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INTRODUCTION 

In many manufacturing operations, unfinished or unassembled parts are not necessarily 
accepted or rejected in their entirety. Oftentimes, they are given some qualifying grade that 
indicates their worth to potential buyers or their suitability for particular processing 
operations. The manufacture of hardwood lumber in sawmills follows this general 
procedure. Lumber is graded based on appearance because its end use is primarily 
furniture and other goods that have a large aesthetic aspect to their value. Lumber grades 
are used by sawmill operators (sellers) and furniture plants (buyers) as an estimate of how 
much clear wood material is in the lumber being traded, hence the lumber's value. Also, 
certain sawmill operations treat a board differently based on actual or potential lumber 
grade. Therefore, accurate lumber grading is important to mill operators. 

Very detailed and specific rules have been developed to grade hardwood lumber. They 
set minimum requirements that must be met for each board grade. Despite the complexity 
of these grading rules, a computer implementation of the formal grading rules has been 
created [1,2]. Because this computer grader is a fairly complete representation of the 
grading rules, it is exhaustive in its grading procedures, even where some of the 
calculations are computationally expensive. Therefore, it is not guaranteed to complete in a 
fixed amount of time. This is not acceptable for some real-time processing operations. 

To avoid this limitation, a pattern classifier might be used to perform nearly constant­
time grading, while allowing for some loss in grading accuracy. Artificial neural networks 
(ANNs) were selected as the classifier architecture because: (1) they can simulate any 
differentiable mathematical mapping, (2) many network types (topologies) are available, 
and (3) once developed, the final ANN mapping can be coded as a subroutine that executes 
in a small, fixed amount of computational time. 

This report details initial efforts to develop a real-time lumber grader. Classifier 
development is introduced conceptually, spatial features are described, and the use of 
training and testing data sets is discussed. A utility function for comparing different 
classifiers is derived and demonstrated. Comparison tests using three different ANN 
topologies indicate where improvements can be made in classifier design and in training. 

APPLICATION OVERVIEW 

At a sawmill, boards are sawn from a hardwood log in a fashion similar to the 
illustration in Figure 1. Flat faces are produced on each side by removing the curved 
portion of the log cylinder. The highest quality wood in the log lies immediately beneath 
these pieces. Several boards are removed from each side (only one per side is displayed in 
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Figure I. Boards are removed from the outer, high-quality regions of a log. 

Fig. I for graphical simplicity). The remaining center cant of the log contains the lowest 
quality wood of the log, and may be resawn to salvage additional boards or may be sold for 
the manufacture of pallet material. 

Logs enter the sawmill, are debarked, and pass through a band headrig several times to 
remove boards from around the outside of the log. Boards then proceed to edger and 
trimmer operations, after which they are graded and sorted. Because many processing steps 
in this type of mill are controlled by human operators, sub-optimal processing decisions, 
productivity losses, and raw material waste result. However, many mill inefficiencies can 
be reduced by introducing scanning systems, and the software to make processing decisions 
based on scanner information. Installation of scanning systems, however, requires that 
human operator tasks, e.g., lumber grading, are also automated. 

Lumber Gradinf: 

There are 4 primary grades of hardwood lumber: FAS, #1 Common, #2 Common, and 
#3 Common. Figure 2 contains some examples of these. Lumber that does not minimally 
meet 3C spec's is below grade (or cull). Higher quality lumber: (1) has maximum limits 
for the size and numbers of unsound defects, (2) must be larger dimension material, and (3) 
must have a higher percentage of its surface area in clear wood cuttings of a larger size. 
Final lumber value is based on the surface measure of the board and its grade, where grade 
determines the value per square foot of surface measure. 

Lumber grading impacts an automated mill in several ways. First, an optimal log 
breakdown pattern depends on the final value of each board produced. Second, edging and 
trimming operations attempt to create the highest value piece of lumber from each board. 
This operation may remove substantial amounts of wood to increase grade, and hence the 
board's total value. This grade then becomes the final grade of the piece of lumber for sale. 
Finally, lumber is graded prior to sale to secondary manufacturers. 

CLASSIFIER DEVELOPMENT 

Classifiers in General 

Many different types of classifiers exist, but they are all similar conceptually. The 
basic goal is to automatically train a classifier to associate patterns with categories. A set 
of examples, typical of real-world categories, are used for training. These examples consist 
of feature patterns paired with categories. Once a classifier has been trained, it is tested on 
other data which it has not seen before. A useful classifier performs well on those new 
patterns. The ability to accurately classify novel patterns is the goal of the training process. 
Learning, in this context, is considered to be supervised, because desired results are paired 
with patterns in the training phase. 

Training and Testing 

Each example in a training set contains a vector of features that, in some sense, are 
intended to unambiguously describe that example as belonging to one of the important 
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Figure 2. Different grades of lumber allow different numbers and sizes of defects. 

categories. Some features are very discriminating with respect to selecting a single 
category for the examples, while other features are not, they contain noise. It is relatively 
easy to create a classifier that works well on training data, i.e., one that has a low apparent 
error rate. In the extreme case we can imagine a table lookup procedure, which has an 
apparent error rate of zero. What we want, on the other hand, is a classifier that has a low 
true error rate [3]. That is, one that has the lowest error rate if presented with all possible 
real world cases. Because it is impractical to train a classifier on all possible samples, an 
estimate of the true error rate must be determined from a relatively small set of training 
data. 

A good classifier: (1) extracts the maximum amount of information from the training 
set, (2) is not selected based on its ability to accurately distinguish between cases in the 
training set, and (3) is able to extrapolate to new cases. The former may be difficult to 
attain, but the latter two can be accomplished through appropriate classifier training and 
testing methods. 

One statistically accepted procedure for obtaining good estimates of the true error rate 
during training and testing is cross validation. In this technique, the training data are 
partitioned into N exclusive sets. An N step process is then used, where at each step i, 
partition i is used for testing and the remaining partitions are used for training (Figure 3). 
The true error rate estimate is then the average of the test values for the N partitions. When 
N equals the number of cases in the full training set, then this type of cross validation is 
referred to as leave-one-out. Else, it is referred to as N-fold cross validation. The data set 
for our study consisted of approximately 1600 boards [4]. These were randomly 
partitioned into 10 subsets. Each subset contained the same frequency distribution of 
boards from the different classes. 

CLASSIFIER FEATURES 

Board outlines and defects had been manually mapped and values recorded [4]. Using 
these numerical representations of the boards, each was graded with the computer grader 
[2] and visually verified. A total of 19 different features were calculated for each board in 
the data set. These features fall into the four feature types presented below: traditional, 
moment-mean ratios, defect packing, and information gain. 
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Figure 3. Cross validation estimates the true error rate by testing on separate partitions of 
the data set. During each iteration, training occurs on the entire data set, less the test 
partition. 

Traditional 

Based on what is known about lumber grades and the distribution of defects on boards 
[5] several board features, known to be correlated with lumber grade, were selected. This 
set included: percent of defect area containing knots, total length of wane, average size of 
all defects, number of defects per area, and total number of defects. Each of these is very 
computationally inexpensive to calculate. Nevertheless, they provide only general 
descriptions of a board and its defects, without any indication of spatial arrangement. 

Moment-Mean Ratios 

For a Poisson spatial distribution, complete spatial randomness (CSR) means that the 
variance of the population and the mean of the population are equal. In the context of 
board surfaces, the "population" is the set of spatial intervals on the board. In fact, the 2nd, 
3rd, and 4th moments about the mean have the expected values appearing in (1). 

M z.Jl = E[(X - Jl)z] = Jl 

M3,Jl = E[(X - Jl)3] = Jl 

M4.Jl = E[(X - Jl)4] = Jl + 3Jlz 

(1) 

Therefore, for randomly sampled quadrats on a board, the ratio of the variance to the mean, 
the ratio of the 3rd moment to the mean, and the ratio of the 4th moment to the mean 
should indicate differences across boards in spatial distributions of defects. Sample 
moments k about the mean are calculated as in (2), where Xj is the number of defected units 
in a quadrat. A unit is a 114" square for this application. The true mean Jl is easily 
calculated as the product of the size of the sampling quadrat and the ratio of the total 
number defect units to the total number of units on the board. Some initial examination of 
sampling histograms suggested that 1000 sampling quadrats should be sufficient to obtain 
fairly consistent estimates of these features. Quadrats were randomly located on a board. 

(2) 

High moment-mean ratios can be due to either a few scattered defects or a large number of 
clustered defects. To distinguish between those cases, we can normalize these ratios by the 
number of defects on the board. These normalized ratios provide a more representative 
description of defect scatter and clustering. 

Defect Packing 

While the point estimators above provide some information about the distribution of 
defected areas on a board, they provide little information about the arrangement of those 
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defects. Consequently, I have created a board defect feature, D, that provides a measure of 
how closely defects are packed on the board and how near the board edges defects lie. The 
distance Din (3) is normalized by the board area A, and is composed of two parts: (1) the 
nearest neighbor distance NNi, using defect centers (Xi. Yi) in the calculation and (2) the 
distance to the closest edge NEi. The values xmax and ymax are the X and Y coordinates of 
the board's right end and upper edge, respectively «0, 0) lies at the lower left corner of the 
board). A smaller value for D (zero in the case of no defects) would indicate that there is 
more, relative clear wood area present, and hence the board should grade as higher quality. 

D= L(NNj+NE)! A 
j 

where, 

NN. = min~(X. - X)2 + (y. _ Y,)2 
l j~i J J I) 

(3) 

Information Gain 

Entropy is the loss of energy in a closed system. This loss of energy is reflected in a 
concomitant accumulation of mass, or clumping of cooled energy. Shannon used this idea 
as a basis for information theory [6], where information corresponds to lower entropy, or 
reduced randomness. Entropy H is defined in (4), where Pi is the observed proportion of 
quadrats with outcome i, i.e., with a certain number of defect units. By examining the 
relative amount of information gained (or entropy lost) J(p:q) in going from CSR to a more 
clumped pattern of defect arrangement, we have another estimate of defect contagion [7] . 

(4) 

Information gain J(p:q) is calculated as the difference between the entropy of a CSR 
pattern and the observed pattern (5). The expected number of quadrats qi with i points in a 
CSR pattern is calculated from the Poisson p.d.f. (6). The Poisson parameter A is the ratio 
of the total number of units on the board to the number of defected units on the board. The 
value of /(p:q) , the weighted average expected information gain, should be lowest for CSR 
patterns and should increase for clumped and regular patterns. 

J(p:q) = LPJln(lI q) -In(lI p)] 
j 

(5) 

(6) 

NEURAL NET CLASSIFIERS 

Some initial tests were conducted with a variety of ANN topologies. Three of those, 
back-propagation, learning vector quantization, and radial basis function, were selected for 
further study. Each of the ANNs contained 19 input nodes, 1 hidden layer, and 5 output 
nodes, corresponding to the five classes of lumber grade. For each ANN classifier, 
classification rate was used as the termination criterion that determined what network 
weights were saved as the "best." 

Back -Propaeation 

A relatively typical back-propagation network was used. Each of the input nodes was 
fully connected to the single hidden layer. After some experimentation with the number of 
nodes in the hidden layer, the number of nodes was fixed at 15. 
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Figure 4. In an LVQ network, prototype vectors belonging to the different classes are 
trained. For recall, the closest prototype to the test case determines the class assignment. 

Learninc Vector Quantization 

Learning vector quantization (L VQ) maps feature vectors to output classes by the use of 
code-book (or prototype) vectors (Figure 4). Each output class has the same number of 
code-book vectors. After some experimentation, 20 code-book vectors per class were used 
in this application. These vectors are trained to become representative of cases within a 
particular class. As training cases are presented, the closest vector (using Euclidean 
distance) is moved toward the training case, if it is in the correct class. It is moved away if 
it is not. The basic L VQ algorithm has some limitations, but several variants of the original 
algorithm overcome these problems. Several of these modifications were used here. In test 
mode, the class with the winning code-book vector is output. 

Radial Basis Function 

Radial basis function (RBF) networks are actually a class of network topologies. In an 
RBF (Figure 5), the hidden layer consists of pattern units. Each pattern unit contains a 
center vector (represented by the weights from the input layer), a distance measure, and a 
univariate transfer function that maps the distance value to an output value. Such pattern 
units are radially symmetric. After some initial experimentation, 200 pattern units were 
used in this network. 

A Kohonen-like K-means clustering algorithm is used to adjust the center vector 
values. Pattern unit transfer functions are adjusted by using nearest neighbor clustering. 
After this self-organizing phase is complete, the output layer is trained using back­
propagation learning. 

Classifier Utility 

Classification rate can provide a good indication of how well a classifier is performing. 
However, because error rates for different classes may vary and the importance of correct 
classification may vary between classes, strict classification rates may not give a true 
measure of the real utility of a classifier. This is especially important when comparing the 
performance of several classifiers. The classifier utility metric CU described in (7) 
attempts to deal with these limitations. This metric incorporates: classification rates for 
each lumber grade Cij' classification utility values for each grade U ij, and frequency of 
occurrence of each grade Pi. This metric allows us to compare classifier results in a more 
economically meaningful way. (The confusion matrix that contains the classification utility 
values U ij is not included or discussed here for space reasons.) 
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Figure 5. In an RBF network, training occurs in two parts. Pattern units are trained in a 
self-organizing phase and then the output layer is trained to minimize error. 

cu= LLPPijCjj 
j j 

RESULTS AND CONCLUSIONS 

(7) 

The IO-fold cross validation method uses partitions to conduct 10 training sessions and 
10 classifier tests. At this writing only 5 train/test cycles have been completed. However, 
given the random assignment of cases to the partitions, these 5 cycles probably reflect the 
final results. 

Table I contains averages over 5 test partitions using the input features described 
above. Weighted classification rates and classifier utility values appear to the right of each 
sub-table. Desired (or true) grades appear along the top of the tables and ANN 
classifications appear on the side. Values closer to unity along the diagonal indicate better 
performance. All ANNs performed best on FAS lumber and worst on BG lumber. Overall 
classification rate and classifier utility is highest for back-propagation (BP). LVQ has the 
second highest classification rate, but RBF has the second highest utility value. This 
difference is due to better performance by RBF on IC and 2C lumber, which has a 
relatively high utility value. This demonstrates that the classifier utility function can make 
a difference in how performance is evaluated. 

The actual lumber grading rules are algorithmic and have many discontinuities (branch 
points). Therefore, they do not translate into a smooth mathematical mapping, which is 
readily learned by an ANN. Consequently, classification rates at this point are too low to 
be practically useful. However, many of these branch points require relatively simple and 
easy calculations from the original board descriptor files that result in binary values-either 
the board satisfies a constraint for a particular grade or it does not. So, it should be possible 
to incorporate these binary values into the feature vectors used for classification. 

As the number of classes that need to be discriminated decreases, classifier accuracy 
increases. In many situations, it may not be necessary to distinguish below grade boards, or 
even 3C, because they are not encountered very often. By eliminating those classes from 
the training and testing sets, a higher classification rate can be obtained. 

Currently, for each ANN topology and each test partition, the best classifier is selected 
based on overall classification rate. Given the desire to evaluate classifiers based on the 
overall utility of classifier performance, a better objective function for selecting the best set 
of network weights would be classifier utility. 
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Table 1. Averaged classification results for the 3 ANN classifiers are based on completion 
of 112 of the lO-fold cross validation tests. 

Avg. LYQ 
Overall Avg. = 0.58404 

B3 
3C 

Actual 2C 
1C 

FAS 

FAS 
o 
o 

0.03522 
0.16216 
0.80244 

1C 
0.03274 
0.02618 
0.24178 
0.55208 
0.14722 

Desired 
2C 

0.0819 
0.08538 
0.56566 

0.2492 
0.01788 

3C 
0.2222 

0.53334 
0.15554 
0.08888 

0.46668 
0.26666 
0.15554 

Utility = 1.20 

o 

Avg. BP 

0.1111 
o 

Overall Avg. = 0.61476 

B3 
3C 

Actual 2C 
1C 

FAS 

FAS 
o 
o 

0.00714 
0.13016 

0.8627 

1C 
0.00984 
0.00984 
0.23172 
0.67662 

Desired 
2C 

0.0176 
0.03214 
0.69008 
0.25658 
0.00358 

3C 
0.06666 
0.51112 
0.33332 
0.08888 

0.33334 
0.24444 
0.33332 
0.08888 

Utility = 1.28 

0.072 o o 

Avg. RBF 
Overall Avg. = 0.55126 

B3 
3C 

Actual 2C 
1C 

FAS 

FAS 
o 

1C 
o 

Desired 
2C 
0.00358 

0.0391 
0.65518 
0.28796 

0.0143 

3C 
0.04444 
0.51112 
0.39998 
0.04444 

0.19998 
0.24442 
0.44444 
0.06666 
0.04444 

Utility = 1.23 

o 
0.01482 
0.20264 
0.78254 

0.01312 
0.25188 

0.591575 
0.12734 o 

The initial results are encouraging. With the above mentioned improvements and by 
expanding the types of classifiers considered, e.g., discriminant classifiers, Bayesian 
decision rule, and decision trees, it seems possible to reach an acceptable level of 
performance and also have a computational procedure that operates in real time. 
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