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1. PACKMAN: PACKing and Motion Analysis 
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8. NMR: Nuclear Magnetic Resonance 
9. PDB: Protein Data Bank 
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15. RBP: Ribose Binding Protein 
16. RdRp : RNA-dependent RNA-polymerase 
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Abstract 

The functioning of proteins requires highly specific dynamics, which depend critically on 

the details of how amino acids are packed. Hinge motions are the most common type of 

large motion, typified by the opening and closing of enzymes around their substrates. 

The packing and geometries of residues are characterized here by graph theory. This 

characterization is sufficient to enable reliable hinge predictions from a single static 

structure, and notably, this can be from either the open or the closed form of a structure.  

This new method to identify hinges within protein structures is called PACKMAN. The 

predicted hinges are validated by using permutation tests on B-factors. Hinge prediction 

results are compared against lists of manually-curated hinge residues, and the results 

suggest that PACKMAN is robust enough to reproduce the known conformational 

changes and is able to predict hinge regions equally well from either the open or the 

closed forms of a protein. A group of 167 protein pairs with open and closed structures 

has been investigated Examples are shown for several additional proteins, including 

Zika virus non-structured (NS) proteins where there are 6 hinge regions in the NS5 

protein, 5 hinge regions in the NS2B bound in the NS3 protease complex and 5 hinges 

in the NS3 helicase protein. Results obtained from this method can be important for 

generating conformational ensembles of protein targets for drug design. PACKMAN is 

freely accessible at (https://PACKMAN.bb.iastate.edu/). 

Keywords:  protein hinge prediction; alpha shape; zika virus hinges; flexible peptide 

linkers  
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Introduction 

Proteins are key players in cellular activities, and their dynamics is usually critical 

for their function. Structure-based drug design, however, often uses only a single 

structure, despite the fact that most proteins have important function-related dynamics, 

with a range of different conformations, sometimes with even very large-scale 

conformational changes.  Understanding the dynamics of proteins is important for the 

comprehension of function and mutations, as well as signaling and transport pathways. 

It is essential to know the range of conformational states available to a protein, 

especially the important larger global movements, in order to define a protein’s complex 

functional dynamics. Globular proteins are themselves characterized by high packing 

densities, which are non-uniform in nature - with high packing densities in some parts 

and sometimes lower densities other places. The moving parts can be rigid densely 

packed structural communities that move to function [1,2]. The overwhelming 

conclusion from a broad range of dynamics studies is that the motions are, for any given 

protein, highly restricted and relatively limited types of motions.  

Multiple conformational states and motion trajectories have been used to develop 

mechanistic insights into protein motions and their associated functions. Protein motions 

at the atomic level can, in principle, be extracted from the various conformational 

snapshots of the proteins obtained from separate structure determinations by X-ray 

crystallography, NMR or Cryo-EM, but even with the more than 100,000 structures in 

the Protein Data Bank (PDB) [3], there are still not sufficient numbers of closely related 

structures to provide a full set of such forms, and probably never will be, to specify fully 

the dynamics of all proteins.  The available structures are thus usually supplemented by 
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computed dynamics with approaches such as molecular dynamic (MD) simulations or 

elastic network models (ENM). Nonetheless, the PDB is a rich source of protein 

conformational states which was used previously by Mark Gerstein and co-workers to 

develop the Database of Macromolecular Motions (MolMovDB) [4] and to compare the 

experimental structures to computed dynamics [5–10]. The MolMovDB provides useful 

classifications of the different types of motions in proteins. In that database, the most 

common types of motions are hinge motions and shear motions. (Hinges motions are 

rotations around some axis.) These hinge motions account for 45% of the motions 

collected in MolMovDB, which is, in turn, comprised of 31% domain hinge motions and 

14% fragment hinge motions [11]. Shear motions involve a sliding movement between 

two parts of a protein. Hinge motion is simpler and involve rotations of one part of a 

protein against another (typically two domains) and these motions can be characterized 

by a rotation around a line between two planes. Such motions usually involve multiple 

residues that undergo significant conformational changes. The overall protein motions 

can also be more complex, such as combinations of hinge and shear motions. Protein 

motions can occur on relatively long timescales, which makes it challenging, or 

expensive, to obtain them from MD simulations.  What is needed are reliable predictions 

of protein motions, and these should lead to a deeper understanding of how proteins 

function on a fundamental level. Here we tackle the problem of identifying hinges in 

single static protein structures, based on their geometries. 

 Hinge motions are characterized by relatively few large changes in torsion 

angles of the protein backbone, changes in hydrogen bonding and changes in the 

packing interactions across the hinge. To qualify as a hinge-motion, the residues 
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involved should have lower overall constraints from their specific packing arrangement. 

Therefore, when a chain exhibits a hinge motion in the region connecting two structural 

domains, each domain may behave as a rigid body whereas the hinge residues 

themselves act as a more flexible region that allows these rigid domains to undergo 

significant motion, relative to one another, even though the local motion around the 

hinge will be small. Ligand or substrate binding can drive these motions. Other factors 

such as pH, temperature and salt concentration can stabilize one or the other 

conformation, either intrinsically or by creating a higher free energy barrier between the 

two conformers of the. In addition, there is the possibility that exothermic reactions can 

exert ballistic driving forces directly causing conformational hinge motions [12]. 

Hinges from open to closed forms can often be identified as one of the important 

normal modes in the elastic network models; however, ENMs are usually unable to 

predict the hinge motions from closed to open forms [13–17].  A similar problem exists 

for molecular dynamics simulations because the closed forms are usually more stable 

than open forms. Hinge prediction methods such as Translation Libration Skew Motion 

Determination (TLSMD) [18],  partition protein chains into parts that are modeled as 

rigid bodies undergoing TLS (Translation/Libration/Screw) vibrational motions in order to 

predict the flexible regions. StoneHinge [19] uses network analysis of individual protein 

structures for hinge prediction; FlexOracle [20] uses an energy-based approach where it 

computes the energy of the fragments compared with the undivided protein, and 

predicts hinges by minimizing this quantity; and HingeMaster [21] is a meta-tool 

(integration of tools) that uses various approaches such as optimization algorithms for 

residue selection, normal modes, graph theory, free energy and sequence information. 
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Moreover, there are alignment and fragment superposition-based methods such as 

FlexProt [22], HingeFind [23] and DynDom [24], both provide good hinge prediction 

accuracy. However, all these tools require multiple conformers (such as open and 

closed) to predict hinges with high precision, with the exception of FlexOracle, which 

incidentally recommends caution while using metal-bound structures.  

The approach here utilizes protein packing, graph theory and statistical 

approaches to detect the hinge regions in a protein. Figure 1 shows the overall schema 

for the approach. Delaunay tessellationsand alpha shapes are used to estimate the 

packing profile of an input protein structure, which is then converted into a graph model 

to determine the hinge regions. Predicted hinge regions are cross validated by using 

permutation test statistics. The present method allows a user to predict hinges using a 

single structure; either open or closed, of any given protein.  It has several tuning 

parameters and also generates p-value statistics for each predicted hinge. The 

software, PACKMAN, is an open source Python-based package, which can be freely 

accessed at (https://PACKMAN.bb.iastate.edu/). Users can also access the source 

code and the instructions at (https://github.com/Pranavkhade/PACKMAN). 

 

Results and Discussion 

Protein Packing and B-Factors  

Protein flexibility is an inherent global property of a protein structure and usually 

is the basis for its functional mechanism that almost universally requires internal 

motions. B-factors which result from local 'uncertainty', i.e., either from insufficient data 

to define an atom position or from the presence of multiple conformations of the protein. 
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And, they can also result from combinations of multiple factors. However, for sufficiently 

high-resolution crystal structures, the B factors are more likely originate only from the 

local flexibility of the protein. Absence of strong electron density, which is reflected in 

the B-factors, often indicates conformational flexibility and dynamics of an atom. 

Therefore hinges, being relatively more flexible, might be expected to have distinctively 

larger B-factors when compared to those form more rigid parts of the structure.  

Alpha-shape theory and Delaunay tessellations have been widely implemented 

to understand protein packing, estimate geometric properties, and model their 

structures. Moreover, they have been widely applied to study the relationship among 

protein atoms as well as among amino acids. Ban et al., 2006 implemented Delaunay 

tessellations to predict protein-protein interaction interfaces [25]. Delaunay tessellations 

are useful for modelling protein packing because the atomic positions have such a high 

level of apparent geometric irregularity that the calculations are highly unlikely to yield 

non-unique solutions. Delaunay tessellations can be non-unique if and only if more than 

four points in the given set form the same circumsphere with no points inside it. 

Moreover, even if non-unique solutions occur, PACKMAN results are unaffected 

because the alpha shape created using Delaunay tessellations are converted into a 

graph where all points in the tessellations are connected to one another. Our results 

indicate that the use of protein packing and B-factors provide an efficient way to predict 

hinges. PACKMAN uses Delaunay tessellations and Alpha shapes to predict the hinge 

residues in a protein, which is further validated by using permutation test statistics using 

B-Factors.  
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Hinge prediction parameters 

PACKMAN uses three distinct parameters (alpha values, clustering parameter (k) 

values, and a minimum hinge length parameter) to predict hinge sites in a protein. 

Hinge predictions are carried out for 167 protein structure pairs for alpha values ranging 

from 0 to 5 in 0.1 step increments (a total of 51 different alpha values) [Table S1-S7]. 

The predicted hinges are compared for overlaps and other statistics. Our result shows 

that an increase in the value of alpha increases the number of predicted hinges (Fig 2A) 

while the total number of hinge residues remains approximately the same (Fig 2B), 

generally leading to the prediction of multiple small hinges. This indicates that using 

large alpha value tends to predict sequentially smaller and fragmented hinges whereas 

using small alpha values leads to the prediction of larger hinges.  Fig. 2C further 

supports this since the number of overlaps of predicted hinges between the open and 

closed conformation states increases as the overlaps become discontinuous and match 

with multiple hinge fragments and are counted as separate overlaps.  

Additionally, PACKMAN uses a clustering parameter to generate k clusters from 

the eccentricity values obtained from the alpha shape graph. This parameter takes an 

integer value as input (N) and separates the gradient of eccentricity values into N 

distinct clusters. Amino acids within the cluster having the lowest eccentricity value are 

reported as a hinge region. Our results indicate that changing the cluster parameter 

does not change the position of predicted hinge region however larger values may lead 

to increased numbers of false negatives (Fig 3). Due to the low packing density (low 

eccentricity) of protein hinge regions and the relatively high packing density (high 

eccentricity) of the connected domain regions, use of the cluster parameter value 2 
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results in the prediction of true hinge regions with the highest accuracy (discussed 

below). Furthermore, PACKMAN uses a minimum hinge length (number of amino acid 

residues) parameter to set the minimum length for predicted hinge regions. This 

parameter is a filter that allows a user to add a hinge length constraint to the prediction 

whenever the approximate hinge length is known. Predicted hinge regions below the 

minimum hinge length parameter value are discarded.  In this study, we have used a 

minimum hinge length of 4 residues. 

 

Hinge predictions for structure set   

Here, hinge predictions have been carried out first for 167 pairs of two different 

conformations of the same protein, one open and one closed, collected in one of our 

previous studies [6]. The present results achieve consistency between the predicted 

hinges when either the open and closed conformational states are used, for all 167 

structure pairs [Table S1], which demonstrates that PACKMAN is robust to 

conformational change. This is an important finding since for conventional ENMs and 

MD hinge motions are easily found to move from open to the closed structure but 

simulations often are unable to show motions from the closed structure towards the 

open structure.  This result mean that that it is now possible to use these computed 

hinges to reliably predict the ways in which a closed protein opens. Moreover, it 

indicates that hinge prediction with PACKMAN can be carried out using any 

conformational state of a protein to generate a set of conformations along the open-

closed axis in either direction. Next, we show some specific examples of the results of 

applying PACKMAN. 
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Inorganic Pyrophosphatase (PPases) (Family II) 

PPases are a family of essential enzymes engaged in the regulation of inorganic 

pyrophosphate (PPi) cellular concentration and maintaining various biosynthetic 

reactions such as nucleic acid and protein synthesis in cells [26]. PPases are mainly 

found in bacterial and archaeal lineages where many of them are human pathogens. 

The PPase molecular mechanism is regulated by rotation of the C-terminal domain at its 

hinge by about 90 degrees, exposing the active site for substrate binding [27]. 

PACKMAN predicts hinge residues to be 180-210 from the closed form and residues 

185-195 from the open form (Fig 4A) with p-values of 0.008 and 0 respectively, and 

clearly, these two predictions have significant overlap and are in close correspondence. 

These residues are located between the C-terminal and N-terminal domains at locations 

appropriate for rotation between the open and closed conformations. X-ray 

crystallography identified amino acids 190 in the closed conformation and 188 in the 

open conformation as parts of the hinge region [27], validating the prediction of 

PACKMAN. These results also show the hinge from the closed conformation to be 

slightly shorter than those from open conformations, but such differences are not found 

to be consistent for other proteins. 

 

Rat DNA Polymerase β (Polβ) 

Polβ undergoes a large conformational change centered around a hinge to 

regulate DNA base excision repair and a variety of other cellular processes including 

meiosis [28]. PACKMAN predicts residues 79-146 as a hinge region in the closed form 
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and residues 86-146 in the open form (Fig 4B). In the closed form, two hinges are 

predicted with p-values of 0 and 0.0002. However, since there was only one residue the 

gap between the two predicted hinges, these may be considered to be one continuous 

hinge. In the open form, the p-value of the predicted hinge was 0. Here p-value of 0 

indicates that out of 10,000 permutations, the approach found no cases of the 

randomized hinge and non-hinge sample B-factor mean differences being greater than 

the differences in the mean B-factor values of the PACKMAN predicted hinge and non-

hinge regions. X-ray crystallography indicates amino acid residues 88-151 to be part of 

the "finger domain" that regulates the motion of the 8-kD domain towards the Palm 

domain to form a channel [29], and this overlaps well with the PACKMAN predicted 

hinge region at residues 79-146  from the closed and 86-146 from the open forms. 

 

Calmodulin (CaM)  

CaM is a small protein of 148 amino acid residues that belongs to a class of 

ubiquitous proteins having similar structures characterized by their distinctive helix-loop-

helix Ca2+-binding motifs, the so-called EF hands [30]. CaM mediates regulation of 

Ca2+-dependent signaling pathways through distinct protein domain movements 

centered on a hinge region. PACKMAN predicts a hinge at amino acid residues 68-97 

for the closed form and amino acid residues 62-86 for the open form (Fig 4C). X-ray 

crystallography results have reported amino acid residues 74-82 as a “flexible linker” 

region [31] which lies within the predicted hinge regions obtained from both the open 

and the closed forms by PACKMAN. 
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Human Immunodeficiency Virus (HIV) Protease 

HIV-1 protease is an effective therapeutic target and has been widely used for 

effective antiviral drug design against HIV-1 infection. Models built using substrate and 

inhibitor complexes of HIV-1 protease mutants indicate the hinge regions in the 

dimerization region (residue 5–10), the active site (residues 25–27), the flap (residues 

45–55), and the substrate cleft (residues 80–90), which display the smallest fluctuations 

in their mean positions and coordinate the essential motions of the protein 

[32]. PACKMAN predicts the first hinge region for the closed form to be residues 21-33 

and from the open form as residues 21-32, with the second hinge region in the closed 

form at residues 83-88 and for the open form at residues 82-90 (Fig 5A). PACKMAN 

was able to detect two hinges correctly for both the closed and the open conformations.  

The third hinge is not predicted. 

 

Uracil-DNA Glycosylase (UDG) 

UDG plays an important role in restoring the chemical integrity of DNA by flipping 

uracil nucleotides out of the DNA base stack using a "pinch-push-pull" mechanism [33]. 

UDG undergo a small conformational change in the open and the closed forms to 

regulate its functional dynamics. PACKMAN predicts three different hinges in the closed 

form (137-144, 151-162 and 190-205) and three hinges in the open form (136-143, 152-

162 and 189-205) (Fig 5B). Hinge residue region 136-143 are adjacent to the hinge 

residues 129-132 which has been identified as a remote “hinge” region implicated in the 

dynamics of clamping of UDG [34]. UDG amino acid residues 145-148 were named as 

the recognition and catalytic sites [35] and PACKMAN predicts appropriately adjacent 
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hinges on both sides in open as well as closed forms. Moreover, Phe158 that was 

identified as an important site for nucleotide flipping [36] is part of the second hinge 

region predicted by PACKMAN.  

 

Ribose Binding Protein (RBP) 

RBP is a bifunctional soluble receptor found in the periplasm of Escherichia coli. 

RBP assists in the transfer of ribose across the cytoplasmic membrane by the 

interaction of various ligand binding proteins with the ribose high affinity transport 

complex. RBP contains four amino acid segments (38-41, 64-73, 90-100, 129-138), 

which are loops that form flaps over the substrate binding cavity [37]. Segment 109-118 

forms a helix on the opposite side of the molecule and is located immediately adjacent 

to one of the three hinges of RBP [37]. Furthermore, amino acids 223-231 form a helix 

and a loop segment near the C-terminus of the protein [37]. PACKMAN predicts three 

hinge regions for both the open and the closed conformations (Fig 5C). The hinge 

predicted for the closed form is (102-110) and for the open form (100-112) that lies 

adjacent to the helical segment 109-118, which may help to regulate its flexibility and 

resultant substrate binding. Furthermore, the hinge predicted in the closed form (129-

145) and the open form (135-148) partly overlap the loop at 129-138. A third hinge 

region is predicted in the closed form (233-240) and the open form (232-244) that lies 

adjacent to the C-terminus loop segment (223-231). Our result indicates that PACKMAN 

results are consistent for both the open and the closed form and it is useful for 

determining the hinge regions that may play a vital role in regulating the loop dynamics 

associated with substrate binding activity. 
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Zika virus hinges 

 Zika virus (ZIKV), a mosquito-borne flavivirus, has emerged since 2013 as a 

significant public health concern. This was earlier reported to cause mild disease; 

whereas recent evidence suggests its more serious association with neuropathy, 

neonatal microcephaly, Guillain-Barré syndrome [38] and cases of eye dysfunction, 

hearing deficits, and impaired growth. The Zika genome encodes a polyprotein, which 

undergoes co- and post-translational processing by the viral and host proteases to 

produce structural (capsid, pre-membrane and envelope) and NS proteins (NS1, NS2A, 

NS2B, NS3, NS4A, NS4B, NS5) [39]. ZIKV NS2B-bound NS3 protease and NS5 

polymerase have been important targets for drug discovery.  

Discovery of hinges can facilitate the discovery of new drugs that can bind at 

sites to block the important motions of the viral proteins critical for its function such as 

replication and immune evasion. Nonstructural protein 5 (NS5) is essential for viral 

replication and participates in IFN antagonism, allowing the virus to evade the host 

immune system [40]. It contains a methyl transferase (MT) domain that connects to the 

fingers subdomain of the RNA-dependent RNA-polymerase (RdRp), assisting the NTP 

channel of the RdRp to extend outwards to help in RNA synthesis [41]. PACKMAN 

predicts 5 hinges (307-323, 337-367, 450-483, 568-599 and 601-606) [Table 1, Fig 6A] 

with p value = 0 and a sixth hinge (741-748) with p value 0.09. NS5 MT interaction with 

the finger’s subdomain of the RdRp is regulated by hydrophobic contacts among MT 

residues Pro113, Leu115 and Trp121 and Tyr350, Phe466 and RdRp residues Pro584 

[41]. These residues are located in close proximity to the 307-323 and 337-367 hinges 
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predicted by PACKMAN (Fig 6A). Zhao et al., 2017 reported that residue segments 

312–323 and 742–750, located in the back of the RdRp Motif G, take on two distinct 

conformations, indicating their role in regulating interactions between MT and the 

fingers subdomain of RdRp [41]. PACKMAN predicts residue position 307-323 and 741-

748 as hinges with p-values of 0 and 0.09, respectively, indicating a strong consistency 

with the reported results.  

 NS2B-NS3 protease plays an essential role in viral replication by cleaving the 

complete viral poly-protein into separate proteins [42]. This behavior of NS2B-NS3 

protease makes it an ideal antiviral drug target to inhibit viral replication and growth. The 

mechanism associated with ZIKV NS2B mediated NS3 protease activation is poorly 

understood and requires further study. ZIKV NS2B bound NS3 protease adopts a 

relaxed conformation in the absence of the poly-protein substrate or an inhibitor 

molecule [43]. The C-terminal loop, comprising residues 69-87, of NS2B adopts a 

unique conformational state in between the relaxed apo form and the inhibitor-bound 

state [43], indicating the presence of an adjacent flexible region. In a closely related 

species Dengue virus (DENV), upon substrate binding, the NS2B residues at positions 

63 - 88 move around a hinge at residue 63 [44]. PACKMAN predicts a hinge region (60-

69) in NS2B protein (Fig 6B), indicating that the hinge residues 60-69 motion may 

regulate the movement of NS2B residue segment 63-88. PACKMAN also predicts 4 

other hinges (22-25, 34-40, 131-140, 145-152) (Fig 6B) in the NS3 protease. Moreover, 

additional conformational differences in the ligand-bound form are observed in NS3 

protease where, in the absence of ligand, a sharp kink at residue 151 leads residues 

152-158 to pack between β-strand 123-126 and β-strand 147-150 [43]. A fourth hinge 
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region (145-152) in NS3 protease is predicted by PACKMAN that includes residue 151 

that is adjacent to the 152-167 loop. Since the conformational state of residues 152-167 

is key for maintaining enzymatic activity, hinge four might be an important drug target 

for inhibiting ZIKV replication.  

NS3-helicase (NS3-Hel) is present in the C-Terminal region of the NS3 protein 

and is associated with viral genome replication and RNA synthesis [45]. Inactivation of 

NS3-Hel in Dengue virus type 2 (DENV 2) virus has been shown to inactivate the 

replication of virus [46], making it element important for drug design. A recent study 

reported a β-hairpin (Res 431-444) in Zika virus NS3-Helicase that extends from domain 

2 to connect with domain 3 [45], which has been proposed to facilitate the separation of 

the RNA strands of double-stranded RNA in unwinding [47]. PACKMAN predicts 5 hinge 

regions (289-297, 425-434, 440-456, 473-494 and 508-517) (Fig 6C) in NS3-Hel. Our 

results suggest that the β-hairpin (431-444) is adjacent to the second and third hinge 

regions, suggesting it could also be a drug targetable region n. Moreover, these two 

hinges can explain how the proposed mechanism uses the β-hairpin as a ‘wedge’ to 

separate the strands of RNA. Moreover, the remaining three hinges lie in close 

proximity to the β-hairpin and these may assist in regulating details of the motion for this 

β-hairpin.  

 

The utility of PACKMAN hinge prediction 

 Hinge regions are central for the regulation of various large-scale and functionally 

important cooperative motions of a protein. Hinges predicted using PACKMAN can help 
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in speculating possible global motion of a protein. Hinge regions predicted in annexin 

(Fig 7A) indicate that its global motion can be mediated by the movement of blue and 

green domains independent of the red domain motion across the hinge axis, which is 

consistent with the protein bending motion shown by Cregut et al. [48]. Moreover, the 

hinge region predicted in calmodulin (Fig 7B) can help in understanding its global 

motion. The transition of calmodulin from closed to open form can be regulated by the 

movement of the blue and red domains across this predicted hinge region. Such 

motions can depend on the arrangement of multiple hinges in a structure. In theory, the 

more hinges the more collectively restricted will be the degrees of freedom for individual 

hinges. Calmodulin contains only one hinge region between the blue and red domain, 

allowing several degrees of freedom for the global motion of this particular hinge; 

whereas in annexin, there are two hinge regions between two domains, leading to fewer 

degrees of freedom and relatively more restrictions on its motion. Identifying multiple 

hinge regions can help to understand the degrees of freedom associated with any given 

protein.  

Although there have been various approaches implemented to predict hinge 

residues, the results were shown to vary substantially when different structures in 

different conformational states were used. The present approach shows remarkable 

success in yielding prediction consistency when using different conformational states. 

PACKMAN can be used for predicting single as well as multiple hinge regions within a 

protein using any conformational state, yielding only minimal differences in the results. 

The results are not overly sensitive to the few parameter values. However, from the Fig 

2 and 3, we can infer that the best approach to use this tool is to start with low values of 
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both parameters (α and k) and explore if the results are changing as the values are 

increased. PACKMAN implements a simple and purely geometric method to identify 

hinge residues, so it can potentially be applied across a wide variety of different 

molecule types such as RNA or saccharides and is not restricted only to proteins.  

Results obtained for three proteins having a single hinge (Inorganic 

Pyrophosphatase, Rat DNA polymerase β and Calcium-sensing protein calmodulin) and 

three proteins having multiple hinges (HIV Protease, Uracil-DNA Glycosylase, and 

Ribose Binding Protein) that were shown above indicate that PACKMAN can be useful 

for estimating single as well as multiple hinges in a protein. PACKMAN predicts the 

hinge residues of Zika virus NS5 protein that is likely to regulate it's MT and finger 

subdomain interactions. Furthermore, PACKMAN is able to predict the hinge region 

associated with the conformational transition of NS2B-NS3 protease from its relaxed 

apo form to the inhibitor bound form. Moreover, PACKMAN is able to detect the NS3-

helicase hinge residues involved in the separation of the RNA strands that mediate viral 

RNA synthesis. Our results suggest that PACKMAN can be a generally useful tool for 

understanding molecular mechanisms as well as for providing variant conformations to 

produce ensembles of drug target conformations. Identifying the mechanism associated 

with the protein conformational transitions from closed to open has been a challenging 

problem, which is overcome with PACKMAN. However, with the flexible hotspots 

(hinges) identified by using PACKMAN, it should be possible to improve simulation 

methods such as MD and elastic network model to provide the mechanistic insights 

needed to understand many more protein functions.  
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Methods and Materials 

PACKMAN pipeline 

 The PACKMAN approach is described in Fig 1. PACKMAN first generates a 

Delaunay tessellation [49] using backbone atoms of the input protein structure. Alpha 

shapes [50] are then computed as a subset of Delaunay tessellations in order to obtain 

a concrete defined shape of the protein. The resultant alpha shape is then converted 

into a graph model to determine the network eccentricity of each backbone atom, i.e., its 

importance. Amino acids having the lowest eccentricity scores are clustered as hinge 

region by PACKMAN. A permutation test is performed to estimate the significance of a 

hinge prediction by using B-factor of the corresponding backbone atoms. Details of 

each step are provided below.  

  

Data collection 

167 pairs of matched structures taken from the PDB are considered, each pair 

having two distinct conformational states [Table S1] [6]. In addition, proteins from the 

ZIKV NS5 (PDB ID: 5M2Z), NS2B bounded NS3 protease (PDB ID: 5H4I) and NS3-

Helicase (PDB ID: 6MH3) and Homo sapiens annexin protein (PDB ID: 1AXN) 

structures were downloaded from the PDB.  

 

Delaunay Tessellations  

Given any set of points, a Delaunay tessellation can be built for any four points 

given that there is no single point lying inside the circumsphere formed by the four 

points under consideration. The circumdiameter of the circumspheres formed from the 
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Delaunay tessellations can range from 1 to the maximum length between any two points 

under consideration. Delaunay tessellations of protein backbone atoms are constructed 

by computing their convex hull. The input points are lifted to a paraboloid by adding the 

sum of squares of the atom coordinates to the n+1 convex hull. 

 

 

Alpha Shapes 

An alpha shape is a subset of the Delaunay tessellations such that each unique 

tessellation forms a circumsphere with a radius less than the alpha parameter. Each 

tessellation in the alpha shape is a polyhedron with triangular faces that represents the 

packing of the associated atoms. The vertices of the alpha shape are the atoms having 

a strictly positive accessible surface area (ASA > 0 Å). For a deeper insight into the 

alpha shape theory, refer to Alpha shape method articles such as [50]. An introduction 

to these models is also available from Poupon [51].  

 

Network Eccentricity  

Eccentricity is defined here as the largest distance of a given node from all other 

nodes in the graph. The importance of a node in a graph is estimated by the reciprocal 

of its eccentricity value. The eccentricity provides a measure of the dominance of a 

node within a network [52]. Here, the tessellations within the alpha shape are converted 

into a graph model using the networkx Python module, so that if a tessellation exists, 

the corresponding protein 3D coordinates of protein backbone atoms are treated as 

vertices with all to all connections (edges). Vertices of the graph model are clustered on 
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the basis of their eccentricities using k-means clustering. The cluster having the lowest 

eccentricity value is used to assign the points of a hinge region. If a backbone atom of 

an amino acid exists in the cluster with lowest eccentricity value, PACKMAN reports it 

as a hinge region. From these predicted hinge regions, the sequence identities are 

considered to identify individual hinges – to determine whether clusters include single or 

multiple hinges.  

 

 

 

Permutation Test 

     Eccentricity based clustering approach allows us to use the local packing 

densities within a protein to predict hinge residues. Using a B-factor dependent 

validation of predicted hinge residues adds a dynamic component of a protein molecule 

to the pipeline. Therefore, a permutation test is conducted to estimate whether the B-

Factors of the predicted hinge and non-hinge regions are significantly different from one 

another. This step analyzes whether the dynamic behaviors of predicted hinge regions 

are significantly different from the predicted non-hinge regions. The eccentricity derived 

from the graph and B-factors have no relation or confounding factors in the analysis, 

therefore, having a significant p-value from the permutation test is a meaningful 

indicator of a true hinge. 

A permutation test is applied for the strong null hypothesis testing that there is no 

difference between the mean B-factor of hinge backbone atoms and mean B-factor of 

the non-hinge backbone atoms. Here let  be the B-factors of hinge 
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backbone atoms in a segment of length n and  be the B-factors of 

the non-hinge backbone atoms of length m for a protein predicted by PACKMAN. Here 

N = n+m is the total number of backbone atoms or protein with theoretical t statistics 

, 

where,  is the mean B-factor value of hinge backbone residues,  is the mean B-factor 

of non-Hinge backbone residues,  is the pooled variance and  is the degrees of 

freedom. Here pooled variance represents combined variances of both hinge and non-

hinge backbone atom B-factor values. The resulting permutation t-statistic is 

, 

where,  is the mean of hinge region random permuted B-factors,  is the mean of 

non-hinge region random permuted B-factors and  is the pooled variance of the 

permuted samples. In this work, we use a critical p-value cutoff  for 

validating true hinges.  

 

Data Visualization.   

Data visualization is carried out with PyMol [53]. 
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Figure Legends 

 

Figure 1. Method of hinge identification in molecul ar structures– the PACKMAN 

pipeline flowchart. 

Figure 2. Effect of alpha value on hinge prediction s for 167 proteins, each in two 

conformations. A) Here the Y-axis shows the number of hinges per pair of protein 

conformational states for a given values of alpha, B) Here the Y-axis shows the average 

number of amino acid residues within the predicted hinge regions for a given value of 

alpha, C) Here the Y-axis shows the average number of overlapping hinge regions 

predicted using closed and the open conformational state of 167 proteins, and D) Here 

the Y-axis shows permutation p-values of the predicted hinges for the given values of 

alpha. Figures A) and C) indicate that as the value of the alpha increases, the number 

of predicted hinges and the overlaps increase. This also points towards the possibility 

that increases in the value of alpha may lead to the prediction of fragmented hinge 

regions. This is further supported by B) which indicates that the average length of the 

hinges decreases as alpha increases. Figure D) shows that the p-values remain similar 

for most values of alpha. The spike in p-value on the left occurs because of a small 

number of cases. 

Figure 3. Impact of changing the clustering paramet er (k). (A) Effect of k on the 

number of hinges (with p<0.05). This indicates that for larger values, hinges may be 

overlooked, and also that higher values lead to smaller hinges. (B) The effect of k on the 

hinge length. We observe that the length of the hinge decreases as the k is increased 

which further indicates that smaller hinges will be observed. 
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Figure 4. The single hinges (blue) identified in: a ) Inorganic pyrophosphatase 

(Family II), b) RAT DNA Polymerase Beta and c) Calm odulin.  

Figure 5. Multiple hinges identified in:  a) HIV pr otease, b) Uracil-DNA glycosylase 

and c) Ribose binding protein. 

Figure 6. Multiple hinges in zika virus proteins sh own as colored backbone 

elements a) NS5, b) NS2B bound NS3 protease and c) NS3 helicase. 

Figure 7: The hinge regions (shown in gray) are imp ortant for the movement of 

protein domains. Here the domains are defined as the area before, after and in 

between the hinges predicted by PACKMAN in the closed and open conformational 

state. Predicted hinges in: (A) Annexin (PDB ID: 1AXN) where there are two hinges, 

one between the red domain (Residues 100-242) and the blue domain (Residues 1:84) 

and another between the red domain and the green doman  (Residues 260-324). (B) 

Calmodulin (PDB ID: 1PRW) there is only one hinge connecting the red (Residues 1:70) 

and the blue (97:148) domains.  



 
Protein Name PDB ID Hinge Position p-value 
NS5 5M2Z 1 H-307 - N-323 0 

2 T-337 - P-367 0 
3 S-450 - R-483 0 
4 A568 - D-599 0 
5 R-601 - V-606 0 
6 R-741 - W-748 0.097 

NS2B-NS3 Pro 5H4I 1 G-21 - V-25 0.0 
2 Q-96 - V-100 0.046 
3 G-133 - I-139 0.001 
4 V-146 - G-151 0.001 

NS3-HEL 6MH3 1 F-289 - A-297 0 
2 D-425 - I-434 0 
3 V-440 - R-456 0 
4 Y-473 - L-494 0 
5 L-507 - A-517 0.008 

Table 1. Hinges predicted for PACKMAN with alpha = 2.8. Hinge 6 in NS5 has a p-
value > 0.05 however, this hinge has been noted as an important flexible region in the 
literature. 
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Hinge #1 a : 2.6
Predicted Hinge Residues GLU-180 : LEU-211

p-value 0.001

Hinge #1 a : 3.0
Predicted Hinge Residues LEU-185 : THR-195

p-value 0.0

PDB ID: 1K20 (Closed)

PDB ID: 1K23 (Open)

(A) INORGANIC PYROPHOSPHATASE (FAMILY II)

Hinge Residue Overlaps Closed: LEU-187 : GLY-190
Open:   LEU-185 : GLY-188

Hinge #1 a : 3.0
Predicted Hinge Residues THR-79 : PHE-146
p-value 0.0

Hinge #1 a : 2.8
Predicted Hinge Residues GLU-86 : PHE-146
p-value 0.0

PDB ID: 2BPG (CLOSED)

PDB ID: 1BPD (OPEN)

(B) RAT DNA POLYMERASE BETA

Hinge Residue Overlaps GLU-86 : PHE-146

Hinge #1 a : 2.8
Predicted Hinge Residues MET-71 : GLY-96

p-value 0.0005

Hinge #1 a : 2.8
Predicted Hinge Residues ASP-64 : GLU-84

p-value 0.0

PDB ID: 1PRW (CLOSED)

PDB ID: 1EXR (OPEN)

(C) CALMODULIN

Hinge Residue Overlaps 1. MET-72 : LYS-77
2. ASP-80 : GLU-84



 

Hinge #1 a : 2.8
Predicted Hinge 
Residues

GLU-21 : 
VAL-32

p-value 0.0

Hinge #2 a : 2.8
Predicted Hinge 
Residues

ASN-83 : 
ASN-88

p-value 0.0

Hinge #1 a : 3.4
Predicted Hinge 
Residues

GLU-21 : 
LEU-33

p-value 0.0

Hinge #2 a : 3.4
Predicted Hinge 
Residues

VAL-82 : 
LEU-90

p-value 0.0

PDB ID: 4HVP (CLOSED)

PDB ID: 3HVP (OPEN)

(A) HIV-1 PROTEASE

Hinge #2 Residue
Overlaps

ASN-83 : 
ASN-88

Hinge #1 Residue
Overlaps

GLU-21 : 
VAL-32

Hinge #1 a : 2.8

Predicted Hinge 
Residues

VAL-137 : 
GLN-144

p-value 0.0005

Hinge #3 a : 2.8

Predicted Hinge 
Residues

ASN-151 : 
GLN-161

p-value 0.0

Hinge #2 a : 2.8

Predicted Hinge 
Residues

GLY-190 : 
ALA-205

p-value 0.0

Hinge #1 a : 2.8

Predicted Hinge 
Residues

ASP-136 : 
GLY-143

p-value 0.0003

Hinge #3 a : 2.8

Predicted Hinge 
Residues

GLN-152 : 
ARG-162

p-value 0.0002

Hinge #2 a : 2.8
Predicted Hinge 
Residues

HIS-189 : 
ALA-205

p-value 0.0

PDB ID: 1SSP (CLOSED)

PDB ID: 1AKZ (OPEN)

(B) URACIL-DNA GLYCOSYLASE

Hinge #2 Residue
Overlaps

GLY-190 : 
ALA-205

Hinge #1 Residue
Overlaps

VAL-137 : 
GLY-143

Hinge #3 Residue
Overlaps

GLN-152 : 
GLN-161

Hinge #1 a : 2.8
Predicted Hinge 
Residues

ALA-102 : 
LYS-110

p-value 0.0003

PDB ID: 2DRI (CLOSED)

PDB ID: 1URP (OPEN)

Hinge #2 a : 2.8
Predicted Hinge 
Residues

LEU-129 : 
PHE-145

p-value 0.0 Hinge #3 a : 2.8
Predicted Hinge 
Residues

ILE-233 : ILE-
240

p-value 0.0189

Hinge #1 a : 3.0
Predicted Hinge 
Residues

HIS-100 : 
ALA-112

p-value 0.0
Hinge #2 a : 3.0
Predicted Hinge 
Residues

THR-135 : 
ALA-148

p-value 0.0

Hinge #3 a : 3.0
Predicted Hinge 
Residues

THR-232 : 
GLY-244

p-value 0.0
(C) RIBOSE BINDING PROTEIN

Hinge #2 Residue 
Overlaps

THR-135 : 
PHE-145

Hinge #3 Residue 
Overlaps

ILE-233 : 
ILE-240

Hinge #1 Residue 
Overlaps

ALA-102 : 
LYS-110



 

Type of Region Residues
Experimentally 
annotated 
flexible region

312 : 323

Type of Region Residues
Experimentally 
annotated 
flexible region

742 : 750

Type of Region Residues
PPACKMAN 
predicted hinge

307 : 323

Type of Region Residues
PPACKMAN 
predicted hinge

741 : 748

(A) NS5 (5M2Z)

Type of Region Residues
Experimentally 
annotated 
flexible region

63 : 88

Type of Region Residues
Experimentally 
annotated 
flexible region

147-150
152-167

Type of Region Residues
PPACKMAN
predicted hinge

145 : 152

Type of Region Residues
PPACKMAN
predicted hinge

60:69

(B) NS2B-NS3 Pro (5H4I)

Type of Region Residues
Experimentally 
annotated 
flexible region

431 : 444

Type of Region Residues
PPACKMAN
predicted hinge

440 : 456

Type of Region Residues
PPACKMAN
predicted hinge

425 : 434

(C) NS3-HEL (6MH3)



 

(A) 

(B) 



 



• Protein packing is used to identify hinge locations in protein structures. 

• Works well for any conformational state, open/closed, with hinge loci overlapping. 

• Useful for drug design to develop an ensemble of conformations. 

• Useful for studying the global motions and molecular mechanisms of any 

structure. 

• Tested and applied to over 300 structures, including zika virus proteins. 



All authors participated in all aspects of the project – conception, execution, and writing and editing. 


