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ABSTRACT

The Ebert–McBride technique (EMT) is an entity-oriented method useful for quantitative precipitation
verification. The EMT was modified to optimize its ability to identify contiguous rain areas (CRAs) during
the 2002 International H2O Project (IHOP). This technique was then used to identify systematic sources of
error as a function of observed convective system morphology in three 12-km model simulations run over
the IHOP domain: Eta, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model
(MM5), and the Weather Research and Forecasting (WRF). The EMT was fine-tuned to optimize the
pattern matching of forecasts to observations for the scales of precipitation systems observed during IHOP.
To investigate several error measures provided by the EMT, a detailed morphological analysis of observed
systems was performed using radar data for all CRAs identified in the IHOP domain. The modified EMT
suggests that the Eta Model produced average rain rates, peak rainfall amounts, and total rain volumes that
were lower than observed for almost all types of convective systems, likely because of its production of
overly smoothed and low-variability quantitative precipitation forecasts. The MM5 and WRF typically
produced average rain rates and peak rainfall amounts that were larger than observed in most linear
convective systems. However, the rain volume for these models was too low for almost all types of con-
vective systems, implying a sizeable underestimate in areal coverage. All three models forecast rainfall too
far northwest for linear systems. The results for the WRF and MM5 are consistent with previous observa-
tions of mesoscale models run with explicit microphysics and no convective parameterization scheme,
suggesting systematic problems with the prediction of mesoscale convective system cold pool dynamics.

1. Introduction

Summertime convective systems are among the most
difficult weather events for operational meteorologists
and numerical models to predict. Verification of a
quantitative precipitation forecast (QPF) made by a

fine-grid numerical model for these small-scale features
can be just as difficult. Standard grid-based measures
often result in scores that are not consistent with the
subjective impression of the forecaster. Traditional
verification statistics severely penalize a precipitation
system that may have been forecast with a small posi-
tional error or incorrect shape, with resultant low cor-
relation coefficients, high root-mean-square errors
(rmse), and poor values of categorical statistics (Ebert
and McBride 2000; Baldwin and Wandishin 2002). This
type of forecast could still be useful to a forecaster or
modeler if the model has known biases with its QPF.
Fine-resolution models, which subjectively can often be
of more value to an operational forecaster, are typically

* Current affiliation: NOAA/NWS/NCEP Storm Prediction
Center, Norman, Oklahoma.

Corresponding author address: Jeremy Grams, NOAA/NWS/
NCEP Storm Prediction Center, 1313 Halley Circle, Norman, OK
73069.
E-mail: jeremy.grams@noaa.gov

288 W E A T H E R A N D F O R E C A S T I N G VOLUME 21

© 2006 American Meteorological Society

WAF918



penalized more for spatial errors than coarser models
(e.g., Gallus 2002; Mass et al. 2002; Kain et al. 2003).
Common verification measures, such as the equitable
threat score, reward smoothly varying forecast models
over those with relatively high amplitude structures
(Baldwin et al. 2001). Therefore, operational models
have tended to be designed to produce smoothly vary-
ing QPFs, despite the preference of some human fore-
casters for more realistic-looking detail and the increas-
ing simulation by research models of finer representa-
tions of QPF.

Numerous approaches have been applied to deal
with the deficiencies of traditional verification methods
(e.g., Du et al. 2000; Zepeda-Arce et al. 2000; Davis et
al. 2006a). One such approach is the Ebert–McBride
technique (EMT), which employs the concept of
matching individual forecast and observed areas (Ebert
and McBride 2000, hereafter EM2000). The technique
utilizes contiguous rain areas (CRAs), defined as the
areas of contiguous observed and forecast rainfall en-
closed within a specified isohyet. A displacement is per-
formed using an objective pattern-matching technique
to optimally align the forecast with the observations.
The EMT method was originally developed for appli-
cation to synoptic-scale precipitation systems in the
Australian region. The current study adapts the EMT
to mesoscale convective systems (MCSs) characteristic
of the central United States during the warm season.

The International H2O Project (IHOP), which took
place from 16 May to 26 June 2002, was designed to
help improve the understanding and prediction of
QPFs. High-resolution model datasets produced for
this project offered the opportunity to investigate pre-
cipitation forecast accuracy as a function of convective
system morphology. Around 175 MCSs were identified
during the 4-week IHOP period for 12-km grid spacing
runs of 1) the National Centers for Environmental Pre-
diction (NCEP) Eta Model (Black 1994; Janjic 1994;
Rogers et al. 1998) using the Betts–Miller–Janjic (BMJ)
convective parameterization (Betts 1986; Betts and
Miller 1986; Janjic 1994); 2) the fifth-generation Penn-
sylvania State University–National Center for Atmo-
spheric Research Mesoscale Model (MM5, version 3.5;
Grell et al. 1995); and 3) the Advanced Research
Weather Research and Forecasting (WRF) model, ver-
sion 1.3 (Skamarock et al. 2001). The Eta utilized its
own continually cycling, three-dimensional variational
data assimilation (3DVAR) scheme (Rogers et al.
1998). The MM5 and WRF were both initialized with
the “Hot Start” procedure (McGinley and Smart 2001;
Shaw 2004) developed for the National Oceanic and
Atmospheric Administration (NOAA) Forecast Sys-
tems Laboratory (FSL) Local Analysis and Prediction

System (Albers et al. 1996). The Hot Start is comprised
of two parts: a cloud analysis and a dynamical balancing
scheme. The cloud analysis diagnoses estimates vertical
velocity profiles based on cloud type, depth, horizontal
scale, and stability criteria. These estimates are then
used as constraints in a 3DVAR system to develop
model initial conditions that are in dynamic balance
with the observed cloud field while maintaining consis-
tency with the observations. Neither the MM5 nor the
WRF employed a convective parameterization scheme.
Jankov et al. (2005) found that in WRF simulations
using 12-km grid spacing, the use of the Hot Start pro-
cedure resulted in rainfall forecasts in fully explicit
simulations at least as skillful as those from runs using
convective parameterizations. Each model was run ev-
ery 6 h, and only the first 6-h forecast period was ana-
lyzed by the EMT.

All rain systems producing a volume of rainwater
exceeding 3.13 � 108 m3 (i.e., 1 in. of rain over a 1° by
1° box; 1 in. � 25.4 mm) in a 6-h forecast period were
identified. Although traditional grid point–to–grid
point objective skill measures were computed for the
full domain, the focus of our analysis was on various
skill measures applicable to the EMT-identified CRAs.
An analysis of these parameters was performed as a
function of the convective system morphology. This
analysis should reveal whether certain types of systems,
such as linear squall lines with trailing stratiform rain
areas, had larger errors than other types within each
model.

For every CRA identified, a corresponding observed
system was classified using radar-based MCS character-
istics. This radar-based morphology used 2-km compos-
ite base reflectivity radar imagery available from the
Next-Generation Radar (NEXRAD) Information Dis-
semination Systems (NIDS; Baer 1991). The radar-
based convective systems were divided into seven gen-
eral types. These types were continuous linear (CL),
continuous linear bowing (CLB), continuous nonlinear
(CNL), discontinuous areal (DA), isolated cells (IC),
orographically fixed (OF), or false alarms (FA). Linear
systems were subclassified as having trailing stratiform
(TS), leading stratiform (LS), parallel stratiform (PS),
or combinations of the three types based on the classi-
fication system presented by Parker and Johnson
(2000). The evolutionary characteristics of squall lines
were further characterized as back building (BB), bro-
ken areal (BA), broken line (BL), or embedded areal
(EA), following Bluestein and Jain (1985).

The overriding goal of this study was to use the EMT
objective verification measures in concert with an ob-
served morphological classification scheme to reveal
systematic errors for certain types of MCSs. This paper
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is organized as follows. Section 2 provides an overview
of the EMT adapted from EM2000. Section 3 discusses
the modifications that were made to optimize the per-
formance of the EMT for central U.S. convective sys-
tems on the time scale of 6 h. Section 4 describes how
the convective system classification schemes were de-
veloped and used. Section 5 presents the distribution of
observed MCS types. Section 6 shows statistical results
from the modified EMT applied to the Eta, MM5, and
WRF models. A summary and conclusions follow in
section 7.

2. Overview of EMT

The aim of the EMT approach is to verify to what
extent the forecast entity has the same location, shape,
and magnitude as the observed one (EM2000), with
resulting error statistics based on the properties of each
entity. Ebert and McBride (1998) first introduced the
CRA as the area of contiguous observed and/or fore-
cast rainfall enclosed within a specified isohyet. Typi-
cally, a CRA is initially identified as an overlap be-
tween an observed and forecast entity, especially as
rainfall systems increase in size and magnitude. How-
ever, separated forecast and observed entities can be
successfully matched if the forecast entity is within the
specified search radius of the observed one. After
matching, what started out as two rain areas then be-
comes a single CRA.

CRA verification utilizes pattern-matching tech-
niques to horizontally translate the forecast entity over
the observed one. The best match can be determined in
a number of ways, usually by maximizing the correla-
tion coefficient or by minimizing the total squared er-
ror. The forecast is permitted to shift within an ex-
panded box enclosing the CRA (the maximum distance
allowed between the forecast and observed areas, be-
yond which it is assumed the two areas are unrelated).
Several user-defined parameters (discussed in section
3) can be adjusted to define the temporal and spatial
scale of the CRA, the pattern-matching process, and
how verification statistics are calculated.

Figures 1 and 2 show examples of CRA output from
0000 UTC 13 June 2002 for the Eta and WRF 6-h fore-
cast of precipitation, respectively, in the top left, with
the smoothed (section 3f) NCEP stage IV 6-h accumu-
lated precipitation product (Baldwin and Mitchell
1997) in the bottom-left panel. A displacement vector
(arrow with boldface outline) is determined by shifting
the forecast entity to maximize the correlation coeffi-
cient between the forecast and observed entities. Vari-
ous measures of error were determined before and af-
ter displacement (shown at the right in Figs. 1 and 2).

3. Modified EMT parameters

The EMT objectifies the intuitive process of pattern
matching. It is therefore important to choose values of
parameters that give the best agreement between the
objective pattern matching and the investigator’s visual
interpretation. One of the advantages of this technique
is that a variety of arbitrary parameters can be tuned
based on the needs of the user. In our case, modifica-
tions were made for the purpose of gathering statistical
information for central U.S. convective systems.

Some of the parameters determine how the CRA is
chosen in order to make it most meaningful for the time
and space scales of interest. These include the rainfall
threshold, critical water mass threshold, and minimum
area threshold. Other choices influence the way the
verification is done. These include the pattern-
matching criterion (maximizing the correlation coeffi-
cient versus minimizing the total squared error), search
radius within which a forecast object can search for a
corresponding observed object, tolerance for allowing a
portion of the forecast object to shift off the domain
grid, and filtering of observations. In addition, improve-
ments were made in the code to redefine the areas over
which some error measures and diagnostics were com-
puted. Table 1 summarizes sensitivity tests performed
raising or lowering the CRA rainfall, critical mass, and
search radius thresholds. The following subsections
provide greater detail on each modified EMT param-
eter.

a. CRA rainfall threshold

For 24-h QPF verification, EM2000 used a CRA
critical rainfall threshold of 5 mm (�0.20 in.) per day
for the minimum accumulation required for a grid point
to be considered part of a CRA. For our purposes, a
critical threshold of 0.25 inches for 6 h was found to
work reasonably well at identifying an MCS, as might
be expected for the higher rain rates accompanying
springtime MCSs in the central United States compared
with those found over a full year in Australia.

The CRA rainfall threshold was the most critical el-
ement for the inclusion or division of multiple objects in
a CRA. Since pattern matching generally requires both
a forecast and observed entity, CRAs are model depen-
dent. This can make it difficult to individually compare
statistical results from different models. Gallus (1999)
found that the Eta using the BMJ convective scheme
often depicted relatively large areas of contiguous low-
to-moderate rainfall because of the design of the
scheme. High diffusion (filtering) in NCEP’s opera-
tional Eta runs may also contribute to this tendency (W.
Skamarock 2004, personal communication). These
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smoothed patterns do not resemble typical observed
rainfall patterns during warm season convective epi-
sodes. An example of this can be found by comparing
Figs. 1 and 2. One can see the broad area of low-to-
moderate rainfall forecast in the Eta versus the intense,
but small, area of rainfall forecast in the WRF.

An overly broad forecast rainfall area can be respon-
sible for two or more distinct observed systems getting
combined into one large CRA. In this type of situation,
morphological classification of the observed system can
be difficult (section 4a). Fortunately, this problem was
limited to a minority (12%) of the identified CRAs in
the Eta. For comparison, the MM5 and WRF only had
3% of CRAs where more than one observed system
was clearly identifiable. These models typically had
smaller forecast rain areas above the CRA rainfall
threshold and thus would have less of a chance to over-
lap two or more observed systems.

b. Critical mass threshold

The critical mass threshold defines a minimum vol-
ume of rainfall necessary for a system to be identified
by the EMT. Since our study focused on the first 6 h of
a model forecast, we chose a critical mass threshold
(�3 � 1011 kg) corresponding to a combined forecast
and observed system producing a minimum of 0.25 in.
of rain in 6 h over a 40 000-km2 area.

In the complete absence of a forecast system, the
threshold will allow the EMT to identify observed sys-
tems whose spatial scales and intensities match the
minimum radar-based criteria for a MCS. Every ob-
served system from the four primary MCS morphologi-
cal types (CL, CLB, CNL, and DA) that composed a
CRA was matched to a corresponding forecast. Sys-
tems with very little or no forecast rainfall but enough
observed rainfall to meet the CRA critical mass thresh-

FIG. 1. Example of CRA output from the EMT for the 0000 UTC run of the 12-km Eta Model on 13 Jun 2002. (top left) The 6-h model
forecast of rain above the 0.25-in. threshold is outlined in dark gray. Displacement vector (arrow outlined in boldface) shows computed
displacement of forecast rain area to the northeast. (bottom left) Stage IV 6-h observed rainfall accumulation above the 0.25-in.
threshold is outlined in drak gray, with the shifted forecast overlaid in light gray. Outer box shows the area over which CRA statistics
(shown to the right) were calculated. (top right) Graph showing point-to-point verification of the shifted forecast rainfall vs observed
rainfall. (bottom right) Table showing various statistical measures used in the study. The legend shows the thresholds for the 6-h rainfall
accumulations.
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old were included in the statistical analysis and were
classified based on radar morphology just like any other
CRA. Thus, the full spectrum of model forecasts to
observed events was represented.

c. Search radius

The search radius allows for initially separated fore-
cast and observed entities to be matched provided they
are located within the search radius limit. After match-
ing, these two rain areas become a single contiguous
area (section 2). We chose a search domain of 20 grid
points (240 km) over which a forecast system could be
shifted to match an observed one. This was roughly

equal to the length scale used in defining the critical
mass threshold.

d. Pattern-matching criterion

Hoffman et al. (1995) found that minimization of
rmse and maximization of correlation coefficient were
the best methods for determining the fit of a forecast
spatial pattern to an observed one over a rectangular
domain. In the EMT, the points in the verification do-
main are composed of the original CRA, plus any
points that may have been added as a result of shifting
the forecast. EM2000 found that minimizing the total
squared error gave the best pattern matches for 24-h

FIG. 2. Same as Fig. 1, but for the WRF model.

TABLE 1. Summary of EMT threshold sensitivity tests.

Parameter Chosen threshold Lowering threshold Raising threshold

CRA rainfall 0.25 in. (6 h)�1 Combining of individual observed systems
into one large CRA

Statistics calculated over areas not
representative of a typical observed MCS.

Critical mass �3 � 1011 kg More CRAs; observed systems too small
for MCS classification

Fewer CRAs; exclusion of small MCSs

Search radius 20 grid points (240 km) Typically lowered correlation coefficient
and raised rmse

Little change to error scores; sometimes a
different match of forecast to the observed
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QPFs, although they noted that maximizing the corre-
lation coefficient generally gave similar results. In our
study, we tested both measures of fit to determine what
looked best to the eye of the human forecaster. For
most CRAs, maximization of correlation coefficient
and minimization of total squared error generally gave
similar displacements, agreeing with EM2000’s find-
ings. However, our tests showed that maximization of
correlation coefficient worked better overall near the
edge of the IHOP domain. When using total squared
error minimization, forecast rain areas would typically
shift off the verification grid instead of matching up
with nearby observed systems. The reason for this
pathological behavior is described below.

In the original code, 25% of the grid points used for
verification were allowed to shift off the domain if such
a move would give the best pattern match. In our study,
this threshold resulted in practically every near-
boundary forecast system being shifted off of the veri-
fication grid, since this shifting resulted in the lowest
total squared error calculation. If the forecast does not
sufficiently resemble the observations (likely in fine-
grid resolution rainfall simulations where detailed
structures can be depicted), the total squared errors
may be minimized by a no-rain forecast that eliminates
half of the double penalty (rain in the wrong place, no
rain in the right place). After testing, we found that if
the best fit of the forecast rainfall pattern to the ob-
served pattern was determined by minimizing total
squared error, allowing almost none (0.1%) of the grid
points to be shifted off of the domain resulted in more
reasonable matches. However, this small threshold
meant that all forecast systems near the verification
domain corners (upper and lower Mississippi River val-
ley), were very limited in how far they could be shifted
toward an observed rainfall system.

Maximizing the correlation coefficient resulted in
more reasonable matches and fewer problems of sys-
tems being shifted off of the domain. This result was
also found in a CRA case study over Cyprus by Tarta-
glione et al. (2005). Since correlation coefficient maxi-
mization matches rainfall gradients, this matching strat-
egy allowed the forecast rainfall maxima to be shifted
to closely align with observed maxima. In addition, for
most cases in our IHOP study, the use of correlation
coefficient maximization resulted in little relative in-
crease in total squared error. However, use of total
squared error minimization resulted in much lower cor-
relation coefficients for smaller CRAs. Thus, correla-
tion coefficient maximization (and allowing up to 25%
of the forecast grid points to shift off the domain) was
the method of choice for the IHOP study domain.

e. Error decomposition

Forecast errors in rain events can be expressed in
terms of errors in displacement, intensity, and pattern
or variability of the rainfall (EM2000). The switch to
correlation coefficient maximization instead of total
squared error minimization was found to occasionally
result in incorrectly negative rmse for the displacement
portion. Therefore, a new error decomposition method
was developed using correlation coefficient and mean
square error (MSE) terms based on Murphy (1995). In
that paper, MSE was represented as

MSE � �g � y�2 � �sg � rosy�2 � �1 � ro
2�sy

2, �1�

where s represents the standard deviation, and ro is the
original correlation coefficient between the forecast
(represented by y, where the overbar indicates the
mean) and observed (represented by g) rain fields be-
fore the forecast is shifted by the EMT. Rearranging
the second and third terms on the rhs gives

MSE � �g � y�2 � �sg � sy�2 � 2sgsy�1 � ro�. �2�

The first term on the rhs is the unconditional bias, or
volume error (MSEvolume). The second term compares
the sample standard deviations of the forecast and ob-
servations and is a type of pattern error (MSEpattern).
The third term contains additional pattern error and
the displacement error. These can be separated by add-
ing and subtracting r (optimal correlation) in the third
term:

MSE � �g � y�2 � �sg � sy�2 � 2sgsy�1 � r�

� 2sgsy�r � ro�. �3�

The third term on the rhs in (3) represents the shape, or
finescale pattern error (MSEpattern), as it includes the
difference between a perfect correlation (r � 1) and the
optimal correlation for the forecast, r. The fourth term
in (3) represents the contribution of displacement error
(MSEdisplacement), as it includes the difference in cova-
riances before and after shifting the forecast. Combin-
ing both the second and third terms in (3), the error
decomposition (shown in Figs. 1 and 2) can be summa-
rized in Eq. (4) as

MSEtotal � MSEvolume � MSEpattern � MSEdisplacement.

�4�

The error decompositions based on total squared error
minimization (EM2000) and correlation maximization
[Eq. (3)] gave very similar results. CRA verification of
several thousand 24-h QPFs over Australia using both
approaches gave mean pattern errors that were virtu-
ally identical, and differences of only a few percent
between methods for volume and displacement errors.
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Error terms were originally shown as percentages
relative to the other terms (EM2000). A problem with
such a method is that relative errors for small rain sys-
tems are viewed no differently than those for large rain
systems. In our study we also included absolute magni-
tudes for each error decomposition term in the CRA
output (Figs. 1 and 2) to allow for comparison of the
contribution each term makes to the total MSE (sec-
tion 6e).

f. Filtering

It is well known that models cannot adequately pre-
dict the spatial structure of convective scales because of
interpolation from finite-differencing schemes and pa-
rameterized horizontal diffusive processes. The mini-
mum resolvable feature varies as a function of not only
the grid spacing of models, but also the numerics and
physics in each type of model. Most mesoscale models
will generally be able to resolve only rainfall features of
wavelength at roughly 5 times the grid spacing. Harris
et al. (2001) showed that the 3-km Advanced Regional
Prediction System model could not resolve less than
five delta waves. Baldwin and Wandishin (2002) also
found three–five delta waves to be the smallest resolv-
able wavelength in the 22-km Eta with the Kain–Fritsch
parameterization and in 10- and 22-km versions of the
WRF model. However, in the 12-km Eta with the BMJ
parameterization, features less than 200 km were not
resolved well, which might argue for filtering of 17 delta
waves. In the present study, we decided that the stage
IV observations should be filtered so that the observed
rain areas resembled what the majority of the 10–12-km
grid spacing models run by FSL during IHOP were able
to show (Koch et al. 2004). Thus, the stage IV data were
remapped to each native model grid and filtered using
a low-pass Lanczos filter (Duchon 1979) to remove

wavelengths less than six delta (72 km). This procedure
does not remove any mismatch in the spatial variability
of the model QPFs. As will be shown in section 6e,
error measures reflect the Eta’s low variability in QPFs
compared with the MM5 and WRF.

g. Area over which verification statistics were
computed

Usually categorical statistics are computed over en-
tire model domains. For an entity-oriented technique,
like the EMT, there is some uncertainty over which
areas should be used for calculating various verification
statistics. In this study, the definitions for four verifica-
tion quantities were adjusted. Rain volume, maximum
rainfall, average rain rate, and number of grid points
exceeding the user-defined threshold were previously
calculated over the union of the observed, original fore-
cast, and shifted forecast regions (EM2000). To better
describe the characteristics of each individual entity,
these parameters were computed exclusively over the
observed and original forecast portions of the CRA
before any displacement occurs. Only grid points at or
above the CRA rainfall threshold were included in the
analysis area for each portion (the areas enclosed by
the dark gray isohyet in Figs. 1 and 2).

4. Classification of convective systems

The EMT allows a user to focus on rainfall systems of
a specified temporal or spatial scale. For our purposes,
the EMT was used to examine MCS forecasts valid for
fixed 6-h periods to note errors as a function of the
observed system morphology. A classification scheme
was necessary for exploring this aspect. Tables 2, 3, and
4 provide a summary of the various classes and defini-

TABLE 2. General classification types.

Identification Name Criteria for classification

MCS Mesoscale convective system �30 dBZ in a �100 km � 100 km area
�40 dBZ in a �50 km � 50 km area
Both conditions for �3 h

CL Continuous linear CNL and MCS criteria
Major axis of �40 dBZ and �100 km in length
Major axis 3 times greater than minor axis in length

CLB Continuous linear bowing CNL, CL, and MCS criteria
Bulging, convex shape. Angle of bow �30°

CNL Continuous nonlinear Contiguous region of echoes and MCS criteria
DA Discontinuous areal Discrete convective elements and MCS criteria
IC Isolated cells �30 dBZ in a 40 km � 40 km area

�40 dBZ in a 20 km � 20 km area
OF Orographically fixed Nearly stationary with respect to Rocky Mountains/Black Hills
FA False alarm None of the above criteria were met
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tions, with additional information provided in the fol-
lowing paragraphs on how the scheme was defined.

In the first stage of classification, the observed system
highlighted in the stage IV 6-h accumulated precipita-
tion product was cross-referenced with an observed sys-
tem indicated in radar observations. The radar-based
morphology used 2-km NIDS composite base reflectiv-
ity radar imagery with a temporal resolution of 30 min.

The radar-based system classification was deter-
mined mainly by previous literature dealing with MCS
classification (e.g., Houze 1993; Geerts 1998; Parker
and Johnson 2000). We defined a radar-based MCS as
a convective system containing continuous or discon-
tinuous convective echoes that propagated and/or or-
ganized in nearly the same manner as other convective
echoes within the system. We required the minimum
MCS criteria to have at least 30 dBZ of base radar
reflectivity over at least a 10 000-km2 (i.e., 100 km �
100 km) area and at least 40 dBZ in a 2500-km2 (i.e., 50
km � 50 km) area. Both dBZ conditions had to exhibit
temporal continuity for at least 3 h. Using the Z–R
relationships (where Z is reflectivity and R is rain rate)
of Z � 200 � R1.6 for stratiform and Z � 300 � R1.4 for
convective rain, 30 dBZ corresponds to a rain rate of
around 0.10 in. h�1 with 40 dBZ corresponding to a rain
rate of nearly 0.50 in. h�1.

a. General classification

The first series of classifications distinguished be-
tween linear and nonlinear systems for those meeting
the MCS criteria. Since not all observed systems iden-
tified by the EMT met our radar-based MCS criteria,
separate categories had to be made for these smaller or
shorter-lived systems. The classification scheme in-
cluded seven general types of systems (as shown in
Table 2) and is summarized as follows.

The CL systems contained a continuous major axis of
at least 40-dBZ convective echoes of at least 100-km
length that shared a common leading edge and moved
in tandem. In addition, the major axis had to be at least
three times as long as the minor axis. CLB systems not
only met the CL criteria above, but also had to contain
a bulging, convex shape (angle greater than 30°) of con-
tinuous convective cells with a tight reflectivity gradient
on the front edge of the convective region. This shape
had to exist for at least 1.5 h. If the minimum MCS
requirements were met in a contiguous area but did not
meet the linear requirements of CL or CLB, then the
system was identified as CNL. If the above minimum
MCS requirements were not met in a continuous area,
but were met in an area of discrete convective elements
in which no element was separated by more than 200
km from another, then the system was identified as DA.

If a system remained nearly stationary with respect to
the western edges of the IHOP domain (the Rocky
Mountains and Black Hills), then the system was clas-
sified as OF because the mesoscale processes influenc-
ing these mountain systems may differ from systems
over the plains. If cells were too small, isolated, or
lacked temporal continuity to meet any of the above
classifications, but had at least 40 dBZ in a 400-km2

(i.e., 20 km � 20 km) area and at least 30 dBZ in a
1600-km2 (i.e., 40 km � 40 km) region, then an IC
classification was assigned. It is well understood that a
12-km model cannot fully resolve isolated cell events,
but for completeness these events were included in the
classification scheme. If none of the above criteria were
met, then the observed system in the CRA was classi-
fied as an FA, a falsely predicted event.

In the 6-h period over which CRAs were defined
from accumulated rainfall data, multiple radar-based
systems might be observed within one larger CRA.
When this was the case, the system with the greater
temporal, spatial, and/or rain volume was used to de-
fine the morphology of the CRA. In other cases, when
the morphology of a single system changed over time,
the morphology that occurred over the majority of the
6-h period was used to classify the CRA. It is under-
stood that defining a single convective morphology for
multiple radar-based systems will increase the amount
of statistical uncertainty. However, it is pertinent to
include these CRAs in the statistical analysis, since a
clearly dominating type occurred in the vast majority of
these cases.

b. Additional linear classifications

For every linear system (CL or CLB), additional sub-
classification was performed by using the taxonomy

TABLE 3. Stratiform classification types for linear systems.
(Adapted from Parker and Johnson 2000.)

Identification Name

TS Trailing stratiform
LS Leading stratiform
PS Parallel stratiform
TS/PS Trailing and parallel stratiform
LS/PS Leading and parallel stratiform

TABLE 4. Development classification types for linear systems.
(Adapted from Bluestein and Jain 1985.)

Identification Name

BA Broken areal
BB Back building
BL Broken line
EA Embedded areal
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proposed by Parker and Johnson (2000) and Bluestein
and Jain (1985). First, the arrangement of stratiform
rainfall with respect to the intense convection was clas-
sified according to the definitions TS, LS, and PS as
given by Parker and Johnson (2000; Fig. 3). Combina-
tions of these types were noted when both were seen
for at least 1.5 h. Second, a classification was made
based on Bluestein and Jain’s (1985) categories for
squall line development (Fig. 4): BB, BA, BL, and EA.

Figure 5 shows a four-panel plot of radar reflectivity
corresponding to the system observed in the stage IV
product of Figs. 1 and 2. The first image (Fig. 5a) is
valid 1 h after convective initiation in south-central
Kansas and north-central Oklahoma. This image rep-
resents conditions 1 h before the start time of the 6-h
period evaluated in Figs. 1 and 2, and helps to show the
BA development assigned to this system. Figures 5b
and 5c show the development into a CL system. Figure
5d shows the system at maturity as a TS area expands.
A PS area is also noted at this time, but this did not last
the required 1.5 h. The TS region was largest around
0700 UTC (not shown) as the convective line decayed
and then ended around 1000 UTC.

5. Observed MCS morphology distributions

A total of 190 CRAs were identified for the Eta, 164
for the MM5, and 163 for the WRF during the 4-week
IHOP period. Of the CRAs identified, 7% of Eta sys-
tems and 2% of MM5 and WRF systems were classified
as FA (little or no observed rain). A small number of
the observed systems (4%–5% in the three models)
were classified as OF to the Rockies and Black Hills at
the western edge of the IHOP domain. The IC systems

accounted for 12% of the CRAs in the Eta, 6% in the
MM5, and 5% in the WRF. Other than to note the
number of occurrences, we exclude IC, FA, and OF
systems (22% in the Eta, 13% in the MM5, and 12% in
the WRF) from further analysis in this study. The IC
and FA systems were only identified because of fore-
casted rainfall; observations did not show enough rain
volume to meet the CRA critical mass threshold (sec-
tion 3b).

These results show the Eta produced more occur-
rences of higher rain volumes for non-MCS cases than
the MM5 or WRF. The higher percentage of non-MCS
occurrences in the Eta may be due to its lack of differ-
entiation in rain rate and volume between convective
system types. As will be shown in section 6, the Eta
produced nearly the same average rain rate and volume
across the various convective system categories. Thus, a
higher percentage of cases on the non-MCS side of the
spectrum should result. The focus of subsequent evalu-
ation is on model performance as a function of the
observed system morphology of the 148 remaining
events for the Eta, 144 events for the MM5, and 143
events for the WRF.

Fifty-five (37%) observed cases were classified as lin-
ear in the Eta, 62 (43%) in the MM5, and 60 (42%) in
the WRF. Ninety-three (63%) observed cases were
classified as nonlinear in the Eta, 82 (57%) in the MM5,
and 83 (58%) in the WRF. Figure 6 shows a histogram
of general, squall, and development types for every

FIG. 3. Stratiform types for linear MCSs; from Parker and
Johnson (2000).

FIG. 4. Development types for linear MCSs; from Bluestein and
Jain (1985).
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identified CRA that met MCS criteria (see Tables 2, 3,
and 4 for abbreviations used for the various classifica-
tion types in the graphs). Of the linear systems, 86%
were classified as CL, with 14% as CLB. Because of the
low sample sizes associated with the CLB category,
these systems have been lumped into the CL category
for the statistical analysis in section 6. Nonlinear sys-
tems were led by the CNL category with 61%, followed
by DA with 39%.

For the stratiform rain area classification, TS domi-
nated with 67% of the linear systems. The TS/PS type
(generally large systems since stratiform rain occurred
in both regions) garnered the second highest total with
16%. The categories of LS, PS, and LS/PS (substantial
areas of each) all had five or fewer occurrences in each
model. Little statistical significance of LS, PS, and LS/
PS classifications was found, likely owing to the small

sample size in each of these categories. These results
were fairly similar to the Parker and Johnson (2000)
survey of central U.S. linear MCS. They found TS was
the dominant mode, though only accounting for 40% of
the cases. The TS/PS type was second highest with 18%.
In our study, the other categories of stratiform had
slightly less of a representation than in the Parker and
Johnson (2000) study, due to a greater domination of
the TS type.

Among the development types, BA was the most
common with 44%, followed by BL with 32%, and then
BB with 23%; EA had only one (1%) occurrence for
each model CRA and was, therefore, excluded from
further study. The results for BA differed greatest from
Bluestein and Jain (1985) who found these events only
20% of the time for severe squall-line cases in Okla-
homa.

FIG. 5. Example of 2-km NIDS radar reflectivity corresponding to CRA output from Figs. 1 and 2. Radar images are at 2-h intervals
[(a) 2300, (b) 0100, (c) 0300, and (d) 0500 UTC] beginning at 2300 UTC 12 Jun 2002 and ending at 0500 UTC 13 Jun 2002. The legend
in the upper right shows the dBZ thresholds for instantaneous reflectivity values.
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Since the classification scheme is conditioned on the
observed system, forecasts that miss the event (i.e., no
or very little precipitation is simulated) are included in
the dataset. In totaling the number of MCS cases where
no forecast rain volume existed above the 0.25-in. rain-
fall threshold there were 19 (13%) cases in the Eta, 31
(22%) cases in the MM5, and 20 (14%) cases in the
WRF. Thus, the MM5 had a larger number of missed
events than the Eta or WRF.

6. CRA statistical analysis

Statistics were calculated for the following param-
eters: rain volume, rain rate, maximum gridpoint rain-
fall, phase displacement, and MSE decomposition. This
analysis was performed for all of the observed systems
over the plains meeting minimum MCS criteria. Errors
were then examined as a function of the observed sys-
tem morphology. Individual comparisons of forecasts
with observations are not provided since the definition
of a CRA can occasionally cause different statistical
results for the observations, a limitation of the EMT
(section 3a).

All statistical results discussed in this section were
formally evaluated by a Student’s t test, a multiple com-
parison analysis of variance (ANOVA) utilizing
Tukey’s honestly significant difference (HSD) proce-
dure (see Tukey 1993) and Levene’s (1960) test for
homogeneity of population variances. These tests de-
termined statistical significance at the 0.05 alpha level.
For the t test, basic assumptions were made regarding
adequate sample sizes, approximate normality, and that
the data comprising each sample were randomly se-
lected from their larger population. In comparing the

general-type categories, sample sizes range from
around 30 to 60 cases per type while development-type
categories have sample sizes ranging from around 15 to
30 cases per type. These sample sizes should be suffi-
cient for statistical testing, as long as the sampling dis-
tribution is approximately normal. For Tukey’s HSD,
assumptions of approximate normality and nearly equal
variances in samples and populations were made in or-
der to accurately perform this test, with deviations
noted. Thus, categories with extreme skewness or many
outliers and vastly different sample sizes are excluded
from discussion below. Levene’s test was used to deter-
mine if population variances were not all equal for mul-
tiple comparisons. However, the assumption of the
equality of population variances is less critical when the
sample sizes are nearly equal. The variances can be
significantly different, but the p values for any analysis
of variance procedure will only be mildly distorted (Ott
and Longnecker 2001).

The Student’s t test determined whether errors be-
tween forecast and observed values were biased for
each type (e.g., is a mean wet bias in the DA category
for the Eta truly statistically significant?). Tukey’s HSD
determined statistical significance of differences in
mean errors between types in a given model (e.g., if
both DA and CNL have a statistically significant mean
wet bias for the WRF model, does one type have a
greater mean bias versus the other?). This conservative
test was performed to protect the true alpha level of
0.05 during multiple comparisons from the effects of
multiplicity (e.g., Wilks 1995; Ott and Longnecker
2001).

All graphical results are presented by using box plots
showing the following: medians, 75% and 25% quar-
tiles, and minimum/maximum values within 1.5 times
the interquartile range; mean diamonds show means
and 95% confidence intervals for the mean. Additional
differences that did not pass formal statistical signifi-
cant tests can be gleaned from the graphs, but they are
generally not discussed in this section.

a. Rain volume

The Eta showed a mean dry bias (forecast compared
with observations) with the CL category (as noted in
section 5, for the CRA statistical analysis this category
represents the combination of CL and CLB systems)
and a mean wet bias for the DA category (Fig. 7a). The
mean bias of the CL category was significantly drier in
comparison with the CNL and DA categories. This con-
firms that the Eta produces too little rain volume for
linear systems, and this behavior differs from its per-
formance with nonlinear systems. We speculate that the
mean dry bias with linear systems reflects the lack of

FIG. 6. Histogram of observed systems (general types, strati-
form types for linear systems, and development types for linear
systems) for all CRAs identified by the EMT applied to the Eta,
MM5, and WRF models. Tables 2, 3, and 4 give definitions used
for the abbreviation of types.

298 W E A T H E R A N D F O R E C A S T I N G VOLUME 21



transport of condensate away from more intense con-
vective cells (which is not included in the BMJ convec-
tive scheme), a process known to be very important in
the upscale growth of organized linear systems (e.g.,
Rutledge 1986).

Both the MM5 and WRF showed a mean dry bias for
all three general types (Figs. 7b and 7c). The MM5 had
no categories that were significantly different from the
other categories. In WRF, the CL category was signifi-
cantly drier than the CNL and DA categories. It should
be noted that Levene’s test for the assumption of equal
variances was not passed for the WRF comparison, be-
cause of the larger spread in the CL category versus the
CNL and DA categories. However, as in the Eta, the
WRF appears to have larger dry biases for linear sys-
tems than nonlinear ones.

As might be expected because all three models had a
mean dry bias with the linear category, a dry bias was
also apparent with the dominant stratiform type, TS.
Statistical significance was not found for any model in a
comparison among stratiform types, likely because the
small sample size for all types except TS. For develop-
ment types, the Eta had a mean dry bias with both the
BB and BL categories (Fig. 8a). The mean for the BB
category was significantly higher than the BA category.
However, it is easily seen through the spread of the box

plots that the assumption of equal variances was not
valid for this comparison. Both the BB and BL catego-
ries also suffered from modest skewness and relatively
low sample sizes, further lowering confidence in the
above results. Dry biases were present in the MM5 and
WRF for both BA and BL categories (Figs. 8a and 8b).
The dry biases present with development types likely
reflect the dry bias already noted for linear systems.
Differences in biases were not significant among devel-
opment types for the MM5 and WRF.

b. Rain rate

The Eta’s forecast average rain rate (for all CRA
points above the 0.25-in. threshold) was significantly
lower than observed for both the CL and CNL general
categories. It was also significantly lower for the TS and
TS/PS stratiform categories and the BB, BA, and BL
development categories. In addition, the Eta produced
nearly the same average rain rate for practically all gen-
eral types (Fig. 9a), unlike observations (Fig. 9b), im-
plying the model may not have the capability to differ-
entiate its rate of rainfall for highly efficient precipita-
tion systems from those with lower efficiency. Gallus
(1999) showed that the Eta with the BMJ convective
scheme was fairly insensitive to changes in horizontal
grid resolution. He speculated that the BMJ scheme

FIG. 7. Box plots and mean diamonds for
errors (forecast � observed) in rain vol-
ume (km3) for general types in the (a) Eta,
(b) MM5, and (c) WRF. The box repre-
sents the interquartile range, from the 25th
to the 75th percentile, and the line through
this box represents the median. The whis-
kers extend from the 25th and 75th per-
centiles to the outermost minimum and
maximum values of the sample within 1.5
times the interquartile range. The mean
diamond (in gray) represents the mean
(middle line) of the sample and 95% con-
fidence intervals (apex of lines). At the top
of each graph are the sample sizes for each
category.
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was so aggressive at drying the atmosphere that small-
scale structures more likely to be produced in the grid-
resolved component of the rainfall were often elimi-
nated. Operational forecasters have long noted that the
rainfall forecasts from the Eta appear to be overly
smooth and lack finescale structure. The current analy-
sis agrees with those observations.

However, for both the MM5 and WRF, the CL cat-
egory had a significantly higher forecast average rain
rate than that observed (Figs. 10a and 10b). The mean
errors of the CL category were also significantly higher
than the DA category. For stratiform types, these same
trends were noted. Both models had significantly
higher average rain rates than observed in the TS cat-

egory, a result consistent with a failure to develop
larger areas of lighter stratiform rain (such that the
heavier convective rates dominated these systems). For
development types, the MM5 and WRF were both sig-
nificantly higher than observed with the BB category.
The MM5 and WRF results are in contrast to the much
lower average rain rates of the Eta forecasts.

These results suggest a systematic rainfall distribu-
tion and amount error arising from problems with pre-
diction of cold pool dynamics. Weisman et al. (1997)
showed from three-dimensional midlatitude squall-line
simulations performed at a variety of grid resolutions
that a delayed strengthening of the cold pool occurs
with explicit models run at resolutions coarser than

FIG. 8. Same as Fig. 7, but for develop-
ment types in the (a) Eta, (b) MM5, and (c)
WRF.

FIG. 9. Same as Fig. 7, but for (a) forecast and (b) observed average rain rate [in. (6 h)�1]
for general types in the Eta.
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4 km. Since the cold pool is crucial to the evolution of
an MCS into an upshear-tilted mature system, such
models can be expected to underestimate the TS pre-
cipitation region commonly produced by the upshear-
tilted front-to-rear flow, while overpredicting the pre-
cipitation in the convective leading line. Both charac-
teristics are observed with the 12-km MM5 and WRF
models examined in the present study.

c. Maximum rainfall

Maximum rainfall was defined as the highest ob-
served amount of precipitation in the model’s 12-km

grid and in the filtered stage IV observed accumulation
grid. The Eta significantly underpredicted average rain-
fall maxima overall, for all general and development
types, and TS and TS/PS stratiform types. Both the CL
and CNL categories had greater mean dry biases than
the DA category (Fig. 11a). For the development types,
the BL category had a greater mean dry bias compared
with the BA category.

As with the average rain-rate category, the Eta was
very uniform in its distribution of average maximum
rain rate for each system type. The tendency of the Eta
to have far smaller average maximum rain rates than
observed agrees with Gallus (1999), who showed that

FIG. 10. Same as Fig. 7, but for errors in average rain rate [in. (6 h)�1] for general types in
the (a) MM5 and (b) WRF.

FIG. 11. Same as Fig. 7, but for errors in
maximum rain rate [in. (6 h)�1] for general
types in the (a) Eta, (b) MM5, and (c) WRF.
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the use of the BMJ scheme prevented large rainfall
amounts from occurring with fine-grid resolution.
When the Kain–Fritsch scheme (Kain and Fritsch 1993)
was used instead, Gallus (1999) noted that much larger
rain rates resulted. He showed the maximum rain rates
in simulated convective systems occurred in regions
with large grid-resolved rainfall components.

Once again the MM5 and WRF results were in stark
contrast to the Eta (Figs. 11b and 11c). Both the MM5
and WRF had significantly larger maximum rainfall
rates on average, than observed for the CL and CNL
types. For both models, CL systems had significantly
larger wet biases than both the CNL and DA types.
This trend continued into the stratiform categories with
TS forecasts being significantly wetter than observed in
both the MM5 and WRF. For all three development

types, the MM5 and WRF had a mean wet bias. The
MM5 and WRF also exhibited much more variability
with the spread of the interquartile range (from the 0.25
to the 0.75 percentile), usually double that of the Eta
for most types. Since the MM5 and WRF typically un-
derestimated rain volume, the greater rainfall intensi-
ties indicate much smaller rainfall areas than observed.

d. Phase displacement errors

None of the models displayed a strongly preferred
direction and magnitude of displacement error vectors
for any particular MCS classification, except for the CL
type. All three models exhibited a majority of displace-
ments from the northwest for this type (Fig. 12). These
systems were likely forecast too slowly by the three
models (especially MM5 and WRF). This may suggest

FIG. 12. Phase displacement errors for the CL general
type in the (a) Eta, (b) MM5, and (c) WRF models. Dots
represent direction and magnitude of displacement er-
rors from original to shifted forecast. Distribution is only
shown for those systems that had a displacement calcu-
lated.
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that MM5- and WRF-simulated cold pools for squall-
line systems were too weak or delayed, a hypothesis
fully consistent with the rainfall rate bias problems (un-
derprediction of the stratiform rain region, overpredic-
tion of the rain rates in the convective leading lines)
discussed in section 6b. In the Eta, the BMJ convective
scheme does not directly affect the model environment
below the subcloud layer. This makes the scheme’s be-
havior difficult to correlate to specific observed physi-
cal processes (Kain et al. 2003). Consequently, linear
MCS cold pools are not realistically simulated.

e. MSE decomposition

For all three models, the CL category had the highest
average total MSE, while the CNL category had the
lowest average out of the general types. Differences in
MSE magnitudes between classification categories
likely reflect the complexity (e.g., scale, spatial variabil-
ity, intensity, and longevity) of the system being fore-
cast. A system with greater spatial variability and more
intense precipitation maxima will tend to be more dif-
ficult to forecast and will have the potential for greater
MSE scores (Murphy 1993). Normalizing the MSE by
average rainfall is one approach to account for differ-
ences in complexity (in particular, intensity and longev-
ity) that affect predictability. The only significant dif-
ference found for the general types in any of the models
was that for the Eta, the DA category had higher nor-
malized average total MSE values than the CL and
CNL categories.

Given similarly observed average rainfall volumes
between the models’ CRAs, one can test whether a
certain model had significantly lower or higher average
MSE than the others for a specific type. The average
total MSE for the Eta was significantly lower than both
the MM5 and WRF for the CL and CNL general types
(Figs. 13a and 13b). The TS was the only stratiform type

to be significantly lower in the Eta versus MM5 and
WRF. However, the test for assumption of equal vari-
ances in both the CL and TS types failed, because both
the MM5 and WRF clearly had much larger variances
than the Eta (Fig. 13a). There were no statistically sig-
nificant differences between the models for the devel-
opment types.

For the CL and CNL types, both the MM5 and WRF
had their largest source of total MSE from pattern er-
rors, followed by displacement errors, and then volume
errors. The Eta was similar in this distribution for the
CL type. But for the CNL type, larger errors for pattern
were followed by volume errors, and then displacement
errors. Figure 14a shows the combined results from all
three models for the CL type. The DA type did not
display the same distribution as the other three general
types; there were no significant differences between the
types of errors for any of the models. The magnitude of
errors were nearly equally distributed among all de-
composition terms for this type (Fig. 14b).

Pattern error was the largest source of average error
in the MSE decomposition for all three models for CL
and CNL types. The Eta was also significantly lower in
average total MSE for these categories in comparison
with the MM5 and WRF. As mentioned in section 3f,
pattern error is strongly influenced by spatial variabil-
ity, which is a function of the effective model resolu-
tion. Because the Eta produces QPF on scales 3 to 4
times larger than the MM5 and WRF, the Eta has lower
spatial variability. All other factors being equal, a
model with lower spatial variability will have lower
MSE. The magnitude of pattern errors are around
twice as large for the MM5 and WRF compared with
the Eta in the CL type, similar to the magnitude of total
MSE (Fig. 13a). Despite forecaster and modeler inter-
est in models simulating realistic-looking detail, com-
monly used error measures such as MSE suggest mod-

FIG. 13. Same as Fig. 7, but for total MSE (in.2) for (a) the CL type and (b) the CNL type
in the Eta, MM5, and WRF.
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els with less spatial variability are more accurate. This
result is consistent with many previous works (e.g.,
Baldwin et al. 2001; Gallus 2002; Mass et al. 2002; Kain
et al. 2003).

7. Conclusions

The EMT was modified to optimize detection of
MCSs occurring over the central United States and ap-
plied to forecasts of convective system rainfall from the
12-km Eta, MM5, and WRF models during IHOP 2002.
This technique allowed for the objective determination
of errors as a function of observed convective system
morphology, a procedure not possible with typical grid
point–to–grid point domainwide verification. No at-
tempts were made to use the EMT for determining
errors as a function of forecast convective system mor-
phology, because of an inability of 12-km models to
properly simulate detailed convective system character-
istics.

Systematic deficiencies were found in these models
for various types of convective systems when using the
error measures supplied by the EMT. While almost all
of the differences found in comparing the Eta and the
MM5/WRF were not surprising, a goal of object-
oriented verification is to produce nearly the same
overall conclusions about model performance obtained
by subjective evaluation (Davis et al. 2006b). The re-
sults as a function of the observed convective system
morphology provide additional insight into the spec-
trum of MCS errors in each model. These results should
help modelers in their assessments and may have some
relevance to forecasters as well. For modelers, the error
metrics can point out certain morphological types
where the model has a systematic bias or relatively in-
accurate forecast compared with other observed types.
For forecasters, the utility of these results depends ul-

timately on an a priori knowledge of likely convective
system morphological evolution, based on conceptual/
numerical models and experience. Knowing what the
numerical model QPFs typically depict for a certain
type of system, a forecaster can further confirm or re-
ject their forecast formulated on the environmental
wind/thermodynamic fields and other observations.
However, forecasting warm season convective system
morphology is itself a problematic and uncertain pro-
cess.

The modified EMT suggested that the Eta underes-
timated rain volume for linear systems and overesti-
mated it for discontinuous nonlinear ones, while both
the MM5 and WRF underestimated volume for all sys-
tems. The Eta also produced average rain rates and
peak rainfall amounts that were much too light for al-
most all systems, likely because of its typically low vari-
ability and overly smoothed QPFs. On the other hand,
the MM5 and WRF both produced average rain rates
and peak rainfall amounts that were higher than ob-
served for most linear classifications. These two models
were dry-biased with rain volume reflecting a large un-
derestimate of areal coverage compared with observa-
tions for linear systems. All three models forecast rain-
fall too far northwest for linear systems. These results
suggest a systematic rainfall distribution and amount
error arising from problems with prediction of cold
pool dynamics, following Weisman et al. (1997). The
Eta had smaller total mean square errors than the MM5
and WRF for both CL and CNL systems, and for TS
types. The smaller errors again likely reflect its ten-
dency to produce smoother rainfall fields than the
WRF and MM5. For all general MCS types (except
DA), the largest contributors to total MSE were pat-
tern errors, typically followed by displacement, and
then volume errors.

Overall, the modified EMT suggested various sys-

FIG. 14. Same as Fig. 7, but for displacement, pattern, and volume errors (in.2) for (a) the
CL type and (b) the DA type with combined results from the Eta, MM5, and WRF.
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tematic errors are dependent on the convective system
type and model. No one general type or model was
consistently better or worse than the other. Out of the
stratiform types, TS systems typically had the same bi-
ases as those of CL systems. Because of small sample
sizes it was not possible to determine with certainty
whether the other stratiform types had significant bi-
ases. Error measures did not consistently differ among
the development types. It is plausible that processes
occurring during development operate on scales too
small for a 12-km model to differentiate.

In future work, this technique and observed mor-
phology classification scheme could be used to evaluate
other models or different versions of the same model.
A goal of these comparisons would be to not only uti-
lize the statistical results provided by the object-
oriented technique, but to also evaluate the ability of
the technique to match forecast and observed objects
(Davis et al. 2006b). As model effective resolution be-
comes further refined in the future, a classification
scheme based on the forecast MCS type could be used
in lieu of an observed morphology. The model forecast
MCS morphology and corresponding statistics gener-
ated by the EMT may provide a greater direct impact to
forecasting users.

The EMT could also potentially be applied to veri-
fying human gridded forecasts, in addition to those of
numerical models. Since the National Weather Service
has moved into the digital forecast era with the Na-
tional Digital Forecast Database (Glahn and Ruth
2003), an object-oriented gridded verification could oc-
cur between human gridded forecasts and numerical
models. Questions such as how does overall rainfall
volume and rate differ from the human versus model
forecast and do human forecasts exhibit the same
northwest bias for linear MCSs could be addressed.

The EMT’s flexibility for user-defined parameters in
object-oriented verification, along with its production
of several error metrics at once, makes the technique a
valuable tool in the assessment of forecasts. By de-
veloping a classification scheme based upon the ob-
served morphology, the technique can further differ-
entiate its error measures and provide modelers with
error information for specific types of observed sys-
tems. Such information may be useful in pinpointing
specific shortcomings in model physics or dynamics, al-
lowing for more potential improvement in numerical
forecasts.
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