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Abstract. Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the
causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we
are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and
P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82)
across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes
induced at 12 h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes
repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate
between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced
and empty vector-treated PI459025B plants 14 days after infection (dai) withP. pachyrhizi. This identified genes, including
transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes
conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray
data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all
resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated
resistance responses. These genes are targets for future P. pachyrhizi resistance research.
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Introduction

Asian soybean rust (ASR) is caused by the obligate fungus
Phakopsora pachyrhizi Sydow. ASR is considered polycyclic,
since P. pachyrhizi is able to complete several generations in a
single life cycle of the host (Yorinori et al. 2005). Temperatures
that favour the growth and development of soybean also favour
the development of rust. The disease destroys leaf tissue,
resulting in reduced photosynthetic activity, premature
defoliation and shortened life cycle. The cumulative effect of

rust on soybean production translates into lower seed weight
and reduces the number of pods and seeds (Sinclair 1989).
Currently, P. pachyrhizi is one of the most important
economic threats for soybean growers in South America. In
Brazil, a 2-year field trial demonstrated that rust was
responsible for 37–67% of soybean seed yield losses
(Kumudini et al. 2008).

Six genes for resistance to P. pachyrhizi (Rpp) have been
identified in soybean: Rpp1, Rpp2, Rpp3, Rpp4, Rpp5 and
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Rpp6 (Bromfield and Hartwig 1980; McLean and Byth 1980;
Hartwig and Bromfield 1983; Hartwig 1986; Silva et al. 2008;
Garcia et al. 2008; Li et al. 2012). Each of these genes has
been genetically mapped in the soybean genome (Hyten et al.
2007, 2009; Monteros et al. 2007; Garcia et al. 2008; Silva
et al. 2008; Chakraborty et al. 2009; Kim et al. 2012). Further,
comparisons made between molecular markers used to map
Rpp1-Rpp4 and the soybean genome sequence (Schmutz
et al. 2010) identified clusters of candidate resistance gene
(R-gene) homologues (Graham 2012). However, identifying
the actual R-genes remains difficult. Among the six Rpp
genes, Rpp4 is the best characterised and has been the most
stable when challenged against isolates from different parts
of the world (Yamaoka et al. 2002; Bonde et al. 2006).
Sequencing of the 2 cM region in the susceptible cultivar
‘Williams82’ (Wm82) revealed a cluster of three coiled-coil
nucleotide-binding site leucine-rich repeats (CC-NBS-LRR)
R-genes with similarity to the lettuce RGC2 family of NBS-
LRR resistance genes (Meyer et al. 2009). Expression
analyses of these genes in the resistant accession PI459025B
and susceptible cultivar Wm82 revealed large differences in
gene number and expression. Virus induced gene silencing
(VIGS) performed using constructs developed from the
Wm82 Rpp4 candidate genes silenced Rpp4-mediated
resistance in PI459025B, indicating Rpp4 is a member of the
same gene cluster.

Several groups have used transcriptomic approaches to
characterise compatible and incompatible responses to
P. pachyrhizi (Panthee et al. 2007; van de Mortel et al. 2007;
Choi et al. 2008; Panthee et al. 2009; Tremblay et al. 2010, 2012).
Perhaps the most comprehensive transcriptomic studies thus
far have been on Rpp2-mediated defence. van de Mortel et al.
(2007) examined a 7-day time course of P. pachyrhizi infection
in a resistant (Rpp2-mediated) and susceptible genotype. A
biphasic response to P. pachyrhizi was observed in both
genotypes. At 12 h after inoculation (hai) with P. pachyrhizi,
basal defence was induced in both genotypes. However, at
24 hai, defence gene expression returned to mock-inoculated
levels. At 72 hai, a second round of defence gene expression
occurred in the resistant (incompatible) reaction, likely
attributable to Rpp2-mediated signalling. Although this
secondary defence response was also detected in the
susceptible (compatible) reaction, it occurred later (96 hai) and
never to the ame magnitude observed in the resistant reaction.
Although greater levels of defence-related gene induction
were observed in the resistant reaction, greater numbers of
differentially expressed genes were observed in the susceptible
reaction.

This work was followed by Pandey et al. (2011), who
identified genes required in the Rpp2-mediated signalling
pathway. The authors used the work by van de Mortel et al.
(2007) and soybean orthologs of known defence genes to
identify 140 genes potentially involved in Rpp2-mediated
defence. VIGS of these genes followed by P. pachyrhizi
infection was used to identify 11 genes essential for Rpp2-
mediated resistance. These included four soybean orthologs
of known defence genes (GmEDS1, GmNRP1, GmPAD4 and
GmPAL1), five predicted transcription factors (GmWRKY36,
GmWRKY40, GmWRKY45, GmDBTF and GmMYB84), an

O-methyl transferase (GmO-MT) and a cytochrome P450
(GmCYP83E12). Combining these results with data from
other plant–pathogen systems allowed for the characterisation
of the Rpp2 signalling cascade, even though Rpp2 has yet to be
cloned.

Recently, our group usedmicroarray analyses andmicroscopy
to characterise resistance and susceptibility to P. pachyrhizi in
PI462312 (Rpp3, Schneider et al. 2011). As in the case of the
Rpp2 experiments (van de Mortel et al. 2007), P. pachyrhizi
elicits a biphasic response characterised by a burst of differential
gene expression in the first 12 hai, correlated with fungal
appressorium formation and penetration of epidermal cells
(Schneider et al. 2011). A quiescent period occurs from 24 to
48 hai, in which P. pachyrhizi continued to develop but did not
elicit strong host responses, followed by a second phase of
intense defence gene expression. The second burst of gene
expression followed the onset of haustoria formation in both
compatible and incompatible interactions. The temporal
relationship between P. pachyrhizi growth and host responses
provides an important context in which to view interacting gene
networks that mediate the outcomes of the plant-pathogen
interaction.

In this study, the power of genomic, transcriptomic,
bioinformatic and VIGS approaches were used to identify
genes in the Rpp4-mediated ASR resistance pathway.
Microarray analysis of the resistant soybean accession
PI459025B (Rpp4) and the susceptible soybean cultivar
Wm82, inoculated or mock-inoculated with the Hawaii94–1
(Hw94–1) isolate of P. pachyrhizi, was conducted to establish
a twelve-day time course of soybean gene expression. Genes
induced or repressed by P. pachyrhizi infection in PI459025B
have different biphasic expression patterns. To differentiate
between basal and R-gene mediated defence responses,
microarray analysis was used to compare gene expression in
Rpp4-silenced and mock-silenced plants. In addition, we
compared these data with the Rpp2 and Rpp3 microarray data
developed by our group (van de Mortel et al. 2007; Schneider
et al. 2011) to identify transcription factors associated with
multiple R-gene mediated pathways.

Materials and methods
Inoculation and tissue collection from P. pachyrhizi
resistant and susceptible cultivars

Phakopsora pachyrhizi Sydow inoculations were performed
at the USA Department of Agriculture-Agricultural Research
Service Foreign Disease-Weed Science Research Unit
(FDWSRU) Biological Safety Level-3 Plant Pathogen
Containment Facility at Fort Detrick, Maryland (Melching
et al. 1983). Urediniospores of the P. pachyrhizi isolate
HW94–1 were removed from liquid nitrogen, heat shocked at
40�C for 5min, then hydrated at 100% RH at room temperature
for 16 h. Spores were suspended in sterile distilled water
containing 0.01% (v/v) Tween 20, filtered through a 53-mm
pore-size screen, and adjusted to a concentration of 5� 105

spores mL–1 by means of a hemacytometer. Three plants per
pot were inoculated at the V3 growth stage by spraying
~10mL of urediniospore solution on the adaxial surface of
the leaves of the soybean accession PI459025B or cultivar
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Wm82. The accession PI459025B (Rpp4) forms red-brown
lesions upon infection with P. pachyrhizi isolate HW94–1,
indicating a resistance response, whereas the susceptible
cultivar Wm82 forms tan lesions with sporulating uredinia
(Bonde et al. 2006). Mock treatments used the same solution
minus P. pachyrhizi urediniospores. Following inoculation,
plants were placed in dew chambers for 16 h at 20�C, and
were then moved to the greenhouse maintained at
20�C. Supplemental illumination was provided by 1000-W
Metalarc lights (Sylvania, Danvers, MA, USA) spaced 0.6m
apart above the bench.

Three leaflets of the third trifoliolate leaves of three plants
from each cultivar and treatment were collected at 12, 24, 72,
144, 216, and 288 hai. The leaves were frozen in liquid nitrogen
and stored at �80�C. RNA was isolated from 200mg of ground
leaf tissue using 1mL of Tri Reagent (Molecular Research
Center, Cincinnati, OH, USA). An overnight precipitation in
2M (final concentration) lithium chloride at �20�C was used to
further purify samples (Ausubel et al. 1994) followed by
RNeasy column purification (Qiagen, Valencia, CA, USA) and
elution in 30mL of diethyl pyrocarbonate-treated water. For
simplicity, this experiment will be referred to as the Rpp4 time
course dataset.

Inoculation and tissue collection from Rpp4-silenced
and mock-silenced PI459025B plants infected with
P. pachyrhizi
Previously, our group used VIGS to silence Rpp4 candidate
genes in PI459025B (Meyer et al. 2009). The plants used in
our analyses here are the same plants used in the study by Meyer
et al. (2009). In brief, a portion of the LRR domain of the Rpp4
candidate genes from Wm82 was cloned into RNA2 of the
Bean pod mottle virus (BPMV) VIGS vector (BPMV-LRR)
(Meyer et al. 2009). Co-bombardment of BPMV RNAs 1 and
2 on Wm82 leaves was used to generate inoculum for further
experimentation. After 3 weeks, BMPV-infected tissue was
collected, lyophilised and shipped to the FDWSRU. The
resistant soybean accession PI459025B was grown in a growth
chamber at 20�C with 16 h light, and 2 weeks after germination,
plants were rub-inoculated with VIGS constructs. Each construct
was tested on six plants. Controls included non-treated plants,
mock inoculated plants and plants treated with empty BPMV
constructs. Three weeks later, plants were inoculated with
P. pachyrhizi isolate LA04–1. This isolate also results in the
formation of resistant red-brown lesions in PI459025B. This
isolate was used for this experiment because it was derived
from a single pustule. By using VIGS and LA04–1, we
minimised background plant and pathogen genomic effects
and identified genes that are regulated in an Rpp4-dependent
manner. Two weeks later, plants were evaluated for resistance or
susceptibility to P. pachyrhizi strain LA04–1. Three independent
replicates of the experiment were performed. After the
completion of each replicate experiment, leaves were collected
from three BPMV-LRR VIGS plants and three empty-vector
BPMV plants, all infected with P. pachyrhizi. This provided
three biological replicates to use for microarray analyses.
Leaves were flash frozen in liquid nitrogen and stored at
�80�C. RNA was isolated from ground leaf tissue using the

Plant RNeasy kit (Qiagen) and subsequently treated with
DNase. For simplicity, data generated from these samples will
be referred to as the Rpp4 VIGS dataset.

Microarray labelling, hybridisation, and scanning

Labelling, hybridisation, and scanning of all tissue samples were
performed at the Iowa State University GeneChip Facility.
Labelled target copy RNA (cRNA) was synthesised from 5mg
of total RNA using the GeneChip One-Cycle Target Labelling
and Control Reagents kit (Affymetrix, Santa Clara, CA, USA)
according to manufacturer’s instructions. Fragment cRNA
(10mg) were hybridised to GeneChip Soybean Genome Array
(Affymetrix) according to manufacturer’s instructions. cRNA
quality was verified on an Agilent 2100 BioAnalyzer equipped
with an RNA Nano LabChip. Microarrays were scanned with a
GCS3000 7G scanner (Affymetrix).

Statistical analysis of microarray data
Our experimental samples described above differed greatly in
complexity. In the time-course dataset we compared gene
expression in resistant and susceptible cultivars, infected and
mock-infected with P. pachyrhizi over six time points. In the
VIGS dataset, we compared gene expression in Rpp4-silenced
and mock-silenced plants at a single time point and genotype.
Given the differences in these experiments, different methods
were used to identify significantly differentially expressed
probe sets.

In the Rpp4 time course dataset, differentially expressed
probe sets were identified using the methods described by
Schneider et al. (2011). In short, linear model analysis of
normalised log-scale expression measures was performed
separately for each gene, using ver. 9.2 of SAS (SAS Institute,
Cary, NC, USA). Each linear model included fixed effects
for replicates, times, infection types and interactions between
times and infection types. To determine whether there was
significant evidence of an expression difference between
infection types when averaged over time, whether there was
significant evidence that the pattern of expression over time
differed with infection type, and whether infection types
differed significantly within individual time points, F-tests
were conducted for infection type main effects, infection type
by time interactions, and all possible comparisons of infection
types at each time point. Together these tests identified genes
whose expression differed in somemanner (either in level, pattern
over time, or both) between infection types within each
genotype. A q-value was computed for each F-test P-value
using the method described by Storey and Tibshirani (2003).
The q-values were used to produce lists of differentially
expressed genes with estimated false discovery rates (FDR) of
0.01% (see Tables S1 and S2, available as Supplementary
Material to this paper).

For identifying differentially expressed probe sets in the
VIGS dataset, raw expression values from the CEL files
generated during array processing were read into R (R
Development Core Team 2006). The data was analysed in the
‘affy’ background, corrected using the RMA function,
normalised using the invariant set and summarised using the
median polish command. A linear model analysis was
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conducted for each gene using the limma package (Smyth
2005). The empirical Bayesian approach described by Smyth
(2004) was used to moderate probe-wise sample variances. The
P-values from tests of interest were converted to q-values to
allow for the approximate control of FDR. Genes were declared
to be differentially expressed when the absolute value of the
estimated log 2-fold change exceeded 1 and the q-value was less
<0.05 (Table S3).

For heat map generation, Cluster 3.0 was used for hierarchical
clustering using the Pearson correlation (de Hoon et al. 2004).
Java TreeView (Saldanha 2004) was used for heatmap
visualisations.

Annotation of differentially expressed probe sets

The differentially expressed probe sets were annotated using
the SoyBase Affymetrix GeneChip Soybean Genome Array
Annotation page (ver. 3) as described by Schneider et al.
(2011) (http://soybase.org/AffyChip, accessed October 2012;
see Tables S1, S2 and S3). Annotation data included the
corresponding Glyma1 identifier from the soybean genome
sequence (Schmutz et al. 2010), the top three hits to the
Uniprot protein database (Apweiler et al. 2004), the top
Arabidopsis hit and the corresponding gene ontology (GO;
Ashburner et al. 2000) biological process and molecular
function terms inferred from the top Arabidopsis hit. To
identify over-represented GO terms, Fisher’s exact test (Fisher
1966) with a Bonferroni (1935) correction was used to compare
GO term enrichment within the differentially expressed genes
and the entire Soybean genome array.

Differentially expressed probe sets were also annotated using
the SoyDB (http://casp.rnet.missouri.edu/soydb, accessed
February 2011; Wang et al. 2010) transcription factor database
based on the corresponding soybean gene identifier. Fisher’s
exact test (Fisher 1966) with a Bonferroni correction (Bonferroni
1935) was used to identify over-represented transcription factor
classes.

Identification of significantly over-represented
transcription factor binding sites

Each of the differentially expressed genes identified was
assigned to a cDNA from the whole soybean genome
assembly (Schmutz et al. 2010) using BLASTN (Altschul
et al. 1997; E < 10–30, per cent identity >95). Using the
coordinates of the corresponding soybean gene, custom perl
scripts were used to extract 1000 bases of promoter sequence
from whole soybean genome assembly. Clover (Cis-eLement
Over-representation, Frith et al. 2004), in combination with the
TRANSFAC transcription factor database (Wingender et al.
1996), was used to identify over-represented transcription
factor binding sites in the promoters of the differentially
expressed genes. As a background control, the results were
compared with 1000 bases of promoter sequence from all
predicted soybean genes excluding transposable elements. In
order to identify transcription factors associated with particular
GO terms, the GO information was used. Clover and
TRANSFAC were used to compare promoters from genes
within a GO category to all promoters in the genome.

Results

Identification of differentially expressed probe sets
from resistant and susceptible genotypes infected
with P. pachyrhizi over time

Plants of the resistant soybean accession PI459025B (Rpp4) and
susceptible cultivar Wm82 were inoculated with P. pachyrhizi
isolate HW94–1. Leaf samples were collected at 12, 24, 72, 144,
216 and 288 hai. The abundance of soybean mRNA transcripts
was assayed using the Gene ChipSoybean Genome Array
(Affymetrix) and these results were deposited in the Plant
Expression Database (Accession number GM37; Wise et al.
2007). Significantly differentially expressed probe sets were
identified from the six different time points using a 0.01%
FDR (q� 0.0001, Nettleton 2006). At the 0.01% FDR, probe
sets were identified that had expression patterns differing over
time in P. pachyrhizi-infected plants compared with mock-
inoculated control plants. In the resistant soybean accession
PI459025B, 5805 differentially expressed probe sets were
identified (Table S1) whereas in the susceptible cultivar
Wm82, 5304 differentially expressed probe sets were
identified (Table S2).

Annotation of P. pachyrhizi-responsive genes
from resistant and susceptible genotypes

Gene descriptions and functional annotations were downloaded
from the SoyBase Affymetrix Soybean Genome array website
(http://www.soybase.org/AffyChip, accessed October 2012).
Annotation information included corresponding gene models
from the soybean genome sequence (Schmutz et al. 2010). Of
the 5805 differentially expressed probe sets identified in the
resistant reaction, 631 (10.9%) had no match to predicted
genes in the genome sequence (E <10�30 and percent identity
greater than 95%) and 132 (0.6%) could not be unambiguously
assigned to a single soybean gene call. The remaining probes
were assigned to 4136 unique soybean genes (Table S1).
Similarly, for the 5304 differentially expressed probes
identified in the susceptible reaction, 542 (10.2%) had no
match to predicted genes in the soybean genome and 123
(2.3%) could not be unambiguously assigned to a single gene.
The remaining probes were assigned to 4038 predicted genes
(Table S2). For reference purposes, 2.2% of probes on the
entire chip could not be unambiguously assigned to single
gene call and 16.3% of probes on the chip had no match to
predicted genes in the soybean genome.

In order to understand biological processes associated with
resistance and susceptibility, we used GO information to identify
terms significantly over-represented in our datasets. Ten GO
biological process terms were significantly over-represented
only in the resistant reaction including; defence response,
defence response to fungus, responses to oxidative stress,
chitin, other organisms, and salicylic acid stimulus, regulation
of transcription and defence responses, photosynthesis and
oxidation-reduction process (Fig. 1). Four GO terms were
over-represented in both susceptible and resistant reactions,
including responses to wounding, karrikin and jasmonic acid
stimulus, and photosynthetic electron transport. Five GO
terms including translation, ribosome biogenesis, chloroplast
organisation, photosynthesis light reaction and metabolic

1032 Functional Plant Biology A. M. A. P. Morales et al.

http://soybase.org/AffyChip
http://casp.rnet.missouri.edu/soydb
http://www.soybase.org/AffyChip


process were over-represented only in the susceptible reaction
(Fig. 1).

To elucidate how gene expression and function are related to
plant defence, we focussed on the GO biological process terms
related to defence, stress, hormone signalling, transcription,
translation and photosynthesis (Fig. 1). Five GO terms related
to defence or stress response were significantly over-represented
only in the resistant reaction (Fig. 1). Looking specifically at the
GO term defence response, we identified 102 differentially
expressed genes (DEGs) including lipoxygenases, disease
resistance proteins and others. Only responses to wounding
and karrikin were over-represented in both the susceptible and
resistant reactions. For these GO terms, the number of DEGs
was similar for both reactions. When we examined hormone
signalling, only response to salicylic acid was uniquely over-
represented in the resistant reaction (Fig. 1). Although the GO
terms photosynthesis and photosynthesis light reaction were
over-represented in both resistant and susceptible reactions,
photosynthetic electron transport and chloroplast organisation
were uniquely over-represented in the susceptible reaction.

Two GO terms related to transcription and translation
(regulation of transcription and regulation of defence response)
were over-represented only in the resistant reaction. For these
terms, the number of DEGs identified in the resistant reaction

was higher than in the susceptible reaction. Translation and
ribosome biogenesis GO terms were over-represented only in
the susceptible reaction. Although almost all GO terms had less
than a 2-fold difference in gene number between resistant and
susceptible reactions, the GO term translation had seven times
more genes identified in the susceptible reaction.

As we examined the data in Fig. 1, it became clear that genes
common to both reactions might have different expression
patterns than those genes unique to each reaction. To better
understand these differences, the dataset was divided into three
categories, DEGs unique to resistance, common to resistant and
susceptible interactions and unique to susceptibility (2337, 1953
and 2144 genes respectively). We then examined the expression
of genes within each of the significantly over-represented GO
terms (Fig. 2).

Genes common to both the resistant and susceptible reactions
exhibited very similar expression patterns (Fig. 2). Genes that
were induced at 12 haiwere not differentially expressed at 24 hai
but had an increase in gene expression at 72 hai. In contrast,
genes that were repressed at 12 hai, were not significantly
differentially expressed at 24, 72 and 144 hai, but were
repressed again at 216 hai infection. This suggests there is a
difference in the biphasic response depending on the initial
expression of the genes. For genes induced at 12 hai, the lack of

0 50 100 150

Number of differentially expressed genes

120 250 300

Gene Ontology:  Biological process

Fig. 1. Over-represented GO biological process classification of Phakopsora pachyrhizi- responsive genes
as determined by Fisher’s exact test (Fisher 1966). Differentially expressed genes (DEG) in resistant and
susceptible reactions are represented by grey and white bars respectively. Since a DEG could be associated
with multiple GO processes, it could be represented multiple times. Individual GO categories have been
grouped into broader functional categories, which are labelled. Only significantly (P< 0.05) over-represented
GO categories are shown. A superscript letter R following a GO term description indicates the GO category
is over-represented only in the resistant reaction. A superscript letter S following the GO terms description
indicates the GO category is over-represented only in the susceptible reaction. RS indicates the term is
over-represented in both resistant and susceptible reactions.
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Unique to resistance Unique to susceptibilityCommon

Fig. 2. Analysis of gene expression across theRpp4 time course experiment and by gene ontology biological
function category. Differences in biphasic gene expression depend on the initial direction of expression of
differentially expressed genes; induced genes have a shorter lag than repressed genes. To aid in interpretation,
the datawere divided into three categories: probe sets differentially expressed only during the resistant reaction,
probe sets differentially expressed in both the resistant and susceptible reaction (common) and probe sets
differentially expressed only in the susceptible reaction. The expressionof a particular probe set is shown for six
time points in the resistant reaction and six time points in the susceptible reaction. To put genes in a biological
context, only differentially expressed probe sets mapping to an over-represented GO biological process
category (Fig. 1) are shown. The statistical analysis of GO data was corrected for multiple probe sets per gene
(Fig. 1) and the heatmaps show the expression of all probe sets assigned to a GO category. Data is shown for all
19over-representedGOcategories shown inFig. 1 and the order of theGOcategories is the sameacross all three
panels. Hierarchical clustering was used to group probe sets with similar expression patterns within a GO
category. GO categories significantly over-represented in the resistant reaction are labelled on the left panel,
whereas GO categories over-represented in the susceptible reaction are labelled on the right panel. Grey lines
between panels link GO categories across the uniquely resistant, common and uniquely susceptible datasets.
Black boxes represent no change in gene expression comparedwith the uninfectedmock-inoculated treatment,
magenta indicates upregulation by Phakopsora pachyrhizi inoculation, and green indicates downregulation.
More intense colours represent greater fold change (log2 transformed), as shown on the scale.
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differential expression spanned a single time point. However,
this lag lasted three time points in genes that were initially
repressed. We noticed that most genes associated with defence
responses were induced while genes associated with translation
and photosynthesis were repressed. For theGO terms regulation
of transcription and metabolism, equal numbers of genes were
repressed and induced in both resistant and susceptible
reactions.

Next we examined DEGs unique to the resistant reaction.
We included the expression of the same genes in the
susceptible reaction (though not statistically significant) to
see if similar trends occurred in both reactions. The genes
unique to the resistant reaction had the same expression
patterns observed above for the common genes, however, in
the susceptible reaction, the differential expression of all
genes as increasingly suppressed at all time points after
12 hai (Fig. 2).

Finally, DEGs unique to the susceptible reaction were
examined. Again, the expression of the same genes in the
resistant reaction was included (though not statistically
significant) to see whether similar trends were observed in
both reactions. Results showed that the expression of almost
all genes unique to the susceptible reaction and across all GO
terms was repressed (Fig. 2). At 12 hai, we observed mild
repression, with little differential expression observed at 24, 72
and 144 hai. Maximum repression occurred at 216 and 288 hai.
In contrast, maximum repression occurred earlier in the resistant
interaction. Also noteworthy, there was a slight induction at 24,
48 and 72 hai of genes involved in ribosome biogenesis and
translation observed only in the resistant reaction; however, this
was not statistically significant.

Of all the over-represented GO biological process terms
identified, regulation of transcription was the largest GO term
identified, containing 300 DEGs from the resistant reaction and
241 DEGs from the susceptible reaction. The difference in
expression patterns between the uniquely resistant and
susceptible DEGs suggested that transcription factors play a
major role in regulating responses to P. pachyrhizi. To test
if particular transcription factor classes were significantly
(P < 0.05) differentially expressed, we used the SoyDB
soybean transcription factor database (Wang et al. 2010) to
identify transcription factors and classes present on the array.
Fisher’s exact test (Fisher 1966) with a Bonferroni correction
(Bonferroni 1935) was used to identify over-represented
transcription factor classes. In the resistant reaction, 47
different transcription factor classes were represented within
the DEGs. Of these, only the WRKY and AUX-IAA-ARF
classes were significantly over-represented (Fig. 3). In the
susceptible reaction, 43 different transcription factor classes
were differentially expressed, but only the NAC, C2C2 (Zn)
CO-like and MYB/HD transcription factor classes were
significantly over-represented. We note that the DDT, EIL,
HMG, PLATZ, R3H and SRS transcription factor classes
were found only in the resistant reaction, whereas the HTH-
FIS, SNF2 and TUB transcription factor classes were found
only in the susceptible reaction.

In addition to identifying transcription factors in the Rpp4
time course dataset, the expression of the transcription factors
themselves was also examined (Fig. 3). The transcription

factors were divided into three classes: unique to the resistant
reaction, common to both reactions and unique to the susceptible
reaction. When compared with Fig. 2, which shows expression
of genes from over-represented biological process terms,
some obvious differences in expression patterns were
observed. Although many downstream genes are induced by
P. pachyrhizi inoculation (Fig. 2), the majority of transcription
factors are repressed (Fig. 3). However, representatives of
transcription factor families previously associated with defence
and abiotic stress (WRKY, MYB and NAC) were induced.
When subdividing the transcription factor data into three
classes, we observed the same biphasic responses observed
for downstream genes, with different biphasic responses for
induced and repressed transcription factors. One notable
difference was that both MYB and NAC transcription
factors show a biphasic response across all three comparisons,
while the WRKY transcription factors unique to resistance
had increased expression over time.

Comparison of resistance responses governed by Rpp2,
Rpp3 and Rpp4

Our group has focussed primarily on the reactions mediated
by specific Rpp genes to P. pachyrhizi (van de Mortel et al.
2007; Schneider et al. 2011). However, little is known on the
overlap of molecular responses to P. pachyrhizi conditioned
by different R-genes and different P. pachyrhizi isolates. van de
Mortel et al. (2007)measured gene expression over a 7-day time
course in mock-inoculated and inoculated leaves of soybean
accession PI230970 (Rpp2) and the susceptible line Embrapa-
48 infected with a Brazilian field isolate of P. pachyrhizi.
Schneider et al. (2011) measured gene expression in leaves
over 12 days in a single soybean accession (PI46312 (Rpp3))
inoculated with either incompatible (HW94–1) or compatible
(TW80–2) P. pachyrhizi isolates. Here, we measured gene
expression over 12 days using soybean accession PI450925B
(Rpp4) and cultivar Wm82, inoculated with P. pachyrhizi
isolate (HW94–1). These experiments identified 894, 8447,
and 5805 differentially expressed probe sets associated with
the resistance response governed by Rpp2, Rpp3 and Rpp4
respectively. Similarly, 1516, 1827 and 5304 differentially
expressed probe sets were associated with the susceptible
responses, respectively. Comparison of these datasets
identified 214 probe sets common to all compatible and
incompatible P. pachyrhizi-soybean reactions (Table S3) and
54 probe sets specific to P. pachyrhizi resistance reactions
governed by Rpp2, Rpp3 and Rpp4 (Table S4). The first
comparison could aid in the identification of genes involved
in basal defence and the second could identify genes specific
to R-gene mediated resistance responses. In addition, we
were investigated transcription factors and receptors that
regulate the expression of downstream defence genes. Of the
214 probe sets common to all resistant and susceptible
P. pachyrhizi interactions, 22 probe sets (corresponding to
14 unique genes) encoded potential transcription factors or
receptors. Of these, six genes (11 probe sets) had best hits to
Arabidopsis proteins with known roles in basal defence or
abiotic stress (Fig. 4a) including homologues of AtERF1,
AtGATA3, AtWRKY31, AtWRKY33, AtWRKY40 and
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AtWRKY75. Of the 54 probe sets specific to resistance
responses governed by Rpp2, Rpp3 and Rpp4, 16 probe sets
(corresponding to 14 unique genes) encoded potential
signalling proteins (Fig. 4b). Nine genes (10 probe sets)

had best hits to Arabidopsis proteins with known roles in
defence or abiotic stress including AtL6, AtMPK3, AtSZF2,
AtWRKY11, AtWRKY33, AtWRKY40, AtWRKY51,
AtWRKY53 and AtZAT10.

Unique to resistance Unique to susceptibilityCommon

Fig. 3. Significantly differentially expressed soybean transcription factors also demonstrate biphasic responses to
Phakopsora pachyrhizi infection. The SoyDB website (Wang et al. 2010) was used to identify all transcription factors
on the Soybean GeneChip Genome Array. Expression data is shown for all significantly differentially expressed
transcription factors; however, only large families are labelled. Expression of all probe sets is shown for transcription
factors represented by multiple probe sets. To allow comparisons with Fig. 2, the data were divided into three groups:
differentially expressed transcription factors unique to the resistant reaction, common to resistant and susceptible
reactions and unique to the susceptible reaction. Hierarchical clustering was used to group differentially expressed
probe sets with similar expression patterns within a transcription factor family. Colouring and data labels are the same
as in Fig. 1. A superscript letter R following a transcription factor family indicates it is significantly over-represented
only in the resistant reaction. A superscript letter S following indicates the transcription factor family is significantly
over-represented only in the susceptible reaction.
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Comparison of the signalling genes conserved across all
resistant and susceptible reactions to those signalling genes
specific to resistant responses, revealed obvious differences in
expression pattern. Although the majority of signalling genes
were induced by P. pachyrhizi infection, genes differentially
expressed in both resistant and susceptible reactions tend to
have broader and greater expression across time points
(Fig. 4a, b). We noted that soybean homologous of
AtWKRY33 (Glyma11 g29720 and Glyma02 g38970),
AtWRKY40 (Glyma08 g23380 and Glyma17 g33890) and
AtCRK29 (Glyma08 g46650 and Glyma20 g27480) were
found in both datasets. In all cases, each gene in the

homologous pair had a best match against the same
Arabidopsis protein, yet homologous pairs had very different
expression patterns. None of the pairs identified included
homeologous genes derived from soybean’s duplicated
genome (data not shown).

Gene Expression in Rpp4-silenced and empty
vector treated PI459025B plants, following inoculation
with P. pachyrhizi

The Rpp4 time course experiment led to the identification of
soybean genes that are differentially expressed in response to

(a)

(b)

Fig. 4. Transcription factors common to resistance and susceptibility are expressed differently to
those unique to resistance. (a) Transcription factors significantly differentially expressed and
common to resistant and susceptible reactions across multiple microarray experiments were
identified. Probe sets were significantly differentially expressed in the Rpp4 time course
described here (PI459025B (Rpp4R) and Wm82 (Rpp4S)), the Rpp3 time course described by
Schneider et al. 2011 (PI462312 (Rpp3R and Rpp3S)) and the time course described by van de
Mortel et al. (2007) (PI230970 (Rpp2R) andEmbrapa-48 (Rpp2S).The timepoints for theRpp3 and
Rpp4 experiments include12,24, 72, 144,216and288 hours after inoculation (hai). The timepoints
for the van deMortel et al. (2007) (Rpp2R andRpp2S) include 6, 12, 18, 24, 36, 48, 72, 96, 120 and
168 hai. (b) Transcription factors significantly differentially expressed only in resistance reactions
across multiple microarray experiments were identified (Rpp2R, Rpp3R and Rpp4R). Data for the
susceptible reactions are shown for reference. Black boxes represent no change in gene expression
compared with the uninfected mock-inoculated treatment, magenta indicates upregulation by
Phakopsora pachyrhizi inoculation, and green indicates downregulation. More intense colours
represent greater fold change (log2 transformed), as shownon the scale.Hierarchical clusteringwas
used to groupprobe setswith similar expression patterns. The probe identifiers are shownon the left
of the panel and the best Arabidopsis matches are shown on the right.
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P. pachyrhizi infection. However, not all of these genes are
downstream of the Rpp4 gene. We used RNA isolated from
the same plants described by Meyer et al. (2009) to identify
genes downstream ofRpp4 in the resistance response. RNA from
PI459025B plants pre-treated with either the BPMV-LRR
construct, which caused loss of Rpp4 resistance, or the BPMV
empty vector control and subsequently inoculated with
P. pachyrhizi isolate LA04–1, which induces a resistance
response in PI459025B. By comparing RNA from Rpp4-
silenced (BPMV-LRR) and non-silenced (BPMV empty
vector) PI459025B plants, we expected to identify genes
downstream of Rpp4 in the signalling pathway controlling
resistance to P. pachyrhizi. RNA samples were hybridised to
the Gene Chip Soybean Genome Array (Affymetrix) and
analysed for differential gene expression. Results were
deposited in the Plant Expression Database (accession number
GM51; Wise et al. 2007).

Using this approach, a total of 383 significantly (P< 0.05)
differentially expressed probe sets, representing 264 unique
genes, were identified with a 2-fold difference in expression

between Rpp4-silenced and non-silenced plants (Table S5).
Although 19 DEGs were induced in Rpp4-silenced plants
relative to non-silenced plants, most (245 DEGs) were
repressed. The same annotation pipeline described earlier was
used to characterise the identified DEGs. Table 1 details the
expression and annotation of the 10 most induced and repressed
genes identified. Several well characterised defence genes were
repressed by silencing of Rpp4 including pathogenesis-related
protein PR1a and genes related to flavonoid (chalcone synthase
and flavonol synthase), phenylpropanoid and lignin (caffeoyl-
CoA o-methyltransferase2), ethylene (1-aminocyclopropane-1-
carboxylate oxidase) and jasmonate synthesis (12-
oxophytodienoic acid 10). In addition, a homologue of the
photoassimilate-responsive protein PAR was also repressed by
Rpp4 silencing. Genes induced by the silencing ofRpp4 included
pectin acetylesterase, a homologue of pepsin A and an auxin-
responsive protein (Table 1).

To understand the pathways affected byRpp4 silencing and to
place the DEGs in a biological context, we examined the GO
biological process terms (Ashburner et al. 2000) to identify any

Table 1. Annotation and expression of the top 10 repressed and inducedgenes identifiedby comparisonofLRR-silenced andvector treatedPI459025B
plants following infection with Phakopsora pachyrhizi

Affymetrix probe IDA Fold change
(LRR/VO)B

Glyma1 gene callC Best uniRef100 HitD UniRef100 e-value

GmaAffx.93635.1.S1_s_at –11.26 Glyma13 g32540 Q9XFB4 Pathogenesis related protein PR1a, G. max 5.00E-97
GmaAffx.77637.1.S1_at –9.83 Glyma19 g27930 Q2ENC4 Chalcone synthase, Populus alba 0.00E+00
Gma.10150.1.A1_at –8.99 Glyma15 g16490 B9RT28 Flavonol synthase/flavanone 3-hydroxylase,

Ricinus communis
1.00E-163

GmaAffx.92564.1.S1_at –8.59 Glyma12 g05780 A8TVQ5 Beta-glucosidase G2,Medicago truncatula 0.00E+00
GmaAffx.92558.1.S1_s_at –7.51 Glyma16 g01990 B9RMV2 1-aminocyclopropane-1-carboxylate

oxidase, Ricinus communis
1.00E-148

Gma.14338.1.A1_at –7.28 Glyma05 g30290 D3W0X7 Globulin, Vitis berlandieri�Vitis riparia 1.00E-119
Gma.3604.4.S1_s_at –6.75 Glyma11 g05800 Q9SWB8 Caffeoyl-CoA O-methyltransferase 2,

Eucalyptus globulus
1.00E-102

GmaAffx.57966.1.S1_at –6.55 Glyma09 g25420 Q8 LDW1 Photoassimilate-responsive protein PAR-
like protei, Arabidopsis thaliana

5.00E-50

GmaAffx.18868.1.S1_s_at –6.41 Glyma15 g35410 C5I848 12-oxophytodienoic acid 10,10-reductase,
Astragalus sinicus

1.00E-151

Gma.2586.1.S1_at –6.20 Glyma08 g09070
GmaAffx.61395.1.A1_at 2.36 Glyma13 g31600
Gma.2961.1.S1_at 2.46 Glyma08 g19000 A6XNC5 (Iso)flavonoid glycosyltransferase,

Medicago truncatula
1.00E-157

Gma.6498.1.A1_at 2.54 Glyma11 g03500 B9SSF8 Pepsin A, putative, Ricinus communis 1.00E-148
GmaAffx.53274.1.S1_at 2.58 Glyma03 g33110 B7FN40 Putative uncharacterised protein, Medicago

truncatula
3.00E-19

Gma.7454.1.S1_a_at 2.65 Glyma13 g43800 B9RUW0 Auxin-responsive protein IAA1, Ricinus
communis

4.00E-40

Gma.1007.2.S1_at 2.78 Glyma11 g33790 Q9AR93 Putative calmodulin-related protein,
Medicago truncatula

7.00E-58

GmaAffx.4935.2.S1_at 2.79 Glyma10 g28230 Q2HRU2 Pectinacetylesterase, Medicago truncatula 1.00E-172
GmaAffx.48606.1.S1_at 3.25 Glyma13 g33780
GmaAffx.4935.1.S1_at 4.09 Glyma20 g22210 Q2HRU2 Pectinacetylesterase, Medicago truncatula 0.00E+00
Gma.4755.1.S1_at 4.39 Glyma17 g17210

AAffymetrix soybean GeneChip array ID.
BFold change in gene expression between leaves of LRR silenced and vector only plants infected with Phakopsora pachyrhizi.
CMatching soybeangene.Affymetrix soybean target sequenceswere comparedwith predictedGlyma1cDNAs (Schmutz et al. 2010) usingBlastN (Altschul et al.
1997) and requiring 95% nucleotide identity and E< 10�30.

DBest uniref sequencematch. If a matching Glyma1 protein sequence was identified, this was used for BLASTP against Uniref100 (ver. 12/2010, Apweiler et al.
2004), otherwise the Affymetrix soybean consensus sequence was compared using BLASTX. Only data for the best high scoring pair is reported (E< 10�6).
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that were significantly over-represented in the VIGS dataset
when compared with all genes on the soybean array as
described earlier. We identified eight significantly over-
represented biological process terms associated with general
defence, brassinosteroid signalling and phenylpropanoid
production (Table 2).

Identification of significantly over-represented
transcription factor binding sites in the promoters
of genes differentially expressed in response
to Rpp4-silencing

Analysis of the GO biological process terms from the resistant
and susceptible time course experiment revealed that regulation
of transcription was the most frequently identified GO term. In
order to understand how differentially expressed genes in the
Rpp4-signalling pathway were regulated, we wanted to identify
differentially expressed transcription factors in the Rpp4
VIGS dataset. Transcription factors were identified using the
SoyDB transcription factor database (Wang et al. 2010).
Annotation of the differentially expressed genes identified 12
repressed transcription factors representing the AP2-EREBP,
BZIP, C2H2 (Zn), CCAAT, Homeodomain/HOMEOBOX,
HSF, MYB/HD-like and TPR transcription factor families
(Table 3). Of the three MYB/HD-like transcription factors
identified, one was a distant homologue of GmMYB84,
required for Rpp2-mediated defence against P. pachyrhizi
(Pandey et al. 2011). Seven of the transcription factors
identified have not been previously associated with stress or
defence responses. In addition, two transcription factors
induced in Rpp4-silenced plants including an SRS and an
AUX-IAA-ARF transcription factor were identified.

Our microarray analyses of the VIGS-treated plants was
limited to a single time point late in the infection process
(14 dai) making it difficult to identify transcription factors that
operate early in the Rpp4-signalling pathway. Nevertheless, we
used Clover (Frith et al. 2004) to identify transcription factor
binding sites (TFBS) significantly (P< 0.05) over-represented
in the promoters of genes corresponding to a particular GO
category (Table 2) compared with all promoters in the soybean
genome. The analysis was limited to plant TFBS in the
TRANSFAC transcription factor database (Matys et al. 2006)

and 1000 bp of promoter sequence. Our initial analyses of
differentially expressed transcription factors identified three
MYB transcription factors (Table 3). Clover analyses
identified five different MYB TFBS associated with over-
represented biological process terms including TFBS for the
MYBAS1, AtMYB-84, AtMYB-15, C1 and P transcription
factors (Tables 4, S6). Two differentially expressed BZIP
transcription factors were also identified that were homologues
of AtBZIP9, which has not been previously associated with
stress or defence responses. However, we found several BZIP
TFBS over-represented within the GO biological process terms
including OSBZ8, TGA1, ABI4, ABZ1, ABF and TRAB1,
which have known roles in stress and defence responses
(Table 4). Previously, GmMYB84 and GmWRKY36 were
shown to be required for Rpp2-mediated resistance (Pandey
et al. 2011). Although MYB TFBS were associated with all of
the GO biological process terms, theWRKYTFBSwere specific
to phenylpropanoid biosynthesis and response to UV-B
(Tables 4, S6).

If differentially expressed genes were controlled by Rpp4, it
was expected that genes normally induced in an Rpp4-genetic
backgroundwould be repressed byRpp4-silencing and similarly,
genes normally repressed would be induced by silencing.
However, the time points of the Rpp4 time course experiment
were different than the single time point used for the VIGS
experiment. Therefore, we compared the expression of probe
sets common to the incompatible time course reaction and the
VIGS experiment. Of the 384 probe sets identified in the VIGS
experiment, 235 (162 unique genes) were also differentially
expressed in the incompatible reaction of the time course
experiment (Fig. 5). As predicted, genes normally induced
during Rpp4-mediated resistance were repressed by Rpp4
silencing. Six probe sets, corresponding to six unique genes,
were repressed during Rpp4-mediated resistance but induced by
Rpp4 silencing.

We also compared the differentially expressed genes
identified in the VIGS dataset to all differentially expressed
genes in the Rpp2 (van de Mortel et al. 2007), Rpp3
(Schneider et al. 2011) and Rpp4 datasets. We identified 101
probe sets, corresponding to 72 genes, unique to the Rpp4 VIGS
dataset. GO biological process analysis within these 72 unique
genes demonstrated that GO categories nucleosome assembly

Table 2. Gene ontology biological process terms (Ashburner et al. 2000) significantly (P< 0.05) over-represented among differentially expressed genes
identified by comparison of LRR-silenced and vector treated PI459025B plants following infection with Phakopsora pachyrhizi

Before statistical analysis, differentially expressed probe sets were mapped to unique soybean genes. In the statistical analysis, only gene counts were used to
avoid inflation caused by multiple probe sets per gene

Gene ontology
biological
process term

Gene array
count

Differentially
expressed
gene count

Corrected
P-value

Gene ontology biological process description

GO:0009813 53 13 3.88E-08 Flavonoid biosynthetic process
GO:0010422 6 5 7.76E-06 Regulation of brassinosteroid biosynthetic process
GO:0016131 8 5 6.97E-05 Brassinosteroid metabolic process
GO:0009809 63 10 3.72E-04 Lignin biosynthetic process
GO:0051555 36 7 3.30E-03 Flavonol biosynthetic process
GO:0009699 25 6 3.72E-03 Phenylpropanoid biosynthetic process
GO:0006979 265 18 1.16E-02 Response to oxidative stress
GO:0010224 66 8 2.88E-02 Response to UV-B
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(GO:0006334, P <3.4E-07) and phenylpropanoid biosynthesis
(GO:0009699, P <3.7E-03) were significantly over-represented.
Additionally, this dataset included five genes (Glyma04 g08290,
Glyma06 g08390, Glyma13 g34610, Glyma13 g43800 and
Glyma19 g34220) with best matches to Arabidopsis
transcription factors AtBZIP9, AtTTL1, AtIAA17 and
AtIDD2. All of these genes were repressed by Rpp4-silencing
except the homologue of AtIAA17 (Glyma13 g43800).

Discussion

Time-course analysis identified two patterns in biphasic
soybean responses to P. pachyrhizi infection

We have used microarray expression profiling, VIGS and the
soybean genome sequence (Schmutz et al. 2010) to begin
developing a genetic framework for Rpp4-mediated resistance
against P. pachyrhizi. Previously, we reported on gene
expression changes occurring in plants carrying the Rpp2 and
Rpp3 resistance genes (van de Mortel et al. 2007; Schneider
et al. 2011). The resistance phenotypes of Rpp2 and Rpp3 are
similar to Rpp4, yet all three genes recognise distinct isolates
of P. pachyrhizi. To allow the eventual comparison of gene
expression governed by the Rpp3 and Rpp4 resistance genes,
experiments were conducted at the same facility, using the
same inoculation protocols and time courses. Further, the
same statistical and annotation methods were used to identify

differentially expressed genes. In the Rpp3 experiment, we
compared gene expression in a single soybean genotype
infected with two different isolates of P. pachyrhizi, allowing
us to control for the genetic background typically found when
comparing two different genotypes. Using this approach, we
found that genes differentially expressed in the susceptible
response were a subset of those expressed in the resistant
response. In the Rpp4 time-course described here, we used two
different soybean lines infected with the same P. pachyrhizi
isolate. These different approaches affect how we examine and
interpret these datasets.

In the case of the Rpp3 (Schneider et al. 2011) and Rpp4
microarray time course experiments, we chose to divide the
differentially expressed genes into three categories: unique to
resistance, unique to susceptibility and common to resistance
and susceptibility. When we looked at the expression patterns
of genes of common to resistance and susceptibility, the majority
of genes in the Rpp3 experiment had a biphasic expression
pattern and were induced by P. pachyrhizi infection. In the
resistant reaction, differential gene expression at 12 hai was
muted until 72 hai. In the susceptible reaction, differential
gene expression was muted until 144 hai. In contrast, the
Rpp4 time course experiment described here showed that
approximately half of the genes common to the resistant and
susceptible reactions were repressed across all time points,
whereas the remaining genes were induced. Further, the

Table 3. Significantly differentially expressed transcription factors in the Rpp4 signalling pathway

Affymetrix probe IDA Fold
changeB

Glyma1 gene callC TF familyD Best
Arabidopsis
hitE

E-value Other
Arabidopsis
name

Defence or
stress reference

GmaAffx.61439.1.A1_at –3.43 Glyma19 g34220 C2H2 (Zn) AT1G03840 3.00E-89 AtIDD2
GmaAffx.21313.3.S1_at –3.29 Glyma04 g08290 BZIP AT5G24800 2.00E-28 ATBZIP9
GmaAffx.89269.1.A1_s_at –3.02 Glyma16 g02570 MYB/HD-like AT1G22640 5.00E-52 ATMYB3 Cheong et al. (2002)
GmaAffx.21313.1.S1_s_at –2.79 Glyma06 g08390 BZIP AT5G24800 1.00E-30 ATBZIP9
GmaAffx.92200.1.S1_at –2.79 Glyma06 g08390 BZIP AT5G24800 1.00E-30 ATBZIP9
GmaAffx.132.1.S1_at –2.69 Glyma13 g30720 AP2-EREBP AT5G47220 3.83E-03 ATERF2 Ohme-Takagi and

Shinshi (2000)
Gma.17063.1.S1_at –2.66 Glyma04 g08290 BZIP AT5G24800 2.00E-28 ATBZIP9
GmaAffx.7138.1.S1_at –2.62 Glyma17 g16980 MYB/HD-like AT3G49690 1.00E-61 ATMYB84 Pandey et al. (2011)
Gma.16196.1.S1_at –2.59 Glyma12 g36540 CCAAT AT5G12840 4.00E-25 ATHAP2A
Gma.11345.1.S1_at –2.57 Glyma16 g02570 MYB/HD-like AT1G22640 5.00E-52 ATMYB3 Cheong et al. (2002)
GmaAffx.28690.1.S1_at –2.35 Glyma06 g01940 Homeodomain/

HOMEOBOX
AT4G35550 1.00E-53 WOX13

GmaAffx.92807.1.S1_at –2.26 Glyma07 g05960 MYB/HD-like AT5G49330 7.00E-54 ATMYB11 Stracke et al. (2010)
GmaAffx.1890.1.S1_s_at –2.14 Glyma05 g20460 HSF AT4G36990 3.00E-14 ATHSF4
GmaAffx.39668.1.S1_at –2.13 Glyma05 g20460 HSF AT4G36990 3.00E-14 ATHSF4
GmaAffx.54770.1.S1_at –2.09 Glyma10 g43630 C2H2 (Zn) AT2G37430 1.00E-23 ZAT11
GmaAffx.85020.1.S1_at –2.09 Glyma13 g34610 TPR AT1G53300 0.00E+00 TTL1 Lakhssassi et al. (2012)
Gma.5599.1.A1_at 2.00 Glyma14 g03900 SRS AT5G12330 5.00E-56 LRP1
Gma.7454.1.S1_a_at 2.65 Glyma13 g43800 AUX-IAA-ARF AT1G04250 4.00E-35 IAA17

AAffymetrix soybean GeneChip array ID.
BFold change in gene expression between leaves of LRR silenced and vector only plants infected with Phakopsora pachyrhizi.
CMatching soybeangene.Affymetrix soybean target sequenceswere comparedwith predictedGlyma1cDNAs (Schmutz et al. 2010) usingBlastN (Altschul et al.
1997) and requiring 95% nucleotide identity and E< 10�30.

DTranscription factor families were identified using the SoyDB transcription factor database (Wang et al. 2010).
EThebestArabidopsis thalianamatchwas identified byBLASTPagainst all predictedA. thalianaproteins. If amatchingGlyma1protein sequencewas identified,
thiswas used for BLASTP against Uniref100 (ver. 12/2010,Apweiler et al. 2004). Otherwise, theAffymetrix Soybean consensus sequencewas compared using
BLASTX. Only data for the best high scoring pair is reported (E< 10�6).
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Table4. Identificationof significantlyover-represented transcription factorbinding sites (TFBS) in thepromoters ofgenesassociatedwith significantly
over-represented GO biological process terms

Table S4 provides a complete list of all over-represented plant TFBS and the corresponding motif identifiers

GO biological
process termA

GO description Number of over-
represented
TFBSB

Defence or
stress associated

TFBSC

TF name TF class Clover
P-value

(P < 0.05)

Reference

GO:0006979 Response to oxidative
stress

13 2 OSBZ8 BZIP 0.004 Mukherjee et al. (2006)

MYBAS1 MYB 0.008 Yang et al. (2001)
GO:0009699 Phenylpropanoid

biosynthetic process
41 16 AtMYB-84 MYB 0.000 Pandey et al. (2011)

ZAP1 WRKY 0.001 Assunção et al. (2010)
AtMYB-15 MYB 0.003 Dubos et al. (2010)
TGA1b BZIP 0.007 Lindermayr et al. (2010)
ABI4 BZIP 0.004 Giraud et al. (2009)
TGA1a BZIP 0.004 Lindermayr et al. (2010)
LIM1 LIM 0.004 Kawaoka and Ebinuma

(2001)
ABZ1 BZIP 0.007 Sell and Hehl (2004)
NAC69–1 NAC 0.013 Xue et al. (2011)
WRKY WRKY 0.024 Rushton et al. (2010)
P MYB 0.030 Grotewold et al. (1994)
ABF BZIP 0.037 Kang et al. (2002)
TRAB1 BZIP 0.040 Agarwal and Jha (2010)
ABF1 BZIP 0.045 Kang et al. (2002)
C1 MYB 0.045 Dubos et al. (2010)

GO:0009809 Lignin biosynthetic
process

10 5 LIM1 LIM 0.005 Kawaoka and Ebinuma
(2001)

C1 MYB 0.009 Dubos et al. (2010)
Alfin1 PHD 0.022 Wei et al. (2009)
AtMYB-84 MYB 0.023 Pandey et al. (2011)
OSBZ8 BZIP 0.049 Mukherjee et al. (2006)

GO:0009813 Flavonoidbiosynthetic
process

17 6 AtMYB-84 MYB 0.001 Pandey et al. (2011)

P MYB 0.002 Grotewold et al. (1994)
AtMYB-15 MYB 0.023 Dubos et al. (2010)
C1 MYB 0.040 Dubos et al. (2010)
MYBAS1 MYB 0.044 Yang et al. (2001)
TGA1a BZIP 0.048 Lindermayr et al. (2010)

GO:0010224 Response to UV-B 40 15 AtMYB-84 MYB 0.000 Pandey et al. (2011)
P MYB 0.000 Grotewold et al. (1994)
OSBZ8 BZIP 0.001 Mukherjee et al. (2006)
ABI4 BZIP 0.005 Giraud et al. (2009)
TRAB1 BZIP 0.005 Agarwal and Jha (2010)
AtMYB-15 MYB 0.006 Dubos et al. (2010)
ZAP1 WRKY 0.006 Assunção et al. (2010)
C1 MYB 0.007 Dubos et al. (2010)
ABF BZIP 0.009 Kang et al. (2002)
WRKY WRKY 0.017 Rushton et al. (2010)
ABF1 BZIP 0.027 Kang et al. (2002)
TGA1a BZIP 0.027 Lindermayr et al. (2010)
LIM1 LIM 0.037 Kawaoka and Ebinuma

(2001)
TGA1b BZIP 0.020 Lindermayr et al. (2010)

GO:0010422 Regulation of
brassinosteroid
biosynthetic process

3 2 AtMYB-15 MYB 0.022 Dubos et al. (2010)

AtMYB-84 MYB 0.024 Pandey et al. (2011)
GO:0016131 Brassinosteroid

metabolic process
3 2 AtMYB-15 MYB 0.022 Dubos et al. (2010)

AtMYB-84 MYB 0.024 Pandey et al. (2011)
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biphasic response differed between repressed and induced
genes. Differential gene expression was muted from 24 to
144 hai in repressed genes, but muted only at 24 hai in
induced genes.

When we compared differential gene expression in the genes
unique to resistant reactions, we observed additional differences
between the Rpp3 and Rpp4 time course experiments. In the
Rpp3 experiment, the majority of genes unique to resistance
were repressed across all time points. Both repressed and

induced genes had the same biphasic response described for
Rpp3 common genes above. In contrast, the majority of genes
unique to resistance in the Rpp4 microarray were induced, with
the same two biphasic responses described for Rpp4 common
genes above.

We also examined genes unique to susceptibility. In the Rpp3
experiment,where only a single soybeangenotypewas used, only
27 differentially expressed probe sets unique to susceptibility
were identified, whereas in this experiment in which two
soybean genotypes were used, we identified 2686 significantly
differentially expressed probes sets (2144 unique genes). When
we examined the expression of these genes, almost all of these
genes were repressed and instead of a biphasic response, we
saw increased repression across time.

Previously,Meyer et al. (2009) used qRT–PCR toquantify the
expression of Rpp4 candidate genes at the 12, 24, 72 and 216 hai
time points in the same PI459025B and Wm82 RNA samples
described here. No significant difference in Rpp4 candidate gene
expression was observed between P. pachyrhizi-inoculated and
mock-inoculated samples, although a slight biphasic response
was observed. Taqman RT–PCR of the samples revealed that
Rpp4-mediated defence begins sometime between 24 and 72 hai,
when fungalRNAaccumulation begins to slow. This time line for
fungal growth fits nicely with the biphasic pattern seen for
induced soybean genes in the Rpp4 time course experiment.
Since Rpp4 encodes a nucleotide-binding site leucine-rich
repeat resistance protein (Meyer et al. 2009), it is likely that
recognition of P. pachyrhizi occurs inside the plant cell as the
fungal haustoria develop and secrete proteins into the plant cell
to aid in nutrient acquisition (Voegele and Mendgen 2003).
This occurs between 24 and 72 hai in PI459025B (Rpp4), but
it occurs no earlier than 72 hai in PI462312 (Rpp3, Schneider
et al. 2011). Note that both PI459025B and PI462312
were inoculated with the same P. pachyrhizi isolate HW94–1.
Although there could be slight differences in experiments, it is
also possible that HW94–1 is able to overcome basal defence
responses in PI459025B more easily, allowing it to develop
faster and leading to earlier detection by Rpp4.

Biological function of differentially expressed genes
identified in response to P. pachyrhizi infection

In an effort to categorise the genes identified in the Rpp4 time
course experiment we took advantage of GO biological process

Table 4. (continued )

GO biological
process termA

GO description Number of over-
represented
TFBSB

Defence or
stress associated

TFBSC

TF name TF class Clover
P-value

(P < 0.05)

Reference

GO:0051555 Flavonol biosynthetic
process

7 4 C1 MYB 0.006 Dubos et al. (2010)

P MYB 0.020 Grotewold et al. (1994)
AtMYB-84 MYB 0.036 Pandey et al. (2011)
MYBAS1 MYB 0.043 Yang et al. (2001)

AGene ontology terms correspond to biological process terms inTable 3. Clover (Frith et al. 2004)was used to identify over-represented TFBS in the promoters of
the genes with a GO term relative to all promoters in the soybean genome.

BAnalysis was limited to plant TFBS in the TRANSFAC transcription factor database (Matys et al. 2006).
CTFs associated with defence were identified through the TRANSFAC database or literature review.

-10.00

-  6.66

-  3.33

3.33

6.66

10.00

0.00

Fig. 5. Identification of genes whose differential expression is dependent
upon Rpp4. To identify genes dependent on the expression of Rpp4, we
compared probe sets common to the Rpp4 resistant reaction time course
experiment and the Rpp4VIGS experiment. Expression data is shown for all
differentially expressed probe sets common to both datasets. Hierarchical
clustering was used to group differentially expressed probe sets with similar
expression patterns. The first six lanes correspond to time points in the
incompatible time-course experiment. The last lane corresponds to the
VIGS experiment.
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information available from Arabidopsis. Unexpectedly, 41%
of differentially expressed genes had best hits to Arabidopsis
genes with no informative GO information. However, when
we examined the chip as a whole, 47% of probes lacked
informative GO information. This suggests that the functions
of many genes in the soybean genome remain to be discovered.
Among genes that could be assigned GO information, we
could see different patterns of expression dependent on gene
function. For example, genes involved in defence and stress
responses were induced whereas genes involved in translation,
ribosome biogenesis, photosynthesis and the regulation
of transcription were largely repressed, similar to Rpp2 and
Rpp3-mediated responses (van de Mortel et al. 2007;
Schneider et al. 2011). Although these repressed GO
categories may seem unrelated, several studies have reported
that defence responses to various pathogens included repression
of photosynthesis as plants shift towards non-assimilatory
metabolism (Bolton 2009; Major et al. 2010). Recently,
OsNPR1 from rice has been shown to repress genes involved
in photosynthesis and chloroplast transcription and
translation (Sugano et al. 2010). This suggests a role of
OsNPR1, which is a regulator of salicylic acid-mediated
defence responses, is to facilitate the redistribution of energy
to defence. Note that one the most repressed genes identified
in the VIGS microarray dataset was a photo-assimilate
responsive gene (Glyma09 g25420) that was repressed 6-fold
in response to Rpp4 silencing.

The role of transcription factors in mediating defence
responses to P. pachyrhizi

The subtly different biphasic expression patterns seen for
induced and repressed genes in the Rpp4 time course
experiment are likely due to the transcription factors regulating
gene expression. We can use the same approach described
above to examine the expression of transcription factors
common to resistant and susceptible responses and unique to
resistance. In both the Rpp3 and Rpp4 experiments, we saw
roughly equal proportions of transcription factors being
induced or repressed. However, in the Rpp3 experiment, we
observed that induced and repressed transcription factors
common to resistant and susceptible reactions had the same
biphasic response from 24 to 72 hai. When we examined
transcription factors unique to resistance, this biphasic
response extended until 216 hai. Further, the expression of a
majority of these genes was repressed (Schneider et al. 2011).
In contrast, in the Rpp4 time course experiment, transcription
factor expression was similar to downstream differentially
expressed genes. For both the common and resistance-specific
transcription factors, we observed different biphasic responses
depending on the induction or repression of the transcription
factor. Induced transcription factors had a short lag in
expression at the 24 hai time point, whereas this lag lasted
until the 144 hai time point for repressed transcription factors.
Although most genes were induced by pathogen inoculation
in both the Rpp3 and Rpp4 time course experiments, the
majority of transcription factors were repressed, suggesting
that a small subset of induced transcription factors, such as
MYB and WRKY transcription factors, regulate the expression

of defence related genes and the majority of transcription
factors repress expression of nonessential genes.

MYB transcription factors can be divided into different
classes depending on their structure. All four classes are found
in plants, representing the taxon with the highest diversity of
MYBproteins (Dubos et al. 2010). Recently Pandey et al. (2011)
tested a VIGS construct targeting GmMYB84. Silencing of
GmMYB84 compromised Rpp2-mediated resistance. It was
hypothesised that GmMYB84 may act as a regulator of genes
in the phenylpropanoid pathway and demonstrated that
expression of GmPAL1 was affected in GmMYB84-silenced
Rpp2 plants. In our experiments, we identified a GmPAL1
homologue that was repressed in Rpp4-silenced plants,
suggesting its expression is dependent on Rpp4 and it may be
required for Rpp4-mediated resistance. Further, the GO category
phenylpropanoid biosynthesis was significantly (P< 0.05)
over-represented among differentially expressed genes from
Rpp4-silenced plants. Clover analyses of the promoters of
differentially expressed genes in this GO category identified
the AtMYB84 transcription factor-binding site as significantly
over-represented when compared with all promoters in the
soybean genome. These findings suggest that the GmMYB84
identified by Pandey et al. (2011), or a close homologue, may
also be required for Rpp4-mediated resistance. It is also worth
noting that the promoters of genes in the phenylpropanoid
biosynthesis pathway were also significantly over-represented
with TFBS for 15 other defence or stress associated transcription
factors, suggesting the expression of genes in this pathway are
tightly regulated by a complex network of transcription factors.

In our analysis of the Rpp4 time course experiment, the
WRKYs were the only transcription factors that demonstrated
different expression patterns when divided into the classes
unique to resistance, common to resistance and susceptibility
and unique to susceptibility. The WRKYs common to resistance
and susceptibility and unique to susceptibility were expressed in
a biphasic manner. They were strongly expressed at 12 hai,
slightly repressed at 24 hai, but induced again at 72 hai. In
contrast, the WRKYs unique to the resistance response were
weakly induced at 12 and 24 hai but were strongly induced by
72 hai. This expression pattern suggests this WRKY subset is
regulated by Rpp4.

WRKY transcription factors form a highly integrated
regulatory network that modulate gene expression in defence
responses and regulate plant growth and development
(Rushton et al. 2010). Modification of WRKY expression
patterns contributes to the control of various signalling
pathways and regulatory networks (Chen et al. 2012).
Silencing of GmWRKY36 compromised the expression of
GmFMO (flavine mono-oxygenase), GmO-MT and GmPR1
(Pandey et al. 2011), presumably by regulating the expression
of these and other genes during P. pachyrhizi infection.
Promoters of genes from the VIGS dataset involved in the GO
categories phenylpropanoid biosynthesis and response to UVB,
were over-represented with a WRKY transcription factor-
binding site. The upregulation of phenylpropanoid-related
pathways and lignin fortification of cell walls are crucial
defence mechanisms in R-gene mediated resistance
(Hückelhoven 2007). Our findings in the Rpp4 time course
and VIGS experiments suggest that GmWRKY36 and
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other WRKY homologues are also required for Rpp4-mediated
resistance.

The final transcription factor family significantly over-
represented in the resistance reaction governed by Rpp4 was
the AUX-IAA-ARF family. Unlike the WRKY and MYB
families, the expression of AUX-IAA-ARF transcription
factors was repressed across all comparisons, with similar
biphasic responses. The repression of these transcription
factors in response to P. pachyrhizi is consistent with the idea
that growth and development are negatively affected during
pathogen defence (Bolton 2009). These data are also
consistent with a recent study in which silencing of soybean
MAP kinase 4 (GmMPK4) was shown to induce constitutive
defence responses and repress expression of Aux/IAA and ARF
transcription factor genes (Liu et al. 2011). The different
transcription factor expression patterns suggest that resistance
to P. pachyrhizi depends on complex network of transcription
factors regulating defence gene networks.

In addition to identifying transcription factors important for
Rpp4-mediated signalling, our work also allowed identification
of transcription factors differentially expressed across all
resistant and susceptible time course experiments (van de
Mortel et al. 2007; Schneider et al. 2011). By comparing
across resistant and susceptible reactions in multiple R-gene
backgrounds, we hoped to identify common transcription
factors involved in basal defence responses. Differentially
expressed transcription factors included soybean homologues
of AtMYB111, AtWRKY31, AtWRKY33, AtWRKY40 and
AtWRKY75. AtWRKY33, AtWRKY40 and AtWRKY75 have
demonstrated roles in defence and resistance (Fig. 4a).
AtWRKY33 is essential for defence against the necrotrophic
fungus Botrytis cinerea (Birkenbihl et al. 2012). Global
expression profiling that compared susceptible AtWRKY33
mutants and resistant wild-type plants uncovered large
differential transcriptional reprogramming upon B. cinerea
infection. Kinetic analyses revealed that loss of WRKY33
function results in inappropriate activation of the salicylic acid
(SA)-related host response and elevated SA levels post infection.
This leads to the downregulation of jasmonic acid (JA)-
associated responses at later stages in the defence response.
AtWRKY40 is a transcriptional repressor regulating abscisic
acid and abiotic stress responses (Chen et al. 2010). Recently,
Pandey et al. (2010) demonstrated that WRKY40 negatively
modulates the expression of positive regulators of defence such
as EDS1 and PAD4, but positively modulates the expression of
some key JA-signalling genes by partially suppressing the
expression of the JAZ repressor. Similarly, AtWRKY75 has
been shown to have roles in both basal and R-gene mediated
defence responses (Encinas-Villarejo et al. 2009). However,
AtMYB111 and AtWRKY31 have not been previously
associated with defence. The function of AtWRKY31 is
unknown (The Arabidopsis Information Resource, www.
arabidopsis.org, accessed December 2012) and AtMYB111 is
known to regulate the flavanol branch of flavonoid biosynthesis
in various organs (Stracke et al. 2010). Although the soybean
homologue AtWRKY31 is expressed at relatively low levels, the
soybean homologue AtMYB111 is strongly expressed across all
most time-points. Both of these genes would be key targets for
future functional analyses (Fig. 4a).

Our analyses also identified transcription factors and
receptors uniquely differentially expressed only in resistant
reactions including homologues of AtL6, AtMPK3, AtSZF2,
AtWRKY11, AtWRKY33, AtWRKY40, AtWRKY51, AtWRKY53,
AtZAT10 and AtCRK9. The roles of AtWRKY33 and AtWRKY40
are discussed above, but it is important to note that the soybean
genes differentially expressed only in the resistant reactions are
homologues of those expressed across all reactions. Similarly,
the soybean AtCRK9 homologue common to resistant and
susceptible reactions is different from the homologue unique
to resistance. Although AtWRKY11 is a negative regulator
of basal defence responses (Journot-Catalino et al. 2006),
AtWRKY53 is a positive regulator (Hu et al. 2012).
AtWRKY51 is a negative regulator of JA-inducible defence
responses (Gao et al. 2011). AtSZF2 and AtZAT10 are both
regulators of abiotic stress responses (Mittler et al. 2006; Sun
et al. 2007). The Arabidopsis AtL6 gene encodes a RING-type
ubiquitin ligase that controls defence and nitrogen/carbon
responses (Maekawa et al. 2012) and is upregulated by the
elicitors flg22 and chitin and by infection with Pseudomonas
syringae pv. tomato DC3000. AtMAPK3 also plays a role in
resistant responses to flg22 (Galletti et al. 2011). AtCRK29
encodes a cysteine-rich receptor kinase with no known
function. We note that the soybean AtCRK29 homologue
common to resistant and susceptible reactions was broadly
expressed (Fig. 4a) whereas the homologue unique to resistant
reactions was expressed mostly at earlier time points.

In addition to comparing gene expression across time course
experiments, we used VIGS to identify genes and transcription
factors essential to Rpp4-mediated signalling. Comparisons of
the VIGS microarray dataset with the Rpp2, Rpp3 and Rpp4
time course experiments identified 72 genes that were unique to
the VIGS experiment. Since this experiment was conducted at
the latest time point after P. pachyrhizi inoculation (14 dai),
it suggests many downstream defence genes have yet to be
discovered. These genes may function to maintain defence
response after the threat of P. pachyrhizi attack has passed.
Within this dataset, we identified four transcription factors
including soybean homologues of AtBZIP9, AtTTL1, AtIAA17
and AtIDD2.While roles in defence have not been demonstrated
for AtBZIP9 and AtIDD2, AtTTL1 is required for osmotic stress
tolerance (Lakhssassi et al. 2012) and AtIAA17 increases
tolerance to Plasmodiophora brassicae (Kazan and Manners
2009).

In conclusion, conducting microarray analysis over a 12 day
time course demonstrated that Rpp4-mediated resistance occurs
through the action of two different biphasic responses. Genes
initially repressed by P. pachyrhizi infection have a three time
point lag in expression while induced genes have a single time
point lag. Initial gene expression at 12 hai is associated with
basal defences, whereas later defence responses are likely
R-gene mediated. Comparison of this dataset with the Rpp2
and Rpp3 microarray data developed by our group (van de
Mortel et al. 2007; Schneider et al. 2011) revealed surprising
differences. Of the probe sets present on the array, only 214
were common to all resistant and susceptible interactions.
Further, only 54 probe sets were common only to resistance
reactions. In each of these cases, only small numbers of
transcription factors regulate complex defence networks. By

1044 Functional Plant Biology A. M. A. P. Morales et al.

http://www.arabidopsis.org
http://www.arabidopsis.org


combining VIGS with microarray analysis, we could identify
defence genes directly responding to the action of a specific R-
gene. Furthermore, we could use bioinformatics approaches to
identify transcription factors that potentially regulate the
expression of downstream defence genes. Combined, these
approaches have revealed several interesting target genes to
test for their roles in soybean responses to P. pachyrhizi and
other pathogens.
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