in the process Industries 22.4, pp. 484–491.

Zsidisin, George A and Bob Ritchie (2008). “Supply Chain Risk: A Handbook of Assessment”. In: Man-620

agement, and Performance. Springer, New York.

24

https://www.cips.org/en/supply-management/opinion/2018/february/kfc-an-important-mba-case-study/
https://www.cips.org/en/supply-management/opinion/2018/february/kfc-an-important-mba-case-study/
https://www.cips.org/en/supply-management/opinion/2018/february/kfc-an-important-mba-case-study/


Highlights: 
 Dynamic fault tree allows a firm to model complex interactions among suppliers 
 Markov chains and simulations can assess risk modeled by dynamic fault trees  
 The e�ect of the information system’s failure rate on total failure is limited 
 Reducing failures of the main supplier is more important than the backup supplier 
 Main-backup supply chain is more likely to be late than mutual-assistance one 
 


