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ABSTRACT

As cyber-physical systems increase in both complexity and criticality, formal methods have

gained traction for design-time verification of safety properties. A lightweight formal method,

runtime verification (RV), embeds checks necessary for safety-critical system health management;

however, these techniques have been slow to appear in practice despite repeated calls by both

industry and academia to leverage them. Additionally, the state-of-the-art in RV lacks a best

practice approach when a deployed system requires increased flexibility due to a change in mission,

or in response to an emergent condition not accounted for at design time.

Human-robot interaction necessitates stringent safety guarantees to protect humans sharing

the workspace, particularly in hazardous environments. For example, Robonaut2 (R2) developed

an emergent fault while deployed to the International Space Station. Possibly-inaccurate actuator

readings trigger the R2 safety system, preventing further motion of a joint until a ground-control

operator determines the root-cause and initiates proper corrective action. Operator time is scarce

and expensive; when waiting, R2 is an obstacle instead of an asset.

We adapt the Realizable, Responsive, Unobtrusive Unit (R2U2) RV framework for resource-

constrained environments. We retrofit the R2 motor controller, embedding R2U2 within the re-

maining resources of the Field-Programmable Gate Array (FPGA) controlling the joint actuator.

We add online, stream-based, real-time system health monitoring in a provably unobtrusive way

that does not interfere with the control of the joint. We design and embed formal temporal logic

specifications that disambiguate the emergent faults and enable automated corrective actions. We

overview the challenges and techniques for formally specifying behaviors of an existing command

and data bus. We present our specification debugging, validation, and refinement steps. We demon-

strate success in the Robonaut2 case study, then detail effective techniques and lessons learned from

adding RV with real-time fault disambiguation under the constraints of a deployed system.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Software systems have become prevalent in systems that blur traditional delineations between

physical and digital processes. From the rapid innovation of automated vehicles, to the presence

of connected “Internet of Things” (IoT) technology in the microcontrollers of common consumer

goods, the barriers between software errors and physical malfunction have grown imperceptibly

thin. Modern engineering now concerns itself with cyber-physical systems, wherein these tightly

knit domains are treated holistically. Unfortunately, our processes for the design, verification and

control of these systems is lacking. [1]

In “Safeware”, Leveson details how increasing complexity and prevalence of software systems

have lead to increased accidents and defects. Leveson explores how engineering techniques used

to handle risk and failure are not sufficient in software systems, and how in some cases their use

can exacerbate the inadequacies. An enumerated list of myths about software systems and analysis

of the failures of traditional approaches are supplemented with real-world events where the most

unlikely accidents were caused by supposedly safe systems. [2] One of the main identified sources of

this regression in engineering integrity comes form the ever increasing complexity of these systems

paired with their continued abstraction and accelerated rate of development. Because of this,

software glitches are a component of daily life that is accepted at a rate that would never pass

muster for physical systems.

On the other front, advances in automation technology has lead to a renaissance in robotics,

increased reliance on complex systems for health-care, and the explosion of unmanned vehicles like

drones and cars [3]. This new breed of safety-critical systems are in double jeopardy from the

previously mentioned deficiencies in software system safety analysis and the higher-level at which

these systems are designed and configured[2].
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The field of formal methods has seen success in securing cyber-physical systems, but adoption

has been limited by the high cost and diminished speed of development for programs implementing

formal techniques from the clean-sheet design. In addition, the shortage of skilled practitioners

further constrains even projects willing and able to pay the cost.

In response to the inflexibility (and often, intractability) of traditional formal methods like

model checking and automated theorem proving, lightweight formal methods were developed that

trade away guarantees of existing formal techniques to gain advantages in specific use-cases. In

2001 the practice of trading-off the complete reasoning over all potential system executions for

reasoning over a singular system trace was defined at a new workshop, eponymously named runtime

verification (RV). [4]

Runtime verification based monitors exemplify qualities necessary for safety-critical system

health management, and can even provide some of the desirable capabilities of learning based

systems without the non-determinism or unjustifiable ‘reasoning’ [5]. The foresight at design-time

is also finite; RV can be applied to contingencies that no amount of off-line analysis can address.

However, these techniques have been slow to appear in practice despite repeated calls by both

industry and academia to leverage them [3], [5]–[7].

Runtime verification provides an ideal platform for system-health management (SHM), which

expands on traditional caution and warning systems. Simple logging and monitoring systems are

limited to recording the state of the system, but for CPS diagnostics a list of parameters out of

nominal range may not be sufficient to determine root cause or suggest corrective action. A SHM

solution provides insight and awareness of the system behavior. Knowledge of the interconnected

nature of the system and behavior over time is leveraged to contextualize anomalies, provide chain-

of-failure tracking, and report the status of system requirements.

Using RV to build a SHM platform provides a trifecta of benefits: increased autonomy, assisting

operators in complex scenarios and replacing them when intervention is not feasible; improved

robustness, without undercutting traditional safety systems; and incorporation of temporal context,

without a large increase in data generation.
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1.2 Project Background

In the fall of 2017, the Laboratory for Temporal Logic at Iowa State University was approached

by the Robotics Systems Technology Branch at NASA Johnson Space Center (JSC). They had

identified a reoccurring fault in a robotic system and believed the Realizable, Responsive, Unobtru-

sive Unit (R2U2) framework could be adapted for detection, without invalidating existing safety

systems. The following January I embedded within the team at JSC to learn the system architec-

ture, design requirements, and fault behavior directly from the developers and operators. Upon

returning to Iowa State, work continued using test hardware loaned by JSC.

1.2.1 Robonaut2

Robonaut2 is a dexterous humanoid robot that has been deployed to the International Space

Station since 2012 [8]. Originally only a torso with a head and arms, it was upgraded with legs

in 2014. These legs are comprised of serial elastic actuators wherein a torsional spring is placed

within the joint connecting the motor and the load [9]. Using a high-fidelity mass-model of the

robot and precise measurement of joint displacement, the system can command motion with spec-

ified impedance, maintaining precision while tightly bounding force applied by the system on the

environment [10]. This enables the system to undertake tasks with a near-human level of dexterity

while remaining safe when in confined spaces with astronauts.

Upon deployment, a new failure mode was observed in these joints wherein an Absolute Position

Sensor (APS) may initialize to an incorrect value, biased approximately 60 ◦ from truth. Currently,

mitigation requires a human operator: either ground support, subject to signal coverage; or by an

astronaut whose time is limited, expensive, and difficult to schedule on short notice. Triggering

automatic corrective action without compromising existing safety guarantees would increase the

availability and resilience of the system.
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1.2.2 Absolute Position Sensor

The series elastic joints in Robonaut2’s legs use two Netzer APSs1 each, one on each side of the

torsional spring, to instrument both position and – through displacement – joint force. The Netzer

Electric Encoder™APS uses a modulated electric field reflected by a dielectric rotor to generate a

signal directly proportional to the sin and cos of the rotation angle.

The sensor has a “coarse” positioning channel with 3 cycles per revolution and is further sub-

divided by the “fine” position channel with 64 cycles per revolution. The number of cycles per

revolution in each channel is selected such that they do not have a common denominator, and

therefore each angle of the mechanism has an unambiguous combination of the four output values

(‘coarse’ sin and cos as well as ‘fine’ sin and cos.) At initialization, both the coarse and fine channels

are read to determine the absolute angular position of the sensor without movement. Afterwards,

only the fine channel is tracked to provide updated position information.

After considerable testing and deployment to the International Space Station, a new failure

mode was observed in these sensors. During initialization, an incorrect value was reported, with a

measurement bias of 2π
3 ≈ 2.1 rad observed. Based on the bias of the erroneous value, the source of

the fault is suspected to be incorrect selection of the coarse channel position by the APS. Since after

initialization only the fine channel is tracked, if this error occurs the sensor will read erroneously

until re-initialized.

1.2.3 Robonaut2 Safety System

To comply with exacting safety standards on human spaceflight vessels, Robonaut2 has a multi-

layered, two-fault tolerant safety system and several operational capabilities to reduce risk to its

surroundings [11]. At the lowest level of this architecture, the embedded motor controllers run 4

nested control loops at 5 kHz each. One of the control loops tracks joint torque and computes the

current state by measuring the spring displacement [10]. When an actuator is brought out of safe

mode, a cascade of invariant, parameter, and system health checks are made. In the fault condition,
1Model: DS-90-64-SH-0 http://netzerprecision.com/products/ds-90/

http://netzerprecision.com/products/ds-90/


5

these checks fail due to perceived high torque loading. While this system works as intended, the

detected offset is well beyond the hard-stop of the joint, yet this is not treated as spurious error.

Because of this, manual override of the motion control system is required, making recovery from

this state difficult and expensive.

1.2.4 Constraints

Inherent in the challenge of adding supplemental health management to an existing system

is the limited available resources and lack of flexibility in the system architecture. The motor

controllers are composed of a paired MicroController Unit (MCU) and Field Programmable Gate

Array (FPGA) where the MCU runs the high-speed nested control loops and the FPGA handles

connectivity between the robot control bus, Robonet, and components of the joint. Only a subset of

the full information collected by the motor controller is passed to Robonet. To increase the amount

of data available for diagnostic reasoning, and to minimize the additional information to be passed

up the control bus, the Robonaut2 team requested that our fault disambiguation solution run on

the joint controller directly. Also, to maintain the certification for the control loops on the MCU,

we were further restricted to using only the motor controller FPGA. The resources on the FPGA

are limited to what unallocated fabric remains, and the addition of our monitor cannot impact the

timing of the existing system.

An additional challenge was that the fault was only recently replicated in a controlled setting. At

the beginning of this project, only limited debug information from the ISS Robonaut2 was available.

Consequently, the initial fault specification was derived from a plain-language description of the

Robonaut2 team’s diagnosis of the underlying fault mechanics.

1.2.5 Goal

Disambiguating which APS is faulting, enables the proper mitigative action to trigger automat-

ically – increasing system robustness without invalidating the guarantees of the safety system. We

use runtime verification to construct a system health management platform hosted on the spare
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computational resources in the embedded joint. Using the history of the sensor values, the faulting

APS is identified.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews the current state-of-the-

art of online runtime verification as well as published efforts closest in objective to this effort. Work

on the Robonaut2 fault case is split between chapter 3, which details the addition of a RV system

health monitor to the Robonaut2 platform, and chapter 4 which details the design of a specification

for the monitoring system embedded in the previous chapter. Chapter 5 describes the results of

the R2 case study, including the final R2U2 configuration used. Finally, chapter 6 discusses the

results and contributions, and explores future work.
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CHAPTER 2. RELATED WORK

2.1 System Health Management and Cyber-Physical Systems

Partially a spin-off of the Integrated Vehicle Health Management (IVHM) programs of the 1990s

and early 2000’s[12], Software Health Management (SWHM) concerns the “automated detection,

diagnosis, prediction, and mitigation of adverse events” [13] and was identified as a separate field in

2011. Quickly, relevant techniques were adopted from the related fields of Fault Detection Isolation

Recovery (FDIR), Verification and Validation (V&V), and Integrated System Health Management

(ISHM). [5]

Highly integrated application like spacecraft [14] took the SWHM concept full-circle as a health

management solution for the whole vehicle system. Feeding back in on this cycle, there are now

calls for IVHM programs to integrate the reasoning techniques championed by the SWHM move-

ment. [15] All these closely-related lines of inquiry outline the general case of SHM. As CPS become

increasingly complex, the various domain specif flavors of health management (like IVHM, FDIR,

and ISHM) are converging. [16]

2.2 Runtime Verification

For constructing SHM systems from RV systems, only a subset of the wider field is applicable.

To meet the needs of CPS SHM [5] we want RV that is online and stream-based. [17]

Online runtime verifiers operate alongside the systems they are verifying. To those outside the

formal methods community, this would be the intuitive definition of RV itself, but a majority of the

work in RV has been on offline methods the look at the logs of a system execution retroactively. [18]

Stream-based RV produces output, or verdicts, on the specifications throughout the run of the

system, in opposition to a single judgment at the end of the system execution. [19]
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2.2.1 Specification Language

The language used to specify the behavior being verified will determine the ease of formalizing

the system requirements, and what implementations are available to monitor them. A verity of

languages have been developed for use in RV, but most are related in some way to Linear Temporal

Logic. [20]

In 1977, Amir Pnueli introduced Linear Temporal Logic (LTL) for use in formal method veri-

fication of computer programs[21]. LTL takes the basics of propositional logic and adds operators

to contextualize time. This enabled the description of properties for formal methods. In formal

verification, two common types of properties are safety (something bad won‘t happen), and liveness

(the goal will eventually be reached) [22]. Without the vocabulary to describe the propositions over

time, these basic system concepts could not be expressed.

LTL logic of timelines, and since operational concepts are also described with timelines, LTL

and it’s derivative languages are well suited for mission-based specification for vehicle systems and

CPS. [1]

2.3 Prior Work

Most RV systems are designed to be incorporated into a system from design-time and therefore

have inflexible requirements on the target system. [23] Overall, various components of the require-

ments of this project have been seen in isolation – but never combined in the manner require for

use on R2.

Kane et al applied RV as a SHM solution to an autonomous truck, and utilized a bus observer

rather than instrumented code – however, the monitor was software, not hardware based. [24] LOLA

is a stream-based RV monitor designed for mission systems, but is also a software runtime. [25]

A majority of the RV tools available target software systems [26] and require modification of

the source to produce an instrumented binary. RV monitoring in hardware has been demonstrated

by several tools [27], [28], however they all require resynthesis of the monitor when changing spec-

ification. This makes the flight certification a prohibitive burden for their deployment.
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R2U2 was designed from the ground-up for unobtrusive observation and SHM of unmanned

flight systems from with hardware of software implementations available. [29], [30] The combination

of flight-heritage and runtime configurable specification assist in meeting the specific demands of

the R2 project.
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CHAPTER 3. EMBEDDING RUNTIME VERIFICATION

3.1 Runtime Verification for System Health Management

The fault’s suspected mechanism of action and testimonial from operators who had worked

with the problem before indicated that the temporal context of the system was vita to selecting

the correct corrective action. By comparing the system in fault-state to it’s last known working

configuration a heath monitor can use this temporal context to identify the erroneous sensor. Our

approach embeds a runtime monitor to reason over the trace of the system bus in real time with

temporal logic. By capturing the causal relations between the signals, we can relate the relative

changes in sensor agreement to disambiguate the fault.

3.1.1 R2U2

The Realizable, Responsive, Unobtrusive Unit (R2U2) is an online, real-time, stream based RV

framework providing SHM to CPS like autonomous aircraft. [29], [30]

R2U2’s eponymous design goals coincide with the constraints of a robotics system with strong

safety guarantees:

Realizable – Proven framework with adaptable implementations in hardware and software

Responsive – Online, real-time, stream-based runtime verification

Unobtrusive – No interference with host system operation, certification or timing

Unit – Modular and self-contained

3.1.1.1 Features

R2U2 has several layers of reasoning available; however for this project, only two are required:

signal processing, and temporal observation.
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The signal processing layer contains facilities for interpretation, conditioning and comparison of

arbitrary attached signals. The key component of this layer is the boolean checker, used to convert

the incoming signals into boolean variable for use by the 2nd layer.

The observer layer uses the boolean variables produced by the signal processing layer as inputs

to a tree of temporal observers capable of evaluating temporal logical specifications in a number

of logics. Logical specification is coved in chapter 4. The observation tree is stored in a run-time

configurable program memory and can therefore be modified without resynthesizing the FPGA.

This eases certification and allows a small realization of R2U2 to be used for multiple purposes

throughout a mission by reconfiguration.

3.1.1.2 Output

R2U2 has two output modes, synchronous and asynchronous. In synchronous mode R2U2

returns a verdict about each specification it monitors at every time step. A verdict denotes that

at the listed time, the temporal logic specification was either true, false, or is unknown due to

insufficient information.

In asynchronous mode, R2U2 returns all specification verdicts eagerly, including early failure

or acceptance[29]. This is the mode used for the R2 project as we only need to be notified when

our fault conditions are tripped, but when they are we want to be informed as soon as possible.

3.1.1.3 Nomenclature

R2U2 is a general framework with multiple implementations. An implementation of R2U2 is

the source of an R2U2 reasoning engine and may be written in a software or hardware language like

C or VHDL. An implementation is combined with the design-time configuration which consist of

additional information needed by the implementation to be hosted on a given platform. Common

design-time configuration options include compiler settings for software implementations or vendor

dependent intrinsics for hardware implementations. Combining the design-time configuration with

the implementation, a runnable R2U2 engine for a platform, called a unit, can be generated. R2U2
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units are runtime reconfigurable and the runtime configuration is the set of specification settings

to be reasoned over. There might be different configuration sets for various mission phases or

system modes contained in the runtime configuration. All together, the design-time and runtime

configuration, combined with an implementation constitute a deployment of R2U2 and contain the

requisite information to reproduce an identical monitoring system.

A specific deployment of R2U2 may have some otherwise runtime configurable options hard-

coded at design time depending on the platform needs and certification requirements.

3.2 Target Platform Architecture

In accordance with the requirements of the Robonaut2 team, any solution must be hosted at

the embedded joint controller. Each leg actuator is locally controlled by a MC-30 motor controller

that connects to the Robonet command & control bus. High level planning is done by the flight

computers, which do not have hard real-time deadlines. The resulting command is written to the

Robonet controller which acts as a gateway into the real-time domain of the robot.

Robonet uses a request-reply communications link and a schedule to synchronize a shared

memory space[31]. The Robonet head-node reads data values from the network of motor controllers,

and writes data back to them, on a round-robin cycle. Under this scheme, each embedded joint

controller only needs storage space to mirror memory values it reads or writes, ignoring most of the

shared address space entirely. The resulting system ends up functionally equivalent to a pub-sub

key-value store with real-time guarantees.

The MC-30 motor controllers consists of an Actel ©ProASIC3L FPGA1 and a Texas Instru-

ment ©Hercules 2 ARM Cortex-R4F Microcontroller. The FPGA model is targeted at the aerospace/de-

fense by the vendor with selling points of relatively high radiation tolerance (though, it is not a

“rad hard” product) and “instant-on” (no programming delay on power-on) operation. The micro-

controller used is designed for safety-critical operation with features like error corrected memory

and two cores running the same code for error detection.
1Model: M1A3P1000L
2Model: TMS570LS
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The existing flight configuration routes all sensors, actuator control, and communications through

the FPGA while the Microcontroller runs a high-rate model-based control algorithm[31]. In nom-

inal operation, the Robonet IP on the FPGA receives a write to a memory register used by the

MCU. Depending on the command received, the MCU can provide position, velocity, or impedance

control of the actuator. Sensor values, preprocessed by the FPGA, are provided to the MCU as

parameters for the control calculations. The resulting actuator command is passed back through

the FPGA to the motor control circuitry on the MC-30.

The nature of the certification process dictates that R2U2 be resident on the FPGA. This is an

ideal location; the FPGA acts at a nexus for all the information in the MC-30 controller. Figure

3.1 shows the initial desired architecture in this system. Using a serial debug port attached to the

FPGA, specifications can be dynamically loaded on R2U2 and the returned verdicts captured for

analysis. Since the FPGA acts as a nexus for all of the actuator’s sensors, the observer can tie

directly into the available data – unobtrusively.

In traditional design-cycles, an FPGA must be selected before the exact size required is known.

Similar to the iterative process of sizing microcontroller memory, intentional over-provisioning is

used to mitigate the risk of exhausting all the available resources later in the design process. If

a product goes into mass-production, the size of the FPGA may be adjusted after the design is

frozen to reduce the unit cost, but on low volume projects like Robonaut2 the re-work of hardware

elements and validation required to switch components outweigh the benefits. The end result is

spare FPGA logic fabric on most embedded systems that we hope to leverage for the new SHM.

3.3 Embedding Challenges

3.3.1 Realizable: Resource Utilization

By definition, utilizing the spare resources in an existing design is a constrained writing exercise.

To begin adapting R2U2 to the Robonaut2 platform, the resource usage of the current flight code

was analyzed. For reproducibility, Appendix A lists the build procedure.
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The current version of the vendor synthesis software3 was installed and used to synthesize the

current version 4 of the flight software with the relevant communications IP 5. Table 3.1 lists the

consumable resources on the FPGA and the usage rates by the base flight code. Some values of

note: the “CORE” element is the general logic fabric of the FPGA, and about half of it is used

by the base design; the existing NASA flight code utilizes the only Phased Locked Loop (PLL) so

R2U2 will need to tie into an existing clock-line; finally, only 2 of the 32 available RAM blocks are

utilized – this becomes critical for embedding R2U2.
3Microsemi Libero SoC Version: 11.8 SP3 (02/2018) on Windows 10 Pro 64-bit (build: 1803)
4Repository: robonaut-2-embedded/turbo_fpga commit: 28748dc3862d0be2bf71fa60ebf336974eca6389
5Repository: robonaut-2-embedded/robonet_ip commit: 33ea33f44ce839a9e6ce0951c157ab1707bef228
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Table 3.1 MC-30 FPGA Resource Usage — As-Flown

Element Used Total % Used
CORE 12582 24576 (51.20%)

IO (W/ clocks) 70 300 (23.33%)

Differential IO 0 74 (0.00%)

GLOBAL (Chip+Quadrant) 6 18 (33.33%)

PLL 1 1 (100.00%)

RAM/FIFO 2 32 (6.25%)

Low Static ICC 0 1 (0.00%)

FlashROM 1 1 (100.00%)

User JTAG 0 1 (0.00%)

The first test performed was to add the R2U2 hardware description into the project and resyn-

thesize. After an unusually long delay, the tool chain reported failure to place and route the logic

network on the selected part. The culprit was Block-RAM (BRAM) usage. BRAM is an FPGA

resource used for data storage and the R2U2 implementation required much more than was avail-

able. To compensate for the shortage, the synthesis tool attempted to build storage units out of

other logic resources. This is not an efficient conversion, and was the reason for the long processing

time.

Looking at the architecture in Figure 3.2 of R2U2 on an FPGA explains the memory require-

ments. To enable dynamic reconfiguration of the observer without resynthesis – or recertification –

of the hardware, R2U2 makes use of BRAM for instruction memory, variable memory and a variety

of queues. This design provides the flexibility to change the observer specification at run-time

without re-synthesizing the FPGA by reloading the instruction memory.

The required BRAM size for an R2U2 unit is a function of the max formula size, queue depth,

and the time stamp width. Practically, these correlate to: how many specifications you can monitor;

how complex the specifications can be; and over how long a period of time the specifications can

reasons over. The exact impacts of these factors is complex but deterministic and has motivated

work in the design-time calculation of precise resource needs, or the capability available for a given

BRAM size6.
6Pei Zhang, et. al. “Formal Specification Encoding Under Platform Resource Constraints” Under submission
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Using expectations from the R2 team about the time-scale over which they want to reason, a

suitable queue depth setting was calculated. Consulting with the R2 team, a conservative estimate

of the timestamps length required and the known number of free BRAMS was used to reduce the

design space. This resizing was done primarily by expert judgment in this case as the initial goal

was only to get a correctly synthesized R2U2 unit on the MC-30 FPGA.

To test the resource requirements of various R2U2 design parameters, a synthesis project without

the MC-30 driver was built. In Table 3.2, the core logic and BRAM usage of the stand-alone MC-

30 driver and BRAM-reduced R2U2 implementations are expressed in terms of percentage of chip
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resources. The final column is an estimate of the requirements of the combined design as ideally

they would sit side-by-side on the FPGA without impacting each-other.

Table 3.2 MC-30 and R2U2 Independent FPGA Resource Usage

Element MC-30 R2U2 R2U2 + MC-30 (Est.)
CORE (51.20%) (36.32%) (88.20%)

RAM/FIFO (6.25%) (78.13%) (84.38%)

A final synthesis run of the combined R2U2/MC-30 hardware design yields the resource utiliza-

tion in Table 3.3. The BRAM usage was purely additive as expected, however the core resource

usage was below estimate. This is likely due to optimizations made by the synthesis tool-chain, how-

ever it also indicates that the R2U2 observer is more tightly integrated with the MC-30 structures.

While it may be possible to force the synthesis to separate the designs more strongly, the resulting

design was retained. Because it is impossible to fully separate R2U2 from the MC-30 driver due

to the level at which they are connected, validation and verification of a more segmented design

would be just as rigorous as a (slightly) more integrated one. While this satisfies the requirements

for this project, it is entirely possible to further segment R2U2 in application that require it.

Table 3.3 MC-30 FPGA Resource Usage — With BRAM Reduced R2U2

Element Used Total % Used
CORE 19614 24576 (79.81%)

IO (W/ clocks) 71 300 (23.67%)

Differential IO 0 74 (0.00%)

GLOBAL (Chip+Quadrant) 6 18 (33.33%)

PLL 1 1 (100.00%)

RAM/FIFO 27 32 (84.38%)

Low Static ICC 0 1 (0.00%)

FlashROM 1 1 (100.00%)

User JTAG 0 1 (0.00%)

With the tuning of the memory usage parameters, R2U2 is fully realizable on the space resources

of the FPGA. However, the unobtrusive and responsive claims must be validated.
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3.3.2 Responsive & Unobtrusive: Timing Compliance

In keeping with the R2U2 tenet of unobtrusiveness, the addition of the monitor must not impact

the timing of the existing system. For FPGA designs, timing analysis is the measure of how long

is needed for the outputs to change after then inputs change. While a number of factors go into

timing analysis of FPGAs, modern synthesis tools are designed to allow the setup times to be

violated first if all requirements cannot be satisfied. The value of the setup time as an intentional

design flaw is that it can be corrected by adjusting the clock rate. Where as a hold-path or clock

skew timing error will prevent an FPGA design from ever working correctly, a setup time violation

will come with a satisfiable clock rate. For example, the timing analysis for a design attempting

to run on a 10 MHz clock might indicate that a setup time violation occurred, and that it would

require 9.5 MHz cycles to meet timing. In this case, the designer could reduce the clock rate to

9.5 MHz and the design would work as intended. If the required clock is rate fixed by some design

parameter such as a communications bus or mission requirement, then the design would need to

be reworked to ease the propagation delay responsible for the long setup time.

The results of a timing analysis for the MC-30/R2U2 design is shown in Table 3.4. This design

runs R2U2 of the 10 MHz clock and instruments the MC-30 sensors as described in section 3.3.3. In

the table, each row is one of the main clock lines in the design. For each clock, there is a requested

and an estimated clock rate. As long as the estimated clock rate is higher than the requested clock

rate, the design should function as expected. Unfortunately in the current configuration, sCLK_50

cannot be satisfied. The max rate the timing analysis anticipates the 50 MHz clock line to be

capable of satisfying is only 32.8 MHz.

Table 3.4 MC-30 and R2U2 FPGA Timing Slack

Starting Clock Req. Freq. Est. Freq.
sCLK_10 10.0 MHz 17.6 MHz
sCLK_50 50.0 MHz 32.8 MHz
sCLK_50_90d 50.0 MHz 65.9 MHz
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The impact on the 50 MHz clock is alarming but confusing. R2U2 is tied to the 10 MHz

clock (the clock-rate of the Robonet bus) and therefore should have little to no impact on the 50

Mhz domain. Further investigation into the dynamics of the MC-30 clock domain discovered that

even the unmodified flight code is unable to make timing. Table 3.5 shows the clock slack in the

original flight code. Since this analysis would need to have been satisfied before flight, this result

is surprising.

Table 3.5 MC-30 Flight Code FPGA Timing Slack

Starting Clock Req. Freq. Est. Freq.
sCLK_10 10.0 MHz 22.5 MHz
sCLK_50 50.0 MHz 48.0 MHz
sCLK_50_90d 50.0 MHz 65.9 MHz

In looking for an explanation for this discrepancy, the only difference from the flight build found

was the usage of a different version of the synthesis software. The vendor no longer offers that older

version of the tool-chain, and no longer issues the expiring and node-locked licenses, so it was not

possible to confirm with a build on the original version. This calls into question the validity of both

the original and the current timing analysis.

Investigation of the version differences revealed that a set of false path annotations were used by

the flight code build and were being ignored by the updated build tool. The signal paths through

the FPGA used to compute the timing compliance are detected automatically. If a signal path is

possible, but will never occur in operation it is a false path. For FPGA designs like the sensor

interfaces and Robonet communications node, it is common for many of these false paths to exist

as the possible inputs are limited by the external devices or protocols. If one of these false paths is

very long or slow, it can be the source of a timing error in an otherwise compliment and functional

design. The existing false path annotations were ignored for two reasons: the naming scheme used

by the synthesis tool had changed, so it no longer referred to valid components of the design; and

the syntax for the annotations themselves had changed so the tool was not attempting to read them.

The existence of these annotations do support the theory that the timing analysis is incorrect and



20

false paths exist in the design. These would need to be located and marked to get an accurate

timing report. This is further supported by the disparate clock impact that R2U2 had on the 50

MHz clock when the bulk of the unit’s logic is in the 10 MHz clock domain.

Because of the doubt surrounding the timing analysis, a motor controller was loaded with

the combined MC-30/R2U2 build and used to run a bench-top test rig. All tests passed and no

anomalous bus behavior was detected. The decision to continue to the next phase of integration

was made on this basis.

Additional options exist for bringing the timing within bounds. The R2U2 implementation is

currently written for readability and was originally targeted at a different FPGA family. Optimiza-

tions, both general and deployment specific, can easily be made to reduce the propagation delay.

The current serial communications module used by the debug port is one of the largest drags on

R2U2 timing constraints. This becomes unnecessary after the R2 unit is integrated with Robonet

for configuration as well as verdict return. The Robonet implementation itself is also not optimized

by the R2 team’s own admission – it met timing and underutilized the available resources there

was no previous motivation to do so. Also, we suspected there are false paths in the design that

could be annotated for the timing analysis package to consider.

3.3.3 Instrumentation

During initial synthesis trials on the MC-30 FPGA, R2U2 did not connect to the Robonet bus

in any way. This separation of concerns allowed focus on the realization of R2U2 in the constrained

environment. These test variants of the SHM tool utilized the same debug serial port that loaded

specifications to read data. By sending test specifications and data with known solutions, the

R2U2 implementation can be tested for correctness while the impact on R2 is observed. With a

working version of the MC-30 firmware and R2U2 successfully hosted simultaneously, a method of

connecting the sensor values to the reasoning unit is required.

The initial plan was to tap the signals before they hit the preprocessing stages of the MC-

30 FPGA design, but this was quickly abandoned despite the minimal impact on the existing
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functionality. The format of the raw signals were wildly inconsistent and would have required the

duplication of the same pre-processing steps, wasting valueable FPGA real-estate. By finding a

tie-in point behind the battle-tested preprocessing stages, the values are consistently formatted,

usefully conditioned, and helpful derived values like rate-of-change are computed.

Since all relevant sensors have their values synced over Robonet, the values are placed in a

reserved memory location on the FPGA. The Robonet IP has existing facilities for arbitrated

reading from this memory. The in-built Robonet arbitrated read will eliminate an entire class

of concurrent memory access errors, without adding additional logic to handle this challenging

application. A trade-off to this approach is that R2U2 loses access to raw signal information

and can only select data that is synced to the flight-computer over Robonet. This removes the

potential for extra visibility into the joint beyond what the other Robonet nodes can see. However,

it is a win for system flexibility as the R2U2 unit will not need a custom synthesized tie-in to

each joint peripheral sensor. The Robonet node approach also provides stronger guarantees about

unobtrusiveness by leveraging an existing system.

3.4 Runtime Monitoring

The architecture of the final MC-30/R2U2 build is detailed in Figure 3.3. It is noteworthy that

R2U2 sits beside the existing system, only intersecting at the shared memory and using a unused

debug port for loading.

With this in place, reasoning over bus values can begin. The stacked traces in Figure 3.4 show

the Robonet bus values above the output from the R2U2 reasoning engine. Robonet bus values for

the joint encoder position are reported in radians by the red line, while the torque on the joint is

reported in Newton-meters by the gold line. Over the course of the roughly 3.5 minute sample, the

joint is commanded to move and hold at various radial positions while resistance to the motion is

provided sporadicly by the operator.

The lower timeline of Figure 3.4 displays the verdicts of the specifications listed in Table 3.6.

A deeper overview of R2U2 specifications are given in chapter 4 but the essential meaning of
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each sample is given here. The first two specifications, a0 and a1 are boolean checkers in the signal

processing layer, determining if a value read from Robonet meets a arithmetic criteria. Specification

a2 is basic propositional logic on the previous booleans. Temporal logic is utilized in specifications

a3 and a4. The diamond shape in a3 is the eventually operator and with it’s time-bound means

that to be true, it’s argument (a2 in this case) must be true within the next 10 time steps. The

final specification is significantly more complex and was only used to verify the operation of the

until operator.
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Table 3.6 Sample R2U2 on MC-30 specifications

Name Formula Meaning
a0 EncoderPosition > 1 Encoder position above 1 radian
a1 JointTorque < 2 Torque on joint below 2 Nm
a2 a0 ∧ a1 a0 and a1 met simultaneously
a3 �[0,10](a2) a2 true at some point in the next 10 steps
a4 (a3)U[4,8](2[0,4]¬a1) Between 4 and 8 steps from now, a3 is true until a1 is not

A video7 is available demonstrating R2U2 running live on the R2 platform and reasoning over

the joint state. The demo also showcases use of temporal operators and dynamic specification

loading without stopping the robot.

7http://temporallogic.org/research/R2U2/R2U2-on-R2_demo.mp4

http://temporallogic.org/research/R2U2/R2U2-on-R2_demo.mp4
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CHAPTER 4. SPECIFICATION

4.1 Specification Logics

The temporal observer trees in the R2U2 reasoning engine can be programed in several different

logics. All of these logics are temporal – they encode the time varying relations between the signals

received form the signal processing layer.[30] For this application, Mission-time Linear Temporal

Logic (MLTL) is used as the specification language.

4.1.1 Mission-time Linear Temporal Logic

A limitation of LTL, it always discusses infinite traces. To compensate, several derivative

languages have been defined for use in specific applications. Reinbacher, Rozier, and Schumann

introduced MLTL in 2014. [29] As a temporal logic targeting mission systems at runtime, MLTL

adds bounds to all the temporal operators as seen in table 4.1.

Table 4.1 Mission-time Linear Temporal Logic[29]

Symbol Operator Timeline

2[2,6]p Always[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

3[0,7]p Eventually[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q Until[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q Release[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq
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4.2 Subsection Design

4.2.1 Components of an Observation Tree Specification

To create the run-time configuration for R2U2 on the MC-30, three layers of the unit require

configuration:

Bus Values: Data values to read from Robonet

Signal Processing: Conversion of bus values to boolean values

Logic Observers: MLTL properties to evaluate

A critical design decision that is easily overlooked is the separation of concerns between the

signal processing layer and the temporal reasoning layer of the R2U2 unit. As seen later in this

case-study, this decision can have impacts on the required hardware resources, capabilities of the

design and complexity.

4.2.2 A Structured Approach

Designing specifications for an existing system is inherently a constrained writing exercise

wherein the constraints of the application naturally limit the design space. However, the design

space is still large enough that trying to brainstorm entire designs directly for all but the simplest

systems is infeasible. Using a structured approach allows the designers to be guided away from

anti-patterns, reinforces good technique like strong separations of concerns, and eases collaboration

by provide a vocabulary for reconciling different ideas.

Our approach follows the sequence:

1. Set measurable specification goals

2. Develop a strategy

3. Document assumptions

4. Work backwards from the top of the observer tree
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5. Iterate, working from the bottom of the tree up

The principle behind this method is to guide designs toward maintaining separation of concerns

between layers in R2U2, and encourage leveraging the strengths of each layer, without providing

too rigid a structure as to inhibit creative problem solving. The specifics of each stage are discussed

in detail in section 4.3 while showcasing how this method was used to develop an R2U2 runtime

configuration for the Robonaut2 fault disambiguation case study.

4.3 Initial Specification

4.3.1 Defining Success

As an intermediate stage between the high-level project goals and the specification that runs

on the system health monitor, a set of success criteria are constructed. These should function as

measurable targets for specification performance.

For disambiguating the Robonaut2 joint offset fault we set the following 3 goals:

1. Zero error: No false positives or negatives

2. Disambiguation between three system states:

• APS1 is reporting false position

• APS2 is reporting false position

• No action, a unrelated fault occurred

3. Detect possible precursors to assist root cause identification

4.3.2 Strategy

Specification design progresses backwards though the R2U2 reasoning tree. Starting from the

subject matter experts’ description, a system health strategy is constructed as the plain-language

representation of specification. For the first revision of the fault disambiguation specification, we
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began with the strategy: If the differences between APSs are larger than 1 radian, then the APS

that disagrees with the encoder by more than 0.01 radian is at fault.

4.3.3 Assumptions

With this initial concept, but before designing a health monitor configuration, it is critical that

all assumptions be explicitly documented. For this specification we identified our assumptions as:

1. Agreement with the encoder value implies correct APS2 position reporting

2. Agreement between any 2 position sources implies the minority opinion is incorrect (sensor

voting)

After confirming these assumptions with the Robonaut2 team, the next stage of specification is the

construction of the temporal observer tree.

4.3.4 Temporal Observer Tree

Decomposing the temporal and propositional logic of specification strategy, we elected to have

three top-level booleans to represent the thee potential states of the system as described in the

specification goals. The three formula to be checked can then be defined as:

1. The APSs are within the 1 radian threshold

2. APS1 and the encoder are within the 0.01 radian threshold

3. APS2 and the encoder are within the 0.01 radian threshold

By inspection of the specification strategy, there is no obvious time component. While this could

be encoded using only propositional logic over the R2U2 boolean values from the signal processing

layer, we elected to add a temporal “debounce” with a series of “globally for 3 steps” operators

where processed bus values are used.
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4.3.5 Signal Processing

With an initial logical structure in place, the signal processing layer design maps values from

the system bus to boolean checkers. From the specification strategy, we identified three outside

values required by the formula: APS1 position, APS2 position, and encoder position. Specifically,

boolean checkers for the range between APS1 and APS2, as well as between each APS and the

encoder are required by the specification.

4.3.6 Design Iteration

With the required bus values identified, the hardware implementation team was informed of

the requested inputs. While examining the fault descriptions provided by the Robonaut2 team,

references to a “encoder fault position” bus signal were found repeatedly. This system bus variable

already acts as a boolean, active when APS1 and the encoder disagree on joint position. The

availability of this signal from the system makes our boolean checker for APS1 and encoder position

agreement redundant. With the addition of this 4th bus value and the elimination of one component

of signal processing the complete R2U2 configuration for this specification can be written as shown

in table 4.2.

4.4 Validation

After development and implementation of the initial specification, a terrestrial R2 unit devel-

oped the same fault as the unit on the ISS. With direct access to the system, the operator recorded

traces of nominal, faulty, and recovery behavior. These traces provide a validation case of the

proposed specification, however they are not recordings of the Robonet bus. The captured data

was recorded from the Robot Operating System (ROS) bus that acts as a message-passing layer

between the three redundant flight computers [31].

The traces were provided in a ROS message archive format called a bag file. To feed them

through the R2U2 unit on the MC-30, the data stream first requires conversion. Using ROS
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Table 4.2 Fault disambiguation specification – revision 1

R2U2 Configuration

Bus Values Temporal Formulas

APS1: Position [ rad ] ϕ1 = 2[0,3](Vthreshold)

APS2: Position [ rad ] ϕ2 = FaultEncPos ∧ 2[0,3](AgreeEnc,APS2) → APS1Wrong

EncPos: Position [ rad ] ϕ3 = ϕ1∨!FaultEncPos → APS2Wrong

EncFaultPos: Encoder Fault [ bool ] Observer Tree

Signal Processing ϕ3ϕ1

EncFaultPos

ϕ2

AgreeEnc,APS2Vthreshold

APS1 APS2 EncPos

Vthreshold = |APS1−APS2| > 1 rad

AgreeEnc,APS2 = |APS2− EncPos| > 0.01 rad

provided utilities, the relevant messages were extracted, aligned by time-stamp and repacked into

an HDF51 file, the format used by the Robonet record and playback system.

This data trace is still not perfectly representative of what an embedded R2U2 monitor would

observe during a fault, but using the R2U2 ability to run this synthetic data three traces were

examined; one in which no fault occurs as a control (fig. 4.1), one in which the robot experiences

the fault (fig. 4.2), and one in which the operator has unsuccessfully attempted recovery (fig. 4.3).

In Figures 4.1-4.3 the top timeline shows the position values of the encoder (red), APS1 (blue,

labeled motor), and APS2 (yellow, labeled joint) in radians. The lower timeline shows the R2U2

verdicts of the two relevant specifications. Figure 4.1 displays nominal operation of R2 through a

range of movement. Notice how tightly matched the three position indicators are. In Figure 4.2

the APS fault occurs at the 43 second mark. We see the expected 60 degree shift in APS position,

and the Vthreshold specification correctly flags that our fault of interest occurred. However, the

encoder jumps to an implausible 998 radians, making the encoder agreement test invalid. Further,

in Figure 4.3 the operator attempts to correct the problem. While it may appear successful, the
1Hierarchical Data Format 5 https://www.hdfgroup.org/

https://www.hdfgroup.org/
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Figure 4.1 Ground R2: No Fault

difference between the three sensors after time 19 is still too wide to appease the safety system and

release the joint. At first, this appears to challenge the Vthreshold fault detection specification, but

this is technically a different failure mode and beyond the scope of what the disambiguation goal

is trying to accomplish.

This data revealed a implicit assumption of the first specification, it was assumed that encoder

values froze during the fault. The discontinuous behavior of the encoder was not anticipated and

invalidates the basis of the original specification. An important caveat, this discontinuity could be

an artifact of the ROS bus during the fault and may not be present on the Robonet bus R2U2 is

reading.

4.4.1 Specification Revision

To correct for the invalidated assumptions, an adjustment can either be made to the temporal

reasoning or the signal processing layer of R2U2. Temporally, a discontinuity in the encoder

(logically captured similarly to the the existing detection for APS discontinuity) can be identified

and the value of the encoder prior to the jump can be used. Alternatively, this behavior can be

considered a matter of input conditioning.
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4.4.1.1 Signal Processing Approach

Initially, using the signal processing layer of R2U2 was explored as a solution to the detection of

the discontinuity. While this approach was, itself, simple – the additional complexity placed on the

runtime observer was prohibitive. The invalid encoder readings while in the fault condition would

require the previous value of the system to be compared after the fault had been detected. Down-

sides of this approach include the additional signal processing capability is outside the run-time

reconfigurability of the signal processing layer and would then require resynthesis. Additionally,

several of the proposed approaches in the brainstorming session would involve introducing delays

that would confuse the meaning of the time steps in the temporal observers.

4.4.1.2 Temporal Reasoning Approach

Alternatively, a nearly pure temporal logic approach is available. The trade-off is that it re-

quites many small, but simple, formulas. With other tools, this would be a higher cost than the

single processing approach. However, with R2U2 we can encode these entirely in the run-time

configuration of the unit without synthesizing the FPGA design or using additional resources for

the signal processing.

The temporal approach plays into the strengths of the R2U2 unit, and was selected for the

revised specification. We now present our solution to the R2 case study.
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CHAPTER 5. CASE STUDY

5.1 Specification

Following the design approach detailed in section 4.2.2, the following R2U2 specification was

constructed for use in disambiguating the APS offset fault in Robonaut2.

5.1.1 Defining Success

Our goals remain unchanged from the original described in section 4.3.1:

1. Zero error: No false positives or negatives

2. Disambiguation between three system states:

• APS1 is reporting false position

• APS2 is reporting false position

• No action, a unrelated fault occurred

3. Detect possible precursors to assist root cause identification

5.1.2 Strategy

The new strategy leverages the unexpected encoder behavior that invalidated the initial speci-

fication. Using the encoder as a marker for the fault occurring, a mechanism for selecting the fault

APS is required. Since a large movement in value is indicative of a faulting sensor, comparison of

the incorrect APS position before and after the fault will display a discontinuity.

Further reducing these thoughts to the main tenets of the strategy, we have:

• If there is a sudden, large change in reported position by the encoder, then the fault is

occurring
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• If there is a sudden, large change in reported position by an APS, then the APS that jumped

is at fault

Forming the plain-language description of our strategy, we began the revised specification at-

tempt with the strategy: If there is a sudden, large jump in the encoder and an APS’s position

report, the APS that jumped is at fault.

5.1.3 Assumptions

The previous assumptions being proven invalid, the disqualifying behavior is taken as the in-

variants for the new specification, namely:

• A significantly large discontinuity in the data is the signature of the fault

• Only the fault APS ‘moves’ in the fault case

5.1.4 Temporal Observer Tree

The encoder jumps to a value that will never occur in normal operation, this can easily be

capture and used as a flag that the fault occurred. Let e be the proposition that the encoder is

out-of-range (say, greater than 100):

e = EncoderPosition > 100

To express the comparison of the APS value before and after fault, we need to reason over this exact

time boundary. Use a “globally in one time step” (equivalent to “next time”) temporal operator

with the encoder out of range in the later time but not the earlier:

¬e ∧ �[1]e

This expression is true at the time immediately before the fault occurs.

Next, express that an APS jumps drastically over this range. As a placeholder let an represent

APS1 being in some localized area. We can then make a statement such as:

(a1 ∧ ¬e) ∧ �[1](¬a1 ∧ e)
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Which encodes the idea that at a given time, the encoder is in range and APS1 is reading in some

local area “a1”, and that in one time steps the encoder will be out-of-range and APS1 will not be

in that local area.

This would imply that APS1 is faulting:

(a1 ∧ ¬e) ∧ �[1](¬a1 ∧ e) → APS1Fault

We can use b1 representing APS2 being close to some position to express the same thing for APS2:

(b1 ∧ ¬e) ∧ �[1](¬b1 ∧ e) → APS2Fault

If we repeat this with (a1, a2, . . . an) and (b1, b2, . . . bn) with correctly sized regions for the

propositions, we can catch APS jumps of a desired size.

5.1.5 Signal Processing

The only inputs required are the position readings for the encoder and two APS. The necessary

boolean checkers need to provide the an and bn variables of an appropriate size to catch the jumps.

To size the jump detection properly, it needs to be ensured that the APS cannot move more

than a minimum amount without moving to a different numbered region. Since the APS has been

seen to jump 60 degrees during the fault case, it would be a reasonable first approximation to set

the minimal jump size to 60 degrees. Doing so would require that no section is larger than 60

degrees, and since the APS works on a range of -180 degrees to 180 degrees, that would require

6 even spaced regions, (a1, a2, . . . , a6) and (b1, b2, . . . , b6) each with a corresponding formula like

above.

5.1.6 Design Iteration

During iteration an initial concern was the behavior at crossover, when the system is naturally

crossing one of these region boundaries. Since the fault only occurs when arming a parked actuator,

travel is not a concern. Also, nominal travel across a boundary will not be accompanied with an

encoder range error, further preventing false positives.
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To add some debounce against a potential spurious signal, the “globally” operator was expanded

to require the fault state to exist for two consecutive time steps.

Let an and bn indicate APS1 and APS2 respectively, as reporting a position in the nth of 6

equally sized regions of the joint travel range. And let e indicate the encoder position being beyond

the physical extents of the joint. For each n ∈ [0, 6]:

(an ∧ ¬e) ∧ �[1,2](¬an ∧ e) → APS1Fault

(bn ∧ ¬e) ∧ �[1,2](¬bn ∧ e) → APS2Fault

5.2 Verification

Before being run against the collected trace data used in section 4.4, a SMT1 solver with an

MLTL extension was used as a verification step to ensure the produced formula are not tautolo-

gies, and can be falsified. In other words, both the formula and their negation were checked for

satisfiability. The tool output is provided in Appendix B. With the formula passing these checks

and functioning correctly on the sample system trace, the process is complete.

1Satisfiability Modulo Theories http://smtlib.cs.uiowa.edu/

http://smtlib.cs.uiowa.edu/
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CHAPTER 6. CONCLUSION

6.1 Discussion

While the case study successfully accomplished the project goals, some open questions remain.

The timing analysis requires more investigation by JSC, but R2U2 on the MC-30 is believed

to remain unobtrusive. While it would be preferable to have an outright analysis stating that the

addition of R2U2 does not cause timing concerns, the results have called into question the validity

of the analysis itself. It would be reasonable to expect future exercises in retro-fitting SHM units

to require more work in the validation of unobtrusiveness than in embedding the unit itself.

The final specification does work successfully on both operator descriptions of the event, and

on the traces provided by the one faulting ground. However, there is only one actual system

trace. Having been synthesized form a different bus, caution must be exercised when declaring

the universality of this solution. Points of particular concern include: is the faulting ground R2

behaving identically to R2 on the ISS, are there inconsistent behaviors in the fault case ,and are any

features of the trace a product of the conversion to the ROS bus? In short, we are concerned about

over-fitting. That being said, the candidate specification is correct to the limit of our available

information.

Given the run-time reconfigurability of the R2U2 SHM unit, the MC-30/R2U2 deployment can

be certified, installed, and loaded with the candidate specification. Then, the output of the monitor

can be observed during the next several faults as a passive observer only. This will either validate

the specification, or highlight shortcomings that can be utilized to improve the specification. After

validation on R2, the specification can be used for automating corrective action.
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6.2 Future Work

With a demonstrated R2U2 implementation utilizing the spare FPGA fabric, several potential

extensions become possible. With R2U2 units installed on multiple joint controllers, an exploration

into networked SHM nodes opens up several exciting possibilities. Several networked units could

allow system-level SHM by aggregating output from individual embedded R2U2 units. In one

potential setup, a head R2U2 unit could utilize verdicts from other embedded units to reason over

total system health. In addition, a specification can be written across several units – dividing the

temporal observation tree among the units and enabling a distributed approach to system-wide

SHM. In a similar vein, a software implementation of R2U2 could be run on the flight computer,

providing this system level reasoning with information only available on the other side of the real-

time barrier, or as a secondary SHM system. The added value in running both software and

hardware implementations, is they utilize different internal architectures – reducing the potential

for common-cause or common-mode failures [30]. With the development of MTLT benchmarks1,

the reasoning capacity of this salvaged “spare logic” can be measured.

Work continues on improvements to R2U2 implementations themselves, and other applications

for the framework. Integration of R2U2 with schedule planners and prognostic systems would

greatly increase the capability for autonomous action and planning. Leveraging RV allows the

power of formal techniques to augment existing systems without the massive computing power

required by model-checking approaches. To further facilitate these integrations, exploration into

methods to further reduce the resources needed by R2U2 could unlock new applications and allow

embedding in more systems.

Overall, this line of inquiry will continue to pursue answers to open questions in the application

of RV for SHM, such as: How do we efficiently incorporate temporal aware monitors in existing

systems? How do we automate corrective action and use RV for more than monitoring? How do we
1J. Wallin, K.Y. Rozier. “Generating System-Agnostic Runtime Verification Benchmarks from MLTL Formulas

via SAT” Under submission
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extract specifications from existing sources, make specification easy for the domain expert without

a background in formal methods, and glean insight on fault precursors from functional SHM units?
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APPENDIX A. HARDWARE SYNTHESIS PROCEDURE

Robonaut 2 —R2U2 project:

Current Build:

Build of current flight software using latest Microsemi Libero SoC

Version: 11.8 SP3 (02/2018)

OS: Windows 10 Pro 64-bit (build: 1803)

Source code used:

Turbo-Driver Project:

Via fork: https://gitlab.com/LTL-AERO/turbo_fpga

Branch: master

Commit: 28748dc3862d0be2bf71fa60ebf336974eca6389

Robonet:

Via fork: https://gitlab.com/LTL-AERO/robonet_ip

Branch: master

Commit: 33ea33f44ce839a9e6ce0951c157ab1707bef228

Modifications:

- Directly vendor robonet in src/ip of turbo_fpga (replacing git submodule)

- Modify turbo_fpga/src/gen_libero_project.py to run:

* print from statement to function call if using python 3

* Do not execute libero automatically
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* Save generate .tcl

Procedure:

- Modify turbo_fpga/src/gen_libero_project.py as stated above

- Run gen_libero_project.py to generate libero_project_gen.tcl

- Open libero

- Select menu: Project > Execute Script

- Select generated tcl file and execute

- Verify in design hierarchy that "TOP_R2CL_R3.vhd" is set as design root

- Synthesize:

* Right-click "turbo_fpga/src/constraint/MC-30_synplify.sdc"

and select "Mark as used"

* Right-click "Synthesize" and select "open interactively"

* On the left-hand panel select the following - deselecting all others:

- "FSM Compiler"

- "Retiming"

* Click Run and close when finished

- Compile:

* Right-click and select "Mark as used" for the following:

- "turbo_fpga/src/constraint/MC-30_R2CL_R3.pdc"

- "synthesis/TOP_R2CL_R3_sdc.sdc"

* Right-click "compile" and select "open interactively"

* Select "Programming file" and use the following options on the

configuration screens that appear:

- Compile Options: Leave defaults - click "Ok"

- Layout Options: Leave defaults - click "Ok"

- FlashPoint - Programming File Generator:

* Check "FlashROM"

* Browse for config file (turbo_fpga/src/ufc/c\*_n\*.ufc)

* Click Next

* Check all the 'Program page' checkboxes
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* Click Finish

- Generate Programming Files: Leave defaults - click "Generate"
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APPENDIX B. SPECIFICAITON SATISFIABILITY

This technique works by flattening the temporal components of the MLTL formula so it can be

solved with a standard SAT solver using SMT.

Satisfiability

INPUT: ((((((((A_10&(G[1,1] ((!A_10)&E0)))&(G[1,1] (G[1,1] ((!A_10)&E0))))->APS_A_Fault0)

&(((A_20&(G[1,1] ((!A_20)&E0)))&(G[1,1] (G[1,1] ((!A_20)&E0))))->APS_A_Fault0))&(((

A_20&(G[1,1] ((!A_30)&E0)))&(G[1,1] (G[1,1] ((!A_30)&E0))))->APS_A_Fault0))&(((B_10&(

G[1,1] ((!B_10)&E0)))&(G[1,1] (G[1,1] ((!B_10)&E0))))->APS_B_Fault0))&(((B_20&(G[1,1]

((!B_20)&E0)))&(G[1,1] (G[1,1] ((!B_20)&E0))))->APS_B_Fault0))&(((B_30&(G[1,1] ((!

B_30)&E0)))&(G[1,1] (G[1,1] ((!B_30)&E0))))->APS_B_Fault0))

NON-TEMPORAL: ((((((((A_10&((!A_11)&E1))&((!A_12)&E2))->APS_A_Fault0)&(((A_20&((!A_21)&E1

))&((!A_22)&E2))->APS_A_Fault0))&(((A_20&((!A_31)&E1))&((!A_32)&E2))->APS_A_Fault0))

&(((B_10&((!B_11)&E1))&((!B_12)&E2))->APS_B_Fault0))&(((B_20&((!B_21)&E1))&((!B_22)&

E2))->APS_B_Fault0))&(((B_30&((!B_31)&E1))&((!B_32)&E2))->APS_B_Fault0))

TSEITIN: (((ts_1_0|(A_11|(!E1)))&(((!ts_1_0)|(!A_11))&((!ts_1_0)|E1)))&(((ts_2_0|((!A_10)

|(!ts_1_0)))&(((!ts_2_0)|A_10)&((!ts_2_0)|ts_1_0)))&(((ts_3_0|(A_12|(!E2)))&(((!

ts_3_0)|(!A_12))&((!ts_3_0)|E2)))&(((ts_4_0|((!ts_2_0)|(!ts_3_0)))&(((!ts_4_0)|ts_2_0

)&((!ts_4_0)|ts_3_0)))&((((!ts_5_0)|((!ts_4_0)|APS_A_Fault0))&((ts_5_0|ts_4_0)&(

ts_5_0|(!APS_A_Fault0))))&(((ts_6_0|(A_21|(!E1)))&(((!ts_6_0)|(!A_21))&((!ts_6_0)|E1)

))&(((ts_7_0|((!A_20)|(!ts_6_0)))&(((!ts_7_0)|A_20)&((!ts_7_0)|ts_6_0)))&(((ts_8_0|(

A_22|(!E2)))&(((!ts_8_0)|(!A_22))&((!ts_8_0)|E2)))&(((ts_9_0|((!ts_7_0)|(!ts_8_0)))

&(((!ts_9_0)|ts_7_0)&((!ts_9_0)|ts_8_0)))&((((!ts_10_0)|((!ts_9_0)|APS_A_Fault0))&((

ts_10_0|ts_9_0)&(ts_10_0|(!APS_A_Fault0))))&(((ts_11_0|((!ts_5_0)|(!ts_10_0)))&(((!

ts_11_0)|ts_5_0)&((!ts_11_0)|ts_10_0)))&(((ts_12_0|(A_31|(!E1)))&(((!ts_12_0)|(!A_31)

)&((!ts_12_0)|E1)))&(((ts_13_0|((!A_20)|(!ts_12_0)))&(((!ts_13_0)|A_20)&((!ts_13_0)|
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ts_12_0)))&(((ts_14_0|(A_32|(!E2)))&(((!ts_14_0)|(!A_32))&((!ts_14_0)|E2)))&(((

ts_15_0|((!ts_13_0)|(!ts_14_0)))&(((!ts_15_0)|ts_13_0)&((!ts_15_0)|ts_14_0)))&((((!

ts_16_0)|((!ts_15_0)|APS_A_Fault0))&((ts_16_0|ts_15_0)&(ts_16_0|(!APS_A_Fault0))))

&(((ts_17_0|((!ts_11_0)|(!ts_16_0)))&(((!ts_17_0)|ts_11_0)&((!ts_17_0)|ts_16_0)))&(((

ts_18_0|(B_11|(!E1)))&(((!ts_18_0)|(!B_11))&((!ts_18_0)|E1)))&(((ts_19_0|((!B_10)|(!

ts_18_0)))&(((!ts_19_0)|B_10)&((!ts_19_0)|ts_18_0)))&(((ts_20_0|(B_12|(!E2)))&(((!

ts_20_0)|(!B_12))&((!ts_20_0)|E2)))&(((ts_21_0|((!ts_19_0)|(!ts_20_0)))&(((!ts_21_0)|

ts_19_0)&((!ts_21_0)|ts_20_0)))&((((!ts_22_0)|((!ts_21_0)|APS_B_Fault0))&((ts_22_0|

ts_21_0)&(ts_22_0|(!APS_B_Fault0))))&(((ts_23_0|((!ts_17_0)|(!ts_22_0)))&(((!ts_23_0)

|ts_17_0)&((!ts_23_0)|ts_22_0)))&(((ts_24_0|(B_21|(!E1)))&(((!ts_24_0)|(!B_21))&((!

ts_24_0)|E1)))&(((ts_25_0|((!B_20)|(!ts_24_0)))&(((!ts_25_0)|B_20)&((!ts_25_0)|

ts_24_0)))&(((ts_26_0|(B_22|(!E2)))&(((!ts_26_0)|(!B_22))&((!ts_26_0)|E2)))&(((

ts_27_0|((!ts_25_0)|(!ts_26_0)))&(((!ts_27_0)|ts_25_0)&((!ts_27_0)|ts_26_0)))&((((!

ts_28_0)|((!ts_27_0)|APS_B_Fault0))&((ts_28_0|ts_27_0)&(ts_28_0|(!APS_B_Fault0))))

&(((ts_29_0|((!ts_23_0)|(!ts_28_0)))&(((!ts_29_0)|ts_23_0)&((!ts_29_0)|ts_28_0)))&(((

ts_30_0|(B_31|(!E1)))&(((!ts_30_0)|(!B_31))&((!ts_30_0)|E1)))&(((ts_31_0|((!B_30)|(!

ts_30_0)))&(((!ts_31_0)|B_30)&((!ts_31_0)|ts_30_0)))&(((ts_32_0|(B_32|(!E2)))&(((!

ts_32_0)|(!B_32))&((!ts_32_0)|E2)))&(((ts_33_0|((!ts_31_0)|(!ts_32_0)))&(((!ts_33_0)|

ts_31_0)&((!ts_33_0)|ts_32_0)))&((((!ts_34_0)|((!ts_33_0)|APS_B_Fault0))&((ts_34_0|

ts_33_0)&(ts_34_0|(!APS_B_Fault0))))&(((ts_35_0|((!ts_29_0)|(!ts_34_0)))&(((!ts_35_0)

|ts_29_0)&((!ts_35_0)|ts_34_0)))&ts_35_0)))))))))))))))))))))))))))))))))))

ENCODING TIME: 0.013116s

RESULT: SATISFIABLE

SOLVE TIME: 0.000307s

Falsifiability

INPUT: (!((((((((A_10&(G[1,1] ((!A_10)&E0)))&(G[1,1] (G[1,1] ((!A_10)&E0))))->

APS_A_Fault0)&(((A_20&(G[1,1] ((!A_20)&E0)))&(G[1,1] (G[1,1] ((!A_20)&E0))))->

APS_A_Fault0))&(((A_20&(G[1,1] ((!A_30)&E0)))&(G[1,1] (G[1,1] ((!A_30)&E0))))->
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APS_A_Fault0))&(((B_10&(G[1,1] ((!B_10)&E0)))&(G[1,1] (G[1,1] ((!B_10)&E0))))->

APS_B_Fault0))&(((B_20&(G[1,1] ((!B_20)&E0)))&(G[1,1] (G[1,1] ((!B_20)&E0))))->

APS_B_Fault0))&(((B_30&(G[1,1] ((!B_30)&E0)))&(G[1,1] (G[1,1] ((!B_30)&E0))))->

APS_B_Fault0)))

NON-TEMPORAL: (!((((((((A_10&((!A_11)&E1))&((!A_12)&E2))->APS_A_Fault0)&(((A_20&((!A_21)&

E1))&((!A_22)&E2))->APS_A_Fault0))&(((A_20&((!A_31)&E1))&((!A_32)&E2))->APS_A_Fault0)

)&(((B_10&((!B_11)&E1))&((!B_12)&E2))->APS_B_Fault0))&(((B_20&((!B_21)&E1))&((!B_22)&

E2))->APS_B_Fault0))&(((B_30&((!B_31)&E1))&((!B_32)&E2))->APS_B_Fault0)))

TSEITIN: (((ts_1_0|(A_11|(!E1)))&(((!ts_1_0)|(!A_11))&((!ts_1_0)|E1)))&(((ts_2_0|((!A_10)

|(!ts_1_0)))&(((!ts_2_0)|A_10)&((!ts_2_0)|ts_1_0)))&(((ts_3_0|(A_12|(!E2)))&(((!

ts_3_0)|(!A_12))&((!ts_3_0)|E2)))&(((ts_4_0|((!ts_2_0)|(!ts_3_0)))&(((!ts_4_0)|ts_2_0

)&((!ts_4_0)|ts_3_0)))&((((!ts_5_0)|((!ts_4_0)|APS_A_Fault0))&((ts_5_0|ts_4_0)&(

ts_5_0|(!APS_A_Fault0))))&(((ts_6_0|(A_21|(!E1)))&(((!ts_6_0)|(!A_21))&((!ts_6_0)|E1)

))&(((ts_7_0|((!A_20)|(!ts_6_0)))&(((!ts_7_0)|A_20)&((!ts_7_0)|ts_6_0)))&(((ts_8_0|(

A_22|(!E2)))&(((!ts_8_0)|(!A_22))&((!ts_8_0)|E2)))&(((ts_9_0|((!ts_7_0)|(!ts_8_0)))

&(((!ts_9_0)|ts_7_0)&((!ts_9_0)|ts_8_0)))&((((!ts_10_0)|((!ts_9_0)|APS_A_Fault0))&((

ts_10_0|ts_9_0)&(ts_10_0|(!APS_A_Fault0))))&(((ts_11_0|((!ts_5_0)|(!ts_10_0)))&(((!

ts_11_0)|ts_5_0)&((!ts_11_0)|ts_10_0)))&(((ts_12_0|(A_31|(!E1)))&(((!ts_12_0)|(!A_31)

)&((!ts_12_0)|E1)))&(((ts_13_0|((!A_20)|(!ts_12_0)))&(((!ts_13_0)|A_20)&((!ts_13_0)|

ts_12_0)))&(((ts_14_0|(A_32|(!E2)))&(((!ts_14_0)|(!A_32))&((!ts_14_0)|E2)))&(((

ts_15_0|((!ts_13_0)|(!ts_14_0)))&(((!ts_15_0)|ts_13_0)&((!ts_15_0)|ts_14_0)))&((((!

ts_16_0)|((!ts_15_0)|APS_A_Fault0))&((ts_16_0|ts_15_0)&(ts_16_0|(!APS_A_Fault0))))

&(((ts_17_0|((!ts_11_0)|(!ts_16_0)))&(((!ts_17_0)|ts_11_0)&((!ts_17_0)|ts_16_0)))&(((

ts_18_0|(B_11|(!E1)))&(((!ts_18_0)|(!B_11))&((!ts_18_0)|E1)))&(((ts_19_0|((!B_10)|(!

ts_18_0)))&(((!ts_19_0)|B_10)&((!ts_19_0)|ts_18_0)))&(((ts_20_0|(B_12|(!E2)))&(((!

ts_20_0)|(!B_12))&((!ts_20_0)|E2)))&(((ts_21_0|((!ts_19_0)|(!ts_20_0)))&(((!ts_21_0)|

ts_19_0)&((!ts_21_0)|ts_20_0)))&((((!ts_22_0)|((!ts_21_0)|APS_B_Fault0))&((ts_22_0|

ts_21_0)&(ts_22_0|(!APS_B_Fault0))))&(((ts_23_0|((!ts_17_0)|(!ts_22_0)))&(((!ts_23_0)

|ts_17_0)&((!ts_23_0)|ts_22_0)))&(((ts_24_0|(B_21|(!E1)))&(((!ts_24_0)|(!B_21))&((!

ts_24_0)|E1)))&(((ts_25_0|((!B_20)|(!ts_24_0)))&(((!ts_25_0)|B_20)&((!ts_25_0)|

ts_24_0)))&(((ts_26_0|(B_22|(!E2)))&(((!ts_26_0)|(!B_22))&((!ts_26_0)|E2)))&(((
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ts_27_0|((!ts_25_0)|(!ts_26_0)))&(((!ts_27_0)|ts_25_0)&((!ts_27_0)|ts_26_0)))&((((!

ts_28_0)|((!ts_27_0)|APS_B_Fault0))&((ts_28_0|ts_27_0)&(ts_28_0|(!APS_B_Fault0))))

&(((ts_29_0|((!ts_23_0)|(!ts_28_0)))&(((!ts_29_0)|ts_23_0)&((!ts_29_0)|ts_28_0)))&(((

ts_30_0|(B_31|(!E1)))&(((!ts_30_0)|(!B_31))&((!ts_30_0)|E1)))&(((ts_31_0|((!B_30)|(!

ts_30_0)))&(((!ts_31_0)|B_30)&((!ts_31_0)|ts_30_0)))&(((ts_32_0|(B_32|(!E2)))&(((!

ts_32_0)|(!B_32))&((!ts_32_0)|E2)))&(((ts_33_0|((!ts_31_0)|(!ts_32_0)))&(((!ts_33_0)|

ts_31_0)&((!ts_33_0)|ts_32_0)))&((((!ts_34_0)|((!ts_33_0)|APS_B_Fault0))&((ts_34_0|

ts_33_0)&(ts_34_0|(!APS_B_Fault0))))&(((ts_35_0|((!ts_29_0)|(!ts_34_0)))&(((!ts_35_0)

|ts_29_0)&((!ts_35_0)|ts_34_0)))&(((ts_36_0|(!ts_35_0))&((!ts_36_0)|ts_35_0))&ts_36_0

))))))))))))))))))))))))))))))))))))

ENCODING TIME: 0.012680s

RESULT: SATISFIABLE

SOLVE TIME: 0.000304s
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