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ABSTRACT 

 

 

 Maize is a widely cultivated crop in the world and its production relies heavily on 

nitrogen (N) fertilization. N is an essential mineral nutrient for plant growth and 

development. However, during the last decades excessive quantities of N have been applied 

by farmers, a surplus to what maize plants can uptake, and several problems have arisen, 

such as pollution of the ecosystem and an economic loss to farmers. Breeding maize hybrids 

that are more efficient in the use of N is a long term goal for plant breeders. Nonetheless, 

previous to breeding, the genetic basis of N-metabolism in maize would need to be 

elucidated. Herein, maize testcrosses (TC), derived from the IBMSyn10-DH crossed by an 

elite inbred, were: 1) Grown in hydroponic condition and several physiological traits related 

to N-metabolism were assessed on leaf and root tissues. After performing statistical analyses, 

quantitative trait loci (QTL) were identified; 2) Grown in field conditions under low and high 

N, several agronomic traits were determined, and statistical and QTL analyses were 

implemented. 

A novel statistical approach was implemented to differentiate experimental errors 

from truthful phenotypic records in order to remove them for further genetic analysis. This 

automated method for outlier determination helped to focus the analysis on real data and 

obtain more reliable QTL mapping results. 

Several QTL associated with N-metabolism were determined and numerous candidate 

genes underlying QTL genomic regions are proposed for further analysis. At least one rich 

QTL region, presenting three or more overlapping confidence intervals for QTL, were 
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determined at each of the ten chromosomes. These genomic regions may be valuable in the 

determination of N-metabolism in maize TC.      
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CHAPTER 1: GENERAL INTRODUCTION 

Maize (Zea mays L.) is a widely cultivated crop and provides an abundant source of 

food, feedstock, biofuel and components included in several industrial products. Maize 

production is strongly dependent on Nitrogen (N) fertilization due to its importance as a 

mineral nutrient for plant growth and development. Indeed, the doubling of food production 

worldwide during the past 40 years has been associated with a 7-fold increase in the use of 

N-fertilizers (Hirel et al., 2007). From a productive perspective, sufficient N is required for 

amino acid metabolism, ear growth, and dry matter accumulation in maize kernels (Hirel et 

al., 2001). On the contrary, N deficiency adversely affects kernel number, dry matter 

accumulation and could result in a 14–80% decrease in grain yield (Uhart and Andrade, 

1995).  

Even though N-fertilization is a necessity for maize production, the intensification in 

the use of N-fertilizers generates several detrimental impacts, including extensive pollution 

of primary natural resources and numerous related economic issues. It is noteworthy that on 

average only 33-50% of the nitrate applied to the soil is accessed by cereal crops (Raun and 

Johnson, 1999) while the excess may be  denitrified by soil bacteria (e.g. nitrate), volatilized 

(e.g. surface-applied urea-based fertilizers) (Nielsen, 2006), and, to greatest extent, lost by N-

leaching. Indeed, N-leaching from the Mississippi River Basin is one of the main causes for 

the expanding hypoxic dead zone that develops each year on the Louisiana-Texas shelf of the 

Gulf of Mexico (Goolsby and Battaglin, 2000). Nitrate concentrations have increased several 

fold during the past 100 years in streams of the basin, and the annual delivery of nitrate from 

the Mississippi River to the Gulf has nearly tripled since the late 1950's. Furthermore, in the 
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state of Iowa it has been estimated that N is the second highest cost in maize production 

(after seed cost) and producers typically invest more than US$ 1B every year in N-fertilizers. 

Therefore, if 50-67% of the applied N is not utilized, that results in a total loss of US$ 568-

761 M every year, just for Iowa (Iowa State University, Extension and Outreach, 2015).  

Plant breeding programs were generally focused on selecting for high-yielding 

genotypes under high N-input systems. As a result, from 1961 to 2006 the amount of N 

fertilizers applied to agricultural crops increased by 7.4 fold, whereas the overall yield 

increase was only 2.4 fold. This implies that efficiency in the use of N has sharply declined 

(Hirel et al., 2011). Thus, even though artificial selection could lead to cultivars showing 

high performance under high N- fertilization, those genotypes may be not the most efficient 

in the use of N.  

Breeding maize with increase efficiency in the use of N may lead to a reduction of the 

annual inputs of N fertilizer, rendering a more sustainable agriculture while maintaining 

yields and concomitant profits. But, before breeding, a further understanding of some aspects 

of N metabolism and their genetic determination may be needed. Because of the major 

importance of the elucidation of the genetics underlying N-metabolism for the maintenance 

of a sustainable and profitable agriculture, maize breeders have been working on methods to 

determine the genotype-phenotype relationships and considerable genomic research on N-

metabolism in maize has been and is currently conducted (*).  

Much of today’s commercial maize germplasm originates from seven progenitor 

lines, including B73 and Mo17 (Mikel and Dudley, 2006). Both inbreds differ in their 

response to N fertilization (Balko and Russell, 1980) and are the parents of the IBM 
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population (Lee et al., 2002). A total of 360 double haploid (DH) lines were generated from 

the IBMSyn10 population (Hussain et al., 2007), and 176 DH lines have been crossed to an 

elite inbred (property of DuPont Pioneer, closed pedigree). This high-resolution mapping 

population can be directly associated to the physical map established for B73 

(www.maizesequence.org). Hence, this maize TC population may serve as an ideal resource 

for performing N-metabolism genetic studies.  

Literature Review 

Nitrogen metabolism  

Plants N-metabolism is complex, influenced by the interplay of many physiological 

processes including signaling and regulatory pathways that integrate plant N-status and plant 

growth (Moose and Below, 2009). Several genomic regions are involved in the genetic 

control of N uptake by roots, translocation to leaves and remobilization from stalk and leaves 

to finally reach the grain. Furthermore, N-metabolism interacts directly, and is 

interconnected, with other biological pathways, such as carbon (C) and Phosphorus (P) 

metabolism. Photosynthesis occurs primarily in the source leaf and is the process were C is 

fixed. Simultaneously, N is incorporated into amino acids and proteins, while P mediates the 

synthesis of RNA and realization of energy (Schlüter et al., 2013).  

In many plant species, the management of N, from a physiological perspective, can be 

divided in two main phases depending on the plant cycle. First, during a vegetative phase, 

young developing roots and leaves act as sink organs of N and amino acids. Those amino 

acids are further utilized in the synthesis of enzymes and proteins involved in plant 

architecture and all the components of the photosynthesis apparatus. Later on, during the 
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reproductive phase, generally starting after flowering, the pattern is characterized by the 

protein hydrolysis and remobilization on the N accumulated from roots and shoots to the 

storage organs (e.g. seeds) (Masclaux et al., 2001).  Nevertheless, this arbitrary separation of 

the plant life cycle may not occur successively and the two phases may take place 

simultaneously. In maize, 45-65% of the N present in the grain is provided by remobilization 

from the N already accumulated before silking, while the remaining is obtained from post-

silking N uptake (Gallais and Coque, 2005).    

N is primarily absorbed from the soil by roots as nitrate and, to a lesser extent as 

ammonium. Several enzymes play a major role in the assimilation of these two inorganic N 

compounds in higher plants (Yemm and Folkes, 1958; Lea et al., 1990; Lea and Azevedo, 

2007; Lea and Miflin, 2010) (Fig. 1.1). Nitrate is reduced to nitrite by nitrate reductase (NR) 

in the cytoplasm, followed by nitrite in the plastids by nitrite reductase (NiR), resulting in 

ammonium. Ammonium is predominantly assimilated by the action of two enzymes. First, 

glutamine synthetase (GS) assimilates ammonia into the amide position of glutamine, and 

later, glutamate synthase (GOGAT) transfers the amide group of glutamine to a C skeleton in 

the form 2-oxoglutarate, yielding two molecules of glutamate; thus, completing the 

assimilation of ammonia into amino acids (Lea and Miflin, 2010). The organic acid, 2-

oxoglutarate, can be synthesized by isocitrate dehydrogenases and aspartate 

aminotransferases (AspAT), but the exact enzymatic origin is still unknown (Hodges et al., 

2003). Moreover, alanine aminotransferase (AlaAT) catalyzes the transfer of the amino 

group from glutamate to pyruvate to yield 2-oxoglutarate and alanine. Asparagine synthetase 

(AS) can catalyze the synthesis of asparagine by amidation of aspartate using either 

glutamine or ammonium as an amino donor. Asparagine and glutamine are the major N-



5 

 

transport and storage compounds from source to sink organs in non-leguminous plants (Lea 

and Ireland, 1999). In addition, phosphoenolpyruvate carboxylase (PEPC), an enzyme 

corresponding to the primary C-metabolism, is directly related with N-metabolism since 

assures the provision of C skeletons for amino acid synthesis, through catalyzing the addition 

of bicarbonate to phosphoenolpyruvate to form the four-C compound oxaloacetate.  

Quantitative genetic approaches may facilitate the identification and characterization 

of genomic regions involved in the genetic variation of N-metabolism in maize. The 

estimation of metabolites content and enzyme activities coupled with the analysis of variation 

at the genome level may identify the genetic determinants of N-metabolism. Furthermore, a 

set of N-responsive agronomical traits, including plant height, ear height, grain yield, and 

flowering time, showing significant phenotypic and genotype variation have been reported in 

several investigations further described below (Agrama et al., 1999; Bertin and Gallais, 2000; 

Bertin and Gallais, 2001; Coque and Gallais, 2006). Hence, an integrated genetic analysis 

targeting physiology and agronomic traits may increase the knowledge of the number, 

location, effects, and identities of such genetic loci associated with N-metabolism, possible 

leading to new biological insights (Broman and Sen, 2009). 

DNA markers 

DNA markers can reveal sites of variation at the DNA level (Winter and Kahl, 1995; 

Jones et al., 1997), thus allowing the study of the variability between genotypes, determining 

reference points within chromosomes, genomic regions of agronomic importance, and may 

accelerate breeding programs by marked-assisted selection. DNA-based markers can be 

located in coding or non-coding genomic regions and their functions and sequences could be 
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known or unknown. Those markers are not affected by the environment, do not vary with the 

developmental stage of the individual, allow early detection of polymorphisms, are extremely 

abundant (Collard et al., 2005), and generally require low quantities of DNA for the analysis. 

Molecular markers used in this study are single-nucleotide polymorphisms (SNPs).  SNPs are 

DNA sequence variations of one nucleotide present in the genome sequence, highly abundant, 

reproducible and accurate. The use of SNPs as biallelic genetic markers allows the rapid, highly 

automated genotyping (Wang et al., 1998).  

QTL mapping 

A Quantitative Trait Loci (QTL) is a region of any genome that is responsible for 

variation in the phenotypic variance of a quantitative trait (Doerge, 2002). Linkage mapping 

of QTL allows to experimentally estimating the mean and variance associated with a specific 

locus. The procedure relies on differences among the trait means of genotypes at a marker 

locus (Bernardo, 2010). Since molecular markers and specific statistical software became 

available QTL mapping allowed the routine detection of QTL in plants (Bernardo, 2008).  

A general QTL mapping approach in plants involves four major steps. The first step 

is the crossing between two inbred parental lines, which may, or may not differ for the target 

traits. The resulting F1 seed will be completely heterozygous at all markers and QTL. A 

number or line- cross populations derived from the F1 can be used for QTL mapping, such an 

F2 design, backcross, recombinant inbred lines (RIL), advanced intercross lines (AIL), and 

even hybrid combinations resulting from crossing a RIL population by a tester line. Each 

specific segregating population may have its advantages and disadvantages and have been 

characterized in several publications (Lynch and Walsh, 1998; Bernardo, 2010). The next 
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stage is the screening or genotyping of each individual of the population using molecular 

markers. Thirdly, the traits of interest are measured in the individuals of the population, a 

process called phenotyping. Finally, by statistical means, associations between marker loci 

and phenotypic variance are assessed. Those regions of the genome that show convincing 

evidence of association are defined as QTL (Broman and Sen, 2009). 

The precision in the identification of a QTL is critical to the time, expense, and 

probability of success of further studies (e.g. positional cloning) (Remington et al., 2001). 

The precision of the estimation of the QTL position, referred as resolution, may vary 

substantially depending on several factors such as recombination frequency, marker density 

and population size (Yu et al., 2011). A mapping population presenting high recombination 

frequency, high marker density as well as high population size, may result in a higher 

mapping resolution. Concomitantly, resulting QTL confidence intervals (typically presented 

as 1-LOD interval) may be shorter, encompassing a lower amount of candidate genes 

compared to hundreds of candidate genes when dealing with a low-resolution population 

with significant linkage blocks across the genome.  

Even though several QTL mapping methods are available, most implemented 

procedures are single-marker analysis (SMA), simple interval mapping (SIM), composite 

interval mapping (CIM), and multiple interval mapping (MIM). Under SMA, the simplest 

approach, an analysis of every marker with the trait is performed. Each marker-trait 

association test is performed independent of information from all other markers. A genetic 

map, with markers and genetic positions, is not required. However, the estimations of QTL 

position and effect may not be precise (Lynch and Walsh, 1998). In addition, the size of a 

QTL effect can be confounded with the distance of the QTL to the nearest marker. SIM 
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(Lander and Botstein, 1989) uses a genetic map for the location of QTL and the presence of a 

single QTL is performed in a separate analysis for each pair of adjacent markers (interval). 

Thus, the most likely position of a QTL and the size of the QTL effects are estimated more 

precisely compared to SMA. However, the construction of a genetic map is a necessity and 

results are biased when more than one QTL is present within a marker interval. With regard 

to CIM (Zeng, 1994), it considers the interval mapping test as in SIM, but incorporates 

markers significantly associated with the trait elsewhere in the genome in order to reduce 

background variation (Doerge, 2002; Bernardo, 2010). Those markers, called cofactors, are 

identified by forward or backward stepwise regression and the number can be selected by the 

researcher. A few limitations of CIM are that the method requires a genetic map, specialized 

software, and may require higher computational time. MIM (Kao et al., 1999) procedures 

builds a multiple-QTL model considering numerous marker intervals simultaneously. It uses 

a stepwise selection procedure by fitting individual QTL sequentially in the model, searching 

epistasis between significant QTL and refining of QTL effect and genetic position (Bernardo, 

2010).   

QTL mapping for nitrogen metabolism related traits in maize 

During the past 20 years, maize N-metabolism has been the subject of numerous 

investigations. Many research efforts have been implemented towards elucidating the genetic 

basis behind the biological responses related to N-metabolism through QTL mapping 

analysis.  

Agrama et al. (1999) studied a segregating population of 214 F2 maize genotypes 

derived from the cross between B73 and G79, tolerant and intolerant under low-N stress 
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conditions, respectively. The population was genotyped with 185 restriction fragment length 

polymorphism (RFLP) probes and the traits analyzed were ear-leaf area, plant height, grain 

yield, number of ear and number of kernels per plant. Between two and six QTL per trait 

were identified under low and high N levels (i.e. LN and HN, respectively), with more QTL 

detected under LN.   

Likewise, genomic regions associated with grain yield and its components were 

determined in a subsequent study focused on maize hybrids (i.e. TC) (Bertin and Gallais, 

2000). The genotypes were originated from the cross between 99 RILs and a common tester, 

and those RILs were derived from crossing a French flint line (F2) and an iodent late line (Io). 

That same population was extensively studied in subsequent analysis. The TC materials were 

grown under LN and HN and genotyped with 152 marker loci. It was concluded that the 

genetic variability was expressed differentially under different N conditions and a total of 29 

QTL were identified. Successively, Hirel et al. (2001) developed a quantitative genetics 

approach by associating metabolic functions and agronomic traits to DNA markers using 

information obtained from the previous investigation (Bertin and Gallais, 2000). 

Coincidences of QTL clustered mainly in chromosome 5 for yield and its components, as 

well as genes encoding cytosolic GS. The same research group reported that based on the 

coincidence between previously mapped QTL and genes encoding enzymes involved in N 

assimilation, NUE can be improved by marker-assisted selection and genetic engineering 

(Masclaux et al., 2001). Based on the same population, agronomic and physiological traits 

were used to detect QTL and determine their causal relationships in an integrated manner 

(Gallais and Hirel, 2004). Information from agronomic traits was gathered from maize 

hybrids; while physiological traits (nitrate content, NR and leaf GS activities) were studied 



10 

 

among 77 RILs from the same population). In agreement with a previous investigation 

(Bertin and Gallais, 2000), QTL coincidences with the GS locus served to point out the 

relevance of  GS locus, positioned in chromosome 5,  as a candidate gene responsible for 

phenotypic variation in the use of N. In addition, N-metabolism was studied during kernel 

germination in 140 F6 RIL derived from the same population. In total, 152 RFLP markers 

were employed and nine QTL were detected. Similarly, coincidences were observed between 

QTL and genes encoding for GS (Limami et al., 2002).  Moreover, Coque and Gallais (2008) 

studied, once again, a set of RIL derived from the population employed by Bertin and Gallais 

(2000) and related TC genotypes. Coincidences, as well as inconsistencies, in the detection of 

QTL were identified when comparing analysis on inbreds versus TC genotypes under 

different N conditions. QTL inconsistencies, especially under LN environment, demonstrate 

that only a few yield-QTL could be useful for marker-assisted selection (MAS) breeding 

(Agrama, 2005). Furthermore, the same population was investigated for QTL associated with 

metabolites, such as asparagine and glutamate, and activity of GDH and GS in the 

developing ear of maize (Canas et al., 2012). The population was genotyped with 203 genetic 

markers and co-location with QTL for grain yield determined in previous studies (Hirel et al., 

2001; Coque et al., 2008) was identified. In addition, candidate genes associated with the 

determination of yield were identified, including Gln1.3 (GS locus), Gdh1 (GDH locus) and 

AS4 (AS locus). 

In 2007, a QTL analysis based on a F2:3 tropical population grown under LN and HN 

conditions was published. The traits included yield, plant height, kernel and ear number per 

plant, anthesis-silking interval, chlorophyll content and fresh weight of 100 kernels. In 
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general, inconsistencies in the detection of QTL for yield were determined under both N 

treatments (Ribaut et al., 2007).  

Zhang et al. (2010) measured the activity of ten enzymes involved in the C- and N-

metabolism of maize, using the IBMSyn4 population. The investigation focused on the 

analysis of leaf tissues, based on a segregating population with four rounds of intermating 

previous to the inbreeding process. That inbred population was genotyped with 2,200 genetic 

markers. The linkage analysis detected 73 QTL associated with enzyme activity and eight 

QTL associated with biomass. Most of the enzyme-activity QTL were located in trans 

(unlinked or even in a different chromosome) to the known genomic locations of the 

structural genes but, three cis-QTL were determined for NR, glutamate dehydrogenase and 

shikimate dehydrogenase.  

In 2012, an investigation based on a set of 74 introgression lines (IL), derived from 

the cross of an elite Chinese inbred with diverse donors, including Mo17 and B73, grown 

under LN and HN was published (Liu et al., 2012).  The population was genotyped with 189 

simple sequence repeat markers and QTL mapping was performed for grain yield and yield 

component traits. More QTL were identified under LN compared to HN conditions (33 vs 

23). In addition, QTL information (e.g. position, CI) for similar traits was collected from 

previous publications and integrated into a reference map. Thirty-seven consensus QTL 

regions were determined (18 under LN and 19 at HN, respectively) with an average CI of 22 

cM. Thirteen candidate genes specifically expressed under LN were later identified, and 

those IL containing candidate genes in the introgressed segments were evaluated to 

determine the genetic effects of candidate genes.     
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Recently, Zhang (2015) determined several QTL and candidate genes associated with 

the accumulation of 12 metabolites directly related to C- and N-metabolism in the maize 

nested association mapping (NAM) population. An association mapping approach was 

implemented and 101 candidate genes were identified in the population derived from the 

cross between 25 genotypes, which represents a broad maize genetic variation, and B73 (as 

reference genotype). 

Despite all the efforts in elucidating the genetics underlying N-metabolism in maize, 

very few investigations followed an integrative approach including agronomic and 

physiological traits. A research strategy of studying a representative hybrid-high-resolution 

population, while targeting physiological and agronomic traits measured at different stages 

from genotypes grown in hydroponics and field conditions under LN and HN treatment has 

not yet previously explored.  Furthermore, a quantitative analysis for enzymes related to N-

metabolism in both root and shoot tissues has not been reported in a population with these 

features and genotyped with a large amount of marker loci. Thus, a genetic mapping 

investigation for N-metabolism related traits based on a hybrid IBMSyn10-derived 

population may be particularly valuable for the scientific community.   

Research Objectives 

The objectives of this research were to: 

 Determine and implement the best statistical method to deal with a raw unbalanced 

complex-dataset 

 Identify genomic regions associated with N-metabolism enzyme activity and enzyme 

content from maize shoot tissues grown in hydroponics 
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 Identify genomic regions associated with N-metabolism enzyme activity and enzyme 

content from maize root tissues grown in hydroponics 

 Identify genomic regions associated with N-metabolism related traits in maize grown 

in the field under low and high N conditions 

 Identify candidate genes within QTL regions associated with N-metabolism  

 

Dissertation Organization 

This dissertation aims to identify QTL associated with N-metabolism related traits in 

a maize testcross (TC) population. The segregating population was generated from the cross 

between IBMSyn10DH lines and an elite inbred line provided by DuPont Pioneer. The 

IBMSyn10DH lines are derived from the cross between B73 and Mo17, and went through 

ten rounds of intermating before making doubled haploid lines. The resulting TC genotypes 

were planted in hydroponics and in field trials and the performance of several traits were 

measured. A general introduction addressing the importance of the theme, motivation, and 

the general methods used in this research are presented in the first chapter of the thesis 

dissertation.   

The second chapter focuses on the statistical method used for the determination of 

outliers within the raw data. A novel approach, based on a jackknife resampling strategy, is 

described. Basically, a statistical model is fitted n times, systematically omitting one 

observation from the dataset, followed by the prediction of random effects each of the n 

times, with the aim of targeting “real outliers” based on the complete information gathered in 
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the experiment. In addition, the r code used in the analysis is provided within the 

supplementary information. 

The third chapter focuses on the determination of QTL associated with N-metabolism 

related enzymes and metabolites from leaf tissues. The TC maize population was grown in 

hydroponics and leaf tissues were harvested at V4 vegetative stage (Abendroth et al., 2011). 

Leaf tissues from each genotype, in six replications, were subject to enzyme analysis and 

certain metabolites concentrations were determined. With the information gathered in the 

experiment, plus molecular markers information on 5,300 SNP, QTL mapping was 

implemented.   

Chapter 4 addresses the identification of QTL associated with N-metabolism 

associated enzymes and metabolites from root tissues. As described in the previous chapter, a 

maize hybrid population was grown in hydroponics and root tissues were harvested from 

each of six replications of every genotype and QTL mapping was executed.  

In the fifth chapter of the thesis, the analysis of QTL for N-metabolism related 

agronomic and physiological traits from a maize TC population grown in field experiments 

under LN and HN conditions is presented. A total of 176 hybrid genotypes were grown in 

field conditions and traits including plant height, ear height, grain yield, N leaf concentration 

at three stages, and flowering time were gathered and the information was used for QTL 

mapping analyses. 

There are four manuscripts, included in chapters 2, 3, 4 and 5, to be submitted to 

different peer-reviewed journals, including Plant Physiology and Theoretical and Applied 

Genetics.  
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Finally, chapter 6 accounts for the overall conclusions of the investigation. A 

systemic investigation, targeting agronomic and physiological traits, measured in hydroponic 

and field conditions at vegetative and mature stages, respectively, was implemented. The 

maize population employed is derived from parents widely utilized throughout several 

commercial breeding programs in the U.S. and was subjected to ten rounds of intermating. 

The high resolution expected due to extensive recombination, coupled with the high number 

of molecular marker loci employed, resulted in an unprecedented accuracy for a QTL 

mapping study. In addition, several candidate genes were identified within QTL regions for 

further analysis and validation studies.  
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Figure 1.1. Main reactions involved in N-acquisition and assimilation in higher plants. 

AlaAT, alanine aminotransferase; AS, asparagine synthase; AspAT, aspartate 

aminotransferase; GOGAT, glutamate synthase; GS, glutamine synthetase; ICDH, isocitrate 

dehydrogenase; NR, nitrate reductase; NiR, nitrite reductase; PEPC, phosphoenolpyruvate 

carboxylase; PPDK, pyruvate orthophosphate dikinase (Prepared by Kanwarpal S. Dhugga, 

2015).  
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Abstract 

 

Analysis of raw datasets can become tedious and laborious, leading researchers to 

launch directly into the statistical analysis with a routine analysis without carefully checking 

the quality of the data. This can result in the failure to find problems with the data or in the 

direct removal of valid data, which might overly influence the final results of the 

investigation. Statistical analysis of raw data has received considerably less emphasis than 

the subsequent genetic analysis, even though good data are well known to be essential and 

the foundation for any successful investigation. Here we describe an approach that can be 

used with readily available tools, to check the quality of a complex biological data set 

collected using a careful experimental design, and to determine which observations might be 

dismissed from the analysis. The approach entails five different steps using R, where 

observations not consistent with the rest of the dataset can be discarded, by an iterative 

jackknife process by targeting and removing those genotypes which generated outliers and 

re-fitting a statistical model. Improvements in the log-likelihood values, on the order of 200 

units in magnitude, were achieved by removing just a few genotypes (three to eight).     

Key words: statistics – jackknife – outliers – data mining – exploratory data analysis 
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Abbreviations: QTL, quantitative trait locus; N, nitrogen; TC, testcross; PEPC, 

phosphoenolpyruvate carboxylase; Ala AT, alanine aminotransferase; NiR, nitrite reductase; 

BLUP, best linear unbiased estimation; AIC, Akaike information criterion; BIC, Bayesian 

information criterion. 

Introduction 

 

Analysis of large datasets generated by intricate experimental designs is a great 

challenge and an emergent reality for biological researchers, especially in situations where 

the aim of the investigation is focused on a step ahead of the statistical analysis, such as 

mapping genes and quantitative trait locus (QTL). Generally, big datasets are complex and 

daunting, and researchers frequently launch directly into the statistical analysis with a routine 

analysis without carefully checking the quality of the data. This can result in failure to detect 

problems with the data that overly influence the final results of the investigation. 

Alternatively, problems with the data can also be missed if the statistical analysis is 

performed by a professional statistician, not involved with the data collection, or aware of the 

downstream objectives.  Sometimes, the biologist might rely on specific software available 

for the analysis, which may not make it straightforward to also determine misleading data 

and exclude them from the analysis, or in other words proceed with the data cleaning with a 

statistical basis (i.e. statistical cleaning of data) (Hellerstein, 2008).  The risk of stumbling 

into a serious pitfall increases dramatically with complex data sets, and no professional 

would want to spend a humongous amount of time in the analysis of raw data when the final 

objective is to obtain results and eventually write a manuscript describing the findings. 

Statistical cleaning of raw data has received considerably less emphasis than the 

subsequent genetic analysis, even though good data are well known to be essential and the 
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foundation for any successful investigation. This paper describes an approach that can be 

used with readily available tools to check the quality of a large, complex biological data set 

collected using a careful experimental design. The principles follow those described in Tukey 

(1965) of exploratory data analysis, using modern technology. 

A main goal of the approach is to optimize the use of the available data, by 

identifying overly influential values. Plots of the data play an important role in association 

with computationally intensive calculations. This approach should be applicable to many 

other types of biological data. 

 

Materials and Methods 

Data description 

The data set used in this study comprises estimations of activity of eight Nitrogen (N) 

metabolism-related enzymes in 176 maize (Zea mays L.) testcross (TC) genotypes. Maize 

plants were grown in hydroponic conditions in an incomplete block design. Twenty 

genotypes were included in each hydroponic tank or set (incomplete block) with 12 

replications. In a total of ten sets, 200 genotypes were initially planted. Each replication was 

arranged to take into account some variability in light. Furthermore, in each of the sets, two 

checks were included in each of the 12 replications (Fig. 2.1). These two checks were 

genotypes that were parental sources of the population in their TC genotype. They were 

designed to be used for calibration purposes. When maize plants reached V4 stage 

(Abendroth et al., 2011), both leaf and root tissues were harvested. Based on previous 

experience (K. Dhugga, personal communication, 2012), half of the replications were 

discarded due to lack of uniformity within plants of same genotype. Finally, plant tissues 
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from the six replications in each set were subdivided into two reaction plates to perform 

biochemical measurements. The enzymes studied, or response variables, included alanine 

aminotransferase (Ala AT), asparagine aminotransferase, asparagine synthetase, nitrate 

reductase, nitrite reductase (NiR), glutamine synthase, glutamate synthase, and phophoenol 

pyruvate carboxylase (PEPC). 

Even though 200 genotypes were initially planted, 24 genotypes were excluded from 

the analysis a priori, based on poor genotypic information attributable to low DNA sampling 

quality due to DNA contamination. The resulting data set consisted of the activity of eight 

enzymes in 176 genotypes, replicated six times.  

Statistical computing software 

All analysis were performed in R (RCoreTeam, 2014) and several packages were 

used including plyr (Wickham, 2011), reshape (Wickham, 2007), ggplot2 (Wickham, 2009) , 

GGally (Emerson, Green, et al., 2013, Schloerke, Crowley, et al., 2014),  ASReml (Butler, 

Cullis, et al., 2007), and asremlPlus (Brien, 2014). 

Computing resource needed 

All calculations were executed with a personal laptop with 2nd Gen Intel® CoreTM 

i5-2430M processor and 8GB DDR3 memory.  In general, the system requirements would 

depend on the dimensions of the dataset and the calculations required for model fitting during 

the Jackknife step. The ASReml algorithm, based on the R package version, could be 

considered one of the fastest options.  
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Results and Discussion 

Statistical cleaning 

The approach is divided into five main steps consisting of visual inspection of the 

data, studying relationships between multiple response variables (enzyme activity), fitting 

statistical models, filtering genotypes (subsetting the data) and, finally, filtering influential 

measurements based on a Jackknife approach. These are described below. 

Step 1: Visual inspection of the data 

In this step, basic plots of the data are generated to examine the responses for 

different aspects of the experimental design. Based on the experimental design, we would 

expect the enzyme activity performance of checks to be similar across replicates of the same 

tank, even if they differ between replicates of different tanks.  The main idea of this phase is 

to search for any data structure, in terms of statistical dependence or independence between 

measurements, or for problems that may affect model predictions in order to have a better 

grasp of the data set to fit an appropriate statistical model. Checks can be graphically 

displayed across hydroponic tanks, replications and biochemical plates for each different 

response variable.    

In this particular dataset, non-uniform values for the response variables between 

replications of same tank were observed for the checks (Fig. 2.2).  Furthermore, uniform 

values were observed between reaction plates but values between sets were substantially 

different. Originally, the strategy was to use the checks as covariates in the statistical model 

in order to remove measurement error in the tanks and plates, but check performance was too 

variable to achieve an appropriate calibration in each incomplete block or tank. In addition, 
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the variance observed suggests that it might be important to allow for non-constant variance 

across sets in the statistical model. 

Step 2: Identification of relationships and patterns between enzymes 

A scatterplot matrix of all variables was an effective means to examine the 

association between the response variables (e.g. ggpairs in the GGally R package). For a 

small number of variables, this is a good choice of plot, because it is possible to layout all 

pairs of variables in a reasonable space. Nevertheless, as in this experiment there are eight 

response variables, it pushes the limits of the scatterplot matrix because it would require 64 

plots to be displayed on a page. Fig. 2.3 shows a selection of these plots. One of the key 

purposes of making these plots is to decide if a multivariate model or a univariate model 

would suffice. If the enzyme activities are correlated with each other, a multivariate response 

model may be the better choice in order to model jointly multiple response variables taking 

into account the dependency between those variables.      

The enzymes PEPC to Ala AT activity (Fig.2.3A and Fig.2.3B) are plotted. Based on 

all genotypes, a slight pattern could be perceived (weak positive correlation). However, that 

pattern disappear when each genotype was considered separately, as is the case when 

analyzing only checks (Fig. 2.3A) or a few random selected genotypes (Fig 2.3B). Similar 

observations were noticed when analyzing other traits such as Ala AT versus nitrite reductase 

(NiR) (Fig. 2.3C and Fig. 2.3D). Therefore, as the association between enzyme activities was 

almost exclusively due to genotype, it is feasible to fit univariate models of enzyme activity 

on genotype, plate, and set.  
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Step 3: Fitting a statistical model 

A linear mixed effect model was defined and fit using ASReml R package. The 

response variable is activity of enzyme (nM of substrate converted per gram of plant tissue).  

Tank (set), the light replicate and, plate were included as fixed effects in the model (where 

replicate and plate are nested in set), and check genotype effect was included as a continuous 

covariate.   Finally, a random effect for the genotype was included in the linear model.  

The model can be represented as follows:  

                                                                      e+ Zu+Xb=y  

where y denotes an n x 1 vector of observed response values, b is a p x 1 vector of fixed 

effects (set, light, plate), X is an n x p design matrix, u is a q x 1 vector of random effects 

(genotypes), Z is a n x q design matrix,  e is the error term, and E (u) = 0, E (e) = 0, Cov (u, 

e) = 0, Var (u) = G, and Var (e) = R. The G matrix had a compound symmetry structure on 

the genotype levels and R matrix is a diagonal matrix with different values for each set, 

allowing non-constant variance across sets.  

From this model, best linear unbiased predictions (BLUP) for each genotype and best 

linear unbiased estimation (Henderson, 1975) for each of the checks were obtained and used 

in a posterior study for the identification of QTL. 

Step 4: Filtering genotypes 

The purpose of replicates in an experimental design is to estimate the variability 

among experimental units treated equally and assess the variability in each treatment. The 

variability in replicates is expected to be relatively small compared to the variability across 

treatments. This step is to evaluate the variability of replicates by genotype, and begin the 

model building with a small set of consistent genotypes. Fig. 2.4 shows the mean-centered 
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Ala AT activity of a sample of genotypes from different sets, sorted in each from least to 

most variable. Some genotypes presented highly variable enzyme activity, which may cause 

some problems for the model fitting. From the original 176 genotypes, 32 had very consistent 

enzyme responses, and these were used for the initial model fitting. Additional genotypes 

were added later in a stepwise fashion, in conjunction with the jackknife approach described 

in the next section. 

To assess the effect of the data reduction with the full set, correlations between 

statistics calculated on the reduced set and the complete data were estimated. The Pearson 

correlation between BLUP values based on the complete data set and predictions based 

solely on the 32 initially selected genotypes was 0.72, which suggests fairly close agreement 

in the reduced set to the overall data. Furthermore, variances and correlations of BLUP 

values were calculated for the selected 32 genotypes across all sets and replications and, 

separately, for the reduced set of 32 genotypes based solely on most consistent replications 

and sets. The correlation was as high as 0.90. This suggests that the model fitting for these 32 

genotypes is relatively robust and that some specific genotypes are mainly responsible for 

biasing the predictions.   

Step 5: Filtering outliers using a Jackknife approach 

In the Jackknife approach (Miller, 1974), the influence of observations is examined 

by fitting the model without the observation. Here, the model is re-fitted many times, with 

each genotype excluded once, and the BLUPS for the included data are examined. Fig. 2.5 

illustrates the approach for three genotypes a, b, c. The red point corresponds to the BLUP 

for genotype c when genotype a is left out of the model, and the yellow point corresponds to 

the BLUP for genotype c when genotype b is left out of the model. The blue dashed line 
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indicates the leave-one-out BLUPS when excluding from the data set all other genotypes. 

Both the red and yellow points differ from the other estimates which suggests that genotypes 

a and b may be influential.  An R function was created (provided in supplementary material), 

to make the calculations. Results of the analysis are shown in Fig. 2.6.  

To identify outliers, the 1% trimmed mean (Tukey and McLaughlin, 1963) and 

standard deviations were calculated in the complete set of estimations for each genotype. 

Because in a normal distribution 99.7% of the data are within three standard deviations from 

the mean, estimations greater than three times the trimmed standard deviations were 

considered outliers. 

The filtering process was continued iteratively by targeting and removing those 

genotypes that generated outliers in the 32 consistent benchmark genotypes and repeating the 

jackknife function.  The objective was to determine an optimal situation where genotypes 

generating outliers in the BLUPs are discarded from the analysis while keeping as many 

possible genotypes. The iterations were continued until no more outliers were visible in the 

plots or in the event that members of the small set of consistent genotypes, the ones 

determined in the previous step, become the new target to be discarded. Attention was also 

given to the log-likelihood values when running the full model with the “clean” or simplified 

dataset versus raw data. In all cases the log-likelihood values improved several orders of 

magnitude with the refined data. 

The jackknife process will essentially identify genotypes that have larger random 

effects. Recall that mixed effects models tend to estimate random effects that are contracted 

towards the fixed effects component. If genotypes with larger random effects are discarded, 

the overall mean and variance of the random effects might change, but they should be more 
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representative of all of the remaining genotypes because the influential ones, potentially 

biasing effects away from the majority, have been removed. The final purpose is to identify 

and remove only genotypes that generate unreliable estimates, and to avoid discarding a 

genotype that exhibits a real and consistent response. Herein, “unreliable” observations 

would include data severely affected by experimental error such as those resulting from 

technical faults during biochemical measurements.  

Quantification of the procedure 

Improvements in the log-likelihood values, on the order of 200 units in magnitude, 

were achieved by removing just a few (three to eight) genotypes. Plotting the data before and 

after each cleaning step was very helpful to visualize the effect, but it is important to use 

numerical statistics like the log-likelihood, Akaike Information Criterion (AIC), and 

Bayesian Information Criterion (BIC) values, to help quantify the effect of excluding some 

genotypes on the model fitting. While analyzing Ala AT, eight genotypes were discarded and 

values of log-likelihood, AIC, and BIC changed from -4278.71, 8579.42, and 8634.46, to -

4043.22, 8108.45, and 8162.95, respectively.   

 

Conclusions 

The correct application of statistical methods requires careful pre-processing of data 

in order to obtain valid conclusions. In the literature this has not received substantial 

attention but it is an extremely critical part of data analysis, and especially important with 

large and complex datasets. As the experiment gets larger, with more genotypes measured, 

and more treatment conditions applied, the complexity of the data increases, and may 

introduce additional problems or errors. To simply throwing everything into a model and 
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hope to get good results it is not a good idea. Understanding the data set to find problems and 

address them it is crucial in order to obtain reliable results.  Steps similar to the ones used 

here to preview the enzyme activity data could be applied in several other situations to 

improve the analysis and related interpretations.  

In this research, the results were used in a subsequent QTL analysis, in order to 

identify regions of the maize genome associated with N-metabolism related enzymes. A 

better understanding of the genetics underlying N-metabolism will provide insightful 

information for improving selection in maize.        
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Figure 2.1. Experimental design of a set. Letters (blue) indicate genotypes, and 1, 2 

(red) indicate checks. 
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Figure 2.2. Enzyme activity of checks for each set, across incomplete blocks 

(hydroponic tanks). 

(A) Check 1, B) Check 2. Color is redundantly representing set. Scale on the vertical axis is 

set to be the full range of activity values for all genotypes. The variability of the values in 

each set for both checks is much larger than it was expected. 
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Figure 2.3. Bivariate analysis of enzyme performance (PEPC versus Ala AT (A and B), 

NiR versus Ala AT (C and D)). 

 (A), (C) red and green indicate checks 1and 2, respectively.  (B), (D) Four random selected 

genotypes are depicted in red, green, yellow and blue; rest of genotypes in grey. 
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Figure 2.4. Identifying consistent genotypes across different sets: (A) Set 1, (B) Set 2, 

and (C) Set 3.  

 

 

 

 

 

 

 

 

 

Figure 2.5. Scheme of random effects predictions based on a Jackknife approach.   
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Figure 2.6. Results of cleaning approach for enzyme performance (Ala AT activity).  

 

(A) Prediction of random effects based on raw data, (B) Prediction of random effects after 

cleaning approach, arrows pinpoint outliers. 
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APPENDIX A 

 

R code for statistical data cleaning 

#Loading packages 

library(asreml) 

library(ggplot2) 

library(psych) 

library(chemometrics) 

library(reshape) 

library(dae) 

library(asremlPlus) 

 

#Set working directory and open data file 

setwd('add.path') 

mydata <-  read.csv('filename.csv',header=T) 

 

#Determine more consistent values (response variable: ala.at ) 

ggplot(data = subset(field,exp==2 & trt==1), aes(x = genotype, y=ala.at, color = genotype))+  

geom_point(size=4) + ggtitle("")+ theme(aspect.ratio=1) 

ala.at 1.1<-subset(field,exp==2 & trt==1) 

sd1<- ddply(ala.at 1.1, .(genotype), summarise, ala.at _sd = sd (ala.at, na.rm=T)) 

all <- merge(ala.at 1.1,sd1,by="genotype") 

all$genotype <-factor(all$genotype, levels=all[order(all$ ala.at _sd), "genotype"]) 

ggplot(data = all, aes(x = genotype, y= ala.at, color = geno))+  

  geom_point(size=4) + ggtitle("")+ theme(aspect.ratio=1) 

 

 

#Jackknife function 

myjackknife <- function(data){ 

    mylist <- list()   

    genos <- unique(data$genotype) 

    for (i in genos){  

    mydata <- subset(data, genotype != i) 

      mymodel <- asreml(ala.at ~ model for your data, data = mydata) 

     coefs <- coef(mymodel, pattern = 'test')  

      name <- paste('genotype',i, sep = '') 

      colnames(coefs) <- name 

      mylist[[name]] <- coefs 

  }  

  return(mylist) 

} 

 

# Trim standard deviation functions 

outfun <- function(x) {abs(x-mean(x,na.rm=TRUE, trim = .1)) > 3*sd.trim(x, 

na.rm=TRUE)} 

outfun2 <- function(x) {abs(x-mean(x,na.rm=TRUE, trim = .1)) > 3*winsor.sd(x, trim=0.05,  
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na.rm=TRUE)} 

outfun3 <- function(x) {  abs(x-mean(x,na.rm=TRUE, trim = .1)) > 3*sd_trim(x, trim=0.05)} 

 

#Run Jackknife function 

jk_blups_ <- myjackknife() 

 

#Save results as csv file 

setwd("") 

write.csv(jk_blups_, file="filename.csv") 

 

#Read results  

ala.graph<- read.csv("filename.csv", header=T, stringsAsFactors =  FALSE) 

 

#Preparing the files to make graph 

ala.graph[,1]<-gsub("test_","",ala.graph [,1]) 

colnames(ala.graph)[1] <- 'genotype' 

m.ala.graph<-melt(ala.graph, id.vars=c("genotype")) 

m.ala.graph$genotype<- as.factor(m.ala.graph$genotype) 

m.ala.graph <- m.ala.graph[order(m.ala.graph$genotype, m.ala.graph$variable), ] 

 

#Use the subset of more consistent genotypes (e.g. 35 genotypes) 

m.ala.graph_35<-subset() 

 

#Make the graph 

jack<-m.ala.graph_35 

jack$genotype <- factor(jack$genotype) 

jack$variable <- factor(jack$variable) 

jack[jack ==0] <- NA  

jmedian<- ddply(jack, .(genotype), summarise, ala.at_median = median (value, na.rm=T)) 

jack <- merge(jack,jmedian,by="genotype") 

jack$genotype <-factor(jack$genotype, levels=jack[order(jack$ala.at_median), "genotype"]) 

 

ggplot(data = jack, aes(x = value, y=genotype, color = genotype), na.rm=T)+ 

  geom_point(size=2) + ggtitle("Selected genotypes - Ala AT")+ 

  theme(plot.title = element_text(lineheight=.8, face="bold")) + 

  theme(aspect.ratio=1) + theme(legend.position="") + 

  scale_color_discrete(name="") 

 

#Identifying outliers  

results <- apply(ala.graph[,-1], 1, outfun) 

results1 <- apply(results, 1, sum) 

write.csv(results1, file="outliers.csv") 

results1<- read.csv("outliers.csv", header=T) 

results1[,1]<-gsub("genotype","", results1[,1]) 

colnames(results1)[1] <- 'genotype' 

colnames(results1)[2] <- 'outliers' 
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results1$genotype <- as.factor(results1$genotype) 

leave.out1<-subset(results1, outliers>10)  

out.in.order1<-leave.out1[order(leave.out1$outliers, decreasing=TRUE), ] 

out.in.order1 

 

#subset minus genotype in leave.out1  

mydata1<- 

mydata1<-mydata 

mydata1[mydata1$genotype== 709, 'ala.at'] <- NA 

 

#Comparison of  loglikelihoods, AIC, BIC 

ala.at_raw <- asreml(ala.at ~ set + set:rep + set:plate + check,  random = ~ test, 

                      rcov = ~ at(set):units, data = mydata) 

 

ala.at_clean1 <- asreml(ala.at ~ set + set:rep + set:plate + check, random = ~ test,   

                    rcov = ~ at(set):units, data = mydata1) 

info.crit.asreml(ala.at_clean1) 

info.crit.asreml(ala.at_raw) 

 

#Can run Jackknife function again, clean data and make new graph 
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Abstract 

Nitrogen (N) availability is essential for plant growth and development. During last 

decades, several problems have arisen due to over-fertilization with N in rural areas. 

Breeding for maize with greater efficiency in the use of N may help to reduce contamination 

and increase profits. Nevertheless, previous to breeding, a better understanding of the 

genetics underlying N-metabolism will be needed. Herein, a linkage mapping analysis for N-

metabolism related enzymes, metabolites, and proteins was performed based on leaf tissue, 

harvested from maize hybrids grown in hydroponics. A total of 44 quantitative trait loci 

(QTL) were identified, all of them located in trans compared to the genomic position of the 

correspondent structural genes. Epistasis between QTL was not significant for most of the 
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traits. Nevertheless, significant epistasis was determined in two QTL model explaining 2.5-

5% of the genetic variance. The QTL models for different traits accounted from 7 to 31% of 

the genetic variance. Furthermore, 12 coding regions underlying 1-LOD QTL confidence 

intervals are proposed for further validation studies.  

 

Introduction 

Nitrogen (N) is one of the most important mineral nutrients for plant growth and 

development. N is required for the formation of enzymes and other proteins, for example, 

signaling and structural proteins.  Whereas enzymes carry out metabolism, which produces 

precursors for plant growth, signaling molecules respond to environmental and other stimuli 

to keep metabolism optimally functional.  N deficiency reduces dry matter accumulation, 

kernel number and could result in a substantial decrease in grain yield (Uhart and Andrade, 

1995; DeBruin et al., 2013). On the other hand, oversupply of N is detrimental to the 

underground water, as being highly soluble, a substantial portion of it can leach into the 

water tables.  Runoff resulting from heavy rains into streams and deltas leads to excessive 

algal growth, which adversely affects aquatic life by choking it off the oxygen supply. Over-

fertilization in agricultural areas, aside from adversely affecting the ecosystem, causes 

economic loss to the farmers. The main causes of N loss are leaching, runoff, denitrification, 

and, volatilization (Nielsen, 2006). N from the Mississippi River Basin has been implicated 

as the main cause for the expanding hypoxic zone that develops each spring and summer on 

the Louisiana-Texas shelf of the Gulf of Mexico (Goolsby and Battaglin, 2000). Nitrate 

concentrations have increased several folds in streams of the Mississippi Basin during the 

past 100 years, and the annual delivery of nitrate from the Mississippi River to the Gulf has 
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nearly tripled since the late 1950's. Approximately one million mt (metric ton) of nitrate 

discharged annually from the Mississippi River Basin (Goolsby et al., 1999) could potentially 

produce more than 20 million mt of organic carbon annually in the Gulf of Mexico (Goolsby 

and Battaglin, 2000). 

Improving N use efficiency (NUE) of maize would reduce N losses from the soil.  

NUE, which in cereals has been defined as the ratio of grain produced per unit of soil N, can 

be subdivided into two main components: N uptake efficiency (total plant N/soil N) and N 

utilization efficiency (total grain N/total plant N) (Moll et al., 1982; Dhugga and Waines, 

1989). Since N uptake efficiency is derived from multiplying final biomass with N 

concentration, N uptake efficiency should in fact be referred to as N acquisition efficiency 

because it is difficult to separate the effect of feedback inhibition from a limitation in root 

uptake.  Once absorbed by the roots, nitrate is transported to the leaves for reduction and 

incorporation into amino acids and other molecules, followed by incorporation into various 

macromolecules, including enzymes.  A limitation at any point in the N metabolism pathway 

could limit N acquisition and utilization and, as a result, biomass production.  This research 

was designed to evaluate the enzymes and proteins involved in N reduction and incorporation 

into organic molecules in order to determine associated QTL.  QTL identified henceforth will 

help in selecting recombinants that combine desirable activities for improved NUE. 

The pathway for N reduction and incorporation of reduced N into organic molecules 

is well understood (Fig. 3.1) (Yemm and Folkes, 1958; Lea, 1990; Lea and Azevedo, 2007; 

Lea and Miflin, 2010). Nitrate is reduced to nitrite by nitrate reductase (NR) in the 

cytoplasm, followed by reduction of nitrite in the plastids to ammonium by nitrite reductase 

(NiR). Ammonium thus generated is aminated into glutamine from glutamate by glutamine 
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synthetase (GS). Another enzyme, glutamine-2-oxoglutarate aminotransferase or glutamate 

synthase (GOGAT), then converts glutamine back to glutamate, producing an additional 

glutamate along the way from 2-oxoglutarate. Asparagine synthase (AS) produces asparagine 

and glutamate from glutamine and aspartate. Glutamate can serve as an amino donor for 

other amino acids, a reaction accomplished by different amino transferases. For instance, 

alanine aminotransferase (AlaAT) catalyzes the amino transfer to pyruvate resulting in 2-

oxoglutarate and alanine (Miyashita et al., 2007), while aspartate aminotransferase (AspAT) 

forms 2-oxoglutarate and aspartate after transferring the amino group of glutamate to 

oxaloacetate. Following N assimilation, glutamate, asparagine, glutamine and other amino 

acids, constituents of proteins, are transported via vascular tissues to the growing organs or 

stored, as vegetative storage proteins, which can aid plant growth during periods of N 

deficiency.  

N and C-metabolisms are highly interconnected (Nunes-Nesi et al., 2010). Certain 

metabolites and enzymes perform key roles in C metabolism and are regulated by the status 

of N in the cell (Sugiharto et al., 1990). Oxaloacetate, one of the carbon skeletons utilized in 

amino acids synthesis, is made from the addition of bicarbonate to phosphoenol pyruvate 

(PEP) by a reaction catalyzed by phosphoenol pyruvate carboxylase (PEPC). Pyruvate 

orthophosphate dikinase (PPDK) is responsible for catalyzing the regeneration of 

phosphoenol pyruvate. Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco), 

considered as the most important enzyme on Earth, catalyzes the carboxylation of ribulose-

1,5-biphosphate and produces triose phosphate, the building block of sugars (Farquharson, 

2012). The information on the genetic basis underlying the regulation of plant C and N 

interactions is scarce. 
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A vast majority of today’s commercial maize germplasm originated from seven 

progenitor lines, including B73 and Mo17 (Mikel and Dudley, 2006). Both these inbreds 

differ in their response to N fertilization (Balko and Russell, 1980) and are parents of the 

IBM (Intermated B73xMO17) mapping population (Lee et al., 2002). After ten rounds of 

random mating, 360 doubled haploid (DH) lines were generated from the IBMSyn10 

population (Hussain et al., 2007) resulting in a higher-resolution mapping population that can 

be directly associated to the physical map established for the B73 inbred line 

(www.maizesequence.org). On the whole, the maize breeding community would greatly 

benefit from an understanding of the genetic basis of N-metabolism, especially at the 

testcross (TC) level, which is the type of cultivar usually planted in commercial fields.  

Mapping of quantitative trait loci (QTL) is routinely implemented in plant breeding 

programs.  Linkage mapping of QTL allows to experimentally estimate the mean and 

variance associated with a specific locus. The procedure relies on differences among the trait 

means of genotypes at a marker locus (Bernardo, 2010). The precision in the identification of 

a QTL can be critical to the time, expense, and probability of success of further studies (e.g., 

identification of candidate genes and positional cloning) (Remington et al., 2001). That 

precision in the estimation of the QTL position, referred as resolution, may vary substantially 

depending on several factors such as recombination frequency present in the mapping 

population, marker density and population size (Yu et al., 2011).  

Several studies have shown association between QTL and N-metabolism related 

enzymes. For instance, Hirel et al. (2001) developed a quantitative genetics approach by 

associating metabolic functions and agronomic traits to DNA markers using information 

obtained from a previous investigation (Bertin and Gallais, 2000). Coincidences of QTL 
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clustered mainly in chromosome 5 for yield and its components, besides genes encoding 

cytosolic GS were identified under same genomic region. Contemporarily, the same research 

group published an article were it is claimed that, based on the coincidence between 

previously mapped QTL and genes encoding enzymes involved in N assimilation, NUE can 

be improved by marker-assisted selection and genetic engineering (Masclaux et al., 2001). 

Successively, after the analysis of 140 RIL genotyped with 152 marker loci, the identification 

of QTL for germination efficiency which co-located with genes encoding cytosolic GS has 

been reported (Limami et al., 2002). Furthermore, agronomic and physiological traits were 

used to detect QTL and determine their causal relationships in an integrated manner (Gallais 

and Hirel, 2004). For that investigation, agronomic traits were measured in a set of 99 

hybrids by Bertin and Gallais (2001) while physiological traits were studied at the level of 

lines (77 RIL). After identifying several QTL coincidences with GS locus, it was concluded 

that GS locus in chromosome 5 was a candidate gene responsible for phenotypic variation in 

the use of N.  Using the IBMSyn4 maize population, Zhang et al. (2010) measured activities 

of ten enzymes involved in carbon and N-metabolism. Seventy-three QTL associated with 

enzyme activities and eight QTL associated with biomass were identified. Most of the 

enzyme activities QTL were away from the known genomic locations of genes but three cis-

QTL were identified for NR, glutamate dehydrogenase and shikimate dehydrogenase. 

Recently, a QTL analysis was performed for 12 metabolites directly related to C- and N-

metabolism in the maize nested association mapping (NAM) population.  An association 

mapping approach was implemented and 101 candidate genes were identified (Zhang et al., 

2015). QTL associated with enzymes of N-metabolism in hybrid seedlings based on a high-

resolution mapping population were not studied. We believe that the identification of QTL in 
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hybrid background is essential to mitigate the concern that the ones identified from an inbred 

population may not be relevant in hybrids. 

In this investigation, a mapping population of TC genotypes, derived from the cross 

between IBMSyn10-DH lines and an elite inbred, was grown under hydroponics and leaf 

samples were analyzed in order to identify QTL associated with enzyme activity and 

metabolites involved in the N-metabolism pathway.   

Materials and Methods 

Plant material 

A total of 176 TC genotypes derived from the cross between each IBMSyn10-DH 

line and an elite inbred were used. The IBMSyn10-DH population, developed by Hussain et 

al. (2007), is a set of DH lines derived from a population after ten generations of random 

mating from the cross between inbred lines B73 x Mo17. Each DH line was crossed by an 

elite inbred (PEI), property of DuPont Pioneer (closed pedigree), to generate the TC 

genotypes.  

 

Experimental design 

Kernels from each TC genotype were germinated in autoclaved paper rolls and 

sterilized water and, subsequently grown under hydroponic conditions. Ten tanks (i.e., sets) 

containing appropriate growing media were planted with a total of 264 seedlings in each set. 

In every set, 22 different genotypes were grown, and each genotype was replicated 12 times. 

Two genotypes (B73 and Mo17 each crossed to the PEI) served as controls, and were 

included in every set and replication.  
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The growing media consisted of MgSO4.7H2O 0.5 mM, KH2PO4 0.5 mM, Fe-EDTA 

0.1 mM, FeEDDHA 0.1 mM, Ca(NO3)2.4H2O 1.25 mM, KNO3 2.5 mM, Na(OH) 0.1 mM, 

and 0.4 L of trace elements (25 mM H3BO3, 2 mM MnSO4.H2O, 2 mM ZnSO4.7H2O, 0.5 

mM CuSO4.5H2O, 0.5 mM Na2MoO4.2H2O and 50 mM KCl) in a total of 400 L solution per 

hydroponic tank. Two weeks after planting, the six most representative plants of each 

genotype, based on both their root and shoot development, were selected and transplanted 

into another hydroponic tank with same media.  

When plants reached V4 stage (Abendroth et al., 2011), leaf samples were taken and 

stored at -80°C while the rest of the plant tissues were dried for 12 days at 48°C.  

Biochemical assays 

 

Activities of eight enzymes related to N-metabolism were determined. These 

enzymes were: NR, NiR, GS, GOGAT, AlaAT, AS, AspAT and PEPC, and specific 

protocols were adapted by K. Dhugga, R. Abbaraju and L. Fallis. GS, GOGAT, AspAT and 

PEPC assay protocols were adapted from Gibon (2004), while NR from Lea et al. (1990), 

NiR from Bourne and Miflin (1973), AS assay from Joy and Ireland (1990) and AlaAT 

protocol was modified from Ashton et al. (1990). Metabolites nitrate and glutamate were 

measured as byproducts of enzyme reactions. The concentration of the proteins of several 

enzymes were determined: PEPC (i.e., PEPCe), PPDK, rubisco and Lox6. Each 

determination was based on ELISA (Engvall and Perlmann, 1971) protocols and DuPont 

Pioneer’s proprietary antibodies. All measurements were determined by comparing 

absorbance of each specific biochemical reaction with known standards using a 

spectrophotometer (Spectramax Plus 384 Microplate Reader, Molecular Devices). 
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Plant tissues, leaf and root, were weighed and analyzed for N content by combustion 

analysis. Based on biomass weight and percentage of N measurements, total amount of N 

present in shoot (TNs) and root (TNr) tissues were calculated. Nratio was calculated as the ratio 

between TNs and TNr. 

Statistical analysis 

 

All statistical analyses were implemented in R statistical program (RCoreTeam, 

2014). Initial data analysis of the raw data was based on the ggplot2 package (Wickham, 

2010) and GGally (Schloerke et al., 2014). As a first step, a univariate analysis, where a 

single variable is fitted in a model, followed by a multivariate approach, where multiple 

variables are analyzed simultaneously, was performed in order to comprehend the 

relationship among variables. The determination of outliers present in the dataset, based on a 

jackknife resampling strategy, was applied. As described in Trucillo-Silva (2015), a 

statistical model is fitted n times, systematically omitting one observation from the dataset, 

followed by the prediction of random effects for a subset of most consistent genotypes each 

of the n times. The aim of the process is to target “real outliers” based on the complete 

information gathered in the experiment and fine-tune the statistical model, quantified by 

improvements in log-likelihood, Akaike and Bayesian information criterion values after 

discarding misleading observations, while keeping informative and true observations for later 

analysis. The mixed model was fitted with ASReml R package (Butler et al., 2007) and 

correspondent mixed model equations were solved for prediction of random effects and 

estimation of fixed effects.   

The statistical model can be represented as follows:  
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where    denotes a n x 1 vector of observed response values,   is a p x 1 vector of fixed 

effects,   is a n x p design matrix,   is a q x 1 vector of random effects,   is a n x q design 

matrix, and   being the error term. 

The following assumptions were used: E (u) = 0, E (e) = 0, Cov (u, e) = 0, and Var 

(u) = G and, Var (e) = R. The G matrix had a compound symmetry structure on the genotype 

levels and R matrix is a diagonal matrix with different values for each set, allowing non-

constant variance across sets. The response variable was the activity of the enzyme, 

metabolite concentration, final ELISA determination and N content, respectively.  Set, the 

light replicate and plate were included as fixed effects in the model (where replicate and plate 

are nested in set), and check genotype effect was included as a continuous covariate.   

Finally, a random effect for the genotype was included in the linear model. During the 

process described above, several genotypes were discarded separately for each trait. Extreme 

cases were traits as AlaAT with eight total genotypes discarded, and nitrate, PPDK, Lox6, 

PEPCe and Nratio were no genotypes were taken out of the analysis and sample size totalized 

176 genotypes. 

Significance of genetic variance was calculated based on log-likelihood ratio test by 

comparing models with and without the TC random effect. Correlation was calculated, after 

Bonferroni correction for multiple comparisons, among BLUP values for each pair of traits, 

and repeatability was derived from the variance estimates from ASReml. As variance 

components were estimated for each of the different sets, a different value of repeatability 

was estimated for each set and then partial estimates were averaged correspondingly.      
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Genotypic information, genetic and physical maps 

 

TC genotypes were analyzed with a total of 5,306 single nucleotide polymorphism 

(SNP) markers generated at Beijing Genomics Institute. Physical and genetic position of each 

SNP were determined and genetic maps were created using R/qtl (Broman et al., 2003). 

Based on the approach used for the determination of real outliers described previously 

(Trucillo-Silva et al., 2015), different genotypes were omitted from the analysis of each trait. 

As a result, a different genetic map was determined for each individual trait. Recombination 

fractions were estimated and Kosambi mapping function was implemented to calculate 

genetic map distances (Kosambi, 1944). Furthermore, as the recombination between linked 

loci increases every generation, leading to an expansion of the genetic map, mapping 

distances were adjusted with the purpose of comparison with previous investigations. The 

expansion factor was determined based on the following equation:    
 

 
           , 

where j corresponds to the number of generations of intermating including the two 

generations for generating the F2, and i is the number of inbred generations after intermating 

(Teuscher et al., 2005).  

A total of 13 genetic maps were produced, depending on the specific genotypes 

included in the analysis of each trait, followed by adjustment of the genetic distances with the 

goal of comparing them with the previous QTL studies. Average spacing between markers 

was 2.13 cM (0.33 cM adjusted distance) while the maximal spacing between markers was 

nearly 45 cM (7 cM adjusted distance), located in chromosome 6. The average total map 

length was 11,275 cM. Real genetic map distances were reduced by a factor of 6.5 to 

estimate adjusted F2 map distances (Fig. 3.3A) and final adjusted map was 1,734.65 cM in 

length (Fig.3.3B). 
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With regard to physical distance, the length of the total genome was 2,051.8 Mb and 

on average a marker was positioned every 400Kb. The widest gaps between markers, 69.8 

and 67.4 Mb, were located in chromosomes 2 and 9, respectively.  

QTL mapping and identification of candidate genes  

 

Associations between phenotypes and genotypes were determined using QTL 

Cartographer (Basten et al., 2002). Single-marker analysis, followed by linear regression 

analysis and composite interval mapping (CIM) was performed. For CIM, Zmap (model 6) 

was implemented, using the ten most significant marker cofactors identified by forward and 

backward regression. In addition, QTL were scanned at intervals of 1 cM and at every 

marker while cofactors located within a window of 10 cM of the scanned position were 

excluded from the analysis. In order to determine LOD score thresholds of 5%, and to further 

identify significant QTL, 1,000 permutations were performed for every trait. Two nearby 

QTL were considered as different when LOD peaks were localized 20 cM or greater apart. 

Furthermore, a multiple interval mapping (MIM) analysis was performed by fitting all 

previously identified QTL from CIM analysis, and parameters were re-estimated and 

positions refined.  In addition, all pairwise interactions between QTL in every model were 

studied for each trait. The significance was determined based on the information criterion: IC 

(k) = -2 (log (L) - kc (n)/2), where the penalty function corresponds to: c (n) = log (n) and a 

threshold of 0.0 was used (Basten et al., 2002). The proportion of the total phenotypic 

variance associated with each model was estimated.  

In addition, physical genomic regions corresponding to 1-LOD QTL regions were 

examined, and putative genes related to N-metabolism were prioritized based on their 
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annotations at MaizeGDB (Lawrence et al., 2008) and NCBI (http://www.ncbi.nlm.nih.gov), 

and proposed as targets for further studies.  

 

Results 

Statistical analysis for N-metabolism related traits 

 

Genetic variance was highly significant for all the traits studied (Table 1). In some 

hybrids, mean values exceed two standard deviations compared to the parental (Mo17 and 

B73) performance in their respective TC version. Repeatability ranged from 0.27 - 0.86. The 

lowest value of repeatability was for AS, while the highest value corresponded to the 

metabolite nitrate (Table 3.1).   

Correlation between N-metabolism related traits 

 

Correlation analysis among all traits is presented in Fig. 3.2. From a total of 136 

pairwise Pearson correlations, the percentage of correlation coefficients that were 

significantly different from zero at p-value<0.001, <0.01, or <0.05 was respectively 13, 5, 

and 4. Significant correlations between enzyme activity, metabolites, and protein 

concentrations were all positive. Negative significant correlations were found between TNs 

and activities of AS (-0.31), AspAT (-0.31), GOGAT (-0.28), and among TNr and Nratio (-

0.43). Strong, positive correlation were observed between TNr and TNs (0.89), AlaAT 

activity and glutamate (0.79), PPDK and PEPCe (0.69), as well as between AspAT and GS 

(0.56).     
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Identification of quantitative trait loci 

A total of 44 QTL were identified across all traits spread across all the chromosomes. 

Chromosomes 6 and 8 possessed the largest and smallest numbers, eight and two, 

respectively of QTL (Table 3.2, Fig. 3.4). 

The number of QTL detected per trait ranged from one (NR, PPDK and rubisco) to 

five (AS) (Fig. 3.5). Individual QTL explained on average of 8.8% of the variance with some 

explaining as much as of 16.2% (TNs) or as low as 5.9% (PEPCe). Most of the QTL, 77%, 

accounted for less than 10% of the variance.   

Confidence intervals (CI 1-LOD) for QTL localization ranged from 2 – 28 cM (0.31-

4.26 cM adjusted distance) in length, with an average of 8.36 cM. Those CI are equivalent to 

0.2-12 Mb in physical distance, with an average CI length of 2.1 Mb.  

A hotspot QTL region was localized on the short arm of chromosome 6, comprising 

QTL associated with five different phenotypes including enzyme activities (AS, GOGAT and 

PEPC) and metabolites (glutamate and nitrate). Furthermore, QTL for rubisco and PEPCe 

(Chr. 9), and for AS and GOGAT (Chr. 10) were respectively co-localized on the genetic 

map.  

Multiple interval mapping – Epistasis 

 

In most traits, epistatic interactions did not significantly improve the fit of the models, 

and epistatic effects were excluded from genetic models. Even though, epistatic effects were 

retained in the traits PEPC and nitrate, explaining 5 and 2.5% variation respectively. MIM 

models explained a significant portion of the total variance in AS and nitrate (over 30%) and, 

just over 7% for other traits (AlaAT, NR, PPDK) (Table 3.3).  
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Candidate genes  

 

On average 61 candidate genes were identified within 1-LOD QTL regions across the 

maize genome; ranging from 1 to 278 genes, for Rubisco-1 and Glutamate-2 QTL, 

respectively. A subset of the putative genes could be associated to a N-metabolism pathway. 

Most promising candidate genes ID are GRMZM2G008714, GRMZM2G045171, 

GRMZM2G082780, GRMZM2G088235, GRMZM2G155974, GRMZM2G028574, 

GRMZM2G166366, GRMZM2G343519, GRMZM2G402582 and, GRMZM2G481529 

(Table 3.4).  

All of the QTL for enzyme activities, metabolites and proteins identified in this study 

are located away from the known genomic locations of their corresponding structural genes. 

For example QTL for GS were identified at chromosomes 1, 5, 6, and 8 at physical positions 

80.15, 83.95, 150.20, and 2.55 Mb, respectively. The structural genes for GS1 and GS2 are 

located on chromosome 1 between 271.02 – 273.44 Mb and on chromosome 2 between 

18.94-19.46 Mb, based on the following nearest loci on the IBM2 2008 Neighbors map, 

respectively. Thus, the putative N-metabolism related genes identified under the QTL regions 

might be involved in regulating the activity of the respective enzymes through alteration of 

the metabolite pools, as was previously reported (Zhang et al., 2010).     

 

Discussion 

In this investigation 44 QTL associated with N-metabolism were identified in a high-

resolution maize TC mapping population. In addition, QTL models explaining even greater 

than 30% of the genetic variance were identified for certain phenotypes, such as AS and 

nitrate. These discoveries may lead to a better understanding of the genetics underlying N-
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metabolism in maize and possibly, towards breeding genotypes with the ability to increase 

yield performance per N unit supplied.  

Consistent with previous studies, all significant correlations between enzyme 

activities were positive, suggesting that the enzymes were co-regulated to varying extents 

(Zhang et al., 2010). Indeed, significant correlations between enzyme activities, metabolites 

and proteins were positive as well (Fig. 3.2). With an increase in nitrate concentration, an 

increase in the activities of NR, NiR GOGAT and GS activities would be expected. A 

positive correlation between nitrate and glutamate further support this viewpoint (Fig. 3.2). 

Although a significantly positive correlation (0.59) between the concentration of PEPC 

protein and activity was observed, its deviation from unity suggest either the enzyme was 

partially inactivated during extraction or the extract contained endogenous inhibitors of this 

enzyme. PEPC activity is known to be inhibited by aspartate, oxaloacetate, and malate 

(Huber and Edwards, 1975). In addition, Zhang et al. (2010) found negative correlations 

between enzyme activities and biomass. Likewise, TNr, and TNs, both estimated as the 

product of N concentration of root and shoot biomass, respectively, were negatively 

correlated with most enzyme activity, metabolite and ELISA determinations. In addition, 

plants showing high TNr also presented high TNs (R
2
=0.89).   

Compared to a previous investigation (Zhang et al., 2010), repeatability values were 

to a certain extent lower on average (mean value of 0.55 versus 0.65), however GS showed a 

higher value (0.35 versus 0.20). The differences in repeatabilities may be due to the fact that 

enzyme measurements were performed on a robot-based platform by Zhang et al. (2010), 

while manual procedures were employed in this investigation. Even though six replications 

were implemented, variation due to experimental error was not possible to be thoroughly 
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eliminated. Nevertheless, the significant genotypic effect for all traits strengthens the 

likelihood to identify responsible QTL. 

QTL were associated with the activities of eight enzymes, two metabolites, four 

ELISA determinations, and three N-content phenotypes. In agreement with a previous 

investigation (Zhang et al., 2010), the same QTL were detected for NR, GS and AspAT 

localized in chromosomes 4, 5, and 9, respectively. Nevertheless, most of the QTL reported 

in other maize studies (Agrama et al., 1999; Hirel et al., 2001) failed to co-localize with the 

QTL identified in this analysis and were determined in different genetic location, outside a 

20 cM window or were even unlinked (e.g., two QTL associated with NR were determined in 

chromosome 5 by Hirel et al., 2001, whereas a single QTL associated with NR was found in 

chromosome 4 in this investigation and by Zhang et al., 2010).  

A few QTL detected in this study co-localized with QTL for different agronomic 

traits. For instance, GOGAT-1 QTL is exactly at the same location as a QTL previously 

associated with the determination of ear-per-plant, and PPDK-1 QTL co-localized with a 

grain yield QTL under high N and a QTL associated with number of kernels per year 

(Agrama et al., 1999). Hence, some genomic regions seem to be affecting more than one trait 

or the presence of pleiotropy. 

Herein QTL associated with different phenotypes did not co-locate as regularly as it 

was determined in a previous study (Zhang et al., 2010). In that study, three genetic regions 

(1-LOD confidence interval around the LOD peak) on chromosomes 1, 6, and 7 containing 

QTL for several enzymes were identified; however no QTL signal was detected under those 

exact regions in this QTL analysis. That investigation was based on the IBM-Syn4 

population and genotyped with 2,200 DNA marker loci. Thus, it is possible that the co-
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location of some QTL was due to a lack of genetic resolution (Zhang et al., 2010). That 

concern is less important in this investigation because of the additional rounds of intermating 

for the creation of the segregating population and the higher marker density.     

A lower number of QTL was identified per trait compared to a preceding 

investigation based on IRILs derived from IBMSyn4 population of maize (Zhang et al., 

2010). The identification of QTL would depend essentially on the magnitude of the QTL 

effect and population size (Beavis, 1998). Because a large number of small-effect QTL were 

expected to be segregating in the genome, and based on the size of our segregating 

population (176 individuals), only a subset of the total number of real segregating QTL were 

expected to be identified. Moreover, the additional generations of intermating used to create 

this population could affect the number of QTL detected since QTL previously identified in 

large linkage blocks, might be separated into several smaller-effect QTL after recombination 

occurred. Hence, even though more recombination cycles are better for improving mapping 

accuracy and resolution, the power to detect a QTL, each with very small effect, would be 

expected to be less. Furthermore, inbred lines were analyzed by Zhang et al. (2010) whereas 

TC materials are used in this study. According to prior investigations (Beavis et al., 1994; 

Schon et al., 1994), little evidence of common QTL detection between inbred per se and TC 

progeny was found, suggesting that marker-assisted selection strategies based on QTL 

identified at the inbred level would not assure the selection of hybrids with superior 

performance. Genetic studies based on a TC mapping population might thus be preferred if 

the objective is to select superior hybrids based on these traits.   

The extensive amount of unexplained genetic variance by the multiple QTL models 

across traits (92.75 – 68.25%) suggests that there might be several small-effect QTL still 
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undetected in this analysis. The sum of the effect of numerous QTL, each with small 

marginal effect, plus any type of epistasis they might be involved in, should account for all 

the unexplained genetic variance in the QTL models. It has been established that epistasis 

could make a large contribution to the genetic regulation of complex traits (Carlborg and 

Haley, 2004). However, significant epistasis was detected in two out of 17 traits (PEPC and 

nitrate), and epistatic effects were much smaller than additive effects (5 versus 12.89 for 

PEPC and 2.5 versus 18.61 for nitrate). Similarly, no significant epistatic effects between 

QTL was detected in a recent study based on the maize NAM population, which included 

both Mo17 and B73 (reference line) genotypes (Zhang et al., 2015).           

Several annotated protein-coding genes were identified under QTL intervals 

determined in this investigation. Four of the maize genes detected and, annotated in B73 

genome, were also identified in a previous meta-QTL investigation aiming to discover 

candidate genes for N-use efficiency in maize (Liu et al., 2012). Those genes were 

GRMZM2G046382 (heat shock protein), GRMZM2G116204 (auxin-binding protein), 

GRMZM2G360339 (B12D protein) and, GRMZM2G123633 (cell wall invertase 3).  In 

addition, 11 candidate genes revealed important putative functions related to N-metabolism 

in Arabidopsis and rice. Three of them were proposed as candidate genes in a recent 

investigation on the maize NAM population (Zhang et al., 2015). Those genes were 

GRMZM2G008714, GRMZM2G045171, and GRMZM2G180625; coding for pyruvate 

kinase, sucrose synthase and glyceraldehyde-3-phosphate dehydrogenase, respectively. 

Pyruvate kinase is a key enzyme in the glycolytic pathway, that catalyzes the 

transphosphorylation from PEP and ADP to pyruvate and ATP (Valentin et al., 2000); 

sucrose synthase catalyzes a reversible reaction between sucrose and uridine diphosphate 
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glucose in order to mobilize sucrose into multiple pathways that utilize activated sugars 

(Subbaiah et al., 2007), while glyceraldehyde-3-phosphate dehydrogenase is an enzyme of 

the glycolytic pathway which catalyzes the conversion of glyceraldehyde-3-phosphate and 

NAD
+
 to 1,3 diphosphoglycerate and NADH (Harris and Waters, 1976). Moreover, in a 

recent study (Simons et al., 2014), glyceraldehyde-3-phosphate dehydrogenase had shown to 

be a key gene related to the decrease in biomass yield on a gln1-3 mutant maize genotype 

with B73 background in modeled conditions based on proteomic and transcriptomic data. In 

addition, eight other genes were found: GRMZM2G082780, GRMZM2G028574, 

GRMZM2G088235, GRMZM2G155974, GRMZM2G166366, GRMZM2G343519, 

GRMZM2G402582, and GRMZM2G481529. GRMZM2G082780 and GRMZM2G028574 

both had been described as PEPC putative genes. GRMZM2G088235 is an urease accessory 

protein involved in the N-recycling from ureide, purine, and arginine (Witte et al., 2005); and 

GRMZM2G155974 catalyzes the addition of glycine to γ-glutamyl-cysteine, generating 

glutathione. Glutathione is a key water-soluble antioxidant, the storage form and long-

distance transport form of reduced sulfur (Zagorchev et al., 2013). It has been established 

that as proteins contain both N and sulfur, a deficiency of either would severely affect protein 

synthesis and plant growth (Bouranis et al., 2008). GRMZM2G166366 was annotated as an 

aspartate kinase which catalyzes the phosphorylation of aspartate to for β-aspartyl phosphate, 

and is responsible for the first step in the biosynthesis of the amino acids lysine, methionine, 

and threonine (Azevedo et al., 1992). GRMZM2G343519 was annotated as a glutaredoxin 

protein, which is involved in protective and regulatory mechanisms in maize (Yang et al., 

2015). In accordance with the highly significant correlation between PPDK and PEPCe 

(0.69), the candidate gene GRMZM2G402582, was annotated as PPDK and it was located 
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under a PEPCe QTL (PEPCe-3). Finally, the putative gene GRMZM2G481529, a cytosolic 

enolase or phosphopyruvate hydratase, is described as a metalloenzyme responsible for the 

catalysis of the conversion of 2-phosphoglycerate to PEP, having orthologs within sorghum 

and rice.       

The eleven coding regions underlying QTL identified in this study constitute 

promising candidates for validation studies.  

 

Conclusions 

We identified 44 QTL associated with the physiological traits related to N-

metabolism in a high-resolution maize TC mapping population. Furthermore, genetic QTL 

models accounting for 7 to 31 % of the genetic variance were derived, and 11 candidate 

genes within QTL genomic regions are identified. These QTL constitute candidates for 

integration into a breeding program to improve NUE in maize. The immediate next step 

would be to grow these TCs in the field and assay the enzymes at flowering time when the 

canopy is fully developed to determine whether and how much of the variation in grain yield 

they explain. The field grown TCs will also make it possible to determine whether the QTL 

identified from the seedlings in the growth chamber relate to ultimate trait: grain yield.   
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Figures 

 

 

 

Figure 3.1. Enzymes and proteins involved in N-acquisition and assimilation in higher 

plants.  

AlaAT, alanine aminotransferase; AS, asparagine synthase; AspAT, aspartate 

aminotransferase; GOGAT, glutamate synthase; GS, glutamine synthetase; ICDH, isocitrate 

dehydrogenase; NR, nitrate reductase; NiR, nitrite reductase; PEPC, phosphoenol pyruvate 

carboxylase; PPDK, pyruvate orthophosphate dikinase (Source: Kanwarpal S. Dhugga, 

2015).  
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Figure 3.2. Correlation matrix-heatmap of N-metabolism related traits measured in leaf 

tissues in the IBMSyn10-DH TC population of maize. 

 

Significant correlation (p-value<0.05) values are colored in blue (positive correlation) and 

red (negative correlation). 
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Figure 3.3. Adjustment of real genetic map and final adjusted F2 genetic map.   

(A) For each chromosome the line located on the left represents the real map estimated from 

the actual data while the line on the right corresponds to the adjusted genetic distance (cM) 

(B) Final adjusted genetic map.  
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Figure 3.4. Genetic map and distribution of QTL associated with N-metabolism related 

traits identified in leaf tissues of the IBMSyn10-DH TC population of maize.   
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Figure 3.4 continued. 

QTL positions shown at right of chromosomes (in cM) and lengths of bars are determined by 

2-LOD confidence intervals. Only selected markers are displayed in the figure. QTL for 

enzyme activity are in blue, QTL for N content traits are in green, QTL for ELISA 

determination are in red, and QTL for metabolites are in brown. Figure created with 

MapChart 2.2 (Voorrips, 2002). 
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Figure 3.5. Total number of QTL associated with N-metabolism related traits in leaf 

tissues of the IBMSyn10-DH TC population of maize. 
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Tables 

Table 3.1. Sample size, mean values for the population and checks, minimum values, maximum values, standard deviation, 

coefficient of variation, genetic effect p-value and repeatability of traits measured in leaf tissues of the IBMSyn10-DH TC 

population of maize. 

Trait  Unit na Pop µb B73TCc Mo17TCd Mine Maxf SDg CVh  G effect Pi Rptblityj 

AlaAT Normalized Glu per mg/protein 168 158.18 143.47 161.94 147.54 168.69 4.77 3.02 7.44E-06 0.39 

AS Normalized Glu per mg/protein 173 804.71 755.67 819.72 772.93 844.35 11.34 1.41 1.88E-03 0.27 

AspAT Normalized Glu per mg/protein 172 560.26 510.58 547.22 540.96 582.23 7.54 1.35 4.74E-02 0.31 

GOGAT Normalized Glu per mg/protein 172 174.56 163.00 181.28 166.40 182.81 3.22 1.84 8.68E-06 0.39 

GS GHA mmoles/mg protein 170 267.16 254.55 267.65 255.80 278.23 4.67 1.75 1.49E-03 0.35 

NiR Nitrite reduced/mg protein 173 185.45 172.12 237.50 109.31 271.26 33.00 17.79 1.33E-03 0.70 

NR nMoles nitrite/mg protein 171 4.10 3.67 4.00 2.55 6.49 0.73 17.80 5.25E-08 0.62 

PEPC uMoles NADH/min/mg protein 171 274.61 264.73 322.94 182.52 404.83 44.34 16.15 1.64E-11 0.52 

Nitrate  nMoles/mg protein 176 242.18 153.27 361.04 149.50 462.60 57.66 23.81 1.38E-10 0.86 

Glutamate Normalized Glu per mg/protein 173 135.13 125.16 141.21 122.82 146.57 4.99 3.69 1.88E-07 0.50 

PPDK ug/ml 176 242.17 226.18 226.62 164.63 339.81 31.82 13.14 4.54E-08 0.64 

Rubisco ug/ml 172 238.16 271.76 173.75 197.85 289.37 50.53 21.22 2.42E-08 0.49 

Lox6 ug/ml 175 44.12 44.68 43.45 19.25 75.52 9.37 21.24 8.71E-10 0.74 

PEPCe ug/ml 176 282.00 289.83 272.01 186.22 412.08 32.92 11.67 4.49E-08 0.61 

TNs mg  172 30.59 44.24 32.92 19.00 44.18 5.50 17.98 4.98E-08 0.73 

TNr mg  176 4.75 7.10 5.10 2.21 9.13 1.09 0.23 7.12E-07 0.70 

Nratio ratio 176 6.70 6.23 6.45 5.91 7.37 0.26 3.88 3.92E-13 0.50 
a
 Population size, 

b
 Population mean, 

c,d
 BLUP value for parental genotypes in testcross genotype, 

e
 Minimum value, 

f
 Maximum 

value, 
g
 Standard deviation, 

h
 Coefficient of variation (%), 

i
 p value of the genetic effect,

 j
 Repeatability, normalized values were 

multiplied by a factor of 1.131 for AlaAT, AS and AspAT, and by 1.151 for GOGAT. 
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Table 3.2. QTL associated with N-metabolism related traits measured in leaf tissues in the IBMSyn10-DH TC population 

of maize.  

 

QTL name Chra Markerb G Pos (cM)c 
G Interval 
(cM)d 

Adj 
(cM)e 

 P Pos 
(Mb)f 

P Interval  
(Mb)g LOD  R2 (%) Add effecth  

 
# Genes 

AlaAT-1 6 217 400.21 390.85-402.76 61.57 107.70 107.45-108.25 4.57 6.79 -1.28 37 

AlaAT-2 8 356 795.25 787.71-801.56 122.35 170.35 170.15-170.65 4.71 7.01 -1.31 30 

AS-1 2 160 456.57 454.19-460.14 70.24 22.95 22.85-25.3 5.78 8.78 -4.83 130 

AS-2 3 152 419.09 411.63-426.49 64.48 29.45 27.10-31.25 4.24 6.32 -4.02 125 

AS-3 5 74 244.73 238.47-246.37 37.65 8.65 8.15-9.35 4.32 6.49 4.18 46 

AS-4 6 5 3.91 2.95-5.91 0.60 1.40 1.20-1.65 6.47 9.89 5.08 24 

AS-5 10 22 77.15 74-78.02 11.87 3.05 2.95-3.15 4.51 7.20 -4.33 8 

AspAT-1 9 296 616.45 612.53-622.45 94.84 139.55 138.85-139.85 8.17 12.26 -2.82 50 

AspAT-2 10 201 386.89 381.43-390.33 59.52 132.35 132.05-132.6 5.36 7.83 2.23 35 

GOGAT-1 6 152 225.40 214.7-227.58 34.68 93.55 93.25-94.15 6.17 9.19 1.07 39 

GOGAT-2 7 59 195.78 192.48-201.06 30.12 8.75 8.65-9.25 5.09 7.46 0.91 20 

GOGAT-3 10 23 77.94 74.51-81.72 11.99 3.05 2.95-3.15 9.98 15.67 -1.41 8 

GOGAT-4 10 166 320.94 319.77-323.77 49.38 115.35 114.15-116.15 8.29 12.70 -1.72 60 

GS-1 1 322 643.24 641.24-645.21 98.96 80.15 77.15-80.65 4.92 7.34 1.36 104 

GS-2 5 269 519.18 517.52-520.52 79.87 83.95 83.05-85.95 4.75 7.77 -1.38 63 

GS-3 6 350 653.29 646.18-656.1 100.51 150.20 149.35-150.75 7.11 10.94 1.63 62 

GS-4 8 18 35.30 31.62-40.53 5.43 2.55 2.35-2.75 4.93 7.36 1.32 5 

NiR-1 2 108 337.51 334.5-342.38 51.92 15.05 14.95-15.65 5.45 9.27 10.79 31 

NiR-2 4 203 490.66 485.86-491.81 75.49 50.00 44.00-53.1 5.54 8.61 -10.14 185 

NiR-3 9 87 220.16 216.68-223.61 33.87 11.95 11.65-12.85 6.10 9.77 -11.65 40 

NR-1 4 341 675.51 667.96-680.8 103.92 167.80 167.45-169.9 4.50 7.89 0.22 65 
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Table 3.2 continued. 

QTL name Chra Markerb G Pos (cM)c 
G Interval 
(cM)d 

Adj 
(cM)e 

 P Pos 
(Mb)f P Interval  (Mb)g LOD  R2 (%) Add effecth 

 
# Genesi 

PEPC-1 3 44 181.86 164.25-191.94 27.98 5.50 5.25-5.85 4.40 7.09 12.40 29 

PEPC-2 5 303 562.79 561.1-568.02 86.58 156.25 151.80-157.05 5.53 9.04 -13.89 129 

PEPC-3 6 41 82.21 78.15-87.06 12.65 6.75 6.35-6.95 4.24 6.81 12.18 21 

PEPC-4 10 302 691.34 688.4-695.71 106.36 147.35 147.15-147.85 4.82 7.81 13.10 49 

Nitrate-1 4 418 832.99 831.24-838.17 128.15 187.35 187.25-187.45 4.37 6.62 15.69 4 

Nitrate-2 6 139 195.53 193.93-197.9 30.08 91.45 90.20-91.75 10.41 15.19 23.09 52 

Nitrate-3 7 184 357.61 349.92-362.09 55.02 116.45 108.95-118.55 4.71 6.49 -17.06 205 

Glutamate-1 5 85 266.85 265.2-269.13 41.05 10.15 10.05-10.25 5.22 7.74 1.46 11 

Glutamate-2 6 57 105.01 99.94-112.77 16.16 13.95 11.80-23.60 4.48 6.58 1.31 278 

PPDK-1 1 463 845.49 845.09-847.08 130.08 191.85 191.75-192.05 5.16 7.90 -9.57 9 

Rubisco-1 9 243 516.74 515.54-517.53 79.50 122.65 122.55-122.75 6.10 9.60 5.83 1 

Lox6-1 2 33 98.63 94.96-102.89 15.17 4.25 4.15-4.45 8.35 12.00 -3.30 32 

Lox6-2 7 23 86.51 79.08-90.51 13.31 4.05 3.95-4.20 6.77 9.00 3.02 8 

Lox6-3 10 185 346.43 340.37-344.59 53.30 127.35 127.15-127.65 7.04 9.00 3.03 24 

PEPCe-1 1 460 839.98 838.21-843.40 129.23 191.55 191.30-191.75 6.36 10.49 -11.34 15 

PEPCe-2 9 242 501.24 499.20-501.44 77.11 122.65 122.45-122.75 8.49 13.02 22.05 5 

PEPCe-3 10 117 275.85 273.07-280.88 42.44 70.70 68.85-76.95 4.14 5.88 -8.74 201 

TNs-1 1 51 163.97 155.61-166.82 25.23 8.35 7.95-8.45 10.47 16.17 -2.42 42 

TNs-2 7 311 603.06 599.58-607.5 92.78 160.65 160.55-160.90 4.22 5.98 1.59 14 

TNr-1 1 195 469.95 467.09-480.29 72.30 37.95 37.15-39.35 4.38 6.04 -0.28 79 

TNr-2 6 235 451.99 449.76-457.93 69.54 115.45 115.10-117.50 4.54 6.27 0.29 100 

Nratio-1 2 119 349.98 344.92-359.17 53.84 16.25 15.85-16.65 4.37 6.39 -0.07 40 

Nratio-2 3 212 493.48 490.50-497.62 75.92 133.50 129.25-136.95 7.03 10.68 -0.09 185 
a
 Chromosome number, 

b
 Marker localized at LOD peak, 

c
 Genetic position of SNP in cM, 

d
 1-LOD interval in cM, 

e
 Adjusted 

genetic position, 
f
 Physical position in Mb, 

g
 1-LOD Physical interval, 

h
 Additive effect of respective QTL (a positive-signed effect 

represents an increasing allele from B73, while a negative-signed allele denotes an increasing allele from Mo17), 
i 
Total number of 

annotated genes underlying 1-LOD QTL region. 
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Table 3.3. Analysis of multiple QTL model for N-metabolism related traits measured in 

leaf tissues of the IBMSyn10-DH TC population of maize. 

Phenotype # QTL in modela Model R2 (%)b  QTL interactingc  R2 epistasis (%)d 

AlaAT 2 7.25                                                                    

AS 5 31.55                                  

AspAT 2 10.49                                  

GOGAT 4 27.09                                  

GS 4 21.10                                  

NiR 3 22.42                                  

NR 1 7.89                                  

PEPC 4 24.47  PEPC-1:PEPC-3     5.00 

Nitrate 3 31.43  Nitrate-2:Nitrate-3     2.50 

Glutamate 2 18.13                                  

PPDK  1 7.90                                  

Rubisco  1 9.60                                  

Lox6  3 26.73                                  

PEPCe                                3 17.78         

TNs 2 12.77                                    

TNr 2 8.12                                   

Nratio 2 12.85                                   
a
 Number of significant QTL fitted in MIM model, 

b
 Total R

2
 obtained by fitting significant 

QTL simultaneously in a MIM model, 
c
 Significant epistasis between QTL, 

d
 R

2
 explained by 

epistasis solely.  
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Table 3.4. Candidate genes related to N-metabolism underlying QTL genomic regions in leaf tissue of the maize 

IBMSyn10-DH TC population.  

Maize GDB ID Corresponding gene annotation Chra Startb Endc QTL name 

GRMZM2G008714 Piruvate kinase 10 147664124 147668582 PEPC-4 

GRMZM2G045171 Sucrose synthase  4 168773364 168776492 NR-1 

GRMZM2G082780 PEPC 4 3 29056230 29064249 Asn Syn-2 

GRMZM2G088235 Urease protein 5 83898114 83902364 GS-2 

GRMZM2G155974 Glutathione synthetase 3 133812995 133826187 Nratio-2 

GRMZM2G028574 PEPC 3 2 115914515 115915086 TNr-2 

GRMZM2G166366 Aspartate kinase 1 6 115555315 115557026 TNr-2 

GRMZM2G180625 Glyceraldehyde-3-phosphate dehydrogenase  6 6901483 6906034 PEPC-3 

GRMZM2G343519 Glutaredoxin protein 10 73172286 73173446 PEPCe-3 

GRMZM2G402582 PPDK 10 74699777 74700071 PEPCe-3 

GRMZM2G481529 Cytosolic enolase, phosphopyruvate hydratase 1 38637579 38641262 TNr-1 
a
 Chromosome, 

b,c
 start and end location in bp.  
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Abstract 

Nitrogen (N) availability is essential for plant growth and development. During last 

decades, several problems have arisen due to over-fertilization with N in rural areas. 

Breeding for maize with greater efficiency in the use of N may help to reduce contamination 

and increase profits. Nevertheless, previous to breeding, a better understanding of the 

genetics underlying N-metabolism will be needed. Herein, a quantitative trait loci (QTL) 

mapping for N-metabolism related enzymes and metabolites was performed based on root 

tissue harvested from maize hybrids grown in hydroponic conditions. Twenty-six QTL were 

identified across all traits. QTL models explained 7-43% of the observed variance and no 
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significant epistasis was detected between QTL. A total of 14 candidate genes were proposed 

underlying 1-LOD QTL confidence interval regions. All the candidate genes are located in 

trans, unlinked or even in different chromosome, to the known genomic positions of each 

correspondent structural genes. 

Introduction 

Nitrogen (N) is one of the most important mineral nutrients for plant growth and 

development. In maize, sufficient N is required for amino acid metabolism, ear growth, and 

dry matter accumulation in kernels (Hirel et al., 2001). While N deficiency could result in a 

substantial decrease in grain yield (Uhart and Andrade, 1995), the oversupply of N causes a 

severe negative impact in the environment. 

A significant proportion of the N added to soils is not uptake and utilize by plants and 

is lost to the environment. Important causes of N-loss are denitrification of the nitrate form 

by soil bacteria, volatilization of surface-applied urea-based fertilizers (Nielsen, 2006), and 

N-leaching and runoff. N contamination from the Mississippi River Basin has been 

implicated as one of the main causes for the overgrowth of algae that consumes the oxygen 

needed to support marine life, which develops each spring and summer on the Louisiana-

Texas shelf of the Gulf of Mexico (Goolsby and Battaglin, 2000). Nitrate concentrations 

have increased several fold during the past 100 years in streams of the Basin, and the annual 

delivery of nitrate from the Mississippi River to the Gulf has nearly tripled since the late 

1950's. According to the Louisiana Universities Marine Consortium, the hypoxic area, also 

called “dead zone”, is bigger than the states of Connecticut and Rhode Island combined, a 

28% larger than last year (Schleifstein, 2015).  
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Improving N use efficiency (NUE) of maize would reduce N losses from the soil.  

NUE, which in cereals has been defined as the ratio of grain produced per unit of soil N, can 

be subdivided into two main components: N uptake efficiency (total plant N/soil N) and N 

utilization efficiency (total grain N/total plant N) (Moll et al., 1982; Dhugga and Waines, 

1989). Breeding maize efficient in the use of N may render a more sustainable agriculture, 

leading to diminish in N fertilization while maintaining yields and an overall increase in 

profits. But, previous to breeding, the development of a comprehensive understanding of N-

metabolism at the genetic level may be helpful or even necessary.  

The pathway for N reduction and incorporation of reduced N into organic molecules 

has been described (Yemm and Folkes, 1958; Lea et al., 1990; Lea and Miflin, 2010) (Fig. 

4.1). Nitrate is reduced to nitrite by nitrate reductase (NR) in the cytoplasm, followed by 

reduction of nitrite in the plastids to ammonium by nitrite reductase (NiR). Ammonium thus 

generated is aminated into glutamine from glutamate by glutamine synthetase (GS). Another 

enzyme, glutamine-2-oxoglutarate aminotransferase or glutamate synthase (GOGAT), then 

converts glutamine back to glutamate, producing an additional glutamate along the way from 

2-oxoglutarate. Asparagine synthase (AS) produces asparagine and glutamate from glutamine 

and aspartate. Glutamate can serve as an amino donor for other amino acids, a reaction 

accomplished by different amino transferases. For instance, alanine aminotransferase 

(AlaAT) catalyzes the amino transfer to pyruvate resulting in 2-oxoglutarate and alanine 

(Miyashita et al., 2007), while aspartate aminotransferase (AspAT) forms 2-oxoglutarate and 

aspartate after transferring the amino group of glutamate to oxaloacetate. Following N 

assimilation, glutamate, asparagine, glutamine and other amino acids, constituents of 
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proteins, are transported via vascular tissues to the growing organs or stored, as vegetative 

storage proteins, which can aid plant growth during periods of N deficiency.  

N and carbon (C) metabolisms are highly interconnected (Nunes-Nesi et al., 2010). 

Certain metabolites and enzymes perform key roles in C metabolism and are regulated by the 

status of N in the cell (Sugiharto et al., 1990). Oxaloacetate, one of the C skeletons utilized in 

amino acids synthesis, is made from the addition of bicarbonate to phosphoenol pyruvate 

(PEP) by a reaction catalyzed by phosphoenol pyruvate carboxylase (PEPC). Even though N 

and C metabolisms are essential for life, and several key enzymes and chemical reactions 

were determined, the genetic basis underlying the plant’s ability to uptake and utilize N not 

completely understood and information is limited. 

Mapping of quantitative trait loci (QTL) is routinely implemented in plant breeding 

programs.  Linkage mapping allows the estimation of the mean and variance associated with 

a specific locus. The procedure relies on differences among the trait means of genotypes at a 

marker locus (Bernardo, 2010). The precision in the identification of a QTL can be critical to 

the time, expense, and probability of success of further studies (e.g., identification of 

candidate genes and positional cloning) (Remington et al., 2001). That precision in the 

estimation of the QTL position, referred as resolution, may vary substantially depending on 

several factors such as recombination frequency present in the mapping population, marker 

density and population size (Yu et al., 2011). The genomic region defined by a QTL could 

contain one or several genes. Thus, it is not a straightforward process to identify the genes 

underlying a QTL. Nevertheless, based on previous annotations and descriptions on model 

species, a few candidate genes could be proposed for further investigation.   
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Much of today’s commercial maize germplasm originates from seven progenitor 

lines, including B73 and Mo17 (Mikel and Dudley, 2006). Both inbreds differ in their 

response to N fertilization (Balko and Russell, 1980) and are parents of the IBM (Intermated 

B73 x Mo17) mapping population (Lee et al., 2002). After ten rounds of random mating, 360 

double haploid (DH) lines were generated from the IBMSyn10 population (Hussain et al., 

2007) resulting in a higher-resolution mapping population that can be directly associated to 

the physical map established for B73 inbred (www.maizesequence.org). On the whole, this 

population serves as an outstanding resource for mapping studies in order to increase the 

understanding of the genetic basis of N-metabolism.  

Several studies have shown association between QTL and N-metabolism related 

enzymes. Agronomic and physiological traits were used to detect QTL and determine their 

causal relationships in an integrated manner (Gallais and Hirel, 2004). Agronomic traits were 

measured in a set of hybrids by Bertin and Gallais (2001), however physiological traits were 

studied at the level of lines (77 RIL).  Limami et al. (2002) studied 140 RIL and identify 

QTL of germination efficiency that co-localized with genes encoding cytosolic GS. Zhang et 

al. (2010) measured activity of ten enzymes involved in C and N-metabolism on leaf tissues, 

based on the IBMSyn4 maize population. Seventy-three QTL associated with enzyme 

activity and eight QTL associated with biomass were identified. Most of the enzyme activity 

QTL was in trans to the known genomic locations of genes but, three cis-QTL were located 

for NR, glutamate dehydrogenase and shikimate dehydrogenase. Recently, a QTL analysis 

based on leaf tissues was performed for 12 metabolites directly related to C- and N-

metabolism in the maize nested association mapping (NAM) population.  An association 

mapping approach was implemented and 101 candidate genes were identified (Zhang et al., 
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2015). However, QTL associated with enzymes related with N-metabolism from root tissues, 

at hybrid level, and based on a high-resolution mapping population were not studied. Whilst 

the chemical reactions occurring within the root system are essential for N-acquisition, the 

vast majority of enzyme QTL studies were merely focused on leaf tissues. Hence, an 

investigation devoted to enzyme activity and metabolites related to N-metabolism on root 

tissues may provide additional insight into these aspects of N-metabolism.  

In this investigation, root tissues from a mapping population of maize TC genotypes, 

derived from the cross between IBMSyn10-DH lines and an elite inbred, grown under 

hydroponics, were  analyzed for enzyme activity and metabolites related to N-metabolism. 

Key genetic regions associated with enzyme activity and biochemical compounds were 

identified. Following QTL detection, confidence interval regions (1-LOD CI) were assessed 

for the identification of candidate genes associated with N-metabolism for further 

investigation. To our knowledge, this is the first report describing a QTL analysis for N-

metabolism related enzymes and metabolites in maize root tissues.   

Materials and Methods 

Plant material 

A total of 176 TC genotypes derived from the cross between each IBMSyn10-DH 

line and an elite inbred were used. The IBMSyn10-DH population, developed by Hussain et 

al.(2007), is a set of DH lines derived from a population after ten generations of random 

mating from the cross between B73 x Mo17. Each DH line was crossed by an elite inbred 

(PEI), property of DuPont Pioneer (closed pedigree), to generate the TC genotypes.  
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Experimental design 

Kernels from each TC genotype were germinated in autoclaved paper rolls and 

sterilized water, and subsequently grown under hydroponic conditions. Ten tanks (i.e., sets) 

containing appropriate growth media were planted with a total of 264 seedlings in each tank. 

In every set, 22 genotypes were grown, and each genotype was replicated 12 times. Two 

genotypes (B73 and Mo17 each crossed to the PEI) served as controls, and were included in 

every set and replication.  

The growth media consisted of MgSO4.7H2O 0.5 mM, KH2PO4 0.5 mM, Fe-EDTA 

0.1 mM, FeEDDHA 0.1 mM, Ca(NO3)2.4H2O 1.25 mM, KNO3 2.5 mM, Na(OH) 0.1 mM, 

and 0.4 L of trace elements (25 mM H3BO3, 2 mM MnSO4.H2O, 2 mM ZnSO4.7H2O, 0.5 

mM CuSO4.5H2O, 0.5 mM Na2MoO4.2H2O and 50 mM KCl) in a total of 400 L solution per 

hydroponic tank. Two weeks after planting, the six most representative uniform plants of 

each genotype, based on both their root and shoot development, were selected and 

transplanted into another hydroponic tank with same media.  

When plants reached V4 stage (Abendroth et al., 2011), root samples were taken and 

stored at -80°C while the rest of the plant tissues were dried for 12 days at 48°C.  

Biochemical assays 

 

Activity of eight enzymes related with N-metabolism pathway was determined in root 

samples of each genotype. The set of enzymes comprised NR, NiR, GS, GOGAT, AlaAT, 

AS, AspAT and PEPC, and specific protocols were adapted by K. Dhugga, R. Abbaraju and 

L. Fallis.  GS, GOGAT, Asp AT and PEPC assay protocols were adapted from Gibon (2004), 

while NR from Lea et al. (1990), NiR from Bourne and Miflin (1973), AS from Joy and 

Ireland (1990), and AlaAT protocol was modified from Ashton et al. (1990). Metabolites 
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nitrate and glutamate were measured as byproducts of enzyme reactions. All measurements 

were determined by comparing absorbance of each specific biochemical reaction with known 

standards using a spectrophotometer (Spectramax Plus 384 Microplate Reader, Molecular 

Devices). 

Plant tissues were weighed and analyzed for N content by combustion analysis. Based 

on biomass dry weight and percentage of N measurements, total amount of N present in root 

(TNr) tissues was calculated. In addition, Nratio was estimated as the ratio between TNs and 

TNr. The analysis of TNs is presented in Trucillo-Silva et al. (2015).    

Trait data analysis 

 

Statistical analysis was implemented in R statistical program (RCoreTeam, 2014). 

Initial data analysis of the raw data was based on the ggplot2 package (Wickham, 2010) and 

GGally (Schloerke et al., 2014). As a first step, a univariate analysis, where a single variable 

is fitted in a model, followed by a multivariate approach, where multiple variables are 

analyzed simultaneously, was performed in order to comprehend the relationship among the 

variables. The determination of outliers present in the dataset, based on a jackknife 

resampling strategy, was applied. As described in Trucillo-Silva (2015), a statistical model is 

fitted n times, systematically omitting one observation from the dataset, followed by the 

prediction of random effects for a subset of most consistent genotypes each of the n times. 

The aim of process is to target “real outliers” based on the complete information gathered in 

the experiment and fine-tune the statistical model, quantified by improvements in log-

likelihood, Akaike and Bayesian information criterion values after discarding misleading 

observations, while keeping informative and true observations for later analysis. The mixed 
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model was fitted with ASReml R package (Butler et al., 2007) and correspondent mixed 

model equations were solved for prediction of random effects and estimation of fixed effects.   

The statistical model can be represented as follows:  

            

Where    denotes a n x 1 vector of observed response values,   is a p x 1 vector of fixed 

effects,   is a n x p design matrix,   is a q x 1 vector of random effects,   is a n x q design 

matrix, and   being the error term. 

The following assumptions were used: E (u) = 0, E (e) = 0, Cov (u, e) = 0, and Var 

(u) = G and, Var (e) = R. The G matrix had a compound symmetry structure on the genotype 

levels and R matrix is a diagonal matrix with different values for each set, allowing non-

constant variance across sets. The response variable was the activity of the enzyme and the 

metabolite concentration, respectively.  Set, the light replicate and plate were included as 

fixed effects in the model (where replicate and plate are nested in set), and check genotype 

effect was included as a continuous covariate. Finally, a random effect for the genotype was 

included in the linear model. During the process describe above, several genotypes were 

discarded separately for each trait. Extreme cases were AlaAT and NR were five genotypes 

were discarded, respectively; whereas no genotypes were taken out of the analysis and 

sample size totalized 176 genotypes for AspAT, AS, and GS.  Furthermore, one and four 

complete sets of data were removed for glutamate and nitrate, respectively, due to 

contamination of samples and very low accuracy in the estimations.  

Significance of genetic variance was calculated based on log-likelihood ratio test by 

comparing models with and without the TC random effect. Correlation was calculated among 

BLUP values for each pair of traits and significance was adjusted after Bonferroni correction 
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for multiple comparisons. Repeatability was derived from variance estimations from 

ASReml. As variance components were estimated for each different set, a different value of 

repeatability was estimated for each set and then partial estimates were averaged 

correspondingly.       

Genotypic information and genetic maps 

 

TC genotypes were analyzed with a total of 5,306 single nucleotide polymorphism 

(SNP) markers generated by the Beijing Genomics Institute. Physical and genetic position of 

each SNP was determined and genetic maps were created using R/qtl (Broman et al., 2003). 

Recombination fractions were estimated and Kosambi mapping function was implemented to 

calculate genetic map distances (Kosambi, 1944). Furthermore, as the recombination 

between linked loci increases every generation, leading to an expansion of the genetic map, 

mapping distances were adjusted with the purpose of comparison with previous 

investigations. The expansion factor was determined based on the following equation: 

   
 

 
           , where j corresponds to the number of generations of intermating 

including the two generations for generating the F2, and i is the number of inbred generations 

after intermating (Teuscher et al., 2005).   

The real map was 11,265.25 cM length and map distances were reduced by a factor of 

6.5 to estimate the adjusted F2 map. The final adjusted map was 1,733.12 cM length with an 

average spacing between markers of 0.33 cM, while the maximal spacing between markers 

was nearly 7 cM, located in chromosome 6 (Fig. 4.3). With regard to physical distance, the 

length of the total genome was 2,051.75 Mb and on average there was a marker positioned 

every 400Kb. The biggest gaps between markers, 69.80 and 67.40 Mb, were located in 

chromosomes 2 and 9, respectively.  



86 

 

 

QTL mapping and identification of candidate genes 

 

Associations between phenotypes and genotypes were determined using QTL 

Cartographer (Basten et al., 2002). Single marker analysis, followed by linear regression 

analysis and composite interval mapping (CIM) was performed. For CIM, Zmap (model 6) 

was implemented, using the ten most significant marker cofactors identified by forward and 

backward regression. In addition, QTL were scanned at intervals of 1 cM and at every 

marker while cofactors located within a window of 10 cM of the scanned position were 

excluded from the analysis. In order to determine LOD score thresholds of 5%, and to further 

identify significant QTL, 1,000 permutations were performed for every trait. Two nearby 

QTL were considered as different when LOD peaks were localized 20 cM or greater apart. 

Effects of QTL are expressed relative to the B73 allele. Therefore, a positive effect would 

imply an increase in the phenotypic value when the B73 allele is present, whereas a negative 

effect would indicate a reduction in the presence of B73 allele. 

Furthermore, a multiple interval mapping (MIM) analysis was performed by fitting all 

previously identified QTL from CIM analysis, and parameters were re-estimated and 

positions refined. In addition, all pairwise interactions between QTL in every model were 

studied for each trait. The significance was determined based on the information criterion: IC 

(k) = -2 (log (L) - kc (n)/2), where the penalty function corresponds to: c (n) = log (n) and a 

threshold of 0.0 was used (Basten et al., 2002). The proportion of the total phenotypic 

variance associated with each model was estimated. 

Candidate genes annotated on corresponding 1-LOD QTL confidence interval regions 

were examined from MaizeGDB (Lawrence et al., 2008) and Phytozome (Goodstein et al., 

2012). Those candidate genes directly related to N-metabolism based on their descriptions on 
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model species, such as rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), were 

proposed for further studies. Several other candidate genes may be promising candidates for 

further investigations, including transcription factors; however were not considered due to 

the difficulties to ascertain a direct relationship with N-metabolism in maize based on 

available descriptions.    

Results 

Statistical analysis for N-metabolism associated traits 

 

Genetic variance was statistically significant for all traits and a wide range of values 

was obtained across traits. Repeatability values averaged 0.52, with values ranging from 0.38 

- 0.70. The lowest value of repeatability was registered for AspAT, while the highest value 

corresponded to TNr. Coefficient of variations ranged from 0.03 to 0.48 (for Nratio and NR, 

respectively) (Table 4.1).  

Correlation between N-metabolism related traits 

 

Pearson correlation values were estimated between all traits (Fig 4.2). From a total of 

66 pairwise correlations, 31% were extremely significant (p-value<0.001) and 4% were 

significant (p-value<0.05). Significant correlation values ranged from -0.43 to 0.55. The 

highest significant correlation was determined between AlaAT and AspAT and all significant 

correlations between enzyme activities, enzymes and metabolites, and between metabolites 

were positive. Close negative correlations were estimated between TNr and Nratio (-0.43) and 

Nratio and GOGAT (-0.27).   

Identification of quantitative trait loci 

Twenty-six QTL were identified across all traits. Even though QTL were identified in 

all chromosomes, five QTL were detected in chromosome 7 while one QTL was identified in 
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chromosome 8 (Fig. 4.3). AlaAT-3 and AspAT-2 were the only QTL found to overlap their 

respective 1-LOD CI at chromosome 10. On average, 2.2 QTL were identified per trait, 

ranging from one QTL for some traits (GOGAT and NR) to four QTL for NiR. Most of the 

QTL (69%) explained less than 10% of the genetic variance, while 27% and 4 % of the 

identified QTL were associated with 10-25% and >25% of the variance, respectively. The 

QTL which accounted the highest amount of variance (31.5%) and presented the highest 

LOD score (23.4) was PEPC-1 QTL, located in chromosome 5. For that QTL, B73 allele 

showed a negative effect (-23.78 uMole NADH/min/mg protein). Furthermore, at 70 % of all 

QTL detected across traits, B73 showed a negative additive effect. For certain traits, B73 

exhibited only a negative effect (e.g., AspAT, GOGAT, and GS) while for AS QTL only 

positive effects for B73 alleles was found.   

Confidence intervals (CI 1-LOD) for QTL ranged from 1.04 - 24.46 cM (0.16 - 3.76 

cM adjusted distance) length, with an average of 7.79 cM (1.2 cM adjusted distance). Those 

CI correspond to 0.2 to 21.1 Mb in physical distance, with a mean CI length of 2.46 Mb.   

Multiple interval mapping  

 

First order epistatic interactions between QTL identified previously by CIM were not 

significant for all traits, thus epistatic digenic effects were excluded from genetic models. 

Even though 43% of the total variance was explained in PEPC by fitting two QTL in a MIM 

model, other genetic models captured less than 10% of the phenotypic variance, such as AS, 

GOGAT, GS and NR (Table 4.3). On average, multiple QTL models explain 15.1 % of the 

phenotypic variance and two QTL were included in each of the models. 
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Candidate genes 

 

On average of 63 genes were annotated underlying QTL 1-LOD regions, with CI 

regions having between six and 376 genes. Nevertheless, only a subset of the putative genes 

could be associated to N-metabolism pathway based on the description in model species. The 

most promising genes may be GRMZM2G028574, GRMZM2G111225, GRMZM2G136712, 

GRMZM2G155974, GRMZM2G166366,  GRMZM2G374302, GRMZM2G409131, 

GRMZM2G466543, GRMZM2G473001, GRMZM2G481529, GRMZM2G493395, 

GRMZM5G817058, GRMZM2G575696 and GRMZM2G580894 (Table 4.4). Each of them 

had shown important putative functions, as PEPC, nitrilase, aspartate kinase, glutathione 

synthetase, aspartate kinase, arginine decarboxylase, phosphofructokinase, arogenate 

dehydratase, PEPC, phosphopyruvate hydratase, 1-deoxy-D-xylulose-5-phosphate synthase, 

phosphoribosyl transferase, and last two genes as S-adenosyl-methionine-dependent (SAM)-

methyltransferase, respectively. In accordance with Trucillo-Silva (2015), all the QTL 

identified in this study are located on a different position to the known genomic location of 

each corresponding structural gene (e.g., GS QTL were identified at chromosomes 7 and 9 in 

this study, whereas GS1 and GS2 locus are located in chromosome 1 between 271.02-

273.438 Mb and on chromosome 2 between 18.94-19.46 Mb, based on the following nearest 

loci on the IBM2 2008 Neighbors map, respectively). Therefore, the candidate genes 

identified under the QTL regions seem to affect in a trans-acting regulatory manner as 

previously described (Zhang et al., 2010).  Proposed candidate genes are located in 

chromosomes 1, 2, 3, 4, 6, and 7. In addition, no candidate genes were proposed underlying 

QTL for AS, GS, NiR, PEPC, Nitrate and Glutamate. 
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Discussion 

In this first genetic mapping investigation for N-metabolism related enzymes and 

metabolites in root tissues in plants, 22 QTL were identified in a TC mapping population. 

QTL models explaining more than 20% of the genetic variance were determined for certain 

phenotypes, such as NiR and PEPC. Since a higher-resolution mapping population and a high 

number of molecular markers were employed, the results are expected to be more precise and 

accurate compared to previous QTL studies on N-metabolism in leaf tissues. The findings 

would help to increase the knowledge of the genetics underlying N-metabolism in maize 

hybrids.  

Even though numerous QTL associated with enzymes involved in N-metabolism 

were identified in previous studies (Agrama et al., 1999; Limami et al., 2002; Canas et al., 

2012), only a few investigations were based on a representative and high-resolution mapping 

population, such as Zhang et al. (2010) and Zhang et al. (2015). Despite the fact that most 

traits in maize had shown low correlations between performances in the inbred and hybrid 

progeny (Hallauer et al., 2010), relatively few studies focused on hybrid populations (Bertin 

and Gallais, 2001; Gallais and Hirel, 2004). In order to fine map and account for the higher 

recombination rate, a high dense SNP marker platform was employed (5,300 SNP markers). 

Therefore, a higher-mapping resolution for a QTL analysis for root phenotypes was 

accomplished.  

In accordance with previous studies, the activity of enzymes investigated, constituents 

of the N-metabolism pathway (except PEPC, member of the primary C-metabolism, albeit 

closely related to N-metabolism), seem to be co-regulated (Zhang et al., 2010; Trucillo-Silva 

et al., 2015). Hence, a positive correlation between enzyme activities, as well as within 
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metabolites concentration, was expected a priori and was confirmed (Fig. 4.2). In addition, 

significant correlations between enzyme activities and metabolites were as well positive. 

Furthermore, the correlation value between the two metabolites (nitrate and glutamate) was 

significant and showed almost exact value as in a previous investigation (Zhang et al., 2015). 

Even though all correlations between enzyme activities were positive, some of the correlation 

values determined in this investigation were not statistically significant in Trucillo-Silva et 

al. (2015) (e.g., between AlaAT and AspAT, AS and GS, and AS and both metabolites). The 

highest correlation value was estimated between AlaAT and AspAT (0.55), and the only co-

location of QTL was as well between AlaAT-3 and AspAT-2 at chromosome 10. Even 

though no candidate genes associated with N-metabolism were found within that interval, it 

may be considered an important genomic region. Negative correlation was calculated 

between Nratio and TNr, values expected based on how Nratio was estimated (TNs/TNr). In 

addition, GOGAT and Nratio showed as well a negative correlation, which further supports the 

positive relationship between GOGAT activity and the accumulation of N in root tissues. 

In comparison to previous studies (Zhang et al., 2010; Trucillo-Silva et al., 2015), in 

which leaf tissue was investigated, the analysis and determination of root enzyme activity is 

even more complex and laborious in order to obtain accurate and reliable data. Activity of 

root enzymes is more susceptible to fluctuation, due to several factors including the 

procedure employed for cleaning the roots previous to sampling, compared to enzyme 

activity in leaf tissues. Even though a protocol for sampling and cleaning roots was 

established and applied, six replications per genotype were included, and many other 

influencing factors were taken into account (e.g., uniform temperature and harvesting 

window period), repeatability estimations for many traits were relatively low (0.38-0.70) 
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compared to similar studies based on leaf tissues (e.g., repeatability for NR was 0.62 

compared to 0.65 and 0.74 for leaf tissue analyses performed by Trucillo-Silva et. al. (2015),  

and Zhang et al., (2010), respectively).  

QTL associated with eight enzyme activities, two metabolites and two N content 

traits were identified. A few QTL determined in this root study were likewise identified in 

analogous position in a previous QTL analysis on leaf tissues (Trucillo-Silva et al., 2015), 

such as a QTL associated with AS located on chromosome 5, and QTL for PEPC, nitrate and 

GOGAT (LOD peak values identified 2, 4 and 7 adjusted cM apart, respectively). In 

agreement with Zhang (2010), a QTL for AlaAT was detected in chromosomes 4, about 5 

cM apart from the detected position in this study. Nonetheless, most of the QTL reported in 

other maize studies (Agrama et al., 1999; Hirel et al., 2001; Canas et al., 2012), fail to co-

locate, were greater than 20 cM apart or even on different chromosomes, with the QTL 

identified in this investigation (e.g., QTL for GS activity were determined on chromosomes 7 

and 9 in this study, whereas on chromosomes 4 and 5 in Canas et al., 2012).  

A lower number of QTL was identified per trait compared to previous investigations 

(Zhang et al., 2010; Trucillo-Silva et al., 2015) based on leaf tissues. One main difference 

compared to those studies is that all phenotypes were measured solely on root tissues in this 

investigation, suggesting that similar traits are differentially regulated in roots and leaf 

tissues. Furthermore, the power to identify a QTL would depend essentially on the magnitude 

of the QTL effect and the size of the segregating population (Beavis, 1998). Because a large 

number of small-effect QTL segregating in the genome are expected, and due to the size of 

the segregating population (176 individuals), only a subset of the total number of real 

segregating QTL are expected to be identified. Moreover, in comparison to Zhang (2010), the 
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number of QTL detected might have been affected by the six additional generations of  

random mating during the creation of the population. Hence, QTL previously detected in 

large linkage blocks, might had been separated into several smaller-effects QTL after further 

recombination events occurred. Herein, the power to detect a QTL, each with a very small 

effect, would be expected to be lower. Furthermore, inbred lines were used in Zhang et al. 

(2010) whereas a TC mapping population is used in this study, and little evidence of common 

QTL detection between inbred per se and TC progeny has been determined in previous 

investigations (Beavis et al., 1994; Schon et al., 1994). 

All the QTL identified in this study are located in trans to the actual position of 

structural genes. Even though the parents of the mapping population (B73 and Mo17) 

responded differentially to N-fertilization, those genotypes were not selected specifically to 

differ for the traits analyzed in this investigation. In accordance to the results, and because of 

the relevance of the enzymes in the N-pathway, most of the genetic variation present in the 

population was associated with variation of genes in trans; but significant variation in 

structural genes was not or slightly present. Hence, genomic regions associated with 

regulatory functions are of much importance in the determination of N-metabolism in this 

population.      

Similar to Trucillo-Silva (2015), the MIM results across traits suggest that there 

might be several undetected small effect QTL responsible of the rest of the genetic variation 

(e.g., for PEPC and AS, two QTL explained 42.5% and 8.1% of the variance, respectively). 

The sum of the effect of numerous QTL, each with small marginal effect, plus any type of 

epistasis which they might be involved in, should account for all the unexplained genetic 

variance in the MIM QTL models. It has been established that epistasis can have a large 
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contribution to the genetic regulation of complex traits (Carlborg and Haley, 2004). 

However, statistically significant first order epistasis between identified QTL was not 

detected. Likewise, no significant epistasis between QTL was detected in a recent study 

based on the maize Nested Association Mapping (NAM) population, which included the 

parents of this population (B73 and Mo73) (Zhang et al., 2015).  

From a total of 60,000 annotated genes across the maize genome, a limited amount 

was identified under 1-LOD QTL intervals. One of the genes was as well identified in a 

previous meta-QTL investigation aiming the discovery of candidate genes for N-use 

efficiency in maize (Liu et al., 2012). That gene is GRMZM2G368398 and is described as a 

transposon protein in maize, and as an oligopeptide transporter (Yellow stripe-like7) in 

Arabidopsis. An additional gene (GRMZM2G053958), which code for NAD(P)-binding 

Rossmann-fold superfamily protein was proposed as a candidate gene in a recent 

investigation based on C and N metabolism in the NAM population (Zhang et al., 2015). 

Herein, 14 candidate genes associated with N-metabolism are proposed for further studies. 

GRMZM2G028574 and GRMZM2G473001 are genes described to have PEPC activity. 

GRMZM2G111225 is annotated as a nitrilase enzyme, which catalyzes the hydrolysis of 

nitriles to carboxylic acids and ammonia, and is implicated in auxin biosynthesis in maize 

(Park et al., 2003). Furthermore, GRMZM2G136712, an aspartate kinase, catalyzes the 

phosphorylation of aspartate to generate, after a few more reactions, methionine, lysine and 

threonine. GRMZM2G155974 catalyzes the addition of glycine to γ-glutamyl-cysteine, 

generating glutathione. Glutathione is a key water-soluble antioxidant, the storage form and 

long-distance transport form of reduced sulfur (Zagorchev et al., 2013). GRMZM2G166366 

was annotated as an aspartate kinase which catalyzes the phosphorylation of aspartate to for 
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β-aspartyl phosphate, and is responsible for the first step in the biosynthesis of the amino 

acids lysine, methionine, and threonine (Azevedo et al., 1992). GRMZM2G374302 codes for 

arginine decarboxylase, a key enzyme involved in the polyamine biosynthesis that decreases 

in concentration under N-deficiency conditions (Amiour et al., 2012). In addition, 

GRMZM2G409131 catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-

biphosphate, the entry point into glycolysis to lastly produce pyruvate (Plaxton and Podesta, 

2006). GRMZM2G466543 codes for arogenate dehydratase, a gene that functions in the final 

steps of the aromatic amino acid pathway that produces two essential amino acids: tyrosine 

and phenylalanine (Holding et al., 2010). GRMZM2G481529 a cytosolic enolase or 

phosphopyruvate hydratase, is described as a metalloenzyme responsible for the catalysis of 

the conversion of 2-phosphoglycerate to PEP, necessary for sucrose synthesis from pyruvate 

in C4 plants (Karpilov et al., 1978), having orthologs within sorghum and rice. 

GRMZM2G493395 codes for 1-deoxy-D-xylulose-5-phosphate synthase, first step for 

thiamine and pyridoxol biosynthesis (Hans et al., 2004). GRMZM5G817058 is a 

phosphoribosyltransferase and acts in amino acid metabolism by catalyzing the first step in 

the biosynthesis of histidine (Morot-Gaudry et al., 2001).  Finally, GRMZM2G575696 and 

GRMZM2G580894, both S-adenosyl-L-methionine (SAM)-dependent methyltransferases, 

are responsible of transferring methyl groups from a methyl donor SAM to N, oxygen, sulfur, 

and C atoms of several biomolecules, such as DNA, RNA, histones, and other proteins. 

These modifications may affect the expression of a wide variety of genes, signaling, nuclear 

division, and metabolisms (Bobenchik et al., 2011).  

Further investigation is strongly recommended to confirm QTL regions associated 

with N-metabolism and validate candidate genes underlying those key genetic regions. 
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Fourteen coding regions are determined as promising candidates for future validation studies. 

The results accomplished in this investigation, in addition to all previous N-related studies, 

may help to improve the current understanding of N-metabolism in maize and to identify 

suitable targets for selection. 

Conclusions 

The genetics underlying N-metabolism in maize is complex. A promising approach to 

get insight into the genetic components and decipher the regulatory steps involved in N-

metabolism, is by studying key enzymes, in a representative and high-resolution mapping 

population. In this study, 26 QTL associated with N-metabolism physiological traits were 

identified after analyzing root tissues from a high-resolution maize TC mapping population, 

derived from B73 and Mo17. Genetic QTL models accounting for 7 to 43 % of the genetic 

variance were determined and 14 candidate genes within QTL genomic regions were 

proposed for further investigation.      
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Figures 

 

 

 

Figure 4.1. Enzymes and proteins involved in N-acquisition and assimilation in higher 

plants. 

 

AlaAT, alanine aminotransferase; AS, asparagine synthase; AspAT, aspartate 

aminotransferase; GOGAT, glutamate synthase; GS, glutamine synthetase; ICDH, isocitrate 

dehydrogenase; NR, nitrate reductase; NiR, nitrite reductase; PEPC, phosphoenolpyruvate 

carboxylase; PPDK, pyruvate orthophosphate dikinase (Source: Kanwarpal S. Dhugga, 

2015).  
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Figure 4.2. Correlation matrix-heatmap of the N-metabolism related enzymes and 

metabolites measured on root tissues in the maize IBMSyn10-DH TC population. 

Significant correlation values are colored in blue (positive correlation) and red (negative 

correlation) 
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Figure 4.3. Genetic map and distribution of QTL associated with N-metabolism related 

enzymes and metabolites measured on root tissues in the maize IBMSyn10-DH TC 

population. 
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Figure 4.3 continued. 

 

QTL positions shown at right of chromosomes and lengths of bars are determined by 2-LOD 

confidence intervals. QTL associated with enzyme activity are in blue, while QTL associated 

with metabolites are in red. Only selected markers are displayed in the figure. Figure created 

with MapChart 2.2 (Voorrips, 2002). 
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Tables 

 

Table 4.1: Sample size, mean values for the population and checks, minimum values, maximum values, standard deviation, 

coefficient of variation, genetic effect p-value and repeatability of traits measured root tissues from the IBMSyn10-DH TC 

population of maize. 

Trait  Unit na Pop µb B73TCc Mo17TCd Mine Maxf SDg CVh  G effect Pi Rptblityj 

AlaAT nMole norm Glu/mg protein/0.5 h 171 241.11 293.38 220.65 189.83 318.37 24.78 0.10 1.75E-12 0.51 
AS nMole norm Glu/mg protein/0.5 h 176 472.65 474.28 476.30 412.90 538.98 20.43 0.04 1.55E-08 0.48 
AspAT nMole norm Glu/mg protein/0.5 h 176 930.63 963.72 929.91 835.90 1070.29 38.97 0.04 6.75E-07 0.39 
GOGAT nMole norm Glu/mg protein/0.5 h 175 182.80 190.14 192.76 146.11 220.28 12.81 0.07 1.98E-08 0.45 
GS nMole GHA /mg protein/0.5 h 176 407.11 453.90 348.95 353.72 471.38 22.08 0.05 2.66E-06 0.38 
NiR nMole nitrite reduced/mg protein 172 699.90 648.80 589.15 623.88 779.67 33.14 0.05 1.12E-08 0.48 
NR nMole nitrite/mg protein 171 2.82 2.78 1.40 0.03 6.81 1.36 0.48 4.40E-11 0.65 
PEPC uMole NADH/min/mg protein 172 394.85 357.26 423.80 320.09 506.06 40.87 0.10 <1.00E-12 0.62 
Nitrate  nMole/mg protein 157 199.16 245.32 189.28 160.51 236.25 17.26 0.09 2.99E-09 0.52 
Glutamate nMole Glu/mg protein/0.5 h 106 194.38 223.96 192.06 166.71 231.09 12.06 0.06 4.33E-09 0.57 
TNr mg 176 4.75 7.10 5.10 2.21 9.13 1.09 0.23 7.12E-07 0.70 
Nratio ratio 176 6.70 6.23 6.45 5.91 7.37 0.26 3.88 3.92E-13 0.50 
a
 Population size, 

b
 Population mean, 

c,d
 BLUP value for parental genotypes in test cross genotype, 

e
 Minimum value, 

f
 Maximum 

value, 
g
 Standard deviation, 

h
 Coefficient of variation (%), 

i
 p value of the genetic effect,

 j
 Repeatability, normalized values were 

multiplied by a factor of 1.131 for AlaAT, AS and AspAT, and by 1.151 for GOGAT 
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Table 4.2. QTL associated with N-metabolism related enzymes and metabolites from root tissue analysis in the IBMSyn10-

DH TC maize population.   

QTL name Chra Markerb G Pos (cM)c G Interval (cM)d Adj (cM)e  P Pos (Mb)f P Interval  (Mb)g LOD  r2 (%) Add effecth # Genesi 

AlaAT-1 3 429 867.44 865.09-868.13 133.45 180.25 192.00-194.20 4.33 7.16 -10.27 84 

AlaAT-2 4 264 555.33 552.56-557.69 85.44 58.45 143.75-146.05 4.93 8.14 7.76 63 

AlaAT-3 10 292 643.8 641.20-648.66 99.05 139.85 146.05-146.25 4.89 8.06 -7.41 17 

AS-1 5 79 249.44 246.16-258.51 38.38 9 9.00-9.85 5.52 8.55 6.27 41 

AS-2 8 45 131.64 131.16-132.20 20.25 6.2 6.85-7.15 4.66 7.16 6.13 6 

AspAT-1 2 339 715 714.43-718.51 110 137.15 165.65-169.35 7.32 11.18 -17.1 115 

AspAT-2 10 288 627.89 625.33-631.09 96.6 139.25 145.25-145.45 6.37 9.21 -12.41 6 

GOGAT-1 7 84 245.75 241.98-248.84 37.81 11.9 13.85-14.10 6.22 9.77 -4.53 11 

GS-1 7 409 873.64 865.44-880.88 134.41 158.15 173.65-174.25 4.25 6.85 -6.17 37 

GS-2 9 164 393.47 388.70-398.86 60.53 23.85 26.65-28.30 4.35 7.02 -6.28 63 

NiR-1 4 55 191.89 189.18-194.26 29.52 6.85 6.75-7.25 6.76 10.61 11.86 24 

NiR-2 9 29 61.2 57.89-70.10 9.42 3.65 3.65-4.65 6.28 9.81 11.1 29 

NiR-3 10 77 230.71 221.50-233.11 35.49 10.05 10.45-10.85 5.69 10.57 -13.59 18 

NiR-4 10 101 262.07 260.48-263.82 40.32 14.35 15.95-19.05 7.67 12.21 16.93 96 

NR-1 7 136 315.63 313.05-321.94 48.56 25.6 78.95-100.05 5.49 9.11 -0.43 376 

PEPC-1 5 298 551.15 548.52-552.56 84.79 75.25 127.35-139.25 23.4 31.54 -23.78 218 

PEPC-2 7 409 887.11 882.06-906.52 136.48 158.15 174.55-175.55 4.36 4.48 -8.95 60 

Glutamate-1 5 50 159.48 157.65-162.73 24.54 5.55 5.45-5.65 8.76 15 -6.84 17 

Glutamate-2 7 327 666.28 663.82-668.75 102.5 137.55 163.50-164.05 5.75 9.09 -5.43 33 

Nitrate-1 1 127 370.69 369.37-372.41 57.03 18.1 23.45-23.80 6.99 14.01 -5.37 12 

Nitrate-2 6 155 227.31 223.79-231.96 34.97 86.35 93.55-94.85 5.04 9.48 -4.1 48 

Nitrate-3 9 11 12.29 6.99-16.15 1.89 1.75 1.25-1.60 4.79 9.13 4.12 12 

TNr-1 1 195 469.95 467.09-480.29 72.3 37.95 37.15-39.35 4.38 6.04 -0.28 79 

TNr-2 6 235 451.99 449.76-457.93 69.54 115.45 115.10-117.50 4.54 6.27 0.29 100 

Nratio-1 2 119 349.98 344.92-359.17 53.84 16.25 15.85-16.65 4.37 6.39 -0.07 40 
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Table 4.2 continued. 
 

QTL name Chra Markerb G Pos (cM)c G Interval (cM)d Adj (cM)e  P Pos (Mb)f P Interval  (Mb)g LOD  r2 (%) Add effecth # Genesi 

Nratio-2 3 212 493.48 490.50-497.62 75.92 133.5 129.25-136.95 7.03 10.68 -0.09 185 
 

a
 Chromosome number, 

b
 Marker localized at LOD peak, 

c
 Genetic position of molecular marker in cM, 

d
 1-LOD interval in cM,           

e 
Adjusted genetic position, 

f
 Physical position in Mb, 

g
 1-LOD Physical interval, 

h
 Additive effect of QTL (a positive-signed effect 

represents an increasing allele from B73, while a negative-signed allele denotes an increasing allele from Mo17), 
i
 Number of 

annotated genes underlying 1-LOD QTL confidence interval   
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Table 4.3. Analysis of multiple QTL model for N-metabolism related enzymes and 

metabolites measured on root tissue from the maize IBMSyn10-DH TC population.  

Phenotype # QTL in modela Model R2 (%)b  

AlaAT 2 11.65  

AS                                     2 8.07  

AspAT 2 12.06  

GOGAT 1 9.77  

GS 2 6.59  

NiR 4 26.42  

NR 1 9.11  

PEPC 2 42.53  

Nitrate 3 15.77  

Glutamate 2 18.86  

TNr 2 8.12  

Nratio 2 12.85  
a
 Number of QTL fitted in MIM model, 

b
 Total R

2
 obtained by fitting significant QTL 

simultaneously in a MIM model 

 

 

Table 4.4. Candidate genes underlying 1-LOD QTL regions associated with N-

metabolism related enzymes and metabolites measured on root tissue from the maize 

IBMSyn10-DH TC population. 

Maize GDB ID Corresponding gene annotation Chra Startb Endc QTL name 

GRMZM2G028574 PEPC 3 6 115914515 115915086 TNr-2 

GRMZM2G111225 Nitrilase 2 4 145590144 145596571 AlaAT-2 

GRMZM2G136712 Aspartate kinase 7 80189428 80201455 NR-1 

GRMZM2G155974 Glutathione synthetase  3 133812995 133826187 Nratio-2 

GRMZM2G166366 Aspartate kinase 6 115555315 115557026 TNr-2 

GRMZM2G374302 Arginine decarboxylase 4 144862958 144868207 AlaAT-2 

GRMZM2G409131 Phosphofructokinase 7 82344751 82349620 NR-1 

GRMZM2G466543 Arogenate dehydratase 6 2 166506882 166509171 AspAT-1 

GRMZM2G473001 PEPC 1 7 86459173 86464913 NR-1 

GRMZM2G481529 Phosphopyruvate hydratase 1 38637579 38641262 TNr-1 

GRMZM2G493395 Deoxy-D-xylulose-5-phosphate synthase 7 14086686 14089909 GOGAT-1 

GRMZM5G817058 Phosphoribosyl transferase 7 80946776 80947644 NR-1 

GRMZM2G575696 SAM-methyltransferase 7 85199074 85200388 NR-1 

GRMZM2G580894 SAM-methyltransferase 7 83464904 8347015 NR-1 
a
 Chromosome, 

b,c
 start and end location in bp.  
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Abstract 

Nitrogen (N) availability is essential for plant growth and development. During last 

decades, several problems have arisen due to over-fertilization with N in rural areas. 

Breeding for maize with greater efficiency in the use of N may help to reduce contamination 

and increase profits. Nevertheless, previous to breeding, a better understanding of the 

genetics underlying N-metabolism will be needed. Herein, a quantitative trait loci (QTL) 

mapping for N-metabolism related agronomic and physiological traits was performed based 

on a maize hybrid-high-resolution population grown in the field under low (L) and high (H) 

N conditions. A total of 45 QTL were detected in a combined analysis (across three 

experiments at each N level) while 117 QTL were identified in the split analysis (at each 
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experiment by N treatment combination). In regard to the combined analysis, multiple QTL 

model explained 5.7-33.4% of the phenotypic variance and epistasis was significant for only 

one trait.  Furthermore, 22 candidate genes underlying QTL regions were proposed for 

further analysis. With regard to the split analysis, QTL models explained from 2 - 43% of the 

variance, and 50 candidate genes associated with N-metabolism, underlying 1-LOD QTL 

regions, were targeted for further investigation.  In addition, 23 candidate genes described as 

phosphate transporters and cellulose synthases were identified within QTL regions. 

 

Introduction 

Nitrogen (N) is one of the most important mineral nutrients for plant growth and 

development. In maize, sufficient N is required for amino acid metabolism, ear growth, and 

dry matter accumulation in maize kernels (Hirel et al., 2001). On the contrary, N deficiency 

reduces kernel number, dry matter accumulation and could result in a 14–80% decrease in 

grain yield (Uhart and Andrade, 1995). 

Even though N fertilization is a necessity for maize production, the oversupply of N 

generates several problems, including pollution of primary natural resources and numerous 

related economic issues. On average only 33-50% of the nitrate applied to the soil is accessed 

by cereal crops (Raun and Johnson, 1999). Important causes of N loss are denitrification of 

the nitrate form by soil bacteria and volatilization of surface-applied urea-based fertilizers 

(Nielsen, 2006), but N-leaching is the principal cause of N-loss. In fact, N leaching from the 

Mississippi River Basin is considered one of the main causes for the expanding hypoxic 

zone, or oxygen depletion area which can no longer support aquatic organisms, that develops 

each year on the Louisiana-Texas shelf of the Gulf of Mexico (Goolsby and Battaglin, 2000). 
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Nitrate concentrations have increased several fold during the past 100 years in streams of the 

basin, and the annual delivery of nitrate from the Mississippi River to the Gulf has nearly 

tripled since the late 1950's.  

Breeding maize for traits associated with N-metabolism could render a more 

sustainable agriculture, leading to a reduction in the use of N fertilizer while maintaining 

yields and an overall increase in profits. Nevertheless, prior to breeding, the development of 

a comprehensive understanding of N-metabolism and its relationship with yield and 

developmental traits may be necessary.  

Much of today’s commercial maize germplasm originates from seven progenitor 

lines, including B73 and Mo17 (Mikel and Dudley, 2006). Both inbreds differ in their 

response to N fertilization (Balko and Russell, 1980) and are parents of the IBM population 

(Lee et al., 2002). After ten generations of intermating, 360 doubled haploid (DH) lines have 

been generated from the IBMSyn10 population (Hussain et al., 2007) resulting in a high-

resolution mapping population that allows the identification of a limited number of positional 

candidate genes using the physical map established for inbred B73 

(www.maizesequence.org). Especially, an understanding N-metabolism at the testcross (TC) 

level is relevant from an applied perspective.  

Mapping of quantitative trait loci (QTL) is routinely implemented in plant breeding 

programs.  Linkage mapping of QTL allows the mean and variance associated with a specific 

locus to be estimated. The procedure relies on differences among the trait means of 

genotypes at a marker locus (Bernardo, 2010).  Furthermore, QTL mapping studies 

conducted in different environments is a plausible strategy to identify genomic regions and  

genes which respond to stress conditions and are responsible for genotype by environment 
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interaction (Veldboom and Lee, 1996). However, a QTL region may contain few or 

numerous genes, depending on the level of recombination and genomic size of the QTL 

region, and the gene density therein. Hence, identification of specific candidate genes 

underlying QTL regions might not be straightforward. Nevertheless, based on the description 

of previously annotated genes, a few candidate genes for N-metabolism have already been 

identified for further investigation (Masclaux et al., 2001; Gallais and Hirel, 2004; Liu et al., 

2012; Jansen et al., 2015).  

Grain yield is the final outcome of the interaction between numerous complex 

biological pathways during plant ontogeny, determined by several genes, and affected by 

environmental conditions including temperature, water, and nutrient availability. Some of the 

key genes are associated with mineral nutrient uptake, assimilation and remobilization, while 

other genes are responsible for traits such as flowering time, plant and ear height. A wide 

variety of nutrients are crucial for plant development but N is considered the most limiting 

mineral nutrient for maize, and the understanding of the genetics and regulation of N-

metabolism related genes is still limited. 

Plant growth relies on the activity of the primary metabolism in the source leaf, where 

carbon (C) fixation takes place during photosynthesis but higher amounts of N integrated into 

amino acids and proteins are required, and phosphorus (P) for the creation of RNA and 

realization of energy. When plants suffer deficiencies from any of those mineral macro 

nutrients, plant growth and development would primarily rely on the ability of re-adjustment 

of the cellular C-N-P homeostasis (Schlüter et al., 2013). C-, N-, and P– metabolisms are 

coordinated by metabolite cross-talk, availability of substrates, phytohormones signals and 

provision of final products, and any environmental stress or physiological alteration would 
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generate a complex cascade of reactions in order to readjust plant homeostasis. Thus, it is 

expected that genes having a major role in primary C or P metabolism may be potentially 

identified as candidate genes underlying N-metabolism related traits (Liu et al., 2012).    

Several studies have shown associations between QTL and N-metabolism-related 

agronomic traits. In a previous investigation (Agrama et al., 1999), 214 F2 maize genotypes 

grown at LN and HN conditions, were genotyped with 185 restriction fragment length 

polymorphism (RFLP) markers, and QTL associated with N-use efficiency were identified. 

Traits analyzed were ear-leaf-area, plant height, yield, ears-per-plant, kernels-number-per-

ear, and kernel weight, and 5-11 QTL were detected, correspondingly. Likewise, genomic 

regions associated with grain yield and its components were determined in a subsequent 

study (Bertin and Gallais, 2000). That investigation focused on 99 maize hybrids grown 

under LN and HN, genotyped with 152 marker loci. The genetic variability was expressed 

differentially under LN and HN conditions (distinct QTL were detected) and a total of 29 

QTL were identified. Co-location between those QTL and QTL for physiological traits 

related to N-assimilation, such as nitrate content and GS activity, has been reported and GS 

was proposed as a candidate gene (Hirel et al., 2001). In addition, N-metabolism was studied 

during kernel germination in a population of 140 F6 recombinant inbred lines, derived from 

the cross of a French flint line (F2) by an iodent line. The population was genotyped with 152 

RFLP and nine QTL were detected. In accordance with previous studies, coincidences were 

determined between QTL and genes encoding for GS (Limami et al., 2002).  

Since genetic variation has been reported to be expressed differentially at LN and HN 

conditions (Agrama et al., 1999; Bertin and Gallais, 2000; Gallais and Coque, 2005) and N-

remobilization and post-silking N-uptake appears to be distinctively determined in lines 
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compared to hybrid genotypes (Coque and Gallais, 2008), a QTL analysis conducted on a 

maize hybrid population, derived from wide-spread parental genotypes (e.g., B73 and Mo17) 

from different heterotic groups, which have undergone a high number of recombinant events, 

may provide even more reliable and accurate QTL associations.  

The objectives of this study were to (i) investigate the genetic variance present in a 

high-resolution maize TC population, derived from the cross between IBMSyn10-DH lines 

by an elite inbred, grown in the field under LN and HN conditions (ii) identify QTL 

associated with N-metabolism related traits, and (iii) proposed N-metabolism candidate 

genes underlying QTL for further studies. 

 

Materials and Methods 

Plant materials 

A total of 176 TC genotypes, derived from the cross between each IBMSyn10-DH 

line and an elite inbred were used in this study. The IBMSyn10-DH population, developed by 

Hussain et al. (2007), is a set of DH lines derived from a population after ten generations of 

random mating from the cross between B73 x Mo17. Each DH line was crossed by NSSZ3 

(i.e., PEI), an elite non-stiff stalk inbred, property of DuPont Pioneer, to generate the TC 

offspring. Initially, 200 genotypes were planted in the field experiments. However 24 

genotypes were omitted from successive analysis due to DNA contamination during the 

extraction process resulting in misleading genotypic information. 

Experimental design 

Three experiments were planted at Johnston, IA and Marion, IA during 2011 and 

2012. Plots were arranged in a split-plot design with N fertilization as treatment (Fig. 5.1A). 
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Two N levels were applied: high N (HN) and low N (LN), each fertilized with 269 kg ha
-1

 

and with 78 kg ha
-1

 of N, respectively (Fig. 5.1B-C). Two replications were planted at each N 

level, in a two-row plot of 5.3 m length, with a density of 89,000 plants ha
-1

. At Johnston 

location, field trials were planted in 2011 and 2012 (Experiments 1 and 3, respectively) under 

irrigation. Plots at Marion were grown in 2011 and 2012 (Experiment 2) under rain-fed 

conditions. However, the experiment planted at Marion 2011 was completely discarded due 

to a severe storm that damaged most plants. All fields were kept free of weeds throughout the 

growing seasons.  

The 2011 growing season was characterized by high temperatures during crop 

establishment, followed by excessive rainfall. In addition, there were extremely high 

temperatures around flowering time and widespread high winds. The summer of 2012 was 

dry and relatively hot (Tables A5.1; A5.2).  

Phenotypic measurements 

 

Nine traits were measured on a plot basis, including plant (PHT) and ear height 

(EHT), flowering time (GDD), yield, N leaf content at 20, 45 and 60 days after flowering 

(N20DAF, N45DAF and N60DAF, respectively), and N remobilization at two stages. Height 

was computed, as the distance (cm) from the soil surface to the ear node (EHT) and to tassel 

tip at male flowering time (PHT). Flowering time was calculated as the growing degree days 

(°C) accumulated from planting to 50% of plants in the plot exerting 50% anthers. N leaf 

content (%) was determined by combustion (Dumas, 1826), from samples taken at different 

reproductive stages from the leaf immediately above the uppermost ear from four plants per 

plot. Plants sampled were selected based on phenotypic uniformity). In addition, plants and 

leaves were identified for replicating successive samplings on the same observation unit. N 
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remobilization (%) was estimated as N content at first leaf sampling (N20DAF) minus N 

content at following sampling date (N45DAF or N60DAF), divided by N content at first 

sampling. Depending on the experiment, one or two determinations of N remobilization were 

estimated: between N20DAF and N45DAF (R2045) and/or between N20DAF and N60DAF 

(R2060). Some traits were not computed, such as N45DAF in Experiment 1 and height 

measurements at Experiment 3. In addition, data were not recorded for N60DAF in 

Experiment 2, neither for seven TC genotypes from Experiment 1. Plots were machine-

harvested at physiological maturity and grain yield was estimated on a plot basis and values 

adjusted to 14% moisture content. 

Statistical analysis 

 

All statistical analysis were performed with R statistical program (RCoreTeam, 

2014). An analysis of variance (ANOVA) was conducted with a full model were each trait 

was fitted at a time in order to estimate variance components. The sources of variation 

included experiment, treatment nested into experiment, replication nested into treatment, 

genotype, genotype by experiment, and genotype by treatment interactions. As genotype by 

environment interaction for most traits was statistically significant (both genotype by 

experiment and at times genotype by treatment interactions), and the ranking of genotypes 

and checks varied substantially from one experiment to another, statistical (and 

concomitantly QTL analysis) were initially conducted across locations (i.e., combined 

analysis) and successively at each experiment and treatment combination separately (i.e., 

split analysis) (Table A5.3).  

Initial data analysis of raw data was based on the ggplot2 package (Wickham, 2009) 

and GGally (Schloerke et al., 2014). As a first step, a univariate analysis, where a single 
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variable is fitted in a model, followed by a multivariate approach, where multiple variables 

are analyzed simultaneously, was performed in order to comprehend the relationship among 

variables. The determination of outliers present in the dataset, based on a jackknife 

resampling strategy, was applied. As described in Trucillo-Silva (2015), a statistical model is 

fitted n times, systematically omitting one observation from the dataset, followed by the 

prediction of random effects for a subset of most consistent genotypes each of the n times. 

The aim of the process is to target “real outliers” based on the complete information gathered 

in the experiment and fine-tune the statistical model, quantified by improvements in log-

likelihood, Akaike and Bayesian information criterion values after discarding misleading 

observations, while keeping informative and true observations for later analysis. The mixed 

model was fitted with ASReml R package (Butler et al., 2007) and correspondent mixed 

model equations were solved for prediction of random effects and estimation of fixed effects.    

The statistical model can be represented as follows:  

            

where    denotes a n x 1 vector of observed response values,   is a p x 1 vector of fixed 

effects,   is a n x p design matrix,   is a q x 1 vector of random effects,   is a n x q design 

matrix, and   being the error term. 

The following assumptions were used: E (u) = 0, E (e) = 0, Cov (u, e) = 0, and Var 

(u) = G and, Var (e) = R. The G matrix had a compound symmetry structure on the genotype 

levels and R matrix is the direct product of two autoregressive correlation matrices in order 

to take into account spatial adjustment based on rows and columns arrangement on each field 

experiment.  The response variables were yield, GDD, PHT, EHT, N20DAF, N45DAF, 

N60DAF, R2045, and R2060. In the combined analysis, each N treatment was analyzed 
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separately and experiment and replication nested into experiment were included as fixed 

effect in the model, and check genotype effect was included as a continuous covariate. A 

random effect for the TC genotype was included in the linear model and spatial adjusted 

BLUP values were predicted for each genotype. Likewise, for the split analysis, replication 

was included as fixed effect in the model, and check genotype effect was included as a 

continuous covariate. Finally, a random effect for the TC genotype was included in the linear 

model and spatial adjusted BLUP values were predicted for each genotype.   

After conducting the approach described in Trucillo-Silva (2015) with the raw 

dataset, different numbers of genotypes were omitted from the analysis of each trait. In the 

combined analysis, the mean sample size was n= 175, with no genotypes omitted for EHT, 

N20DAF, N60DAF, R2045, and R2060 under both LN and HN conditions, while a 

maximum of four genotypes were discarded in Yield and GDD, at LN as well as at HN. 

However, in the split analysis the average sample size for the different analysis was 170 

genotypes, with a minimum number for PHT at Experiment 1 under HN (156), and a 

complete population size with all 176 genotypes (no genotype was discard) for GDD, 

N20DAF and R2060, at Experiment 3 at LN, HN and HN condition, respectively.   

Significance of genetic variance was calculated based on log-likelihood ratio test by 

comparing a full model considering TC random effect versus a reduced model without 

including the term. Correlation analysis was determined among spatial adjusted BLUP values 

for each pair of traits, and significance was adjusted based on Bonferroni correction for 

multiple comparisons. Repeatability for each trait was derived from the variance estimations 

from ASReml as )/)VgVg/((lr lrVerVgxe  , where Vg is the genetic variance due to TC 

genotypes, Vgxe is the variance attributable to the interaction between genotype and 
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environment (G x E), Ve is the residual variance, l is the number of environments, and r 

denotes the number of replications.  

Genotypic information and genetic maps 

 

TC genotypes were analyzed with a total of 5,306 SNPs markers generated by Beijing 

Genomics Institute (Liu et al., 2015). Physical and genetic position of each SNP were 

determined and genetic maps were created using R/qtl (Broman et al., 2003). Recombination 

fractions were estimated and Kosambi mapping function was employed to calculate genetic 

map distances (Kosambi, 1944). Furthermore, as the recombination between linked loci 

increases every generation, leading to an expansion of the genetic map, mapping distances 

were adjusted to an F2 map (Teuscher et al., 2005) in order to compare the outcomes with 

previous investigations. The expansion factor was determined based on the following 

equation:    
 

 
           , where j corresponds to the number of generations of 

intermating including the two generations for creating the F2, and i is the number of inbred 

generations after intermating. 

The genetic map was 11,228.24 cM length or 1,727.42 cM in F2 adjusted distance, 

with an average interval between markers of 2.12 cM. The 5,306 SNPs markers were spread 

across all chromosomes, with a maximum of 919 markers present in chromosome 1, and a 

minimum of 320 marker loci for chromosome 10 (Fig. 5.2).  

QTL mapping and identification of candidate genes within QTL regions 

 

Associations between phenotypes and genotypes were determined using QTL 

Cartographer (Basten et al., 2002). Single marker analysis, followed by linear regression 

analysis and composite interval mapping (CIM) was performed. For CIM, Zmap (model 6) 

was implemented, using the ten most significant marker cofactors identified by forward and 
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backward regression. In addition, QTL were scanned at intervals of 1 cM and at every 

marker, while cofactors located within a window of 10 cM of the scanned position were 

excluded from the analysis. In order to determine 5% LOD scores thresholds to define the 

significance of QTL, 1,000 permutations were performed. Two nearby QTL were considered 

as different when LOD peaks were localized 20 cM or greater apart.  Effects of QTL are 

expressed relative to the B73 allele. As a result, a positive effect would imply an increase in 

the phenotypic value when the B73 allele is present, whereas a negative effect would indicate 

a reduction in the presence of B73 allele. 

As stated above, even though QTL analysis was initially performed for each N 

treatment across locations, due to the presence of extensive G x E interactions, the analysis 

was additionally performed separately for each experiment and treatment combination.      

Furthermore, a multiple interval mapping (MIM) analysis was implemented by fitting all 

previously identified QTL from CIM analysis. In addition, all pairwise interactions between 

QTL in every model were studied for each trait. The significance was determined based on 

the information criterion: IC (k) = -2 (log (L) - kc (n)/2), where the penalty function 

corresponds to: c (n) = log (n) and a threshold of 0.0 was used (Basten et al., 2002). The 

proportion of the total phenotypic variance associated with each model was estimated.  

In addition, physical genomic regions corresponding to 1-LOD confidence interval (CI) QTL 

regions were examined for the presence of annotated genes at MaizeGDB (Lawrence et al., 

2008) and Phytozome (Goodstein et al., 2012). Candidate genes related to N-metabolism 

were prioritized based on their descriptions on model species, such as rice (Oryza sativa) and 

Arabidopsis thaliana, and proposed as targets for further studies. 
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Results 

Statistical analysis  

 

In the combined analysis, genetic variance was statistically highly significant (p-

value<0.001) for nearly all traits across experiments at both LN and HN treatments (Table 

5.1). For a few traits, namely N60DAF and R2060, genetic variance was statistically 

significant (p-value<0.05). In addition, all traits showed a wide distribution of values. Mean 

values for yield, EHT, PHT, N20DAF, N45DAF, and N60DAF were greater under HN than 

LN; the opposite pattern was observed for GDD, R2045 and R2060.  

In general, repeatability values were higher under HN compared to LN, with mean 

values of 0.30 and 0.40 for LN and HN, respectively; and an overall mean of 0.35 across 

treatments. The highest value for repeatability was found for N45DAF under HN (0.69), the 

lowest value was for yield under LN conditions (0.15). The estimated coefficient of variation 

values, or relative standard deviation, ranged from 0.7-13.7 % for GDD and R2045, 

respectively. ANOVA results confirmed that G x E is a highly significant (p-value<0.001) 

source of variation for all of the traits (Table A5.3).    

In addition to the combined analysis, the statistical analysis was performed for each 

experiment and treatment combination (Table A5.4). Repeatability values were higher in the 

split analysis compared to the combined analysis due to the extensive of Vgxe. Nevertheless, 

CV values were higher in the split compared to the combined analysis (e.g., EHT at LN was 

2.3% in the combined analysis compared to 9.3 and 5.1% for EHT at LN at Experiments 1 

and 2, respectively).     
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Correlations between traits 

 

Analysis of correlations was performed across Experiments at each N level. From a 

total of 72 comparisons, 22% were highly significant (p-value<0.001), 4% showed 

intermediate significance (p-value<0.01), and 7% were statistically significant (p-value<0.05; 

Fig. 5.3).  Correlation values between Yield and PHT, Yield and GDD, EHT and PHT, EHT 

and GDD, GDD and PHT, N20DAF and N45DAF, N45DAF and R2045, and N60DAF and 

R2060 were all statistically significant at both N treatments. Some correlation estimates were 

significant only at LN (e.g., between N20DAF and N60DAF, and N45 with EHT), while 

other correlations were significant only at HN (e.g., between Yield and EHT, and R2045 and 

R2060). Similar numbers of significant correlations were found at LN and HN (11 and 12, 

respectively).   

Furthermore, analysis of correlations was conducted between traits at each 

experiment and treatment combination (Tables A5.5-A5.7). From a total of 126 comparisons, 

24% were highly significant, 4% showed intermediate significance, and 3% where 

statistically significant. Close correlations were found between PHT and EHT, under both 

HN and LN conditions, and both traits were closely correlated to GDD. In general, close 

correlations were computed between N leaf content and N remobilization. Furthermore, 

Yield showed closed correlations with PHT and EHT in Experiment 2 at HN level.  

Identification of quantitative trait loci  

Analysis across experiments 

   Composite interval mapping 

In the combined analysis, a total of 45 QTL were identified (Fig. 5.2; Table 5.2). QTL 

were identified in all chromosomes, ranging from 11 (chromosome 3) to one QTL per 
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chromosome (chromosomes 9 and 10). Twenty-three QTL were determined under LN and 22 

under HN. On average, 2.5 QTL were identified per trait. Even though four QTL were 

identified for some traits such as EHT at LN and PHT at HN, no QTL were identified for 

N20DAF at HN. The percentage of explained variance by an individual QTL varied from 

16%, for N60DAF-HN-2 to 5%, for R2045-HN-1. On average, each QTL explained 9% of 

the variance and most QTLs (67%) were responsible of less than 10% of the variance. 

Confidence intervals (1-LOD score) for QTL localization ranged from 2.04 to 21.89 cM 

(0.31-3.37 cM F2 adjusted distance), with an average CI length of 8.68 cM (1.34 cM F2 

adjusted distance). Furthermore, those CI are equivalent to a physical map distance of 0.15 – 

6.05 Mb, with an average of 1.08 Mb. All identified QTL CI covered in total nearly 3 % of 

the genome, or about 344.67 cM (53.03 cM F2 adjusted distance).  

A few QTL co-locate or were identified in close proximity on the genetic map. Based 

on how N remobilization was estimated and results from correlation analysis, most of QTL 

sharing genetic positions are associated with N leaf content and N remobilization (e.g., 

N60DAF-LN-2 and R2060-LN-1, N45DAF-HN-1 and R2045-HN-2). In addition, a few QTL 

associated with the same trait under both LN and HN conditions were found to co-locate 

(e.g., N45DAF-LN-3 and N45DAF-HN-1 at chromosome 3, GDD-LN-1 and GDD-HN-2 at 

chromosome 5) (Fig. 5.2; Table 5.2).  Furthermore, some QTL associated with different traits 

were identified in extremely close positions, such as Yield-LN-1 and GDD-LN-1, and EHT-

LN-3 and PHT-1-1 (peak LOD identified 14 and 5.7 real map cM apart, respectively).  

   Multiple interval mapping and epistasis analysis 

 

A few multiple QTL models explained even greater than 31% of the variance (e.g., 

N45DAF under both LN and HN conditions and R2045 at HN) in the combined analysis 
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while other QTL model, R2060 at LN, accounted 5.7% of the phenotypic variance. For EHT 

at HN a single QTL was identified, explaining 8% of the variance. Furthermore, epistasis 

between QTL was not statistically significant in most of the models. However, digenic 

epistasis was significant for R2045 at HN and accounted 3.5% of the variance (Table 5.3).  

   Candidate genes within QTL  

 

On average of 48 genes are annotated underlying QTL 1-LOD CI, ranging from five 

to 177 genes, for N60DAF-HN-3 and GDD-LN-1 QTL, respectively. Twenty-three of the 

candidate genes may have important roles associated with N-metabolism based on the 

descriptions for model species (Table 5.4). Most of the genes are related to the translocation 

of proteins and metabolites within the plant (e.g., GRMZM2G076593, an amino acid 

transporter and GRMZM2G143190, a major facilitator superfamily protein). 

QTL analysis at each experiment by nitrogen level combination 

   Composite interval mapping 

In the split analysis, 117 QTL were identified in total (Fig. A5.1; Table A5.8). 

Twenty-seven percent (or 12) of the QTL identified previously in the combined analysis 

were likewise identified in this individual experiment analysis (Table 5.2, shared QTL are 

marked with a rectangle). Most of the shared QTL between analyses (75%) were identified 

under same N treatment and QTL were consistent in the parental contribution of the allele 

and the magnitude of their effects (r=0.93). QTL were determined in all chromosomes, and 

chromosome 3 presented the highest number of QTL (22) while chromosome 8 showed the 

lowest quantity (7). Similar amount of QTL were identified under HN and LN conditions, 56 

and 61 correspondingly. Some chromosomes presented more associations under LN 

conditions (e.g., chromosome 8) while other chromosomes had shown more QTL under HN 
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conditions (e.g., chromosome 5).   On average, 13 QTL were identified per trait, and seven 

and six QTL were determined under LN and HN, respectively. Individual QTL effect 

explained on average 8.5% of the total variance per trait, varying from 17.5% (for QTL 

R20601LN-1) to 4.5% (for QTL GDD3LN-1) (Table A5.8). Nearly 80% of the detected QTL 

explained individually less than 10% of the variance.  

Confidence intervals (1-LOD score) for QTL localization ranged from 1.00 to 38.7 

cM (0.15-5.95 cM F2 adjusted distance), with an average CI length of 9.08 cM (1.39 cM F2 

adjusted distance). Furthermore, those CI are equivalent to a physical distance of 0.10 – 

34.65 Mb, with an average of 2.07 Mb. All identified QTL CI covered in total nearly 8 % of 

the maize genome, or about 894.28 cM (137.58 cM F2 adjusted distance).  

Several QTL were identified in close proximity on the genetic map or overlapped 1-LOD CI. 

Numerous QTL associated with N leaf content at different growth stages co-locate at three 

noticeable “QTL hotspots”. Those QTL are located in chromosome 1(N20DAF3LN-2, 

N60DAF3LN-1, N20DAF2LN-1 and N20DAF2HN-1), chromosome 4 (R20601LN-5, 

R20453HN-3, R20603HN-2 and N60DAF3HN-1), and chromosome 6 (R20603HN-3, 

N45DAF2LN-4 and R20452LN-3).  As expected, based on how N remobilization was 

calculated and results from correlation analysis, some QTL for N remobilization were 

detected on essentially same location to their correspondent N leaf content traits. That is the 

case for N60DAF1LN-2 and R20601LN-1 on chromosome 1, R20603HN-2 and 

N60DAF3HN-1 on chromosome 4, N45DAF2LN-5 and R20452LN-4 located on 

chromosome 7.  Further highly-dense QTL regions are localized in chromosome 1 around 45 

cM, at chromosome 2 position 356 cM, chromosome 3 at 50 cM, 250 cM and 460 cM, and at 

chromosome 5 at position 234 cM. There are 21 overlaps between QTL physical 1-LOD 
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intervals. Furthermore, numerous QTL may be considered stable due to the identification in 

extremely close position in different experiments (e.g., R20601LN-3 and R20603LN-1 at 

chromosome 3, Yield2HN-4 and Yield3HN-3 at chromosome 7), across different N 

conditions (e.g., N20DAF2LN-1 and N20DAF2HN-1 at chromosome 1, EHT2LN-2 and 

EHT2HN-4 at chromosome 3) and across both experiments and N conditions (e.g., 

N20DAF2LN-2 and N20DAF3HN-2 at chromosome 3) (Fig. A5.1; Table A5.8).  

   Multiple interval mapping and epistasis analysis 

A few multiple QTL models explained even greater than 30% of the variance (e.g., 

R2060 at Experiment 1-LN and Experiment 3-HN, yield at Experiment 2-HN and 

Experiment 3-HN, N45DAF at Experiment 2), while the QTL model for GDD at exp2trt1 

accounted 9.4% of the phenotypic variance. For some phenotypes (EHT, N20DAF, R2045, 

and N60DAF), single QTL were fitted in the MIM model at certain experiment by treatment 

combination, and 2-9% of the variance was explained. In addition, epistasis between QTL 

was statistically significant in four of the MIM models. Digenic epistasis accounted from 5% 

of the variance, for N60DAF model at Experiment 3 under LN, to 0.6% for EHT at 

Experiment 2 under HN (Table A5.9).  

   Candidate genes within QTL 

On average 60 genes were identified underlying QTL CI, ranging from seven (under 

EHTHN-1 and EHTHN-5) to 597 (for R20452HN-1) genes. Nevertheless, a subset of 50 

candidate genes was considered related to N-metabolism (Table 5.10). Most of those genes 

are associated with the translocation of metabolites within the plant, including transporters 

for nitrate, ammonium, amino acids, and sucrose; while others are structural genes of 

enzymes involved in the N-pathway, such as nitrite reductase (NiR), nitrate reductase (NR), 
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alanine aminotransferase and asparagine synthase; and C-primary metabolism, as 

phosphoenolpyruvate carboxylase. Six of the candidate genes are localized within the QTL 

“hotspots” on chromosome 1 (GRMZM2G050481, GRMZM2G085210, GRMZM2G119511, 

and GRMZM2G359559) and on chromosome 4 (GRMZM2G079381 and 

GRMZM2G428027). Furthermore, 23 genes associated with phosphate transporters and 

cellulose synthases were identified within QTL genomic regions (Table 5.11). One of those 

candidate genes is situated on the QTL “hotspot” region localized on chromosome 4 

(GRMZM2G060630).  

Discussion 

The elucidation of the genetics underlying N-metabolism in maize TC provides a 

basis for breeding genotypes which can produce grain yield in a more efficient manner 

enhancing both productivity and sustainability. In the present investigation, 45 QTL 

associated with N-metabolism related traits were identified in the analysis across three 

experiments at two different N levels, and 117 QTL were found when studying each 

experiment by N treatment combination separately. Twelve of the QTL identified in the 

combined analysis were detected as well in the split analyses. Besides, 23 and 73 candidate 

genes were identified within QTL regions in the combined and the split analysis, 

respectively; and are proposed for further N-metabolism studies.  

Strengthens of using an IBMSyn10-derived population  

A TC segregating population derived from the cross between two founder lines (B73 

and Mo17) of several current U.S. commercial germplasm was utilized. Hence, as the alleles 

are present in several commercial breeding germplasms, the results may be representative of 

elite germplasm and can be associated hybrid cultivars, the type of cultivar extensively 
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planted by farmers. Furthermore, fine mapping may be doable due to the ten generations of 

random mating during the creation of the population and a densely coverage of the genome 

with 5,306 polymorphic SNPs markers. Compared to previous studies (Agrama et al., 1999; 

Gallais and Hirel, 2004), were different populations and fewer molecular marker loci were 

employed, smaller QTL intervals were obtained. Thus, the determination of smaller CI QTL 

allowed the identification of a limited number of candidate genes associated with N-

metabolism related traits.  

Quality of the study 

Herein, a novel approach for the determination of real outliers was implemented for 

the analysis of raw data. Even though high quality data are essential and the foundation for a 

successful investigation, statistical analysis of raw data has received considerably less 

emphasis than the subsequent genetic analysis. Many researchers generally launch directly 

into the statistical analysis with a routine analysis without carefully checking the quality of 

the data (Trucillo-Silva et al., 2015). Consequently, the presence of incorrect or inconsistent 

data may significantly distort the results of an investigation (Hellerstein, 2008), and may 

produce spurious QTL mapping results. Herein, the usefulness of the gathered information 

was optimized, followed by the prediction of spatial adjusted BLUP for each genotype. After 

the calculation of BLUPs, QTL mapping analysis was conducted using the real genetic map 

in order to obtain the maximum mapping accuracy possible based on the algorithm 

implemented during the genetic mapping (W. Beavis, personal communication, 2014).  

In this investigation, maize hybrids were planted in two locations in Iowa under HN 

and LN conditions. N treatment implemented was effective and statistically significant, and 

causal of significant genotype by environment interaction. Accordingly, statistical and 
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concomitant genetic analysis were conducted for each N level across experiments and, in 

consistency with previous studies (Tuberosa et al., 2002; Fernandez et al., 2008), separately 

for each environment and treatment combination. 

 A significant amount of genotypic variance was identified for all traits, allowing the 

identification of promising genomic regions associated with the observed variation. 

Repeatability estimations showed moderate-low values in the combined analysis, as well as 

moderate-high values for the split analysis, varying for each trait and treatment combination. 

Thus, the range of repeatability values is comparable to previous QTL investigations for 

similar traits (Messmer et al., 2009; Semagn et al., 2013).  

The analysis of correlation between traits, measured either at LN and HN, resulted in 

entirely anticipated outcomes based on published literature. In agreement with previous 

studies (Hallauer et al., 2010; Yin et al., 2011), Yield showed a significant positive 

correlation with PHT, EHT, and GDD, at both LN and HN conditions. This outcome was 

expected since, generally, plants with longer life cycle usually showed higher grain yield 

potential than shorter cycle plants. Furthermore, consistent with Veldboom (1996) and 

Austin (2001), higher plants showed as well higher EHT. In addition, hybrids at LN had 

uptake less amount of N from the soil, probably due to poor N availability and root 

development. Consequently those plants had remobilized N in higher proportions, than 

hybrids grown under HN level, in order to achieve ear development and further grain 

production. That is in agreement with former studies (Gallais and Hirel, 2004; Coque and 

Gallais, 2008), which stated that post-anthesis N uptake was negatively correlated to N 

remobilization. Unsurprisingly, correlation values between N remobilization and N leaf 
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content were statistically significant due to the fact that N leaf content was a direct 

component of N remobilization calculation.    

Comparison with previous QTL investigations  

Several QTL identified in the combined analysis are coincident with QTL detected in 

preceding maize studies. For instance, on chromosome 7, three QTL for fresh weight of 100-

kernels showed an overlap with the 1-LOD CI for a Yield QTL herein identified. 

Furthermore, a QTL associated with male flowering and a QTL related to PHT were 

determined at same QTL 1-LOD CI at chromosome 8 and 4, respectively, on an investigation 

focused on 236 recombinant inbred lines planted in Mexico and Zimbabwe (Messmer et al., 

2009). In addition, a Yield QTL previously localized on chromosome 5 under HN conditions 

(Coque and Gallais, 2006), was likewise detected in this analysis, however it was detected at 

LN. Similarly, the Yield QTL found in chromosome 5 under HN was also detected in a 

previous investigation based on 256 F2:3 families evaluated in five tropical environments 

(Lima et al., 2006). Similarly, numerous QTL detected in the split analysis, even though 

undetected in the combined analysis, are in agreement with previous investigations. In 

consistency with Agrama (1999), a QTL for PHT  under LN condition (PHT2LN-1) was 

determined at a very close proximity (chromosome 3, 62.2 cM). Other PHT QTL (PHT1HN-

1) was likewise detected in extremely proximity position (chromosome 1, position 48.76 

cM). Furthermore, two QTL associated with grain yield (Yield1LN-1 QTL and Yield1LN-2 

QTL) did co-locate at chromosome 1, position 44.64 cM and chromosome 10, position 67.93 

cM, respectively. Additionally, the QTL associated with yield in chromosome 1 was as well 

associated with PHT and ear leaf area under LN conditions (Agrama et al., 1999).  In 

agreement with Semagn (2013), in which  a meta-QTL analysis was performed for yield and 
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flowering traits based on 18 maize populations, four Yield QTL and three QTL associated 

with flowering traits were mapped in the corresponding physical confidence interval as in our 

investigation (Yield2LN-1, Yield2HN-1, Yield2HN-2 and Yield2HN-3; GDD1LN-1, 

GGD1HN-1 and GDD1LN-3).  Likewise, a Yield QTL determined in here (Yield1LN-2), 

was identified on an extremely proximate genetic position by Tuberosa (2002) under two 

water regimes. 

Interestingly, co-location between QTL identified in this study and QTL associated 

with N-metabolism related enzymes (Trucillo-Silva et al., 2015) was also determined. At 

chromosome 2, there were 1-LOD QTL confidence intervals overlaps between QTL 

associated with EHT2HN-3 and Lox6-1, N20DAF3HN-1 and Nratio-1, and R20601LN-2 

with Asp AT-1 from root tissues. Likewise, in chromosome 6, there were overlaps between 

QTL for N60DAF3LN-3 and Glutamate-2 from leaf tissues, N20DAF2LN-3 and Nitrate-2 

from leafs, GDD2HN-2 with Totalnr-2 from leafs, R20603HN-3 with GOGAT-1 from leafs, 

and between both N45DAF2LN-4 and R20452LN-3with Nitrate-2 from roots. Similarly, on 

chromosome 7, QTL for PHT2HN-2 with GOGAT-2 from leafs, and Yield3LN-2 with 

PEPC-2 from roots shared genetic locations. 

In accordance with previous investigations (Gallais and Hirel, 2004; Liu et al., 2007; 

Cai et al., 2012; Liu et al., 2012), different QTL were identified under LN and HN 

conditions, reflecting a different genetic basis underlying the target traits depending on 

specific environmental conditions. Furthermore, several QTL (~25%) detected in the 

combined analysis under certain N condition were not identified under the same N level 

when analyzing each experiment separately (e.g., EHT-LN-1 and EHT2-HN-2 at 

chromosome 1, adjusted position 55.01 cM, detected on the combined and split analysis, 
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respectively), and numerous QTL where detected in one single location (e.g., Yield1-LN-2 

detected exclusively at Experiment 1). That inconsistency across experiments suggests the 

presence of important QTL by experiment interaction that may play a major role as a 

contributor of the genotype by experiment variance. The lack of coincidence in the detection 

of QTL at different environments may be a consequence of the specific environmental 

features that characterized each of the three experiments. Environmental conditions (e.g., 

precipitation and temperature) varied substantially from one experiment to another and might 

have had a direct impact on plant responses. Furthermore, even though N treatment was 

determined to be statistically significant at each experiment, the total amount of N available 

for maize plants could not be precisely controlled under field conditions. Several factors may 

have affected N availability per plant, including root architecture, water content, presence of 

other macro and micro nutrients, and specific soil characteristics. 

Inconsistencies in the detection of QTL with preceding investigations could be due to 

numerous causes including the usage of different segregating populations, environmental 

features, sampling variation, approach implemented for the analysis of raw data, and further 

aspects related to methodologies. The comparison of QTL results might be biased due to 

different segregating populations, thus different segregating alleles, and probably different 

genetic control mechanisms occurring on each genetic background. In addition, each 

population may have experienced a different amount of recombination, affecting the mapping 

resolution. Some previous investigations were based on populations subjected to a few 

generations of random mating (Beavis et al., 1991; Agrama et al., 1999). Hence, the resulting 

QTL associations may correspond to clusters of linked QTL. However, the real number of 

QTL underlying complex traits is expected to be considerably larger. In addition, each QTL 
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is expected to have an effect substantially smaller compared to the results obtained from 

studies based on conventional populations were QTL effects may be overestimated (Huang et 

al., 2010). Furthermore, due to differential gene expression under specific environmental 

circumstances, the comparison of results from QTL mapping studies based on different 

environments may be challenging. In addition, incongruences between results from the 

analysis of different samples from the same segregating population might arise as a merely 

artifact of random sampling. Furthermore, the incorrect management of the raw phenotypic 

data, such as the removal of outliers based purely on visual interpretations without a 

statistical basis or criteria, might become another causal of discrepancies across studies. In 

addition, QTL mapping results may vary based on the methodologies used, including the 

implementation of different QTL mapping models or methods, number of cofactors fit in the 

mapping model, determination of significance thresholds, and number of genetic markers 

utilized. Lastly, differences in the phenotyping precision and protocols employed for 

measuring specific traits might cause non-QTL-co-location across studies.  

Importance of candidate genes and consistency with previous investigations 

A total of 12 QTL detected in the combined analysis were identified successively in 

the split analysis, and four candidate genes related to N-metabolism were identified under 

those QTL regions. Those candidate genes code for a urease accessory protein 

(GRMZM2G063452), a major facilitator superfamily protein – peptide transporter 

(GRMZM2G085411), a citrate transporter (GRMZM2G086258), and an adenine nucleotide 

transporter (GRMZM5G886294). The first gene is responsible of the activation of urease, an 

enzyme involved in the recycling of N from ureide, purine, and arginine catabolism in plants 

(Witte et al., 2005). Peptide transporters mobilize di- and tripeptides, playing an important 
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role in the recycling of organic N (Ouyang et al., 2010) and a peptide transporter ortholog 

protein was found to be associated with LN tolerance in rice (Nischal et al., 2012). Moreover, 

citrate transportation is of main importance because its conversion provides C skeletons for 

N assimilation and reducing equivalents for several biosynthetic reactions (Popova and de 

Carvalho, 1998). Adenine nucleotides play a vital role in plant physiology, representing the 

major energy source of the cells, and adenine nucleotide transporters are the responsible of 

the transport of nucleotides across intracellular membranes (Haferkamp et al., 2011).  

Numerous of the 19 candidate genes identified under 1-LOD CI QTL regions detected solely 

in the combined analysis were targeted in previous investigations. A candidate gene 

identified under a QTL for PHT at HN, codes for ammonium transporter 2 

(GRMZM2G043193) and was used as a microarray probe in a previous study, showing 

consistent expression in adult to post-flowering stage (V5-R31) (Liseron-Monfils et al., 

2013). In addition, a phosphoglucomutase gene (GRMZM2G109383) identified under  

R2060-LN-2 QTL, was as well identified in a recent investigation on the maize Nested 

Association Mapping (NAM) population under a QTL associated with glucose (Zhang et al., 

2015). That enzyme facilitates the conversion of glucose-1-phosphate to glucose-6-

phosphate, playing a major role in glycolysis. In addition, the gene GRMZM2G088253, 

described as an urease accessory protein and detected under GDD QTL under both N 

conditions, was as well proposed as a candidate gene in a recent analysis of enzymes 

associated with N-metabolism from leaf tissue (Trucillo-Silva et al., 2015). Moreover, 

GRMZM2G066413 and GRMZM2G021606, both transcripts involved in primary C 

metabolism and described as PEP/P translocator and phosphoglycerate mutase family, 
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respectively; showed significant expression changes at LN versus HN conditions in maize 

(Schlüter et al., 2012).   

Similarly, several candidate genes proposed to be associated with N-metabolism in 

the split analysis were as well identified in previous investigations. Two of the genes, coding 

for NiR and NR (GRMZM2G079381 and GRMZM2428027), were as well emphasized as 

priori candidates in a recent association study based on the NAM population (Zhang et al., 

2015). In addition, 14  of the suggested candidate genes were determined to be differentially 

expressed under LN versus HN conditions (Schlüter et al., 2012) . Five of those genes code 

for transcripts involved in primary N metabolism (GRMZM2G079381, GRMZM2G088064, 

GRMZM2G101125, GRMZM2G104546, and GRMZM2G428027), while three genes are 

involved in primary C metabolism (GRMZM2G035599, GRMZM2G050481, 

GRMZM2G088064, and GRMZM2G), and six genes are involved in phosphate homeostasis 

(GRMZM2G009779, GRMZM2G035579, GRMZM2G045473, GRMZM2G083655, 

GRMZM2G086430, and GRMZM2G155123).     

Usefulness for Plant Breeding 

The findings of this investigation may contribute to the understanding of N-

metabolism at the maize TC level and provide knowledge for future genetic studies. 

However, additional experimentation will be needed in order to completely elucidate the 

genetics underlying N-metabolism in maize. The localization of candidate genes that may be 

functionally related to the traits under investigation does not guarantee complete evidence in 

order to assure that the annotated genes are the ultimate responsible for the variation in the 

trait phenotypes. Further studies would be required for the validation of those candidate 

genes that may comprise the evaluation across multiple genetic backgrounds, re-sequencing 
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of candidate genes followed by association studies, fine mapping, and functional studies to 

manipulate the expression of the target genes by gene knock-out (e.g., mutation based), 

knock-down (e.g., VIGS approach), and/or overexpression. Based on the current knowledge 

on maize N-metabolism related traits, several small-effect QTL underlie the observed 

phenotypic variation. Thus, superior genotypes, in terms of N-utilization, may be challenging 

to be designed on a strictly traditional Mendelian genetic basis (e.g., identifying the exact 

combination of parents in order to create offspring carrying all desired arrange of alleles after 

certain number of crossing or backcrossing events), and marker-assisted or genomic selection 

(whole genome prediction) strategies may be more promising breeding approaches.  

 

Conclusions 

In summary, 45 and 117 QTL associated with N-metabolism agronomic and 

physiological traits were detected in a maize TC mapping population grown in the field at 

LN and HN in a combined analysis (across experiments, but separately at HN and LN) and a 

split analysis (at each experiment and N-treatment combination), respectively. Multiple QTL 

models explained 6-33% of the phenotypic variance and epistasis was significant for only 

one trait in the combined analysis. Furthermore, 23 candidate genes underlying QTL regions 

were proposed for further analysis. Whereas in the split analysis, QTL models explained 2-

43% of the variance, and 50 candidate genes associated with N-metabolism were targeted for 

further investigation.  In addition, 23 candidate genes associated with phosphate transporters 

and cellulose synthases were as well detected under the 1-LOD QTL CI regions. Further 

investigation on the genetics underlying N-metabolism in maize would be necessary with the 
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aim of developing ideotypes having the ability to maintain or even increase yields with a 

reduction on N fertilizer inputs leading to a more sustainable agriculture.  
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Figure 5.1. Experimental design and N-treatment effect on the maize TC IBMSyn-10 

DH population. 

(A) Layout of field experiments in a single location. LN on the left (red) and HN on the right 

(green); (B) LN effect on a random plot at Johnston, 2012; (C) HN effect on a random plot 

grown at Johnston, 2012.  
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Figure 5.2. Genetic map and distribution of QTL identified across experiments at LN 

and HN in the IBMSyn10-DH population of maize. 
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Figure 5.2 continued.  

QTL depicted in red were identified under LN and in green under HN conditions. QTL 

positions shown at right of chromosomes (in cM) and lengths of bars are determined by 2-

LOD confidence intervals. Only selected markers displayed in the figure. QTL names 

correspond to name of the trait followed by QTL number. Figure created with MapChart 2.2 

(Voorrips, 2002). 
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Figure 5.3. Correlation matrix-heatmap of N-metabolism related traits in the 

IBMSyn10-DH TC population of maize across locations at each LN (panel A) and HN 

treatment (panel B).  

 

Significant correlation values (p-value<0.05) are colored in blue (positive correlation) and 

red (negative correlation). 
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Tables 

Table 5.1. Statistical analysis of field traits measured on the IBMSyn10-DH TC population across experiments. 

Trait  Unit Trt na Pop µb Mine Maxf SDg B73TCc Mo17TCd CV % G effect Pi Rptblityj 

Yield MT Ha-1 LN 172 6.00 5.44 6.44 0.18 7.81 4.11 3.06 <1.00E-17 0.145 

  HN 172 11.24 10.31 11.96 0.29 11.19 9.11 2.58 <1.00E-17 0.299 

EHT cm LN 176 112.59 106.00 118.48 2.58 118.37 114.14 2.29 0.0005003 0.402 

  HN 176 113.52 105.19 122.79 3.57 123.07 103.38 3.14 9.72E-09 0.486 

PHT cm LN 175 263.41 253.65 271.26 2.86 265.87 258.25 1.09 0.0009248 0.386 

  HN 175 268.16 262.42 276.53 2.61 270.91 256.31 0.97 0.000651 0.327 

GDD GDDc LN 172 795.29 779.75 812.31 5.70 799.04 812.52 0.72 <1.00E-17 0.448 

  HN 172 792.64 779.34 805.03 5.41 804.47 798.79 0.68 <1.00E-17 0.391 

N20DAF % LN 176 2.93 2.85 3.03 0.02 3.04 2.96 0.82 <1.00E-17 0.170 

  HN 176 3.65 3.55 3.74 0.04 3.65 3.59 1.03 <1.00E-17 0.256 

N45DAF % LN 173 1.87 1.67 2.01 0.06 1.88 1.94 3.38 <1.00E-17 0.346 

  HN 174 2.58 2.09 3.01 0.15 2.69 2.24 5.77 <1.00E-17 0.691 

N60DAF % LN 176 1.13 1.07 1.22 0.03 1.04 1.11 2.30 0.0374378 0.191 

  HN 176 1.93 1.79 2.05 0.05 1.86 1.80 2.51 0.0122585 0.230 

R2045 % LN 176 35.99 31.55 41.88 2.05 37.43 32.96 5.69 6.15E-11 0.368 

  HN 176 27.19 17.63 39.74 3.72 23.25 36.32 13.68 <1.00E-17 0.631 

R2060 % LN 176 61.17 58.59 63.16 0.85 64.90 63.15 1.39 0.0387483 0.191 

  HN 176 49.89 47.12 53.14 1.16 50.25 46.75 2.33 0.0126479 0.230 
a
 Population size, 

b
 Population mean, 

c
 Minimum value, 

d
 Maximum value, 

e,f
 BLUP value for parental genotypes in testcross 

genotype, 
g
 Standard deviation, 

h
 Coefficient of variation (%), 

i
 p value of the genetic effect,

 j
 Repeatability. 
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Table 5.2. QTL identified by CIM across experiments under LN and HN conditions associated with N-metabolism related 

traits in the IBMSyn10-DH TC population of maize ordered by trait. 

QTL name Chra Marker #b Pos (cM)c G Intervald Adj (cM)e P pos (Mb)f P interval (Mb)g LOD R2 (%) Addh # Genesi 

Yield-LN-1 5 254 503.62 501.69-505.66 77.48 80.35 77.45-80.45 5.7 8.13 -0.05 117 

Yield-LN-2 7 4 14.14 8.53-19.02 2.18 2.05 1.95-2.15 7.55 11.44 0.07 16 

Yield-HN-1 5 98 302.18 288.83-310.72 46.49 12.4 11.95-13.15 5.55 7.99 0.09 78 

Yield-HN-2 8 54 146.98 140.55-160.27 22.61 8.35 8-8.45 4.14 5.86 0.08 34 

EHT-LN-1 1 125 357.57 352.04-367.33 55.01 21.85 21.75-23.15 4.23 5.96 -0.66 62 

EHT-LN-2 3 270 589.54 587.17-594.3 90.7 159.35 159.25-159.85 5.72 8.16 0.81 13 

EHT-LN-3 4 392 785.54 782.61-785.69 120.85 181.25 180.95-181.35 8.5 12.58 0.99 12 

EHT-LN-4 8 361 816.69 812.14-820.26 125.64 171.15 171-171.15 4.49 6.35 0.7 20 

EHT-HN-1 7 310 593.06 590.94-596.79 91.24 160.55 160.45-160.65 5.3 8.02 1.19 15 

PHT-LN-1 4 395 791.24 789.73-791.77 121.73 181.55 181.45-181.7 6.9 10.74 1.5 11 

PHT-LN-2 9 369 896.52 892.53-899.7 137.93 153.85 153.75-154.05 6.28 10.31 1.01 31 

PHT-HN-1 2 36 109.27 105.71-116.91 16.81 4.75 4.65-4.95 4.65 5.93 0.65 34 

PHT-HN-2 3 50 193.03 191.22-203.42 29.7 6.15 6.05-6.4 8 10.55 0.93 16 

PHT-HN-3 5 360 636.83 635.04-638.07 97.97 171.9 171.5-172.25 4.35 5.52 -0.64 34 

PHT-HN-4 7 21 74.9 74.35-77.28 11.52 3.85 3.75-3.95 8.91 12.04 -1.25 8 

GDD-LN-1 5 266 517.59 514.9-527.11 79.63 82.75 81.95-88 5.65 8.16 -1.7 177 

GDD-LN-2 8 255 541.56 539.36-551.56 83.32 123.45 123.25-124.25 5.74 8.48 1.71 57 

GDD-HN-1 1 77 239.22 233.96-245.16 36.8 12.4 12.25-12.6 4.64 7.43 1.74 41 

GDD-HN-2 5 269 521.28 517.95-524.07 80.2 85.95 83.05-86.85 9.13 14.06 -2.11 101 

N20DAF-LN-1 1 428 789.74 785.69-794.81 121.5 180.45 179.95-182.15 7.75 9.78 -0.01 79 

N20DAF-LN-2 6 161 248.75 240.08-251.28 38.27 95.45 95.35-96.55 4.61 5.56 0.01 50 

N20DAF-LN-3 7 202 388.01 386.06-390.95 59.69 124.25 123.75-124.85 8 10.12 -0.01 31 

N45DAF-LN-1 1 350 671.53 666.56-674.73 103.31 91.05 88.55-91.15 5.79 7.3 -0.02 59 

N45DAF-LN-2 3 298 631.41 626.87-633.99 97.14 167.2 166.45-167.65 6.1 7.72 -0.02 48 
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Table 5.2 continued. 
 

a
 Chromosome number, 

b
 Marker localized at LOD peak, 

c
 Genetic position of SNP in cM, 

d
 1-LOD interval in cM, 

e
 Adjusted 

genetic position, 
f
 Physical position in Mb, 

g
 1-LOD Physical interval, 

h
 Additive effect of respective QTL (a positive-signed effect 

represents an increasing allele from B73, while a negative-signed allele denotes an increasing allele from Mo17), 
i 
Number of 

genes annotated underlying 1-LOD QTL CI. QTL names correspond to trait name followed by experiment number, N treatment 

and last number being QTL number for the respective trait. QTL names with a rectangle were also identified when analyzing each 

experiment and treatment combination separately. 

QTL name Chra Marker #b Pos (cM)c G Intervald Adj (cM)e P pos (Mb)f P interval (Mb)g LOD R2 (%) Addh # Genesi 

N45DAF-LN-3 3 389 807.07 797-813.14 124.16 184.05 183.15-184.25 8.64 11.32 -0.02 53 

N45DAF-LN-4 8 336 693.92 691.02-700.18 106.76 166.55 166.05-166.75 7.47 9.55 -0.02 69 

N45DAF-HN-1 3 386 800.47 798.9-802.98 123.15 183.65 183.45-183.8 6.54 8.37 -0.05 17 

N45DAF-HN-2 3 421 856.31 845.71-861 131.74 190.35 188.65-190.65 4.78 5.97 0.04 88 

N45DAF-HN-3 5 481 840.5 837.59-844.72 129.31 196.55 196.55-196.75 7.88 10.56 0.05 11 

N45DAF-HN-4 6 292 563.49 557.68-566.8 86.69 131.45 130.2-131.9 5.82 7.38 0.04 68 

N60DAF-LN-1 2 208 548.52 543.4-555.64 84.39 41.05 40.45-41.85 4.17 6.5 -0.01 60 

N60DAF-LN-2 3 92 302.3 297.11-306.22 46.51 11.95 11.5-12.05 4.24 6.42 0.01 20 

N60DAF-HN-1 5 414 719.78 718.51-722.55 110.74 183.45 183.15-183.85 6.88 10.34 -0.02 65 

N60DAF-HN-2 8 337 692.82 691.02-695.1 106.59 166.65 166.55-166.75 10.18 16 -0.02 20 

N60DAF-HN-3 10 81 236.21 235-239.13 36.34 11.15 11.05-11.25 5.24 7.71 0.01 5 

R2045-LN-1 3 298 632.77 627.41-636.04 97.35 167.2 166.3-167.65 8.43 11.56 0.73 53 

R2045-LN-2 7 69 223.94 220.4-228.16 34.45 10.05 9.85-10.35 4.51 5.9 -0.56 23 

R2045-HN-1 3 248 542.45 541.4-551.56 83.45 152.35 152.25-155.75 4.2 5.21 -0.93 137 

R2045-HN-2 3 386 801.38 796.85-806.02 123.29 183.65 183.15-183.95 4.77 5.95 0.92 42 

R2045-HN-3 5 483 843.54 836.55-845.51 129.78 196.75 196.65-197.25 7.98 10.39 -1.33 19 

R2045-HN-4 7 303 579.52 572.28-583.08 89.16 159.85 158.95-159.95 4.79 6.39 -1.08 87 

R2060-LN-1 3 93 304.01 300.14-309.31 46.77 12.05 11.85-12.35 5 7.63 -0.25 32 

R2060-LN-2 5 87 270.84 266.53-274.69 41.67 10.35 10.15-11.55 5.7 8.8 0.26 77 

R2060-HN-1 4 382 769.66 768.36-772.45 118.41 179.75 179.65-179.95 4.15 6.95 -0.31 28 

R2060-HN-2 8 337 692.82 691.01-694.05 106.59 166.65 166.55-166.75 7.92 13.02 0.47 20 
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Table 5.3. Multiple QTL models per trait analyzed across experiments in the 

IBMSyn10-DH population of maize. 

Trait  Treatment # QTL in modela Model R2 (%)b R2 Epistasis (%)c 

Yield LN 2 19.38  

 HN 2 15.32  

EHT LN 4 25.00  

 HN 1 8.02  

PHT LN 2 8.94  

 HN 4 22.62  

GDD LN 2 14.21  

 HN 2 9.39  

N20DAF LN 3 23.15  

 HN 0 0.00  

N45DAF LN 4 32.18  

 HN 4 31.19  

N60DAF LN 2 8.15  

 HN 3 18.54  

R2045 LN 2 12.69  

 HN 4 33.45 3.50 

R2060 LN 2 5.72  

 HN 2 13.35  
a
 Number of significant QTL fitted in MIM model, 

b
 Total R

2
 obtained by fitting significant 

QTL simultaneously in a MIM model, 
c
 R

2
 explained by epistasis solely. 
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Table 5.4. Candidate genes associated with N-metabolism within identified QTL genomic regions across experiments in the 

IBMSyn10-DH population of maize. 

Maize GDB ID Corresponding gene annotation  Chra Startb Endc QTL name 

GRMZM2G007909 Nucleotide-sugar transporter family protein 7 159902823 159930978 R2045-HN-4 

GRMZM2G021605 Phosphoglycerate mutase family protein 4 181259909 181262496 EHT-LN-3 

GRMZM2G043193 Ammonium transporter 2  5 171561353 171564218 PHT-HN-3 

GRMZM2G047119 ABC-2 and Plant PDR ABC-type transporter family protein 10 11047269 11048312 N60DAF-HN-3 

GRMZM2G055216 Nucleotide-sugar transporter family protein 7 160597155 160600964 EHT-HN-1 

GRMZM2G059124 Urease accessory protein D 5 85905051 85906027 GDD-HN-2 

GRMZM2G063452 Urease accessory protein D  5 85896081 85896580 GDD-LN-1 

GRMZM2G066413 Glucose-6-phosphate/PEP/P translocator-related protein 3 12295538 12298243 R2060-LN-1 

GRMZM2G076593 Amino acid transporter 10 11087001 11089279 N60DAF-HN-3 

GRMZM2G085411 Major facilitator superfamily protein, peptide transporter PTR2 1 180424719 180427842 N20DAF-LN-1 

GRMZM2G086258 Dicarboxylate transport 2.1, citrate transporter  1 181895436 181907817 N20DAF-LN-1 

GRMZM2G109383 
 

Phosphoglucomutase/phosphomannomutase family protein  
 

5 
 

10865997 
 

10872126 
 

R2060-LN-2 

GRMZM2G138698 Acid phosphatase 27, nucleotide 
pyrophosphatase/phosphodiesteras 

8 171124026 171128225 EHT-LN-4 

GRMZM2G138756 Acid phosphatase 24, nucleotide 
pyrophosphatase/phosphodiesteras 

8 171131158 171136471 EHT-LN-4 

GRMZM2G143190 Major facilitator superfamily protein 1 90912230 90914709 N45DAF-LN-1 

GRMZM2G154211 Sulfate transporter 3;1 1 12350236 12355974 GDD-HN-1 

GRMZM2G170326 Magnesium transporter 2 6 95771854 95778367 N20DAF-LN-2 

GRMZM2G326259 Potassium transporter 6 130519264 130520551 N45DAF-HN-4 

GRMZM2G345226 Potassium uptake permease 6, K transporter 3 154110005 154112525 R2045-HN-1 

GRMZM2G396550 Potassium uptake transporter 3, K transporter 3 154125169 154128809 R2045-HN-1 

GRMZM2G433162 Amino acid permease 2, amino acid transporter 10 11200703 11203045 N60DAF-HN-3 

GRMZM5G843192 ABC transporter family protein 5 172066957 172071242 PHT-HN-3 

GRMZM5G886294 Adenine nucleotide transporter 1  5 83208803 83213993 GDD-LN-1 
a
 Chromosome, 

b,c
 start and end location in bp 
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APPENDIX B 

Figures 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5.1. Genetic map and distribution of QTL identified at each experiment at low 

N and high N conditions in the IBMSyn10-DH population of maize. 

 



152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5.1 continued. 
 

QTL depicted in red were identified under LN and in green under HN conditions. QTL 

positions shown at right of chromosomes (in cM) and lengths of bars are determined by 2-

LOD confidence intervals. Only selected markers displayed in the figure. QTL names 

correspond to key trait name followed by experiment and QTL number correspondingly. 

Figure created with MapChart 2.2 (Voorrips, 2002). 
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Tables 

Table A5.1. Average monthly temperatures (°C) by experiment. 

 Month 

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 

1 -8.92 -3.97 2.78 8.83 16.06 21.50 26.39 23.22 16.53 13.06 5.33 -0.28 

2 -2.06 -0.53 12.33 11.97 19.69 24.58 24.56 22.50 17.47 8.72 4.53 -0.78 

3 -2.89 -1.08 12.11 12.47 19.14 22.89 27.58 22.64 17.64 10.39 5.31 -2.14 

Data extracted from http://www.usclimatedata.com/climate 

  

 

 

Table A5.2. Monthly precipitation (mm) by experiment.  

 Month  

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 Total 

1 22.86 17.53 36.83 108.97 153.16 190.25 48.26 69.34 21.59 11.18 66.55 57.15 803.66 

2 32.00 16.26 66.80 91.69 34.54 72.39 34.04 75.44 53.34 87.63 44.70 29.21 638.05 

3 10.16 42.42 50.29 130.05 91.69 68.33 55.63 81.53 42.16 51.31 32.00 44.96 700.53 

Data extracted from http://www.usclimatedata.com/climate 
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Table A5.3. Analysis of variance of field traits measured on the IBMSyn10-DH TC 

population.   

Trait Sourcea DF F value p-value  

Yield E 2 349.06 < 2.2e-16 *** 

 T (E) 3 569.57 < 2.2e-16 *** 

 R (T) 2 40.05 < 2.2e-16 *** 

 G 177 2.11 1.63E-13 *** 

 GxE 345 1.23 0.006 ** 

  GxT 176 0.81 0.964   

EHT E 1 3628.08 < 2.2e-16 *** 

 T (E) 2 76.39 < 2.2e-16 *** 

 R (T) 2 9.35 9.93E-05 *** 

 G 176 4.56 < 2.2e-16 *** 

 GxE 169 4.44 < 2.2e-16 *** 

  GxT 176 1.05 0.346   

PHT E 1 10161.39 < 2.2e-16 *** 

 T (E) 2 31.26 1.07E-13 *** 

 R (T) 2 36.58 8.65E-16 *** 

 G 176 4.06 < 2.2e-16 *** 

 GxE 169 4.22 < 2.2e-16 *** 

  GxT 176 1.09 0.23   

GDD E 2 5535.09 < 2.2e-16 *** 

 T (E) 3 62.06 < 2.2e-16 *** 

 R (T) 2 18.74 9.29E-09 *** 

 G 177 8.13 < 2.2e-16 *** 

 GxE 345 4.57 < 2.2e-16 *** 

  GxT 177 1.03 0.37   

N20DAF E 2 55.84 < 2.2e-16 *** 

 T (E) 3 1762.46 < 2.2e-16 *** 

 R (T) 2 19.40 4.90E-09 *** 

 G 177 2.04 2.16E-12 *** 

 GxE 346 1.77 6.69E-13 *** 

  GxT 177 1.11 0.15   

N45DAF E 1 499.59 < 2.2e-16 *** 

 T (E) 2 1955.93 < 2.2e-16 *** 

 R (T) 2 23.71 9.26E-11 *** 

 G 177 4.48 < 2.2e-16 *** 

 GxE 177 1.53 6.09E-05 *** 

  GxT 177 1.53 6.17E-05 *** 

N60DAF E 1 22.60 2.34E-06 *** 

 T (E) 2 1555.64 < 2.2e-16 *** 
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Table A5.3 continued.   

Trait Sourcea DF F value p-value  

 R (T) 2 11.26 1.49E-05 *** 

 G 177 1.61 8.98E-06 *** 

 GxE 169 1.49 0.000233 *** 

  GxT 177 1.11 0.17   

R2045 E 1 529.10 < 2.2e-16 *** 

 T (E) 2 490.79 < 2.2e-16 *** 

 R (T) 2 30.93 1.03E-13 *** 

 G 177 4.16 < 2.2e-16 *** 

 GxE 177 1.39 0.001569 ** 

  GxT 177 1.29 0.01 * 

R2060 E 1 3.72 0.05 . 

 T (E) 2 773.70 < 2.2e-16 *** 

 R (T) 2 16.05 1.43E-07 *** 

 G 177 1.67 1.71E-06 *** 

 GxE 169 1.58 2.65E-05 *** 

 GxT 177 1.10 0.19  
a 
Sources of variation: E, environment, T, treatment, R, replication, G, genotype, GxE, 

genotype by environment interaction, GxT, genotype by treatment interaction; * p-value 

<0.05, ** p-value<0.01 and *** p-value<0.001.  
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Table A5.4. Statistical analysis of field traits measured on the IBMSyn10-DH TC population at each experiment by 

treatment combination.
 

Trait  Unit Exp Trt na Pop µb Minc Maxd B73TCe Mo17TCf SDg CV%h G effect Pi Rptblityj 

Yield MT Ha-1 1 LN 163 8.07 6.47 9.30 8.60 7.57 0.55 6.77 8.33E-15 0.4 

  1 HN 167 10.01 7.36 12.03 8.07 7.32 0.97 9.64 1.17E-15 0.45 

  2 LN 169 6.44 4.42 8.44 9.26 4.49 0.73 11.34 4.44E-16 0.45 

  2 HN 173 11.5 9.25 13.62 13.52 8.85 0.84 7.32 <1.00E-17 0.73 

  3 LN 174 10.17 8.05 11.41 12.21 9.45 0.55 5.37 <1.00E-17 0.61 

  3 HN 171 12.14 8.58 14.18 14.09 10.38 0.97 8.02 <1.00E-17 0.68 

EHT cm 1 LN 164 112.01 86.45 136 131.04 112.55 10.4 9.28 3.30E-05 0.83 

  1 HN 160 113.8 99.98 132.31 123.92 102.33 6.49 5.7 1.92E-10 0.61 

  2 LN 175 145.8 126.18 165.46 148.4 144.59 7.46 5.11 <1.00E-17 0.74 

  2 HN 175 138.06 122.26 160.52 147.09 129.31 7.26 5.26 <1.00E-17 0.73 

PHT cm 1 LN 162 259.13 231.01 279.67 256.91 245.05 9.91 3.82 2.96E-08 0.5 

  1 HN 156 268.22 255.84 278.2 253.04 255.56 4.52 1.69 3.22E-05 0.42 

  2 LN 175 323.09 297.64 346.34 330.29 316.11 9.00 2.79 <1.00E-17 0.75 

  2 HN 175 326.07 301.31 351.26 348.03 317.55 9.12 2.80 5.55E-17 0.7 

GDD °C 1 LN 168 804.88 767.16 850.83 823.38 771.41 15.64 1.94 <1.00E-17 0.72 

  1 HN 164 792.51 744.22 841.48 813.47 793.6 17.89 2.26 <1.00E-17 0.82 

  2 LN 171 754.59 728.43 784.27 751.82 785.63 10.6 1.4 1.18E-12 0.61 

  2 HN 172 744.95 718.57 769.42 753.59 742.8 10.33 1.39 5.20E-12 0.46 

  3 LN 176 829.19 800.73 865.95 825.3 851.36 14.61 1.76 <1.00E-17 0.85 

  3 HN 169 834.53 795.44 884.63 837.55 858.95 16.19 1.94 <1.00E-17 0.69 

N20DAF % 1 LN 168 2.93 2.66 3.23 2.92 3.04 0.11 3.74 6.41E-11 0.35 

  1 HN 166 3.83 3.57 4.11 3.73 3.64 0.10 2.50 4.56E-08 0.37 

  2 LN 172 3.04 2.77 3.37 3.54 3.49 0.10 3.18 4.19E-13 0.49 

  2 HN 175 3.37 3.05 3.66 3.54 3.49 0.11 3.39 4.19E-13 0.49 
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Table A5.4 continued.
 

 

Trait  Unit Exp Trt na Pop µb Minc Maxd B73TCe Mo17TCf SDg CV%h G effect Pi Rptblityj 

N20DAF % 3 LN 174 2.86 2.69 3.08 3.14 2.86 0.07 2.57 2.86E-06 0.40 

  3 HN 176 3.63 3.39 3.91 3.55 3.56 0.09 2.53 2.39E-15 0.58 

N45DAF % 2 LN 175 1.81 1.21 2.22 1.82 1.69 0.18 10.06 1.47E-13 0.61 

  2 HN 170 2.34 1.79 2.73 2.47 2.10 0.17 7.24 1.15E-10 0.57 

  3 LN 169 1.96 1.66 2.26 2.04 2.14 0.11 5.45 2.45E-12 0.58 

  3 HN 174 2.82 2.40 3.22 2.91 2.48 0.14 4.89 5.55E-16 0.65 

N60DAF % 1 LN 166 1.19 0.95 1.46 1.18 1.11 0.09 7.59 8.14E-06 0.40 

  1 HN 162 1.90 1.55 2.33 1.61 1.56 0.15 7.96 5.52E-08 0.36 

  3 LN 174 1.63 1.38 2.01 1.61 1.69 0.12 7.10 5.67E-11 0.58 

  3 HN 173 1.93 1.45 2.34 2.02 1.59 0.14 7.00 3.97E-08 0.52 

R2045 % 2 LN 171 40.31 26.76 59.81 41.3 44.16 6.20 15.38 3.57E-14 0.63 

  2 HN 170 31.63 22.21 45.66 32.08 40.92 4.70 14.85 4.34E-11 0.59 

  3 LN 172 31.84 26.63 37.16 31.92 25.57 2.05 6.43 1.00E-05 0.39 

  3 HN 170 21.94 14.08 30.13 17.52 30.85 2.89 13.18 3.27E-10 0.51 

R2060 % 1 LN 164 59.6 47.69 67.06 62.85 65.17 3.2 5.36 8.64E-06 0.42 

  1 HN 162 50.67 38.66 59.87 56.32 53.07 4.04 7.97 5.81E-08 0.44 

  3 LN 174 66.96 59.1 72.96 71.25 63.52 2.81 4.20 6.66E-07 0.49 

    3 HN 176 46.75 37.46 57.17 43.85 54.51 3.35 7.17 5.57E-07 0.49 
a
 Population size, 

b
 Population mean, 

c
 Minimum value, 

d
 Maximum value, 

e,f
 BLUP value for parental genotypes in testcross 

genotype, 
g
 Standard deviation, 

h
 Coefficient of variation (%), 

i
 p-value of the genetic effect,

 j
 Repeatability 
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Table A5.5. Pearson pairwise correlation analysis between traits at Experiment 1. 

 

 PHT EHT R2060 N60DAF GDD Yield N20DAF 

PHT  0.55 0.08 -0.11 0.35 0.21 -0.08 

EHT 0.60  0.00 -0.03 0.44 0.16 -0.16 

R2060 0.01 -0.01  -0.90 0.06 -0.02 0.06 

N60DAF -0.02 -0.07 -0.91  -0.10 0.05 0.28 

GDD 0.33 0.41 0.09 -0.20  0.21 -0.14 

Yield 0.15 0.03 0.08 -0.04 0.07  0.08 

N20DAF 0.02 -0.12 0.01 0.30 -0.38 0.15  

*LN above diagonal and HN below diagonal, coefficients in bold are significant after 

Bonferroni correction, underlined means p-value<0.05, italics means p-value<0.01 and plain 

bold means p-value<0.001.  

 

 

Table A5.6. Pearson pairwise correlation analysis between traits at Experiment 2. 

 

 PHT EHT R2045 N45DAF GDD Yield N20DAF 

PHT  0.70 0.09 -0.09 0.30 0.25 -0.15 

EHT 0.75  0.13 -0.13 0.33 0.21 -0.20 

R2045 -0.02 -0.02  -0.94 -0.12 -0.09 0.00 

N45DAF 0.04 0.08 -0.92  0.08 0.08 0.28 

GDD 0.25 0.32 -0.08 0.09  0.27 -0.15 

Yield 0.35 0.34 -0.21 0.21 0.26  -0.06 

N20DAF 0.09 0.13 0.01 0.30 0.02 0.13  

*LN above diagonal and HN below diagonal, coefficients in bold are significant after 

Bonferroni correction, underlined means p-value<0.05, italics means p-value<0.01 and plain 

bold means p-value<0.001.  

 

 

Table A5.7. Pearson pairwise correlation analysis between traits at Experiment 3. 

 

 R2045 R2060 N60DAF N45DAF GDD Yield N20DAF 

R2045  0.03 -0.02 -0.75 0.02 -0.08 0.03 

R2060 0.52  -0.94 -0.11 0.19 -0.09 -0.13 

N60DAF -0.45 -0.94  0.24 -0.17 0.08 0.35 

N45DAF -0.81 -0.41 0.48  -0.08 0.24 0.53 

GDD -0.09 0.00 0.05 0.17  0.17 -0.03 

Yield -0.06 0.16 -0.16 0.17 0.27  0.13 

N20DAF 0.21 0.06 0.18 0.32 0.18 0.07  

*LN above diagonal and HN below diagonal, coefficients in bold are significant after 

Bonferroni correction, underlined means p-value<0.05, italics means p-value<0.01 and plain 

bold means p-value<0.001.   
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Table A5.8. QTL identified by CIM at each experiment by treatment combination associated with N-metabolism related 

traits in the IBMSyn10-DH TC population of maize ordered by trait, experiment and N treatment. 

QTL name Chra Markerb G Pos (cM)c G Interval(cM)d 
Adj 
(cM)e 

P pos 
(Mb)f 

P Interval  (Mb)g LOD R2 (%) Addh #Genesi 

Yield1LN-1 1 103 290.18 287.79-291.51 44.64 16.45 15.85-16.75 6.19 10.40 -0.19 26 

Yield1LN-2 10 226 441.54 433.26-444.64 67.93 136.95 136.65-137.05 4.51 7.24 0.16 18 

Yield2LN-1 3 267 584.50 580.06-588.97 89.92 158.75 158.65-159.25 5.12 8.08 0.23 9 

Yield2LN-2 6 430 900.77 893.86-901.29 138.58 163.95 163.85-164.55 5.75 8.49 -0.24 44 

Yield2LN-3 8 377 873.64 870.85-877.56 134.41 172.65 172.45-172.75 5.56 8.10 0.21 22 

Yield2HN-1 5 98 302.18 295.94-307.08 46.49 12.40 11.95-12.70 7.75 11.13 0.30 45 

Yield2HN-2 5 326 582.59 581.54-583.77 89.63 162.65 162.35-163.35 6.32 8.60 -0.33 35 

Yield2HN-3 7 12 46.53 37.81-53.54 7.16 2.85 2.75-2.95 5.66 8.32 0.25 16 

Yield2HN-4 7 301 563.50 558.57-574.71 86.69 158.75 157.55-159.85 5.03 7.18 0.26 108 

Yield2HN-5 7 407 882.81 875.03-883.60 135.82 174.55 174.35-174.70 6.03 8.33 0.26 24 

Yield3LN-1 5 254 501.87 498.49-508.11 77.21 80.35 77.25-81.75 5.81 8.85 -0.17 116 

Yield3LN-2 7 412 895.52 890.76-905.76 137.77 175.45 175.05-175.55 4.80 7.20 0.15 19 

Yield3HN-1 1 397 732.65 721.76-737.34 112.72 160.85 148.25-160.95 5.06 5.77 -0.24 261 

Yield3HN-2 5 271 523.96 522.46-524.45 80.61 86.85 85.95-87.80 10.45 13.09 -0.66 47 

Yield3HN-3 7 304 580.42 575.57-583.17 89.30 159.85 158.95-160.05 5.54 6.36 0.27 58 

Yield3HN-4 9 37 79.59 78.15-88.03 12.24 5.25 4.95-5.35 4.52 5.26 -0.23 8 

Yield3HN-5 9 226 489.96 488.85-491.81 75.38 113.75 110.05-113.85 4.15 4.67 0.22 131 

GDD1LN-1 3 440 881.83 877.77-884.7 135.67 196.45 196.05-196.75 7.95 17.04 -11.36 36 

GDD1LN-2 5 183 432.65 428.48-435.40 66.56 37.00 35.95-37.80 4.47 7.45 -4.68 55 

GDD1LN-3 6 433 913.29 903.49-929.20 140.51 164.75 164.55-164.85 4.80 9.41 5.40 22 

GDD1HN-1 4 438 905.10 899.70-907.82 139.25 211.30 202.35-211.90 6.24 11.61 -7.49 267 

GDD1HN-2 10 158 313.47 313.31-314.95 48.23 111.05 110.55-111.55 8.28 15.07 10.42 24 

GDD2LN-1 1 94 280.51 273.65-290.98 43.16 15.15 15.05-16.05 4.65 7.33 -2.96 42 

GDD2LN-2 9 282 586.23 580.05-587.17 90.19 137.15 136.75-137.45 4.46 6.95 3.16 49 
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Table A5.8 continued. 

QTL name Chra Markerb G Pos (cM)c G Interval(cM)d 
Adj 
(cM)e 

P pos 
(Mb)f 

P Interval  
(Mb)g 

LOD R2 (%) Addh #Genesi 

GDD2HN-1 5 266 514.59 513.91-514.91 79.17 82.75 82.40-83.05 8.97 13.24 -3.98 16 

GDD2HN-2 6 224 460.28 444.68-463.01 70.81 112.45 112.25-112.80 5.15 6.68 2.74 16 

GDD3LN-1 4 363 731.02 727.49-733.71 112.46 175.55 174.05-175.95 4.35 4.54 -3.37 57 

GDD3LN-2 5 273 525.23 524.91-526.00 80.80 88.00 87.80-88.75 11.73 13.53 -5.64 26 

GDD3LN-3 8 268 555.81 552.26-556.64 85.51 131.1 129.00-131.30 9.98 11.23 4.98 80 

GDD3LN-4 9 367 884.77 878.29-895.61 136.12 153.65 153.55-153.85 4.86 5.34 3.89 21 

GDD3HN-1 2 221 577.01 573.97-579.05 88.77 44.35 44.25-45.95 6.93 9.74 6.10 63 

GDD3HN-2 4 291 592.17 591.26-592.60 91.10 153.55 148.65-149.75 10.84 16.10 6.88 31 

PHT1LN-1 8 253 544.59 537.32-547.48 83.78 123.05 120.15-123.45 4.74 7.80 -2.79 103 

PHT1LN-2 9 331 719.91 717.46-721.55 110.76 145.35 145.25-145.7 5.65 9.46 3.27 21 

PHT1HN-1 1 110 316.91 310.31-320.51 48.76 17.95 17.85-18.75 6.48 10.88 -1.58 28 

PHT1HN-2 9 190 437.11 433.47-443.68 67.25 91.25 77.45-95.65 4.56 7.43 1.27 359 

PHT2LN-1 3 140 404.27 398.86-407.02 62.20 23.00 22.75-23.50 4.98 7.05 2.71 19 

PHT2LN-2 9 369 895.52 886.45-896.61 137.77 153.85 153.65-154.05 6.18 8.89 2.92 30 

PHT2HN-1 2 86 256.48 253.33-261.45 39.46 11.35 11.25-11.45 5.44 8.06 2.69 15 

PHT2HN-2 7 58 193.71 182.17-194.93 29.80 8.65 7.95-8.75 5.46 8.38 -2.76 30 

PHT2HN-3 7 270 511.96 508.59-513.48 78.76 147.15 146.30-147.25 5.00 7.36 2.62 42 

EHT1LN-1 4 128 362.25 359.16-367.33 55.73 20.05 19.75-20.60 5.05 8.82 -3.42 20 

EHT1HN-1 2 399 775.84 771.40-777.53 119.36 188.35 187.55-188.5 5.47 7.44 -1.82 35 

EHT1HN-2 9 190 438.86 438.55-440.60 67.52 91.25 90.55-91.35 11.51 17.13 2.73 20 

EHT2LN-1 1 498 908.29 907.82-946.52 139.74 199.95 199.80-206.05 4.17 5.24 1.77 217 

EHT2LN-2 3 272 591.78 589.22-593.01 91.04 159.70 159.35-159.85 11.13 15.33 3.29 16 

EHT2LN-3 8 258 549.58 543.40-550.52 84.55 124.25 123.55-124.75 5.29 6.76 2.07 55 

EHT2LN-4 10 238 465.97 461.38-469.64 71.69 138.85 138.75-139.15 4.45 5.63 -2.02 26 

EHT2HN-1 1 94 281.90 278.77-284.85 43.37 15.15 15.15-15.25 6.87 9.25 -3.54 7 

EHT2HN-2 1 125 358.52 354.08-360.21 55.16 21.85 21.75-22.70 5.26 6.94 -2.05 37 

EHT2HN-3 2 35 106.52 99.63-110.79 16.39 4.65 4.45-4.85 6.02 8.41 2.23 27 
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Table A5.8 continued. 

QTL name Chra Markerb 
G Pos 
(cM)c 

G Interval(cM)d 
Adj 
(cM)e 

P pos 
(Mb)f 

P Interval  
(Mb)g 

LOD R2 (%) Addh #Genesi 

EHT2HN-4 3 270 590.07 588.22-593.30 90.78 159.35 159.25-159.7 6.49 8.70 2.44 10 

EHT2HN-5 3 363 757.95 754.12-761.24 116.61 179.35 179.25-179.45 6.49 8.70 2.27 7 

N20DAF1LN-1 6 14 40.11 35.48-45.64 6.17 2.65 2.35-3.05 4.17 7.69 -0.03 20 

N20DAF1HN-1 10 27 92.84 91.89-96.80 14.28 3.50 3.35-4.05 5.46 9.22 0.03 34 

N20DAF2LN-1 1 439 802.93 802.98-806.02 123.53 186.00 183.90-187.55 8.23 11.77 -0.03 127 

N20DAF2LN-2 3 360 755.32 753.12-762.24 116.20 178.70 177.45-179.25 4.06 5.79 -0.03 61 

N20DAF2LN-3 6 141 199.82 197.34-203.42 30.74 91.75 91.45-92.15 4.10 5.53 0.02 28 

N20DAF2HN-1 1 439 800.58 797.90-805.02 123.17 186.00 182.95-187.70 4.88 8.05 -0.03 176 

N20DAF2HN-2 6 415 822.41 819.26-830.47 126.52 161.85 161.85-162.05 5.62 8.87 -0.04 15 

N20DAF3LN-1 1 149 405.85 402.94-415.15 62.44 26.70 26.15-27.15 4.50 6.55 0.02 36 

N20DAF3LN-2 1 427 791.47 789.63-796.85 121.76 180.20 179.95-182.15 6.11 9.07 -0.02 76 

N20DAF3LN-3 3 364 758.61 753.12-763.28 116.71 179.45 179.25-180.45 4.05 6.13 -0.02 52 

N20DAF3LN-4 6 178 288.52 278.77-298.1 44.39 102.65 98.05-104.75 4.45 6.47 0.02 265 

N20DAF3HN-1 2 120 353.16 349.00-359.16 54.33 16.40 16.15-16.55 5.70 7.99 -0.03 14 

N20DAF3HN-2 3 362 757.61 753.12-762.24 116.56 179.25 178.70-179.45 4.44 6.18 -0.02 20 

N45DAF 2LN-1 2 345 723.76 721.55-728.67 111.35 170.55 170.35-174.15 5.70 6.62 -0.05 131 

N45DAF 2LN-2 3 292 622.95 618.75-626.87 95.84 165.85 164.90-166.05 4.47 5.47 -0.04 38 

N45DAF 2LN-3 3 384 801.36 796.85-811.1 123.29 183.15 183.00-184.15 5.46 6.63 -0.05 46 

N45DAF 2LN-4 6 156 232.33 229.92-237.04 35.74 94.75 94.60-95.05 4.80 5.51 0.05 59 

N45DAF 2LN-5 7 25 93.36 88.07-98.86 14.36 4.40 4.20-4.55 5.33 6.17 0.05 12 

N45DAF 2LN-6 8 78 238.91 237.04-240.08 36.76 14.05 14.05-14.25 5.14 5.93 -0.07 8 

N45DAF 2HN-1 2 269 639.23 636.03-641.11 98.34 97.00 72.15-106.65 6.41 8.92 -0.05 596 

N45DAF 2HN-2 3 124 373.04 368.33-375.45 57.39 17.05 16.65-17.05 5.68 7.77 -0.05 16 

N45DAF 2HN-3 5 482 841.15 837.59-845.71 129.41 196.65 196.55-197.25 4.45 5.97 0.05 21 

N45DAF 2HN-4 10 207 393.58 389.82-396.42 60.55 133.2 132.95-133.35 5.63 7.69 -0.05 18 

N45DAF 3LN-1 3 389 809.04 807.06-812.14 124.47 184.05 183.95-184.25 6.53 9.73 -0.03 10 

N45DAF 3LN-2 8 335 692.83 692.01-696.10 106.59 166.35 166.15-166.65 8.06 12.27 -0.04 46 
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Table A5.8 continued. 

QTL name Chra Markerb 
G Pos 
(cM)c 

G Interval(cM)d Adj (cM)e 
P pos 
(Mb)f 

P Interval  
(Mb)g 

LOD R2 (%) Addh #Genesi 

N45DAF 3HN-1 1 102 292.09 289.94-293 44.94 16.25 15.95-16.60 4.51 6.18 -0.04 21 

N45DAF 3HN-2 3 265 570.87 566.8-573.97 87.83 158.55 157.50-158.65 7.96 11.73 0.05 32 

N60DAF 1LN-1 1 140 387.75 385.66-390.74 59.65 24.75 24.75-25.10 8.65 15.02 -0.04 10 

N60DAF 1LN-2 3 63 223.91 221.75-227.87 34.45 8.15 7.80-8.25 5.85 9.75 0.03 19 

N60DAF 1HN-1 3 391 814.04 810.1-819.26 125.24 184.25 184.25-184.65 8.33 13.79 0.07 23 

N60DAF 1HN-2 4 7 24.48 22.23-27.36 3.77 1.35 1.35-1.95 7.57 11.81 -0.05 21 

N60DAF 1HN-3 8 334 700.49 691.01-707.3 107.77 166.15 165.65-166.65 4.02 5.83 -0.04 69 

N60DAF 1HN-4 10 74 215.00 213.88-218.79 33.08 10.05 9.95-10.35 4.38 6.39 0.04 15 

N60DAF 3LN-1 1 428 788.61 783.65-792.81 121.32 180.45 179.75-182.15 5.25 6.67 -0.03 84 

N60DAF 3LN-2 3 268 585.75 580.05-588.22 90.12 158.9 158.75-159.25 4.24 5.31 -0.03 9 

N60DAF 3LN-3 6 56 102.67 99.35-106.75 15.80 13.80 12.95-19.85 6.31 8.13 0.03 193 

N60DAF 3HN-1 4 377 755.43 750.04-757.16 116.22 178.65 177.95-178.65 5.69 9.09 0.04 33 

R20452LN-1 2 72 223.51 218.67-226.61 34.39 9.45 9.35-9.55 6.92 8.64 -2.01 22 

R20452LN-2 2 356 732.53 729.32-734.26 112.7 178.00 177.85-179.05 9.36 12.09 2.37 47 

R20452LN-3 6 156 230.16 226.61-233.53 35.41 94.75 94.15-95.05 4.94 6.00 -1.65 38 

R20452LN-4 7 24 92.63 86.68-96.24 14.25 4.20 4.05-4.55 4.56 5.50 -1.54 18 

R20452LN-5 10 282 604.48 593.71-608.11 93.00 145.05 144.85-145.05 4.64 5.61 -1.70 14 

R20452HN-1 2 269 645.02 642.16-647.24 99.23 97.00 72.00-106.65 8.69 12.7 1.77 597 

R20452HN-2 10 199 373.56 368.49-380 57.47 132.05 130.95-132.35 4.86 6.68 1.24 39 

R20453LN-1 1 109 317.54 309.21-325.59 48.85 17.85 17.65-19.00 4.44 7.57 -0.60 58 

R20453HN-1 2 315 697.04 692.01-699.14 107.24 147.25 145.05-147.95 4.16 5.78 0.73 82 

R20453HN-2 3 266 577.38 570.89-582.09 88.83 158.65 157.50-158.75 4.76 6.66 -0.81 32 

R20453HN-3 4 375 756.83 749.04-762.24 116.44 177.95 177.60-178.65 4.62 6.44 -0.78 49 

R20453HN-4 5 483 835.58 831.47-843.67 128.55 196.75 196.65-197.25 5.28 7.94 -0.91 18 

R20601LN-1 1 140 386.35 382.96-388.87 59.44 24.75 24.65-24.85 11.22 17.47 1.42 12 

R20601LN-2 2 333 708.88 706.56-712.47 109.06 161.25 160.60-165.75 4.70 6.65 0.90 124 

R20601LN-3 3 57 217.81 214.7-227.58 33.51 7.15 6.85-7.25 8.34 13.06 -1.23 54 
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Table A5.8 continued. 

QTL name Chra Markerb 
G Pos 
(cM)c 

G Interval(cM)d Adj (cM)e 
P pos 
(Mb)f 

P Interval  (Mb)g LOD R2 (%) Addh #Genesi 

R20601LN-4 4 68 204.85 201.86-209.76 31.52 9.75 9.65-9.95 6.09 8.79 -1.06 23 

R20601LN-5 4 371 735.31 732.27-738.22 113.12 177.25 176.70-177.35 5.95 8.58 1.03 18 

R20601LN-6 10 48 157.76 154.2-161.43 24.27 6.05 5.85-6.15 5.22 7.45 -0.91 10 

R20601HN-1 3 38 152.11 144.44-161.29 23.40 4.85 4.75-5.25 5.02 7.90 1.20 15 

R20601HN-2 3 440 880.83 875.79-892.59 135.51 196.45 195.95-198.05 4.32 6.73 -1.09 96 

R20603LN-1 3 61 225.72 218.71-229.92 34.73 7.95 7.25-8.15 4.15 5.40 0.67 30 

R20603LN-2 6 111 157.69 155.61-163.73 24.26 84.55 84.45-85.15 6.97 9.52 -0.89 21 

R20603LN-3 7 190 371.60 370.37-374.3 57.17 120.90 120.50-121.65 4.14 5.77 0.75 35 

R20603HN-1 2 384 761.77 758.2-770.41 117.20 185.95 185.85-186.15 4.43 6.27 0.91 18 

R20603HN-2 4 376 753.50 747.99-757.16 115.92 178.35 177.95-178.65 6.13 9.04 -1.03 33 

R20603HN-3 6 152 224.24 215.67-230.91 34.50 93.55 93.40-94.60 4.75 6.75 -0.92 48 

R20603HN-4 6 434 935.29 920.02-955.68 143.89 165.55 164.95-166.05 5.04 7.54 -0.98 71 
a
 Chromosome number, 

b
 Marker localized at LOD peak, 

c
 Genetic position of SNP in cM, 

d
 1-LOD interval in cM, 

e
 Adjusted 

genetic position, 
f
 Physical position in Mb, 

g
 1-LOD Physical interval, 

h
 Additive effect of respective QTL (a positive-signed effect 

represents an increasing allele from B73, while a negative-signed allele denotes an increasing allele from Mo17), 
i 
Number of 

genes annotated underlying 1-LOD QTL CI. QTL names correspond to trait key name followed by experiment, N treatment and 

last number constitutes the QTL number for each respective trait. 

 

 



164 

 

 

Table A5.9. Multiple QTL models per trait in each experiment by treatment 

combination in the IBMSyn10-DH population of maize.  

Experiment Treatment Trait # QTL in modela Model R2 (%)b R2 epistasis (%)c  

1 LN Yield 2 13.22  

1 LN EHT 1 4.93  

1 LN PHT 2 15.17  

1 LN GDD 3 9.80  

1 LN N20DAF 1 5.85  

1 LN N60DAF 2 12.71  

1 LN R2060 6 34.69  

1 HN EHT 2 15.08  

1 HN PHT 2 13.08  

1 HN GDD 2 6.59  

1 HN N20DAF 1 8.78  

1 HN N60DAF 4 22.39  

1 HN R2060 2 11.42  

2 LN Yield 3 19.28  

2 LN EHT 4 21.93  

2 LN PHT 2 8.97  

2 LN GDD 2 9.40  

2 LN N20DAF 3 22.46  

2 LN N45DAF 6 42.57  

2 LN R2045 5 35.35 3.10 

2 HN Yield 5 36.96  

2 HN EHT 5 32.32 0.60 

2 HN PHT 3 17.23  

2 HN GDD 2 16.98  

2 HN N20DAF 2 9.60  

2 HN N45DAF 4 33.41 3.30 

2 HN R2045 2 20.88  

3 LN Yield 2 12.01  

3 LN GDD 4 33.89  

3 LN N20DAF 4 24.23  

3 LN N45DAF 2 16.76  

3 LN N60DAF 3 23.38 5.20 

3 LN R2060 3 17.92  

3 LN R2045 1 2.10  

3 HN Yield 5 39.33  

3 HN GDD 2 16.73  

3 HN N20DAF 2 9.81  

3 HN N45DAF 2 11.08  
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Table A5.9 continued. 
 

   

Experiment Treatment Trait # QTL in modela Model R2 (%)b R2 epistasis (%)c  

3 HN N60DAF 1 7.10  

3 HN R2060 4 31.14  

3 HN R2045 4 28.42  
a
 Number of significant QTL fitted in MIM model, 

b
 Total R

2
 obtained by fitting significant 

QTL simultaneously in a MIM model, 
c
 R

2
 explained by epistasis solely. 
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Table A5.10. Candidate genes involved with N-metabolism underlying identified QTL genomic regions in each location by 

treatment combination in the IBMSyn10-DH population of maize. 

Maize GDB ID Corresponding gene annotation Chra Startb Endc QTL name 

GRMZM2G004079 PEPC-related kinase 2 1 201226717 201229957 EHT2LN1-1 

GRMZM2G010920 MYB-like HTH transcriptional regulator family protein 5 77781452 77784526 Yield3LN-1 

GRMZM2G017170 Transmembrane amino acid transporter family protein 1 103766057 103773502 Yield3HN-1 

GRMZM2G019742 Senescence-associated gene 12 2 103783794 103784578 R20452HN-1 

GRMZM2G025078 Nitrogen regulatory PII-like, alpha/beta 1 103740306 103741070 PHT1HN-1, R20453LN-1 

GRMZM2G034302 Sucrose transporter 2 1 15069084 15074473 GDD2LN-1 

GRMZM2G046002 PEPC family protein 8 165965364 165968685 N60DAF1HN-3 

GRMZM2G047404 Glucose-6-phosphate/phosphate translocator-related 2 173925593 173929511 N45DAF2LN-1 

GRMZM2G050481 Alanine:glyoxylate aminotransferase 1 185331193 185332687 N20DAF2LN-1 

GRMZM2G057724 Aspartic proteinase A1 7 157659513 157665812 Yield2HN-4 

GRMZM2G065757 Aspartic proteinase A1 6 165214021 165220621 R20603HN-4 

GRMZM2G073219 Phosphoenolpyruvate carboxykinase 1 4 209044351 209046566 GDD1HN-1 

GRMZM2G076526 ABC-2 type transporter family protein 9 92255434 92263891 PHT1HN-2 

GRMZM2G077069 Phloem protein 2-A13 10 136725465 136728946 Yield1LN-2 

GRMZM2G079381 Nitrite reductase 1 4 178613063 178616618 R20603HN-2, R20453HN-3, N60DAF3HN-1 

GRMZM2G085210 Major facilitator superfamily protein 1 177685320 177689170 N20DAF2HN-1, N20DAF2LN-1 

GRMZM2G088018 Alanine aminotransferase 2 5 6455410 6456081 GDD1LN-2 

GRMZM2G088028 Alanine aminotransferase 2 5 7956058 7958178 GDD1LN-2 

GRMZM2G088064 Alanine aminotransferase 2  5 178613063 178616618 GDD1LN-2 

GRMZM2G104546 Aspartate kinase-homoserine dehydrogenase ii  2 173487079 173506976 N45DAF2LN-1 

GRMZM2G106213 ADP glucose pyrophosphorylase  1 2 174024306 174034507 N45DAF2LN-1 

GRMZM2G101125 Transmembrane amino acid transporter family protein  4 175243397 175248435 GDD3LN-1  

GRMZM2G116478 Transmembrane amino acid transporter family protein 9 111116518 111117272 Yield3HN-5 

GRMZM2G119248 Asparagine synthase family protein 1 102171297 102171994 Yield3HN-1 

GRMZM2G119249 Shikimate kinase like 1 1 165655084 165656780 Yield3HN-1 

GRMZM2G119300 Glucose-1-phosphate adenylyltransferase family protein 3 179779657 179782313 N20DAF3LN-3 
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Table A5.10 continued. 

Maize GDB ID Corresponding gene annotation Chra Startb Endc QTL name 

GRMZM2G119511 Alanine:glyoxylate aminotransferase 1 185769464 185771702 N20DAF2HN-1 

GRMZM2G124353 Alanine:glyoxylate aminotransferase 2 1 15352527 15355919 GDD2LN-1 

GRMZM2G137421 Nitrate transporter 1:2 6 156233140 156235981 N20DAF3LN-4 

GRMZM2G137868 Alanine:glyoxylate aminotransferase 1 184941358 184944047 N20DAF2HN-1, N20DAF2LN-1 

GRMZM2G141480 Phloem protein 2-A11 3 178325842 178335080 N20DAF2LN-2 

GRMZM2G156486 Nitrilase/cyanide hydratase  family protein 1 15989647 15994433 
GDD2LN-1, N45DAF3HN-1,  
YIELD1LN-1 

GRMZM2G164714 Phosphoenolpyruvate carboxylase family protein 10 132029047 132032448 R20452HN-2 

GRMZM2G164743 Major facilitator superfamily protein 10 18190325 18199212 R20452HN-2 

GRMZM2G173016 Nucleotide-sugar transporter family protein 2 103657680 103658845 N45DAF2HN-1, R20452HN-1 

GRMZM2G327050 Nitrate transporter 1:2 6 103783794 103800000 N20DAF3LN-4 

GRMZM2G335218 Ammonium transporter 2 8 165655084 165656780 N60DAF1HN-3, N45DAF3LN-2 

GRMZM2G347457 Nitrate transporter 1:2 6 103740306 103741070 N20DAF3LN-4 

GRMZM2G355906 Glutamate decarboxylase 2 2 45349199 45380559 GDD3HN-1 

GRMZM2G359559 Alanine:glyoxylate aminotransferase 1 187035638 187037628 N20DAF2HN-1, N20DAF2LN-1 

GRMZM2G385263 Nitrate reductase 2 9 111116518 111117272 Yield3HN-5 

GRMZM2G392988 Sucrose synthase 3 8 124361368 124364917 EHT2LN-3 

GRMZM2G403620 MYB-like HTH transcriptional regulator family protein 1 154968134 154972600 Yield3HN-1 

GRMZM2G410704 Sucrose synthase 6 1 17721176 17724401 R20453LN-1 

GRMZM2G428027 Nitrite reductase 1  4 177685320 177689170 R20453HN-3 

GRMZM2G439542 PEP/phosphate translocator 2 2 187826182 187826819 EHT1HN-1 

GRMZM2G701289 Ammonium transporter 1;1 3 6455410 5456081 R20601LN-3 

GRMZM5G803404 ABC transporter family protein 2 101898444 101899537 N45DAF2HN-1, R20452HN-1 

GRMZM5G821252 Nitrate transporter 1:2 9 83733269 83733894 PHT1HN-2 

GRMZM5G869453 Pyruvate kinase family protein 3 15989647 15994433 R20603LN-1 
a
 Chromosome, 

b,c
 start and end location in bp  
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Table A5.11. Candidate genes associated with phosphate transporters and cellulose synthase underlying QTL genomic 

regions identified in the analysis of each experiment by treatment combination in the IBMSyn10-DH population of maize. 

Maize GDB ID Corresponding gene annotation Chra Startb Endc QTL name 

GRMZM2G009779 Phosphate transporter 1;7 2 99885266 99886925 R20452HN-1, N45DAF2HN-1 

GRMZM2G009800 Phosphate transporter 1;7 2 99926376 99930029 R20452HN-1, N45DAF2HN-1 

GRMZM2G018241 Cellulose synthase family protein 2 161757546 161763704 R20601LN-2 

GRMZM2G024182 Cellulose synthase 1 9 87864926 87867458 PHT1HN-2 

GRMZM2G027794 Cellulose-synthase-like C12 8 172525179 172529685 Yield2LN-3 

GRMZM2G028353 Cellulose synthase 6 2 170393027 170398878 N45DAF2LN-1 

GRMZM2G045473 Phosphate transporter 1;5 2 99381968 99383837 N45DAF2HN-1, R20452HN-1 

GRMZM2G060630 Phosphate transporter 3;1 4 178520983 178525630 R20603HN-2, R20453HN-3,  
N60DAF3HN-1 

GRMZM2G082580 Cellulose synthase 6 2 171408315 171412367 N45DAF2LN-1 

GRMZM2G090126 Phosphate transporter 3;1 1 203917963 203920413 EHT2LN-1 

GRMZM2G092186 Cellulose synthase 1 1 151430784 151432436 Yield3HN-1 

GRMZM2G112377 Phosphate transporter 1;7 1 202585823 202587997 EHT2LN-1 

GRMZM2G124089 Cellulose-synthase-like C12 8 172598290 172599189 Yield2LN-3 

GRMZM2G132169 Laccase 12 3 183701021 183703536 N45DAF2LN-3 

GRMZM2G150404 Cellulose synthase family protein 2 161768961 161771897 R20601LN-2 

GRMZM2G170208 Phosphate transporter 1;5 2 99805638 99807544 N45DAF2HN-1, R20452HN-1 

GRMZM2G173710 HPT phosphotransmitter 4 8 124015413 124020226 EHT2LN-3 

GRMZM2G349834 Cellulose synthase 1 6 102842181 102845471 N20DAF3LN-4 

GRMZM2G389588 Cellulose synthase 1 5 36617909 36620570 GDD1LN-2 

GRMZM2G410085 Phosphate transporter traffic facilitator1 6 18041267 18046263 N60DAF3LN-3 

GRMZM2G451646 Cellulose synthase 1 6 98887115 98889430 N20DAF3LN-4 

GRMZM2G701031 Phosphate transporter 4;5 6 99037001 99037266 N20DAF3LN-4 

GRMZM5G856598 Phosphate transporter 4;3 3 178916302 178919735 N20DAF2LN-2, N20DAF3HN-2 
a
 Chromosome, 

b,c
 start and end location in bp 
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CHAPTER 6: GENERAL CONCLUSIONS 

 

A linkage mapping analysis was conducted in an integrated manner aiming to identify 

genomic regions associated with N-metabolism in a maize TC population derived from B73 

and Mo17. First, enzymes and metabolites were analyzed from root and leaf tissues at a 

vegetative stage (V4) from plants grown in hydroponic conditions. Subsequently, agronomic 

traits were measured in same TC genotypes, grown in the field under LN and HN conditions. 

This investigation provided insightful and valuable information in order to partially elucidate 

the genetic control of N-metabolism in a maize TC population.  

A methodical approach for the determination of real outliers in the different datasets was 

implemented. Even though it is well established that high quality data are essential for the 

success of quantitative trait loci (QTL) mapping experiments (Bernardo, 2010), the 

management of raw data, including the determination of outliers with a statistical basis, has 

received considerably less emphasis than the subsequent genetic analysis. Hence, several 

spurious associations between genetic regions and variation in phenotype performance may 

have arisen as a result of the misinterpretation in the identification of overly influential 

values. On the other hand, real associations may have been missed due to the omission of 

valid observations based merely on totally subjective rationale. In order to optimize the use 

of the available information generated in the experiments, an approach for determination of 

outliers with a statistical basis was implemented.  The approach is divided into five main 

steps consisting of visual inspection of the data, studying relationships between multiple 

response variables (e.g. enzyme activity), fitting statistical models, filtering genotypes 

(subsetting the data) and, finally, filtering influential measurements based on a Jackknife 

approach. As a result of implementing the approach described above, improvements in the 
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log-likelihood values, on the order of 200 units in magnitude, were achieved by removing 

just a few (three to eight) genotypes. It is important, while following the steps of the 

described approach, to find any problems and address them in order to obtain the most 

reliable results.  Steps similar to the ones used here to survey the enzyme activity data may 

be applied in many other circumstances, to improve the accuracy of results. The R code used 

in this analysis is provided in the supplementary information and can be readily adapted for 

any similar initiatives.  

From the linkage mapping analysis based on leaf tissue, harvested from maize hybrids grown 

in hydroponics, a total of 44 QTL were identified. Epistasis between QTL was not significant 

for most of the traits. Nevertheless, significant epistasis was determined for two QTL model 

explaining 2.5-5% of the genetic variance. The QTL models for different traits accounted 

from 7 to 31% of the genetic variance. Furthermore, 12 coding regions underlying 1-LOD 

QTL confidence intervals (CI) were identified as promising gene candidates associated with 

N metabolism for further validation studies. Moreover, all QTL identified were in trans 

compared to the genomic position of the correspondent structural genes.    

In the similar analysis of enzymes and metabolites on root tissues, 22 QTL were identified. 

QTL models for explained 8-43% of the genetic variance and no significant epistasis was 

detected between QTL. A total of ten candidate genes were proposed underlying 1-LOD 

QTL CI regions. Similar to the findings with leaf tissue analysis, all candidate genes were 

located in trans, unlinked or even in different chromosome, to the known genomic positions 

of the correspondent structural genes. 

In the analysis of agronomic and physiological traits from TC maize grown in the field under 

LN and HN conditions, 45 QTL were detected in a combined analysis (across three 
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experiments) while 117 QTL were identified in the split analysis (at each experiment by N 

treatment combination). In the case of the combined analysis, multiple QTL model explained 

5.7-33.4% of the phenotypic variance and epistasis was significant for only one trait.  

Furthermore, 22 candidate genes underlying QTL regions were proposed for further analysis. 

With regard to the split analysis, QTL models explained from 2 to nearly 43% of the 

variance, and 50 candidate genes associated with N metabolism, underlying 1-LOD QTL 

regions, were targeted for further analysis.  In addition, 23 candidate genes within identified 

QTL regions were also pinpointed for future investigation; all of them were associated with 

phosphate transporter and cellulose synthase. 

Numerous hotspot QTL regions were identified in the maize genome across the hydroponics 

and field experiments. Several QTL did co-locate and various were determined in close 

proximity to each other (Fig 6.1).  At least one rich QTL region, presenting three or more 

overlapping CI for QTL, was determined at each of the ten chromosomes. 

The results of this integrated investigation provide an insight in order to achieve a more 

holistic comprehension of N metabolism in maize TC.  Several genomic regions responsible 

of the variance in the performance of certain N-metabolism related traits and candidate genes 

within QTL regions have been targeted for further investigations. A better comprehension of 

the genetics underlying N-metabolism in maize would be necessary in order to: develop 

ideotype maize hybrids with an optimal performance of certain key enzymes and transporters 

related to N-metabolism, promote a more sustainable agriculture with a decrease in N 

fertilizer inputs while maintaining yields, leading to an overall increase in profits while 

reducing environmental contamination.  
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Figure 6.1. QTL identified across experiments in the maize IBMSyn10-DH TC 

population. 
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Figure 6.1 (continued). 
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Figure 6.1 (continued). 
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Figure 6.1 (continued). 
QTL identified from hydroponic experiments are depicted in black (leaf tissue analysis) and 

pink (root tissue analysis), while QTL detected in field experiments are shown in red (low N) 

and green (high N). QTL name followed by (JA) meaning QTL identified in the combined 

experiments analysis (joint analysis). Figure created with MapChart 2.2 (Voorrips, 2002) 
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