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INTRODUCTION 

The discontinuity in the elastic properties at the grain boundaries of a polycrystal controls 
the attenuation [1] and noise backscattered [2] by an elastic wave propagating through the material. 
In stochastic theories, which describe the propagation of the mean field in an ensemble of 
macroscopically identical microstructures, the effects of these discontinuities are quantified by the 
two-point correlation of elastic constants. It is well known that this correlation, and hence the 
attenuation and backscttering, is influenced by grain size [3-5] and shape [6], and recent 
experimental results of Hirao et al [7] imply a strong dependence on preferred grain orientation 
(texture). The purpose of this paper is to develop the theory necessary to describe these 

relationships. 

We briefly review the stochastic theories of attenuation and backscttering, indicating the 
central role played by the two-point correlation function. Then we present the theory relating the 
two-point correlation to the microstructure, with emphasis on the role of the texture. Implications of 
these results in terms of both understanding attenuation and microstructure and developing new 
materials characterization techniques are discussed. 

RELATIONSHIP OF TWO-POINT CORRELATION TO ULTRASONIC ATTENUATION AND 
BACKSCATTERING 

Stanke and Kino [1] have studied the propagation of an ultrasonic wave in a polycrystal. 
Utilizing the Keller [8] approximation, they have concluded that the mean field is governed by a 
stochastic wave equation, which has been cast in the form of a modified Christoffel equation by 
Ahmed and Thompson [6]. 

[rik -P; Oik]Uk = 0 (1) 

Here the symbol < ... > denotes an ensemble average, G is a Green's function, W(s ) is the probability 

that two points separated by a distance s are in the same grain, U is the wave polarization, k is a 
unit vector in the direction of propagation, Cijkl is the elastic stiffness tensor and OCijkl is its deviation 
from the Voigt average. Solution of this equation for the complex propagation constant k leads to 
predictions of the velocity v=OO/Re(k) and attenuation a=lm(k). 
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Rose has studied the noise backscattered as an ultrasonic wave propagating through a 
polycrystal [3-5].After trivial manipulation [9] his results can be put in the form: 

where 11 is the backscattering coefficient. In both equations (2) and (3), the microstructural 

information is contained in the two-point correlation function, (OCjikIOCpqrs)w(r -?). In the next 

(3) 

section, we will consider in detail the dependence of this function on grain morphology and texture. 

INFLUENCE OF TEXTURE AND GRAIN MORPHOLOGY ON THE TWO-POINT CORRELATION OF 
ELASTIC CONSTANTS 

The grain morphology controls the two-point correlation through the factor w(r - ?). This 

will depend on the distribution of grain size and shape as shown in Fig. 1 (a). For equi-axed grains 
(Fig. 1b.), an approximation that has been commonly used because of its analytical simplicity and 
reasonable description of typical microstructures is the function 

w(r - ?) = e - ~ r - ? ~ (4) 

Ahmed and Thompson [6] have proposed a generalization to the w(r -?) form for elongated grains 

(Fig. 1c.): 

.,1- -(1. 2 1 21% 
w(r-?)=e-4 r -r' d2sln e+ h2COS e (5) 

Preferred grain orientation enters the theory through the factor (OCjikIOCpqrs). The major 

contribution of this paper is the evaluation of the influence of preferred grain orientation (texture) on 
this quantity. By way of background, it is necessary to review a few concepts in quantitative texture 
analysis. The orientation of a crystallite in a microstructure may be specified by means of Euler 
angles e, '1', and <I> as shown in Fig. 2a. The orientation distribution function (ODF), the probability 
density that a crystallite's orientation is given by a prescribed set of Euler angles, is then 
represented by w(~,'I',<I» [10], where ~=cose and 

Fig. 1. (a) Typical grain size and shape distribution (b) Equiaxed grains with chord 
length having Poisson's statistics. (c) Elongated grains. 
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The orientation distribution function may be written in terms of the orientation distribution 
coefficients (~OC's), Wlmn, and the generalized spherical harmonics as follows: 

~ 1 1 •• 

w(1;,'I"cp)=}: }: }: WlmnZlm~1;)e-lmwe-lncp 
1=0 m=-I n=-I 

(6) 

(7) 

where Zlmn(1;) is the generalization of the associated Legendre function [10-11]. In practice, due to 

sample and crystalline symmetry, only a few of the ~OC's are nonzero. In the stochastic model, the 
elastic stiffnesses correlation function is given by the following expression: 

(,c;jk""pq,,)" r r f 1 [,c;jk( < .•.• jocpqo\ ~ •.• ljw( <····1 <I; "v <lop 

(8) 
where OC(1;,'I',<\» is obtained by a tensor rotation of the crystalline axes with respect to the sample 

axes defined by the Euler angles. Because (OCjikIOCpqrs) transforms as an eight rank tensor, only 

~OC's of order k8 will remain when Eq. (8) is evaluated. Recall that oCijkl = Cijkl -<Cijkl> where Cijkl is 

a component of the elastic constant tensor of a single grain and <Cijkl> is the corresponding 

component of the ensemble average of the elastic constant tensor of a polycrystal. Expressions for 
oCijkl based on the Voigt averaging method have been developed for both hexagonal and cubic 

crystallites [12-13]. Results for (OC;ikIOCpqrs) have been developed by Hirsekorn for cubic crystallites 

[14]. 

In this paper, we will give explicit forms for the elastic constant correlations pertinent to 
backscattering for longitudinal or transverse waves propagating along the 1, 2 or 3 directions of 
aggregates of hexagonal crystallites. Examination of Eq. (3) shows that these are the tensor 
components <oCmnmn oCmnmn> where the wave is propagating in the n-direction and is polarized 

in the m-direction and a summation over identical indices is not implied by the notation. 

3 

x 

RD 

(b) 

Fig. 2. (a) The orientation of a crystallite in a polycrystalline sample having axes RD, TO, and NO 

specified by the means of the Euler angles. (b) The rotation of the sample reference system. 
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Consider first the case of longitudinal waves propagating in the 3-direction. The relevant 
tensor component, C3333 in the specimen coordinate system, may be expressed in terms of the 

single crystal elastic constants of that grain with respect to its own principal axes, C'J, and the Euler 

angles using the rotational transformation and the elastic stiffness matrices given in [15]. Here we 
have used the matrix notation for the single crystal elastic constants, to differentiate them from the 
tensor components of rotated crystallites and ensemble averages. For example, C3333 and 

<C3333> for a hexagonal material are given by: 

(10) 

(11) 

Combination of Eqs. (7-11), taking advantage of the orthonormality properties of the generalized 
spherical harmonics, and performing the integration using MATHEMATICA leads to the following 
results. 

(12) 

where, 

L3H _,L2 f3276J-C11 +2C13-C33+4C44)2 / I 
eo - -.n; ze1 I. /1 09395 

where zoo = .f2h., Z20 = IW~, Z40 = 3.f2!Ja, zao = .f261a2, zeo = ,t34h.S6 and where Wooo = 12 / 8n: 2 is a constant. 

To determine the elastic constant correlations pertinent to longitudinal waves propagating 
in the 1 & 2-directions, the elastic constants correlation function may be evaluated by rotating the 
sample coordinate system by ex, ~, and yas shown in Fig. 2b. The new ODC's, W'lmn ' may then be 

evaluated from the old ODC's, Wlmn, according to: [11] 
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Thus. we are able to find expressions for the elastic constants correlation functions for the three 
principle propagation directions in the sample. The results are: 

W'OOO = WOOO 

where Z2D • Z40 • Z60 • and ZSD are the same as before and where ~ = ,nsA4 •• Z42 = aJ5/a. Z44 = aJ35As. 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Z82 = J273il/64• ZS4 = 3/911a2 • zss = J6Oo6/64• ZS2 = a.[i196A2S. ZS4 = a.[i309A2S. z~ = v'145a6A2S. zss = a,f 12155h56 • Note 
that the top sign of the (± ) symbol which is used in these equations is for the 1-direction and the 

bottom sign refers to the 2-direction. Thus <liC21111> and <liC22222> are obtained by replacing 
Wlmn by W'lmn in the right-hand side of equation (12). where the W'lmn are given by Eqs. (14)-(18) 
with the upper sign pertaining to the 1-direction and the lower sign to the 2-direction. 

Next the elastic constant correlation functions for a transverse wave propagating in the 3-
direction and polarized in the 1 and 2 directions in an aggregate of hexagonal crystallites are: 

(liC~i3) = T2HOOWOOO + T2H20W200 ~ T2H22W220 ~T2H40W400 + T2H42W420 + T2H44W440 

+ T2HSOW600 + T2HS4WS40 ~ T2HSOWsOO + T2HS2WS20 + T2HS4W840 

where the upper of the ~ sign is used when i=1 and the lower sign is used when i=2 and where. 

(19) 
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31 -25C~, + 88C"C'2 - 5~2- 76C"C'3 + 44C'2C'3 + 32C~3+ 38CllC33 - 22C'2C33l~ 
T2H22 = 4n2Z2 1 -32C'3C33 + 8ck + 24CllC44 -132C'2C44 + 216C'3C44 -108C33C44 + 84C~ 

17325 

{ 
10331C~, + 1885OC"C'2 + 6435C~r 3624CllC'3 + 1196OC'2C'3 )~ 

1 - 8336C~3+ 1812CllC33 - 598OC'2C33+ 8336C'3C33 - 2084C~3 
T2H40 = 4n2Z4 - 44948CllC44 + 4966OC'2C44 - 9424C'3C44 + 4712C33C44 +40236C~4 

675675 

{ 
11C~,-13OC"C'2+195C~2+216C"C'3-52OC'2C'3 J~ 

3 + 304C~3- 1 08C"C33 + 26OC'2C33- 304C'3C33 + 76C~3 
+ 172C"C44 - 26OC'2C44 + 176C'3C44 - 88C33C44 - 84C~4 

61425 

{ 
103C~,-234C"C'2+143C~2+56C"C'3-104C'2C'3 J~ 

3 + 48C~3- 28C"C33 + 52C'2C33- 48C'3C33 + 12Ck 

T2H44 = 4n2Z4 - 356C"C44 + 364C'2C44 -16C'3C44 + 8C33C44+ 348C~4 
45045 

T2H _ 11_2 [25J-3C" + 5C'2- 4C'3 +2C33 + 2C44X-C" + 2C'2-C33+4C44)1 / SO - "'1. ZSl '1 V15015 

T2H _ ,,-2 [51.,(- 3C" + 5C'2 -4C'3 + 2C33 + 2C44XC" - 2C'2 + C33 - 4c44)1 / 
64 - ~ ZSl '"\ V45045 

T2H _ ,,-2 r 1638.{- C,,+ 2C'3 -C33 + 4C44)2 / I 
60 - ~ Z61 "\ 136465 

T2H - 11_2 r-1638.{- C,,+ 2C'3 - C33 + 4C44)2 / 
62 - "TR Z6i "\ 1765765 

T2H _ 11_2 r819.,(-C,,+2C'3- C33+ 4C44)2/ I 
64 - ~ Z6i "\ 1765765 

Finally, the elastic constants correlation function for a transverse wave propagating in the 1-direction 
and polarized in the 2- direction is: 

(OC~212) = T1 HooWooo + T1 H20W200 + T1 H40W400 + T1 H44W440 + T1 H60W600 + T1 H64W640 

+ T1H80W800+ T1H84W840+ T1H88W880 

(20) 

where, T1 HO~ = T2Hoo 
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31 25~ 1 - 88C11C12 ; 55C~2+ 76C11C13 - 44C12C13 - 32C~3 - 38C11C33 + 22C12:331~ 
T1H20 = 4n2Z2 1 + 32C13C33 - 8C33 -24C11C44 + 132C12C44 - 216C13C44 + 108C33C44 - 84C44 

17325 

{ 
1367C~1 - 325OCllC12 + 2145C~2+ 1 032CllC13 - 208OC12C131l 

12 + 1048C~3- 516CllC33 + 104OC12C33-1048C13C33 + 262q3 

T1 H40 = 4n2Z4 -4436C11C44 + 442OC12C44 + 32C13C44 -16C33C44 + 4452C~4 

675675 

T1 H = A-2Z [5191"- 89Cll + 13OC12 - 82C13 + 41C33 + 96C44Y--Cll + 2C12 - C33 + 4C44)\ / 
44 "TJ, 41 l. A Y675675 

T1H = A_2 [25J-3C ll + 5C12 -4C13 +2C33 + 2C44X-Cll +2C12-C33+4C44)\ / 
50 "TJ, Z51 '1 V15015 

T1H = A_2 [5191'- 3Cll + 5C12 -4C13 + 2C33 + 2C44 VCll - 2C12 + C33 -4c44)1 / 
M-~l A ~~ 

T1 H - A_2 r 102..J'-C11+ 2C13 - C33 + 4C44)2 / I 
aD - - Zai1 136465 

T1H - A_2 r-204J-Cll+2C13-C33+4C44)2/ 
a4 - - Zai \. 1765765 

T1H _A_2Z [204J C l1-2C13 + C33 -4C44)2 / I 
aa - - 81 \. /109395 

CONCLUSION 

Analytical expressions have been presented for the two-point correlation of elastic 
constants, quantities which control ultrasonic attenuation and backscattering, for the case of a 
single-phase, aggregates of hexagonal crystallites in which the orientation of crystal lines are 
independent of one another, but not necessarily random. The result show that the correlation is 
described by two factors which respectively describe the effects of grain size and shape, Eq. (4-5), 
and preferred orientation, Eqs. (8, 12, 19-20). Either of these can be anisotropic and hence 
describe of directional dependence of the attenuation/noise. 

Particular emphasis has been placed here on the effects of preferred orientation, Since the 
analytical results are somewhat intimidating, we have evaluated the weights of the ODC's in an 

expansion of (OCjikIOCpqrs) for various propagation and polarization directions in titanium as shown in 

Table I. It can be seen that the weights gradually decrease as the order of the ODC's increases, but 
the rate of decrease is quite different for different wave types. The seventh column shows the W1mn 
observed in a particular rolled sheet of titanium [16]. The final column shows the product of these 
W1mn and the coefficients for the particular case of a longitudinal wave propagating in the 3-

direction. Included in the calculation were all W1mn for I::; 8, although only a subset of these were 

listed in Ref. [16]. Because the W's themselves decrease as well as their weights, the contributions 
of the higher order terms is less than would be implied by the weights alone. 
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Table I. Numerical values of coefficient of Wlmn in expansion of <oCijkIOCpqrs> for titanium (G Pa)2. 

-------------------------------------------------------------------------------------------------------------------------------------------------

Values of WlmO Contribution 

(Prop.,Pol.) (3,3) (1,1) (2,2) (3,2) (3,1) (1,2) for a particular to (oC2 ) for 
3333 

rolled sheet the (3,3) case 
----------------------------------------------------------------------------------------------------------------------------------------------

Wooo 0.1728 0.1728 0.1728 0.1181 0.1181 0.1181 0.0179 0.0031 

W200 0.1980 -0.0099 -0.0099 -0.0263 -0.0263 0.0520 0.0171 0.0034 
W220 0.0000 -0.4850 0.4850 -0.1288 0.1288 0.0000 -0.0054 0.0000 
W4QO 0.2018 0.0858 0.0858 0.0053 -0.0053 0.0900 0.0057 0.0012 

W420 0.0000 0.2288 -0.2288 0.1532 0.1532 0.0000 -0.0069 0.0000 

W440 0.0000 0.4786 0.4786 0.1704 0.1704 -0.1502 0.0022 0.0000 

WooO 0.0960 -0.0361 -0.0361 -0.0099 -0.0099 -0.0099 -0.0009 -0.0001 

W620 0.0000 -0.1478 0.1478 0.0000 0.0000 0.0000 -0.0046 0.0000 
W640 0.0000 -0.1620 -0.1620 0.0744 0.0744 0.0744 0.0020 0.0000 

W660 0.0000 -0.2192 0.2192 0.0000 0.0000 0.0000 -0.0009 0.0000 

W800 0.0142 0.0048 0.0048 0.0053 0.0053 0.0003 -0.0010 0.0000 

W820 0.0000 0.0196 -0.0196 0.Q182 -0.0182 0.0000 -0.0013 0.0000 
W840 0.0000 0.0206 0.0206 0.0094 0.0094 -0.0024 0.0017 0.0000 

W860 0.0000 0.0230 -0.0230 0.0000 0.0000 0.0000 -0.0006 0.0000 

W880 0.0000 0.0314 0.0314 0.0000 0.0000 0.0252 0.0003 0.0000 
--------------------------------------------------------------------------------------------------------------------------------------------------
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