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ABSTRACT 

 Neurodegenerative diseases are a large burden to the society. They are characterized 

by a loss of neuronal cells that affect the ability to perform daily activities, and are often 

caused by environmental or genetic factors. Therapeutics can treat clinical symptoms of 

chronic disease, but there is a need to additionally treat the underlying mechanisms leading to 

neuronal atrophy, such as mitochondrial dysfunction and inflammation. Efficacious treatment 

is very difficult due to the existence of several physiological hurdles, including the blood-

brain barrier, diseased neuron, and intracellular organelle. Targeted nano-carriers can 

enhance local bioavailability by targeting each of these hurdles. Polyanhydride nanoparticles 

(NPs) in particular are attractive nano-carriers for central nervous system delivery of 

therapeutics, and can easily be functionalized with targeting ligands to further improve 

delivery. 

The goal of the project detailed herein is to rationally design a functionalized 

polyanhydride NP drug delivery platform addressing all physiological hurdles of the 

neurovascular unit to combat neurodegeneration. First, functionalized and non-functionalized 

20:80 CPH:SA polyanhydride NPs were evaluated for the ability to cross the BBB in vitro. 

These NPs demonstrated promise in the ability to cross the BBB. Second, bulk-

functionalized 20:80 CPH:SA NPs were evaluated for the ability to be internalized by 

neurons and enhance protective capability of antioxidants against oxidative stress in vitro. It 

was found that the functionalized NPs demonstrated superior internalization by N27 neurons 

compared to non-functionalized NPs, and antioxidant-loaded NPs protected against hydrogen 

peroxide – induced oxidative stress. Collectively, these studies lay the foundation for further 

investigation of the functionalized NP platform for central nervous system drug delivery.
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CHAPTER 1: INTRODUCTION 

1.1 Neurodegenerative Diseases and CNS Drug Delivery 

Neurodegenerative disease comprises a complex set of pathologies affecting a large 

proportion of the population. The National Institute for Neurological Disorders and Stroke 

estimates that 50 million Americans each year suffer from one of over 600 neurological 

disorders [1]. In general, the disorders are associated with debilitation of physiological and 

cognitive function, and can result in inability to perform daily living activities [2–4]. Caring 

for these chronically disabled patients significantly burdens the families of the patient and the 

national healthcare system; the national cost of Parkinson’s disease (PD) care in the US was 

greater than $14.4 billion in 2010, and is expected to increase with the aging “Baby Boomer” 

population [5]. Both PD as well as other neurodegenerative conditions may be linked to a 

variety of environmental and genetic factors [6]. One of these factors is chemical exposure. 

Chemical exposure is a burden to the society, with as many as 3 million individuals being 

exposed each year worldwide, about 10% of which are fatal [7]. Fatality is often caused by 

what is known as the organophosphate toxicity phase that leads to status epilepticus, or 

seizures [8]. Even with survival, many other symptoms occur after the acute phase, and must 

be treated effectively to avoid progression of neuronal atrophy [8]. 

A common symptom that occurs in neurons soon after organophosphate exposure is 

oxidative stress, which progresses towards widespread cell death [9]. Rapid treatment of 

oxidative stress in neurons is therefore essential to prevent disease progression. Many drugs 

have been used to treat oxidative stress, but several complex physiological hurdles 

surrounding the brain make delivery of most therapeutics highly challenging [10]. 
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In order to improve drug delivery by improving half-life and providing sustained 

release, biocompatible platform technologies are typically used to encapsulate or chemically 

link a drug payload [11]. Additionally, many of these materials offer suitable chemistry for 

facile linkage of functional groups, or targeting ligands, to facilitate transport across multiple 

barriers associated with neural delivery [11,12]. Such simple linkages offer a versatile mix-

and-match capability, in that a functionalization used on one platform can often be replicated 

on another to exploit that platform’s physical properties. Polyanhydrides are a particularly 

attractive option for use as a central nervous system (CNS) therapeutic delivery platform, 

because of their proven sustained release in the brain and dose-sparing properties, and the 

feasibility of ligand functionalization onto polyanhydride copolymer chemistries [13–16]. 

For maximum efficacy, a drug delivery system must achieve a high local 

concentration of its payload near the organelle of action within the afflicted cell [17]. To do 

this, the device must (1) enable delivery across the blood-brain barrier (BBB) from the site of 

administration to the brain, (2) facilitate uptake by the afflicted neuronal cell, and (3) achieve 

localization at the desired organelle before releasing the payload. The vastly different 

biological, chemical, and physical conditions required for navigating each of these barriers 

present a complex, multiscale problem. To effectively target all of these barriers using 

targeting ligands, this work investigated a novel bulk functionalization method. With this 

method, the targeting ligand will remain part of the NP throughout degradation for effective 

multiscale targeting. The versatility of the polyanhydride NP platform also allows for 

functionalizing other ligands to the surface of the NPs (in addition to functionalizing in bulk) 

for significantly improved multiscale targeting. This thesis describes in vitro studies that 

have been accomplished to demonstrate the promise of this platform for CNS delivery. 
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1.2 Thesis Organization 

Chapter 2 provides a literature review of chemical exposure and chronic 

neurodegeneration pathology, as well as information on targeting strategies used for delivery 

across the BBB, to the diseased neurons, and to the mitochondria. Platform technologies that 

can facilitate delivery are also discussed. The mission of this project is to synthesize this 

information and develop and optimize a CNS polyanhydride delivery platform for treatment 

of symptoms associated with chemical exposure, chiefly oxidative stress. 

 Chapter 3 expands upon the polyanhydride NP platform by investigating the ability of 

NPs based on 1,6-bis(p-carboxyphenoxy)hexane and sebacic acid (i.e., 20:80 CPH:SA) to be 

transported across the BBB in vitro. Chapter 4 then evaluates the potential for 20:80 CPH:SA 

NPs functionalized with the BBB and mitochondrial targeting ligand triphenylphosphonium 

(TPP) to be internalized by neurons and co-localize to mitochondria. In addition, the 

hypothesis of enhanced protection of these NPs (encapsulating the antioxidant Mito-

apocynin) over a soluble drug dose is tested. Chapter 5 summarizes the conclusions reached 

and suggests routes for future work using a cascading multiscale targeting NP platform based 

on the one tested in Chapters 3 and 4. 

 

1.3 Acknowledgments 

 Information in this chapter was taken and modified from a review paper to be 

submitted to the Biomedical Materials Journal, July 31 2017, titled “Cascading Multiscale 

Nanodelivery Devices for CNS Delivery of Regenerative Therapeutics”, as detailed in 

Chapter 2 below. 
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CHAPTER 2: CASCADING MULTISCALE NANODELIVERY DEVICES TO 

COMBAT NEURODEGENERATIVE DISEASE 

 

Modified from a review paper to be submitted to the Biomedical Materials Journal, July 31 

2017, titled “Cascading Multiscale Nanodelivery Devices for CNS Delivery of Regenerative 

Therapeutics”. 

 

Benjamin Schlichtmann1,a, Adam Mullis1,a, Rebecca Cademartiri1, Balaji Narasimhan1, Surya 

Mallapragada1,* 

 

1 Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 

50010 

a These authors contributed equally to this work 

* To whom correspondence should be addressed 

 

2.1 Abstract 

Neurodegeneration is a disabling set of conditions and contributes to around 30% of 

neurological-related deaths each year [1]. Toxicity from chemical exposure to toxic 

organophosphates such as nerve agents or pesticides contributes to a large portion of 

neurodegenerative disease, with as many as 3,000,000 exposure cases every year [2]. While a 

number of therapeutics have been explored for treatment resulting from chemical exposure, 

clinical translation has been limited. Improvements with the delivery of therapeutics have the 

potential to enhance the standard of treatment by increasing local drug concentration at the 
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pathologically-relevant cells and organelles. However, achieving efficient drug delivery 

requires the ability to target and overcome three physiological hurdles, including the blood-

brain barrier (BBB), the diseased neuron, and the intracellular organelle. These barriers 

significantly reduce drug bioavailability and overall efficacy, presenting a complex, 

multiscale problem. Multiscale drug delivery systems could address these issues by 

incorporating targeting mechanisms for each of the three associated barriers at 

physiologically relevant times. A large body of work has been performed to address 

individual aspects of this problem, but few studies address the reality that functionalizations 

intended to overcome one barrier may hinder or be hindered by the local environment 

elsewhere along the pathway [3–8]. This review first seeks to provide a background on 

neurodegenerative disease and therapeutics used to treat it. Delivery platforms for treatment 

of neurodegenerative disease will additionally be evaluated. Finally, recent literature that 

addresses the properties needed to target the complex hurdles will be discussed. Synthesizing 

this information will enable the rational design of multiscale delivery systems for 

neurodegenerative disease.  

 

2.2 Introduction to Neurodegenerative Disease and Chemical Exposure 

Neurodegenerative disease is a complex set of disorders that affect a significant 

proportion of the population [9]. In general, they are associated with debilitation of 

physiological and cognitive function, and can result in inability to perform daily living 

activities [10–12]. Caring for these chronically disabled patients significantly burdens the 

families of the patient and the national healthcare system; the national cost of Parkinson’s 

disease (PD) care in the US was greater than $14.4 billion in 2010, and is expected to 
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increase even further [13]. These diseases may be linked to a variety of environmental and 

genetic factors, however many of the most prevalent diseases have similar pathology [14]. 

Oxidative stress, in particular from exposure to dangerous toxins, for example, is often a 

precursor for chronic neurodegeneration if left untreated [15]. 

 

2.2.1 Acute symptoms of chemical exposure 

Upon exposure to nerve agents, acute nerve agent toxicity leads to disruption of 

proper neuronal synaptic function and mitochondrial dysfunction [15]. In the acute toxicity 

period, the toxic chemicals interfere with central nervous system (CNS) synaptic function by 

binding to acetylcholinesterase, which normally cleaves and deactivates excess acetylcholine 

[16]. Excess acetylcholine leads to the persistent activation of ionotropic ligand-gated 

channels that allow an abnormally high concentration of calcium into the cell and can 

drastically change expression of enzymes, causing cellular dysfunction [17,18]. Status 

epilepticus (SE), or seizures, is often the first symptom of nerve agent exposure and is due to 

a constant firing of action potentials resulting from persistent activation of the nicotinic 

channels. 

In addition, neuron-neuron synaptic function in CNS is affected by increased levels of 

glutamate, the most ubiquitous neurotransmitter in the CNS [18,19]. The resulting high 

intracellular calcium concentration increases mitochondrial membrane permeability and leads 

to production of reactive oxygen and nitrogen species (ROS and RNS, respectively) along 

with overall mitochondrial dysfunction [18]. High levels of superoxide radicals lead to 

increased expression of the nicotinamide adenine dinucleotide phosphate-oxidase (NOX-2) 

enzyme which produces extracellular ROS and RNS that spreads throughout the brain 
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parenchyma [17,20]. Normally, the mitochondria induces production of antioxidants that can 

combat the build-up of ROS and RNS [15], but abnormally high levels lead to neuronal 

atrophy [21]. Associated increased levels of glial cell activation and an inflammatory 

response by microglial cells in the neurovascular unit (NVU) also appear after insult [22]. It 

is important to treat oxidative stress quickly, because ensuing neuronal atrophy causes 

irreversible injury to the brain [22]. 

 

2.2.2 Chronic disease progression 

Nitric oxide (NO) plays a major role in oxidative stress – induced neurodegeneration 

[22,23]. NO induces N-methyl-D-aspartate (NMDA) receptor overexpression through 

interference with glutamate, leading to oxidative stress in the affected cells [22]. 

Overexpression of NO to toxic levels is apparent in both PD and Alzheimer’s disease (AD) 

[22]. In addition, neuroinflammation of the brain past normal levels will lead to overall loss 

of function. Specifically, increased expression of isoform NO synthase (iNOS) is commonly 

associated with neurodegeneration, and serves as a marker for evaluating disease state 

[22,23]. 

Many cases of nerve agent exposure will eventually lead to chronic symptoms [18]. 

The aggregation of misfolded or mutated proteins (also called Lewy bodies (LB)) has been 

causally linked to chronic disease progression [24–26]. These aggregated deposits inhibit 

proper synaptic function. AD, which affects pyramidal neurons in the hippocampus, can 

often be characterized by the aggregation of amyloid-beta (Aβ) and tau protein [27–31]. 

Under normal function, Aβ proteins contribute to proper synaptic function in the CNS, but in 
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AD, overexpression of this protein leads to significantly inhibited synaptic function [32]. The 

increase in Aβ expression also leads to lipid membrane peroxidation [22]. 

In contrast to AD, PD affects dopaminergic neurons, which exist primarily in the 

substantia nigra and striatal cortex [24,33,34]. One of the hallmarks of PD is the development 

of LBs, which are an aggregation of proteins resulting from the inability to degrade 

misfolded proteins through the polyubiquitination process in the cell [24]. The build-up of α-

synuclein protein, specifically from Leucine-rich repeat kinase 2 (LRRK2) mutations, in the 

extracellular matrix is one of the most common LB proteinopathies for PD, as well as that of 

ubiquitin [24,33,35,36]. Like Aβ, the α-synuclein protein is beneficial at normal levels for 

protecting degeneration of dopaminergic neurons but overexpression of the protein leads to 

neuronal toxicity [37]. As a result, a prolonged inflammatory response and NO production in 

glial cells that interferes with normal cellular function leads to cell atrophy [22].  

 

2.2.3 Therapeutics for chemical exposure and downstream pathologies 

There are four primary stages associated with chemical exposure from toxic 

organophosphates, including organophosphate toxicity, cholinergic excitotoxicity, secondary 

neuronal damage, and chronic disease progression [18]. An excellent review details 

therapeutics that have been used to protect against each of these stages resulting from 

exposure [18]. The following section discusses drugs used to treat each of these stages. 

Anti-cholinergic drugs for treatment of organophosphate toxicity, occurring just a few 

minutes after exposure, must be administered rapidly and therefore are commonly 

administered in a bolus dose [38]. Atropine is an anticholinergic drug commonly used to 

alleviate symptoms, like SE, occurring in this phase [18,39]. Benactyzine and scopolamine 
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are also used to prevent the over-activation of acetylcholine that occurs during 

organophosphate toxicity [18,39]. When designing a platform for treatment of chemical 

exposure, incorporation of an anticholinergic drug must be considered. 

Cholinergic excitotoxicity occurs within hours after exposure, immediately following 

organophosphate toxicity [18]. Common symptoms of this phase include inflammatory 

reaction and excessive calcium influx into neurons, severely damaging the cell [18]. 

Antiglutamatergic drugs like caramiphen have been used to reduce symptoms of 

excitotoxicity [39]. Benzodiazepines, which increase the activity of GABA (an inhibitory 

neurotransmitter) in the brain, have also been used as treatment for this stage [18]. 

Oxidative stress typically occurs shortly after the end of the cholinergic excitotoxicity 

phase when the secondary neuronal toxicity phase begins. The onset of this stage occurs 

hours to days after exposure [40]. Protection against oxidative stress is imperative for 

preventing neuronal atrophy and progression of disease. Vitamin E, N-tert-butyl-α-

phenylnitrone (PBN), MitoQ, and apocynin are all examples of antioxidants that have been 

investigated [18,41]. Other enzymatic (superoxide dismutase) and non-enzymatic (vitamin C 

and coenzyme Q10) antioxidants have also been used to treat oxidative stress [42]. 

Apocynin combats oxidative stress by inhibiting expression of NOX-2, reducing the 

rate of ROS and RNS production; to be effective, it must localize to the mitochondria [43–

46]. The mitochondrial targeting lipophilic and cationic molecule triphenylphosphonium 

(TPP) has therefore been conjugated to the drug to improve targeting and efficacy [23]. TPP 

enhances adsorptive-mediated cellular internalization through electrostatic interactions with 

the negative neuronal membrane and the even more negative mitochondrial membrane 

[23,43,47–54]. A recent study found that a two carbon chain TPP conjugated to apocynin 
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Mito-apocynin C2 (Mito-Apo C2) is up to 100 times more effective than apocynin, and has 

protected against several oxidative stress and inflammatory markers in a soluble dose in vitro 

and in vivo [23]. A separate in vivo study with Mito-Apo C11 has shown reduction of the 

oxidative stress-related marker 4-HNE in the substantia nigra after treatment [55]. 

Alternatively, the mitochondrially-targeted antioxidant MitoQuinone (MitoQ) has also shown 

the ability to treat oxidative stress in vivo [56–58]. MitoQ has even been approved for human 

use [59]. As elucidated by the above examples, mitochondrial targeting is an attractive 

strategy to use for antioxidants [42]. 

To treat chronic symptoms of neurodegeneration, the drug saracatinib has been used. 

In contrast to antioxidants, this therapeutic acts by inhibiting src family kinases (SFKs) [60]. 

These SFKs are upregulated by prion protein, the activation of which is initiated by the 

binding of Aβ [61]. SFKs modulate very important cell surface receptors in neurons, the 

over-expression of which can lead to significant neuronal toxicity [62]. Clinical trials of 

saracatinib have shown that this drug can reach the CNS and protect against 

neurodegeneration [60]. 

Memantine is also a neuroprotective drug for combating neurodegenerative disease. It 

prevents further degeneration by acting as an NMDA receptor antagonist, therefore limiting 

excessive ion inflow into neurons [41]. In a combination study with the antioxidants vitamin 

E and PBN, memantine has successfully protected against ROS and RNS through this 

mechanism [41]. However, it may not be suited for clinical use due to limited efficacy 

observed in late stages of AD-based neurodegenerative mouse models [63]. 

Alternatively, some therapeutics act directly on the aggregated protein deposits that 

often occur in diseases such as AD or PD. One example evaluated the effect of transcription 



13 

 

factor EB (TFEB) to reduce the amount of aggregated α-synuclein [26]. The study found that 

TFEB effectively reduced the aggregation of α-synuclein by promoting autophagic clearance 

[26]. Such a treatment may have promising implications for treatment of chronic symptoms 

associated with neurodegenerative diseases like PD. 

In addition to the listed therapeutics, many other drugs have been incorporated at each 

level of exposure, from acute to chronic [18]. However, an issue existing with delivery of 

these therapeutics is achieving specificity (leading to low bioavailability) as well as low 

therapeutic half-life. These issues can be overcome by (1) using a nanoscale platform to 

deliver the drug and protect it from degradation (section 2.3), and (2) functionalizing this 

platform with targeting ligands to further enhance local bioavailability (section 2.4). 

 

2.3 CNS Delivery Platforms 

Drug delivery platforms can protect the drug from systemic degradation, provide 

sustained release, targeting and dose-sparing effects, and overall improve drug efficacy [64]. 

A number of nanoscale delivery platforms address several challenges associated with neural 

delivery, and will be discussed below. The most well-studied CNS delivery platforms include 

micelles, liposomes, dendrimers and nanoparticles (NPs) [65]. 

 

2.3.1 Micelles 

Micelles have been used in CNS delivery applications. Having amphiphilic properties 

with a hydrophobic core, they can be used to carry hydrophobic drugs to improve 

localization [65]. In fact, a study found that micelles can improve the therapeutic effect of 

antioxidants [66]. However, due to long circulation time, micelles are often unstable in vivo 
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and therefore display lower improvements in drug efficacy, when not conjugated to stability-

enhancing molecules like Poly(ethylene glycol) (PEG) [67]. 

 

2.3.2 Liposomes 

 Liposomes also have several favorable characteristics for CNS multiscale delivery. 

They have great biocompatibility, ability to encapsulate multiple types of therapeutics, and 

versatility in the ability to functionalize with targeting ligands [65]. Recent work has shown 

the ability of liposomes coated with PEG to improve treatment for symptoms associated with 

AD [68,69]. However, like micelles, liposomes are typically unstable in vivo and cannot 

easily provide sustained release for therapeutics without modification using molecules like 

PEG [65]. 

 

2.3.3 Dendrimers 

Dendrimers are a popular nanoscale delivery option for CNS therapeutic delivery. 

First, the structures of dendrimers contain many functional groups that allow for the ability to 

conjugate therapeutics and significantly improve bioavailability, which makes them very 

versatile [49,70]. Additionally, therapeutics conjugated to dendrimers have demonstrated 

enhanced circulation times [49]. Dendrimers have been conjugated to the mitochondrial 

targeting ligand TPP to investigate potential improvements in mitochondrial co-localization 

[49]. Importantly, dendrimers have also demonstrated great biocompatibility [48]. However, 

the versatility of this platform is sacrificed by the fact that drugs for treatment of CNS 

disease are conjugated onto the surface functional groups [71]; this limits the predictability of 

release timescale that can be seen with NPs. 
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2.3.4 Nanoparticles 

2.3.4.1 Poly(esters) 

Poly(esters) are a very well-studied therapeutic delivery vehicle, with great support 

by the FDA. Furthermore, poly(lactic-co-glycolic acid) (PLGA)-based NPs are an attractive 

option for CNS therapeutic delivery studies [32,50,72–84]. However, a disadvantage of this 

nanoscale delivery platform is its bulk-eroding properties [85]. By allowing water penetration 

at a rate faster than polymer bond cleavage, PLGA NPs expose the therapeutic to 

surrounding fluids prior to presentation at the targeted site [85]; this can lead to significant 

therapeutic degradation. In addition, the complex release profile of these NPs makes it very 

difficult to control the therapeutic release rate when designing an optimal delivery platform 

[86]. These issues are further compounded when sustained therapeutic release of drug is 

required. Nevertheless, the proven safety and relative ease for conjugation of PLGA makes it 

an attractive option for overcoming the challenging hurdles associated with CNS delivery 

[87].  

 

2.3.4.2 Polyanhydrides 

Polyanhydrides demonstrate many advantages over competing drug delivery devices 

in the context of CNS delivery [88]. A significant advantage they hold over popular bulk-

eroding nanoscale drug delivery platforms like PLGA is their surface-erosion mechanism. 

This mechanism occurs based on two main structural features. First, diacid monomers that 

form the backbone of polyanhydrides are relatively hydrophobic, and therefore reject water 

from penetrating into the bulk of NPs made from this polymer [89]. Second, the anhydride 



16 

 

bonds that link the monomers are hydrolytically labile [89]. These features lead to the 

cleavage of anhydride bonds faster than water diffusion into the bulk, or surface erosion [89]. 

Moreover, surface erosion of drug-encapsulated NPs allows for more predictable drug release 

rates, governed by near zero-order therapeutic release kinetics [88,90]. 

Additionally, polyanhydride copolymer chemistries are easily tailorable, which has 

several advantages. The ability to control chemistries with different hydrophobic and 

degradative properties allows for precise control of the timescale of release, ranging from 

days to weeks to months [88,91]. This versatility arises due to differences in monomer 

hydrophobicity used for the NP formulation [92]. Versatility in polyanhydride chemistry is 

also beneficial when considering therapeutic thermodynamic compatibility requirements. For 

example, proteins are amphiphilic molecules; by altering polyanhydride chemistry to be more 

amphiphilic using 1,8,-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), a novel 

polyanhydride developed by the Narasimhan lab, the stability of proteins encapsulated in 

these NPs can be significantly improved [93]. 

The surface-eroding properties of polyanhydrides are also advantageous over bulk-

eroding NPs because they protect the therapeutic from exposure to, and degradation in, 

surrounding fluid [94]. Reduced drug degradation and premature release from NPs may lead 

to increased local bioavailability, improving drug pharmacodynamics [95]. In addition to this 

enhanced therapeutic protection, polyanhydride degradation products (dicarboxylic acids) do 

not significantly alter physiological pH, which can otherwise lead to significant therapeutic 

degradation [89,96]. 

Polyanhydrides have shown great biocompatibility in numerous studies [88,96,97]. 

This is attributed to the relatively low inflammatory response [88], as well as the ease with 
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which both aromatic and aliphatic monomers are removed from the body after degradation 

[89,92,96]. As an FDA-approved example demonstrating the biocompatibility of 

polyanhydrides, the carmustine-encapsulated wafer for the treatment of brain cancer shows 

the benefit of sustained release provided by a surface-eroding polyanhydride formulation of 

20 mol% carboxyphenoxypropane (CPP) and 80 mol% SA [98]. 

The 20:80 CPH:SA chemistry has many advantages that suggest its use as a delivery 

platform for improving treatment of oxidative stress. 20:80 CPH:SA NPs release payload in 

7-10 days [99], a faster timescale that can effectively treat oxidative stress from nerve agent 

exposure [18]. Superior uptake of 20:80 CPH:SA NPs by monocytes [100] and macrophages 

[101] suggests this formulation could utilize cell-mediated transcytosis mechanisms 

(discussed below) for crossing the BBB, even without functionalization. The binding of 

several serum proteins that have affinity for BBB-expressed receptors, including 

apolipoprotein E, may further enhance localization efficacy [102–106]. Overall, there may be 

several mechanisms at play with this formulation where improved cellular internalization 

could be observed, which make it a promising platform for CNS delivery. 

It is imperative, when designing a nano-carrier, to consider thermodynamic 

compatibility between the drug and the polymer. This compatibility may be affected by the 

copolymer’s microstructure [99]. For example, microphase separation occurs in 20:80 or 

80:20 CPH:SA copolymers, but not at 50:50, based on resulting block vs. random monomer 

organization [99]. Encapsulated therapeutics will often prefer to localize to one of the 

microphases and then be released while that microphase degrades. Release profiles of Mito-

Apo C2-encapsulated 20:80 CPH:SA polyanhydride NPs, a promising nanoscale platform for 

CNS delivery, have shown compatibility with the SA microphase [40], which degrades faster 
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than the CPH microphase. This rapid timescale of drug release with this specific drug and 

chemistry combination is favorable for treatment of oxidative stress-induced toxicity 

following acute toxic exposure. In addition to the other advantages of polyanhydrides listed 

above, this platform is a lead candidate for CNS delivery strategies. 

 

2.4 CNS Targeting Strategies 

Designing a nanoscale delivery platform that can more effectively cross the complex 

hurdles in CNS drug delivery (Fig. 2.1) using targeting ligands is essential. Numerous studies 

and reviews have investigated strategies for targeting one of these hurdles. A summary of 

several of these solutions can be found in Table 2.1. However, few studies have looked at 

targeting two and even fewer looked at targeting all three with the same platform. The 

following section discusses targeting strategies that have been used at each scale, with the 

goal of being able to rationally design a CNS delivery platform by synthesizing these 

strategies to optimize a delivery platform. 

 

2.4.1 Blood-brain barrier 

The use of targeting ligands to improve the targeting capability of the platform at 

each level of CNS delivery is imperative for good drug pharmacodynamics. The first hurdle 

for CNS therapeutics is often the BBB. Parenterally, orally or intravenously administered 

therapeutics intended for CNS delivery must cross the BBB from the circulation, and to do 

so, cross BBB endothelial cells. These cells reject transport of most small molecules because 

of strong tight junctions that are influenced by interaction with glial cells in the NVU and 

leave little space for paracellular transport [64,107–109]. Extracellular proteins on these 
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endothelial cells, called efflux pumps, reject small molecule transport, further complicating 

delivery [64,110]. 

There are three primary ways by which targeting ligands can improve BBB targeting. 

These include receptor-, adsorptive-, and cell- mediated transcytosis [64,110]. These 

mechanisms utilize compositional features of the BBB, such as the high concentration of a 

particular cell-surface receptor, to improve localization. In addition, the diseased state often 

has characteristics that targeting ligands can exploit. This may include targeting immune 

cells during the inflammatory response to facilitate passage across the BBB through these 

cells as they travel to the site of injury; these cells can be targeted and used to deliver 

therapeutics across the BBB. Weakened BBB tight junctions in the diseased state may also 

enhance the paracellular transport rate [110]. In the context of nerve agent exposure, 

however, these symptoms often do not become severe until chronic neurodegeneration, and 

therefore may be more difficult to utilize for drug delivery [109]. Nevertheless, the following 

sections detail methods for targeting using each of the three mechanisms. 

 

2.4.1.1 Receptor-mediated strategies 

Receptor-mediated transcytosis mechanisms for therapeutic delivery platforms 

exploit the endocytic mechanisms of cell-surface receptors existing at the BBB using the 

appropriate receptor-targeted ligands. Targeting in such a way minimizes therapeutic 

circulation time. The sugars di-mannose, galactose and glycolic acid have been employed to 

target lectin receptors [111]. Additionally, receptors for folic acid (FA) and des-octanoyl 

ghrelin exist in large quantities on the surface of BBB endothelial cells and as such have been 

incorporated in several drug delivery studies [40,107,112–114]. 
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Some receptor-mediated strategies utilize proteins that have an affinity for BBB cell 

surface receptors. Some protein-incorporated strategies utilize apolipoproteins A, B, and E, 

a2-macroglobulin, and angiopep-2 for targeting the low-density lipoprotein receptor [102–

104,115,116]. The glycoprotein 330/megalin receptor can be targeted using apolipoprotein J, 

and scavenger receptor class A by fucoidin [115]. Interleukin 13 (IL-13) protein can be used 

target the IL-13 receptor on the BBB [117,118]. Additionally, Intracellular adhesion 

molecule-1 (ICAM-1) is a receptor expressed on the BBB and can be targeted to improve 

localization [6,8,115]. 

Targeting the transferrin receptor is a common BBB targeting strategy. One study 

found specific CNS localization compared to other organs after conjugating an anti-mouse 

transferrin receptor monoclonal antibody to a chitosan nano-sphere formulation coated with 

PEG [119]. A review details that both transferrin and insulin receptors have been targeted 

using a particular monoclonal antibody, 83-14 MAb [120]. The transferrin and lactoferrin 

glycoproteins, and a transferrin binding antibody OX-26 have all been used in BBB models 

[64,121,122]. The OX26 monoclonal antibody has also been used to target the transferrin 

receptor on the BBB in vitro [123]. Other targeting strategies incorporated targeting ligands 

for both the transferrin receptor (for BBB targeting) as well as for aggregated protein 

deposits (for neuronal targeting) [68,124–127]. 

Polymeric or surfactant coatings can also increase localization at the BBB level. 

Many of these methods demonstrate indirect targeting through the adsorption of serum 

proteins that will then target a receptor on the BBB. Surfactants Tween-20 and Tween-80 

have shown the ability to do so by absorbing serum-rich apolipoproteins that target the BBB 
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[79,102]. Alternatively, polyethylene glycol (PEG) is used in many formulations 

incorporating targeting mechanisms to prolong circulation half-life [64,128,129]. 

 

2.4.1.2 Adsorptive-mediated strategies 

Adsorptive mediated strategies target the BBB by affinity with and adsorption to the 

lipid membrane. Several peptides have demonstrated the ability to improve targeting using 

this mechanism [130]. The streptavidin-binding peptide (SBP), fibronectin-binding peptide 

(FBP), multiple antigenic peptides (MAPs), trans-activating transcriptional activator (TAT), 

transportan, insulin, pAntp, rabies virus glycoprotein, angiopep, penetratin, SynB1, and 

SynB3 have all been used to improve therapeutic CNS delivery [64,82,83,131,132]. TAT 

peptide is a well-researched peptide for cerebral delivery for its ability to enhance BBB 

passage [131]. BBB shuttle peptides increase therapeutic delivery across the BBB by 

transcytosis through endocytic vesicles, and are discussed in a recent review [109]. 

The cationic and lipophilic ligand TPP is a promising molecule for promoting 

adsorptive-mediated transcytosis at the BBB. A recently submitted patent by Dhar et al. 

shows that a TPP-functionalized NP has brain-specific bioavailability compared to the same 

NP platform without functionalization [133]. This work evaluated localization using a 

porcine model [133]. In this model, drug efficacy and localization was evaluated after 

traumatic brain injury, with similar downstream pathologies to chemical exposure [133]. 

 

2.4.1.3 Cell-mediated strategies 

After brain injury, immune cells are recruited into the brain as part of the 

inflammatory response. These immune cells can internalize the nanoscale delivery platform 
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as a “Trojan horse” strategy where these cells then guide the platform into the CNS and 

release them after crossing the BBB. A recent review details strategies that have investigated 

this mechanism [134]. A major example in this field involves targeting the folate receptor on 

immune cells by conjugating FA to NPs to combat human immunodeficiency virus (HIV) 

[135–139]. 

In one study, conjugation of FA to poloxamer 407, in an antiretroviral NP 

formulation, improved uptake by mononuclear phagocytes in vitro, reduced the amount of 

HIV-1 gag expression (a marker for HIV pathogenesis) in the brain, and demonstrated 

enhanced brain uptake in vivo  in mice compared to non-functionalized NPs [135]. A later 

study by the same group tested lead candidates and found enhanced uptake and prolonged 

retention in vitro and in vivo, as well as increased protection in vitro [138]. Similar results 

were obtained with these lead candidates in a primate model [136]. The group further 

investigated FA for combating HIV-1p24 antigen [137]. Dose-sparing, in addition to 

increased overall pharmacokinetics and pharmacodynamics, were observed when coating the 

lead formulation with FA, specifically by increasing uptake by the folate receptor β [137]. 

Importantly, dose-sparing was observed in this platform in an in vivo mouse model [139]. 

Overall, cell-mediated transcytosis offers a unique and effective strategy for targeting the 

BBB, when choosing an appropriate targeting ligand. 

 

2.4.1.4 Other strategies 

Alternatively, BBB tight junctions can be disrupted to promote paracellular transport. 

Granulocyte macrophage colony-stimulating factor (GM-CSF) enhanced BBB transport by 

activation of monocytes that occurred due to the activation of several expression pathways; 
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this was coupled with a disruption of BBB tight junctions [140]. Ultrasound has also been 

used to disrupt the BBB and allow therapeutic delivery [141]. However, these methods are 

risky because they damage the normal protective function of the BBB that then exposes the 

brain to other potential toxins. 

 

2.4.1.5 Obstacles for BBB targeting 

Issues with ligand specificity are important to consider for platform design. For 

example, receptor-mediated targeting ligands that improve transcytosis at the BBB often 

have receptors that are ubiquitous throughout the body [6]. Adsorptive-mediated targeting 

may experience similar issues with specificity. Poor specificity often necessitates higher 

dosing and often leads to systemic toxicity. Therefore, the choice of the nanoscale delivery 

platform is important, to reduce the amount and frequency of doses and improve specificity. 

For degradable delivery platforms conjugated to a targeting ligand, incomplete 

purification may result in an excess of the targeting moiety in the surrounding fluid. It is 

possible that in this case, the targeting ligand may outcompete the platform for entry [138]. 

Purification of the platform from the free targeting ligand is important to avoid this 

possibility. In addition, retention of the targeting ligand throughout degradation of the 

biodegradable platform is important so that hurdles downstream of the BBB can also be 

effectively targeted. This requires careful design of the way the ligand is conjugated to the 

platform. For example, ligands conjugated onto the surface of the platform may not retain the 

ligand long enough to target these downstream hurdles, but ligands conjugated into the bulk 

may display longer retention and therefore more effectively target these hurdles. 
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2.4.2 Diseased neuron 

Once a delivery platform is inside the CNS after crossing the BBB, it must then 

localize to the diseased neuron. Several strategies exist for targeting the neuron, and will be 

discussed below. In some cases, these strategies may be disease-specific. 

In PD, mutations of the LRRK2 gene/receptor often lead to LB formation [142]. 

Studies have therefore targeted LBs to improve efficacy [31]. One example of such a 

targeting strategy is to target α-synuclein, the aggregation of which into LBs is often a 

symptom of PD [36]. Antibodies can be engineered to target these deposits, although it is 

important with these strategies to ensure specified delivery of the therapeutic to only diseased 

neurons [31]. 

Likewise, the formation of Aβ deposits that disrupt synaptic communication is 

common in AD. Several targeting strategies have therefore used ligands to target these 

deposits. For example, a study incorporated an anti-Aβ peptide antibody along with an anti-

transferrin receptor monoclonal antibody, on a polyethylene glycol-modified liposomal 

platform to improve delivery [124]. There was an interplay where the conjugation method for 

each antibody affected cellular uptake [124]. The same group later tested improvements in 

efficacy of a drug to treat Aβ aggregation in an AD model, again using dual functionalization 

of both anti-transferrin and anti-Aβ antibodies, but this time with PLGA NPs [78]. 

Curcumin can also increase targeting of Aβ deposits in AD. A multifunctional 

liposomal formulation incorporating curcumin to target neurons, with a transferrin antibody 

to target the BBB, showed enhanced localization at both levels [68]. Previous work by this 

group also showed improved targeting of liposomal-curcumin derivative formulations for Aβ 
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fibrils [125]. Yet another study focused on Aβ targeting by conjugating an Aβ-binding 

aptamer to curcumin-PLGA NPs and found success with this strategy [32]. 

Bispecific antibodies are a recent strategy that can potentially provide more 

efficacious therapeutic delivery. A study on such a platform found that there is an interplay 

between the dosing and antibody affinity for the targeted receptor, whereby low-affinity 

antibodies may be more effective in standard therapeutic dosing concentrations [126]. A 

different study evaluated these antibodies in a primate model, showing enhanced BBB 

passage and ability to target β-secretase, which is associated with Aβ deposition in AD, again 

showing lower affinity antibodies were more effective at localization [127]. While the use of 

antibodies as targeting ligands offers its own challenges in device design, including their size 

and complexity, antibody engineering can enable high specificity for the desired target and 

may be a promising option for CNS delivery [143]. 

Specific receptors on neurons have also been targeted to improve localization. The 

toll-like receptor 2 is commonly expressed on neurons in PD and AD, and therefore could be 

targeted to enhance drug delivery [30,36]. The gamma-aminobutyric acid (GABA) and 

dopamine receptors are specific to patients with Huntington’s disease and PD, respectively, 

and accordingly offer other targeting strategies for these diseases [144,145]. NMDA 

receptors may additionally be an effective neuronal receptor targeting strategy due to their 

ubiquitous nature on neurons [145,146]. A particular study used the NMDA receptor 1 

antibody, anti-NR1R, to improve drug pharmacokinetics [147]. An informative review 

details methods for synthesizing prodrug/antibody delivery platforms to target other 

neurotransmitter receptors, such as GABA, AMP and non-NMDA glutamate receptors [145]. 
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In addition to BBB targeting, FA has shown enhanced targeting at the neuronal level 

[40]. After challenging with an oxidative stress-inducing toxin, protection against oxidative 

stress in an FA-conjugated polyanhydride NP platform was improved compared to the non-

functionalized formulation [40]. Due to the ability to target multiple hurdles to CNS delivery, 

FA may be a promising option for conjugation to a delivery platform. 

There are also hurdles with neuronal delivery that must be considered during platform 

design. As with BBB receptor-mediated strategies, specificity of receptor-mediated targeting 

ligands can play a role in overall efficacy. In the example of NMDA receptor targeting 

methods, the diseased neuron may show an up-regulation of this receptor [145,146]. 

However, the NMDA receptor is a necessary component of all neuronal synapses, and may 

deliver drug to unintended neuron populations, in addition to the diseased neuron. Depending 

on the disease condition, protein deposits in the extracellular matrix may hinder efficient 

neuronal targeting and internalization [24–26]. 

 

2.4.3 Intracellular organelles 

The final hurdle to therapeutic delivery is targeting the payload to the desired 

organelle within the neuron. Therapeutic efficacy can be maximized by delivering the 

therapeutic payload to the organelle of action within the cell [3]. The scale of impact of 

organelle delivery is significantly smaller than the previous hurdles: whereas neuronal cell 

bodies can have a surface area on the order of tens to hundreds of square microns, the most 

relevant organelles for neurodegenerative disease, the mitochondria and nucleus, typically 

have surface areas of one to tens of square microns. For example, mitochondria are 

approximately 75-3.0 square microns in size, which limits the functional surface area for 



27 

 

interaction [148]. At this scale, physical and chemical properties play a larger influence on 

the success of targeting than seen at the other levels. Whereas crossing the BBB and neuron 

rely on protein-ligand or membrane interactions, size, morphology, and charge are primary 

determinants of intracellular accumulation. While a fair amount of work has been devoted to 

organelle-specific delivery in the CNS, the large majority has focused on other tissue types. 

Recent techniques for organelle-specific delivery are reviewed below, and their implications 

for treatment of neurodegenerative conditions are extrapolated. 

 

2.4.3.1 Endocytic pathway 

The primary concern in designing organelle-specific delivery devices is surviving the 

endocytic pathway. Nanoscale delivery platforms that exploit receptor-mediated endocytosis 

to navigate through the cell must be able to protect their payload from acidic hydrolysis and 

escape from endosomes and lysosomes. Several techniques for endosomal escape of delivery 

platforms have been developed (Fig. 2.2). Functionalization with certain classes of peptides, 

like cationic amphiphilic peptides, provide strong association with the endosomal membrane, 

which disrupts tension forces that stabilize the endosome resulting in pore formation [149]. 

Other approaches incorporate release of photoreactive molecules that degrade the endosomal 

membrane via production of ROS [149]. Alternatively, decoration with buffering agents such 

as quaternary and tertiary amines can cause an immense inflow of ions and water, which can 

rupture the endosome membrane due to osmotic pressure; this is commonly referred to as the 

“proton sponge effect” [149]. For more information, Varkouhi et al. have written an excellent 

review on ligands available for endosomal escape [149]. Once the delivery device has 
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escaped the endocytic pathway, other functionalizations or core properties of the platform 

can mediate transport to the therapeutic organelle of action. 

 

2.4.3.2 Mitochondria 

Mitochondrial dysfunction due to oxidative stress is a key pathogenetic pathway for 

many neurodegenerative diseases. Several therapeutics have been developed to halt or 

reverse this pathogenesis by interfering with production of superoxide groups. Mitochondria 

are bound by an inner and outer membrane and have a large transmembrane potential of 

approximately -180-200 mV [150]. Because of this membrane potential, charged molecules 

can efficiently localize at the surface of the mitochondria. However, the inner membrane is 

impervious to charged molecules, which precludes transport to the mitochondrial matrix 

[150]. These competing requirements are a central challenge for mitochondria-targeted 

delivery.  

Many technologies can be utilized to circumvent this mitochondrial trafficking 

challenge, the pathway for which is shown in Figure 2.2. An informative review details 

several methods for targeting the mitochondria [151]. The predominant technique is to 

conjugate a cationic molecule, such as TPP, to lipophilic platform materials [3,152]. This 

allows the carrier to be localized to the mitochondria through electrostatic attraction and 

subsequent permeation of the lipid bilayers by the delivery platform while the cation remains 

anchored outside the inner membrane [3]. Alternate strategies involve functionalization with 

ligands for mitochondrial receptors, like the translocator protein (TPSO) [153]. 

The cationic ligand TPP has demonstrated superior mitochondrial targeting 

capabilities [3,152]. The cationic properties of TPP may make the delivery platform act as a 
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proton sponge to escape the endosome inside the neuron. Afterwards, the negative 

mitochondrial membrane potential will attract the TPP-conjugated platform, where the 

therapeutic can then be released and internalized [3]. Because of the proven ability to also 

target and cross the BBB [133] as well as show enhanced neuronal internalization for better 

protection against oxidative stress using Mito-Apo both in vitro and in vivo [23,43,55], TPP 

is an excellent option for improving CNS delivery of antioxidants. 

It is challenging to determine, however, what qualifies as successful mitochondrial 

delivery. A large body of work in this field depicts accumulation of delivery devices at the 

mitochondria, but don’t conclusively show that the devices can cross the inner membrane for 

delivery. While some therapeutics may be able to enter the mitochondria passively given 

sufficient localization near the organelle, others may require a more active role from the 

delivery device. This must be carefully considered in platform design. 

 

2.4.3.3 Nucleus 

The nucleus can also be an important target for anti-neurodegenerative therapeutics. 

For example, RNA interference-inducing molecules could allow translational repression of 

problematic proteins, but must be delivered to the nucleus for processing via Drosha [154]. 

Alternative treatments include delivery of gene therapies to upregulate expression of 

regenerative neurotrophic factors in afflicted cells, which require nuclear localization for 

transcription and translation of the encoded proteins [155]. Additionally, nuclear delivery of 

genome editing technologies like CRISPR/Cas could allow development of new models of 

neurodegenerative disease, which could assist development of the next generation of 

neurodegenerative therapeutics [156]. By integrating nuclear delivery with neuronal delivery, 
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the off-target effects of this technology could potentially be mitigated, strengthening its 

potency as a transcription repression-based therapeutic [157]. 

Efficient nuclear delivery must also address trafficking issues downstream of 

endosomal/lysosomal escape, in this case to cross the nuclear envelope. Nuclear uptake is 

mediated by the nuclear pore complex (NPC), which can facilitate both passive and active 

transport of payloads [158]. Passive transport through the NPC has an effective diameter 

limit of approximately 9 nm, which means that most small molecule payloads can enter the 

nucleus without assistance from the carrier, given appropriate localization to the vicinity of 

the nuclear envelope [159]. Indeed, Shi et al. reported high nuclear localization of plasmid 

DNA in a DNA/ 25 kDa polyethylenimine polyplex despite a significant diversion of 

polymer into endosomal and lysosomal cell compartments [160]. Active transport, on the 

other hand, requires conjugation to a nuclear localization sequence (NLS) and can 

accommodate molecules up to 40-60 nm in diameter [158]. These NLSs are typically 

peptides of viral origin containing basic residues that bind NPCs for transport [3]. The most 

frequently used NLSs are SV40 peptide from simian virus 40 and TAT peptide from HIV-1 

[161–163].     

Transport of larger macromolecules into the nucleus poses a challenge, since many 

nano-carrier solutions are on the order of 50-200 nm in diameter. This limit can be increased 

by exploiting mitotic vulnerabilities in the nuclear membrane. However, this effect is modest, 

which still could exclude certain delivery platforms [164]. The non-proliferative nature of 

differentiated neurons further limits this technique’s applicability for neurodegenerative 

condition applications [165]. However, recent experiments have found that particle shape 

may be able to mitigate this size exclusion effect. Experiments by Chaturbedy et al. using 
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Fe3O4 NPs of different morphologies found that biconcave-shaped 220 nm-diameter NPs 

achieved relatively high levels of nuclear localization efficiency in U87 MG glial cells, 

especially when compared to cylindrical and spherical particles of similar hydrodynamic 

diameter [132]. This effect could greatly diversify the palette of delivery tools for nuclear 

delivery. These mechanisms for nuclear targeting are summarized in Figure 2.2.  

 

2.4.3.4 Obstacles for organelle targeting 

There are several challenges to organelle-specific delivery. Firstly, the therapeutic 

mechanism of action must be understood to identify appropriate organelle targets, which can 

be a significant challenge for newly discovered drugs or those with complex interactions. 

Additionally, pathological deficiencies associated with neurodegenerative disease can limit 

intracellular transport. For example, Zhao et al. identified deficiencies in lysosomal transport 

in a murine model of AD, which could have implications for delivery device trafficking and 

escape from the endocytic pathway [166]. 

A large challenge at this point lies in the relatively small body of work performed in 

organelle-specific delivery. Most research at this scale relies on in vitro characterization, with 

little validation in vivo [167]. To further compound this issue, a vast majority of publications 

that utilize a functionalized nano-delivery system fail to investigate the efficiency of 

organelle targeting of their system, and instead rely on qualitative assessments such as 

disease phenotype reversal [167]. Ultimately, there is a lack of investigation into which 

components of the delivery system result in organelle targeting, which hinders the ability to 

rationally design a nano-carrier for specific applications [167]. 
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Despite these shortcomings, the presented research has elucidated numerous 

mechanisms for improving localization of drug payloads at organelles of interest for 

neurodegenerative disease therapeutics. These functionalizations could potentially be 

combined with those highlighted in sections 2.3.1 and 2.3.2 to allow delivery devices to cross 

the BBB, and also effectively target the neuron and organelle. Regardless, both during and 

after the design of a platform, the method of administration must also be considered. 

 

2.4.4 Delivery route 

The delivery route also plays a significant role in drug efficacy for CNS delivery. The 

most common methods are intravenous (IV), intranasal (IN), and oral administration. 

Stereotaxy has even been used for treatment of brain cancer using biodegradable drug 

delivery materials, but is a very invasive procedure [98]. 

IN delivery is advantageous over other routes in that therapeutics delivered in this 

manner will follow a more direct route to the brain [168]. Instead of having to pass the BBB 

from the circulation, the therapeutic must instead pass through the olfactory and/or trigeminal 

nerve epithelial layers [130]. In addition, the comparatively slower mucociliary clearance 

rate of molecules at the nose-brain barrier (NBB) compared to circulatory clearance at the 

BBB may allow for greater uptake into these nerve epithelial layers [72].  

There are, however, challenges with IN delivery. Achieving deposition on the 

olfactory region for proper administration of the therapeutic is very difficult [72,168]. 

Previous work has found that administration and plume angles of the nasal spray play a 

particularly relevant role in achieving optimal olfactory uptake, with 30° administration 

angles and <30° plume angles being most effective in these studies [169]. Therefore, IN 
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delivery may be a difficult procedure to replicate reliably when testing the efficacy of the 

delivery platform, compared to other targeting strategies. 

In addition to difficulty in administration, platform efficacy may suffer without 

effective targeting ligands due to mucociliary clearance [72]. Chitosan [73,130] and solanum 

tuberosum lectin [72] are examples of NBB targeting ligands to avoid this issue. The TAT 

peptide is another ligand that can improve delivery across the NBB [76]. If the administration 

is performed reliably and an appropriate NBB-targeting ligand is incorporated onto the 

delivery platform, this method could be very effective at achieving great local drug 

bioavailability in the brain. 

Another route that can be used for CNS delivery is oral administration. The biggest 

advantage of the oral delivery route is that it is minimally invasive and patient compliant 

[79]. However, therapeutics administered in this fashion will take a very long time to reach 

the CNS because they will go through the metabolic process. This involves passing through 

the stomach, which has an extremely acidic pH that could lead to therapeutic degradation 

[170]. Once reaching the circulatory system (often through the intestinal track), these 

therapeutics must then find their way to the BBB. 

IV administration directly into the circulatory system, therefore bypassing some issue 

encountered with oral delivery, is another option. Therapeutics administered in this way must 

localize to and cross the BBB, like with oral delivery [171]. This route is much more reliable 

than IN delivery because of less specific administration parameters [171]. However, because 

IV injection requires skin penetration using a needle, it is significantly more invasive and 

may lead to poorer patient compliance compared to the other methods, particularly where 

repeat administrations are necessary [171]. Overall, the decision on delivery route is 
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important and could dictate or be dictated by the choice in targeting ligand and/or delivery 

platform, based on the hurdles encountered by that route. 

 

2.5 Conclusions 

Multiscale design strategies as outlined in this review offer the potential to maximize 

clinical translatability of nanoscale delivery platform technologies for therapeutic delivery in 

neurodegenerative disease. Polyanhydride NPs are an excellent platform choice, with 

tailorable release timescales, sustained therapeutic release, dose-sparing, superior phagocytic 

uptake, excellent biocompatibility, and versatility in the ability to conjugate targeting ligands. 

In addition, the targeting ligands FA and TPP are promising for the ability to target multiple 

of the physiological hurdles and as such are reasonable choices for conjugating to a 

polyanhydride NP platform. Overall, rational design of a platform incorporating these 

strategies could have tremendous implications for treatment of neurodegenerative disease, 

and requires testing at each scale in vitro. 
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2.8 Tables and Figures 

 

Figure 2.1. Organelle-specific delivery to neurons is a multiscale problem. To cross the 

BBB, and target the neuron and organelles within the neuron, a multifunctionalized delivery 

device must be used. Individual functionalizations can potentially cause off-target 

localization, so a cascading system of functionalizations with sheddable linkers is desired to 

maximize targeting efficiency. Modified from Chen et al, Li et al. [64,172]. 
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Figure 2.2. Organelle targeting mechanisms for neurodegenerative therapeutic delivery. 

Endosomal escape downstream of internalization is necessary for cytosolic trafficking to 

targeted organelles.  



 

Table 2.1. General characteristics of functionalizations for multiscale delivery. 

Physiological 

Hurdle 
Mechanism 

General 

characteristics 
Examples Pros Cons References 

Blood Brain 

Barrier 

 

Receptor-

mediated 

endocytosis 
Carbohydrate 

FA, Mannose, 

Galactose 

high 

expression 

of receptors, 

stable 

limited 

selectivity 
[40,107,111–114] 

Protein 

apolipoprotein, 

fucoidin, IL-13, 

angiopep-2, 

rabies virus 

glycoprotein 

highly 

specific 

limited 

stability 

[7,64,102–104,115–

118,121,122] 

 

Antibodies (OX-

26, anti-

transferrinR, 83-

14 Mab, anti-

ICAM-1) 

highly 

specific 

limited 

stability 
[6,8,115,119,120,173] 

Peptide 

lipoprotein 

receptor binding 

sequence, 

K16ApoE 

peptide 

greater 

stability  
[174] 

Coating 

(PEG, 

SiO2,Tween-20, 

Tween-80) 

outer coating 

shed ability 

limited 

selectivity 
[64,79,102,128,129] 

Adsorptive-

mediated 

endocytosis 

Peptide 

TAT peptide, 

transportan, 

insulin, FBP, 

MAP, SBP, 

SynB1, SynB3 

greater 

stability 

limited 

selectivity, 

systemic 

toxicity 

[64,82,83,131,132] 
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Table 2.1 continued 

Physiological 

Hurdle 
Mechanism 

General 

characteristics 
Examples Pros Cons References 

Neuron 

 
Receptor-

mediated 

endocytosis 

Carbohydrate 
FA, Mannose, 

Galactose 

high 

expression, 

stable 

limited 

selectivity 
[175,176] 

Neurotransmitter 

GABA, 

glutamate, 

acetylcholine 

greater 

selectivity 

interference 

with 

signaling 

[145] 

Protein anti-NR1R 
highly 

specific 

limited 

stability 
[147] 

Adsorptive-

mediated 

endocytosis Peptide 

TAT peptide, 

transportan, 

insulin, FBP, 

MAP, SBP, 

SynB1, SynB3 

greater 

stability 

limited 

selectivity, 

systemic 

toxicity 

 

 

 

 

Endosomal 

Escape 
Proton 

sponge effect 

buffering at pH 

7.2-5 

polyethylenimine, 

imidazole 

 

 

 

[149]  

Release of 

ROS 

photosensitizer, 

singlet oxygen 

production 

TPPS4, AlPcS2a, 

dendrimer 

pthalocyanine 

 

 

 

 

[149]  

Pore 

formation 

cationic 

amphiphilic 

peptides 

penton base, 

melittin 

 

 

 

 

[149]  
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Table 2.1 continued 

Physiological 

Hurdle 
Mechanism 

General 

characteristics 
Examples Pros Cons References 

Organelle Nucleus 

passive NPC 

transport 
< 9 nm  

fewer 

chemical 

modifications 

steric 

limitation 
[159] 

active NPC 

transport 
40-60 nm, NLS  

greater size 

capacity 

steric 

limitation 
[161–163] 

mitotic 

vulnerabilities 
replicating cells  

greater size 

capacity 

exclusive 

to mitotic 

cells 

[164,165] 

shape-

directed 

localization 

biconcave, 

spherical 

morphology 

 

fewer 

chemical 

modifications, 

greater size 

capacity 

platform 

material 

dependence 

[132] 

Mitochondria 

electrostatic 

attraction 

cationic 

amphiphilic 

peptides 

TPP, TAT 

increased 

cytoplasmic 

transport 

toxicity, 

protein 

aggregation 

[3] 

receptor-

mediated 

transport 

mitochondrial 

receptor ligand 
TPSO ligand 

high 

selectivity 
 [153] 
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3.1 Abstract 

There is an urgent need to deliver anti-oxidant and anti-inflammatory therapeutics 

across the blood-brain barrier (BBB) to treat a variety of brain disorders, including 

neurodegenerative diseases ranging from Parkinson’s Disease to traumatic brain injury and 
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chemical exposure. In this work, using an in vitro BBB model, we demonstrate that a 

biodegradable polyanhydride nanoparticle-based delivery system effectively traverses the 

BBB. Using a combination of confocal microscopy, flow cytometry, and liquid 

chromatography/tandem mass spectroscopy, our data demonstrate the internalization of both 

non-functionalized and folic acid functionalized polyanhydride nanoparticles by primary 

human monocytes and human brain microvascular endothelial cells (HBMEC) and efficient 

transfer of the nanoparticles from monocytes to primary HBMEC in vitro. These nanoparticle 

formulations contained Mito-apocynin, a promising anti-oxidant compound, and the efficient 

transport of this payload into the HBMEC was confirmed using chromatography. The 

versatility of the polyanhydride nanoparticle platform design was exemplified by the ability 

to incorporate targeting ligands via two different functionalization methods, bulk and surface 

functionalization, which can be used for cellular targeting downstream of the BBB. 

Collectively, these studies demonstrate that polyanhydride nanoparticle-based delivery 

systems show promise for enhancing the effectiveness of therapeutics that require transport 

across the BBB and efficient internalization by neuronal cells. 

 

3.2 Introduction 

Age-related neurodegenerative disorders including Alzheimer’s and Parkinson’s 

Disease (AD and PD, respectively), and stroke are becoming more prominent as the world 

population ages [1]. These diseases typically manifest mid- to late-life and progressively 

worsen with increased morbidity. The economic burden associated with increased medical 

management as well as decreased individual productivity is likely to increase in the 

following years, making it increasingly urgent to develop effective medications. Currently, a 
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number of drugs are available in the market that manage the symptoms of AD and PD. 

However these drugs treat only the symptoms and do not slow disease progression.  

In neurodegenerative diseases, one of the major causes of neurodegeneration is 

mitochondrial dysfunction, which leads to a build-up of reactive oxygen and nitrogen species 

(ROS and RNS, respectively), and oxidative stress. While there has been some success in the 

development of anti-inflammatory and antioxidant drugs, the efficacy of those drugs can be 

affected by factors such as drug metabolism, which can reduce its bioavailability and 

appropriate localization, and therefore increase its cytotoxicity and potential side effects. An 

example of such an antioxidant drug that is targeted towards mitochondria is Mito-apocynin 

(mAPO), which was shown in previous studies to reduce oxidative stresses, preserve motor 

coordination, and retain olfactory function in mouse models [2].  

For treatment of central nervous system (CNS) diseases, the major factor that reduces 

drug efficacy is the poor penetration of therapeutics across the blood-brain barrier (BBB) [3]. 

Some classes of polymeric nanoparticles (NPs) have been shown to enhance drug delivery 

across the BBB [4,5]. Polyanhydride particles can provide sustained delivery of a broad 

range of therapeutics [6–16]. Additionally, polyanhydride NPs are biocompatible and 

degrade by surface erosion, which is favorable for therapeutic delivery [17]. Our recent work 

has indicated that mAPO encapsulated in polyanhydride nanoparticles functionalized with 

folic acid were internalized effectively by neuronal cells and provided protection against 

H2O2-induced oxidative stress and 6-OHDA-induced neurodegeneration [18]. However, the 

ability of polyanhydride NPs (with or without folic acid functionalization) to efficiently cross 

the BBB has not yet been investigated.  
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In the present study, we investigated the effects of polyanhydride NP formulations of 

different chemistries on their uptake by primary human brain microvascular endothelial cells 

(HBMEC), the major BBB constituent, as well as by primary human monocytes. The effects 

of monocyte-endothelial cell interactions on NP uptake and cell-to-cell transfer were also 

studied.  

 

3.3 Experimental Methods 

3.3.1 Polyanhydride synthesis 

Synthesis of sebacic anhydride (SA) and 1,6-bis(p-carboxyphenoxy)hexane (CPH) 

pre-polymers and copolymers was performed as previously described [19,20] . The resulting 

20:80 CPH:SA copolymer was characterized using 1H nuclear magnetic resonance 

spectroscopy (1H NMR; VXR-300, Varian, Palo Alto, CA) to verify copolymer composition 

and molecular weight. Appropriate molecular weight of the synthesized copolymers was 

confirmed [19,20]. 

 

3.3.2 Folic acid bulk functionalization 

Bulk functionalization of 20:80 CPH:SA copolymer with folic acid (FA) (bFA-poly) 

was performed using an anhydride interchange mechanism. First, a mass of FA equivalent to 

10 times the molar concentration of copolymer to be reacted was added to a three-pronged 

round bottom flask with 5 mL acetic anhydride and acetylated by refluxing for 60 min at 

150°C under N2. The remaining solution was immediately added to 20:80 CPH:SA 

copolymer, which was reacted at 180°C under 0.5 torr vacuum for 20 min, and dissolved in 

15-20 mL methylene chloride overnight. Undissolved free FA was removed by centrifugation 
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at 10,000 rpm for 5 min. Functionalized, purified polymer was precipitated drop-wise into 

hexanes at a 1:20 methylene chloride:hexanes ratio. The resulting FA-functionalized 

copolymer was characterized using 1H NMR (MR-400, Varian; CDCl3) to estimate the 

percentage of end groups that were functionalized with FA. Additionally, gel permeation 

chromatography (GPC) was used to characterize polymer molecular weight before and after 

functionalization. Finally, Fourier transform infrared spectroscopy (FTIR; Nicolet iS50 

FTIR, ThermoFisher, Waltham, MA) attenuated total reflectance (ATR; Nicolet Smart iTX 

accessory, ThermoFisher; FTIR-ATR) was used to analyze the presence of anhydride peaks 

associated with the polymer before and after functionalization. 

 

3.3.3 Mito-apocynin synthesis 

Mito-apocynin (mAPO) was kindly provided by the Kalyanaraman laboratory at the 

Medical College of Wisconsin. Product synthesis and characterization was performed as 

described previously [2,21,22]. 

 

3.3.4 NP synthesis 

Rhodamine B (Sigma, St. Louis, MO) or mAPO were incorporated into the core of 

20:80 CPH:SA NPs by an anti-solvent nano-encapsulation method [23]. The synthesized 

polymer (100 mg) and rhodamine B (5 mg) or mAPO (0.2 mg) were dispersed into 4-5 mL of 

methylene chloride (Fisher Scientific, Pittsburgh, PA) and sonicated for 30-60s with a probe 

sonicator (Sonics and Materials, Newtown, CT). The solution was poured into 1 L pentane 

(Fisher Scientific) for non-functionalized NP (NF-NP) or 2 L pentane for bulk-FA 

functionalized NPs (bFA-NP), stirring rapidly, and the particles were immediately recovered 
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by vacuum filtration. The particle morphology and size were evaluated with scanning 

electron microscopy (Quanta 250 FE-SEM, FEI, Hillsboro, OR). ImageJ software (National 

Institutes of Health, Bethesda, MD) was used to determine primary particle sizes. 

 

3.3.5 NP surface functionalization 

Surface functionalization of 20:80 CPH:SA NF-NPs with FA was performed using a 

two-step amine-carboxylic acid coupling reaction with 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) and N-hydroxysuccinimide (NHS) [24,25]. The morphology and size of 

the resulting NPs (sFA-NPs) were determined using scanning electron microscopy and 

ImageJ 1.43u software was utilized to determine primary particle sizes. 

 

3.3.6 Human monocyte isolation  

Monocytes were obtained from HIV-1, HIV-2 and hepatitis B seronegative donor 

leukopaks, and separated by countercurrent centrifugal elutriation and characterized as 

previously described [26,27]. Freshly elutriated monocytes were re-suspended in Dulbecco’s 

Modified Eagles Media (DMEM) containing 2 mM L-glutamine (Invitrogen, Carlsbad, CA), 

10% heat-inactivated human serum, 100 g/mL gentamicin, and 10 g/mL ciprofloxacin. All 

reagents were prescreened for endotoxin (<10 pg/mL, Associates of Cape Cod, Woods Hole, 

MA) and mycoplasma contamination (Gen-probe II, Gen-probe, San Diego, CA).  

 

3.3.7 Brain endothelial cell culture 

Primary HBMEC were isolated from brain tissue obtained during surgical removal of 

epileptogenic cerebral cortex in adult patients as we previously described [27–30]. Routine 
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evaluation by immunostaining for von-Willebrand factor, Ulex europaeus lectin and CD31 

(all from Abcam, Cambridge, MA) demonstrated that cells were >99% pure. Freshly isolated 

cells were cultured on collagen-coated culture plates as we previously described [27–29] and 

cells at passage 2 to 4 were used in this study.  

 

3.3.8 Cytotoxicity assays 

Monocytes were cultured at a concentration of 6.25 x 105 cells/mL and HBMEC 

cultured to confluence. For all cell experiments, NPs were suspended in 1 mL of working 

media, and sonicated for 30s. If suspension quality was poor (i.e., if NPs displayed 

aggregation), 0.1% PVA was added as a surfactant. This step was repeated up to 0.4% PVA, 

if necessary. To determine any potential toxic effects of NPs on cells, monocytes and 

confluent HBMEC were treated with NPs at concentrations of 1 to 500 g/mL for 48 h at 

37oC and 5% CO2. Following loading of each NP formulation, cells were washed with 

serum-free culture media to remove excess drugs and cytotoxicity was assessed over 24 h 

using alamarBlueTM assay (Life Technologies) as we previously described [4,31], per 

manufacturer’s instructions. All experiments were performed in triplicate for each 

experimental condition. 

 

3.3.9 Endothelial cell-monocyte NP transfers 

Primary HBMEC were cultured to confluence on glass coverslips as previously 

described [32]. For endothelial cell-monocyte communication, freshly elutriated human 

monocytes were loaded with either 100 or 250 g/mL rhodamine-encapsulated NF-NPs (NF-

NP-rho), bFA-NPs (bFA-NP-rho), or sFA-NPs (sFA-NP-rho) for 48 h. Following NP 
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loading, monocytes were washed 3 times with PBS to remove any free NPs. Monocytes were 

then co-cultured with endothelial cells for 2 h and HBMEC monolayers were washed 3 to 5 

times with PBS to remove monocytes.  

 

3.3.10 Immunofluorescence and confocal microscopy 

Confluent HBMEC cultured on glass coverslips were fluorescently labeled using the 

Vybrant 1,1 ́dioctadecyl- 3,3,3 ́,3 ́-tetramethylindodicarbocyanine perchlorate (DiO) cell-

labeling solution (excitation 484 nm; emission 501 nm) as we previously described [4]. DiO-

labeled HBMEC were co-cultured for two hours with NF-NP-rho, bFA-NP-rho, or sFA-NP-

rho. Following endothelial cell-monocyte co-culture, HBMEC monolayers were washed 3 to 

5 times with PBS to remove monocytes, mounted in Prolong Gold antifade reagent 

containing DAPI (for nuclear staining) (Life Technologies, Grand Island, NY) and analyzed 

by fluorescence or confocal microscopy as we previously described [4]. To determine the 

localization of NPs in endothelial cells, the triple labeled cell samples were examined under a 

Zeiss LSM 710 confocal laser scanning microscope using Zeiss Zen software.  

 

3.3.11 Fluorescence-activated cell sorting (FACS) 

For FACS quantification of NP uptake by monocytes or HBMEC, the cells were 

exposed to either 100 or 250 g/mL NF-NP-rho, bFA-NP-rho, or sFA-NP-rho for 48 h, and 

washed 3 to 5 times with PBS to remove free NPs. Monocytes and HBMEC were then fixed 

by incubation in 1% paraformaldehyde for 20 min, washed, resuspended in PBS and 

analyzed by FACS, using a FACScan flow cytometer (BD Bioscience, San Jose, CA). The 

mean fluorescence channel – mean number of rhodamine positive cells was derived using 
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CellQuest software (BD Bioscience). To determine the levels of NPs in monocytes and 

HBMEC following monocyte-endothelial cell communication, monocytes loaded with either 

100 or 250 g/mL NF-NP-rho, bFA-NP-rho or sFA-NP-rho were co-cultured for 2 to 4 h 

with HBMEC (unloaded), then washed 3 to 5 times to separate monocytes from endothelial 

cells. HBMEC and monocytes recovered from co-cultures were then fixed by incubation in 

1% paraformaldehyde for 20 min, washed, resuspended in PBS and analyzed by FACS. 

Unloaded monocytes were used for gating when analyzing monocytes samples, while 

unloaded HBMEC were used for gating when analyzing HBMEC from direct loading or co-

cultured experiments. The mean fluorescence channels – mean number of rhodamine positive 

cells was derived using CellQuest software (BD Bioscience). For all FACS analyses, each 

experimental condition was performed in duplicate.   

 

3.3.12 Ultra Performance Liquid Chromatography tandem mass spectrometry (UPLC – 

MS/MS) 

Freshly elutriated human monocytes and HBMEC were loaded with 250 g/mL of 

mAPO-encapsulated NF-NP (NF-NP-mAPO) or sFA-NP (sFA-NP-mAPO) for 48 h as 

described above, were washed 3 to 5 times with PBS to remove free NPs, and harvested and 

pelleted by centrifugation. For monocyte-endothelial cell co-cultures, freshly elutriated 

human monocytes were loaded with 250 g/mL of NF-NP-mAPO and sFA-NP-mAPO for 

48 h, washed 3 to 5 times with PBS to remove free NPs, and co-cultured with HBMEC for 2 

to 4 h. Following co-cultures, monocytes and HBMEC were harvested separately and 

pelleted by centrifugation. Controls consisted of unloaded cells, with and without co-cultures. 
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Controls included untreated HBMEC and HBMEC treated for 2 h with conditioned media 

from NP-free monocytes. HBMEC were then harvested and pelleted by centrifugation.   

For UPLC-MS/MS, each cell pellet was sonicated in 20 L of 0.5 M NaOH, and 

incubated for 30 min at 23oC. Each sample was then mixed with 180 L of methanol, 

centrifuged at 16,000 rcf for 10 min at 4oC; and 70 L transferred to columns and analyzed 

by HPLC (mobile phase: 60% of 0.1% TFA in HPLC H2O, 40% of 0.1% TFA in ACN; flow 

rate: 1.0 mL/min; wavelength for detection: 262 nm). A standard curve of 0 to 6 g/mL of 

mAPO was used for quantitation of NPs in samples.  

 

3.4 Results 

3.4.1 Synthesis and characterization of FA-functionalized polyanhydrides 

A new functionalization method was used to conjugate FA to 20:80 CPH:SA 

copolymer, prior to NP synthesis. End-group functionalization by FA was estimated by 1H 

NMR analysis of purified polymer, by comparing the percentage of non-functionalized 

methyl end-groups (3H, 2.22 ppm) to functionalized FA end-groups using a specific FA-

based aliphatic carbon (2H, 2.05 ppm) (Sup. Fig. 3.3A). This analysis indicated that 

approximately 75% of the end groups were functionalized by FA. GPC analysis of 

functionalized vs. non-functionalized polymer revealed a negligible change in polymer 

molecular weight after bulk functionalization. FTIR-ATR spectroscopy showed a shift in 

anhydride peak composition, reflective of an increase in SA-FA anhydride bonds (Sup. Fig. 

3.3B). 

 

 



66 

 

3.4.2 Polyanhydride NP synthesis and characterization 

The polyanhydride NPs (with or without FA functionalization) were synthesized by 

flash nanoprecipitation for toxicity, imaging, and BBB transport studies. Different payloads 

(i.e., mAPO or rhodamine B) were successfully incorporated into the NPs, which were 

spherical in shape as anticipated. The characterization data for the NPs used in these studies 

are presented in Table 3.1. All the particle formulations synthesized were approximately 400 

nm in diameter and their surface charge as indicated by zeta potential measurements were 

negative, in agreement with previous studies on NF-NPs and sFA-NPs [18]. No significant 

differences were observed in terms of particle size, morphology and surface charge between 

the NF-NPs, bFA-NPs and sFA-NPs (Table 3.1). 

 

3.4.3 Limited cytotoxicity of polyanhydride NPs in human monocytes and HBMEC  

The toxicity of NF-NPs was evaluated in human monocytes and HBMEC, with each 

experimental condition tested in triplicate. At concentrations of 1 to 100 g/mL, the NF-NPs 

showed limited cytotoxicity in human monocytes, but higher NF-NP concentrations (250 and 

500 g/mL) resulted in increased cytotoxicity and reduced cell viability, compared to 

untreated controls (Fig. 3.1A). Similarly, at concentrations of 1 to 500 g/mL, NF-NPs 

showed limited to no cytotoxicity in HBMEC, but treatment of HBMEC with 500 g/mL of 

NF-NPs resulted in limited cytotoxicity, compared to untreated controls (Fig. 3.1C). The 

toxicity of bFA-NPs and sFA-NPs was also evaluated and these formulations showed low to 

negligible cytotoxicity from 3 to 300 μg/mL (Sup. Fig. 3.1). Based on these studies, NP 

concentrations of 100 or 250 µg/mL were selected for subsequent studies. 
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3.4.4 Monocyte-endothelial cell co-cultures transfer NF-NPs to HBMEC 

HBMEC, the major component of the BBB, is regularly in direct contact with 

circulating blood and separates the systemic circulation from brain tissues. We have 

previously shown uptake of polyanhydride NPs by primary human monocytes [23]. Our 

previous studies also indicated that antigen presenting cells such as dendritic cells and 

macrophages effectively internalize 20:80 CPH:SA nanoparticles, primarily through 

phagocytosis [33,34]. To determine whether circulating monocytes containing NF-NPs can 

transfer the NPs to cells of the brain endothelium, HBMEC were co-cultured with human 

monocytes containing 100 µg/mL or 250 µg/mL NF-NP-rho and the cells were investigated 

using three different methods: confocal microscopy, fluorescence microscopy, and flow 

cytometry.  

Following 2 h of co-culture, transfer of NF-NPs from monocytes to HBMEC 

occurred, and NF-NPs were observed in and around the HBMEC, as shown by confocal 

microscopy (Fig. 3.2).  Furthermore, analyses using XZ or YZ line scan mode of the Zeiss 

LSM 710 confocal imaging program demonstrated localization of NF-NPs at both 250 

µg/mL and 100 µg/mL in the cytoplasm and nucleus of the cells (Fig. 3.2A and 3.2B, 

respectively). Independent validation of NF-NP transfer to HBMEC was performed using 

fluorescence microscopy. Following 2 h of co-culture of HBMEC with NF-NP-loaded 

monocytes, these experiments confirmed that the NPs entered the endothelial cells (Sup. Fig. 

3.2A). Next, FACS was used to quantify the uptake of NF-NPs by monocytes and HBMEC 

and the transfer of NF-NPs through monocyte-endothelial cell communication. Data showed 

efficient uptake of NF-NPs by monocytes (Fig. 3.3A) at 250 g/mL and 100 g/mL (Fig. 

3.3A). Co-culture of NF-NP-loaded monocytes with non-loaded HBMEC was associated 
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with transfer of NF-NPs from monocytes to HBMEC (Fig. 3.3B), and this transfer was 

associated with decreased levels of NF-NPs in the monocytes (Fig. 3.3A). Finally, when the 

particles were directly incubated with the endothelial cells, they were efficiently internalized 

by the endothelial cells (Fig. 3.3C).  

 

3.4.5 UPLC-MS/MS quantification of mAPO in human monocytes and HBMEC 

We used UPLC-MS/MS to quantify mAPO levels in monocytes loaded with 250 

g/mL mAPO encapsulated in NF-NPs, before and after monocyte-endothelial cell co-

cultures. Unloaded monocytes and monocytes loaded with 250 M (or about 125 µg/mL) 

free mAPO were used as controls. The mAPO levels in NF-NP-loaded monocytes were 

approximately two-fold higher than mAPO levels in monocytes, with significantly less 

mAPO loaded in NF-NP-mAPO compared to the free mAPO group (Fig. 3.4A). Co-culture 

of HBMEC with monocytes loaded with mAPO-encapsulated NF-NPs or free mAPO 

decreased mAPO levels in monocytes by 66% and 92%, respectively (Fig. 3.4A).  

Additionally, we used UPLC-MS/MS to quantify mAPO levels in HBMEC directly 

loaded with 250 g/mL of mAPO encapsulated in NF-NPs as well as mAPO levels in 

HBMEC co-cultured with NF-NP-loaded monocytes. Untreated HBMEC and HBMEC 

loaded with 250 M (or about 125 µg/mL) of free mAPO were used as controls. Co-culture 

of HBMEC with monocytes loaded with mAPO encapsulated in NF-NPs resulted in mAPO 

transfer to HBMEC, and higher transfer occurred in co-cultures with NF-NP-loaded 

monocytes compared to co-cultures with monocytes loaded with free mAPO.  While mAPO 

in HBMEC co-cultured with NF-NP-loaded monocytes was detected, no detectable levels of 

mAPO were observed in HBMEC co-cultured with monocytes loaded with free mAPO (Fig. 
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3.4A). The levels of mAPO in NF-NP-loaded HBMEC were more than seven-fold higher 

than mAPO levels in HBMEC loaded with significantly less mAPO loaded in NF-NP-mAPO 

compared to the free mAPO group (Fig. 3.4B).  

 

3.4.6 Internalization of FA-functionalized NPs by HBMEC 

Our previous work has demonstrated that FA-functionalized polyanhydride NPs were 

internalized more effectively by neurons compared to NF-NPs and protected the cells from 

H2O2-induced oxidative stress and 6-OHDA-induced neurodegeneration [18]. To evaluate the 

ability of the FA-functionalized NPs to cross the BBB, we synthesized two types of FA-

functionalized NPs: in the first method, we conjugated FA to 20:80 CPH:SA copolymer and 

prepared NPs based on this conjugated polymer (referred to as bFA-NPs), as described in the 

Methods section. The second method was used to covalently attach FA to 20:80 CPH:SA 

NPs (referred to as sFA-NPs), as described previously [25]. To determine whether circulating 

monocytes containing bFA-NPs and sFA-NPs can also transfer the NPs to cells of the brain 

endothelium, we co-cultured HBMEC with human monocytes containing 100 g/mL bFA-

NP-rho or sFA-NP-rho. Following 2 h of co-culture, transfer of bFA-NP-rho and sFA-NP-

rho from monocytes to HBMEC occurred, and bFA-NP-rho and sFA-NP-rho were observed 

in and around the HBMEC, as indicated by confocal microscopy (Fig. 3.5A). Next, FACS 

was used to quantify the uptake of bFA-NPs and sFA-NPs by monocytes and HBMEC as 

well as the transfer of these NPs through monocyte-endothelial cell communication. Data 

showed uptake of bFA-NP-rho and sFA-NP-rho by monocytes (Fig. 3.5B). To further verify 

whether the sFA-NP-rho transferred to HBMEC entered endothelial cells, we performed 
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fluorescence microscopy. Following 2 h of co-culture of HBMEC with sFA-NP-loaded 

monocytes, the NPs were observed to have entered endothelial cells (Sup. Fig. 3.2B). 

Co-culture of bFA-NP-rho and sFA-NP-rho-loaded monocytes with non-loaded 

HBMEC was associated with transfer of bFA-NP-rho and sFA-NP-rho from monocytes to 

HBMEC (Fig. 3.5B), and this transfer was associated with decreased levels of bFA-NP-rho 

and sFA-NP-rho in the monocytes (Fig. 3.5B). Finally, the FACS analysis also demonstrated 

direct uptake of bFA-NPs and sFA-NPs by endothelial cells (Fig. 3.5C).  

UPLC-MS/MS was used to quantify the amount of mAPO in monocytes incubated 

with 250 g/mL sFA-NP-mAPO. The levels of mAPO in monocytes loaded with sFA-NP-

mAPO were 2.5-fold lower than mAPO levels in monocytes, however with less mAPO in 

sFA-NP-mAPO than in free mAPO (Fig. 3.5D). Co-culture of HBMEC with monocytes 

loaded with sFA-NP-mAPO or free mAPO, decreased mAPO levels in monocytes by 79% 

and 92% respectively (Fig. 3.5D). Additionally, co-culture of HBMEC with monocytes 

loaded with sFA-NP-mAPO resulted in mAPO transfer to HBMEC. While mAPO in 

HBMEC co-cultured with sFA-NP-mAPO-loaded monocytes was detected, no detectable 

levels of mAPO were observed in HBMEC co-cultured with monocytes loaded with free 

mAPO (Fig. 3.5E). 

 

3.5 Discussion 

 There is an urgent need to synthesize delivery platforms that can cross the BBB and 

deliver payloads to neurons and other cells of the CNS to reduce the progression of 

neurodegeneration. Biodegradable polyanhydride nanoparticles represent an attractive 

platform in this regard, based on their high biocompatibility [35–37] and extensive use in 



71 

 

drug and vaccine delivery [6–12,14,18,38–43]. Furthermore, carriers based on 

polyanhydrides (i.e., the Gliadel® wafer) have been approved by the U.S. FDA for use in 

humans to treat glioblastoma [44]. However, the ability of polyanhydride NPs 

(functionalized or not) to cross the BBB has not investigated. In our previous work we 

demonstrated that folate-modified polyanhydride nanoparticles were internalized more 

effectively by neurons compared to NF nanoparticles, which resulted in subsequent 

protection against oxidative stress and neurodegeneration [18]. Since polyanhydride particles 

undergo surface erosion, we developed a bulk functionalization technique in which the 

polyanhydride backbone was conjugated with folic acid to improve the likelihood folic acid 

is present on the surface of the polyanhydride nanoparticles once they arrive at their target 

(e.g., neurons). In this work, two methods of transport of both NF and folic acid-

functionalized NPs across the BBB were investigated in vitro: direct particle interaction with 

the HBMEC and monocyte-mediated transport to the HBMEC. 

Polyanhydride NPs have previously been shown to be non-toxic to multiple cell types 

[18,45,46]. In this work we established that polyanhydride NP concentrations at 250 µg/mL 

resulted in limited toxicity to primary human monocytes, as shown in Figure 3.1A, and no 

toxicity to primary HBMEC, as shown in Figure 3.1B. We observed similar biocompatibility 

of the sFA and bFA NP, as indicated in Supplementary Figure 3.1. We have previously 

shown polyanhydride NP compatibility with primary mouse cortical cells up to 

concentrations of 100 µg/mL [18]. The toxicity data obtained in this work provides a wide 

administration window for further studies with polyanhydride NPs for delivery of therapeutic 

cargo across the BBB. Based on these findings, we tested the transfer of 100 and 250 µg/mL 

polyanhydride NPs of different chemistries (NF, sFA, bFA) from monocytes to HBMEC. 
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Previous work with 20:80 CPH:SA NPs demonstrated high levels of particle 

internalization by a human monocyte cell line [23]. This polyanhydride NP backbone 

formulation, 20:80 CPH:SA, has shown superior cellular internalization compared to other 

polyanhydride formulations and does so primarily via phagocytosis [33]. Studies have also 

shown increased macrophage uptake of polyester NPs with the functionalization of folic acid 

[5]. These observations led us to speculate that folic acid modified polyanhydride particles 

would be a prime candidate for use in cell-mediated delivery of encapsulated payloads to the 

brain. However, in these experiments we found that sFA-NP and bFA-NP resulted in similar, 

if not lower, levels of particle uptake by primary human monocytes, as shown in Figure 3.5. 

This suggests that the FA modification may alter the internalization mechanism of the NPs 

from non-specific internalization (i.e., phagocytosis) of the NF polyanhydride NPs to 

receptor-mediated endocytosis of the FA-modified NPs. 

 While we have shown non-specific polyanhydride NP internalization by APCs, we 

have also shown the need for ligands to enhance cellular internalization with other cell types 

[18]. When the polyanhydride NPs were incubated directly with HBMEC, we observed 

enhanced internalization of these particles resulting in dye positive and high drug 

concentrations, as shown in Figures 3.3C and 3.4B, respectively. This suggests that 

polyanhydride NPs are capable of achieving endothelial transcytosis [3]. In work with 

poly(butyl cyanoacrylate) (PCBA) nanoparticles, it was shown that polysorbate surfactant 

and apolipoproteins on the surface of these NPs enhanced BBB transport [47]. In previous 

work, we observed that apolipoproteins were among the serum proteins that adsorbed to the 

surface of polyanhydride NPs upon incubation with serum [48]. This would suggest that 
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polyanhydride NPs with adsorbed serum proteins will also have the potential to interact with 

the BBB and may be capable of crossing the BBB via receptor-mediated transcytosis.  

In this work we have observed similar cellular interactions and transport for the sFA-

NP and bFA-NP, as shown in Figure 3.5. This suggests that the amount of FA on the surface 

of the bFA-NP is maintained for longer periods of time during the degradation process. 

Although the sFA-NP were less effectively internalized by monocytes than the NF-NP, we 

still observed quantifiable drug transport from the monocyte-loaded cells to the HBMEC, as 

shown in Figure 3.5D,E. Based on this work, it is clear that bFA-functionalized, sFA-

functionalized, and NF polyanhydride NPs can be transported across the BBB via cell-

mediated methods.  

In previous studies, mAPO treated transgenic mice showed less motor coordination 

loss [2]. The current studies show that encapsulation of mAPO in polyanhydride NPs can 

increase the availability of the mAPO at the BBB interface by both direct NP- and cell-

mediated interactions with the HBMEC, as shown in Figure 3.4. Other recent work from our 

laboratories showed enhanced protection of primary mouse neuronal cells with folate 

modified mAPO-loaded polyanhydride NPs [18]. Therefore, the bFA-NP represents the most 

promising formulation for the delivery of mAPO to neuronal cells. Collectively, these studies 

demonstrate that polyanhydride NP-based delivery systems show promise for enhancing the 

effectiveness of therapeutics that require transport across the BBB and for their enhanced 

delivery to neurons. 
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3.6 Conclusions 

 This work expands the literature on the excellent biocompatibility of polyanhydride 

NPs with different types of cellular systems. We have shown the internalization of both NF 

and folic acid functionalized NPs by primary human monocytes and efficient transfer of the 

NPs by the monocytes to primary HBMEC in vitro. There is also evidence that the NF 

polyanhydride NPs could be internalized directly by primary HBMEC in vitro. Based on this 

work, polyanhydride NPs show promise as a drug delivery vehicle to enhance the 

effectiveness of therapeutics that require transport across the BBB. 
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3.10 Tables and Figures 

Table 3.1. Particle Characteristics. Scale bar on images is 500 nm. 

Surface Loading SEM 

photomicrographs 

Geometric 

Diameter 

(nm) 

Zeta 

Potential 

(mV) 

Unmodified 

20:80 

CPH:SA (NP) 

RhoB 

 

410 ± 21 -21.5 ± 

0.7 

Unmodified 

20:80 

CPH:SA (NP) 

mAPO 

 

398 -19 ± 0.5 

sFA-modified 

20:80 

CPH:SA 

(sFA-NP) 

RhoB 

 

457 ± 74 -12.0 ± 

1.4 

sFA-modified 

20:80 

CPH:SA 

(sFA-NP) 

mAPO 

 

425 N/A 

bFA-modified 

20:80 

CPH:SA 

(bFA-NP) 

RhoB 

 

414 ± 39 -21.9 ± 

0.6 
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Figure 3.1: Effect of NF-NP concentration on the viability of human monocytes (A), human 

MDM (B), and HBMEC (C). Cells from human donors were isolated and cultured as 

described in the Methods, loaded with NPs at different concentrations (1 μg/mL, 10 μg/mL, 

100 μg/mL, 250 μg/mL and 500 μg/mL) for 48 h and toxicity was assessed over 24 h using 

the alamarBlueTM assay. *p<0.05, **p<0.01, ∞p<0.001, #p<0.0001, compared to untreated 

controls. 
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Figure 3.2. NF-NP-rho are efficiently internalized by HBMEC following co-culture with 

NF-NP-rho-loaded monocytes. Monocytes loaded with NF-NP-rho were co-cultured with 

HBMEC labeled with DiO (green), and NF-NP-rho uptake following endothelial-monocyte 

communication was visualized by confocal microscopy. Representative images showing 

uptake of NF-NP-rho at 250 µg/mL (A) and 100 µg/mL (B) by primary HBMEC. 

 

 

Figure 3.3: FACS quantification of direct uptake of NF-NP-rho by primary human 

monocytes (A), cell-to-cell transfer of NPs following co-culture of HBMEC with NF-NP-

rho-loaded monocytes (B), and direct uptake by HBMEC. “Before cc”: NPs levels in cells 

before monocytes-endothelial co-culture. “After cc”: NPs levels in cells after monocytes-

endothelial co-culture. Experiments were performed with both 250 µg/mL and 100 µg/mL 

NF-NP-rho. Data represents mean ± SEM of three replicates (**p<0.01, ***p<0.001). 
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Figure 3.4: HPLC quantification of NF-NP-mAPO and free-mAPO direct uptake by primary 

human monocytes, cell-to-cell transfer of NPs following co-culture of HBMEC with NP-

loaded monocytes (A), and direct uptake by HBMEC (B). “Before cc”: NPs levels in cells 

before monocytes-endothelial co-culture. “After cc”: NPs levels in cells after monocytes-

endothelial co-culture. Experiments were performed with 250 µg/mL NF-NP-mAPO, and 

with 250 µM free mAPO. Data represents mean ± SEM of three replicates (*p<0.05, 

**p<0.01, ***p<0.001). 
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Figure 3.5: Quantification of sFA-NP and bFA-NP uptake in HBMEC and monocytes. (A) 

Representative confocal microscopy images showing sFA-NP-rho and bFA-NP-rho uptake 

by HBMEC after co-culture with monocytes. (B) Monocytes were loaded with 100 µg/mL 

sFA-NP-rho or bFA-NP-rho, and co-cultured with HBMEC. FACS quantification of sFA-

NP-rho and bFA-NP-rho in primary human monocytes before co-culture and monocytes and 

HBMEC after co-culture. (C) FACS quantification showing direct uptake of sFA-NP-rho and 

bFA-NP-rho NPs in HBMEC. (D) HBMEC were co-cultured with monocytes loaded with 

250 µg/mL sFA-NP-mAPO or 250 µM free mAPO. mAPO levels in monocytes before and 

after co-culture, and in HBMEC after co-culture were quantified by HPLC at 262 nm. (E) 

HPLC quantification of direct uptake of sFA-NP-mAPO and free mAPO in HBMEC. 

*p<0.05, ***p<0.001. 
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Supplementary Figure 3.1: Effects of sFA-NP and bFA-NP on the viability of human 

monocytes (A & B), human MDM (C & D), and HBMEC (E & F). Cells from human donors 

were isolated and cultured as described in the Methods, incubated with NPs of different 

concentrations (3 μg/mL, 10 μg/mL, 30 μg/mL, 100 μg/mL and 300 μg/mL) for 48 h and 

toxicity was assessed over 24 h by the alamarBlueTM assay. 
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Supplementary Figure 3.2: Representative immunofluorescence images showing 

endothelial uptake of NF-NP-rho (A, B) and sFA-NP-rho (C, D) following co-culture with 

monocytes. Primary human monocytes loaded with NF-NP-rho or sFA-NP-rho were co-

cultured with HBMEC labeled with DiO (Green), washed and NP uptake analyzed by 

immunofluorescence and confocal microscopy.  

(A) 
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(B) 

 

Supplementary Figure 3.3. Characterization of bFA- vs. non-functionalized 20:80 

CPH:SA copolymer. (A) 1H NMR of bFA- vs non-functionalized 20:80 CPH:SA 

copolymer. Appearance of an FA-based aliphatic carbons (δ=2.05 (2H, m), 2.39 (2H, t)) in 

FA-polymer indicates functionalization. Percent functionalization was estimated by end-

group analysis of purified polymer, by back-calculating the molar ratio of FA to 20:80 

CPH:SA. (B) FTIR-ATR spectroscopy of FA- vs. non-functionalized 20:80 CPH:SA 

copolymer, after purification. Red arrows indicate the decrease in the relative peak height of 

methyl end-groups (2870 cm-1) and SA-SA anhydride bonds (1740 cm-1). Blue arrows at 

1460 cm-1 and 1610 cm-1 indicate the appearance of new peaks representing FA in the 

copolymer. 

 

 

 

 

 

 

 

 



83 

 

3.11 References 

[1] G.K. Tofaris, A.H. V Schapira, Neurodegenerative diseases in the era of targeted 

therapeutics: How to handle a tangled issue, Mol. Cell. Neurosci. 66 (2015) 1–2. 

doi:10.1016/j.mcn.2015.03.002. 

 

[2] B.P. Dranka, A. Gifford, D. McAllister, J. Zielonka, J. Joseph, C.L. O’Hara, C.L. 

Stucky, A.G. Kanthasamy, B. Kalyanaraman, A novel mitochondrially-targeted 

apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich 

repeat kinase 2 (LRRK2(R1441G)) transgenic mouse model of Parkinson’s disease, 

Neurosci. Lett. 583 (2014) 159–164. doi:10.1016/j.neulet.2014.09.042. 

 

[3] S.K. Mallapragada, T.M. Brenza, J.M. McMillan, B. Narasimhan, D.S. Sakaguchi, 

A.D. Sharma, S. Zbarska, H.E. Gendelman, Enabling nanomaterial, nanofabrication 

and cellular technologies for nanoneuromedicines, Nanomedicine Nanotechnology, 

Biol. Med. 11 (2015) 715–729. doi:10.1016/j.nano.2014.12.013. 

 

[4] G. Kanmogne, S. Singh, U. Roy, X. Liu, J. McMillan, S. Gorantla, S. Balkundi, N. 

Smith, Y. Zhou, Y. Alnouti, N. Gautam, L. Poluektova, A. Kabanov, T. Bronich, H. 

Gendelman, Mononuclear phagocyte intercellular crosstalk facilitates transmission of 

cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells, Int. 

J. Nanomedicine. 7 (2012) 2373–2388. doi:10.2147/IJN.S29454. 

 

[5] P. Puligujja, J. McMillan, L. Kendrick, T. Li, S. Balkundi, N. Smith, R.S. 

Veerubhotla, B.J. Edagwa, A. V Kabanov, T. Bronich, H.E. Gendelman, X.-M. Liu, 

Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, 

retention, antiretroviral activities and biodistribution for reduction of human 

immunodeficiency virus infections, Nanomedicine. 9 (2013) 1263–73. 

doi:10.1016/j.nano.2013.05.003. 

 

[6] E.S. Park, M. Maniar, J.C. Shah, Biodegradable polyanhydride devices of cefazolin 

sodium, bupivacaine, and taxol for local drug delivery: Preparation, and kinetics and 

mechanism of in vitro release, J. Control. Release. 52 (1998) 179–189. 

doi:10.1016/S0168-3659(97)00223-X. 

 

[7] P.B. Storm, J.L. Moriarity, B. Tyler, P.C. Burger, H. Brem, J. Weingart, Polymer 

delivery of camptothecin against 9L gliosarcoma: Release, distribution, and efficacy, 

J. Neurooncol. 56 (2002) 209–217. doi:10.1023/A:1015003232713. 

 

[8] D.B. Masters, C.B. Berde, S. Dutta, T. Turek, R. Langer, Sustained Local Anesthetic 

Release from Bioerodible Polymer Matrices: A Potential Method for Prolonged 

Regional Anesthesia, Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10 (1993) 1527–

1532. doi:10.1023/A:1018995913972. 

 

 



84 

 

[9] G.P. Carino, J.S. Jacob, E. Mathiowitz, Nanosphere based oral insulin delivery, J. 

Control. Release. 65 (2000) 261–269. doi:10.1016/S0168-3659(99)00247-3. 

 

[10] A.A. Weiner, E.A. Bock, M.E. Gipson, V.P. Shastri, Photocrosslinked anhydride 

systems for long-term protein release, Biomaterials. 29 (2008) 2400–2407. 

doi:10.1016/j.biomaterials.2008.01.013. 

 

[11] A.S. Determan, B.G. Trewyn, V.S.Y. Lin, M. Nilsen-Hamilton, B. Narasimhan, 

Encapsulation, stabilization, and release of BSA-FITC from polyanhydride 

microspheres, J. Control. Release. 100 (2004) 97–109. 

doi:10.1016/j.jconrel.2004.08.006. 

 

[12] M.P. Torres, A.S. Determan, G.L. Anderson, S.K. Mallapragada, B. Narasimhan, 

Amphiphilic polyanhydrides for protein stabilization and release, Biomaterials. 28 

(2007) 108–116. doi:10.1016/j.biomaterials.2006.08.047. 

 

[13] B. Carrillo-Conde, E. Schiltz, J. Yu, F.C. Minion, G.J. Phillips, M.J. Wannemuehler, 

B. Narasimhan, Encapsulation into amphiphilic polyanhydride microparticles 

stabilizes Yersinia pestis antigens, Acta Biomater. 6 (2010) 3110–3119. 

doi:10.1016/j.actbio.2010.01.040. 

 

[14] B.R. Carrillo-Conde, R.J. Darling, S.J. Seiler, A.E. Ramer-Tait, M.J. Wannemuehler, 

B. Narasimhan, Sustained release and stabilization of therapeutic antibodies using 

amphiphilic polyanhydride nanoparticles, Chem. Eng. Sci. 125 (2015) 98–107. 

doi:10.1016/j.ces.2014.08.015. 

 

[15] L. Erdmann, K.E. Uhrich, Synthesis and Degradation Characteristics of Salicylic 

Acid-derived Poly(anhydride-esters)., Biomaterials. 21 (2000) 1941–1946. 

 

[16] J.-S. Deng, M. Meisters, L. Li, J. Setesak, L. Claycomb, Y. Tian, D. Stephens, M. 

Widman, The Development of an Injection-Molding Process for a Polyanhydride 

Implant Containing Gentamicin Sulfate, PDA J. Pharm. Sci. Technol. 56 (2002) 65–

77. 

 

[17] F. Von Burkersroda, L. Schedl, A. G??pferich, Why degradable polymers undergo 

surface erosion or bulk erosion, Biomaterials. 23 (2002) 4221–4231. 

doi:10.1016/S0142-9612(02)00170-9. 

 

[18] T.M. Brenza, S.G. Ms, J.E.V. Ramirez, D. Harischandra, V. Anantharam, B. 

Kalyanaraman, A.G. Kanthasamy, B. Narasimhan, Neuronal Protection against 

Oxidative Insult by Polyanhydride Nanoparticle-based Mitochondria-targeted 

Antioxidant Therapy, Nanomedicine Nanotechnology, Biol. Med. 13 (2017) 809–820. 

doi:10.1016/j.nano.2016.10.004. 

 

 



85 

 

[19] M.J. Kipper, E. Shen, A. Determan, B. Narasimhan, Design of an injectable system 

based on bioerodible polyanhydride microspheres for sustained drug delivery, 

Biomaterials. 23 (2002) 4405–4412. doi:10.1016/S0142-9612(02)00181-3. 

 

[20] E. Shen, M.J. Kipper, B. Dziadul, M.K. Lim, B. Narasimhan, Mechanistic 

relationships between polymer microstructure and drug release kinetics in bioerodible 

polyanhydrides, J. Control. Release. 82 (2002) 115–125. doi:10.1016/S0168-

3659(02)00125-6. 

 

[21] G.F. Kelso, C.M. Porteous, G. Hughes, E.C. Ledgerwood, A.M. Gane, R.A.J. Smith, 

M.P. Murphy, Prevention of Mitochondrial Oxidative Damage Using Targeted 

Antioxidants, New York Acadamy Sci. 959 (2002) 263–274. 

 

[22] A. Ghosh, K. Chandran, S. V. Kalivendi, J. Joseph, W.E. Antholine, C.J. Hillard, A. 

Kanthasamy, A. Kanthasamy, B. Kalyanaraman, Neuroprotection by a mitochondria-

targeted drug in a Parkinson’s disease model, Free Radic. Biol. Med. 49 (2010) 1674–

1684. doi:10.1016/j.freeradbiomed.2010.08.028. 

 

[23] B.D. Ulery, Y. Phanse, A. Sinha, M.J. Wannemuehler, B. Narasimhan, B.H. Bellaire, 

Polymer chemistry influences monocytic uptake of polyanhydride nanospheres, 

Pharm. Res. 26 (2009) 683–690. doi:10.1007/s11095-008-9760-7. 

 

[24] A. V. Chavez-Santoscoy, R. Roychoudhury, N.L.B. Pohl, M.J. Wannemuehler, B. 

Narasimhan, A.E. Ramer-Tait, Tailoring the immune response by targeting C-type 

lectin receptors on alveolar macrophages using “ pathogen-like” amphiphilic 

polyanhydride nanoparticles, Biomaterials. 33 (2012) 4762–4772. 

doi:10.1016/j.biomaterials.2012.03.027. 

 

[25] B. Carrillo-Conde, E.H. Song, A. Chavez-Santoscoy, Y. Phanse, A.E. Ramer-Tait, 

N.L.B. Pohl, M.J. Wannemuehler, B.H. Bellaire, B. Narasimhan, Mannose-

functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin 

receptors on dendritic cells, Mol. Pharm. 8 (2011) 1877–1886. 

doi:10.1021/mp200213r. 

 

[26] H.E. Gendelman, J.M. Orenstein, M.A. Martin, C. Ferrua, R. Mitra, T. Phipps, L.A. 

Wahl, H.C. Lane, A.S. Fauci, D.S. Burke, Efficient isolation and propagation of 

human immunodeficiency virus on recombinant colony-stimulating factor 1-treated 

monocytes, J. Exp. Med. 167 (1988) 1428–41. 

 

[27] G.D. Kanmogne, K. Schall, J. Leibhart, B. Knipe, H.E. Gendelman, Y. Persidsky, 

HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte 

migration across blood-brain barrier: implication for viral neuropathogenesis, J. Cereb. 

Blood Flow Metab. 27 (2007) 123–34. 

 

 



86 

 

[28] A. Chaudhuri, F. Duan, B. Morsey, Y. Persidsky, G.D. Kanmogne, HIV-1 activates 

proinflammatory and interferon-inducible genes in human brain microvascular 

endothelial cells: putative mechanisms of blood-brain barrier dysfunction., J. Cereb. 

Blood Flow Metab. 28 (2008) 697–711. 

 

[29] A. Chaudhuri, B. Yang, H.E. Gendelman, Y. Persidsky, G.D. Kanmogne, STAT1 

signaling modulates HIV-1-induced inflammatory responses and leukocyte 

transmigration across the blood-brain barrier., Blood. 111 (2008) 2062–72. 

 

[30] M.J. Bernas, F.L. Cardoso, S.K. Daley, M.E. Weinand, A.R. Campos, A.J. Ferreira, 

J.B. Hoying, M.H. Witte, D. Brites, Y. Persidsky, S.H. Ramirez, M.A. Brito, 

Establishment of primary cultures of human brain microvascular endothelial cells to 

provide an in vitro cellular model of the blood-brain barrier., Nat. Protoc. 5 (2010) 

1265–72. 

 

[31] R.F. Bressani, A.S. Nowacek, S. Singh, S. Balkundi, B. Rabinow, J. McMillan, H.E. 

Gendelman, G.D. Kanmogne, Pharmacotoxicology of monocyte-macrophage 

nanoformulated antiretroviral drug uptake and carriage., Nanotoxicology. 5 (2011) 

592–605. doi:10.3109/17435390.2010.541292. 

 

[32] B. Yang, S. Akhter, A. Chaudhuri, G.D. Kanmogne, HIV-1 gp120 induces cytokine 

expression, leukocyte adhesion, and transmigration across the blood-brain barrier: 

modulatory effects of STAT1 signaling., Microvasc. Res. 77 (2009) 212–9. 

 

[33] Y. Phanse, P. Lueth, A.E. Ramer-Tait, B.R. Carrillo-Conde, M.J. Wannemuehler, B. 

Narasimhan, B.H. Bellaire, Cellular Internalization Mechanisms of Polyanhydride 

Particles: Implications for Rational Design of Drug Delivery Vehicles, J. Biomed. 

Nanotechnol. 12 (2016) 1544–1552. doi:10.1166/jbn.2016.2259. 

 

[34] L.K. Petersen, L. Xue, M.J. Wannemuehler, K. Rajan, B. Narasimhan, The 

simultaneous effect of polymer chemistry and device geometry on the in vitro 

activation of murine dendritic cells, Biomaterials. 30 (2009) 5131–5142. 

doi:10.1016/j.biomaterials.2009.05.069. 

 

[35] D.S. Katti, S. Lakshmi, R. Langer, C.T. Laurencin, Toxicity, biodegradation and 

elimination of polyanhydrides, Adv. Drug Deliv. Rev. 54 (2002) 933–961. 

doi:10.1016/S0169-409X(02)00052-2. 

 

[36] N. Kumar, R.S. Langer, A.J. Domb, Polyanhydrides: An overview, Adv. Drug Deliv. 

Rev. 54 (2002) 889–910. doi:10.1016/S0169-409X(02)00050-9. 

 

[37] J. Heller, Polyanhydrides and poly(ortho esters), Adv. Drug Deliv. Rev. 54 (2002) 

887–888. 

 

 



87 

 

[38] A.M. Binnebose, S.L. Haughney, R. Martin, P.M. Imerman, B. Narasimhan, B.H. 

Bellaire, Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances 

Killing of Filarial Worms, PLoS Negl. Trop. Dis. 9 (2015) 1–18. 

doi:10.1371/journal.pntd.0004173. 

 

[39] T.M. Brenza, L.K. Petersen, Y. Zhang, L.M. Huntimer, A.E. Ramer-Tait, J.M. 

Hostetter, M.J. Wannemuehler, B. Narasimhan, Pulmonary biodistribution and cellular 

uptake of intranasally administered monodisperse particles, Pharm. Res. 32 (2015) 

1368–1382. doi:10.1007/s11095-014-1540-y. 

 

[40] A.S. Determan, J.H. Wilson, M.J. Kipper, M.J. Wannemuehler, B. Narasimhan, 

Protein stability in the presence of polymer degradation products: Consequences for 

controlled release formulations, Biomaterials. 27 (2006) 3312–3320. 

doi:10.1016/j.biomaterials.2006.01.054. 

 

[41] S.L. Haughney, L.K. Petersen, A.D. Schoofs, A.E. Ramer-Tait, J.D. King, D.E. Briles, 

M.J. Wannemuehler, B. Narasimhan, Retention of structure, antigenicity, and 

biological function of pneumococcal surface protein A (PspA) released from 

polyanhydride nanoparticles, Acta Biomater. 9 (2013) 8262–8271. 

doi:10.1016/j.actbio.2013.06.006. 

 

[42] J.E. Vela Ramirez, R. Roychoudhury, H.H. Habte, M.W. Cho, N.L.B. Pohl, B. 

Narasimhan, Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen 

stability and activate antigen presenting cells, J. Biomater. Sci. Polym. Ed. 25 (2014) 

1387–1406. doi:10.1080/09205063.2014.940243. 

 

[43] K.A. Ross, Synthetic nanoparticle-based vaccines against respiratory pathogens, Grad. 

Theses Diss. Paper 1357 (2013). 

 

[44] M. Westphal, Z. Ram, V. Riddle, D. Hilt, E. Bortey, Gliadel (R) wafer in initial 

surgery for malignant glioma: Long-term follow-up of a multicenter controlled trial, 

Acta Neurochir. (Wien). 148 (2006) 269–275. doi:10.1007/s00701-005-0707-z. 

 

[45] L. Huntimer, A.E. Ramer-Tait, L.K. Petersen, K.A. Ross, K.A. Walz, C. Wang, J. 

Hostetter, B. Narasimhan, M.J. Wannemuehler, Evaluation of Biocompatibility and 

Administration Site Reactogenicity of Polyanhydride-Particle-Based Platform for 

Vaccine Delivery, Adv. Healthc. Mater. 2 (2013) 369–378. 

doi:10.1002/adhm.201200181. 

 

[46] J.E. Vela-Ramirez, J.T. Goodman, P.M. Boggiatto, R. Roychoudhury, N.L.B. Pohl, 

J.M. Hostetter, M.J. Wannemuehler, B. Narasimhan, Safety and Biocompatibility of 

Carbohydrate-Functionalized Polyanhydride Nanoparticles, AAPS J. 17 (2015) 256–

267. doi:10.1208/s12248-014-9699-z. 

 

 



88 

 

[47] J. Kreuter, D. Shamenkov, V. Petrov, P. Ramge, K. Cychutek, C. Koch-Brandt, R. 

Alyautdin, Apolipoprotein-mediated transport of nanoparticle-bound drugs across the 

blood-brain barrier, J. Drug Target. 10 (2002) 317–325. 

doi:10.1080/10611860290031877|10.1080/10611860290031877. 

 

[48] J. Vela-Ramirez, P.M. Boggiatto, M.J. Wannemuehler, B. Narasimhan, Polyanhydride 

nanoparticle interactions with host serum proteins and their effects on bone marrow 

derived macrophage activation Polyanhydride nanoparticle interactions with host 

serum proteins and their effects on bone marrow derived macrophage activation, 2016, 

submitted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

 

CHAPTER 4: NEURONAL TARGETING OF TRIPHENYLPHOSPHONIUM-

FUNCTIONALIZED POLYANHYDRIDE NANOPARTICLES TO COMBAT 

OXIDATIVE STRESS 

 

Manuscript in progress; to be submitted to Acta Biomaterialia in 2017 

 

Ben Schlichtmann1, Shivani Ghaisas2, Rainie Nelson1, Matthew Panthani1, Vellareddy 

Anantharam2, Anumantha Kanthasamy2, Surya Mallapragada1, Balaji Narasimhan1,* 

 

1Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 

50011 
2Department of Biomedical Sciences, Iowa State University, Ames, IA 50011 
*To whom correspondence should be addressed 

Key words: Oxidative stress; Polyanhydride nanoparticles; Mito-apocynin; Drug delivery; 

Triphenylphosphonium 

 

4.1 Abstract 

Neurodegeneration due to chemical exposure and/or conditions such as Parkinson’s 

disease and traumatic brain injury leads to significant deleterious events that affect the 

performance of neurons. Even with survival after acute exposure, affected neurons 

experience oxidative stress. Treatment of oxidative stress using antioxidants is essential for 

preventing irreversible damage to the central nervous system. Targeting specific ligands to 

nano-carriers that encapsulate anti-oxidant drugs is a valuable approach to overcome the 

complex hurdles associated with central nervous system delivery that block efficient drug 

bioavailability and lead to protection of cells by lowering the oxidative stress. In this context, 
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polyanhydride nanoparticles containing anti-oxidants have shown the ability to improve drug 

delivery to neurons. This work expands upon the design of the polyanhydride nanoparticle 

platform by using a novel functionalization method to conjugate polyanhydrides with a 

blood-brain barrier and mitochondrial targeting ligand, triphenylphosphonium (TPP), prior to 

nanoparticle synthesis. Enhanced internalization of the TPP functionalized nanoparticles by 

neurons was demonstrated using flow cytometry and supported by confocal microscopy. 

Finally, improvements in the efficacy of a mitochondrially-targeted antioxidant, Mito-

apocynin, for protection against oxidative stress were observed when treating the cells with 

Mito-Apo containing functionalized nano-carriers, while also providing dose-sparing effects. 

These studies lay the platform for therapeutic delivery to the brain and set the stage for in 

vivo studies in the appropriate disease models. 

 

4.2 Introduction 

Exposure to toxic organophosphates affects as many as three million individuals each 

year, with as many as 10% of these exposures resulting in death [1]. In order to prevent the 

development of chronic symptoms and progression of neurodegeneration, rapid treatment in 

the hours to days after exposure is essential. Antioxidants are a class of drugs used to treat 

mitochondrial oxidative stress that often follows chemical exposure in this timescale and is 

also present in many chronic neurodegenerative conditions [2].  

Apocynin is an antioxidant that has been used in several studies for treatment of 

oxidative stress in pre-clinical Parkinson’s disease models [3–5]. The dimer diapocynin has 

also shown protection against oxidative stress in mouse models [6,7]. In order to improve 

drug targeting to mitochondria, a lipophilic cation, triphenylphosphonium (TPP), has been 
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conjugated to apocynin (Mito-Apo) [6,8,9]. An eleven carbon chain derivative of Mito-Apo 

(Mito-Apo C11) has shown protection in MitoPark and LRRK2R1441G transgenic mouse 

models [6,8], while a two carbon chain derivative (Mito-Apo C2) has shown protection in a 

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) (MPTP) model [9]. To further improve drug 

efficacy of Mito-Apo, nano-carriers can be used to encapsulate and provide sustained release 

of the drug. 

Nano-carriers can improve drug bioavailability and efficacy for central nervous 

system (CNS) delivery by achieving passage across complex physiological hurdles while 

protecting the drug from degradation [10]. Furthermore, targeting ligands can be conjugated 

to antioxidant-encapsulated biodegradable nanomaterials to improve the ability to cross the 

blood-brain barrier (BBB), be internalized by diseased neurons, and co-localize with the 

mitochondria [10,11]. In this regard, biodegradable polyanhydride nanoparticles (NPs) 

represent an attractive nanoscale drug delivery platform technology, and have demonstrated 

sustained release of therapeutics to counter a broad range of diseases [11–25]. The Gliadel® 

wafer, an FDA-approved polyanhydride-based drug delivery product for delivery of the drug 

carmustine to treat cancer, is an excellent example of CNS drug delivery [26]. 

The clinical applicability of polyanhydrides is attributed to their high biocompatibility 

[27]. In addition, polyanhydrides are relatively hydrophobic polymers, and therefore tend to 

degrade by surface erosion [28,29]. This feature is particularly advantageous compared to 

bulk eroding drug release platforms, because it allows for predictable drug release rate that 

can be altered by simply changing the copolymer composition [27,30,31]. By enabling 

sustained and local release of drug to diseased neurons and protecting it from systemic 

degradation, polyanhydride NPs have shown superior dose-sparing effects [17,32]. 
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Neuronal delivery of antioxidants encapsulated within NPs based on 1,6-bis-(p-

carboxyphenoxy)hexane and sebacic acid (i.e., 20:80 CPH:SA) significantly improved 

protection against oxidative stress [11]. In addition to the improved efficacy and targeting to 

neurons, 20:80 CPH:SA NPs are internalized effectively by phagocytic cells [33], can rapidly 

deliver payloads for combating oxidative stress [34,35], and efficiently encapsulate the 

therapeutic Mito-Apo [36]. This makes 20:80 CPH:SA NPs an excellent candidate for CNS 

drug delivery. 

Efficacy and localization of nanoscale delivery platforms can be further improved 

through functionalization with targeting ligands [37–39]. For example, folic acid (FA) has 

improved neuronal targeting of 20:80 CPH:SA NPs [11]. However, this functionalization did 

not improve transport across the BBB compared to the non-functionalized counterpart, as 

demonstrated in Chapter 3. It is necessary to design a delivery platform that can effectively 

surmount multiple complex hurdles associated with CNS drug delivery, including crossing 

the BBB and enhancing neuronal targeting and uptake. The targeting ligand, 

triphenylphosphonium (TPP), has shown the ability to improve BBB transport and enable 

mitochondrial targeting of delivery platforms [40–43], and additionally improve drug 

efficacy by direct conjugation [6,8,9], making it an excellent choice of targeting ligand to 

further optimize the 20:80 CPH:SA NP-based nanomedicine platform. 

Many targeting ligands used for drug delivery are conjugated on the surface of the 

nanoscale delivery platform [11]; this may cause a loss of the ligand by degradation before 

achieving its targeting goal when administered in vivo. To enable prolonged persistence of a 

ligand such as TPP to more effectively improve CNS delivery, this work investigated the use 

of a novel functionalization method that conjugates the targeting ligand to the polymer prior 
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to NP synthesis. The molecule (3-carboxypropyl)triphenylphosphonium (CPTP, a derivative 

of TPP) was used to synthesize functionalized 20:80 CPH:SA NPs (CPTP-NPs), which 

contained quantum dots (QDs; QD:(CPTP-NP)s) and the internalization of these NPs by N27 

cells, a rat mesencephalic neuronal cell line, was compared to that of non-functionalized 

20:80 CPH:SA NPs containing QDs (or QD:NPs). The efficacy of CPTP-NPs against 

hydrogen peroxide (H2O2)-induced oxidative stress was tested after encapsulating Mito-Apo 

C2 (or simply Mito-Apo) into both NPs and CPTP-NPs (represented by M:NPs and 

M:(CPTP-NP)s, respectively). 

 

4.3 Experimental Methods 

4.3.1 Materials 

20:80 CPH:SA copolymer synthesis was performed as described previously [34,44]. 

1H nuclear magnetic resonance (NMR; MR-400, Varian) was used to measure the polymer 

molecular weight and purity. MTS cell viability dye (Catalog # G3580) was purchased from 

Promega. Caspase-3 substrate (Catalog # 556449) was purchased from BD Biosciences. 

MitoTracker® Red and Hoechst 34580 were purchased from ThermoFisher Scientific. 

HEPES, 3-[(3-Cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), 

2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA), dithiothreitol (DTT) and sucrose 

were purchased from Sigma (St. Louis, MO). Dulbecco’s modified Eagle’s medium 

(DMEM), Roswell Park Memorial Institute medium (RPMI) 1640, fetal bovine serum (FBS), 

trypsin/EDTA (TE), L-glutamine, penicillin, and streptomycin were purchased from 

Invitrogen (Carlsbad, CA). Mito-Apo was kindly provided by the Kalyanaraman laboratory 
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at the Medical College of Wisconsin. Synthesis and characterization of the final product were 

performed as described previously [11]. 

 

4.3.2 Synthesis of CdSe-ZnS core-shell nanoparticles 

Cadmium selenide NPs were synthesized following a standard air-free hot-injection 

reaction procedure modified from Pu et al. [45] and ZnS shell growth was achieved using a 

procedure modified from Talapin et al. [46]. Cadmium oxide (0.25 mmol, 32 mg) was 

dissolved in 2 mL of 1-octadecene (ODE) and 218 µL oleic acid (OA) in a 4 mL glass vial. A 

0.4 M stock solution of selenium in ODE was prepared by sonicating 384 mg of selenium in 

12.190 mL ODE using bath sonication. A Zn:S precursor solution was prepared by 

dissolving zinc chloride (0.19 mmol, 26 mg) and 51.43 µL of bis(trimethyldisilyl) sulfide in 

1.436 mL of trioctylphosphine (TOP). To synthesize CdSe NPs, the solution of CdO in ODE 

and OA was heated to 240°C on an aluminum reaction block under nitrogen atmosphere. 310 

µL of Se in ODE was injected into the reaction vial and the vial was removed from heat. To 

synthesize CdSe-ZnS core-shell NPs, the crude solution of CdSe as prepared above was 

cooled slightly to 220°C and the aforementioned Zn:S precursor solution was added 

dropwise to the CdSe solution under vigorous stirring. The resultant nanoparticles were 

washed once with methanol and twice with ethanol before being dispersed in methylene 

chloride.  

 

4.3.3 Polyanhydride bulk functionalization 

An excess of CPTP was acetylated under N2 in approximately 5 mL acetic anhydride 

for 60 min at 150 °C. Excess acetic anhydride was removed using a rotary evaporator. The 
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remaining solution was immediately pipetted into 20:80 CPH:SA copolymer. Conjugation of 

CPTP to copolymer by an anhydride interchange mechanism was performed by reacting 

under vacuum at 0.5 torr for 20 min at 180 °C. The conjugated copolymer was dissolved in 

methylene chloride (Fisher Scientific, Pittsburgh, PA) overnight. Functionalized copolymer 

was precipitated into hexanes at a methylene chloride:hexanes volume ratio of 1:25 and 

filtered. 

After polymer precipitation, excess free CPTP was purified from the copolymer by 

sonicating in nanopure water for 30 s, centrifuging at 10,000 rpm for 5 min, and removing 

the supernatant. Percentage end-group functionalization of copolymer was characterized 

using 1H NMR (MR-400 MHz, Varian, Palo Alto, CA; CHCl3-d1) end-group analysis. 

Specifically, percent functionalization was estimated by back-calculating the molar ratio of 

CPTP to 20:80 CPH:SA using the area under characteristic peaks from each material. Fourier 

transform infrared (FTIR; Nicolet iS50 FTIR, ThermoFisher, Waltham, MA) attenuated total 

reflectance (ATR; Nicolet Smart iTX accessory, ThermoFisher; FTIR-ATR) spectroscopy 

was also used to characterize structural changes after functionalization. Confirmation of 

polymer molecular weight after functionalization was evaluated using gel permeation 

chromatography (GPC; Optilab® T-rEX, Wyatt, Santa Barbara, CA). The same 

functionalization procedure was used for FA-functionalized polymer, except purification was 

with methylene chloride, retaining the polymer in the solution and disposing un-dissolved 

free FA. 
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4.3.4 Nanoparticle synthesis and characterization 

Either QD or Mito-Apo was encapsulated into 20:80 CPH:SA NPs by a modified 

anti-solvent nano-encapsulation method [47]. Briefly, the synthesized polymer (100 mg) and 

QD (5 mg) or Mito-Apo (0.2 mg) were dispersed into 5 mL of methylene chloride and 

sonicated for 60 s with a probe sonicator (Sonics and Materials, Newtown, CT). The solution 

was poured into 1 L of pentane (Fisher Scientific) and the particles were recovered by 

vacuum filtration. The particle morphology and size were determined using scanning electron 

microscopy (SEM; Quanta 250 FE-SEM, FEI, Hillsboro, OR). ImageJ software (National 

Institutes of Health, Bethesda, MD) was used to quantify particle size distribution. Solvents 

and glassware used to prepare NPs were sterile.  

To evaluate drug release kinetics, NPs with or without Mito-Apo were suspended at 

10 mg/mL in 1x phosphate-buffered saline (PBS), and sonicated for 30 s. Samples were then 

incubated in a 37 °C rotator. At respective time points, supernatant from samples was 

collected via centrifugation. Samples were replaced with fresh PBS to maintain perfect sink 

conditions. The supernatant was analyzed for drug concentration using high-performance 

liquid chromatography (HPLC, Agilent Technologies 1200, Santa Clara, CA).  

To evaluate surface charge, NPs and CPTP-NPs were weighed at approximately 1 mg 

and brought to 1 mg/mL in nanopure water. The suspension was sonicated for 30 s and 

diluted to 0.1 mg/mL in nanopure water, and sonicated for 30 s. The zeta potential 

measurement was recorded immediately using a ZetaSizer (Zetasizer Nano, Malvern 

Instruments Ltd., Malvern, UK). 

 

 



97 

 

4.3.5 N27 cell culture and cytotoxicity testing 

A rat mesencephalic neuronal cell line (N27) was used for cytotoxicity, efficacy and 

localization experiments. Cells were thawed from liquid nitrogen, and immediately added to 

RPMI media (RPMI 1640, B27 supplement, 10% fetal bovine serum (FBS), L-glutamine, 

penicillin, and streptomycin). Cells were centrifuged for 5 min at 1,000 rpm, aspirating 

supernatant. 15 mL RPMI was added to suspend cells, which were plated onto a T75 flask, 

replacing media the next day. Upon reaching 70% confluence, N27 cells were passaged by 

trypsinization using trypsin/EDTA. Cells were mixed and counted using a Vi-Cell XR 

instrument (Beckman Coulter, Brea, CA). For seeding a T75 flask, one million cells were 

added. To plate into 96, 24, or 6-well plates, cells were plated at approximately 5,000 

cells/well, 20,000 cells/well, or 200,000 cells/well, respectively. After 24 h, media was 

aspirated and the appropriate treatment was added to cells in 2% FBS-containing RPMI (2% 

RPMI). 

To test NP and CPTP-NP cytotoxicity, cells were grown to 70% confluence in 96-

well plates in 10% RPMI. NP stock suspensions were sonicated in 2% RPMI for 60 s using a 

bath sonicator. Old media on cells was aspirated and replaced by 2% RPMI containing NPs 

or CPTP-NPs. At 24 h, 10 μL MTS dye was added to each well. 96 well plates were read 1 h 

after adding the dye using a spectrophotometer (SpectraMax 190, Molecular Devices, 

Sunnyvale, California; 490nm). The experiments were performed in triplicate. 

 

4.3.6 Fluorescence-activated cell sorting 

Cells were grown to 70% confluence in 6 well plates with 10% RPMI. Stock 

suspensions of 5% QD:NPs and QD:(CPTP-NP)s were sonicated in 2% RPMI for ~60s using 
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a bath sonicator. Old media was aspirated from 6-well plates and cells were treated with 30 

μg/mL of either QD:NPs or QD:(CPTP-NP)s. After 20 h, media was aspirated and wells 

were washed with PBS. Cells were collected using a cell scraper, transferred to individual 1.5 

mL microcentrifuge tubes and centrifuged at 1,000 rpm for 7 min. PBS was aspirated and 

replaced with 4% paraformaldehyde (PFA). Each tube was mixed thoroughly by pipetting to 

ensure fixation. Cells were stored in 4 °C in the dark. Immediately before analysis, the cells 

were centrifuged and PFA was replaced with 1% bovine serum albumin (BSA) in PBS, and 

processed via flow cytometry using a 488 nm laser (FACSCanto, BD Biosciences, San Jose, 

CA). The experiments were performed in triplicate. 

 

4.3.7 Confocal microscopy 

Cells were grown to 70% confluence in 24-well plates on Poly D-Lysine-coated glass 

coverslips in 10% RPMI. NP stock suspensions were sonicated in 2% RPMI for ~60 s using 

a bath sonicator. Cells were treated with 30 μg/mL QD:NPs or QD:(CPTP-NP)s in 2% RPMI 

for 24 h. Then, media was aspirated and cells were washed in pre-warmed (37 °C) HEPES 

buffered saline solution (HBSS). Next, HBSS was aspirated and the cells were incubated 

with HBSS containing 1/7,000 MitoTracker® Red, and 1/5,000 Hoechst dyes for 8 min. 

HBSS was aspirated and the cells were then washed two times with room temperature PBS 

and fixed with room temperature 4% PFA. The coverslips were mounted onto SuperFrost® 

Slides (Sigma) for confocal microscopy (Leica SP5 X MP confocal/multiphoton 

microscope). The experiments were performed in triplicate. 
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4.3.8 Cell viability by MTS assay 

Cells were grown to 70% confluence in 96-well plates in 10% RPMI. NP stock 

suspensions were sonicated in 2% RPMI for ~60 s using a bath sonicator. Old media on the 

cells was aspirated and replaced by 2% RPMI containing 30 μg/mL NPs or 10 μM soluble 

Mito-Apo C2. At 18 h, cells were challenged with 100 μM H2O2 (+/- challenge control). 

After a 6 h H2O2 challenge, 10 μL MTS dye was added to each well. 96-well plates were read 

1.5 h after adding the dye using a 96-well plate reader. The experiments were performed in 

triplicate. 

 

4.3.9 Cleaved caspase-3 quantification 

Cells were grown to 70% confluence in 6-well plates in 10% RPMI. NP stock 

suspensions were sonicated in 2% RPMI for ~60 s using a bath sonicator. Old media was 

aspirated and cells were treated with either soluble 10 μM Mito-Apo C2 or 30 μg/mL Mito-

Apo C2-encapsulated NPs. At 18 h, cells were challenged with 100 μM H2O2 (+/- challenge 

control). After 6 h H2O2 challenge, supernatant from each well was centrifuged in individual 

microcentrifuge tubes at 1,000 rpm for 5 min to collect floating cells. Adherent cells were 

detached by aspirating media and adding 0.5 mL TE for 2 min. TE was neutralized by adding 

1.0 mL 2% RPMI, and cells were centrifuged at 1,000 rpm for 5 min in corresponding tubes. 

Supernatant was aspirated and cells were rinsed with ice-cold PBS, followed by 

centrifugation at 1,000 rpm for 5 min. Supernatant was aspirated and 250 μL caspase buffer 

(50 mM HEPES, 10% sucrose, 0.1% CHAPS, 1 mM EDTA, 10 mM DTT) was added to 

each sample, vortexing to lyse cells. Samples were incubated at 37 °C for 20 min on a 

shaker. Samples were centrifuged at 13,200 rpm for 5 min before transferring 190 μL 
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supernatant from each sample to a 96 well plate. To each sample, 10 μL caspase-3 substrate 

was added. After incubating at 37 °C for one hour on a shaker, the fluorescence was 

quantified using a 96-well plate reader (ex: 380 nm, em: 460 nm). A NP only control was 

used for both NP and CPTP-NP remove fluorescent signal associated with NPs. The 

experiments were performed in triplicate. 

 

4.3.10 Statistical analysis 

Graphical data were statistically analyzed using a one or two-way ANOVA for 

multiple comparisons, or a student’s t-test for individual comparisons, on GraphPad Prism® 

software. Comparisons were marked for significance at p-values less than 0.05, 0.01 or 

0.001. 

 

4.4 Results 

4.4.1 Characterization of functionalized polymer 

Previous studies demonstrate that 20:80 CPH:SA molecular weights between 10-15 

kDa were suitable for synthesizing NPs [47]. Molecular weights for the polymer used in this 

study were confirmed to be in this range by 1H NMR. After bulk functionalization with 

CPTP, a small change in copolymer molecular weight was observed using GPC. 

Functionalization of CPTP was indicated by 1H NMR analysis, which showed the 

existence of phenyl group peaks representing CPTP after purification (δ 7.73-7.83 (15H, m), 

Figure 4.1 A). Simultaneously, a decrease in the non-functionalized methyl end-group (δ 

2.22 (3H, s)) was observed. The percent conjugation was determined by calculating the peak 

area ratio of CPTP to 20:80 CPH:SA copolymer peaks in a purified solution, and then back-
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calculating the molar ratio (with two moles of possible end-groups available for 

functionalization on each copolymer chain), leading to an estimated 45% functionalization of 

the polymer used in this study. 

Previous analysis of 20:80 CPH:SA copolymer by FTIR-ATR showed peaks from 

1700-1800 cm-1 indicative of SA-SA anhydride bonds [48]; further, peaks were present at 

2900 cm-1 indicative of methyl end-groups from the non-functionalized polymer. After 

functionalization with CPTP followed by polymer purification, a shift in the composition of 

anhydride bonds was observed in the 1700-1800 cm-1 range indicating a change in the 

proportion of anhydride bonds. Additionally, a decrease in the intensity of methyl group 

peaks was observed, indicating a change in the proportion of functional end-groups of the 

polymer (Fig. 4.1 B). Furthermore, new peaks were observed in the spectrum of the 

functionalized polymer at 1440 cm-1 and 1720 cm-1 representative of the targeting ligand, 

CPTP. Taken together, all of these methods demonstrated CPTP functionalization of the 

20:80 CPH:SA copolymer. 

 

4.4.2 Characterization of nanoparticles and drug release kinetics 

Table 4.1 lists the morphology, size, and zeta potential of the formulations 

synthesized for this study. All NP formulations were spherical and the sizes were within 

range of previously reported values, which demonstrated optimal cellular internalization [47]. 

Additionally, a release study with 5 wt% M:NPs showed a drug encapsulation efficiency of 

20%, with about one third of the drug being released from the NPs within the first day of 

incubation in PBS (Fig. 4.2). Studies with 0.2 wt% M:NPs and 0.2 wt% M:(CPTP-NP)s are 

currently underway to characterize release kinetics of the NP formulations used in this study. 
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4.4.3 Cytotoxicity and internalization in N27 cells 

NPs and CPTP-NPs were evaluated for potential cytotoxicity in the N27 cells. Up to a 

concentration of 30 μg/mL, neither formulation showed any detrimental effects on cell 

viability (Fig. 4.3). Next, differences in internalization capability of QD:NPs and QD:(CPTP-

NP)s in N27 neurons were evaluated using flow cytometry and confocal microscopy. The 

flow cytometric data indicated that QD:(CPTP-NP)s were internalized more efficiently than 

QD:NPs, with 37% of cells internalizing QD:(CPTP-NP)s and only 19% of cells 

internalizing QD:NPs (Fig. 4.4). Additionally, confocal microscopy of cells incubated with 

QD:NPs and QD:(CPTP-NP)s for 24 h confirmed neuronal internalization of both 

formulations (Fig. 4.5). 

 

4.4.4 Protection against H2O2 challenge in N27 cells 

The viability of N27 cells incubated with M:NPs or M:(CPTP-NP)s after H2O2 

challenge was evaluated to observe whether there were improvements in drug efficacy 

elicited by M:(CPTP-NP)s. It was found that after a 6 h H2O2 challenge, 0.2 wt% M:(CPTP-

NP)s improved protection against oxidative stress over 0.2 wt% M:NPs by an MTS assay 

(Fig. 4.6). Additionally, a caspase-3 assay was performed on cells treated with 0.2 wt% 

M:NPs and 0.2 wt% M:(CPTP-NP)s 18 h prior to a 6 h H2O2 challenge to further evaluate 

enhancement of protection elicited by M:(CPTP-NP)s. It was found that both M:NPs and 

M:(CPTP-NP)s sufficiently protected against H2O2 – induced toxicity after a 6 hour 

challenge (Fig. 4.7). This further emphasizes the dose-sparing properties of the M:(CPTP-

NP)s as observed in the MTS assay. 
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4.5 Discussion 

There is an urgent need to develop more effective therapeutic options for treatment of 

chemical exposure. Mito-Apo has demonstrated efficacy in protecting against oxidative 

stress both in vitro and in vivo [6,8,9,11]. However, some potential improvements that can be 

attained include sustained drug release to increase the bioavailability, and lowering the 

therapeutic dose to avoid systemic toxicity. In this work, we used a rat mesencephalic 

neuronal cell line to demonstrate that nano-carriers based on CPTP-functionalized 

polyanhydrides were internalized more effectively by the cells and protected the cells from 

H2O2 challenge in comparison with their non-functionalized nano-carrier counterparts. 

An important characteristic of CNS delivery platforms is the ability to target the 

complex hurdles impeding efficient drug protection. The development of a bulk 

functionalization method enables the conjugation of the targeting ligand to the polymer prior 

NP synthesis; after NP synthesis, CPTP will exist throughout the bulk of the NP, rather than 

just on the surface as is the case when NPs are functionalized with ligands [11].  Therefore, 

as the NP degrades, the CPTP will persist as part of the NPs, enabling prolonged targeting 

capability. This is particularly advantageous over surface functionalization methods of NPs, 

in which the targeting ligand is released immediately upon onset of degradation. 

The structural characteristics of the NPs were relatively unchanged after 

functionalization and no detrimental effects of the targeting ligand were observed during NP 

synthesis. Size and morphology of CPTP-NPs, with or without Mito-Apo or QDs, was 

unchanged after functionalization (Table 4.1). Additionally, studies comparing the release 

profiles of 5 wt% M:NPs and FA-functionalized 5 wt% M:NPs (M:(FA-NP)s) showed no 

change in drug EE of M:(FA-NP)s compared to M:NPs (Fig. 4.2), indicating that the bulk 
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functionalization method does not negatively impact the EE of Mito-Apo within 20:80 

CPH:SA NPs. It is expected that the 0.2 wt% M:NPs and 0.2 wt% M:(CPTP-NP)s used in 

this study will have a larger EE due to a smaller diffusion gradient forcing the drug out of the 

polymer matrix during NP synthesis, compared to 5 wt% M:NPs. Additionally, it is expected 

that 0.2 wt% M:(CPTP-NP)s will have a similar EE to 0.2 wt% M:NPs. Studies are currently 

underway to assess these hypotheses. 

The mitochondrial-targeting properties of TPP make it an excellent choice for 

improving delivery of antioxidants [6,41,49–62]. Incorporation of this cationic targeting 

ligand into NPs did not affect the biocompatibility of the NPs in N27 cells (Fig. 4.3), and a 

non-toxic concentration of 30 µg/mL NPs was therefore used in all the subsequent 

localization and efficacy studies. By incorporating TPP within this NP formulation, it was 

expected that cellular internalization via adsorptive-mediated endocytosis would be further 

enhanced. Flow cytometry was performed to evaluate this hypothesis. The CPTP-

functionalized formulation demonstrated enhanced cellular internalization compared to the 

NPs (Fig. 4.4). This enhanced targeting may be due to a higher affinity of the more positively 

charged CPTP-NPs for the negative neuronal membrane and therefore enhance adsorptive-

mediated endocytosis by non-specific electrostatic interaction [58,63]. It is also known that 

20:80 CPH:SA NPs may be internalized by non-specific, non-adsorptive mechanisms as well 

[33] (Chapter 3). 

Confocal microscopy was used to corroborate the internalization behavior observed 

with the flow cytometric analysis. After 24 h, both NPs and CPTP-NPs were localized 

around the cells (Fig. 4.5 A and B, respectively). This suggests that both NPs and CPTP-NPs 

are able to achieve rapid cellular entry in order to quickly deliver drug for immediate 



105 

 

protection against oxidative stress, as shown in the efficacy studies (Figs. 4.6 and 4.7) and 

supported by the burst release profile observed in the first few hours after incubation (Fig. 

4.2). This suggests that incorporating a cationic ligand with the negatively charged 20:80 

CPH:SA NPs may improve the affinity of the CPTP-NPs for the negatively charged 

mitochondrial membrane [64,65]. 

In addition to testing for enhanced neuronal internalization and mitochondrial co-

localization, the ability to enhance drug efficacy is important for therapeutic delivery 

platforms. The toxin H2O2 is widely used to test the efficacy of antioxidants, because it leads 

to the formation of dangerous superoxide radicals in the cell [11]. Therefore, H2O2 was used 

in this study to evaluate the ability of the NP formulations to enhance the protective 

capability of Mito-Apo in N27 cells. An added benefit of NPs is the ability to provide 

sustained release to protect the cells for a longer period of time than would administration of 

a large bolus of drug. After encapsulating Mito-Apo in both NPs and FA-NPs, functionalized 

in the same way as CPTP-NPs, the rate of drug release was observed to be zero-order over 

the first few days of release (Fig 4.2). This constant release rate may lead to increased local 

bioavailability around the site of the diseased neurons. The enhanced protection over soluble 

drug after the 6 h challenge by an MTS cell viability assay (Fig. 4.6) indicates that the 

sustained release properties enabled by these NP formulations increased the local 

bioavailability of the drug and helped lower oxidative stress over several hours. These in 

vitro results are promising initial steps towards translating these studies into animal models. 

To further evaluate the ability of CPTP-NPs to improve protection, a caspase-3 assay 

was performed to evaluate the amount of cell death [11,66–68]. After quantifying the amount 

of caspase-3 signal following H2O2 challenge, both NP formulations protected against 
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oxidative stress (Fig. 4.7). The EE of these 0.2% Mito-Apo-loaded NP formulations is 

expected to be of the order of 50-60% (studies are underway to measure the EE), indicating 

significantly less drug used compared to the soluble dose group. This observation 

demonstrates the dose-sparing properties of the bulk-functionalized polyanhydride NPs, in 

agreement with previous observations with surface-functionalized formulations [11]. 

 

4.6 Conclusions 

Using a NP platform based on biodegradable polyanhydrides for cellular 

internalization and sustained release of therapeutics, a novel bulk functionalization method 

was used to conjugate a derivative of TPP to 20:80 CPH:SA copolymer before NP synthesis. 

CPTP-NPs showed enhanced cellular internalization over NPs in a rat mesencephalic 

neuronal cell line. Additionally, Mito-Apo containing functionalized NP formulations 

showed enhanced efficacy in protecting the cells against H2O2, with a significantly lower 

therapeutic drug concentration than administering the drug solubly. Furthermore, bulk-

functionalizing TPP to 20:80 CPH:SA NPs may enhance neuronal membrane targeting and 

improve co-localization with the mitochondria in vivo. Therefore, it is a promising candidate 

for treatment of oxidative stress buildup in the brain. 
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4.10 Tables and Figures 

Table 4.1. Particle Characteristics. n=3 for size quantification and zeta potential 

measurements. Scale bar on images is 3 μm. 

NP 

Formulation 
Loading 

SEM 

photomicrographs 

Geometric 

Diameter 

(nm) 

Zeta 

Potential 

(mV) 

NP 

None 

 

295 ± 99 -18.3 

0.2% 

Mito-Apo 

 

306 ± 99 -15.9 

5% QD 

 

232 ± 68 -19.5 

 CPTP-NP 

None 

 

368 ± 109 -7.6 

0.2% 

Mito-Apo 

 

371 ± 105 -3.8 

5% QD 

 

314 ± 96 5.1 
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Figure 4.1. Characterization of CPTP- vs. non-functionalized 20:80 CPH:SA 

copolymer. (A) 1H NMR of CPTP- vs non-functionalized 20:80 CPH:SA copolymer. 

Appearance of the phenyl group (δ=7.73-7.83 (15H, m)) and decrease in the methyl 

functional group (δ=2.22 (3H, s)) in CPTP-polymer indicates functionalization. Percent 

functionalization was estimated by end-group analysis of purified polymer, by back-

calculating the molar ratio of CPTP to 20:80 CPH:SA. (B) FTIR-ATR spectroscopy of 

CPTP- vs non-functionalized 20:80 CPH:SA copolymer, after purification. Red arrows 

indicate the decrease in the relative peak height of methyl end-groups (2870 cm-1) and SA-

SA anhydride bonds (1740 cm-1). Blue arrows at 1440 cm-1 and 1720 cm-1 indicate the 

appearance of new peaks representing CPTP in the copolymer.

(A) 

(B) 
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Figure 4.2. Mito-Apo release kinetics of 5%-loaded NPs. The concentration of Mito-Apo 

released over time in M:NPs and M:(FA-NP)s was measured using HPLC (Agilent 

Technologies 1200) and the amount of Mito-Apo released at each time point was normalized 

by the total amount of Mito-Apo released (20% drug EE for both NP formulations). Error 

bars represent standard error of the mean (n=3). 

 

 

Figure 4.3. Biocompatibility of NPs and CPTP-NPs in N27 cells. NPs and CPTP-NPs at 

different concentrations as indicated were incubated with N27 cells in 2% RPMI for 24 h 

before adding 10 μL MTS dye to each well. Absorbance was measured after 1 h in MTS dye 

using a 96-well plate reader. Error bars represent the standard error of the mean (n=8). 
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Figure 4.4. Cellular internalization of QD:NPs and QD:(CPTP-NP)s by flow cytometric 

analysis. N27 cells were incubated with QD:NPs) or CPTP-NPs for 20 h in 2% RPMI. The 

6-well plates were then washed with PBS and cells were collected using a cell scraper. After 

centrifuging 1,000 rpm for 7 minutes, cells were fixed with PFA. Prior to analysis, cells were 

re-suspended in a 1% BSA buffer in glass test tubes. Fluorescence was measured using a 488 

nm laser, and cells were separated from debris based on morphology. Error bars represent the 

standard error of the mean (n=3). 

 

                

Figure 4.5. Cellular internalization of QD:NPs and QD:(CPTP-NP)s. Confocal 

microscopy of QD:NPs (A) and QD:(CPTP-NP)s (B) (green) incubated with cells for 24 h 

before staining for mitochondria (red) and nucleus (blue) and fixing. Internalization is 

confirmed by the existence of nanoparticles in plane with the cells both from a top-down 

view and in the cross section. Mitochondrial co-localization is represented by a yellow 

signal. Scale bar on images is 10 µm. Inset scale bar: 5 µm. 

(A) (B) 
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Figure 4.6. Protection against H2O2 – induced cell death in N27 neurons. After 

incubating cells for 18 h with either 30 µg/mL M:NPs, M:(CPTP-NP)s or soluble Mito-Apo 

(including +/- toxin challenge control), media was replaced with 2% RPMI containing 100 

μM H2O2 as well as the same concentration of M:NPs, M:(CPTP-NP)s or soluble Mito-Apo 

and cells were challenged for 6 h. After 6 h challenge, 10 µL MTS dye was added and 

absorbance was measured after 1.5 h of incubation with MTS dye at 490 nm using a 96 well 

plate reader. Error bars represent standard error of the mean (n=3). 

 

Figure 4.7. Protection against H2O2 – induced cell death in N27 neurons by cleaved 

caspase-3 quantification. After incubating cells for 18 h with either 30 µg/mL M:NPs, 

M:(CPTP-NP)s or 10 µM Mito-Apo (including +/- toxin challenge control), media was 

replaced with 2% RPMI containing 100 μM H2O2 as well as the same concentration of 

M:NPs, M:(CPTP-NP)s or soluble Mito-Apo for 6 h. After 6 h challenge, cells were 

collected using TE. Cells were lysed using a Caspase-3 buffer, and then supernatant from 

lysate was incubated with Caspase-3 substrate for 1 h before measuring fluorescence (em: 

380, ex: 460 nm) using a 96 well plate reader. Error bars represent standard error of the mean 

(n=3). 
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CHAPTER 5: CONCLUSIONS AND ONGOING/FUTURE WORK 

5.1 Conclusions 

Rapid treatment of oxidative stress using antioxidants is necessary to combat 

neurodegeneration due to chemical exposure and other causes. Drug-encapsulating nanoscale 

delivery platforms with conjugated targeting moieties can significantly improve drug efficacy for 

treatment of oxidative stress. The 20 mol% 1,6-bis(p-carboxyphenoxy)hexane (CPH), 80 mol% 

sebacic acid (SA; 20:80 CPH:SA) polyanhydride nanoparticle (NP) platform has demonstrated 

sustained release, dose-sparing and cellular internalization properties that make it promising for 

central nervous system (CNS) drug delivery [1–3].  

To effectively treat oxidative stress, a delivery platform should be able to effectively 

cross the blood-brain barrier (BBB), enable delivery to diseased neuron, and co-localize to the 

mitochondria (Chapter 2). To understand the BBB crossing capability of these NPs, 

internalization in both BBB endothelial cells and monocytes was evaluated using non-, surface-, 

and bulk-functionalized formulations using the targeting ligand, folic acid. The 20:80 CPH:SA 

NPs showed internalization by both the endothelial cells and the monocytes in this model; 

however, the targeting ligands did not improve internalization (Chapter 3). Then, to further test 

this platform, (3-carboxypropyl)triphenylphosphonium (CPTP) bulk-functionalized 20:80 

CPH:SA NPs (CPTP-NPs) were synthesized and evaluated for the ability to be internalized by 

neurons, co-localize to the mitochondria, and overall improve the protection against oxidative 

stress after encapsulating the antioxidant Mito-apocynin. These CPTP-NPs were proven to be 

effective on all of these measures (Chapter 4). Further optimization of this platform is necessary 

to fully take advantage of the capability of this promising platform. 
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5.2 Ongoing and Future Work 

To further optimize 20:80 CPH:SA NPs, they can be functionalized on the surface and in 

bulk simultaneously, with two different targeting ligands [2] (Chapters 3 and 4). A cascading, 

multiscale NP platform with bulk-conjugated moieties for targeting the neuron and mitochondria, 

and surface-conjugated moieties for targeting the BBB could significantly improve CNS delivery 

of therapeutics. This optimized platform would be tested using BBB and neuronal models, as 

described below. In vivo studies are then necessary to evaluate whether the developed NP 

platform can show this multiscale, cascading property and improve drug pharmacokinetics and 

pharmacodynamics for treatment of neurodegenerative disease. 

 

5.2.1 In vitro polyanhydride NP formulation optimization 

 To optimize this polyanhydride NP platform, an optimal BBB-targeting ligand is needed. 

One strategy could involve conjugating chemokines to the surface of the NPs. These proteins can 

stimulate a pathway in the brain that ultimately enhances the immune response, which in doing 

so leads to more immune cell recruitment into the brain [4]. As discussed, 20:80 CPH:SA NPs 

additionally show superior uptake, and subsequent release, by immune cells [3] (Chapter 3). 

Therefore, surface functionalizing these NPs with a chemokine could lead to enhanced local NP 

concentration near the site of inflammation in the brain. Alternatively, surfactants have 

demonstrated the ability to inhibit efflux pumps on BBB endothelial cells, and additionally 

increase cell membrane fluidity, and therefore could also be incorporated into the NP platform to 

improve brain localization [5]. After enhanced brain localization provided by the surface-

conjugated moiety, bulk-functionalization of NPs with a proven neuronal and mitochondrial 

targeting moiety such as CPTP could further enhance drug efficacy. Ultimately, platform 
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optimization using BBB and neuronal in vitro models would reveal a lead candidate for in vivo 

testing. 

 

5.2.2 In vivo biodistribution studies 

Internalization of NPs by BBB endothelial cells in vivo would prove significantly more 

challenging than for an in vitro BBB model. This necessitates an in vivo biodistribution study for 

the lead NP candidate. Brain bioavailability could be assessed at several different time points to 

generate a pharmacokinetic profile. Additionally, as mentioned in Chapter 2, the route of 

delivery plays an important role in vivo. Therefore, the choice between intranasal and 

intravenous delivery routes must be made for this study. Finally, as pathogenesis can play a role 

in BBB permeability, the study should test localization in both diseased and healthy mice. 

 

5.2.3 In vivo protection studies 

An in vivo protection study would evaluate whether the lead candidate can significantly 

improve drug pharmacodynamics. Parkinson’s disease-based neurodegenerative models such as 

the MitoPark model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model could 

be considered for this study [6,7]. Alternatively, protection against irreversible neuronal damage 

after chemical exposure could also be evaluated with this platform in vivo by challenging mice 

with a toxic agent and evaluating protection afterwards using several behavioral characterization 

measures [8]. Overall, the optimization of this cascading, multiscale platform could significantly 

improve drug efficacy for neurodegenerative disease treatment, and would be evaluated by this 

study. 
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