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I. INTRODUCTION 

Electrolytic solutions have been the subject of scientific 

research for nearly a century, but in spite of considerable 

progress, a fundamental understanding of elaotrolyteo at mod­

erate and high concentrations remains one of the major unsolved 

problems in physical chemistry. Part of the difficulty in 

developing a comprehensive theory of electrolytes has been the 

lack of an adequate theory describing complex liquids such as 

water. Mostly due to the success of the Debye-Huckel theory 

(1), a popular model for the solvent has been one in which the 

solvent is regarded as a structureless continuum with a cer­

tain dielectric constant. This simplified model is generally 

quite successful in treating the concentration dependence of 

many properties of dilute solutions. However, it has become 

increasingly evident that the structure of the solvent and 

specific ion-solvent interactions have a significant influence 

on the properties of a concentrated electrolyte and on many 

properties of an electrolyte at infinite dilution. Indeed, a 

significant proportion of the recent research effort is devoted 

to an elucidation of the structure of water and the nature of 

ion-water interactions (2). 

The lanthanide, or rare-earth, elements offer a unique 

opportunity to study ion-solvent interactions of highly charged 

ions as a function of ionic radius. The rare-earths form a 

number of salts that are readily soluble in water, and under 
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normal conditions, the rare-earth ion exists only in the plus 

three valence state. Chemically, the tripositive rare-earth 

ions resemble each other, and in aqueous media, tend to hydro-

lyze and associate with the anion much less than other tri­

positive ions. This lack of appreciable hydrolysis and asso­

ciation for many of the rare-earth salts in dilute solution 

makes a theoretical analysis of the experimental data a great 

deal easier. Furthermore, the increasing nuclear charge 

across the rare-earth series exerts a greater attraction for 

the electron shells as the atomic number increases, causing a 

gradual decrease in ionic radius with increasing atomic number 

of the tripositive rare-earth ion. It is this property that 

allows a critical study of ion-solvent interactions as a 

function of ionic radius. 

Thermodynamic and transport properties of aqueous rare-

earth salts have been extensively investigated by Spedding and 

co-workers over the past fifteen years (3,4,5,6), These 

studies have shown that for properties that can be measured 

accurately in dilute solutions, the data are generally compat­

ible with interionic attraction theory. One possible excep­

tion may be the concentration dependence of the apparent molal 

volume, as investigated by Ayers (7), where significant devia­

tions from the simple limiting law were found at low concen­

trations, However, the uncertainty in the value of the theo­

retical limiting slope at the time and the lack of data for 

the rare-earth salts in the middle of.the series prevented 
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definite conclusions from being drawn. 

Perhaps the most interesting result, of these investiga­

tions is the irregular behavior shown by many of the solution 

properties when plotted as a function of ionic radius. In 

particular, the apparent molal volumes at infinite dilution 

determined by Ayers do not show the expected regular decrease 

as the radius of the rare-earth ion decreases. Rather, the 

apparent molal volumes show the expected decrease from La to 

Nd, and from Er to Yb, but the data indicate the apparent 

molal volumes for Er"*"^ and Nd*^ are nearly the same. It was 

suggested by Spedding and Ayers (7) that this irregular change 

of apparent molal volumes at infinite dilution could result 

from a change in the water co-ordination number of the rare-

earth ions. The data of Saeger and Spedding (6) indicate that 

the apparent molal volumes of the rare-earth ions at infinite 

dilution decrease from La to Nd, increase from Nd to about Gd, 

and decrease from Gd to Yb. According to Saeger and Spedding, 

their results suggest a gradual change in preferred co-ordina-

tion number takes place over a number of rare-earths near the 

middle of the series. 

The apparent molal volume, is defined by, 

= (1.1) 

where V is the total volume of a solution composed of ng moles 

of solute and n̂  ̂ moles of solvent having a molar volume, V°. , 

The partial molal volume, Vg, may be calculated from Equation 



1.1 and expressed as, 

(1.2) 

and since the molality, m, is directly proportional to ng, 

The apparent molal volume at infinite dilution, 0^, is iden­

tically equal to the partial molal volume at infinite dilu­

tion, Vg. The partial molal volume at infinite dilution may 

be visualized as the change in volume of a nearly infinite 

quantity of solvent upon addition of one mole of solute, and 

therefore depends on the intrinsic volume of the ions and ion-

solvent interactions. During the course of this research, 

apparent molal volume data were obtained for dilute aqueous 

solutions of PrOlg, SmClj, GdClj, TbOlj, DyOlj, H0OI3, and 

ErOlj. Chapter IV of this thesis presents these experimental 

results and a study of the apparent molal volumes of dilute 

rare-earth chlorides and nitrates in aqueous solution. This 

investigation was an extension of earlier work by Spedding and 

Ayers (7) and by Saeger and Spedding (6), The partial molal 

volumes at infinite dilution obtained by Saeger and Spedding 

were the result of an empirical extrapolation from relatively 

high concentrations ^d may contain large extrapolation 

errors. Therefore, it seemed advisable to employ the experi­

mental method of Spedding and Ayers to measure the apparent 

molal volumes of a number of dilute rare-earth chloride solu­

(1.3) 

,0 
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tions spanning the rare-earth series. More accurate values of 

the partial molal volume at infinite dilution could then be 

obtained. Furthermore, the additional data obtained in this 

research may be expected to be helpful in a further study of 

the concentration dependence of the apparent molal volumes of 

dilute aqueous rare-earth salts. ' 

The second part of this thesis is an extension of earlier 

work on transport properties (3,6) to include viscosity meas­

urements. In particular, the relative viscosities of aqueous 

solutions of LaOlj, NdOlj, SmClj, TbOlj, DyOlj, H0CI3, and 

ErOlg were measured, at 25°C.,as a function of concentration 

from 0.05 molal to saturation. 

The coefficient of viscosity, or simply viscosity, of a 

fluid is a measure of the internal resistance to flow exhib­

ited by a fluid whenever there is relative motion between 

adjacent layers of the fluid. The definition of viscosity is 

perhaps best illustrated by considering two parallel plates 

separated by a fluid, one of the plates being held stationary 

and the other plate being in motion at a constant velocity in 

its own plane. If S is the force per unit area required to 

maintain the velocity of the moving plate, and dv/dx is the 

velocity gradient in the fluid in a direction perpendicular to 

the plates, the viscosity of a Newtonian fluid, Tj » may be 

defined by 

77 = S/(dv/dx). (1.4) 

The absolute unit of viscosity is the poise, defined as the 
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viscosity of a material which requires a shearing force, S, of 

one dyne per square centimeter to maintain a velocity gradient 

of one centimeter per second between two parallel plates one 

centimeter apart. When discussing the viscosity behavior of 

solutions, it is useful to consider the relative viscosity, 

defined as the absolute viscosity of the solution divided 

by the absolute viscosity of the solvent at the same tempera­

ture. 

The relative viscosity of dilute electrolytes has proven 

to be an effective method for studying ion-solvent interac­

tions (8,9). Also, there is some reason for expecting the 

role of ion-ion Interactions to be of minor Importance in 

determining the relative viscosity of an electrolyte at high 

concentrations (10). Therefore, viscosity data for aqueous 

rare-earth salts might be expected to yield valuable informa­

tion concerning ion-water Interactions at high concentrations, 

as well as in dilute solutions. 
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II. ELECTROLYTIC SOLUTION THEORY 

The objective of a theory of electrolytes is the calcula­

tion of macroscopic properties of the electrolyte as a func­

tion of temperature, pressure, and composition, which involves 

a Btatlstloal analysis of the interaotlons between large num­

bers of ions and solvent molecules. The theoretical calcula­

tion of the activity coefficient is of particular interest, 

since the laws of thermodynamics make it possible to calculate 

other thermodynamic functions once the expression for the 

activity coefficient is known. This chapter will consider the 

theoretical calculation of the activity coefficient and re­

lated thermodynamic properties. In particular, emphasis will 

be placed on a discussion of the assumptions involved rather 

than on a detailed mathematical derivation of the equations. 

The theoretical analysis of a transport property proceeds from 

the same basic ideas employed in the activity coefficient 

problem, except for the added complications of a non-equilib-

rium system (11,12). Therefore, the limitations that will be 

assigned to the theoretical expression for the activity coef­

ficient apply for the non-equilibrium theories as well, 

A. Early Concepts of Electrolytes 

The basic difference between a solution of an electrolyte 

and that of a non-electrolyte is that an electrolytic solution 

contains ions, or charged particles. This Important distinc­

tion was recognized as early as 1887 by Arrhenius (13). In an 

attempt to explain the existing experimental data on electro­
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lytes, Arrhenius proposed that when an electrolyte dissolves, 

an equilibrium exists in solution between the undissociated 

solute molecules and the ions which arise from dissociation of 

the solute. According to the Arrhenius theory, the properties 

of an electrolyte may be explained by using the law of mass 

action to calculate the equilibrium between ions and solute 

molecules. Although the Arrhenius theory was quite successful 

in explaining the properties of what are now called weak elec­

trolytes, it soon became obvious that the dissociation theory 

alone could not account for the properties of strong electro­

lytes like sodium chloride (14). J. j. van Laar (15) was the 

first to suggest the importance of the long range coulombic 

force between ions in explaining the characteristic properties 

of electrolytes. It was shortly realized (16,17,18) that the 

behavior of strong electrolytes in dilute solution could be 

qualitatively explained by assuming complete dissociation and 

considering the effect of the interionic coulombic forces. In 

1912, Milner (19) attempted a quantitative solution of the 

electrolyte problem, assuming complete dissociation and con­

sidering only coulomb forces. By graphical methods he 

obtained a result that was essentially correct for dilute 

solutions. However, Milner*s mathematical treatment was 

extremely involved, and his equations were not easily applied 

to experimental data. 

B. The Debye-Hvickel Theory 

The present theory of electrolytes was born in 1923 when 

Debye and Huckel (1) derived a simple expression for the activ­
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ity coefficient of a very dilute electrolyte, Debye and Huckel 

approached the problem by considering the mean distribution of 

charge around a given central ion in the solution, which may 

be called the "ionic atmosphere" of the central ion. Through 

use of this "ionic atmosphere" concept and the Poisson equa­

tion, they were able to circumvent most of the mathematical , 

difficulties encountered by Mllner and obtain a simple solu­

tion to the problem. Their result for the mean ionic activity 

coefficient, may be written in the form, 

|z z I e2 

where the mean radius of the "ionic atmosphere", defined 

by the equation 

K = L  b.» .  (2.2)  

Equations 2.1 and 2.2 apply to an electrolyte which dissoci­

ates into Z4 cations of charge ez^ and IL anions of charge 

ez_, where e is the absolute value of the electronic charge. 

The quantity, D, is the dielectric constant of the solvent, 

T is the absolute temperature, N is Avogadro's number, k is 

Boltzman's constant, and c is the concentration of the elec­

trolyte in moles per liter. 

The Debye-Huckel theory is an ingenious approximate 

method of evaluating the partition function for an electro­

lyte, and its validity rests upon the following assumptions: 

1. The solute is completely dissociated into spherical, 

unpolarizable Ions, which are all of the same size. These 

Ions move in a continuous medium of dielectric constant, D. 
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The volume and dielectric constant of this medium are inde­

pendent of temperature, pressure, and the presence of ions. 

All deviations from ideality are due to coulomb forces between 

the ions. Also, the ions are characterized by a distance of 

closest approach, a, which limits the aleotrostatle energy to 

finite values. 

2. For a given configuration of ions, it is possible to 

define a smoothed electrostatic potential, and smoothed 

charge density, p(r), which obey Poisson's equation, 

-47r y2i^(r) = p(r) , (2.3) 

where r is the distance from a central ion, i. 

The average electrostatic potential, may be relat­

ed to the average charge density, ^—^fr) * summing Equa­

tion 2.3 over all accessible configurations of ions, except i, 

to obtain the equation, 

l^(r) = "pXiT" . (2.4) 

The Boltzman equation may then be used to express the average 

charge density in terms of defined as the average free 

energy of an ion j at distance r from a given ion i, which 

gives, 

p(r) = ̂  Ç eZjexp(-Wij/kT) . (2.5) 

Here, V is the total volume of the system, and ezj is the 

charge of the j ion. Combination of Equations 2.4 and 2.5 

results in the expression, 
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V \p(r)  = Ç ezj exp(-W^j/kT) . (2.6)  

Equation 2.6 is exact for the model assumed apart from the 

smoothing error introduced by applying Equation 2.3 (20). The 

fundamental statistical approximation of the Debye-Huckel 

theory is to assume the equality, 

= zje \p{T) . (2.7) 

This approximation is often called the assumption of linear 

superposition. Equations 2.6 and 2.7 lead to the Poisson-

Boltzman equation, 

2 i V"* i 
V \^(r) = exp(-Zje l^(r)/kT). (2.8) 

4. For the purpose of obtaining a simple solution for 

i 
1p{r) , Debye and Huckel made the further assumption, 

i , 1_ 
exp(-Zje lp(r)/kT) = 1 - zje ^(r)/kT , (2.9) 

1, 
which is valid when zje w('r)/kT « 1. Using the approxima­

tion indicated by Equation 2.9 and the principle of electrical 

neutrality, Equation 2.8 leads to the linearized Poisson-

Boltzman equation 

2 2 ^ 
V \jy(r) = K V^(r) ,  (2.10) 

where K has been defined by Equation 2.2. Equation 2.10 may 

then be solved for y ' (20). After making the assumption. 
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K"a « 1, the derivation of Equation 2.1 from is 

straightforward, and no further assumptions or approximations 

needed, provided the physical model defined earlier is re­

tained (20), 
II 

The Debye-Huokel limiting law, given by Equation 2.1, is 

often referred to erroneously as valid for point charges. In 

fact, a system of point charges is unstable and could not 

exist (21). The original work of Debye and Huckel (1) made 

use of rather unorthodox statistical mechanics, and as a re­

sult, the assumptions involved in their treatment were not 

Immediately obvious. Using the same basic method and assump­

tions used by Debye and Huckel, Fowler and Guggenheim (20) 

gave a more complete derivation, indicating the various 

assumptions, and arrived at Equation 2.11 for the mean ionic 

activity coefficient. 

Equation 2.11 reduces to the Debye-Htlckel limiting law. Equa­

tion 2.1, by making the assumption Ka « 1, which is valid 

for extremely dilute solutions. However, it is important to 

not; that the derivation of Equation 2.11 does not require 

any assumptions in addition to those already necessary to 

derive the limiting law. Actually, derivation of the limit­

ing law proceeds from Equation 2.11 by use of the further 

approximation, K& « 1 (20). 

Although the distance of closest approach, a, does have 
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a precise theoretical significance, the Debye-Huckel theory 

does not predict its exact value for a given electrolyte. 

Consequently, the exact value of a to be used in Equation 2.11 

must be determined by either intelligent guessing or by choos­

ing the value of a which best represents the experimental 

data. Neither of these procedures for evaluating a is entirely 

satisfactory. The most rigorous method of testing the Lebye-

Kuckel theory would be to use experimental data at such low 

concentrations that Equation 2.11 becomes independent of a and 

reduces to the limiting law. Unfortunately, this method is 

normally impossible in practice, and the Debye-Huckel theory 

is usually compared with experimental data by using Equation 

2.11 and the value of a which best represents the data. If 

the value of a determined from the data is reasonable, the 

data is said to agree with the Debye-Huckel theory. The 

definition of a implies that a reasonable value of a must be 

close to the mean ionic diameter, or slightly greater if the 

ions are strongly hydrated. Experimental activity coeffi­

cient data for dilute aqueous solutions of strong electro­

lytes are generally well represented by Equation 2.11 and 

reasonable values of a (11). However, for a few electrolytes, 

the data can be represented by Equation 2.11 only by using 

values of a that are much too small (11,20). Activity coef­

ficient d'ta for the rare-earth chlorides, obtained by 

Spedding and co-workers (22,23,24,25), are consistent with 

Equation 2.11 for all concentrations up to about 0.05 molar. 
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provided the a parameter is suitably adjusted for each salt. 

These a parameters are roughly equal to the sum of the rare-

earth and chloride ionic radii, plus the diameter of a water 

molecule, suggesting the rare-earth ions are strongly hydrated. 

0. Critique of the Debye-Huckel Theory 

The validity of the Debye-Huckel theory is dependent upon 

the validity of the various assumptions made during its devel­

opment. These approximations have already been described. 

The purpose of the following discussion will be to examine 

these assumptions in more detail and to determine the physical 

conditions necessary for the theory to be a good approximation, 

1. Mathematical and statistical approximations 

The Poisson equation applies rigorously only to a contin­

uous charge distribution, and its application to a given 

configuration of ions is not strictly valid. Therefore, the 

use of Equation 2,3 is an approximation which assumes the 

discrete charges on the ions can be smoothed into a continu­

ous distribution without thereby spreading them over regions 

within which the electrostatic potential varies greatly (20). 

This smoothing process will be more successful the greater 

the ionic radii of the ions (20), 

The assumption of linear superposition, described by 

Equation 2.7 implies that the average force acting on a third 

ion, k, in the neighborhood of two other ions, i and j, is 

the sum of the average forces which would act on ion k if 
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ions i and j acted separately (26). This assumption is a good 

one for low concentrations, small charges, and large ionic 

diameters, but as soon as higher terms in the Polsson-Boltzman 

equation become important, linear superposition is no longer 

valid (27), Consequently, only the linearized Polsson-

Boltzman equation. Equation 2,10, is consistent with the 

linear superposition assumption. The assumption of linear 

superposition introduces errors which are of the same order 

in ionic charge as the non-linear terms in the Poisson-

Boltzman equation, so the limiting law is not affected by the 

errors introduced by this assumption (26). 

tion 2.9 is a very bad one for small values of r. As the 

concentration decreases, the number of close encounters of 

ions will also decrease, and in the limit of infinite dilution. 

Equation 2.9 will be valid. However, at finite concentrations 

there will be occasional "ion-pair" formation when two ions of 

opposite charge approach one another within a certain radius, 

q, characteristic of the ions and the solvent. The effect of 

this "ion-pair" formation will be to lower the activity coef­

ficient and will be more serious for small highly charged ions 

in a medium of low dielectric constant (20). For large ions, 

the effect of "ion-pair" formation is negligible. A simple 

way of extending the Debye-Huckel theory to include the effect 

of "ion-pair" formation was proposed by Bjerrum (28). 

approximation described by Equa-
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Bjerrum considered separately the case where two ions came 

closer than the distance, q = le^e^j/2DkT. This treatment is 

described by Earned and Owen (11) and by Fowler and Guggenheim 

(20). Basically, Bjerrum's treatment for symmetrical electro­

lytes involves application of the Debye-Huckel theory for the 

ions outside of q, using q as the distance of closest approach, 

and ignoring the effect of the electrostatic field of the two 

ions inside of q on the remaining ions, Bjerrum's separate 

consideration of close ionic encounters therefore allows 

Equation 2.9 to be a good approximation for the remaining ions, 

Furthermore, Bjerrum's treatment has the important feature of 

being self-consistent and is particularly successful for solu­

tions of small ions in media of low dielectric constant (20), 

Another method of avoiding the limitations imposed by 

Equation 2.9 would be to include higher terms in the series 

expansion of the exponential. This is the approach taken by 

Gronwall, La Mer, and Sandved (29), who evaluated higher order 

terms in the Poisson-Soltzman equation. They found that the 

higher order terms did not affect the limiting law but became 

important at finite concentrations for small ions, For elec­

trolytes where application of the Debye-Huckel theory gave 

unreasonably small a values, application of the Gronwall-La 

Mer-Sandved extension resulted in more reasonable values for 

this parameter. However, their treatment is not self-consis-

tent and therefore cannot be exact (20), Negative deviations 

for Equation 2,11 are probably due to the neglect of higher 
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order terms in the Poisson-Boltzman equation, and for systems 

where negative deviations are observed, a more exact solution 

of the Poisson-Boltzman equation probably gives a better 

approximation than the Debye-Huclcel theory. However, a large 

number of electrolytes exhibit positive deviations from the 

Debye-Huckel theory, which cannot be explained on the basis of 

higher order terms in the Poisson-Boltzman equation (30). 

2. The physical model 

The physical model assumed by Debye and Huckel was 

defined by the first assumption. It seems obvious that this 

model is not an exact description of an electrolyte, and the 

effect of these assumptions on the theoretical expression for 

the activity coefficient may be serious. 
11 

Contrary to the Debye-Huckel model, the volume of a real 

solution is temperature and pressure dependent and is also 

influenced by the presence of ions. Consequently, the elec­

trical free energy computed from the Debye-Huckel theory 

corresponds more closely to the Gibbs free energy, rather than 

to the Helmholtz free energy (20). Also, it is a better 

approximation to assume the volume of a solution has the same 

temperature and pressure dependence as the pure solvent, 

rather than to ignore the temperature dependence entirely. 

These modifications of the Debye-Huckel model are extremely 

important when calculating other thermodynamic quantities from 

the free energy. 

The use of the Poisson equation, described in assumption 
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number two, assumes the dielectric constant of the solvent is 

independent of the distance from the ion. Also, in the aver­

aging process used to derive Equation 2.4, it was assumed that 

the dielectric constant is independent of the particular ionic 

configuration. While these assumptions are valid for the 

idealized solvent assumed by Debye and Huckel, they are only 

approximations for a real solvent. The presence of charged 

ions in a real solvent may be expected to exert a consider­

able influence on the solvent molecules in the immediate 

vicinity of the ions, such that the average dielectric con­

stant is no longer Independent of the distance from the ion. 

Therefore, the dielectric constant, D, that appears in Equa­

tion 2.3 is, in fact, an average over all solvent molecules 

(20), which will be dependent upon the particular configura­

tion of the ions. Since this average dielectric constant is 

dependent upon the ionic configuration, the averaging of 

Equation 2.3 for a real solution gives, 

2- 1 
V i^(r) = -477 ( P(r)/D) , (2.12) 

1 i /!_ 
Equation 2.4 is obtained by repla c i n g  ( p(r)by p(r)"/ d 

(31). Therefore, the dielectric constant that appears in 

Equation 2.4 is really a result of two separate averaging 

steps, first averaging over all the solvent configurations for 

a given ionic configuration, and then averaging over all ionic 

configurations except i. A rigorous result can be obtained 
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only by averaging over all accessable configurations, both 

solvent and ionic, in one step, and the result obtained by two 

successive partial averaging steps cannot give the exact 

result (20). Also, this average dielectric constant should be 

dependent on the concentration, which introduces complications 

when computing the electrical free energy from the electro­

static potential (20), 

In spite of these statistical difficulties, when most of 

the solvent is unaffected by the presence of ions, as in a 

very dilute solution, it is a good approximation to use the 

dielectric constant of the pure solvent in the theoretical 

equations. However, the temperature and pressure dependence 

of the dielectric constant must be taken into consideration 

when computing other thermodynamic quantities from the elec­

trical free energy. It may be expected that the deviations 

due to these approximations concerning the dielectric constant 

would be expressed in the form of a power series in c, with 

the first term being proportional to c (20). The limiting law 

would then be exact. In fact, the limiting law has been 

proven to be unaffected by the variation in effective dielec­

tric constant around the ion (32,53). The deviations due to 

the "dielectric saturation" effect are approximately propor­

tional to c at low concentrations and become important for 

highly charged ions and high temperatures at moderate concen­

trations. 

The assumption of non-polarizable ions, therefore 
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neglecting short range forces, is a good approximation in 

dilute solution. The limiting law has been shown to be unaf­

fected by deviations due to this approximation (27,34). How­

ever, short range repulsive forces will give a contribution of 

their own to the free energy, which will become important at 

higher concentrations. According to Onsager (27), the assump­

tion of short range repulsion is necessary and sufficient to 

explain the observed rise of activity coefficients at high 

concentrations. 

Treating the solvent as a continum may not be realistic, 

particularly for water as the solvent. Experimental (35,36) 

and theoretical (37) evidence suggest that all highly charged 

ions are strongly hydrated in aqueous solution and these 

hydrated ions behave as a single species, Robinson and Stokes 

(38) modified the Debye-Huckel model to account for hydration. 

Again, the limiting law was not affected, but the effects of 

hydration became extremely important at higher concentrations. 

They treated the hydration number, h, as an adjustable par­

ameter and obtained excellent agreement with experiment, even 

for concentrated solutions. The physical model used by 

Robinson and Stokes was certainly more realistic at non-zero 

concentrations than the original Debye-Huckel model. However, 

their treatment suffers from the use of the Debye-Huckel 

expression for the ion-ion contribution to the free energy, 

which is certainly not valid for concentrated solutions. 

Their treatment also neglects the effect of short range 
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ion-ion repulsive forces resulting from polarization of the 

ions. However, for strongly hydrated ions, these short range 

forces may not be important since the hydration sphere may 

prevent close encounters of the ions. 

It has been shown that neither lack of spherical symmetry 

(39) nor unequal size (40) of the ions affect the validity of 

the Debye-Huckel limiting law, 

D. Conclusions 

Theoretically, the validity of the Debye-Huckel theory 

has been firmly established as a limiting law and Equation 2,1 

should be exact in the limit as c approaches zero. Generally, 

accurate experimental data for activity coefficients and other 

thermodynamic properties of dilute solutions confirm this con­

clusion (11). Equation 2.11 includes the effect of the a 

parameter and probably gives a good approximation for the 

deviations from the limiting law in dilute solutions, provided 

the solvent has a high dielectric constant and the a parameter 

is large. The a parameter would be large if either the ions 

are large or if the ions are strongly hydrated. 

An accurate description of concentrated solutions must 

consider other effects, such as ion-solvent interactions, 

short range repulsive forces and "co-valent" complex formation, 

in addition to the coulomb forces between ions. Scatchard 

(41) has included non-coulomb interactions in an attempt to 

develop a theory for concentrated solutions. However, his 
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theory uses the Debye-H^ickel approach to calculate the elec­

trical free energy, which is of dubious validity in concen­

trated solutions. The linear superposition approximation is 

no longer valid in concentrated solutions, and recently Prank 

and Thompson (42) have argued that the entire "ionic atmos­

phere" concept is no longer valid above about 0.001 molar. 

Consequently, any theory of concentrated solutions which used 

the Debye-Huckel theory to calculate the electrical free 

energy must be treated with caution. 

Mayer (43) and Poirier (44) have adapted the cluster 

theory of imperfect gases to ionic solutions. Their results 

verify the validity of the Debye-Huckel limiting law. The 

physical model used by Mayer was essentially the same as that 

used in the Debye-Huckel theory, so the equations derived are 

limited to dilute solutions. However, many of the statistical 
ir 

approximations inherent in the Debye-Huckel approach do not 

appear in Mayer's theory, so that, in principle, the cluster 

theory approach could be combined with a more realistic model 

to yield an acceptable theory for concentrated solutions. In 

practice, application of the cluster theory of solutions may 

be limited to dilute solutions because of the nearly impos­

sible task of evaluating a slowly converging infinite series 

(45). 
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III. PREPARATION OF SOLUTIONS 

The rare-earth chloride solutions used in this research 

•were prepared by dissolving the rare-earth oxides in 0. P. 

hydrochloric acid. The rare-earth oxides were obtained from 

the rare-earth separation group of the Ames Laboratory of the 

U. S, Atomic Energy Commission. The oxides were analyzed for 

the common metallic impurities by emission spectrography. The 

results of these analyses are given in Table 1. 

The rare-earth chloride stock solutions were prepared by 

adding the dry oxides to a slightly less than equivalent 

amount of 6n acid. The excess oxide was removed by filtering 

the solutions through a fine sintered glass filter, A solu­

tion in this form contained some colloidal oxide, which was 

readily detected by the formation of a Tyndall cone from a 

small beam of light passing through the solution. Most of 

the colloidal oxide and other basic species were removed by 

adding acid to the solution until a pH of about three was 

reached. A small portion of the solution was removed and used 

to determine the equivalence point of the suspected hydrolysis 

reaction, _ _ 
R*5 + HgO z=! R(0H)+2 + H+ , (3.1) 

where R"*"^ is a rare-earth ion. The solution was titrated with 

0.05N hydrochloric acid, and the equivalence point was deter­

mined by a plot of change in pH per milliliter of acid added, 

ApH/Aml., against the average volume of acid added. The pH 

where ApH/Aml. was a maximum was taken as the equivalence 
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Table 1. Spectrographic analysis of rare-earth, oxides 

Oxide Impurities (percent 

?e Ca Other rare-earths 

LSLgO^ < 0.007 < 0.01 < 0.08 

PrôOii 0.003 0.02 < 0.15 

NdgO^j < 0.009 < 0.03 < 0.20 

Sm20^ 0.006 0.06 < 0.03 

SmgO^G < 0.003 0.02 < 0.10 

GdgO^ 0.001 0.006 < 0.03 

Tb^Oy < 0.005 0.04 < 0.05 

< 0.01 < 0.03 < 0.10 

0.01 < 0.03 < 0.15 

Ho < 0.005 0.05 <0.06 

ErgOjt < 0.002 0.01 < 0.01 

Erg03° 0.006 0.02 < 0.03 

^The percentage impurities reported as "less than" are 
the lower limits of the analytical method, and the actual 
amount of impurity is probably much less than the amount 
indicated, 

^Used only for apparent molal volume work. 

°Used only for viscosity work. 
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pH. 

The stock solution was then adjusted to its equivalence 

pH and heated for several hours to dissolve any remaining oxy-

chloride or colloidal oxide. The solution was cooled and the 

pH adjusted again to the equivalence pH, and the solution was 

again heated for several hours. This procedure was repeated 

until the pH did not change from the equivalence pH. Solu­

tions prepared in this way were found to "be stable indefin­

itely and were free of colloidal oxide. 

The stock solutions prepared for the apparent molal 

volume studies were usually about 2.7 molal. Secondary 

stock solutions of about 0.6 and 0.2 molal were prepared from 

weighed quantities of the primary stock solution and conduc­

tivity water. The conductivity water had been prepared by 

distilling tap distilled water from an alkaline potassium 

permanganate solution in a Barnsted Conductivity Still; the 

conductivity water had a specific conductance of less than 

1x10"^ mho per centimeter. 

The stock solutions prepared for viscosity studies were 

usually about 3.5 molal. Solutions more dilute than the stock 

solution were prepared, by weight, from the stock solution and 

conductivity water. The saturated solutions were prepared by 

allowing the concentrated stock solutions to evaporate in a 

desiccator until rare-earth chloride hydrate crystals formed. 

The saturated solution, in contact with the crystals, were 

then placed in a constant temperature bath at 25°0.and 
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continuously agitated for about two weeks before the solution 

was used. The concentration of the saturated solution was 

taken from the data of Saeger and Spedding (6) and the data 

of Spedding, Brown and Gray^. 

The stock solutions were analyzed for rare-earth content 

by either the "oxide method" or the "sulfate method". In the 

"sulfate method", a ten percent excess of three molar sulfuric 

acid was added to the rare-earth chloride solution, which pre­

cipitated most of the rare-earth ion as R2(804)3. After about 

12 hours, the solutions were heated under infrared lamps until 

most of the water had been evaporated. The dry precipitates 

were then ignited with a gas burner to drive off the excess 

sulfuric acid as SO^ and water. %en it appeared SO3 was no 

longer being driven off, the precipitates were placed in an 

electric furnace and ignited to 500°C. Several ignitions were 

required before the precipitates, came to constant 

weight. Each analysis, made in triplicate, gave a mean devi­

ation of less than 0.05 percent. This method was used for 

PrCl^ and TbCl^. 

In the "oxide method", a ten percent excess of oxalic 

acid was added to the rare-earth chloride solution in each 

crucible, and the samples were heated to dryness under infra­

red lamps. The dry residues were moistened with conductivity 

^Spedding, F .  H., Brown, M., and Gray, K., Ames Labora­
tory of the A.E.G., Ames, Iowa. Apparent molal volumes of 
some aqueous rar&rearth chloride solutions. Private communi­
cation. 1964. 
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water, and a small quantity of nitric acid was added to each 

crucible. The samples were again evaporated to dryness and 

ignited to the oxide, RgO^, at about 950°C. The mean devia­

tion for a triplicate analysis was less than 0.05 percent in 

all cases. This method was used for all rare-earth chloride 

solutions except PrCl^ and TbCl^. 

The stock solutions were analyzed for the chloride con­

tent by a potentiometric method, using a silver indicating 

electrode and a sleeve-type reference electrode with an 

ammonium nitrate bridge to the inner calomel electrode. About 

fifty grams of previously standardized silver nitrate (about 

O.IN) was placed in a beaker, and a weighed excess of rare-

earth chloride sample was added to the silver nitrate. This 

excess was then back titrated with the same silver nitrate, 

using a Sargent Model D Recording Titrator. The silver 

nitrate was standardized using the same procedure with a 

standard potassium chloride solution. This method gave a-

mean deviation of less than 0.1 percent in all cases. 

A given chloride analysis agreed with the corresponding 

rare-earth analysis within about 0.1 percent. The concentra­

tion of a stock solution was calculated from the mean of the 

rare-earth analysis and the chloride analysis. 

The potassium chloride, lithium chloride, lithium nitrate, 

and potassium chromate solutions, used in checking the accuracy 

of the experimental methods, were prepared from recrystallized 

reagent grade salts. The recrystallized salts were dried in 
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an elçctrlc oven at about 200°C. The potassium chloride, 

lithium nitrate, and potassium chromate solutions were pre­

pared, by weight, from the anhydrous salt and conductivity 

water. The lithium chloride solution was prepared by dis­

solving the salt in conductivity water and determining the 

concentration by the potentlometric chloride method described 

earlier. 
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IV. APPARENT MOLAL VOLUMES 

A. Historical 

1. Experimental observations 

Apparent molal volumes and their theoretical interpreta­

tion have long been an important subject of scientific re­

search. In 1929, Masson (46) proposed that the concentration 

dependence of the apparent molal volume could be expressed by 

the simple relation, 

0^ = 0° * sot, (4.1) 

where 0° and s were parameters specific for each electrolyte. 

Later, Geffchen (47) and Scott (48) verified Masson's equation 

for a large number of electrolytes. Although the values of 

and s determined from Masson*s equation were specific for 

each electrolyte, systematic trends were evident. The values 

of the slope, s, were generally greater for high valence type 

electrolytes than for simple 1-1 electrolytes. For electro­

lytes with both a common ion and the same valence, the values 

of showed a general decrease as the ionic radius of the non-

common ion decreased. For electrolytes with both a common ion 

and approximately the same radius for the other ion, the values 

of generally decreased as the valence of the non-common ion 

increased. 

The tests of Masson's equation described above were based, 

for the most part, on relatively inaccurate data at moderate 

to high concentrations, Redlich (49) and later Redlich and 

Mayer (50) showed that the most accurate data did not verify 
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Masson's equation, except as a crude approximation. In fact, 

the best experimental data for apparent molal volumes showed 

convergence toward a common limiting slope for electrolytes of 

the same valence type. For 1-1 salts, it was shown that 

accurate data for dilute solutions could be represented by 

the equation, 

= 0° + 1.860* + he, (4.2) 

where and h are specific for each electrolyte. 

If it can be assumed that the apparent molal volume at 

infinite dilution, 0°, is an additive property of the individ­
ual ions, 0y for a 1-1 electrolyte may be written as, 

^^v^MX ~ (^v^X" * (^*3) 

where (0$^%+ the apparent molal volumes at 

infinite dilution of the cation and anion, respectively. For 

a given temperature. Equation 4.3 implies additivlty relation­

ships of the form, 

WV)mx - WV)MX' = - W?'x-' • (4.5) 

where the primed symbols represent a non-common ion. Equa­

tions 4.4 and 4.5 should be Independent of the anion, X", and 

cation, respectively. For higher valence type electro­

lytes, equations analogous to Equation 4.3 may be written, 

which lead to additivlty relationships similar to those 

expressed by Equations 4.4 and 4.5. Using the data of Baxter 

and Wallace (51), Scott (48) found the additivlty laws 
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expressed by Equations 4.4 and 4.5 to be valid, within experi­

mental error, for the alkali halides. It seems certain that 

the additivity laws must be obeyed if the ions are completely 

dissociated at infinite dilution, so, in practice, the addi­

tivity laws may be used as a check on the self-consistency of 

the data. 

Since experimental measurements give only the value of 

for the total solute and not the individual ionic contribu­

tions, it is not possible, at present, to experimentally obtain 

ionic apparent molal volumes at infinite dilution. However, 

if the ionic apparent molal volume at infinite dilution of one 

ion can be estimated by some method, other ionic contributions 

to 0y can be determined relative to this estimate by using the 

additivity relationships. Based on various assumptions, 

several methods have been used to obtain ionic apparent molal 

volumes at infinite dilution (52,53,54). 

2. Theoretical concentration dependence 

The theoretical limiting expression for the apparent 

molal volume as a function of concentration was derived in 

1931 by Redlich and Rosenfeld (55). Basically, their deriva­

tion involved differentiating Equation 2.1 with respect to 

pressure, recognizing the pressure dependence of the volume 

and dielectric constant. Their result may be written as. 

= 05 + K *3/2 02 , (4.6) 

where. 

1^14 • (4.7) 
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and, 

K = N2e2(87T/lOOOD3RT)& ( blnD/^P - /?/3) . (4.8) 

In the above equations, P is the pressure and is the com­

pressibility of the solvent. The other symbols have their 

usual meanings. The dielectric constant refers to the value 

for the pure solvent, "which will be restricted to water for 

this discussion. 

In the past, there has been some uncertainty in the theo­

retical value of K, principally because of the uncertainty in 

the pressure derivative of the dielectric constant, blnD/^P* 

A recent review by Redlich and Mayer (50) considers this 

problem in some detail and concludes, on the basis of recent 

measurements of "blnD/^P by Owen and co-workers (56), that 

K = 1.868 for water at 25°C. This value of K agrees with 

Equation 4.2 and shows that this empirical expression has a 

theoretical foundation. 

Since Equation 4.6 is based upon the Debye-Huckel theory 

with the approximation, Ka «1, f.t can be expected to be 

valid only in very dilute solutions. Generally, accurate data 

for dilute solutions confirm Equation 4.6 as the correct 

limiting law (49,50). In fact, apparent molal volume data 

for some 1-1 salts still obey the limiting law at relatively 

high concentrations. For example, Redlich and Mayer (50) 

show that the data of Kruis (57) for sodium chloride is well 

represented by the limiting law up to about 0.5 molar. For 

potassium chloride and a large number of other electrolytes. 
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mostly 1-1 salts, data can be well represented by Equation 

4.9 over rather wide concentration ranges (49,50). 

= 0° + 1.868 #3/2 08 + h o . (4.9) 

In Equation 4.9, h is an empirical parameter which represents 

the deviations from the simple limiting law and is usually 

quite small. Redlich and Mayer (50) strongly recommend Equa­

tion 4.9 as an extrapolation equation. They contend that the 

use of an empirical power series in c^ to represent the data, 

where the coefficient of the oi term is evaluated from the 

data, may lead to inaccurate values for the extrapolated 

quantity, 0°, particularly if the range of extrapolation is 

large. 

Accurate apparent molal volume data at very low concen­

trations is scarce for higher valence type electrolytes, but 

the available data seem to confirm the validity of the limiting 

law (50). Por example, the strontium chloride data of Kruis 

(57) confirm the limiting law, although noticable negative 

deviations from the simple limiting law occur at concentra­

tions above about 0.05 molar. 

The limiting law includes the approximation, Ka « 1. 

This approximation is not valid at moderate concentration, 

particularly for higher valence type electrolytes. For 

example, at 0.01 molar, Ka = 0.1, for a 1-1 electrolyte with 

a = 4 2, but for a 3-1 electrolyte under the same conditions, 

Ka = 0.3. Consequently, even if the Debye-Huckel assumptions 



34 

were good approximations above 0.01 molar, a 3-1 electrolyte 

may be expected to show deviations from the limiting law at 

most experimental concentrations. 

Knowing the effect of the a parameter on the theoretical 

limiting law would obviously be of great value in Interpret­

ing apparent molal volume data. Owen and Brinkley (58) have 

derived a semi-theoretical equation for the apparent molal 

volume which does include the effect of the a parameter. 

Their equation may be written in the form, 

^v = 0? + K W^'^Mxa)c^ + iWy g(Ka)c + c , 

TM = ̂  x^/2 - X + ln(l + x) 

= 1 - (3/4)x + (3/5)X2 . .X ̂ 1, 

^(x) = -^j^x^/2 - X + 3 ln(l + x) + 1/(1 + X) 

- (1 + x) 

= 1 - (8/5)x + (12/6)x2 - X é 1, 

Wy = -2.303I/R T Sf A' & blnD/bP - P 

- 2bin a/bp 

A' = ( X ^i^i)^ (47rN e^/lOOO D k T)^ a. 
1 

(4.10) 

(4.11) 

(4.11a) 

(4.12) 

(4.12a) 

(4.13) 

(4.14) 

The symbol, Sf, refers to the theoretical limiting slope for 

the mean ionic activity coefficient, bin yy^b and is 

defined by Equations 2,1 and 2.2. The quantity, i Ky, is an 

empirical parameter to be evaluated from the experimental 
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data, and the other symbols have their usual meanings. If the 

empirical term involving Ky is omitted from Equation 4.10, the 

remaining terms can be derived from Equation 2.11 for the mean 

ionic activity coefficient and therefore have some theoretical 

justification. Retaining only these theoretical terms gives 

the equation, 

= 0° + K K a)c8 + #v(g(Ka)o . (4.15) 

The success of the Debye-Huckel theory in the form of Equation 

2,11 suggests that Equation 4.15 should be a good approxima­

tion in dilute solution. In particular, for the rare-earth 

chlorides, there is reason to suspect that Equation 4.15 

should be a good approximation up to about 0.05 molar. 

The comparison of Equation 4.15 with experimental data is 

difficult due to the presence of the quantity, bin a/^P, in 

the definition of Wy. Unlike the a parameter Itself, neither 

the sign nor the magnitude of 6In a/^P can be estimated with 

any great degree of confidence at the present time. Conse­

quently, there is no way of establishing whether the value »f 

Wy evaluated from the data represents the actual contribution 

of the term, bin a/bP, or whether it represents imperfec­

tions in the theory. It has been argued that a is effectively 

independent of pressure for aqueous electrolytes (44,58). 

However, the a parameter includes the effect of any perman­

ently co-ordinated water molecules, as well as the size of 

the ions. The compressibility of the water in the immediate 
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vicinity of the ion may be expected to be small (54), so if 

the "effective hydration number" is independent of pressure, 

bin a/b? should be small and may be neglected. However, it 

is not obvious that the "effective hydration number" will be 

independent of pressure, so the neglect of bin a/b I" is open 

to criticism. 

If bin a/b P is assumed to be small, i.e., | bin a/b I"] 

« j3f Equation 4.15 becomes independent of the term in for 

concentrations of the order of a few hundreths molar. Assum­

ing a is effectively Independent of pressure has some justifi­

cation, and in the following discussion, this simplifying 

assumption will be presumed valid. Neglecting the pressure 

dependence of a and retaining the terms in Equation 4.15 of 

order c and lower results in the equation, 

= 0° + K w3/2 ci - (3/4) a b K c , (4.16) 

where b is a positive constant for a given electrolyte, 

solvent, and temperature and is defined by Equation 2.2. 

Equation 4.16 predicts the first order deviation from the 

limiting law will be negative and more serious for high val­

ence type electrolytes. It seems likely that the negative 

deviations observed for strontium chloride are due to the 

effect of the a parameter. 

It is significant to note that Mayer's theory (43), as 

developed by Poirier (44), also predicts significant negative 

deviations from the simple limiting law for high valence type 
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electrolytes. Both Mayer's theory and the Debye-Huckel theory 

Indicate the simple limiting law should be obeyed for 1-1 

electrolytes at 0.01 molar, and the limiting law for 3-1 elec­

trolytes should not be obeyed until dilutions of the order of 

0.001 molar are reached. For a 3-1 electrolyte with a = 6 2, 

both theories predict a deviation from the limiting law of 

about -0.5 ml./mole at a concentration of 0.01 molar. 

Unfortunately, a rigorous quantitative discussion of the 

effect of the a parameter on apparent molal volumes is impos­

sible until a more reliable method for estimating bin a/bP 

is found. However, the Owen-Brinkley equation, Equation 4.10, 

has the correct limiting form, and it probably represents the 

deviations from the limiting law at low concentrations suffi­

ciently well to be useful as an extrapolation function. 

3. Theoretical interpretation of 0° 

The partial molal volume at infinite dilution, Vg, which 

is identical to the apparent molal volume at infinite dilution, 

represents the volume change of a very large quantity of 

solvent upon addition of one mole of solute. At infinite 

dilution, it may be assumed that the anion and cation contri­

butions to the partial molal volume are additive, and 

Vg = kK + , (4.17) 

where is the number of cations with partial molal volume 

and is the number of anions with partial molal volume, 

V^. The partial molal volume of an ion at infinite dilution. 
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Vj_, may be separated Into two contributions. One contribution 

would be a positive term arising from the intrinsic volume of 

the ion and will be given the sumbol, V*. The other term 

would represent any change in the volume of the solvent caused 

by the presence of the ion, which will be symbolized by AV. 

Therefore, the partial molal volume of an ion at infinite 

dilution may be written as, 

V° = V* + Av. (4.18) 

For one mole of spherical ions. Equation 4.18 becomes, 

V° = (4/3)77"N r̂  + AV, (4.19) 

where N is Avogadro's number, and r is the radius of the ion 

in solution. A theoretical discussion of the partial molal 

volume at infinite dilution will then involve a calculation 

of Av. 

An approximate AV may be calculated if it is assumed an 

ion in solution may be approximated as a rigid charged sphere 

in a uniform and structureless dielectric medium. Assuming 

this crude model, the change in Gibbs free energy of the 

solvent due to the electric field of the ion, may be 

calculated (59) and expressed in c.g.s. units as. 

Pel = (1 - 1/D). (4.20) 

Using the thermodynamic relation, Av^i = (b^'el/^^^T» 

Equation 4.20 leads to the expression, 

2 2 
AVgi = - . bin D/bP. (4.21) 
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A V qi represents the decrease in volume of the dielectric 

medium resulting from the polarization of the medium by the 

ion. If AVqI is identified as AV, combination of Equations 

4.19 and 4.21 leads to the so called Born approximation for 

vj = (4/3) TT N r3 - • (bin D/b?)» z^/r. (4.22) 

Restricting Equation 4.22 to water at 25°0. and using the most 

recent dielectric constant data (56), the Born approximation 

becomes, 

VÏ = 2.52 r3 - 4.18 z^/r^ , (4.23) 

where rg is the ionic radius in Angstrom units. 

It should be noticed that the Born approximation predicts 

should increase as the radius of the ion increases and 

should decrease as the charge on the ion increases. In gen­

eral, these trends are verified by experimental data (54), 

but the quantitative agreement is much less satisfactory. 

In view of the crude model assumed by the Born approxima­

tion, it is not surprising that this theory fails to give a 

quantitative theoretical expression. The Born approximation 

assumes the dielectric constant of the solvent is not a func­

tion of the distance from the ion. For the extremely high 

field near an ion, this assumption cannot be valid (54), and 

will be particularly bad for highly charged ions with small 

radii. The theory proposed by Padova (54) attempts to correct 

for this defect in the model by treating the dielectric con­
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stant of the solvent as a function of the electrical field 

intensity of the ion. However, the ionic radii required for 

Padova's theory to agree with experiment are significantly 

larger than the corresponding crystal radii. Padova, and also 

Mukerjee (60), argue that the ionic radii in solution should 

be significantly larger than the ionic crystal radii. Benson 

and Oopeland (6l) disagree and maintain the crystal ionic 

radius is a good approximation for the ionic radius in solu­

tion. According to their interpretation, the difference 

between the ionic crystal radii and the radii predicted from 

Padova's theory reflect the failure of a continuum model for 

the solvent. X-ray diffraction data for aqueous electrolytes 

(36) and other evidence (62,63) seem to indicate that the 

conclusions of Benson and Oopeland are correct. 

Another defect of the Born approximation is that it 

treats the ion-solvent interaction for both cations and anions 

in the same way. The theoretical study of Buckingham (64) and 

the semi-empirical results of Hepler (65) indicate that this 

defect may be serious. 

Desnoyers, Verrall and Conway (66) have recently proposed 

a method for calculating V° that avoids many of the difficul­

ties inherent in a theory based upon the Born approximation. 

Their theory is based upon a calculation of effective pres­

sure which would, in the absence of the electrical field, 

cause the same change in volume as the field. This treatment 
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allows the change in volume of water to be calculated as a 

function of field intensity. However, the results of their 

calculations cannot be related directly to experimental data 

unless some hydration model is assumed. 

The Born approximation and the various other theories of 

have resulted in a much better understanding of ion-solvent 

Interactions, but a complete quantitative theory is still 

lacking. It seems obvious that a successful theory must 

recognize the molecular nature of the solvent, at least in the 

immediate vicinity of the ion. 

B. Experimental 

1. Experimental method 

The apparent molal volume, is defined by the equation, 

0, = , (4.̂ 4) 
ng 

where V is the total volume of a solution composed of ng moles 

*"0 

of solute and n^^ moles of solvent having a molar volume, V]_. 

If the quantities, V = (n^M^ + , V° = M^/ and 

ni/n2 = 1000 p/M^c - , are substituted into Equation 

4.24, the apparent molal volume may be written, 

= (1 - p/po) 1000/c + Mg/po , (4.25) 

where p is the density of the solution, p^ is the density 

of the solvent, c is the molar concentration, Mg is the molec­

ular weight of the solute, and is the molecular weight of 

the solvent. Therefore, experimental data for the specific 

gravity, p/ p^, and the molar concentration, c, allow the 
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apparent molal volume to be calculated. Since the specific 

gravity of a dilute solution is close to unity, it is obvious 

that the use of Equation 4,25 for dilute solutions requires 

extremely accurate specific gravity data. In particular, for 

a 0.01 molar solution, an uncertainty of only + 1x10"^ in the 

specific gravity results in an error of + 0.1 ml./mole in the 

apparent molal volume. Therefore, with this method, meaning­

ful apparent molal volumes below 0.01 molal must be calculated 

from specific gravity values which have an uncertainty of less 

than + 1x10"^. Direct pyknometry at this level of accuracy is 

nearly impossible so a more accurate method, such as the 

magnetic float method, must be used to determine the specific 

gravity. The magnetic float method will be described in 

detail later. 

Another method of accurately determining apparent molal 

volumes of dilute solutions was recently proposed (67). This 

method Involves a dilatometric determination of the volume 

change on isothermally mixing a small volume of relatively 

concentrated solution with a large volume of pure solvent. 

Using Equation 4.24, this volume change, AV, can be expressed 

as, 
AV = ng [0v(F) - , (4.26) 

where ng is the number of moles of solute involved, ̂ ^(p) is 

the apparent molal volume of the dilute final solution, and 

0v(l) is the apparent molal volume of the Initial concentrated 

solution. The value of 0y(I) can be determined accurately by 



43 

conventional pyknometric measurements of the specific gravity 

and use of Equation 4.25. The apparent molal volume of the 

dilute solution, 0y(P), may then be calculated by using Equa­

tion 4,26, This method seems to be capable of very high 

accuracy. 

The apparent molal volumes of the solutes studied in this 

research were calculated from the experimentally determined 

specific gravities, p/po» ^-nd molar concentrations, c, using 

Equation 4,25. 

The method used for measuring specific gravity was the 

magnetically controlled float method originated by Lamb and 

Lee (68) and modified by later workers (7,69,70,71). This 

method consisted of determining the current in a primary sole­

noid which was just sufficient to balance a float of known 

weight in the solution, through the interaction of the field 

of the solenoid with a permanent magnet in the float. This 

value of the current, hereafter called the equilibrium current, 

was converted into weight by using a previously determined 

calibration factor, This factor measured the interaction 

between the solenoid and the permanent magnet in the float and 

was given in units of milligrams per milliampere. The float 

was weighted so it just floats in pure water, and the circuit 

was designed so that a current through the solenoid would 

result in a downward force on the float. Small platinum 

weights, as described by Ayers (7), were added to the float 

to give an additional force downward when the float was being 
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balanced in solutions. The equilibrium current was obtained 

by determining the minimum current necessary to prevent the 

float from rising. 

When the float is balanced in a solution, 

W + Wg + 1°^ = pv', (4.27) 

where W is the weight of the float; Wg is the weight of plat­

inum added to the float, corrected to its weight in solution; 

1° is the equilibrium current; is the calibration factor; 

p is the density of the solution, and V' is the volume of the 

float. When the float is balanced in pure water, an analogous 

expression may be written in the form, 

W + 1°^ = PqV, (4.28) 

where 1° is the equilibrium current in water, and is the 

density of water. Taking the ratio of Equations 4.27 and 4.28 

gives, 

for the specific gravity of the solution. The weight of 

platinum in the solution, Wg, may be calculated from its 

weight in vacuum, Wy, using the equation, 

Wg = Wy(l - p/dp^), (4.30) 

where p and dp^ are the densities of the solution and the 

platinum, respectively. In practice, Wg may be calculated 

from Equations 4.29 and 4.30 by successive approximations. 
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2. Description of apparatus 

Schematic diagrams of the apparatus used for measuring 

specific gravity are given In Figures 1 and 2. A schematic 

diagram of the electrical circuit Is given In Figure 3. 

Reference to these figures will be designated (1-X), where 1 

refers to the figure and X to the alphabetically labelled 

part. 

The constant temperature bath used In this research was 

basically that described by Ayers (7), so only a brief descrip­

tion will be given here. The basic component of the constant 

temperature bath was a 30 gallon stainless steel tank (1-A), 

which was placed Inside an Insulated wooden box (1-B). Plex­

iglass windows (1-C) were fitted Into rectangular openings on 

opposite sides of both the tank and the box. These windows 

permitted observation of the bath Interior with a Gaertner 

Telemlcroscope (1-2). Alight (1-D) Illuminated the Interior 

of the bath. A mercury thermoregulator (1-F), Identical to 

that used by Ayers, a 250^ knife heater (1-G), and an elec­

tronic relay were used to control the temperature of the bath. 

Dry helium gas was passed over the mercury contacts to pro­

vide a non-oxldlzlng atmosphere. Stirring was provided by a 

large tubular turbine stirrer (1-H), which was mounted on a 

heavy stand and separated from the bath to minimize vibra­

tions. Cooling water for the system, maintained at 22°o.by 

an auxiliary water bath, was pumped through cooling colls 

(l-I) by a centrifugal pump. 
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Figure 1. Apparatus 
gravity 

for the determination of specific 
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Figure 2. Solution ceil aad specific gravity float 
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The specific gravity float (1-J)(2-A) was constructed 

according to the procedure given by Ayers. The float was 

about 20 cm, long, had a maximum diameter of about 5 cm,, and 

had a total volume of about 100 ml. The shell of the float 

was constructed from pyrex tubing (2-B) and had a small de­

pression (2-0) to hold platinum weights. A glass loop (2-D) 

was fashioned from pyrex tubing so the float could be lifted 

out of the solution. A magnetized Ounife rod (2-E) was placed 

in the tip of the float, and a ballast of lead shot fixed in 

place with pyseal (2-P) adjusted the density of the float so 

it would just float in water at 25°0. A small platinum wire 

(2-G) was sealed into the pyrex tubing at the tip of the float 

to minimize the contact area between the float and the solu­

tion cell. 

The solution cell (1-K)(2-H) was constructed from pyrex 

tubing and was approximately 50 cm. high.and 10 cm. in diam­

eter. To provide access to the interior of the cell, a male 

55/50 standard taper (2-1) was attached to the top of the cell. 

A cap (2-J) for this opening was constructed from the female 

portion of a 55/50 standard taper. The thermometer shaft 

(2-K) consisted of a 6 cm, portion of pyrex tubing sealed into 

the top of the cell. The thermometer shaft terminated with a 

male 14/35 standard taper that fitted into a female 14/35 

standard taper, which was attached with Pyseal to the Leeds 

and Northrup platinum resistance thermometer (2-L). The 



50 

platinum resistance thermometer was used with a Model G-2 

Leeds and Northrup Mueller Bridge to measure the temperature 

of the solution in the cell within + 0,001°C. Stirring in the 

cell was provided by a "True Bore" stirrer (2-M), which con­

sisted of a frosted glass rod that fitted into a 24/40 bear­

ing. A 24/40 female standard taper (2-N) was attached at the 

top of the cell to match the 24/40 bearing. The stirrer was 

attached to an adjustable speed electric motor by a flexible 

coupling of gum rubber tubing. The weight buret shaft (2-0) 

was constructed from pyrex tubing, which was sealed into the 

top of the cell. This shaft terminated in a 7/25 female 

standard taper, which could be sealed with a plug (2-P), made 

from the male portion of a 7/25 standard taper. The weight 

buret shaft was used with a 60 ml. weight buret, fitted with 

an extended tip, when stock solution was added to the cell. 

The tip of the weight buret was just long enough to rest 

against the side of the stirring rod when the weight buret 

was placed into the shaft. The stock solution could then be 

drained down the stirring rod into the solution in the cell. 

This procedure eliminated splashing stock solution on the 

sides of the solution cell. 

The primary solenoid (1-L) consisted of 27 turns of #24 

insulated copper wire wound on an octagonal shaped frame. 

The frame was about 6i inches in diameter and 10 inches high 

and was constructed from four octagonal Lucite plates and 

eight threaded 1/4 inch brass rods. The copper wire was 
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wound on every third thread of the brass rods, and the sole­

noid was about five inches high. 

The auxiliary solenoid (1-M) was wound directly above 

the primary solenoid and consisted of 30 turns of #24 insul­

ated copper wire wound on every thread of the brass rods. 

The auxiliary solenoid was used to pull the float to the 

bottom of the cell prior to making a determination of the 

equilibrium current with the primary solenoid. 

The entire solenoid unit was fastened to the brass sup­

port unit (1-N). The support unit for the solenoids and 

solution cell was constructed from two 5/8 inch brass rods, 

34 inches long, which were attached, at the top, to a tri­

angular brass frame. The three adjustable legs of this frame 

rested on the flat surface of a similar frame attached to the 

water bath. Details of the support unit are given by Ayers. 

The electrical circuits for the solenoids are shown in 

Figure 3. The diagram is, for the most part, self-explana­

tory. However, several features merit further discussion. 

To minimize induction effects when the auxiliary solenoid 

circuit was broken, a 3000 ohm resistor (3-A) was included in 

the circuit such that, by using the switch (3-B), it could be 

placed in the circuit prior to breaking the circuit with the 

double pole-double throw switch (3-0). The batteries shown 

in Figure 3 were 6 volt Willard storage batteries. As shown 

in Figure 3» three of these batteries were connected in 
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parallel to provide a constant voltage source for the primary 

solenoid circuit. This arrangement proved to be an excellent 

constant voltage source. The potential drop across the stan­

dard one ohm resistor (3-D) was measured with a Rubicon Type B 

potentiometer (3-E). Therefore, the potentiometer reading 

gave the current directly. The standard resistor and the 

standard cell used with the potentiometer were calibrated by 

the National Bureau of Standards. 

3. Palibration 

Several calibrations were necessary before the apparatus 

could be used for determining the specific gravity of a solu­

tion. Ayers (7) noticed that the value of the equilibrium cur-

current was strongly.dependent on the atmospheric pressure. 

However, in this research, measurements of the equilibrium 

current in water at various pressures from 680 mm. Hg to 760 

mm. Hg revealed that the effect of pressure on the equilibrium 

current was negligible for this pressure range. This apparent 

contradiction of Ayers' observations can be resolved if it is 

assumed that the volume of the conical shaped float used by 

Ayers was more dependent upon pressure than was the volume of 

the cylindrical float used in this research. 

It was also necessary to determine the calibration fac­

tor, , so conversion of the equilibrium current to weight 

could be made. This factor was determined from measurements 

of the equilibrium current required with various total weights 

of platinum added to the float. The estimated probable error 
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In for a given determination was about + 0.0005 mg./ma. 

It was noticed that, for a given sample of water, the value of 

the equilibrium current and the factor changed each time 

the solution cell was removed and replaced in the support 

unit. This phenomenon was due to the difficulty in placing 

the solution cell in exactly the same position within the sole­

noid each time. The variation in the equilibrium current was 

often ten or twenty times the experimental error for this 

quantity, while the variation in was usually less than 

three times the estimated probable error for a given deter­

mination. However, since very high accuracy was desired, both 

the equilibrium current in water, 1°, and the calibration 

factor, , were determined prior to each run, or series of 

specific gravity measurements, and the solution cell was not 

removed from the support unit until after the run had been 

completed, 

4, Experimental procedure 

Prior to each specific gravity run, the solution cell and 

density float were cleaned with alcoholic potassium hydroxide 

cleaning solution, rinsed with conductivity water and allowed 

to stand in conductivity water for at least several hours. 

Next, the solution cell was rinsed with ethandl and dried in a 

stream of filtered air. The float was dried and placed in a 

desiccator, which was placed in the balance room. When the 

float was in thermal equilibrium with the balance room, it was 
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weighed.. When the solution cell was dry, about 1400 grams of 

conductivity water was weighed into the cell through a long 

necked funnel, used to eliminate splashing water on the sides 

of the cell. The funnel was then weighed to determine the 

weight of water left in the neck. The solution cell was 

placed in the water bath, and several hours later, the float 

was placed in the solution cell. To avoid condensation of 

water on the top of the cell, the apparatus room was main­

tained at 26°0, 

After thermal equilibrium had been reached, the calibra­

tion factor, , was determined. The next morning, the value 

of the equilibrium current in pure water, 1°, was measured. 

The values of 1° obtained were about 400 ma. Ifhen an equi­

librium current was determined, the current in the primary 

solenoid was adjusted to a value about 0,5 ma. above the equi­

librium current, and the float was brought to the bottom of 

the cell with the auxiliary solenoid. After a pause of sev­

eral minutes to insure the fluid around the float was motion­

less, the 3000 ohm resistor was placed in the auxiliary 

solenoid circuit with the switch (3-B). The auxiliary sole­

noid circuit was then broken, and the current through the 

primary solenoid was decreased in steps of about 0.1 ma, until 

the float would rise within a time interval of about two 

minutes. The mean of the "up" and "down" current readings 

was taken as the equilibrium current for that determination. 
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At least two equilibrium current determinations were made for 

each solution and the mean of these determinations was taken 

as the equilibrium current for that solution. From the repro­

ducibility of the equilibrium current measurements, it was 

estimated that the probable error in the equilibrium current 

was about +0,1 ma. 

Following the determination of 1°, a weighed quantity of 

the appropriate stock solution was added to the solution cell 

through the weight buret shaft (2-0), as described earlier. 

The solution was stirred for several minutes to obtain a homo­

geneous solution. The float was lifted out of the cell by 

fitting a long hook into the glass loop of the float, and suf­

ficient platinum weights were added to the float so that the 

equilibrium current would be as close as possible to the equi­

librium current in pure water. Since the effect on the 

specific gravity of an error in the calibration factor 

1° - Ig this increases in proportion to the difference, 

procedure was especially important when the specific gravity 

of a very dilute solution was being measured. Usually it was 

not difficult to choose the platinum weights so that 1° - I°j 

< 20 ma. To eliminate formation of air bubbles on the plati­

num weights, the weights were rinsed in dilute nitric acid and 

conductivity water, and then heated to a dull red heat in a 

small gas flame just prior to being added to the float. After 

the platinum weights had been added to the float, the solution 
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was stirred until thermal equilibrium had been attained. The 

equilibrium current was measured, and the solution was stirred 

again and allowed to stand for about an hour. The equilibrium 

current was again determined, and if the agreement was within 

+ 0,2 ma., the results were averaged to obtain the equilibrium 

current for that solution. 

Additional portions of the appropriate stock solutions, 

sufficient to give solutions of the desired concentrations, 

were added to the cell. For each solution, the necessary 

amount of platinum weight was added to the float, and the 

equilibrium current was determined. About four or five di.'-

ferent concentrations were measured during a single run. ïhe 

temperature control was better than + 0.001°0.during the 

entire run. To minimize any time dependent errors in the 

critical dilute region, the value of 1° and the first two 

dilutions were always measured during a single day. 

On completion of a run, the platinum weights were cleaned 

and weighed on an Ainsworth Type PDJ microbalance, and the 

specific gravity of each solution was calculated using Equa­

tions 4.29 and 4.30. 

5. Apparent molal volumes of aqueous potassium chloride 

solutions 

As a final check on the accuracy of the apparatus, appar­

ent molal volumes of aqueous solutions of potassium chloride 

at 25°0. were measured. The densities and apparent molal 

volumes obtained for potassium chloride are given in Table 2. 
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The apparent molal volumes obtained from the measurements in 

this research were in excellent agreement with those of Geff-

chen and Price (72), Kruis (57), and Ayers (7). 

Table 2. Apparent molal volumes of aqueous KCl solutions at 
25°C. 

Molarity Specific gravity 4" 

0.0039999 1.0001910 27.026 
0.0093525 1.0004465 27.037 
0.014094 1.0006719 27.106 

0.031852 1.0015152 27.209 
0.055887 1.0026531 27.305 
0.097226 1.0046017 27.448 

0.14638 1.0069093 27.577 
0.20460 1.0096304 27.709 

*A11 partial and apparent molal volumes determined in 
this research are given in milliliters per mole. 

6, Treatment of experimental data 

As described earlier, the experimental values of the 

specific gravity and the corresponding experimental apparent 

molal volumes were calculated by use of Equations 4.29, 4.30, 

and 4.25. The density of water at 25°0. was taken from the 

compilation of Dorsey (73), and 21.428 grams per cubic centi­

meter (74) was used for the density of platinum referred to 

in Equation 4.30. 

The experimental apparent molal volume data for each of 

the rare-earth salts studied in this research are well repre­
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sented by an empirical power series in m̂  of the form, 

= â  + â m̂  + â m + â m̂ /̂  , (4.31) 

where m is the molality. For each rare-earth salt, the numer­

ical values of the parameters (â , â , 0.2» â ) were determined 

by a least squares analysis of the experimental data, using 

the inverse square of the probable error in as the weight­

ing factor. An estimation of the probable error in will be 

discussed later. The partial molal volume is related to the 

apparent molal volume by Equation 1.3. Therefore, the partial 

molal volumes for each of the rare-earth salts studied in this 

research may be calculated from equations of the form, 

Vg = a^ +1 a^m^ + Sagm + | a^m^/^ . (4.32) 

A primary objective of this research was to obtain accur­

ate values for the partial molal volumes at infinite dilution. 

Values for may be obtained by an extrapolation using Equa­

tion 4,31. However, it was believed that a more accurate 

value of Vg could be obtained if the limiting slope of as 

a function of ĉ  were fixed from theory. Consequently, the 

Owen-Brinkley equation, Equation 4.10, was used to extrapolate 

the experimental apparent molal volume data. The justifica­

tion for this procedure will be discussed in more detail 

later. For a 3-1 electrolyte, the Owen-Brinkley equation 

becomes, 

= 0$ + 27.44 ĉ T(Ka) + èWv(9(Ka)c + iK̂ c , (4.33) 
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where, Ka = 0.805liĉ , when the value of a is given in Ang­

strom units as a (11). The values of a were not evaluated 

from the apparent molal volume data but were taken from activ­

ity coefficient and conductivity data in the literature (22, 

23,24,25,75,76). The functions, T(Ka) and (̂Ka), are 

easily calculated using the equations and table given by 

Hamed and Owen (11). For a given electrolyte, the values of 

0°, and iKy were evaluated from the experimental data by 

means of a least squares analysis of the data, using the 

inverse square of the probable error in 0̂  as the weighting 

factor. 

The experimental apparent molal volumes were well repre­

sented by Equation 4.33 in all cases studied, except for the 

Nd(NÔ )̂  data of Ayers (7). For NdCNÔ )̂ , the parameters in 

Equation 4.33 could not be adjusted to represent the data 

within experimental error, so the experimental data for 

NdCNOj)̂  was extrapolated using Equation 4.31. 

7. Experimental results 

The apparent molal volumes of aqueous solutions of PrOl̂ , 

SmOlj, GdOlg, TbOlj, DyOl̂ , HoOlj, and ErCl̂  were determined 

at 25°C. over a concentration range of about 0.0015 molar to 

0.18 molar. Ayers also gives apparent molal volume data for 

ErClj over about the same concentration range. However, his 

data for BrClj do not seem to be consistent with the data 

for the other rare-earth salts, so apparent molal volumes of 
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ErOl̂  were determined as part of this research. The data for 

ErOlj obtained in this research are consistent with 0̂  data 

for the other rare-earth salts and also show better agreement 

with the data of Saeger and Spedding (6). 

The experimental specific gravities and apparent molal 

volumes determined during the course of this investigation are 

given in Table 3. The corresponding concentrations are 

expressed as m® and c®, where m is the molality and c is the 

molar concentration. The quantity, A , represents the differ­
ence, (0y)experimental - (0̂ )calculated, where the calculated 

value refers to the apparent molal volume calculated from 

Equation 4,33 with the appropriate parameters. The units of 

Çiy and A are ml./mole. 
The experimental 0̂  data for DyCl̂  are plotted against ĉ  

in Figure 4. The value of .0° used in constructing Figure 4 

was taken from Table 5. The straight line drawn from the 

intercept refers to the concentration dependence predicted by 

the theoretical limiting law. Equation 4.6, for a 3-1 electro­

lyte. The vertical line drawn from the most dilute experi­

mental point represents the error in that value introduced 

by an error in specific gravity of + 3x10""̂ . The data for the 

other salts in Table 3 show much the same behavior as DyOl̂ , 

the only significant difference being in the value of the 

intercept, 0°. 

The apparent molal volume data in Table 3 and the data of 
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Ayers were treated according to the procedure described 

earlier. The parameters for Equation 4.31 determined by the 

least squares analysis are given in Table 4 for each of the 

rare-earth salts studied. The parameters for ErClj refer to 

the data from Table 3. The last column in Table 4 gives, for 

each salt, the average deviation of the experimental 0y from 

the corresponding values calculated using the empirical equa­

tion, The units are ml./mole, Ayers chose to represent his 

data in terms of five parameter equations similar to Equation 

4,31. However, his data are equally well represented by the 

simpler four parameter equation. Equation 4.31, 

The apparent molal volume data contained in Table 3 and 

the data of Ayers were extrapolated using the Owen-Brinkley 

equation in the form of Equation 4.33, The values of 0° and 

the other parameters of Equation 4,33, determined by the least 

squares treatment, are given in Table 5 for each of the salts 

studied. The average deviation of the experimental from 

the values calculated using the Owen-Brinkley equation is 

given in the last column for each of the salts studied. The 

units are ml./mole. As previously mentioned, the NdfNÔ )?; 

data of Ayers were not consistent with Equation 4.33, and the 

value of given in Table 5 for NdfNÔ )̂  refers to an extrap­

olation using Equation 4.31. The values of the a parameters 

used in the extrapolation procedure are also given in Table 5, 

along with the corresponding literature reference in parenthe­

sis. 



62 

It should be mentioned that the experimental values 

given by Ayers for the 0,026244 molal solution of YbOlj and 

the most dilute solution of YbfNÔ )̂  are in obvious error, and 

these values were not included in the analysis of his data. 

Since interionic attraction theory does not predict the 

value of 0°, experimental data is perhaps best compared with 

theory by comparing the quantity, d̂ /̂dĉ , with the theoretical 

slope. For this purpose, experimental values of d0y/dm̂  have 

been computed from Equation 4.31 for each of the rare-earth 

salts studied, using the appropriate parameters given in Table 

4, It may be noticed that the experimental values of the 

slope were computed on the basis of concentration expressed in 

molality, m. However, the difference between molality, m, and 

molar concentration, c, is insignificant for this discussion. 

Experimental values for the slope, d̂ y/dm̂ , are given in Table 
X 

6 at round values of m®. In Figure 5, the experimental slopes 

for several of the rare-earth salts are plotted against m̂ . 

The horizontal straight line represents the theoretical limit­

ing slope for a 3-1 salt, 27.44, as calculated from Equation 

4,6. The effect of an a parameter of 5.6 A on the theoretical 

slope is shown by the dashed line, which represents the slope 

predicted by Equation 4,15 assuming the a parameter is effec­

tively independent of pressure, 

Additivity laws, similar to Equations 4,4 and 4,5, may be 

written for the rare-earth chlorides and nitrates in the form. 
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 ̂ " ̂ v̂̂ Ol"] ' (̂ '34) 

(̂ v̂ R'Xs • (̂ v̂ RX) = ^̂ V̂ R'+3' (0v̂ R+3 ' (̂ •35) 

where R and R' represent the particular rare-earth, and X 

represents the anion. The differences on the right hand sides 

of Equations 4.34 and 4.35 were calculated from the values of 

in Table 5, and these differences are given in Table 7. 

Since the quantity of the right hand side of Equation 4,34 

should be independent of the cation, this quantity was also 

calculated from data on potassium chloride, potassium nitrate, 

ammonium chloride, and ammonium nitrate. In Table 7, these 

results are compared with the values calculated from the rare-

earth salts. The values of 0° used in the calculations were 

taken directly from the literature for potassium chloride 

(72), ammonium chloride (77), and ammonium nitrate (72). 

Apparent molal volumes of potassium nitrate were computed 

from the data of Gibson and Kincaid (78), and the resulting 

values were extrapolated using Equation 4,9, which gave a 

value of 34.4 ml./mole for of potassium nitrate. 

There is every reason to believe that the additivity laws 

expressed by Equations 4.34 and 4.35 are valid, so the devia­

tions shown in Table 7 actually reflect the experimental 

error in 0̂ , 

The values of Vg, identical to ̂ y, for the rare-earth 

chlorides are plotted as a function of ionic radius of the 
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Table 5. Experimental 
gravities at 

apparent molal 
25*0. 

volumes and specific 

oi P/Po 0v A 

PrOlj 

0.041633 
0.068530 
0.087251 

0.041695 
0.068634 
0.087385 

1.0004092 
1.0011053 
1.0017892 

11,92 
12.65 
12.97 

-0,09 
+0.04 
-0.02 

0.13551 
0.16616 
0.23282 

0.13573 
0.16644 
0.23327 

1.0042986 
1.0064508 
1.0126111 

13.91 
14.35 
15.36 

+0.06 
-0.03 
+0.02 

0.29549 
0.36348 
0.42226 

0.29613 
0.36443 
0.42354 

1.020250 
1.030528 
1.041089 

SmOlj 

16.08 
16.94 
17.55 

—0.06 
+0.03 
0.00 

0.045036 
0.046100 
0.073046 

0.045103 
0.046169 
0.073157 

1.0004971 
1.0005210 
1.0013056 

12.38 
12.32 
12.78 

+0.13 
+0.04 
-0.04 

0.095015 
0.13175 
0.16024 

0.095162 
0.13196 
0.16051 

1.0022054 
1.0042297 
1.0062459 

13.18 
13.81 
14.23 

-0.04 
-0.02 
-0.02 

0.22644 
0.28755 
0.35857 

0.22687 
0.28817 
0.35949 

1.012425 
1.019975 
1.030958 

15.15 
. 15.89 

16.68 

+0.02 
+0.02 
+0.01 

0.41872 0.41998 1.042106 

Gd0l3 

17.32 -0.01 

0.043430 
0.057433 
0.089915 

0.043494 
0.057520 
0.090054 

1.0004718 
1.0008245 
1.0020160 

14.25 
14.43 
15.03 

+0.10 
-0.02 
-0.05 

0.12314 
0.15888 
0.20353 

0.12334 
0.15915 
0.20390 

1.0037713 
1.0062666 
1.0102539 

15.67 
16.15 
16.84 

+0.03 
-0.04 
+0.03 

0.29340 
0.37085 
0.42181 

0.29407 
0.37189 
0.42315 

1.021222 
1.033773 
1.043613 

17.87 
18.82 
19.26 

-0.03 
+0.07 
-0.04 



Table 3. (Continued) 

o& mi P/f)o A 

TbClj 
0.039062 
0.070770 
0.085471 

0.039120 
0.070878 
0.085602 

1.0003839 
1.0012586 
1.0018328 

14.46 
14.77 
15.18 

+0.24 
-0.12 
+0.01 

0.13862 
0.16029 
0.22822 

0.13885 
0.16056 
0.22866 

1,0048054 
1.0064137 
1.0129589 

15.99 
16.44 
17.27 

-0.07 
+0.06 
-0.04 

0.29238 
0.36527 
0.43056 

0.29304 
0.36626 
0.43198 

1.021193 
1.032977 
1.045679 

H0OI3 

18.16 
18.90 
19.66 

+0.06 
-0.03 
0.00 

0.045283 
0.065715 
0.076195 

0.045306 
0.065813 
0.076312 

1.0005306 
1.0011176 
1.0015012 

12.82 
13.29 
13.52 

-0.03 
0.00 
+0.02 

0.093206 
0.11052 
0.15259 

0.093350 
0.11069 
0.15285 

1.0022439 
1.0031499 
1.0059894 

13.80 
14.20 
14.87 

-0.03 
+0.05 
+0.03 

0.16191 
0.19607 
0.22756 

0.16219 
0.19642 
0.22800 

1.0067421 
1.0098644 
1.0132662 

14.92 
15.50 
15.92 

-0.06 
+0.02 
+0.01 

0.28329 
0.34586 
0.36281 

0.28390 
0.34673 ' 
0.36376 

1.020505 
1.030469 
1.033504 

16.59 
17.38 
17.56 

-0.03 
+0.02 
+0.01 

0.41869 0.41998 1.044513 

DyCl3 

18.17 -0.01 

0.041586 
0.064935 
0.086923 

0.041647 
0.065034 
0.087057 

1.0004424 
1.0010777 
1.0019267 

13.85 
14.07 
14.65 

+0.16 
-0.12 
+0.04 

0.13661 
0.16315 
0.23848 

0.13683 
0.16342 
0.23894 

1.0047.435 
1.0067549 
1.0143732 

15.46 
15.88 
16.92 

-0.01 
0.00 
+0.01 

0.27972 
0.35331 
0.40290 

0.28032 
0.35425 
0.40412 

1.019736 
1.031379 
1.040719 

17.42 
18.28 
18.82 

-0.01 
0.00 
0.00 
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Table 3. (Continued) 

oi P/Po A 

ErCl3 

0.045679 
0.067254 
0.091134 

0.045747 
0.067355 
0.091274 

1.0005481 
1.0011858 
1.0021743 

11.75 
12.27 
12.64 

"-0.02 
+0.04 

.—0.06 

0.14496 
0.16076 
0.23456 

0.14519 
0.16102 
0.23500 

1.0054778 
1.0067342 
1.0142755 

13.73 
13.86 
14.96 

+0.08 
-0.04 
+0.02 

0.28131 
0.35643 
0.41841 

0.28190 
0.35732 
0.41966 

1.020492 
1.032779 
1.045059 

15.48 
16.41 
17.05 

-0.05 
+0.02 
0.00 
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Table 4. Parameters for equation 4,31 

Salt *0 *1 *2 *3 Avg. dev. 

LaCl3 14.38 27.83 -42.02 33.97 0.08 

PrOlj 10.96 26.58 -42.55 39.22 0.04 

Nd0l3 10.48 21.15 -19.28 11.63 •0.03 

SmCl3 11.42 20.56 -21.81 14.90 0.02 

GdOl3 13.30 21.72 -25.94 18.92 0.04 

TbCl3 13.51 21.02 -23.02 16.70 0.07 

DyOl3 12.82 22.90 -29.97 24.97 0.04 

H0CI3 11.83 24.38 -35.72 32.58 0.03 

ErCl3 10.69 25.33 -38.86 35.01 0.04 

YbCl3 9.22 26.64 -45.10 40.81 0.11 

La(N03)3 49.08 32.19 -53.01 52.21 0.11 

Nd(N03)3 44.74 40.42 -54.02 39.39 0.12 

Er(N03)3 45.59 20.28 -19.95 13.05 0.03 

Yb(N03)3 43.60 22.31 -25.72 17.62 0.03 
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Table 5. Parameters for Equation 4.33 

Salt 0°(=v°) iWy a Avg. dev. 

LaOl̂  14.51 36.33 4.904 5.75 (22) 0.08 

PrCl3 10.96 34.47 4.254 5.73 (22) 0.04 

NdClj 10.18 23.82 5.401 5.49 (23) 0.04 

SmCl̂  11.16 3.83 6.747 5.63 (22) 0.04 

GdOlj 13.08 9.56 5.794 5.63 (24) 0.05 

TbOlj 13.25 13.00 6.519 5.85 (25) 0.07 

Dycij 12.66 9.53 5.713 5.32 (23) 0.04 

H0013 11.73 27.45 5.787 6.04 (23) 0.02 

ErOlj 10.63 30.92 4.732 5.92 (23) 0.04 

YbClj 9.27 20.07 5.537 5.90 (23) 0.11 

LaCNÔ )̂  49.37 32.82 5.815 4.4 (75) 0.11 

NddlOj)̂  44.74 - Data did not fit Owen-Brlnkley equati< 

ErCNOj)̂  45.28 8.29 6.539 5.6 (76) 0.05 

Yb (1̂ 03)3 43.37 32.41 4.821 6.05 (76) 0.03 
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Table 6, Experimental values of d̂ Zfy/dm̂  at round m® 

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

LaOlj 27.8 23.9 20.5 17.5 15.1 13.2 11.8 10.9 10.5 

PrOlj 26.6 22.6 19.2 16.5 14.3 12.7 11.6 11.2 11.4 

NdOlj 21.2 19.3 17.6 16.2 14.8 13.7 12.7 11.9 11.3 

SmCl3 20.6 18.5 16.7 15.0 13.6 12.4 11.5 10.8 10.3 

GdCl3 21.7 19.3 17.1 15.2 13.6 12.3 11.3 10.5 10.1 

Tb0l3 21.0 18.9 16.9 15.2 13.8 12.6 11.7 11.1 10.6 

DyOl3 22.9 20.1 17.7 15.6 13.9 12.6 11.7 11.1 10.9 

H0OI3 24.4 21.1 18.2 15.9 14.0 12.6 11.8 11.4 11.4 

Er0l3 25.3 21.7 18.6 16.0 14.0 12.5 11.5 11.0 11.0 

YbCl3 26.6 22.4 18.8 15.9 13.5 11.7 10.6 10.1 10.1 

8̂(̂ 03)3 32.2 27.3 23.2 19.8 17.3 15.5 14.5 14.3 14.9 

Nd(N03)3 40.4 35.3 30.8 26.9 23.6 20.8 18.7 17.1 16.1 

Er (1103)3 20.3 18.4 16.7 15.2 13.9 12.8 11.8 11.1 10.6 

Yb (1103)3 22.3 19.9 17.7 15.8 14.1 12.8 11.6 10.8 10.2 
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Table 7, Addltlvlty relationships 

Cation 5 ["̂ v̂̂ NOj " (4)̂ +3 - Ani .on 5 ["̂ v̂̂ NOj " (4)̂ +3 -
01- NÔ  

R+J R'+3 

la+5 34.9 La+5 Nd+3 4.3 4.6 

Nd+3 34.6 I,a+3 Er+3 3.9 4.1 

Er+3 34.7 la+3 Yb+3 5.2 6.0 

Yb+3 34.1 Er+3 Nd+3 0.5 0.5 

K+ 34.7 Na+3 Yb+3 0.9 1.4 

34.2 Yb+3 1.4 1.9 

mean = 34.5 

Average.deviation from 
mean for rare-earth 
salts = 0.3 

Average deviation from 
of 01" and NOg value = 

mean 
0.2 
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THEORETICAL LIMITING LAW 

0 0.1 0.2 0.4 0.3 

ci 

Figure 4. Apparent molal volumes in ml./mole of aqueous 
solutions of dysprosium chloride at 25°0. 
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SmCI 
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Figure 5, Comparison of experimental values of d̂ y/dm̂  with 
theory 
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Figure 6, Partial molal volumes at infinite dilution of 
some rare-earth chlorides as a function of 
rare-earth ionic radius 
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rare-earth ion in Figure 6, The values of Vg were taken from 

Table 5, and the ionic radii are those of Pauling (79). The 

dashed lines represent the trends shown by the data. 

8, Errors 

As previously mentioned, the experimental apparent racial 

volumes determined in this research were calculated from 

Equation 4.25, 

= (1 - p/po)1000/c + Mg/po (4.25) 

and the specific gravities were calculated from Equation 4.29, 

W + Wg + 

® = P/Po = iTÏÔV • (4-29) 
o 

Thus, the experimental specific gravities and apparent racial 

volumes were not directly measured in this research but were 

calculated from independently measured quantities. When a 

quantity, U, cannot be directly measured but must be calcu­

lated from the mean values of two or more independently 

measured quantities, 2̂» **• then the probable error 

in the mean value of U may be calculated from those of 

Xg, ... using the law of propagation of precision indexes 

described by Worthing and Geffner (80), According to this 

method, the probable error of the calculated quantity, P(U), 

may be expressed as, 

P2(Û) = ) (bu/bXi)^ P^(Xi) , (4.36) 
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where U is the mean value of the calculated quantity, U; X̂ , 

the mean value of the directly measured quantity and 

P(Xĵ ), the probable error in Equation 4.36 may be applied 

to the case of the apparent molal volume to give 

p2(o) + (b̂ v/bs)̂  P2(8) , (̂4.37) 

where the probable error in S is given by, * 

p2(S) = (bs/bw)2 p2(w) + (bs/bwg)̂  p2(wa) + 
(4.37a) 

(bs/bi°)̂  P̂ (i°) + (bs/bio)%̂ (io) + (b8/bT)2p2(Y). 

Calculating the partial derivatives in Equation 4.37 

gives the result. 

P2(0v) = 1000(3 - 1) . P(c) 
c c 

2 
+ 100 P(S)" 

2 
(4.38) 

c 

The uncertainty in the concentration, c, was due to the un­

certainty in the concentration of the stock solution and to 

errors introduced in preparing dilutions from a given stock 

solution. The probable error of the concentration of the 

stock solution was estimated to be roughly + 0.05 percent. 

The errors introduced in preparing the dilutions would be 

random errors and were estimated to average about + 0.01 per­

cent, so P(c)/c = + 6x10"̂ . The quantity, 1000(S - l)/c, was 

approximately constant and equal to about 240 for all the 

solutions studied, so Equation 4.38 becomes, 

7̂ iÇSy) = (0.14)2 + [lOOOP(S ) /c j^  . (4.39) 
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It should be emphasized that the concentration error of 

each solution is due mainly to the error in the concentration 

of the stock solution, and this error will be the same for all 

solutions prepared from a given stock solution. Therefore, 

the A values given in Table 3 will be much smaller than Equa­

tion 4,39 implies if the same stock solution was used to pre­

pare all the dilutions. For PrOl̂ , GdOl̂ , and DyOlj, two 

independently prepared and analyzed stock solutions were used 

in preparing the dilutions, and for the other rare-earth 

chlorides, the same stock solution was used to prepare all the 

dilutions of a given salt. 

Prom Equation 4,39 it is obvious that a given error in 

specific gravity is much more serious for dilute solutions 

than for concentrated solutions. For example, an error of 

+ 1x10"̂  in specific gravity results in an error in of 

+0.01 ml./mole at 0.1 molar, but at 0.002 molar, the same 

error in specific gravity causes an error in 0̂  of + 0.5 

ml./mole. Therefore, an accurate estimate for the probable 

error in specific gravity is of particular importance for very 

dilute solutions. 

Calculating the partial derivatives appearing in Equation 

4.38 from Equation 4.29 and inserting numerical values yields, 

bs/bwg = l/(¥ + I°Y) = lzlO"2 (g. )-i, (4.39) 

bs/bl° = Y/(W + IQY) = 1x10"̂  (ma.)"1, (4.40) 
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bs/big = + "s + = 1x10-6 (ma.)"l, (4.4l) 

(W + I°Y )2 

bs/bT = i2(w + W8 + i°̂ r) ̂  1° - Ig  ̂

w + (w + w 

)>.A. - • ["• - •S''̂  • 

0.2 ma./g,, (4.42) 

20 c 

(W + I°y )2 (w + )2 

2x10-5 (g.)-l. (4.43) 

The weight of platinum on the float was always adjusted to 

minimize the quantity, 1° - 1°. Usually this difference was 

about 20 ma. or less, so a value of 1° - 1° = 20 ma. was used 

to obtain the final result for bs/b"̂  • Also, it was 

observed that the quantity, (1° - 1°)"̂  + Wg, was approximately 

proportional to the molar concentration, c. This fact was used 

to obtain the final expression for bs/bw. 

Prom the reproducibility of the equilibrium current meas­

urements, it was estimated that, P(I°) = P(I°) = + 0.1 ma. 

Using the approximations given by Equation 4.40 and Equation 

4.41, it is possible to write, 

(bs/bl°)^ P̂ (I°) + (bs/blg)^ P̂ do) = 2x10-14. (4.44) 

Reproducibility of the calibration factor, , for a 

given position of the solution cell in the solenoid, indicated 
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that the probable error in was about + 5x10"? g./ma. 

This estimate and Equation 4.42 leads to the result, 

(bs/bT p2( Y ) ̂ 1x10-14. (4.45) 

The quantity, Wg, was calculated from Equation 4.20, so 

the error in Wg arises from both uncertainty in Wy and uncer­

tainty in the density of platinum, dp̂ . The law of propaga­

tion of precision indexes may be applied to Equation 4.30 to 

give 

p2(ws) = p2(ŵ ) + ŵ  P̂ (dp̂ )/dpJ . (4.46) 

A value of 21.428 + 0.002 g./cc. for the density of annealed 

platinum wire (74) was used in all the calculations, so 

P(dpt)/'ipt - 1x10"̂ . The probable error in the weight of 

platinum in vacuum, P(wy), was estimated to be + 0.005 mg. or 

one part in 10̂ , whichever is larger. An uncertainty of 

+ 0.005 mg. is insignificant compared to the errors expressed 

by Equations 4.44 and 4.45, but one part in 10̂  becomes sig­

nificant at higher concentrations where ŵ  is large. With the 

above estimates for P(wy) and P(dp̂ ), Equation 4.46 becomes, 

p2(wg) = 1.3 xlO'lO (g.)2. (4.47) 

Combining Equation 4.47 and Equation 4.59, and substituting 

20c for Wy gives 

(bs/bwg)̂  p2(Wg) = 5 0% xlO-12. (4.48) 

Prom the accuracy of the weights used with the analytical 

balance and the reproducibility of the balance, it was esti­

mated that P(¥) = + 5x10"̂  g. This estimate and Equation 4.43 
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result in the approximation, 

(bs/bw)̂  P̂ (W) = 0̂  xlO-12. (4.49) 

Combination of Equations 4.44, 4.45, 4.48, and 4.49, 

gives the final expression for the probable error in the 

specific gravity, which may be expressed as, 

P(S) = (3x10-14 + 6 c2 X 10-12)&. (4.50) 

Equation 4.50 may then be combined with Equation 4.39 to cal­

culate the probable error in 0̂  as a function of concentra­

tion. The preceeding error analysis for specific gravity and 

0Y is summarized in Table 8. It should be noticed that the 

probable error in specific gravity makes an important contri­

bution to the probable error in 0y only for very dilute 

solutions. In fact, the specific gravity error becomes very 

serious below 0.002 molar, which is the reason the A values 

in Table 3 are, in general, larger for the most dilute solu­

tions. It is significant to note that if the A values in 

Table 3 for the most dilute solution of a given salt are 

attributed solely to the specific gravity error, the average 

specific gravity error is + 2x10"?, in perfect agreement with 

the error analysis. 

In addition to the error in 0y caused by an error in the 

concentration of the stock solution, the values of given in 

Table,5 also contain a possible extrapolation error. However, 

it is believed that use of the Owen-Brinkley equation reduced 

the extrapolation error to less than±0.1 ml./mole in most 
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cases. Therefore, it may be expected that the probable error 

in will be about±0.2 ml./mole. If the deviations given in 

Table 7 are taken as a measure of the probable error for the 

difference between two 0° values, the predicted probable error 

for 0° is±0.18 ml./mole, in agreement with the above estimate. 

The probable error in the experimental slope, d0y/dm®, is 

much more difficult to estimate. However, a crude estimate of 

the slope may be obtained by a method based upon the use of 

different empirical equations to represent the 0̂  data. The 

values of d̂ y/dm̂  given in Table 6 were calculated from a 

power series in m̂  containing four adjustable parameters. 

However, Ayers (7) chose to represent his data with similar 

equations but containing five adjustable parameters. Further­

more, it was noticed that, in most cases, the data could be 

represented by power series in containing only three 

adjustable parameters. The three parameter equations did not 

represent the experimental data as well as either the four 

or the five parameter equations, but the three parameter equa­

tions usually represented the experimental data within the 

limits of experimental error in 0̂ . 

For each rare-earth salt, d0y/àm̂  was calculated from 

the corresponding five parameter equation, and also from the 

corresponding three parameter equation when the three par­

ameter equation represented the data within the limits of 

experimental error. For a given salt, the values of d0y/dm̂  
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obtained were compared with those given In Table 6, and the 

differences observed were taken as a crude estimate of the 

probable error In the slope, dJ2fy/dm̂ . The results of this 

comparison for LaCNOg)̂ , Nd(1103)3, SmOl3, and H0CI3 are given 

In Table 9. The deviations shown by La(N03-)-3 were the largest 

observed for the salts studied, while ̂ (̂#03)3, SmCl3, and 

H0OI3 represent typical examples of the deviations found for 

the other salts. The three parameter equation for ̂ 0X̂ 03)3 

did not represent the data so It was not Included In the error 

analysis. 

From this "empirical" error analysis. It was concluded 

that the relative probable error In a given value of d0y/dm̂  

from Table 6 Is generally about + 10 percent at m̂  = 0.05 and 

about + 5 percent at higher concentrations. Since the experi­

mental limiting slope involves a possible extrapolation error, 

in addition to the probable error of about + 20 percent indi­

cated by Table 9, all that can be said is that the values of 

djzfy/dm̂  given in Table 6 for m& = 0 have a probable error of 

at least + 20 percent. 

0. Discussion 

1. Limiting concentration dependence 

The tentative conclusions of Speddlng and Ayers (7) indi­

cated that the concentration dependence of the apparent molal 

volumes of rare-earth salts showed significant deviations from 

the theoretical limiting law. Equation 4.6, above 0.002 molal, 
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Table 8. Error analysis for and specific gravity 

2(8) 
osi 

P ( s )  
b0V 

be , 
P(c) P(0v) 

0.001 2.10"? 

0
 

01 Ô
 0.14 0.22 

0.002 2.10-7 0.10 0.14 0.17 

0.004 2.10"? 0.05 0.14 0.15 

0.006 2.10"? 0.03 0,14 0.14 

0,008 2*10-7 0.03 0.14 0.14 

0.01 2-10-7 0.02 0.14 0.14 

0.02 2*10-7 0.01 0.14 0.14 

0.05 2*10-7 0.00 0.14 0.14 

0.10 3*10-7 0.00 0.14 0.14 

0.15 4*10-7 0.00 0.14 0.14 

0.20 5*10-7 0.00 0.14 0.14 
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Table 9» Comparison of d̂ y/dm̂  calculated from different 
equations 

Salt 
Slope, d0v/dm2 

Salt 
mt 

p̂ar><̂  0 0.05 0.1 0.2 0.3 0.4 

La,(NO^)^ 5a 23.0 21.9 20.7 18.4 16.1 13.8 

La.('NO^)j 4b 32.2 27.3 23.2 17.3 14.5 • 14.9 

La(N0-5 ) 5" 53.0 34.6 23.4 15.9 17.4 14.9 

Nd (NÔ  ) -J 4̂  40.4 35.3 30.8 23.6 18.7 16.1 

Nd(NOJ)J 5° 46.2 37.7 31.2 22.8 18.9 17.2 

SmCl̂  3̂  18.4 17.3 16.2 13.9 11.7 9.4 

SmOl̂  4b 20.6 18.5 16.7 13.6 11.5 10.3 

SmClj 5® 13.7 16.5 16.8 13.7 10.9 15.0 

H0GI3 3̂  19.7 18.4 17.1 14.6 12.1 9.6 

H0OI3 4b 24,4 21.1 18.2 14.0 11.8 11.4 

H0CI3 5S 30.1 33.2 18.4 • 13.7 12.3 10.6 

a = 49.59 + 23.00 m̂  - 11.46m. 

 ̂From Table 6. 

^ From Ayers (7). 

& = 11.54 + 18.44m2 - 11.26m. 

e = 11.65 + 13.74m& + 41.90m - 212.6m̂ /̂  + 272.Sm̂ . 

= 12.09 + 19.66m2 _ 12.59m. 

G = 11.61 + 30.07m& - 81.50m + 174.7mV2 _ 149.Im̂ . 
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and furthermore, that the deviations were more serious for the 

heavier rare-earths. Before discussing the results obtained 

in this research, it should be mentioned that their discussion 

of the limiting behavior assumed the theoretical limiting 

slope for 3-1 salts was 37, as given by Earned and Owen (11). 

As previously mentioned, the more recent study of Redlich arid 

Mayer (50) shows the correct value to be 27.44. 

Since interionic attraction theory predicts only the 
, X 

slope of a vs. c curve, it was decided that a consistent 

comparison of apparent molal volume data with interionic 

attraction theory would best be made by comparing the experi­

mental slopes with the slope predicted by interionic attrac­

tion theory. However, as revealed in the error analysis, the 

experimental slopes in dilute solution may be subject to large 

errors, and a theoretical discussion of the experimental 

slopes must recognize this limitation. 

Prom Table 6, the average experimental limiting slope for 

the 3-1 salts studied was calculated to be 25. In view of the 

possible errors introduced by extrapolation, the value agrees 

remarkably well with the theoretical value of 27. For the 

most part, the limiting slopes given in Table 6 are less than 

the theoretical limiting value. This trend is most likely due 

to an extrapolation error introduced by the use of empirical 

equations to represent the data. 

It is perhaps more meaningful to discuss the slopes at 
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experimental concentrations. At experimental concentrations 

(above 0.002 molar) the experimental slopes are observed to be 

less than the theoretical limiting slope, with the exception 

of Examples of this negative deviation are shown 

graphically in Figure 4 and Figure 5. It is important to note 

that significant negative deviations from the simple limiting 

law above 0.002 molar are consistent with interionic attrac­

tion theory and require no special explanation other than 

including the effect of the a parameter. The theoretical 

first order deviations from the limiting law were expressed 

earlier by Equation 4.16. 

Figure 5 shows d0y/dm^ for several rare-earth salts as a 

function of m^. The theoretical limiting slope is given by 

the horizontal line, and the theoretical slope at non-zero 

concentrations is given by the dashed line. As mentioned 

earlier, the theoretical slope was calculated from Equation 

4.15 for a 5.6 A, neglecting the term. From Figure 5 it is 

evident that, within experimental error, the experimental 

slopes of ErCl^ and SmCl^, which are typical of most of the 

salts studied, are in agreement with the theoretical slope, 

at least below about 0.01 molar. The slope of Nd (1105)3 shows 

positive deviations from the theoretical limiting slope at low 

concentrations. From the error analysis, it seems certain 

that these positive deviations are real and represent a true 

anomaly. However, the seemingly anomalous behavior shown by 

La(1103)3 niay be due to the unusually large experimental error 
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in the slope for this salt. The values of d^y/dm^ for the 

other rare-earth salts in Table 6 exhibit much the same 

behavior as shown in Figure 5 for SmOl^ and ErClj. In fact, 

except for NdCKO^)^ and possibly LaCNO^)^, the experimental 

values of d^y/dm^ at low concentrations are represented by the 

theoretical curve within the limits of experimental error. 

The success of Equation 4.15 with the a parameter assumed 

independent of pressure, in predicting the observed values of 

d0y/dm2 implies the quantity, - 27.44 c^T(Ka), should be 

nearly constant in dilute solution. Indeed, this phenomenon 

was observed for all the rare-earth salts studied, except 

NdCNO^)^. In fact, it is this behavior that makes the Owen-

Brinkley equation an ideal extrapolation function for the 

rare-earth salts. The observed slight increase in the quan­

tity, - 27.44 c^T(Ka), as the concentration increased was 

probably due to imperfections in the theory as well as the 

influence of bin a/^P. 

In summary, it may be concluded that significant devia­

tions from the simple limiting law do occur at experimental 

concentrations for the rare-earth salts, but that these devia­

tions are consistent with interionic attraction theory for all 

the salts studied except MdfNO^)^. The tentative conclusion 

of Spedding and Ayers that the heavier rare-earth salts show 

greater deviations from the limiting law is not supported. 

The behavior of NdfNO^)^ is anomalous, and some special 
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explanation is needed to resolve this problem. Spedding and 

Ayers suggested that the unusually large slope for NdtNO^)^ 

could be explained if it were assumed the nitrate ion could 

displace a water molecule from the co-ordination sphere of 

Nd^^. In view of the postulated change in co-ordination num­

ber with ionic radius starting near Nd+3 (6), this interpreta­

tion seems reasonable. Furthermore, if this interpretation is 

correct, one might also expect to find unusually large slopes 

for SmfNO^)^ and PrfNO^)^. 

2. Partial molal volumes at infinite dilution 

Values of Vg for ten rare-earth chlorides are shown in 

Figure 6 as a function of ionic radius. It should be noticed 

that Vg decreases with decreasing ionic radius from La to Nd 

and from Tb to Yb. However, in the region from Nd to Tb, Vg 

increases with decreasing ionic radius. The more accurate 

values of Vg obtained in this research differ somewhat in 

magnitude from those determined by Saeger and Spedding (6), 

since their data was obtained by extrapolating from consider­

ably higher concentrations, but the variation of Vg with ionic 

radius is essentially the same. 

In Equation 4.18, the partial molal volume at infinite 

dilution of an ion was written in the form, 

V° = V* + AV, (4.18) 

where V* is the intrinsic volume of the ion and repre­

sents the change in volume of the solvent, which is water in 
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the present discussion. Due to the strong ion-dipole forces 

between a rare-earth ion and water molecules, one may speak of 

a species in solution, where R"*"^ is a rare-earth ion, • 

and X is the number of water molecules co-ordinated to the ion. 

For a given co-ordination number, V* and Av should decrease 

smoothly with decreasing ionic radius, while a change in co­

ordination number may result in sharp changes in both quanti­

ties with the major change occurring in the negative term. 

Since the effective volume of a water molecule in the 

co-ordination sphere should be less than the corresponding 

volume outside this co-ordination sphere, a shift to a lower 

co-ordination number should decrease the absolute magnitude of 

Av and therefore increase the value of Vg, 

According to the original proposal of Spedding and Ayers 

(7) and the later modification given by Saeger and Spedding 

(6), a rare-earth ion in water may exist, in an equilibrium 

between two possible co-ordination numbers. Furthermore, this 

equilibrium may be sharply displaced toward a lower co-ordina-

tion number below a critical radius, due to the influence of 

dipole-dipole repulsions and short range repulsive forces 

between the water molecules in the co-ordination sphere. On 

the basis of this simple model, the Vg data may be qualita­

tively explained. According to this postulate, the equilibrium 

between the possible co-ordination numbers favors the higher 

co-ordination number for the rare-earth ions between La and 
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Nd. After Nd, a displacement of this equilibrium toward the 

lower co-ordination number begins to take place that results 

in the lower co-ordination number becoming increasingly more 

favorable for the rare-earth ions from Nd to around Tb. The 

smooth decrease of Vg from Tb to Yb indicates the shift toward 

the lower co-ordination number terminates around Tb, and the 

rare-earth ions from around Tb to Yb have essentially the same 

co-ordination number. 

Numerous other recent investigations indicate a possible 

change in water co-ordination number for the rare-earth ions 

(4,5,81, 82, 83). In particular, Morgan (81) suggested that 

+"5 
the principle co-ordination number for the R 'XHgO species in 

solution may vary across the lanthanide series. He suggested 

a co-ordination number of nine at the beginning of the series 

and a co-ordination number of six at the end. Including Er"*"^ 

among the latter. Prom proton relaxation data on dilute 

(0.0003-0,02 molar) aqueous gadolinium perchlorate solutions, 

he concluded that either co-ordination number eight or nine is 

acceptable for 

Morgan's conclusions do not agree with the interpretation 

given the partial molal volume data since a co-ordination 

number of six for Er"^^ would require the major change in co­

ordination number to take place between Gd"*"^ and Er''"^. The 

partial molal volume data was interpreted as showing the 

change in co-ordination number takes place between Nd and Tb. 
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However, Morgan's conclusions are based upon the x-ray diffrac­

tion work of Brady (36) on aqueous solutions of ErClj and 

Erl^. According to Brady, the principle solution species are 

ErfHgOïëOlg and ï&tHgOÏglg in concentrated (greater than 0.9 

molar) solutions of ErCl^ and Erl^, respectively. However, at 

infinite dilution, it seems quite likely that water molecules 

would replace the halide ions in the co-ordination complex, 

giving the species, ErfHgO)^^. Co-ordination numbers of nine 

for the rare-earth ions from La+3 to Kd+3 and of eight for 

Gd+3 and Er+^ would qualitatively agree with the V2 data. 

It would be interesting to determine whether or not a 

change in co-ordination number of nine to eight would agree 

quantitatively with the Vg data. For this purpose, let it be 

assumed that the dashed line drawn through the Vg values for 

LaOlj, PrOl-j, and NdClj in Figure 6 represents Vg as a func­

tion of ionic radius from Nd to Tb had no change in co-ordina­

tion number occurred. The difference between the actual value 
~o 

of Vg for TbCljj and the value predicted by the dashed line is 

8 ml./mole. According to the model, this difference repre­

sents the "experimental" value of the change in volume, §7, 

of the reaction, 

Tb.9H20+3 ,Tb.8H20+3 + HgO , (4.51) 

where Sv is given by, 

8 V = V°(Tb.8H20+3) - V°(Tb.9H20+3) + • (4.52) 

The quantities, V°(Tb.8H20+3) and V° (Tb* 9H20"*"^), represent 
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the partial molal volumes at infinite dilution of the co­

ordinated ions, and Vjj^q is the molar volume of the water 

released from the co-ordination sphere. It will be assumed 

that VjjgQ is approximately given by the molar volume of pure 

water, 18 ml./mole. Furthermore, since the effective radii of 

the eight and nine co-ordinated terbium ions, rg and rg respec­

tively, may be expected to be about 4 A, there is some justi­

fication for using Equation 4,23 to calculate the difference in 

partial molal volume between the eight and nine co-ordinated 

species. Using Equation 4,23 to calculate the difference 

between the first two terms in Equation 4,52 and assuming 

VjjgO ~ 18 ml,/mole allows Equation 4,52 to be written as, 

Sv = 2,52(r^ - r|) - 37.6(l/r8 - l/rg) + 18. (4,53) 

The effective radii, rg and rg, must be calculated from 

some co-ordination model. It will be assumed that the effec­

tive radii are approximately given by the average Tb+^-OHg 

distance calculated from the co-ordination model plus the 

radius of a water molecule. X-ray diffraction data for erbium 

ethylsulfate (84) shows nine water molecules about the erbium 
o 

ion at an average distance of 2.42 A, If the radius of the 

water molecule is taken as, = r^z = 1,40 i (79), the 

effective radius of a nine co-ordinated erbium ion is 3.82 1. 

Correcting for the difference in ionic radii (79) between Tb*^ 

and Er*3, the model gives, rg - 3.86 i. The crystal structure 

of Gd0l5*6H20 (85) will be taken as the model for an eight 
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co-ordinated rare-earth ion. Here, six water molecules, at an 

average distance of 2.41 A, and two chloride ions, at a dis-
0 

tance of 2.77 A, are co-ordinated to the gadolinium ion. 

Assuming water molecules occupy the chloride positions and 

correcting for the difference in radii gives 2.4o 1 for the 
+"5 

average Gd distance for the solution species. Adding 

the radius of a water molecule to the average Gd^-OHg distance 

and subtracting the difference in radii of 0.02 A (79) between 

Gd+5 and Tb*^, the effective radius of Tb'SHgO*^ is calcu-
o 

lated to be, rg = 3.78 A. 

Substituting 3.78 Î for xq and 3.86 A for Vg, Equation 

4.53 gives, §V = 9 ml,/mole, which is in excellent agreement 

with the "experimental" value of 8 ml./mole. In fact, the 

near perfect agreement is perhaps fortuitous since the exact 

theoretical value of is quite sensitive to the choice of 

co-ordination model. Furthermore, the above calculation does 

not prove that a change of co-ordination number from nine to 

eight does actually occur. However, the calculation does show 

that a change in co-ordination number from nine to eight for 

the rare-earths is compatible with the Vg data. 
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V. VISCOSITIES 

A. Historical 

1. Experimental methods-capillary viscometry 

The viscosity of a Newtonian fluid was defined by Equa­

tion 1.4, 

Tj = s/(dv/dx) , (1.4) 

where S is the shearing force and dv/dx is the velocity 

gradient in the fluid. Equation 1.4 and classical hydrodyna-

mic theory provide the basis for most experimental methods 

for measuring the viscosity of a Newtonian fluid. Generally, 

an apparatus designed to determine the viscosity of a fluid 

is called a viscometer. Equation 1.4 states that the shear­

ing force is directly proportional to the velocity gradient, 

the constant of proportionality being the viscosity. It 

should be mentioned that some fluids do not obey the simple 

relationship between shearing force and velocity gradient 

given by Equation 1.4. These fluids are called non-Newtonian 

fluids and are discussed by Van Wazer, Lyons, Kim, and Oolwell 

(86). However, there are no known exceptions to Equation 1.4 

for aqueous electrolytes composed of ions of molecular dimen­

sions, as long as turbulent flow is avoided, so this discus­

sion will be confined to the viscosity of Newtonian fluids. 

A variety of experimental methods exist which allow the 

viscosity of a Newtonian fluid to be measured. When a cylin­

der is rotated in a viscous fluid, a retarding force acts upon 
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it as a consequence of the viscous resistance in the fluid. 

This retarding force may be used to determine the viscosity 

of the fluid. Another method for measuring the viscosity con­

sists of measuring the velocity of a sphere falling through 

the fluid. Perhaps the most accurate and widely used method 

is the capillary method. In this method, a given volume of 

liquid in a reservoir is forced through a capillary tube by 

either an externally applied pressure or the hydrostatic 

pressure head of the fluid, and the viscosity of the fluid is 

determined from the measured volumetric flow rate, pressure, 

and capillary dimensions. Most of the available experimental 

methods for measuring viscosity and a number of commercially 

available viscometers are discussed by Van Wazer, Lyons, Kim, 

and Colwell (86), Nearly all of the viscosity studies on 

electrolytes have employed some type of capillary viscometer 

to measure the viscosity of the solutions studied, and in most 

cases, the pressure forcing the liquid through the capillary 

was the hydrostatic head of the solution. The popularity of 

these "gravity-flow" capillary viscometers is probably due to 

the simplicity of operation and the high level of accuracy 

that can be attained. The following discussion will consider 

the measurement of viscosity using the "gravity-flow" capil­

lary method. 

It might be said that capillary viscometry was born in 

1840 with the work of Poiseullle (87), Experiments on the 

flow of water through fine tubes led Poiseullle to empirically 
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discover the relationship between the volumetric flow rate, 

Q; the pressure difference between the ends of the tube, P; 

the radius of the tube, r; and the length of the- tube, L. 

His results may be summarized by the equation, 

Q = k P r^/L , (5.1) 

where k is a constant characteristic of the fluid and temper­

ature, Poiseuille's empirical equation may also be deduced 

from theory. Using Equation 1.4 and hydrodynamics, Barr (88) 

gives a theoretical derivation of Equation 5.1. His result 

may be written as, 

Q = '^7^^ ? . (5.2) 
87^1 

Therefore, the constant, k, in Poiseuille's empirical equa­

tion is equal to TT/QTj . If a volume, V, flows through the 

capillary tube in time, t, Q is given by, Q = v/t. Further­

more, if the hydrostatic pressure head of the fluid is the 

driving force, P = hpg. Here, h is the mean pressure head, 

p is the density of the fluid, and g is the gravitational 

constant. Making the above substitutions for P and Q, Equa­

tion 5.2 may be written in the form. 

? = 
4 

TTr hg 
8VL 

p t , (5.3) 

where the quantity in brackets is a constant for a given 

viscometer and temperature. Equation 5.3 is often referred 

to as Poiseuille's law and has been the equation employed to 

obtain much of the viscosity data on electrolytes. 
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The theoretical derivation of Poiseuille's law assumes 

the only work expended when the fluid flows through the cap­

illary is that due to the viscous resistance in the capillary. 

However, in an actual viscometer the fluid in the reservoir is 

accelerated at the entrance of the capillary and attains a 

certain kinetic energy. Consequently, part of the work 

expended per second is expended in giving the fluid kinetic 

energy. This effect and its correction, termed the kinetic 

energy correction, is discussed in detail by Barr (88). 

Briefly, the result of the kinetic energy effect is that only 

part of the hydrostatic pressure head is effective in over­

coming viscous resistance. Equation 5-3 may be modified to 

correct for the kinetic energy effect by replacing the value 

of h by the pressure head effective in overcoming viscous 

resistance, h', where, 

h' = h - m V^/jT^gr^t^ . (5.4) 

The quantity, m, is a coefficient which depends, in part, on 

the geometry of the capillary ends. Various experimental and 

theoretical estimates of m are discussed in detail by Barr, 

Generally, the estimates summarized by Barr indicate m is 

about unity for the viscometers and flow rates studied. 

In a capillary viscometer, a liquid in a wide reservoir 

enters into the capillary tube in a converging stream and 

exits either into open air or into another reservoir in a 

diverging stream. Any differences in velocity between adja­

cent lines of flow in these streams will require the expen­
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diture of work in overcoming viscous resistance. This addi­

tional resistance, which is not included in the derivation of 

Poiseuille's law, is usually corrected for by a hypothetical 

addition to the capillary length (88) and involves replacing 

L In Equation 5.3 by L', where 

L' = L + n r . ' (5.5) 

In Equation 5.5, r is the radius of the capillary, and n is a 

coefficient which is normally assumed to be a constant for a 

given viscometer. The exact value of n depends upon the 

geometry of the capillary ends, but the various estimates of 

this coefficient, as discussed by Barr, indicate that n is a 

constant for a particular viscometer and is approximately 

equal to unity. This correction involving n is usually called 

the Oouette correction. 

Correcting Equation 5.3 for the kinetic energy effect -

and the Oouette effect gives 

V = 
"irr* h 2 

8V(L + n r) P t — 
m V 

87r(L + n r) 
jO/t , (5.6) 

It should be noticed that for long flow times with a viscom­

eter having a small value of r/L, Equation 5.6 reduces to 

Pois.euille ' s law. 

In an absolute measurement of viscosity, the dimensions 

of the viscometer must be known with high accuracy and the 

values of m and n must be estimated as accurately as possible. 

Because of these problems and several other difficulties (88, 

89), absolute measurements of viscosity are very difficult. 
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However, if m and m are assumed constant over the viscosity 

range of interest. Equation 5.6 may be written in the form, 

r ] /p = G t - K/t, (5.7) 

where 0 and K'are constants for a given viscometer and tem­

perature. The second terra in Equation 5.7, -K/t, is normally 

called the kinetic energy correction. These constants may be 

determined by a calibration procedure using fluids of known 

viscosity. For long flow times. Equation 5.7 reduces to the 

simple expression, 

V/P = 0 t. (5.8) 

Using special viscometers designed to magnify the kine­

tic energy term, Cannon, Manning, and Bell (90) have shown 

that the value of k'in Equation 5.7 is not independent of 

flow time. Their treatment defined K'by, 

k'= t(0 t - 7)/p ), (5.9) 

where 0 is a true constant. The value of 0 for a given vis­

cometer was determined by a calibration using a viscosity 

standard which allowed Equation 5.8 to be employed. The flow 

times of less viscous fluids of known viscosity and density 

were then measured, and the values of K'were calculated from 

Equation 5.9; Their study shows that K'may be expressed 

empirically in terms of the Reynolds number. Re, defined by 

Re = V r p/7J , (5.10) 

where v is the velocity of the fluid in the capillary. The 

other symbols have their usual meanings. According to their 

results, for trumpet shaped capillary ends, k'is given by. 
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K'= 0.037(ReV/STTL , (5.11) 

over the Reynolds number range of practical interest. Cannon, 

Manning, and Bell then derive the expression, 

7]/p = 0 t - E/t2 , (5.12) 

where 0 and E are true constants for a given viscometer and 

temperature. The constant, E, may be approximately calculated 

from Equation 5.15. 

, (5.13) 
L(0 2r)2 

where V is the efflux volume, L and r are the length and 

radius of the capillary, respectively. 

Cannon, Manning, and Sell attribute the observed variation 

of K^with Reynolds number to the increase of the kinetic 

energy coefficient, m, with increasing Reynolds number and do 

not mention the Couette correction coefficient, n. However, 

their observed variation of K^with Reynolds number would also 

include any variation of n with flow time since their experi­

mental procedure determined all deviations from Equation 5.8, 

whatever their cause. It is significant to note that the 

final equation of Cannon and co-workers, Equation 5.12, 

reduces to Equation 5.8 for long flow times. 

A number of viscometer designs, experimental procedures, 

and sources of error in practical viscometry have been well 

summarized in the literature (86,88,91,92,93,94,95), so only 

a brief discussion of practical viscometry will be given here. 
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Many of the "gravity-flow" capillary viscometers in common 

use today are modifications of the simple Ostwald viscometer, 

which consists of two glass reservoir bulbs separated by a 

glass capillary in a U-tube arrangement. With viscometers of 

the Ostwald type, the viscometer is charged with a given 

volume of liquid and placed in a constant temperature bath to 

attain the desired temperature. The liquid is then raised 

into the upper bulb, normally by suction, and then allowed to 

flow back through the capillary into the lower bulb. The 

time is measured for the volume of fluid in the upper bulb to 

flow through the capillary. The viscosity of the fluid is 

then calculated using Equation 5.8, provided the flow time is 

sufficiently long to neglect the kinetic energy correction. 

In order to obtain an accurate result, the hydrostatic 

head must be the same for the calibration and all subsequent 

measurements. This requires, for many viscometers, the 

volume of the liquid in the viscometer to be the same for the 

calibration and all viscosity measurements. If this condition 

is not satisfied, but is necessary, the viscometer constant 

must be corrected for the difference in volume between the 

calibration volume and the test volume (86). 

In capillary viscometers of the "gravity-flow" type, the^ 

driving force is due to the hydrostatic pressure head of the 

fluid. Surface tension between a liquid meniscus and the 

surface of the glass bulb will alter the pressure head 

slightly if the upper and lower bulbs differ in diameter. 
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If the surface tension of the calibrating fluid differs 

greatly from that of the test fluid and if the bulb diameters 

above and below the capillary differ considerably, the surface 

tension correction may be significant for some viscometers. 

The surface tension error and its correction is discussed in 

detail by Barr (88). 

Another source of error is the "alignment error". The 

hydrostatic pressure head will change as the orientation of 

the viscometer changes from the vertical position. Conse­

quently, precautions must be taken to insure that the viscom­

eter is aligned in the same vertical position each time the 

instrument is used. This "alignment error" is more serious 

for viscometers where the upper and lower bulbs do not lie on 

the same vertical axis (91). 

One novel viscometer that minimizes many of the sources 

of error in viscometry was proposed by Ubbelohde (92,93,94). 

In the Ubbelohde viscometer, a tube connects the bulb beneath 

the capillary (the lower bulb) with the atmosphere so that the 

pressure above the liquid in the upper bulb is the same as 

the pressure in the lower bulb. This feature results in an 

air gap between the bottom of the capillary and the level of 

liquid in the lower bulb, thus forming a suspended level. 

Therefore, the liquid is induced to flow only down the walls 

of the bulb below the capillary in the form of a hollow 

hemisphere. The suspended level assures that the lower 

liquid level is automatically fixed and coincides with the 
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lower end of the capillary, so that it is not necessary to use 

a constant volume of liquid. For the same reason, the vis­

cometer constant is nearly independent of temperature. The 

only temperature dependence would be a result of the expansion 

of the glass, which would change C only by about 0,1 percent 

for a 100°0, change in temperature. Perhaps even more , 

important, the suspended level principle allows the surface 

tension at the upper bulb to be balanced by the surface ten­

sion of the hemispherical layer of liquid at the lower bulb. 

Therefore, surface tension corrections need not be applied 

when using a viscometer of the Ubbelohde design (94), 

2, Experimental observations 

Poiseuille, in 1847 (96), was perhaps the first to in­

vestigate viscosity behavior of electrolytes. Poiseuille 

found that addition of some salts to water increased the 

viscosity, while for others, the viscosity of the resulting 

solution was less than that of pure water. Arrhenius (97) 

observed that, in many cases, the difference between the 

viscosity of a solution and that of water was roughly propor­

tional to the concentration for dilute solutions but increased 

more rapidly with increasing concentration at higher concen­

trations, Arrhenius proposed an empirical equation to repre­

sent the concentration dependence of the relative viscosity 

which may be written as, 

InTJr = Ko c , (5.14) 
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where Ko is a constant for a given salt and temperature. The 

more accurate measurements of Gruneisen (98) and Applebey (99) 

showed that the Arrhenlus equation was not obeyed by electro­

lytes, particularly in very dilute solution. Instead of the 

relative viscosity varying linearly with the concentration in 

very dilute solutions, plots of - l)/c against molar 

concentration, c, exhibited pronounced negative curvature in 

very dilute solutions, suggesting the relative viscosity of 

an electrolyte varies with some fractional power of the con­

centration in very dilute solution. 

In 1929, reasoning from the Debye Huckel theory (1), 

Jones and Dole (100) suggested that the relative viscosity 

might be expected to vary as the square root of the molar con­

centration in very dilute solution. They proposed Equation 

5.15 to represent the concentration dependence of the relative 

viscosity in dilute solution, 

l/T^r = 1 - A c& - B' c , (5.15) 

where A and B* are constants for a given electrolyte and tem­

perature, The value of A was predicted to be positive, Jones 

and Dole showed that the viscosity data for a number of dilute 

electrolytes were well represented by Equation 5.15. The 

values of A determined were positive and were of the order of 

magnitude of 0,01, the exact value depending upon the electro­

lyte and temperature under consideration. The values of B' 

were either positive or negative, depending on the electro­

lyte and temperature, and the absolute value of B' was of the 
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order of magnitude of 0,2. For non-electrolytes, A was always 

zero, and b' was positive. 

For dilute solutions, Equation 5.15 may be rearranged to 

give, 

T 7 p = l + A c ^ t . B o .  ( 5 . 1 6 )  

Later investigations by Jones and co-workers (101,102,103) and 

by others (104,105) have established that Equation 5.16, gen­

erally called the Jones-Dole equation, accurately represents 

the viscosity data for many dilute electrolytes. In the past 

30 years, the viscosity behavior of a large number of dilute 

electrolytes have been analyzed in terms of the Jones-Dole 

equation, and experimental values for A and B have been 

tabulated for a number of electrolytes at various tempera­

tures (8,9,11,104). 

The experimental values of A are positive in all known 

cases and are larger for higher valence type electrolytes. 

Furthermore, the values of A always increase with increasing 

temperature for the cases where accurate data are available 

at a number of temperatures. 

The experimental values of B are highly specific with 

respect to the electrolyte and the temperature. In most 

cases, the value of B is positive, but a number of aqueous 

electrolytes have negative B coefficients and at moderate 

concentrations, have a viscosity less than that of pure water. 

The B coefficients have been shown to be an additive property 

of the individual ions (8,104), and additivity laws similar 
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to those written for the apparent molal volumes at infinite 

dilution may be written for the B coefficients. However, 

since the ionic B coefficients, B^, are not directly measured, 

any division of the B coefficient of a given electrolyte into 

ionic contributions must be somewhat arbitrary, at least at 

the present time. This problem is similar to the problem 

encountered when attempting to divide the values of 0° into 

ionic contributions. Based upon various theoretical consider­

ations, a number of different methods of assigning values of 

Bj_ have been proposed (8,9,104). It is encouraging to note 

that the various methods of dividing the B coefficients into 

ionic contributions lead to values of B^ that do not depend 

greatly on the method used to accomplish the division. Some 

examples of B^ at 25°0., as given by Kamlnsky (8), are: 

Bqq+j — 0*577, ®iji+ ~ 0,150, BQQ^ — —0.045, Bq2_— — —0.007* 

In general, for a given ionic radius and temperature, 

values of Bj^ Increase as the charge on the ion Increases. 

For a given valence and temperature, the values of Bj_ gener­

ally decrease as the size of the ion Increases, and large 

monovalent ions usually have negative B coefficients. One 

group of electrolytes that do not obey the preceding general­

ization are the tetraalkylammonlum ions, where the B coeffi­

cients increase as the size of the ion increases. For ions 

with large positive B coefficients, the magnitude of the B 

coefficient generally decreases with increasing temperature, 

but for ions with negative B coefficients, the B coefficients 
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generally increase with increasing temperature and become 

positive at higher temperatures. Thus, the phenomena of 

"negative viscosity", or a value of the relative viscosity 

less than unity, usually disappears at higher temperatures. 

At moderate to high concentrations the Jones-Dole equa­

tion is no longer obeyed, and the relative viscosity increases 

very rapidly as the concentration increases (106,107,108,109), 

suggesting some form of exponential dependence on the concen­

tration. For those electrolytes having negative B coeffi­

cients, the relative viscosity increases with increasing 

concentration at higher concentrations, and eventually the 

phenomena of "negative viscosity" disappears. In the case of 

aqueous OsCl (8,106) at 25°0., the relative viscosity is less 

than unity only between about 0.01 molar and 5.5 molar and 

increases to a value of about 1.3 at 10 molar. In general, 

the same trends in relative viscosity with ion size, valence, 

and temperature as shown in moderate concentrations seem to 

be followed in concentrated solutions as well. 

3. Theoretical 

Shortly after Jones and Dole showed experimentally that 

the relative viscosity of an electrolyte varied as the square 

root of the concentration in very dilute solutions, Falken-

hagen and co-workers (110,111) mathematically derived the 

theoretical limiting expression for the concentration depend­

ence of the relative viscosity. Their derivation was based 

upon the "ionic atmosphere" concept advanced by Debye and 
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Huokel (1) and led to the equation, 

= 1 + A oi , (5.17) 

valid for extremely dilute solutions. The theoretical value 

for A is a positive constant which depends upon the electro­

lyte, temperature, and solvent under consideration. It has 

been shown to be in excellent agreement with experimental 

values of A for a large number of electrolytes at various 

temperatures (11). The general theoretical expression for A 

is a complex function of fundamental constants, temperature, 

properties of the solvent, and equivalent conductances of the 

ions. The general form for A was derived by Palkenhagen and 

Vernon (111) and is given by Harned and Owen (11). For the 

special case of a symmetrical electrolyte with equal ionic 

equivalent conductances, the theoretical expression for A may 

be written as, 

^ " 48oT'??ô o 

where b was defined by Equation 2,2, P is Faraday's constant, 

c is the speed of light and is the equivalent conductance 

of the ion at infinite dilution. The other symbols have 

their usual meanings. 

In attempts to theoretically calculate the B coefficient, 

Palkenhagen and Kelbg (112), and also Pitts (113), have 

extended the earlier theory of Palkenhagen and co-workers to 

include the effect of the a parameter. Prom these studies, 

it was concluded that the a parameter has only a minor effect 
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on the viscosity, and the major contributions to the B coeffi­

cient must result from other effects. In particular, the 

results of Pitts may be written in the form, 

= 1 + A c& (1 + P(Ka) ), (5.19) 

where the function P(K&) is defined by, 

P(x) = — . (5.20) 
(1 + x) (1 + X + xv3) 

Retaining only terms of order c^/^ and lower. Equation 5.19 

may be written as, 

- 1 - A c& = H(b a)2c3/2, (5.21) 

where b is positive and is defined by Equation 2.2. Thus, the 

deviation from the simple limiting law. Equation 5.17, is pre­

dicted to be always positive and to vary as c^/^, clearly not 

in agreement with experiment. 

Aqueous solutions of large non-electrolyte molecules such 

as sucrose (11) have large positive B coefficients and there­

fore behave much like moderately concentrated electrolyte 

solutions containing highly charged ions. Consequently, it is 

of interest to briefly examine the theory of viscosity for 

solutions composed of large neutral solute particles. The 

increase in viscosity of a non-electrolyte solution with 

increasing concentration of large solute particles was 

explained by Einstein (114) as due to interference of the 

particles with the stream lines in the liquid. Treating the 

liquid as a viscous continuum containing a suspension of 
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rigid spherical obstructions at the surface of which the 

liquid is at rest, Einstein employed classical hydrodynamic 

methods and obtained a result valid at low concentrations 

which may be written as, 

where v is the molar volume of the spherical obstruction and 

c is the molar concentration. If Equation 5.22 is assumed to 

apply for electrolytes at moderate concentrations where the 

effect of the term in c® is small, the B coefficient may be 

interpreted as, Bj_ = 2,5 Vj_, where Vj_ is the "effective" molar 

volume of the hydrated ion. This interpretation seems to be 

reasonable for ions that may be expected to be highly hydrated 

(10,38), but it fails completely for large monovalent ions 

with negative B coefficients, 

Vand (115) has extended Einsteins theory to higher con­

centrations giving. 

where is the "shape factor" for single solute particles, 

kg is the "shape factor" for collision doublets, rg is the 

collision time constant, and Q is a hydrodynamic interaction 

constant. For rigid, non-solvated spheres without Brownian 

motion, the following values were derived by Vand: k]^ = 2,5; 

kg = 3.175; rg = 4; and Q = 0,60937, Vand has shown that his 

theory is in agreement with experiment (116,117). 

Tĵ  = 1 + 2,5 V c , ( 5 . 2 2 )  

(5.23) 
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Vand's theory may not be expected to apply rigorously to 

electrolytes. However, It is interesting and perhaps signifi­

cant to note that a slight modification of Vand's equation in 

the form, 

InT^r = ̂ 3 0/(1 - Q'c) , (5.24) 

where and Q' are adjustable parameters, gives an excellent 

representation of the viscosities of many strongly hydrated 

electrolyte solutions in the region of moderate to high con­

centration (10,38). This success of Equation 5.24 suggests 

that the major contribution to the viscosity of a "highly 

hydrated" electrolyte at moderate to high concentrations 

arises from the "obstruction effect" of large hydrated ions 

( 1 0 , 3 8 ) .  

At the present time, no successful quantitative theory 

of the B coefficient has been presented. However, its quali­

tative interpretation has been discussed at great length by 

Kaminsky (8) and by Gurney (9). The B coefficient is gener­

ally regarded as being a measure of ion-solvent interactions 

and effectively independent of ion-ion interactions. Kaminsky 

divides the ion-solvent interactions into the following types 

of interactions: 

1. The co-ordination of solvent molecules with the ion 

forming a relatively stable complex; this effect would cause 

an increase in viscosity. 

2, The effect of the field of the ion in producing long-
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range order of the solvent molecules; this effect would cause 

an increase in viscosity. 

3. Destruction of the structure of water by the ionic 

field; this effect would cause a decrease in viscosity. 

4. Steric effects. 

It seems reasonable to expect that the "co-ordination 

effect" would cause an increase in viscosity similar to that 

expressed by Equation 5.22, the Einstein equation. The "co­

ordination effect" and the "long-range ordering effect" have 

their greatest effect for ions of high surface charge density 

and are the dominant effects for this class of ions (8). 

Consequently, the B coefficients of highly charged ions and of 

small ions are positive, and the B coefficient increases as 

the charge on the ion increases and decreases as the size of 

the ion increases. For large monovalent ions, the dominant 

effect is a destruction of the water structure (8). There­

fore, the B coefficient of large monovalent ions are negative 

in aqueous media. 

As the temperature increases, it is reasonable to assume 

that the water structure is broken down due to thermal agita­

tion. The viscosity changes which are due to structure 

breaking of the ions therefore diminishes in importance rela­

tive to the effect of thermal agitation (8). Therefore, the 

B coefficients of "structure breaking" ions increase with 

increasing temperature. According to Kaminsky (8), the effect 
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of long-range ordering, which is important for ions of high 

surface charge density, decreases at higher temperatures 

"because of increasing thermal agitation. Consequently, the 

B coefficients for this class of ions decrease as the tempera­

ture increases. 

The B coefficients for the ammonium ion are very nearly 

zero over a considerable temperature range, and Kaminsky 

interprets this behavior in terms of special steric effects, 

Gurney's discussion of the B coefficient differs slightly 

from that of Kaminsky in point of view but seems to be equiva­

lent, Gurney shows that the B coefficients are strongly 

correlated with the partial molal entropies. If the ionic B 

coefficients for a number of monoatomic ions are plotted 

against the corresponding ionic partial molal entropies (based 

on Sjj+ = -5.5 eu.) a straight line with a negative slope 

results. Thus, according to Gurney, a large positive B coef­

ficient corresponds to a high degree of order in the solution 

and therefore to a small ionic partial molal entropy. 

According to Gurney's interpretation, when an ion is 

introduced into water, the order due to the water structure 

is partially destroyed, which raises the entropy of the system. 

However, if the ion becomes appreciably hydrated, the ordering 

effect of hydration lowers the entropy. For strongly hydrated 

ions, the net effect lowers the entropy of the system, and a 

positive B coefficient results, For weakly hydrated ions. 
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the net effect raises the entropy of the system, and a nega­

tive B coefficient results. The characteristic trends shown 

by the B coefficients are then explained by examining the 

effects of ionic charge, ion size, and temperature on the 

entropy of the water surrounding the ion, using arguments 

similar to those employed by Kaminsky. 

The tetraalkylammonium ions exhibit a somewhat anomalous 

behavior. For these ions, the B coefficients are positive and 

increase as the size of the ion increases, becoming quite 

large. Nightingale (105) interprets this behavior by assuming 

the tetraalkylammonium ions increase the viscosity of water by 

increasing the "ice-like" structure of water around the ions. 

In summary, the B coefficient of an ion in aqueous solu­

tion is generally attributed to the effects of ion-solvent 

interactions, and ions are classified as either "structure-

formers", giving positive ionic B coefficients, or "structure-

breakers", giving negative B coefficients. Ions with a high 

surface charge density may be expected to be "structure-

formers", • due to strong hydration effects. Large monovalent 

ions may generally be expected to be "structure-breakers" 

because of the lack of appreciable hydration to compensate 

for the partial destruction of the water structure. 

B. Experimental 

1. Method 

The "gravity-flow" capillary method was used to measure 

the viscosities determined in this research. The viscometers 
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used were Oannon-Ubbelohde Filter Stick viscometers, modified 

to eliminate solvent evaporation, and were obtained from the 

Cannon Instrument Company, These viscometers were of the 

suspended-level Ubbelohde design and have all the advantages 

of the Ubbelohde viscometer, but are more durable and are 

designed to allow use of Equation 5.8 for flow times in excess 

of about 300 seconds. In order to use flow times between 5 

minutes and 30 minutes, four viscometers, size 25, having 

viscometer constants of about 2x10""^ and two viscometers, size 

75, having viscometer constants of about 8x10"^ were purchased. 

The size 25 viscometers were used for the rare-earth chloride 

solutions below about 1.5 molal, and the size 75 viscometers 

were used for the more concentrated solutions. Equation 5.8 

was then used to determine the viscosities. 

2. Description of apparatus 

Two seven jewel Sargent stopwatches, readable to + 0.02 

second, were used -to measure the flow times. These stop­

watches were calibrated against an electronic timer to within 

+ 0.01 percent. The electronic timer had previously been 

calibrated against the National Bureau of Standards station 

WV, and found to be accurate to better than + 0.01 second. 

Schematic diagrams of the apparatus used for measuring 

the viscosities are given in Figures 7, 8, 9, and 10, Refer­

ence to these figures will be designated (i-X), where i refers 

to the figure and X to the alphabetically labelled part. 
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6, 

FILTER STICK ASSEMBLY 

SIDE VIEW FRONT VIEW 

Figure 7. Modified CannorL-Ubbelohde Filter Stick 
viscometer 
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TOP VIEW 

^ ® 

CROSS SECTION SIDE VIEW 

Figure 8. Viscometer holders 
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Figure 9» Constant temperature bath and accessories for viscosity 
measurements 
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Figure 10, Constant temperature bath-viscometer "box" 
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Schematic diagrams of the modified Cannon-Ubbelohde 

Filter Stick viscometer used in this research are shoi«i in 

Figure 7. In operation, liquid in the viscometer is forced 

up through the capillary (7-0), filling the upper bulb (7-B) 

and part of the overflow bulb (7-A). The liquid is then 

allowed to flow back through the capillary, and the efflux 

time is measured as the time required for the liquid to flow 

between timing mark (7-K) and timing mark (7-L). The essen­

tial feature of a suspended level viscometer is the tube 

(7-E), which connects the lower bulb (7-D) with either the 

atmosphere or the overflow bulb (7-A). This feature results 

in an air gap between the bottom of the capillary and the 

level of fluid in bulb (7-D), thus forming a suspended level. 

The liquid then flows down the walls of the lower bulb (7-D). 

To eliminate solvent evaporation, a T-stopcock (7-H) was 

fitted to tube (7-P) and tube (7-G) with ball joints. This 

stopcock allowed the lower bulb to be connected with the over­

flow bulb, resulting in a suspended level yet sealing the 

system from the atmosphere. 

The filter stick of the original Cannon-Ubbelohde Filter 

Stick viscometer was modified slightly to allow the system to 

be sealed off from the atmosphere. The resulting filter 

stick assembly (7-J) consisted of a glass tube (7-M), at the 

end of which was a sintered glass filter (7-N). The upper 

end of this tube was attached to a female 24/25 standard 
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taper (7-0), which fitted over the male 24/25 standard taper 

(7-1) on the viscometer itself. A glass tube (7-P), placed 

inside of tube (7-M), was sealed into the side of the filter 

stick assembly. The liquid was added to the viscometer 

through this tube, which could then be sealed off from the 

atmosphere by a cap (7-Q) constructed from a female ball joint. 

A "two-way" stopcock (7-R) was sealed into the top of the 

filter stick assembly to enable the system to be sealed off 

from the atmosphere. One of the tubes (7-S) leading from this 

stopcock was attached to a female ball joint with Tygon tub­

ing. The purpose of this feature will be described later. 

The inner portion of the viscometer holder (7-T) is also 

shown in Figure 7. 

The viscometer holder, made from plexiglass, is shown in 

actual size by Figure 8. The inner portion of the viscometer 

holder (7-T)(8-A) was permanently attached to the two tubes of 

the viscometer (8-B), while the outer portion (8-C)(10-D) was 

permanently attached to the bottom of the viscometer "box" 

(8-D). The viscometer "box" formed part of the top of the 

constant temperature bath and will be described later. The 

inner portion of the viscometer holder (7-T)(8-A) was fash­

ioned from 3/4 inch plexiglass to the form of a plug with 

tapered sides. Two holes (8-P)(8-G) were then drilled in the 

plug, and the plug was cut into two equal halves. The holes 

were lined with rubber (8-E), fixed in place with glue. The 

two halves were then glued to the viscometer as shown in 
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Figures 7 and 8, The outer portion of the viscometer holder 

was fashioned from 3/4 inch plexiglass to the form of a short 

cylinder, with the interior walls tapered to match the taper 

of the inner portion of the viscometer holder. The outer 

portion of the viscometer holder was then glued to the bottom 

of the viscometer "box". The viscometer holder allowed the 

viscometer to be placed In the same vertical alignment each 

time the viscometer was placed into the water bath. 

The main constant temperature bath (9-A) consisted of an 

insulated wooden box, lined with galvanized iron, with a 

plexiglass window (9-B) in the front of the bath. The bath 

was about 42 Inches long, 24 inches wide, and 21 inches deep. 

A magnifying glass (9-0) used to observe the viscometers was 

attached to the bath in such a way as to allow it to be 

adjusted to any desired position. A thermistor (9-D) and a 

250¥ knife heater (9-2) were used in conjunction with a Sar­

gent Model S Thermonltor to control the temperature of the 

main bath. Stirring was provided by two stirrers (9-P)(9-G) 

situated at opposite ends of the bath. Auxiliary heaters, 

not shown in the figures, were placed at the back of the bath 

for use at higher temperatures. Cooling water for the system 

was maintained at a temperature about 3°C. lower than the tem­

perature of the main bath by an auxiliary water bath and was 

pumped through cooling coils (9-H)(9-I) by a centrifugal pump. 

When the constant temperature bath was being maintained at 

5°C. during the calibration of the viscometers, the tempera­
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ture of the auxiliary bath was maintained at 0°C. by a Blue-M 

Constant Plow portable cooling unit. The temperature in the 

main constant temperature bath was measured using a Leeds and 

Northrup Model 8I6O-B platinum resistance thermometer (9-J) in 

conjunction with a Honeywell Model 1551 Mueller Bridge. Tem­

perature control in the main bath was better than + 0,01 °0,, 

and the measured temperature was estimated to be accurate to 

within about + 0,01°0. A 40W showcase light (9-Q) was used to 

illuminate the interior of the bath. 

Prior to measuring the flow time for a given liquid, the 

liquid must be forced up through the capillary tube into the 

upper reservoir bulb. For this purpose, a pressure of about 

100 mm. Hg was maintained in a "ballast tank" (9-M), which 

could be released through the stopcock tube (9-N) to force the 

liquid in the viscometer into the upper reservoir bulb. The 

air pressure in the "ballast tank" was raised to the desired 

pressure by passing compressed air from an air line through 

air purifiers and into the "ballast tank" through the tube 

(9-P). The pressure in the tank was read from a .manometer 

which was connected to the tank by tube (9-0). 

Part of the top of the main constant temperature bath 

consisted of a plexiglass "box" (9-K)(10-B) having removable 

lids (9-L)(10-H) that provided access to the interior of the 

"box". This "box" is shown in more detail in Figure 10, where 

the top diagram represents a cross-section side view, and the 

"bottom diagram represents a top view. Most of the bath top 
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was covered with 3/4 inch plywood (10-A), but near the front 

of the bath a large rectangular hole was cut in the plywood. 

The "box" fitted into this hole. The plexiglass "box" was 

constructed from 1/4 inch plexiglass plates (10-E) and l/l6 

inch plexiglass plates (10-P) with an air gap (10-G) between 

the plates for insulation. Six holes to accomodate the outer 

portions of the viscometer holders (8-C)(10-D) were drilled in 

the bottom of the "box", and the outer portions of the vis­

cometer holders were glued to the bottom of the "box". Six 

other holes (10-0) were drilled in the bottom of the "box" so 

small flasks of the solution could be brought to the bath 

temperature before the solution was introduced into the vis­

cometer, This feature was included for viscosity measurements 

at temperatures other than 25°0., and in this research was 

used only for the calibrations. The purpose of designing this 

insulated "box", in which the viscometers were enclosed, was 

to minimize temperature gradients between the tops of the 

viscometers and the remaining portions in the water bath. 

Although this feature was not necessary when working at 25°0., 

it was included in the apparatus so possible future studies of 

the viscosity as a function of.temperature could make use of 

the present apparatus. In Figure 10, a stirrer (lO-I) and 

the platinum resistance thermometer (10-J) are also shown in 

the top diagram. 
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3. Calibration 

The size 25 viscometers were calibrated using conductivity 

water at 20°0. as the calibration fluid. The efflux times 

were in excess of 600 seconds so no kinetic energy correction 

was necessary. The absolute viscosity of water at 20°C. is 

1.002 centipoise (89), and the density of water at 20°C. is 

0.99823 g./ml. (73), so Equation 5.8 may be rearrange to give 

0 = 1.0038/to , (5.25) 

where t^ is the efflux time, in seconds, of water at 20°0. 

The values of C for viscometers Z62, Z63, Z64, and Z65 were 

1.4813x10-3, 1.4901x10-3, 1.5353x10-3, and 1.5948x10-3, 

respectively. For each viscometer, the value of C was the 

result of at least four independent determinations, the vis­

cometer being cleaned after each determination. For each 

determination, the efflux time was measured five times, and 

the mean value was used to calculate 0 for that determination. 

The calibration data for the size 25 viscometers are given in 

more detail in Table 10. 

The viscosities of water at 5°0., 25°0., and 45°C. were 

determined using the size 25 viscometers and Equation 5.8. 

The densities of water at these temperatures were taken from 

the compilation of Dorsey (73). The viscosities obtained in 

this research are compared, in Table 11, with the correspond­

ing data given by Hardy and Cottington (118). With the excep­

tion of the viscosity at 45°C., the agreement is excellent. 
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Table 10. Calibration data for size 25 viscometers 

Determination Cxl03 Determination Cxlo5 

viscometer Z62 viscometer Z64 
1 1,4828 1 1,5345 
2 1.4804 2 1,5349 
3 1,4805 3 1.5350 
4 1.4813 4 1,5368 

5 1,5365 
mean 1,4813 6 1,5333 

7 1,5362 

mean 1.5353 

viscometer Z63 viscometer Z65 

1 1.4899 1 1,5948 
2 1.4909 2 1.5945 
3 1.4896 3 1,5936 
4 1.4904 4 1,5962 
5 1.4898 5 1,5940. 

mean 1.4901 mean 1,5948 

Table 11. Viscosity of water at 5°0., 25°0., and 45°G., in 
centipoise 

Source of data t 0, 5 25 45 

Viscometer Z62 1,5155 0,8899 0,5952 
Viscometer Z63 1,5178 0,8909 0,5954 
Viscometer Z64 1,5197 0,8901 0,5949 
Viscometer Z65 1,5182 0,8900 0,5952 

Mean of viscometers 1,5179 0.8903 0,5952 
262, Z63, Z64, and Z65 

Hardy and Cottington 1.5184 0,8899 0,5969 
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However, the uncertainty in the data of Hardy and Oottington 

is given as + 0.25 percent, so even for the value at 45°0., 

the agreement is with experimental error. 

The size 75 viscometers were calibrated using conductiv­

ity water at 5®0., 20®0., 25®0., and 45°0,, using Equation 

5.12, Equation 5.12 may be rearranged to give 

r j / i p t )  s 0* = 0 - E/t^ , (5.26) 

where t is the efflux time of water for a particular viscom­

eter and temperature. Therefore, measurement of t at various 

temperatures gave 0* as a linear function of l/t^. The values 

of 0* for viscometers Zlll and Z112 are given in Table 12 

along with the corresponding values of t. For this calibra­

tion, the viscosities of water at 5°0., 20°0., 25°0., and 

45°0. were taken as 1.5179, 1.002, 0.8903, and 0.5952 centi-

poise, respectively. Except for the standard value of 1.002 

centipolse, these values are the viscosities determined in 

this research and are given in the fifth row in Table 11. 

Table 12. Calibration data for size 75 viscometers 

iOQ. C*xlo3 t(sec. ) too. 0*xl03 t(sec. 

viscometer Zlll viscometer Z112 

5 6.742 225.15 5 6.164 246.27 
20 6.736 149.02 20 6.161 162.93 
25 6.741 132.46 25 6.155 145.06 
45 6.724 89.40 45 6.139 97.91 
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Using the data In Table 12, the constants, C and E, of 

Equation 5.26 were determined by the method of least squares. 

For viscometer Zlll, C Is 6,741x10"^, and E Is 12. For vis­

cometer Z112, 0 Is 6.166x10"^, and E Is 25. The values of E 

calculated from Equation 5.13 were about 10 for both viscom­

eters. Considering the approximate nature of Equation .5.13 

and the large experimental error in E, the agreement Is satis­

factory. 

For each viscometer, the efflux time for water at 25°0. 

was checked periodically throughout the course of this re­

search and found to remain constant. 

As a further check on the accuracy of the method used, 

the relative viscosities of several aqueous electrolytes were 

determined and compared with the corresponding literature 

values. The results of these comparisons are summarized In 

Table 13. The literature references are given In parenthesis 

In the first column. Since a concentration error of only 

+0.05 percent could account for the difference between the 

relative viscosities determined in this research and the cor­

responding literature values, the agreement Is quite satis­

factory. 

4. Experimental procedure 

Prior to each viscosity determination, each viscometer 

was filled with filtered chromic acid cleaning solution, 

placed in a water bath maintained at 55°0., and allowed to 

remain in this water bath for about two hours. The viscom-
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eters were then thoroughly rinsed with filtered tap distilled 

water and conductivity water and allowed to soak in filtered 

conductivity water for at least two hours. Next, the viscom­

eters were drained, rinsed with filtered acetone, and dried 

with a stream of filtered nitrogen or helium. When thoroughly 

dried, the viscometers were charged with about 10 ml. of solu­

tion through tube (7-P) shown in Figure 7. The viscometers 

were then placed in the constant temperature bath. 

Table 13. Relative viscosities at 25°C. determined in this 
research compared to the literature values 

SaltCref.) Molality Density (literature) 

KgOrO^flOS) 2.910 1.344) 

LiN03(108) 12.90 1.341 

Li01(106) 19.19 1.289 

1.757 1.758 

4.247 4.254 

15.78 15.73 • 

After thermal equilibrium had been attained (about i 

hour), the tube (7-8) shown in Figure 7 was connected to the 

"ballast tank" (9-M) shown In Figure 9» and the solution was 

forced up through the capillary tube until the overflow bulb 

(7-A) was partially filled. During this operation, the T-

stopcock (7-H) was adjusted so that tube (7-F) was sealed and 

tube (7-G) was open to the atmosphere. The pressure in the 

viscometer was then released by adjusting stopcock (7-R), and 

the T-stopcock plug was rotated 360°, thus allowing the sus­

pended level to be formed. The T-stopcock was then adjusted 
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so tube (7-F) and tube (7-G) were connected, and the viscom­

eter was sealed off from the atmosphere. The time was then 

measured for the liquid to flow between timing mark (7-K) and 

timing mark (7-L). The efflux time was measured at least 

twice for each viscosity determination and the viscosity was 

calculated using Equation 5.8, The densities of the rare-

earth chloride solutions were interpolated from the data of 

Saeger and Spedding (6) and that of Spedding, Brown, and 

Grayl, The relative viscosity was calculated using 0,8903 

centipoise for the viscosity of water at 25°0., as given in 

Table 11. Two independent relative viscosity determinations, 

using different viscometers, were made for each solution, and 

the mean of the two results was taken as the relative viscosity 

of that solution. 

5. Treatment of data 

The viscosity B coefficients are usually obtained by 

evaluating both A and B from the experimental data. However, 

the theoretical expression for A has been well verified for a 

number of electrolytes and temperatures (11), In particular, 

the relative viscosity data of Jones,and Stauffer (102) for 

LaOl-j and that of Kaminsky (119) for CeOlj show that the 

Jones-Dole equation. Equation 5.16, is obeyed for these salts 

up to 0,1 molar and that the experimental values of A are in 

^Spedding, P. H,, Brown, M., and Gray, K,, Ames Labora­
tory of the A.E,0,, Ames, Iowa, Apparent molal volumes of 
some aqueous rare-earth chloride solutions. Private communi­
cation, 1964, 
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excellent agreement with the theoretical values. Consequently, 

it was felt that more accurate B coefficients could be obtain­

ed from the relative viscosity data obtained in this research 

if the values of A were calculated from theory, and only the 

B coefficients were determined from the data. The B coeffi­

cients obtained in this research were calculated using the 

equations, 

(5.^) 

and 

B = ( 2 w^Bk)/( 2 , (5.28) 
k k 

where is the B coefficient calculated from the relative 

viscosity of a given solution, (''7r)k» molar concentration, 

cj^. The B coefficient, B , for a given rare-earth chloride 

was taken to be the weighted mean of the B^ values for each of 

the solutions studied having a concentration less than about 

0,1 molar, as indicated by Equation 5.28, The weighting fac­

tor, w^, was taken to be the inverse square of the probable 

error in B^, calculated assuming a probable error in ('T^r^k 

of + 0,05 percent. The theoretical values for A were calcu­

lated using the conductivity data given by Speddlng and Atkin­

son (3) and the equations and tables given by Harned and Owen 

(11), The relative viscosity data reported in this thesis are 

given at the experimental molalities, m. To calculate Bj^ from 

Equation 5.27, the molality was converted to the molar concen­

tration, c, using the equation, 
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c = pm/(l + 10"\ Mg) , (5.29) 

where p is the density of the solution, and Mg is the molecu­

lar weight of the solute. 

One of the objectives of this research was to compare the 

viscosities of rare-earth chloride solutions at "iso-molali-

ties". For this purpose, some form of empirical equation 

representing the experimental relative viscosities as a func­

tion of molality was needed. The relative viscosities of the 

rare-earth chloride solutions studied in this research changed 

by roughly a factor of 20 over the concentration range studied. 

Furthermore, the relative viscosities were not a simple func­

tion of molality. Therefore, a simple representation of the 
i 

relative viscosities in terms of a power series in m or m® 

containing a reasonable number of adjustable parameters was 

not possible. 

The assumptions made by Vand in deriving Equation 5.23 

and the assumptions made by Pitts in deriving Equation 5.19 

are certainly not valid for concentrated solutions of electro­

lytes. However, the exponential form of the Vand equation 

predicts a rapid change in viscosity with concentration in 

concentrated solutions, which was observed for the rare-earth 

chloride solutions. Also, while the Pitts equation did not 

succeed in theoretically calculating the B coefficient of the 

Jones-Dole equation, which is normally attributed to ion-

solvent interactions, the Pitts equation might be expected to 
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give a good approximation for the electrical contribution to 

the viscosity In dilute solutions. Therefore, It seemed 

likely that a crude approximation to the relative viscosity 

might be given by a combination of Equations 5.19 and 5.23 in 

the form, 

Tj ^ Am^(l + P(4.831m&) ) + expl , (5.30) 
[1 - 0.60937 V m/ 

where the function P(x) is defined by Equation 5.20, and as 

discussed earlier, v is the molar volume of the spherical 

obstructions. In the case of a solution containing large un­

charged solute particles, v represents the molar volume of the 

solute in solution. Equation 5.30 states that the relative 

viscosity of an electrolyte solution is approximately given by 

the sum of the "electrical contribution" calculated by Pitts 

and the "obstruction effect" calculated by Vand for the 

simplest case, where the molality, m, has replaced the molar 

concentration, c, and the higher order terms In the numerator 

of Equation 5.23 have been omitted. As mentioned earlier, the 

argument of the Pitts function, P(x), is /<a, where a is the a 

parameter of the Debye-Huckel theory, and K was defined by 

Equation 2.2. The numerical factor, 4.831, appearing in the 

argument of the Pitts function, is a result of assuming an a 

parameter of 6 A for an aqueous 3-1 salt at 25°0. and replacing 

the molar concentration by the molality. 

If we define the "electrical contribution" by. 

El = Ami(l + P(4.831m&) ), (5.31) 
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Equation 5.50 may "be rearranged to give, 

[m[l/ln(77r - El.) + 0.24575] = 2.5 v . (5.52) 

For convenience, the left hand side of Equation 5.52 will be 

defined by, 

Y s j^m [l/ln(77j. - El) + 0.24575] ] . (5.52a) 

If Equation 5.50 were exact, values of the defined quantity, 

Y, which may be calculated from the experimental data and the 

theoretical value of A, would be independent of molality, 

since according to the Vand theory v should be a constant. 

Actually, the values of Y calculated from the experimental 

data are about 0.5 and change by about 20 percent over the 

concentration range studied. However, it was possible to 

accurately express the concentration dependence of Y by 

empirical power series in molality of the form, 

Y = bp + b]_m + bgm^ + b^m^ , (5.55) 

where the coefficients were determined by the method of least 

squares. The "experimental" values of Y were weighted using 

the inverse of the square of the probable error in Y as the 

weighting factor. The probable error in Y was computed by an 

application of the law of propagation of precision indexes, as 

expressed by Equation 4,56, assuming the probable error in 

both the molality and the relative viscosity were + 0.05 

percent. 

Using the definitions of Y and El given by Equations 5.51 

and 5.52a,the relative viscosity may be written empirically as. 
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(1 + P(4.831m&) ) + exp Y m (5.34) 
1 - 0.24375 Y m 

From Equation 5.33, Y may be conveniently written as, 

Y = Bo(l + B]_m + Bgm^ + B^m^). (5.35) 

In all oases. Equation 5.34 with Y given by Equation 5.35 

represents the experimental relative viscosity data determined 

in this research within the limits of experimental error over 

the entire concentration range studied. For DyOl^, the experi­

mental data Is best represented if is zero. For the other 

salts studied, four adjustable parameters were needed to give 

the best representation of the data. Numerical values of the 

function, P(x), defined by Equation 5.20, are given in Table 

14 for various values of the argument, x. 

Table 14. Numerical values of P(x), defined by Equation 5.20 

X P(x) X P(x) 

0.0 0.0 1.4 0.1337 
0.1 0.0041 1.6 0.1426 
0.2 0.0137 1.8 0.1491 
0.3 0.0260 2.0 0.1538 
0.4 0.0393 2.5 0.1599 
0.5 0.0526 3.0 0.1607 
0.6 0.0654 4.0 0.1548 
0.7 0.0774 5.0 0.1453 
0.8 0.0883 6.0 0.1353 
0.9 0.0982 7.0 0.1259 
1.0 0.1071 8.0 0.1172 
1.2 0.1221 9.0 0.1095 
1.4 0.1337 10.0 0.1025 
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6, Experimental results 

The relative viscosities of aqueous solutions of LaClj, 

NCLOI3, SmClj, TbClj, DyOlj, HoCl^, and ErClj were determined 

at 25°0. over a concentration range of about 0,05 molal to 

saturation at 25°0. The relative viscosities of three dilute 

PrClj solutions were determined to allow the B coefficient for 

PrClj to be calculated. The experimental relative viscosities, 

determined during the course of this investigation are 

given in Table 15. The corresponding concentrations are 

expressed in terms of molality, m, and the corresponding den­

sities, d, are listed. The quantity,A , represents the rela­

tive difference, |^( T7r)®3cperimental - ( 7^j,)calculatedj x 

10^/( 7^p)calculated, where except for PrClj, the calculated 

value refers to the relative viscosity calculated from Equa­

tions 5.34 and 5,35 with the appropriate parameters. For 

PrOlj, the calculated relative viscosities were obtained from 

the Jones-Dole equation for this salt, 

Jones and Stauffer (102) determined relative viscosities 

of aqueous LaCl-j solutions up to a maximum concentration of 

about one molar. Their results are somewhat higher than the 

relative viscosities determined in this research, and the 

deviations become larger as the concentration increases, 

becoming about 0.35 percent at one molar. These deviations 

are most likely due to the fact that the LaOlj solutions 

Investigated in this research were at the equivalence pH, 
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whereas those investigated by Jones and Stauffer were at a 

pH of about 6 and might be expected to contain certain basic 

species, such as hydrolysis products, oxyohloride, and col­

loidal oxide, therefore having higher viscosities. 

The experimental relative viscosity data for LaClj are 

shown in Figure 11 as a function of molality. The data for 

the other salts in Table 15 show somewhat similar behavior, 

although significant differences do exist between the various 

rare-earth chlorides studied. However, these differences are 

not well illustrated by small scale relative viscosity-

molality graphs like Figure 11. 

The relative viscosity data in Table 15 were treated 

according to the procedure described earlier. The B coeffi­

cients, the values of A, and the parameters for the empirical 

viscosity equation. 

are given in Table 16 for each of the salts studied. As pre­

viously mentioned, for each salt the appropriate value of A 

appearing in the Jones-Dole equation and in Equation 5.34 was 

calculated from theory. The limited amount of data for PrClj 

were not analyzed in terms of Equations 5.34 and 5.35, so only 

the theoretical value of A and the B coefficient are given for 

this salt. Using Equations 5.34 and 5.35 and the appropriate 

(5.34) 

where 

(5.35) 



137 

parameters, relative viscosities at 0,2 molal intervals from 

0.2 to 3.6 molal were calculated for each of the rare-earth 

chlorides studied. The results of these calculations are 

given in Table 17. 

It was previously mentioned that the differences in vis­

cosity between the rare-earth chlorides could not be illus­

trated by a small scale relative viscosity-molality graph. 

For the purpose of illustrating these differences on small 

scale graphs, the ratio of the viscosity of a rare-earth 

chloride solution to the viscosity of a LaOl^ solution of the 

same molality, (T^ÏRoi^/^^^^LaOl)* calculated. Values of 

this ratio are given in Table 18 at selected even molalities 

and are plotted as a function of molality in Figure 12. 

Viscosity B coefficients, taken from Table 16, are plot­

ted as a function of ionic"radius of the rare-earth ion in 

Figure 13. The ionic radii are those of Pauling (79). The 

size of the circles indicate the estimated probable error in 

the B coefficient. 

Figures 14, 15, and 16 show values of the ratio, 

^^^La0l3» selected molalities plotted as a func­

tion of ionic radius of the rare-earth ion, 

7. Errors 

From the estimated probable error of about + 0.04 percent 

in the efflux time, the estimated probable error of about 

+ 0.05 percent in the viscometer constant, 0, and the fact 

that each value of the relative viscosity given in Table 15 
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Table 15. Experimental relative viscosities at 25 0. 

m "^3 m 

0.01104 
0.01606 
0.04665 
0.08038 

0.09821 
0.10213 
0.20139 
0.49440 

0.64686 
1.0076 
1.4108 
1.6927 

1.9750 
2.2517 
2.5649 
2.8324 

3.2896 
3.6003 
3.8959 

0.04717 
0.07660 
0.09712 
0.26869 

0.51578 
0.85276 
1.0625 
1.4371 

1.6664 
1.9453 
2.1161 
2.5233 

2.8645 
3.1788 
3.5070 
3.6401 

La0l3 
0.9996 1.0085 
1.0007 
1.0076 
1.0151 

1.0191 
1.0199 
1.0418 
1.1047 

1.1365 
1.2094 
1.2875 
1.3395 

1.3901 
1.4382 
1.4907 
1.5340 

1.0108 
1.0)24 
1.0523 

1.0626 
1.0658 
1.1286 
1.3316 

1.4584 
1.8153 
2.3563 
2.8530 

3.498 
4.305 
5.520 
6.900 

1.6050 10.391 
1.6512 14.012 
1.6943 18.91 

SmCl: 

1.0085 
1.0154 
1.0203 
1.0605 

1.1172 
1.1921 
1.2376 
1.3161 

1.3623 
1.4176 
1.4504 
1.5260 

1.0341 
1.0525 
1.0651 
1.1795 

1.3655 
1.6781 
1.9176 
2.4689 

2.8988 
3.562 
4.061 
5.652 

1.5864 7.606 
1.6398 10.165 
1.6934 13.995 
1.7144 15.883 

-0.04 
-0.15 
+0.08 
0.00 

—0.06 
+0.02 
+0.07 
-0.14 

+0.04 
+0.02 
+0.07 
-0.08 

+0.03 
-O.O5 
-0 .02 
-0.04 

+0.11 
+0.15 
-0.05 

+0.09 
+0.03 
-0.01 
+0.03 

0.00 
-0.04 
-0.08 
+0.12 

0.00 
-0.01 
-0.04 
-0.09 

-0.04 
+0.07 
+0.33 
-0.29 

NdCl3 
0. 05293 1. 0096 1.0361 +0. 04 
0. 06613 1. 0126 1.0449 +0. 11 
0. 09959 1. 0204 1.0636 -0. 08 
0. 25320 1. 0556 1.1639 +0. 13 

0. 49269 1. 1094 1.3342 -0. 02 
0. 64067 1. 1420 1.4541 -0. 13 
1. 0058 1. 2200 1.8219 +0. 01 
1. 4553 1. 3118 2.4548 +0. 11 

1. 7024 1. 3603 2.9180 -0. 07 
1. 9480 1. 4071 3.503 -0. 04 
2. 2566 1. 4641 4.466 -0. 01 
2. 5524 1. 5167 5.713 -0. 04 

2. 8974 1. 5758 7.765 -0. 03 
3. 2499 1. 6336 10.867 +0. 03 
3. 5901 1. 6870 15.352 +0. 10 
3. 9292 1. 7379 22.07 -0. 04 

0.04788 
0.08136 
0.10090 
0.25812 

0.49015 
0.73211 
1.0005 
1.3007 

1.6309 
1.8759 
2.1862 
2.4998 

2.7954 
3.1003 
3.3803 
3.5735 

TbOlj 

1.0089 
1.0171 
1.0218 
1.0597 

1.1144 
1.1700 
1.2301 
1.2951 

1.3643 
1.4140 
1.4751 
1.5347 

1.0361 
1.0592 
1.0736 
1.1871 

1.3764 
1.6131 
1.9327 
2.3868 

3.039 
3.657 
4.671 
6.052 

1.5910 7.820 
1.6432 10.287 
1.6911 13.403 
1.7234 16.226 

0.00 
-0.01 
+0.06 
+0.04 

-O.O5 
-0.02 
-0.05 
+0.04 

+0.07 
-0.02 
-0.07 
-0.05 

+0.08 
-0 .02 
-O.O5 
+0.04 
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Table 15. (Continued) 

m m 7?r 

0,05554 
0.07650 
0.09742 
0.24914 

0.49471 
0.64312 
1.0055 
1.4371 

1.6767 
1.9529 
2.2620 
2.5342 

2.8530 
3.1478 
3.6310 

DyOlj 
1.0111 1.0412 
1.0163 
1.0214 
1.0586 

1.1175 
1.1523 
1.2352 
1.3297 

1.3803 
1.4369 
1.4983 
1.5506 

1.0574 
1.0713 
1.1808 

1.3866 
1.5278 
1.9624 
2.6737 

3.208 
3.980 
5.122 
6.462 

1.6098 8.583 
1.6626 11.313 
1.7451 18.14 

Er0l3 

-0.08 
+0.06 
-0.01 
-0.14 

-0.02 
-0.14 
+0.18 

0.00 

+0.09 
-0.05 
-0.14 
-0.11 

-0.14 
+0.14 
+0.18 

0. 05533 1. 0114 1.0415 —0. ,06 
0. 07409 1. ,0161 1.0555 +0. ,01 
0. 10483 1. 0239 1.0778 +0. ,04 
0. 25090 1. 0607 1.1857 +0. 02 

0. 49531 1. 1209 1.3927 -0. 05 
0. 77238 1. 1874 1.6815 -0. 02 
1. 0096 1. 2427 1.9889 +0. 07 
1. 4609 1. 3443 2.7770 0. 00 

1. 7153 1. 3994 3.388 -0. 02 
1. 9944 1. 4582 4.255 -0. 02 
2. 2695 1. 5143 5.379 -0. 04 
2. 5878 1. 5772 7.154 —0. 01 

2. 9182 1. 6401 9.789 +0. 08 
3. 2497 1. 7010 13.660 +0. 08 
3. 5379 1. 7520 18.57 -0. 03 
3. 7821 1. 7939 24.50 -0. 05 

0.04955 
0.07894 
0.10195 
0.25290 

0.49457 
0.74130 
1.0021 
1.2884 

1.5907 
1.8945 
2.2007 
2.4903 

2.6713 
2.7907 
3.0919 
3.3877 

3.6942 

0.05011 
0.07986 
0.10083 

1.0097 1. 0376 -0. 01 
1.0171 1. 0597 +0. 12 
1.0229 1. 0759 +0. 11 
1.0604 1. 1851 -0. 06 

1.1192 1. 3881 —0. 08 
1.1777 1. 6391 —0. 05 
1.2379 1. 9680 • +0. 09 
1.3020 2. 4175 -0. 06 

1.3675 3. 042 +0. 08 
1.4313 3. 860 -0. 07 
1.4934 4. 971 —0. 06 
1.5501 6. 384 -0. 03 

1.5847 7. 507 -0. 01 
1.6071 8. 382 +0. 07 
1.6623 11. 157 +0. 06 
1.7146 15. 000 —0. 02 

1.7670 20. 81 —0 « 04 

PrCl-

1.0087 
1.0155 
1.0203 

1.0332 
1.0526 
1.0661 

-0.13 
-0.01 
+0.07 



Table l6. Parameters for viscosity equations 

Salt Â B Bo BixlO^ BgXlO^ BjxlO^ 

LaOlj 0.0285 0.554 0.52145 -31.635 -4.7569 0.64282 

PrOl3 0.0285 0.562 — -  —  — — — — —  

NdOlj 0.0286 0.557 0.52479 -35.168 0.70453 -0.29122 

SmOlj 0.0288 0.584 0.54687 -56.684 5.4394 -0.74824 

Tb0l3 0.0293 0.633 0.59406 -66.423 -0.16163 0.44780 

DyOlj 0.0297 0.639 0.60165 -68.006 1.7828 0.0 

H0CI3 0.0295 0.650 0.60210 -55.522 -4.6225 1.0342 

ErOlj 0.0296 0.646 0.60731 -58.876 -2.4475 0.73771 
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Table 17. Relative viscosities at 25°0. calculated at even 
molalities 

La0l3 NdOlj SmOl) TbOlg DyOlj H0CI3 ErGl^ 

0.2 
0.4 
0.6 
0.8 . 

1.127 
1.263 
1.418 
1.598 

1.128 
1.265 
1.421 
1.603 

1.132 
1.274 
1.437 
1.624 

1.143 
1.299 
1.479 
1.688 

1.145 
1.304 
1.487 
1.700 

1.146 
1.305 
1.490 
1.707 

1.147 
1.308 
1.495 
1.714 

1.0 
1.2 
1.4 
1.6 

1,806 
2.051 
2,338. 
2.677 

1.815 
2.065 
2.361 
2.713 

1.843 
2.100 
2.404 
2.764 

1.933 
2.221 
2.562 
2 .968  

1.951 
2.248 
2.601 
3.022 

1.963 
2.267 
2.629 
3.061 

1.974 
2.282 
2.651 
3.093 

1.8 
2.0 
2.2 
2.4 

3.080 
3.562 
4.139 
4.836 

3.136 
3.646 
4.266 
5.023 

3.196 
3.714 
4.341 
5.104 

3.451 
4.030 
4.726 
5.569 

3.527 
4.135 
4.870 
5.764 

3.581 
4.209 
4.971 
5.900 

3.628 
4.276 
5.066 
6.037 

2.6 
2.8 
3.0 
3.2 

5.682 
6.715 
7.984 
9.556 

5.955 
7.108 
8.544 
10.35 

6.037 
7.184 
8.602 
10.36 

6.593 
7.845 
9.385 
11.29 

6.855 
8.192 
9.837 
11.87 

7.040 
8.449 

10.20 
12.40 

7.236 
8.727 
10.60 
12.97 

3.4 
3.6 

11.52 
13.99 

12.62 
15.50 

12.56 
15.30 

13.67 
16.66 

14.40 
17.55 

15.20 
18.78 

15.99 
19.91 



Table 18, ^ROl^/^LaOl) at 25°0.calculated at even molalities 

NdClj Sm0l3 TbOlg DyOl] H0OI3 ErOl) 

0.4 1.001 1.009 1.029 1.032 1.034 1.036 

0.8 1.003 1.017 1.057 1.064 1.069 1.073 

1.2 1.007 1.024 1.083 1.096 1.106 1.113 

1.6 1.013 1.033 1.108 1.129 1.143 1.155 

2.0 1.024 1.043 1.131 1.161 1.182 1.200 

2.4 1.039 1.055 1.152 1.192 1.220 1.248 

2.8 1.059 1.070 1.168 1.220 1.258 1.300 

3.2 1.083 1.084 1.182 1.242 1.298 1.357 

3.6 1.108 1.094 1.191 1.255 1.343 1.423 
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Figure 11 Relative viscosity of aqueous LaOl3 at 25°C. as 
a function of molality 
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Figure 12. ( "57 )r013/^''7 ̂ La0l3 some aqueous rare-earth 
chloride solutions at 25°C. as a function of 
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is the mean of two independent determinations, it is estimated 

that the probable error in the relative viscosity of a given 

solution if about + 0,05 percent. 

The B coefficients of the Jones-Dole equation were calcu­

lated from Equations 5.27 and 5.28, normally from experimental 

relative viscosities at about 0.05, 0.08, and 0.1 molar. If 

the law of propagation of precision indexes, expressed by 

Equation 4.36, is applied to Equation 5.28, the probable error 

in the B coefficient, P(B), may be expressed in terms of the 

probable error in P(Bic)» in the form, 

P2(B) = ^(bB/bBic)2 p2(Bic) • (5.36) 

However, given by the quantity, %%/( ̂  Wj^), and 
Ic 

P^(Bic) = l/w|g, so Equation 5.36 becomes, 

p2(B) = l/( I w^) . (5.37) 

Assuming a probable error of + 0.05 percent in the relative 

viscosity, P(Bj^) = + 5xlO~Vcic ^ = S c^/25xlO"®. For 

values of c^ of 0.05, 0.08, and 0.1 molar, the calculated 

probable error in the B coefficient is + 0.004. Thus, it is 

estimated that the probable error in the B coefficient of a 

rare-earth chloride given in Table 16 is about + 0,004. 

It was stated earlier that the estimated probable error 

in the relative viscosity of a given solution was + 0.05 per­

cent. However, the uncertainty in the concentration of the 

solution must also be considered when the viscosities of 
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different solutions are being compared. Since the concentra­

tion of the solution must be specified before the comparison 

can be made, an uncertainty in the concentration of the solu­

tion has the same effect as an uncertainty in viscosity. This 

error is not serious in the lower concentration region where 

the viscosity does not change rapidly with concentration. 

However, above two molal this type of error, which results 

from an inability to specify the concentration exactly, be­

comes quite significant. For the rare-earth chlorides studied 

in this research, a probable error in concentration of + 0.05 

percent has the same effect as a probable error in viscosity 

of about + 0.1 percent at two molal, +0,2 percent at three, 

molal, and + 0.4 percent at four molal. Consequently, this 

"effective" viscosity uncertainty due to a concentration error 

must be considered when examining the viscosity data presented 

in this thesis. It should be emphasized, that the concentra­

tion error of each solution is due mainly to the error in 

concentration of the stock solution, and this error will be 

the same for all solutions prepared from a given stock solu­

tion. Thus, the concentration error is mostly a systematic 

error, and therefore, the A values in Table 15 are smaller 

than the errors quoted above. 

0. Discussion of Results 

The relative viscosity data given in Table 15 and the 

LaOlj data illustrated in Figure 11 show that the relative 
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viscosities of rare-earth chloride solutions increase slowly 

with increasing concentration at low concentrations, but above 

about 2 molal, increase very rapidly as the concentration 

increases. It was noted earlier that the relative viscosities 

of many electrolytes containing highly hydrated ions are well 

represented by a slight modification of the Vand equation, 

Equation 5.23, of the form, 

InT^r = Ajc/d - Q'C) , (5.24) 

where A3 and q' are adjustable parameters. This success of 

Equation 5.24 was interpreted by Stokes (10) and by Robinson 

and Stokes (38) as indicating the major contribution to the 

viscosity of "highly hydrated" electrolytes is the "obstruc­

tion" effect, due to the interference of large hydrated ions 

with the stream lines in the solvent. 

The relative viscosities of the rare-earth chloride solu­

tions investigated in this research may be represented by 

Equation 5.24 within about + one percent over the entire con­

centration range studied, provided A3 and Q' are suitably 

adjusted. The values of A3 and Q' evaluated from the data are 

about 0.5 and 0.1, respectively, the exact values depending 

upon the particular rare-earth chloride under consideration. 

If the "obstruction" effect is the dominant contribution to 

the viscosity of a rare-earth chloride solution, comparison of 

the Vand equation. Equation 5.23, with Equation 5.24 indicates 

A3 should be approximately equal to 2.5 v, where v represents 

the molar volume of the hydrated ions, and the ratio, Q'/A^, 
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should be approximately given by, Q/2.5 = 0,24. The quantity, 

Q, is the hydrodynamic interaction constant, which was theo­

retically calculated by Vand to be 0.60937 for the simplest 

case. The experimental ratios, Q'/A^, are about 0.2 and there­

fore are in good agreement with what one would expect on the 

basis of the Vand theory. The experimental values of v are 

about 0,2 liter. If it is assumed the chloride ions are un-

hydrated and have a radius of 1,8 2, and that the hydrated 

rare-earth ion is spherical, a value of 0,2 liter for v 

implies the radius of the hydrated rare-earth ion is about 

4 2, This result is in good agreement with what one would 

expect if the rare-earth ion were firmly co-ordinated with 

one row of water molecules. 

The success of Equation 5.24 in approximately represent­

ing the relative viscosity data for the rare-earth chlorides 

with reasonable values for A3 and Q' suggests that the major 

contribution to the viscosity of a rare-earth chloride solu­

tion arises from the "obstruction" effect. It should be empha­

sized that the preceding statement does not imply the "obstruc­

tion" effect is the only significant factor in determining the 

viscosity of a rare-earth chloride solution, but states only 

that the largest effect is probably the "obstruction" effect. 

Although the viscosities of the rare-earth chloride solu­

tions at a given concentration are somewhat similar, signifi­

cant differences do exist. These differences are illustrated 

graphically by Figures 12, 13, 14, 15, and 16. In Figure 12, 



153 

these viscosity differences are Illustrated as a function of 

molality, where values of the viscosity ratio, ^YRoi^/TTLaOls* 

are plotted as a function of molality for each of the rare-

earth chlorides studied. As mentioned earlier, the reason for 

plotting this ratio instead of the relative viscosity was only 

to enable the differences in viscosity to be illustrated on a 

small scale graph. Prom Figure 12, it should be noticed that 

the viscosities of the rare-earth chlorides increase as the 

atomic number of the rare-earth ion increases at all concen­

trations below about 3.3 molal. However, above 3.3 molal 

NdOl3 solutions have viscosities greater than SmOl^ solutions 

of the same concentration. This "cross-over" will be briefly 

discussed later. 

In Figure 13 the B coefficients of the Jones-Dole equation, 

Equation 5.16, are plotted as a function of ionic radius of the 

rare-earth ion. The B coefficients for laOlg, PrOl^, and NdOlj 

are equal within experimental error. However, the B coeffi­

cient of SmClj is slightly greater, and the B coefficients for 

the rare-earth chlorides from Tb to Er are about 15 percent 

greater than those of LaOl^, PrOlj, and NdClj. The B coeffi­

cients from Tb to Er exhibit a slight increase with decreasing 

rare-earth ionic radius. The theoretical interpretation of the 

B coefficient has been discussed in detail by Kaminsky (8) and 

by Gurney (9), and a summary of these discussions was given 

earlier in this thesis. Briefly, the B coefficient is an addi-
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tive property of the ions, and it is, considered to be a func­

tion only of ion-solvent interactions. Furthermore, the ionic 

B coefficient is normally interpreted as a measure of the order 

the ion introduces in the solvent surrounding the ion, a larger 

B coefficient indicating a higher degree of order. 

According to the interpretation given the apparent; molal 

• volumes at infinite dilution, as discussed earlier in this 

thesis, the rare-earth ion in water exists in an equilibrium 

between two possible water co-ordination numbers. For the 

rare-earth ions from La"*"^ to Nd*^, this equilibrium favors the 

higher co-ordination number. After Nd*^, a displacement of 

this equilibrium toward the lower co-ordination number begins 

to take place that results in the lower co-ordination number 

becoming increasingly more favorable for the rare-earth ions 

from Nd*^ to around Tb*^. This shift toward the lower co­

ordination number terminates around Tb"*"^, and the remaining 

rare-earth ions have essentially the same co-ordination number. 

The B coefficients may be discussed in terms of this model. 

For a given co-ordination number, the B coefficients may 

be expected to increase slightly with decreasing ionic radius, 

due to the increasing effect of the field of the ion in pro­

ducing order in the water surrounding the co-ordination 

complex. For small changes in ionic radii, this effect should 

be small. This phenomena is observed for the rare-earth 

chlorides from La to Nd and from Tb to Er. However, a shift 
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to a lower co-ordination number occurring in the region from 

Nd to Tb might be expected to result in an irregularity in a 

plot of B coefficients as a function of ionic radius, as 

indeed is observed. The B coefficients for the rare-earth 

chlorides from Tb to Er are significantly larger than those 

from La to Nd, indicating the shift to a lower co-ordination 

number has the effect of increasing the order in the water 

surrounding the ion. 

According to the theory of the B coefficient as presented 

by Kaminsky (8), a shift to a lower co-ordination number might 

be expected to affect the viscosity, and therefore the B 

coefficient, in the following ways; 

1. The effect of the water molecules directly co-ordin­

ated to the ion in increasing the viscosity is greater the 

greater the co-ordination number. Therefore, a change to a 

lower co-ordination number would reduce this effect and 

decrease the B coefficient. 

2. The effective radius of the rare-earth-water co­

ordination complex might be expected to be less, and the 

ordering effect of the ion on the water molecules outside of 

this complex would therefore increase. This effect would 

increase the B coefficient. 

3. Special steric effects may not be the same for both 

co-ordination complexes. These effects might include the 

geometry of the co-ordination complex and the effect of 
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hydrogen bonding between the water molecules co-ordinated to 

the ion and those outside the co-ordination complex. This 

effect may either increase or decrease the B coefficient. 

Consequently, because of the various possible interac­

tions contributing to the B coefficient, It is difficult to 

predict from theory how the net effect of a change in co­

ordination number would affect the B coefficient. However, 

since the effect of a change in co-ordination number may either 

increase or decrease the B coefficient, the trends shown by the 

B coefficients of the rare-earth chlorides seem to be consist­

ent with the proposed change in co-ordination number. Prom 

the above discussion, it seems likely that the observed dif­

ferences between the rare-earth chloride B coefficients are 

due to phenomena involving water molecules outside the co­

ordination complex. 

The viscosity of a rare-earth chloride solution cannot be 

interpreted in terms of ion size and ion-solvent interactions 

alone. However, it seems reasonable to expect that the effects 

of ion-ion interactions would be a smooth function of rare-

earth ionic radius for the rare-earth chlorides. Thus, any 

irregularities in the viscosity as a function of ionic radius 

of the rare-earth ion are probably the result of ion-water 

interactions. 

Figures 14, 15, and 16 show values of the viscosity ratio, 

''?R0l3/''?La0l3» & function of ionic radius of the rare-earth 
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ion at various concentrations. It should be noticed that the 

effect of the ionic radius on the viscosity at 0.4 and 1.2 • 

molal is much the same as the effect on the B coefficient, and 

the variation of the viscosity ratio with ionic radius at 

these concentrations may be interpreted using basically the 

same model and arguments presented when discussing the B 

coefficients. 

However, at higher concentrations the general shape of 

the viscosity ratio-ionic radius curve begins to change, and 

at 3.6 molal it appears as though two distinct series exist, 

LaCl^ and NdOlj forming one series and the rare-earth chlo­

rides from Sm through Er forming the other series. Figure 16 

may also be interpreted as indicating the viscosity of NdOl^ 

is anomalously high, and the viscosities of the other rare-

earth chlorides form just one series. Viscosity data for con­

centrated solutions of CeCl^ or PrCl^ are needed before it can 

be proven which interpretation is correct. It is the opinion 

of this author that the "two series" interpretation is prob­

ably correct and that the irregularity between NdOl^ and SmOl^ 

is a result of a change to a lower water co-ordination number. 

Thus, the decrease in viscosity from NdCl^ to SmCl^ could be 

+"5 interpreted as a result of Sm having a lower co-ordination 

number than Nd"*"^. Ifhen a water molecule is displaced from the 

co-ordination sphere of an ion in concentrated solution, the 

net result would seem to be a smaller co-ordination complex 
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moving in a significantly greater quantity of "free" solvent, 

which might be expected to lower the viscosity. This inter­

pretation does qualitatively explain the data. However, this 

interpretation is little more than an educated guess, and a 

more complete discussion of the viscosity results shown in 

Figures 15 and 16 should be attempted when viscosity data for 

concentrated PrCl^ and CeClj solutions become available. 
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VI. SUMMARY 

The specific gravities and apparent molal volumes of 

aqueous solutions of PrOl^, SmOlj, GdClj, TbClj, DyOl^, H0CI3, 

and ErClj were determined over a concentration range of about 

0,0015 molar to 0.18 molar. A magnetically controlled float 

apparatus was used to determine the specific gravities. The 

apparent molal volume data obtained in this research and 

existing apparent molal volume data for several other rare-

earth salts were extrapolated to zero concentration to obtain 

partial molal volumes at infinite dilution. The concentration 

dependence of the apparent molal volumes of these salts was 

examined and found to show significant deviations from the 

simple limiting law at low concentrations. However, it was 

shown that, except for NdfNO^)^, these deviations are consis­

tent with interionic attraction theory if the effect of the 

distance of closest approach parameter, à, is recognized. The 

partial molal volumes at infinite dilution, Vg, do not decrease 

smoothly as the ionic radius of the cation decreases. The Vg 

values decrease smoothly with decreasing ionic radius from La 

to Nd and from Tb to Yb, but from Nd to Tb the Vg values in­

crease with decreasing ionic radius. This irregular behavior 

was discussed in terms of a gradual change in preferred water 

co-ordination number of the rare-earth ion occurring over the 

rare-earth ions from Nd*^ to Tb*^, this change resulting in 

the rare-earth ions from Tb*^ to Yb*^ having a lower co-ordin-
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atlon number than the rare-earth ions from La+3 to 

The relative viscosities of aqueous solutions of LaClj, 

NdOlj, SmOl^, TbOlj, DyOlj, H0OI3 and ErOl^ were determined at 

25°0. over a concentration range of about 0.05 molal to satura­

tion at 25°0. The B coefficients of the Jones-Dole equation 

were determined for these salts. The relative viscosities of 

several dilute PrOlj solutions were also measured to allow the 

B coefficient for this salt to be determined. The concentra­

tion dependence of the relative viscosity of a rare-earth 

chloride solution was discussed in terms of the Vand theory 

for large non-electrolyte molecules. It was suggested that 

the major contribution to the viscosity of a rare-earth chlo­

ride solution arises from the effect considered by the Vand 

theory, which is the interference of the species in solution 

with the stream lines in the solvent. The B coefficients and 

the relative viscosities at "iso-molalities" were studied as 

a function of the ionic radius of the rare-earth ion, and 

irregularities were noted near the middle of the rare-earth 

series. These irregularities were discussed in terms of a 

change in preferred water co-ordination number of the rare-

earth ion. 
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