
Exploiting cloud utility models for profit and ruin

by

Joseph Robert Idziorek

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Doug Jacobson, Major Professor

Tom Daniels

Yong Guan

Mani Mina

Leigh Tesfasion

Iowa State University

Ames, Iowa

2012

Copyright c� Joseph Robert Idziorek, 2012. All rights reserved.

ii

DEDICATION

I would like to dedicate this dissertation to Arlowyn, the love of my life, and to my family

and friends for their kindness and constant support throughout this journey.

iii

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

ACKNOWLEDGEMENTS . xiii

ABSTRACT . xv

CHAPTER 1. OVERVIEW . 1

1.1 Dissertation Organization . 1

1.2 Introduction - Insecurity of Cloud Utility Models 2

1.3 Cloud Utility Pricing Model . 4

1.4 FRC Attack Description . 4

1.5 FRC Risk . 6

1.6 Defending Against a FRC Attack . 7

1.6.1 Prevention . 8

1.6.2 Detection . 8

1.6.3 Attribution . 9

1.6.4 Mitigation . 10

1.7 Summary . 10

CHAPTER 2. SECURITY ANALYSIS OF PUBLIC CLOUD COMPUTING 12

2.1 Abstract . 12

2.2 Introduction . 12

2.3 Background . 13

2.4 Threat Model . 15

2.5 System of Analysis . 19

iv

2.6 Analysis . 22

2.6.1 Confidentiality . 22

2.6.2 Integrity . 24

2.6.3 Availability . 25

2.6.4 Utility . 27

2.6.5 Authenticity . 28

2.6.6 Possession . 30

2.7 Discussion . 31

CHAPTER 3. FRAUDULENT RESOURCE CONSUMPTION ATTACK . . 33

3.1 Abstract . 33

3.2 Introduction . 34

3.3 Background . 36

3.3.1 Cloud Computing . 36

3.3.2 Utility Compute Pricing Model . 37

3.4 Fraudulent Resource Consumption (FRC) Attack 38

3.4.1 Target . 38

3.4.2 Threat Model . 39

3.4.3 Attack Description . 40

3.4.4 Direct Cost of a FRC Attack . 42

3.5 Detection and Attribution Methodologies . 46

3.5.1 Detection using Zipf’s Law . 47

3.5.2 Entropy-Based Attribution . 53

3.6 Related Work . 56

3.6.1 Economic Denial of Sustainability . 56

3.6.2 Application-Layer DDoS . 57

3.7 Future Work & Conclusion . 58

CHAPTER 4. TRAFFIC GENERATION . 60

4.1 Abstract . 60

v

4.2 Introduction . 61

4.3 Related Work . 63

4.4 Dataset Description and Considerations . 65

4.4.1 Web Usage Mining and Modeling Components 66

4.4.2 Dataset Limitations . 69

4.5 Simulation Algorithms . 69

4.5.1 Description of Markov-Based Simulation Algorithms 69

4.5.2 Algorithm Modeling Components . 71

4.5.3 Description of Trace-Driven Simulation Algorithm 73

4.6 Experimental Evaluation . 74

4.6.1 Experimental Metrics . 74

4.6.2 Experimental Design . 78

4.6.3 Experimental Results . 79

4.7 Attack Traffic Generation . 82

4.8 Future Work . 83

4.9 Conclusion . 84

CHAPTER 5. FRC DETECTION . 86

5.1 Abstract . 86

5.2 Introduction . 87

5.3 Background . 89

5.3.1 Cloud Computing and FRC Actors . 89

5.3.2 Cloud Utility Pricing Model . 90

5.4 FRC Attack . 91

5.4.1 Threat Model . 91

5.4.2 Cloud Web Server Profiling . 92

5.4.3 FRC Attack Description . 97

5.4.4 Related Work . 102

5.5 Dataset Description . 104

5.5.1 Attack Scenario . 106

vi

5.6 Detection Metrics . 106

5.6.1 Zipf’s Law . 107

5.6.2 Spearman’s Footrule . 109

5.6.3 Overlap . 110

5.6.4 Detection Training and Testing . 111

5.7 Attack Description . 112

5.7.1 Attack Assumptions . 112

5.7.2 Attack Strategies . 112

5.8 Experimental Evaluation . 114

5.8.1 False Positive Rate Results . 114

5.8.2 False Negative Rate Results . 115

5.8.3 Self-Similarity and Consistency of Training Data 127

5.8.4 Discussion . 131

5.9 Flash Crowds and FRC Attacks . 132

5.10 Future Work . 135

5.11 Conclusion . 136

CHAPTER 6. FRC ATTRIBUTION . 137

6.1 Abstract . 137

6.2 Introduction . 137

6.3 Risk of Utility Computing . 139

6.4 Related Work . 141

6.5 Dataset Description . 142

6.5.1 Web Log Properties . 142

6.5.2 Experimental Datasets . 144

6.6 Attribution Methodology . 144

6.6.1 Request Volume . 146

6.6.2 Session Volume . 147

6.6.3 Average Session Length . 148

6.6.4 Chi-Square Statistic . 148

vii

6.7 Experimental Evaluation . 150

6.7.1 Attacker Simulation . 151

6.7.2 Evaluation Criteria . 152

6.7.3 Baseline FPR . 153

6.7.4 Experimental Results . 154

6.8 FRC Risk Analysis . 161

6.8.1 Likelihood . 162

6.8.2 Impact . 166

6.8.3 Business Impact Factors . 166

6.9 Discussion and Future Work . 167

6.10 Conclusion . 168

CHAPTER 7. PREVENTION AND MITIGATION 169

7.1 Prevention . 169

7.1.1 User Authentication . 169

7.1.2 Graphical Puzzels . 170

7.1.3 Application Design . 170

7.1.4 Web Hosting Environment . 171

7.2 Mitigation . 171

7.2.1 Attacker Identification . 171

7.2.2 Filtering . 172

7.2.3 Rate Limiting . 172

CHAPTER 8. CONCLUSION . 173

8.1 Future Work . 173

8.2 Contributions . 174

8.3 Summary . 174

BIBLIOGRAPHY . 176

viii

LIST OF TABLES

2.1 Parker’s Six Security Elements. 21

3.1 EC2 Pricing Metrics for a Large Linux Instance Residing in Northern

Virginia (as of January 2012) . 37

3.2 CSP Bandwidth Cost Parameters . 44

3.3 Single Attacker Scenario . 45

3.4 Multiple Attacker Scenario . 45

3.5 Theoretical Zipf Distribution Rank and Frequency 49

3.6 Empirical Zipf Distribution Rank and Frequency 51

3.7 Zipf Detection Confusion Matrix . 52

3.8 Attribution False Positive Rates (%) 55

3.9 Attribution False Negative Rates (%) 56

4.1 Spearman and Overlap Comparison . 77

5.1 Amazon EC2 Data Transfer Pricing Metrics for US East(Virginia) as of

January 2012 . 90

5.2 Google Web Metrics . 94

5.3 Description of Experimental Datasets 106

5.4 ECpE: Random Attack Strategy - False Negative Rates (%) 117

5.5 NASA: Random Attack Strategy - False Negative Rates (%) 119

5.6 ECpE: Heavy-Hitter Attack Strategy - False Negative Rates (%) . . . 121

5.7 NASA: Heavy-Hitter Attack Strategy - False Negative Rates (%) . . . 123

5.8 ECpE: Trace-Driven Attack Strategy - False Negative Rates (%) . . . 126

ix

5.9 NASA: Trace-Driven Attack Strategy - False Negative Rates (%) . . . 127

5.10 ECpE: Consistency of Detection Metrics Across Training Window Sizes 129

5.11 NASA: Consistency of Detection Metrics Across Training Window Sizes 131

6.1 Description of Experimental Datasets (all measures cover a 28-day ob-

servation period) . 145

6.2 ECpE and NASA Request Threshold FPRs 154

6.3 Random - ECpE Attack Results (%) 156

6.4 Random - NASA Attack Results (%) 157

6.5 Prescribed-Session - ECpE Attack Results (%) 158

6.6 Prescribed-Session - NASA Attack Results (%) 159

6.7 Trace-Driven - ECpE Attack Results (%) 160

6.8 Trace-Driven - NASA Attack Results (%) 161

6.9 Monthly Costs of a FRC Attack ($) - 10,000 Client Botnet 163

6.10 Monthly Costs of a FRC Attack ($) - 100,000 Client Botnet 164

6.11 Monthly Costs of a FRC Attack ($) - 500,000 Client Botnet 165

x

LIST OF FIGURES

1.1 FRC Network Attack Diagram . 3

1.2 FRC Attack Region . 5

1.3 FRC Aggregate Attack Cost Curve . 6

2.1 Cloud Layer Technology Stack . 14

2.2 Shared Cloud Resources . 15

2.3 Cloud Connectivity . 16

2.4 Cloud Layer Technology Stack - Threat Interfaces 17

2.5 Shared Cloud Resources - Threat Interfaces 18

2.6 Cloud Connectivity - Threat Interfaces 19

3.1 Cloud Attack Network Model . 35

3.2 Malicious Resource Utilization Continuum 41

3.3 FRC Attack Cost Curve . 43

3.4 Synthetic Zipf Distribution . 50

3.5 Actual Zipf Distribution . 52

4.1 Cloud Network Diagram. 62

4.2 Zipf-like Distribution for Request Frequency. 66

4.3 Zipf-like Distribution for Data Usage. 66

4.4 Web Usage Modeling Components. 67

4.5 Actual First-Page Zipf Distribution. 72

4.6 Generated First-Page Zipf Distribution. 72

4.7 Actual Zipf-like Distribution . 75

xi

4.8 Simulated Zipf-like Distribution . 75

4.9 Experiment Simulation Design. 78

4.10 ECpE - Data Percent Error. 80

4.11 ECpE: Spearman’s Proximity. 80

4.12 NASA: Spearman’s Proximity. 80

4.13 ECpE: Overlap Percentage. 81

4.14 NASA: Overlap Percentage. 81

4.15 ECpE: Zipf Value. 81

4.16 NASA: Zipf Value. 81

4.17 ECpE: Spearman’s Proximity. 82

4.18 NASA: Spearman’s Proximity. 82

4.19 ECpE: Overlap Percentage. 83

4.20 NASA: Overlap Percentage. 83

4.21 ECpE: Zipf Value. 83

4.22 NASA: Zipf Value. 83

5.1 Cloud Network Attack Diagram . 87

5.2 Accumulated Data Usage Costs . 91

5.3 EC2 Capacity Profiling: All Requests 96

5.4 EC2 Capacity Profiling: Primary Requests 96

5.5 Flash Crowd and Application-layer DDoS Comparison 98

5.6 FRC Attack Illustration . 100

5.7 Detection Dataset Description . 105

5.8 Zipf-like Distribution for ECpE Dataset 108

5.9 Zipf-like Distribution for NASA Dataset 108

5.10 Calculation of Zipf-like Regression Slope 109

5.11 ECpE False Positive Confidence Intervals 115

5.12 NASA False Positive Confidence Intervals 116

5.13 ECpE: Random Attack Scenario - Pct=0.1, Att=0.3 118

xii

5.14 ECpE: Random Attack Scenario - Pct=0.2, Att=0.1 119

5.15 NASA: Random Attack Scenario - Pct=0.1, Att=1.0 120

5.16 ECpE: Heavy-Hitter Attack Scenario - Pct=0.2, Att=0.6 122

5.17 ECpE: Heavy-Hitter Attack Scenario - Pct=0.3, Att=0.6 122

5.18 NASA: Heavy-Hitter Attack Scenario - Pct=0.1, Att=0.1 124

5.19 NASA: Heavy-Hitter Attack Scenario - Pct=0.1, Att=0.1 124

5.20 ECPE: Trace-Driven Attack Scenario - Pct=1.0, Att=10.0 126

5.21 Spearman’s Proximity: Self-similarity of NASA Dataset 128

5.22 Overlap Value: Self-similarity of NASA Dataset 128

5.23 Zipf Value: Self-similarity of NASA Dataset 128

5.24 ECpE: FPR Results for Four-Day Windows Size 130

5.25 NASA: FPR Results for Four-Day Windows Size 132

6.1 FRC Attack Illustration . 139

6.2 Web Log Components . 143

6.3 Request Volume CDF (min. threshold of 5 requests) 146

6.4 Sessions per Client CDF (min. threshold of 2 sessions) 147

6.5 Average Session Length CDF . 148

6.6 Application of Chi-Square Test to a Zipf Distribution 149

6.7 Chi-Square Statistic CDF . 150

xiii

ACKNOWLEDGEMENTS

Having nearly completed my PhD program, I now know why people are so grateful in the

acknowledgements section of their dissertations - the work of a dissertation is completed with

the love, support, help and guidance of numerous people. If it is true that it takes a “village”

to raise a child, then it is my opinion that it takes n·villages for an individual to complete a

PhD program where, for me, n is the cardinality of a set A which includes, but is not limited

to: A = {family, friends, ISU, SCSU,HHS, IBM}. I would like to take this opportunity to

express my sincere thanks and gratitude to those who have helped me along the way through a

very fulfilling, turbulent, enjoyable, and taxing journey known as grad school. Although a bit

long winded, there are very few times in life where one can publicly acknowledge those around

them and I am going to make the best of this opportunity.

Dr. Jacobson, thank you for taking a chance on me as a graduate student. Your unwavering

support and the confidence you bestowed upon me relieved more anxiety than you will ever

know. Thank you for enabling me to explore the research topics that were of interest to me, for

allowing me to teach CprE/InfAs 131, and the opportunity to co-author a textbook to name

a few. Your hard work and your success enabled me to grow as a researcher, a writer and a

teacher more than I ever could have dreamed.

Mom and Dad, thank you for working so hard your entire lives to provide me with the

foundation and opportunities necessary to get to this point in my life. Your constant love,

encouragement and guidance has been vital throughout all my years in school. Thank you for

all your sacrifices, selflessness, and for always investing in my future.

Arlowyn, my fiance, you have and will always be my motivation. Thank you for sacrificing

and enduring through the two years we spent apart. I will always treasure our time in Ames

together and cannot wait to continue the next chapter in the adventures of Arlowyn & Joe.

Katie, without your unjustified confidence in me, which will always be my opinion, I never

xiv

would have completed grad school. When times were the hardest and the outlook looked bleak,

you were always there on the phone to keep me positive and to encourage me to continue this

journey. Thank you for all of your support, encouragement, help, and care packages; I will

forever be in your debt.

Mark, m-money, I never could have done this without you. We did a lot of laughing, even

more studying, writing and editing, and a fair share of spirited debate. I feel very thankful to

have gone through grad school with you and will always be thankful for your contributions.

Justin, Jesse, and Josh, thank you for all the weekend trips to Ames. Those visits were a

lot of fun and were greatly appreciated by a very lonely grad student.

Andy, Josh and Jusitn, your friendship and camaraderie pushed me to achieve goals I never

thought possible. Without meeting you gentlemen as an undergrad, I never would have made

it through D-ham’s or AAA’s classes or senior design and, needless to say, I would never have

had to confidence to apply to grad school.

Ginny, I am so thankful for your kindness, friendship, and willingness to help me navigate

through the myriad of obstacles necessary to graduate.

John Carr, you are a good friend. As grad students we went through a lot of highs and

lows. Some of my fondest memories of grad school are the four weekends that you, Arlowyn,

and I spent grilling on your balcony, all the basketball and football games, and ring shopping.

Dr. Tom Daniels, Dr. Mani Mina, Dr. Yong Guan, and Dr. Leigh Tesfastion, my committee

members, thank you for your guidance, time, and contributions to this work.

To many more, Chuck, Andrea, Renee, Dr. Petzold, Alex, Betty, Wayne, Vicky, Mr.

Pothast, Sasha, Jane, Bethany, John P., Nathaniel, Sam Ellis, Paul, Tony, Eric, Tracy, thank

you.

xv

ABSTRACT

A key characteristic that has led to the early adoption of public cloud computing is the utility

pricing model that governs the cost of compute resources consumed. Similar to public utilities

like gas and electricity, cloud consumers only pay for the resources they consume and only for

the time they are utilized. As a result and pursuant to a Cloud Service Provider’s (CSP) Terms

of Agreement, cloud consumers are responsible for all computational costs incurred within and

in support of their rented computing environments whether these resources were consumed in

good faith or not. While initial threat modeling and security research on the public cloud

model has primarily focused on the confidentiality and integrity of data transferred, processed,

and stored in the cloud, little attention has been paid to the external threat sources that have

the capability to affect the financial viability of cloud-hosted services.

Bounded by a utility pricing model, Internet-facing web resources hosted in the cloud are

vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-layer

DDoS attack that consumes resources with the goal of disrupting short-term availability, a

FRC attack is a considerably more subtle attack that instead targets the utility model over

an extended time period. By fraudulently consuming web resources in sufficient volume (i.e.

data transferred out of the cloud), an attacker is able to inflict significant fraudulent charges

to the victim. This work introduces and thoroughly describes the FRC attack and discusses

why current application-layer DDoS mitigation schemes are not applicable to a more subtle

attack. The work goes on to propose three detection metrics that together form the criteria

for detecting a FRC attack from that of normal web activity and an attribution methodology

capable of accurately identifying FRC attack clients. Experimental results based on plausible

and challenging attack scenarios show that an attacker, without knowledge of the training web

log, has a difficult time mimicking the self-similar and consistent request semantics of normal

web activity necessary to carryout a successful FRC attack.

1

CHAPTER 1. OVERVIEW

Chapter contains modified content from the following submitted journal paper:

Idziorek, J., Tannian, M. and Jacobson, D. Insecurity of Cloud Utility Models. IEEE IT

Professional, c� IEEE 2012.

1.1 Dissertation Organization

The chapters provided in this dissertation provide a logical progression of work starting

with the broad analysis of the security aspects of the cloud computing model followed by a

systematic dissection of the specific problem this dissertation seeks to address. Each of the

respective chapters were written as individual papers. Because of this, the reader will find

minor overlap in the introductory content between chapters and such overlap was not removed

to enable each chapter to stand on their own as individual works. Together the combination

of these chapters provide a comprehensive analysis of the Fraudulent Resource Consumption

(FRC) attack on public cloud computing utility models.

Chapter 1 provides a high-level overview and introduction to the research problem addressed

in this dissertation. Chapter 2 presents a broad security analysis of the public cloud computing

model using the Parkerian Hexad as a system of analysis. From this survey of literature and

cloud related security concerns, a specific attack on the cloud computing model referred to as

the FRC attack is introduced in Chapter 3 and initial detection and attribution methodologies

are considered. To better understand how an attacker would carry-out a FRC attack, Chap-

ter 4 provides a simulation model and algorithm for generating web traffic in order to mimic

2

a normal client base and thus providing a worst-case attack scenario. Chapter 5 presents a

FRC detection methodology capable of differentiating increases in aggregate traffic produced

by legitimate clients from that of a FRC attack. Following suit, Chapter 6 provides an attribu-

tion methodology that distinguishes legitimate clients from FRC attack clients. To provide a

complete analysis of the FRC attack, Chapter 7 discusses potential prevention and mitigation

solutions. Lastly, Chapter 8 summarizes this work and identifies the contributions this work

makes to the respective fields of study.

1.2 Introduction - Insecurity of Cloud Utility Models

Computing services that were traditionally hosted on organizations private servers and

networks are being outsourced to third-party Cloud Service Providers (CSPs). Initial threat

modeling on CSPs has concentrated on both the confidentiality (keeping data secret) and

integrity (making sure the data has not changed) of data hosted in the public cloud. While

these threats present real concerns, missing from threat models is the consideration of external

threat sources that can affect the availability of Internet-facing cloud services. Availability in

this context is not solely restricted to system downtime as a result of a Distributed Denial of

Service (DDoS) attack, but also the long-term financial viability of being able to host services

in the cloud.

A key feature that has led to the early adoption of public cloud computing is the utility

pricing model that governs the cost of computing resources consumed [77]. Similar to public

utilities like gas and electricity, cloud consumers only pay for the resources they consume (i.e.,

storage, bandwidth, and computer hours) and only for the time they are utilized. As a result

and as obligated by a CSP’s Terms of Agreement, cloud consumers are responsible for all

computational costs incurred in their leased compute environments whether these resources

were consumed in good faith or not.

Common use cases for corporations that have adopted public cloud computing include web-

site and web-application hosting and e-commerce. Like any Internet-facing presence, these

cloud-based services are equally vulnerable to Distributed Denial of Service (DDoS) attacks.

Moreover, given the addition of pay-as-you-go-pricing, cloud-hosted web services are also vul-

3

nerable to attacks that seek to exploit the utility pricing model. While DDoS attacks are well

known and the associated risks are well researched, this article will explore a comparatively

more subtle attack on web-based services hosted in the cloud. The threat-source considered is

an attacker (e.g. botnet) that seeks to perform a Fraudulent Resource Consumption (FRC) at-

tack by consuming the metered bandwidth of web-based services that in-turn incurs a financial

burden on the cloud consumer.

Internet

CSP Access Point

CSP NetworkPublic Internet

Cloud Consumer

Legitimate
Clients

Attack
Clients

Control

Botmaster

Cloud-‐based web
applicaiton

$ $
$

$

$
$

$ $$ $

$

$

$
$

$ $ $

$

$ $

(bots)

Figure 1.1: FRC Network Attack Diagram

The attack scenario depicted in Figure 1.1 illustrates the exploitation of the cloud utility

model vulnerability. Here a botnet consisting of potentially thousands of bot clients is con-

suming web resources hosted in the cloud by mimicking legitimate client behavior. To the

cloud-based web application, the intention of incoming requests is unknown, not considered

and thus each request is serviced with a reply that incurs a fractional cost that is assessed to

the cloud consumer. Due to the fact that this vulnerability up until now has not been dis-

cussed, determining the overall impact of the threat to the cloud community is difficult at this

time. Instead, the focus of this work is to describe and bring awareness to the utility model

vulnerability, analyze the risk of a FRC attack for a specific cloud consumer and propose FRC

prevention, detection, attribution, and mitigation solutions. The overall goal of this work is to

get ahead of this vulnerability before it is inevitably exploited.

4

1.3 Cloud Utility Pricing Model

The utility model is attractive to a cloud consumer because of the low cost of entry and

avoidance of major capital expenses. While convenient, the utility model is not without its risks

as the financial liability for resources consumed is unlimited. CSPs such as Amazon EC2 [2] and

Rackspace [94] charge $0.12/GB (up to 40 TB) and $0.18/GB respectively for outbound data

transfers. As illustrated in Figure 1.1 and based on these pricing metrics, each reply serviced

by a cloud application (i.e. the attack target) is assessed a cost to the cloud consumer (i.e. the

victim). Requests in sufficient volume can be costly. Malicious use is even more burdensome

since the additional run-up in expenses has no associated business value. As it stands today,

CSPs do not monitor cloud consumers applications and thus it is up to the cloud consumer to

prevent, monitor and respond to such fraudulent behavior [60].

1.4 FRC Attack Description

As evidenced by recent trends in DDoS attacks, attackers are employing the services of

botnets with populations of upwards of tens of thousands of compromised hosts and are using

these botnets as an attack tool to wreak havoc on the Internet [58, 87]. In order to increase

effectiveness and circumvent current detection mechanisms, attackers are moving away from

obvious network-layer attacks such as SYN floods and targeting application-layer resources

by means of HTTP flooding attacks. This discussion and the description of the FRC attack

anticipates a natural evolution of these attacks on metered resources hosted in the public cloud.

In order to describe the FRC attack more precisely, one could consider a time-series visu-

alization of a web server log as seen in Figure 1.2. Reading from bottom to top, the y-axis

depicts requests per second and the time-series covers a two-week time period (x-axis). As is

common, the modeled web server capacity is sufficiently over-provisioned and this represents a

conservative estimate given the capacity of CSP web servers. Superimposed on top of normal

web activity are serviced requests from a FRC attack.

As shown in the callout in Figure 1.2, initial attack intensity above normal activity is a

region labeled Nuisance Activity because the resultant costs are insignificant for the cloud

5

R
eq

u
es
ts
 p
er
 S
ec
o
n
d

FRC Attack Region

DDoS Attack Region

1 2 3 4 5 6 7 8 9 10 11 12 13 140

10

30

50

70

90

110

130

150

Normal Activity

J1

J2

Nuisance Activity

FRC Attack

J1

Days

P
ro
b
ab
ili
ty
 o
f
D
et
ec
ti
o
n

Figure 1.2: FRC Attack Region

consumer. However, as malicious activity intensifies beyond the Nuisance Activity region, the

malicious costs to the cloud consumer start to become a matter of concern; this transition

point is labeled J1. Malicious activity that exceeds J1 enters into the FRC Attack Region.

Within this region bounded by J1 and J2, a FRC attack does not significantly degrade the

Quality of Service (QoS) of the web server. With a utility model assigning costs for all data

transferred out of the CSP environment, this region is of interest to an attacker who wishes

to inflict economic pain. If the attack intensity increases above J2, the request volume will

reach a point when the web server QoS starts to significantly degrade. It is at this point

that current application-layer DDoS detection and mitigation schemes are effective [58]. An

objective of FRC attack mitigation research is to improve detection sensitivity that will push

J2 closer to J1, thus narrowing the FRC Attack Region by detecting attacks that are legitimate

transactions, but differ in the requestors intent.

Figure 1.3 depicts a FRC attack as a slow-and-low assault or death by a thousand requests.

Unlike short-lived DDoS attacks, the duration of a FRC attack could last weeks or months if

not detected. Because resources maliciously consumed are additive to that of normal traffic,

the aggregate of legitimate and malicious resource use is reflected in a cloud consumers monthly

bill.

Availability in the context of this discussion is not a binary measure in which the system

is nearly incapacitated at the time of the attack. The technical infrastructure of a website

hosted in a CSP environment will have no trouble functioning while a FRC attack is underway.

Instead, availability is a long-term consideration defined as the cloud consumer’s ability to

6

A
ct
ua
l C
os
t

Billing Period
J F M A M J J A S O

Malicious
Resource
Use

Aggregate
FRC Attack
Cost Curve

Legitimate
Resource
Use

Figure 1.3: FRC Aggregate Attack Cost Curve

withstand the financial consequences of a FRC attack over a prolonged period of time.

Although cloud computing makes for a compelling use case of the utility model, the concept

of utility computing is not unique to the cloud model and has been exploited in the past. How-

ever, as it stands today, the utility model contains an unaddressed vulnerability for the cloud

model and requires the attention of cloud consumers, security practitioners and researchers.

1.5 FRC Risk

Adopting the public cloud model brings with it new and old security risks. A key objective

of this article is to bring attention to the risk the utility pricing model introduces by discussing

the likelihood and impact of a FRC attack.

The likelihood of a cloud consumer falling victim to a FRC attack is largely dependent

upon the skill level, capacity and motivation of the attacker as well as the exploitability of

the utility pricing model. This pricing vulnerability is literally hiding in plain sight as CSPs

openly publish their pricing metrics. From a technical standpoint, all that is necessary for an

attacker to exploit this vulnerability is to make standard requests for web content that the

cloud consumer makes publically available. Although the worst-case threat-source is that of

7

a large botnet, conceivably any Internet-connected device could perform a FRC attack with a

PERL script making HTTP GET requests or through the use of the infamous Low Orbit Ion

Cannon - an open-source tool that has fueled recent DDoS attacks [88].

As evidenced by the growing number, capacity, and sophistication of both botnets and

DDoS attacks respectively, the worst-case threat-sources undoubtedly possess the skill level

and resources to mount a sustained and impactful FRC attack. Thus, the only real factor

preventing a FRC attack is the motivation of the attacker. Like those that orchestrate DDoS

attacks, the motive of a FRC attacker could range from ego and hacktivisim to monetary

gain, extortion, revenge, creating a competitive advantage, and/or economic espionage [113].

If recent history is any guide, those that control botnets would likely perform a FRC attack to

promote a political agenda or in support of an ideological viewpoint.

For the victim, the direct monetary impact of a FRC attack is a function of the average

request intensity and the duration of the attack. To enumerate one end of the extreme, a week-

long DDoS attack launched from a 250,000 node botnet in 2011 peaked at 45Gbps [26]. If such

an attack were sustained on a cloud instance at $0.12/GB the resultant costs would have been

$0.68/s, $40/min, $2430/h, $58,320/day and $408,240/week. On the other end of the FRC

Attack Region, considered the website modeled in Figure 1.2. At an average normal request

rate of three requests per second, for a 250,000-node botnet to double the data usage costs

of this website would equate to each bot client being responsible for generating two requests

per day. Clearly, given the capacity of modern-day networks and computers, the bot clients

in this example could significantly increase their daily request quota and multiply the attack

cost by orders of magnitude. However, as will be discussed, once a bot clients usage footprint

eclipses the expected behavior of legitimate clients, the risk of being identified as malicious

greatly increases.

1.6 Defending Against a FRC Attack

Defending against a FRC attack is a significant challenge to the cloud consumer due to the

atypical and unassuming nature of the attack. As is the case with most attack risk, the cloud

consumer has four primary objectives: prevention, detection, attribution, and mitigation. Each

8

of these aspects will be considered in this dissertation in the context of the FRC attack.

1.6.1 Prevention

A common way to prevent the exploitation of a vulnerability is to download and apply a

patch for it. However, in the context of this discussion, the bug is not a software defect but a

common business model deployed by CSPs. Until this vulnerability is actually exploited, the

cloud business model is not likely to change, so in lieu of a patch for this vulnerability there

are several, albeit limited, prevention options (Chapter 7). While the use of authentication

on a target website would significantly reduce the amount of exploitable resources, for this

discussion, this website feature is not considered as it is assumed the cloud consumer desires

to host public content. Similarly, graphical puzzles (i.e. CAPTCHAS) could be used as a

preemptive solution to differentiate humans and zombie computers. However, the use of such a

test could be detrimental to the overall goals of a public-facing website as these types of tests

will result in a certain percentage of legitimate clients being unable or unwilling to solve such

puzzles. Another option would be for the cloud consumer to work with application and content

developers to minimize the resource footprint of common or average requests. Limiting the

impact of client requests increases the costs for the FRC attacker and the risk of detection.

Unfortunately, without a utility model patch these controls will not thwart a motivated attacker.

So with limited prevention capability the next line of defense is detection.

1.6.2 Detection

The objective of FRC detection is to be able to determine if malicious traffic consumption

is occurring (Chapter 5). Due to the subtle nature of a FRC attack, previous application-layer

DDoS solutions that focus on high request intensities will not be suitable for FRC detec-

tion [120]. Instead, initial FRC detection approaches focus on behavioral metrics derived from

web logs that seek to capture the aggregate web page request choices of a websites client base.

Three measures, the Spearman, Overlap, and Zipf metrics have been identified to characterize

the accuracy, completeness, and relative proportionality of ranked requests respectively be-

tween two adjacent windows of observed logs (e.g. two 3-day windows). Together these three

9

metrics provide consistent measures with which to describe normal behavior and to perform

anomaly detection. Although, for the sake of brevity, empirical results are not presented in

this discussion, the conclusion stemming from this work is that an attacker, without knowledge

of the training data set (i.e. historical web log), has a difficult time requesting an impactful

volume of web documents while adhering to the structure of normal traffic. Thus the proposed

methodology is effective for detecting even minor increases in fraudulent web activity, well

before the resultant costs are harmful.

The most practical detection approaches are classic. Review the bills over time and de-

termine if they are within an expected range. If not, one possible explanation is fraudulent

resource consumption. Log analyzers may help identify outlier application usage that can then

trigger an investigation of suspicious clients. A savvy FRC attacker will unfortunately be

missed by casual inspection.

1.6.3 Attribution

Attribution in this context is the ability to accurately differentiate legitimate clients from

that of FRC attack clients (Chapter 6). Like the previously discussed DDoS detection solutions,

current attribution solutions are geared towards detecting malicious clients that consume a

significant volume of requests in a very short time. Past works have focused on scrutinizing

the increased inter-request (i.e. time between successive web document requests) or inter-

session (i.e. time between web browsing sessions) arrival request rates of malicious clients in

comparison to that of a profile for normal users [97]. Again, it is contrary to the objectives of

a FRC attack for a single attack client to behave in a similar fashion as one participating in a

DDoS attack.

The challenge in this research area will be to minimize the number of falsely identified

legitimate clients while decreasing the impact of fraudulent clients. The methodology presented

in Chapter 6 indicates that normal client behavior can be characterized by client actions such

as: request volume per client, web documents requested, and web session parameters (e.g.,

requests per session and number of sessions). If attack clients, not privy to normal usage

activity, exceed a set threshold on these characteristics, they are flagged as malicious. A design

10

goal of this attribution methodology is to be transparent to the clients and operates under the

condition that all clients are innocent until their usage footprint proves otherwise. Limiting

the impact of individual clients reduces the overall risk of a FRC attack. It is important to

note that this methodology is not rate-based, but instead sensitive to the accumulated requests

invoked by an attacker. Therefore, based on the choices made by an attacker, a malicious client

could be deemed anomalous after invoking a minimal number of requests.

1.6.4 Mitigation

Reactive solutions rely on accurate detection and attribution (Chapter 7). One must con-

sider the potential for legitimate clients being errantly classified as malicious. As a result,

approaches like blacklisting first-time offenders may prove to be heavy-handed. Less absolute

mitigation strategies include imposing a back-off timeout to anomalous clients in which re-

quests from an IP address are not all serviced. Similarly, suspicious clients could also be served

a graphical puzzle to prove that the client is indeed a human. These reactive approaches are

available today and each has its own trade-offs, but with limited detection and attribution

solutions available, the deployment and maintenance of such solutions will be challenging.

1.7 Summary

As they are structured today, cloud utility models are vulnerable to exploitation. By

allowing any client with access to the Internet to consume resources that are in turn metered

and billed exposes the cloud consumer to a risk that is only mitigated by time, detection and

accountability. Until recently, this vulnerability has been neglected and there have been no

previously known defense strategies. Awareness and understanding are a key means of defense,

and this dissertation strives to achieve those goals. Unless utility models are restructured to

remove the vulnerability of a FRC attack, research in detection and attribution is necessary to

ensure the long-term sustainability of cloud consumers and remove one more impediment that

could dissuade organizations from adopting public cloud computing.

To the best of the author’s knowledge, there have been no known public acknowledgements

of a FRC attack occurring on the public cloud. However, the absence of such knowledge does

11

not confirm that the utility model vulnerability has not or will not be exploited. As an analog,

back in the early 90’s, Internet-facing firewalls were new and thought to be sufficient to secure a

connected enterprise. However, reality was that attacks were occurring and intrusion detection

systems soon pointed out these threats. Perhaps the utility model has been exploited and, as an

IT community, we are presently ill equipped to detect its presence or identify its culprits. The

only factor preventing a FRC attack is the motivation of the attacker. Through a systematic

analysis of the utility model vulnerability, this dissertation seeks to contribute to this research

effort.

12

CHAPTER 2. SECURITY ANALYSIS OF PUBLIC CLOUD

COMPUTING

Chapter contains modified content from the following published journal paper:

Idziorek, J. and Tannian, M. Security Analysis of Public Cloud Computing. International

Journal of Communication Networks and Distributed Systems, Vol. 9, Nos. 1/2, 2012, pp.

4-20, c� 2012 Inderscience Enterprises Ltd. (Invited Paper)

2.1 Abstract

Cloud computing is in its infancy and continues to evolve. As this evolution proceeds,

there are a number of privacy and security concerns emerging from the cloud computing model

that need to be addressed before broad acceptance occurs. This chapter is an initial literature

survey of cloud computing security, which promises to be a challenging research area. Although

cloud computing security research inherits previous research from its elemental technologies,

this chapter will limit its focus on surveying cloud computing targeted research. By performing

a systematic analysis of the security aspects of the cloud model, this work seeks to succinctly

clarify why security continues to be a significant impediment for cloud adoption.

2.2 Introduction

Cloud computing is in its infancy and continues to evolve. Early adopters of cloud com-

puting have recognized the cost savings, convenience, and agility this emerging compute model

affords. However, as this evolution proceeds, there are a number of security and privacy con-

13

cerns emerging from the cloud computing model that need to be addressed before extensive

adoption occurs [42]. While much of the initial hype has created an ambiguous characterization

of what exactly does and does not constitute cloud computing, this paper will concentrate on

the cloud model as described by NIST [77]. The technologies comprising much of this descrip-

tion of cloud computing have been around for some time now (e.g., virtualization, broadband,

high- density storage, multi-core processors), however it has not been until recent years that

these technologies have all matured to the point where this novel synthesis of these founda-

tional components could be realized. As the cloud computing model matures, so will the body

of research that addresses the security concerns. The objective of this chapter is to present a

checkpoint of the current state of cloud computing security research by providing a system-

atic analysis and survey of relevant literature. Although much research has been conducted

on the individual components that together support the orchestration of the cloud model, the

emphasis of this work will be to concentrate on cloud-specific security research. The aim is

to succinctly clarify why security continues to be a highly significant impedance to full-scale

adoption.

The paper is organized as follows: Section 2.3 provides the background for cloud computing

model. Section 2.4 provides a corresponding threat model. A description of the system of

analysis and the subsequent analysis are presented in Sections 2.5 and 2.6 respectively. Finally,

the chapter concludes with a discussion in Section 2.7.

2.3 Background

One useful way to understand cloud computing and related security issues is to consider

the major components starting with the nature of the cloud host followed by physical resources

tenants have in common and finally the connectivity. This work focuses explicitly on public

cloud computing where open access is marketed. Three actors will be referenced throughout

the chapter. The cloud service provider (CSP) is a company who provides pay-as-you-go

services using an infrastructure that is consistent with NISTs definition of cloud computing [77].

The tenant is the CSPs customer who has an application being serviced by the CSP and is

responsible for paying for cloud services. The user is the client of the tenant who derives value

14

from using the cloud-hosted applications.

Figure 2.1: Cloud Layer Technology Stack

The cloud host can be viewed as a layered technology stack residing on the physical server

hardware. Each of the layers, as shown in Figure 2.1, provides abstraction of resources and

functionality to the layers above itself. The completeness and depth of control a tenant has

within the stack have been associated with service offerings called software-as-a-service (SaaS),

platform-as-a-service (PaaS) and infrastructure-as-a-service (IaaS).

In order for cloud computing to be a feasible information technology (IT) offering, CSPs

have orchestrated a collection of technologies and investments in a manner that exhibit the

properties of economies of scale. In order to achieve these economies, resources are shared

among tenants (Figure 2.2). The communications infrastructure between users and tenant

applications is common. Multi-tenancy is optimized in order to increase returns on capital

investments. The result is that tenants share physical platforms consisting of CPUs, memory,

networking and storage. Isolation between tenants is provided through built-in logical controls.

Virtualization is one such logical control able to encapsulate tenant operating environments.

Large centralized storage arrays are managed with common storage constructs like relational

databases for the purposes of holding tenant data.

Connectivity as shown in Figure 2.3 is the last major perspective to consider. The global

15

Figure 2.2: Shared Cloud Resources

Internet puts a world-wide market in technical reach of the CSP and users access tenant appli-

cations through the Internet. The tenants operational staff manages operations on the Internet.

CSP staff can remote in as well. Resilient low-cost service requires high connectivity within

the CSP data center in order to facilitate host migration and data replication. Resiliency

features and cost reduction are also supported across data centers through high bandwidth

intra-connectivity.

2.4 Threat Model

Assessing security and risk for an environment requires a working model of the threats

the system under evaluation could potentially experience. Threat modeling of public cloud

16

Figure 2.3: Cloud Connectivity

computing in general will encompass a superset of threats to which a specific cloud-hosted

application implementation may not be exposed. Please refer to Figures 2.4, 2.5, and 2.6

throughout this discussion. The labelled points represent interfaces through which a threat

may exploit access. These labelled points will be referred to as <X.Y-Z> where X.Y is the

figure label and Z is a unique designation typically assigned in top-down order within the figure.

When considering threat-sources there are four classes of actors one can consider. The

classes are oriented to the origination of their attack. The first class is the Internet originating

threat sources <2.5-1>, which includes a long list of usual suspects (e.g., script- kiddy, hactivist,

botnet, corporate or government sponsored intelligence operative). The second class and third

class of threat sources have the potential to exploit the advantage of proximity and trust.

Second is of the semi-privileged actors who operate on behalf of neighboring tenants of the

victim (e.g., contractors, employees) <2.5-2, 2.5-3, 2.5-4>. The third and most dangerous class

is the fully-privileged actor who operates on behalf of the CSP or the victim (i.e. trusted

17

insiders) <6.2, 6.3, 6.4>. The last is non-malicious with a wide range of origination points

such as operational failure due to natural disturbances, human error or technology faults.

Figure 2.4: Cloud Layer Technology Stack - Threat Interfaces

When considering the conceptual architecture of public cloud computing it appears to

present threat-sources with newfound leverage. By moving applications from within private

enclaves to the Internet-accessible public cloud, the Internet class of threat-sources has new

opportunities to possibly threaten the interface points <2.4-1, 2.4-2, 2.4-3>. The strategic

objective of the attackers may vary, but the tactical objectives of exploiting exposed software

and configuration vulnerabilities <2.4-1, 2.4-2, 2.4-3> and exhausting or misusing accessible

resources can be anticipated. A CSP supplied firewall service may be able to reduce exposure

to the ports not relevant to the application, but application exposure is necessary otherwise it

is inaccessible to the tenants users.

Although operational failures are not unique to cloud computing, the overall complexity

of the architecture that spans from users to the internal cloud implementation has increased.

Complexity is the antithesis of operational availability. Greater sensitivity or fragility can be

18

Figure 2.5: Shared Cloud Resources - Threat Interfaces

expected in operations of the public cloud model. Natural events, power outages, DNS root

server saturation or cache poisoning, user Internet Service Provider (ISP) connectivity issues,

and internal capacity planning mistakes or countless possible configuration errors or system

failures within the CSP environment <2.4-1 - 2.4-5, 2.5-1 - 2.5-4, 2.6-4, 2.6-5> threaten user

access to cloud-hosted services.

An international CSP raises the specter of geo-politics threatening information flow be-

tween facilities. The US Government has proposed an Internet kill switch to isolate US-based

information systems from foreign threats [47]. Personal privacy protections instituted in var-

ious countries and other regulations limit the physical location of sensitive data storage [41].

The regulatory restrictions and opaque nature of CSP operations threaten organizations with

non-compliance if the data storage fault tolerance and archive algorithms within the CSP allow

compliance sensitive data to leave the authorized geo-location <2.6-5>.

19

Figure 2.6: Cloud Connectivity - Threat Interfaces

As the literature survey proceeds in Section 2.5, this threat model will help provide context

for cloud computing security research conducted to date.

2.5 System of Analysis

Published analysis of cloud computing security is relatively recent. Analysts seem to have

waited for definition, implementation and interest to reach a minimum level of maturity. In the

past couple of years, at least ten papers have investigated, contemplated and researched broad

areas of cloud computing security [22, 48, 49, 54, 55, 57, 61, 62, 63, 66, 90, 96, 99, 101, 106].

The pool of cloud computing specific research is relatively shallow. However, several of these

papers endeavored to provide a literature survey [22, 48, 54] using organizing principles like

attack surfaces [48] or a compact scheme of: traditional security, availability and third-party

data control [22].

This paper reviews the body of cloud computing security literature for completeness of

20

coverage. A system of orthogonal security principles is used to create a comprehensive review

structure to classify existing security research and illuminate gaps in areas of focus. The security

field has embraced the tenants of confidentiality, integrity and availability as the qualities secure

information systems should attempt to assure. However, such a model is an incomplete set of

qualities to consider when securing information and information systems in or adjacent to the

public cloud. Donn Parker [89] suggested in 1998 three additional orthogonal elements. These

additional elements should prove to be useful for this survey.

The elements we consider are confidentiality, integrity, availability, utility, authenticity and

possession. Please refer to Table 2.1 for the definitions of these terms. Since the terms utility,

authenticity and possession are not commonly considered, a brief elaboration of these terms

will be provided.

Utility on its face appears to be closely related to Availability, but Parker’s use of this term

avoids any conceptual overlap. Consider the example of digital data on existing paper tape,

punch cards, or on 8”, 5 1/4” floppy discs. If these media have been preserved, the information

stored is available for retrieval. If one ordered a modern computer today, one would find it

difficult to request any of these media reading devices and any legacy drivers present in the

operating system will have questionable reliability. In this case, there is a lack of device and

driver availability, but fundamentally the stored information remains available. Information

availability is necessary but not sufficient for it to be useful.

Authenticity and Integrity may also appear to overlap conceptually, but consider that with-

out credible attribution to information origin the information may not suffer from an unau-

thorized change but from fundamental semantic credibility. Authenticity and data provenance

have a lot in common. However, provenance incorporates the notion of the importance of

knowing and being able to document the origin and life history of a data object in terms of

where it has been. Authenticity is satisfied if there is confidence in the informations authorship

or origin as well as if the information conforms to reality or fact. For example, an Internet-

hosted software download with an associated unsigned cryptographic hash value has verifiable

integrity, however the author or publisher cannot be verified. A verifiable signed cryptographic

hash would support authenticity, but would be insufficient to achieve data provenance.

21

Table 2.1: Parker’s Six Security Elements.

Security Element Description

Confidentiality the attribute of information whereby it has not been
exposed intentionally or accidentally to unauthorized
entities

Integrity the attribute of information whereby it has not been
subject to unauthorized state change whether inten-
tional or accidental

Availability the attribute of information and supporting systems
whereby they are reliably accessible with minimal de-
lay

Utility the attribute of information usefulness for a purpose

Authenticity the attribute of information in which the information
is genuine, the assertion of authorship or origin is true,
and is overall worthy of trust because it conforms to
reality or fact

Possession the state of information of which an entity has power,
physical control or holding of a specific instance of this
information, and an opportunity to use the informa-
tion

Possession is the most fundamental control of an object. The possessor has the opportunity

to destroy, alter or utilize the object. Encrypted data held by someone who lacks the decryption

key or algorithm remains confidential, but by possessing the encrypted data an opportunity

arises to attempt to decrypt the data (e.g., during World War II the allied capture of German

submarine communications and Enigma machines). Having a UNIX system password file ini-

tially is not a loss of confidentiality. However, by possessing the password file, the only control

protecting the passwords is the salted hash. With brute-forcing software, hardware, time and

patience, the confidentiality of hashed passwords can be undone. Possession provides the holder

the means to violate the other security properties of the information as well. A tenant utilizing

a cloud-hosted application has shown a willingness to share or relinquish possession of data

22

and related information processing.

2.6 Analysis

2.6.1 Confidentiality

Perhaps, the single most significant impediment to the adoption of the cloud computing

model results from the lack of confidence in the confidentiality of data processing and storage

in a CSPs environment [100]. These concerns are well-founded as CSPs have experienced

privacy gaffes in the past that have inadvertently exposed tenants data [107]. When data is

moved outside of a trusted domain, data confidentiality issues arise for all of the datas states:

data-in-transit, data-at-rest and data-under-processing.

While research on the topic of data storage on untrusted platforms is not unique to the

cloud model [76], the proposed use cases for the cloud model (i.e. digital health records)

warrant further examination of privacy and confidentiality controls. Initial solutions have been

proposed to provide third-party management of encryption keys [127] as well as decoupling

access control from the CSP [33].

Even if data is encrypted in transit and it is encrypted at rest, all data processed in the

cloud has surely has been decrypted. Recent work in fully homomorphic encryption may pro-

vide tenants a means to implement computational processes without exposing the data being

processed to the CSP [79]. Fully homomorphic encrypted data can undergo useful transforma-

tions without ever requiring decryption by the developed application or the CSP [43].

Interposing technologies used in virtualized environments provide granular views into the

activities being performed on the host [31]. Confidential data and any supporting cryptographic

key materials are potentially being monitored and logged in the clear as the tenant is utilizing

them within processes. Unless an organizations security policy is rewritten to extend authorized

entities to include the CSP or make use of specialized hardware and protocols [53], there is

no way currently to prevent an unauthorized CSP operator from reconstituting confidential

information. Entire sequences of computations can be replayed potentially exposing sensitive

activities along with data. A successful implementation of a fully homomorphic system, which

23

although promising does not seem likely in the near future [79], would have a significant effect

on the confidentiality of data stored and processed in a CSP environment.

Although the encapsulation of VMs in a cloud environment is considered to provide logical

separation between tenants, recent research has shown that the use of virtualization does not

preclude an adversary from engaging in side-channel attacks that threaten confidentiality of

a number of facets within a tenants environment [98]. Known as a cross-VM side-channel

attack, an attacker on the same physical machine as the victim has the potential to monitor

time-shared caches for the purpose of measuring the load of the machine. Based on such

knowledge, it has been shown on Amazon’s Elastic Compute Cloud (EC2) that an attacker

is able to determine whether or not they are co-located on the same machine as the victim

(i.e. cloud cartography) as well as estimate the victims network traffic patterns. In the stated

examples, although the leakage of such information does not reveal the direct knowledge of data

stored or computed in such an environment, it does potentially provide a competitor with the

necessary information to inflict potentially damaging DoS attacks or perform inference analysis

on activities. Furthermore, sharing resources among fellow tenants opens the door to theft of

cryptographic keys via similar cache-based side-channel attacks, covert channels, and keystroke

monitoring attacks [98].

Lastly, authentication portals that are exposed to the public Internet raises the threat of

unauthorized access by a malicious actor. While brute-force and dictionary attacks and their

corresponding mitigation solutions are well-known, research on cloud authentication mecha-

nisms has shown that EC2 was vulnerable to XML signature-wrapping and advanced XSS

attacks [112]. If exploited, the attacker would be able to access to a cloud consumer’s control

panel and thus be able upload and download virtual machine image files and reset adminis-

trator passwords to cloud instances. Even though this specific vulnerability has been patched,

if history is any indicator, similar types of bugs are ever-present in a CSPs design and lay

dormant waiting to be discovered.

24

2.6.2 Integrity

CSPs provide tenants with simplified computing environments, however the supporting in-

frastructure and controls are anything but simple. CSPs have not been impervious to Byzantine

faults where tenant data has been errantly altered [1]. In addition to the CSP infrastructure,

malicious insiders, external bad actors, and malware have the ability to affect the integrity of

the cloud model. To mitigate such threats some have suggested that the compute environment

in the cloud is the ideal use case for the trusted computing platform [102, 108, 109], while

others have explored attestation mechanisms [104] enabling for both integrity verification of a

cloud tenants VM and the platform on which it executes. Similarly, others have proposed using

a formal language to automate the process integrity verification of both static and dynamic

virtualized cloud environments [9]. Although integrity concerns exist for all aspects of a CSPs

platform much of the early attention has concentrated on the integrity of the data stored in

the cloud and the integrity of the virtual compute environments (i.e. IaaS) [50].

Initial analysis of integrity vulnerabilities in cloud storage systems find that CSPs are

able to provide integrity safeguards for data as it is transferred in and out of the cloud but

lack the ability to provide such integrity verification between transferring phases as data is

stored on a physical medium [35]. The absence of such controls in current day cloud storage

offerings brings forth issues of not only integrity but also repudiation between tenants and

CSPs. Related mitigation efforts propose third-party controls that enable the verification of

integrity for dynamic data stored in the cloud [119] as well as security services that provide

intermediate integrity protections between applications and cloud storage providers [110].

In order to achieve efficiencies and to minimize cost, many CSPs rely heavily upon virtual-

ization technologies. CSPs utilize virtualization as an abstraction of computing resources that

enables several virtual machines (VMs) leased by multiple and distinct tenants to reside on one

physical server. The key to abstracting hardware resources is the use of the virtual machine

monitor (VMM) also referred to as a hypervisor (Figure 2.1). The VMM acts as a broker

between each VM and the underlying hardware platform comprising of CPU cycles, storage,

memory, and other computing resources. Reliance on virtualization by CSPs enables unique

25

security advantages but also creates inevitable trade-offs introducing new security vulnerabili-

ties [50, 93].

In a non-virtualized computing environment, host-based security mechanisms are accessible

by the user leaving these mechanisms vulnerable to attack, disablement, and misconfiguration.

Transferring security services from within the guest operating system and placing them in the

VMM mitigates these threats while offering advanced capabilities to monitor the integrity of a

virtualized compute environment. The process of monitoring VM behavior is known as virtual

machine introspection (VMI) and security research in this field has increased significantly along

with the resurgence of virtualization [38]. A few of the security controls that can be migrated

are passive intrusion detection monitoring of VMs, malware detection and secure logging. Those

security services that take advantage of their introspective position are able to perform security

anomaly detection by either modifying processes or providing a decision framework for secure

code execution [80]. Whether CSPs offer such services by default or as add-on security-as-a-

service features, the ability to monitor the integrity of the guest operating system at a layer

outside control of the tenant and across an entire virtualized enterprise provides the potential

for security functionality that individual tenants are not capable of providing for themselves.

With the pervasive use of VMMs in cloud environments, the integrity of the VMM has

become a key security focus. Just like traditional operating systems, VMMs are also software

implementations and thus leave the door open for similarly exploitable vulnerabilities. Threats

include but are not limited to interposition attacks [64] to either observe or alter VM data

flows or destroying the entire computer environment [44]. The tactical advantages of hosting

security mechanisms in the VMM may be lost if an attacker manages to obtain control of the

lowest layer in the cloud technology stack (Figure 2.1). Whoever controls the VMM has a clear

advantage to either ensure or disrupt the integrity of the cloud environment [38].

2.6.3 Availability

One of the cloud computing models most significant contribution is its potential to make

vast sophisticated resources available to tenants. However, a few high-profile incidents have

caused much disdain for the cloud model. The severity of such outages is exacerbated by the

26

fact that availability is lost for all parties involved. Not only are users unable to gain access

to cloud-based resources via the Internet, but also tenants are unable to gain local access to

their resources, because they are also dependent on Internet connectivity. While initial focus

has centered on specific outages from known threat sources, research efforts have started to

explore vulnerabilities that are either created or enhanced by the cloud model.

High-profile CSPs like Amazon, Google, and Microsoft have experienced undesirable down-

time in the past [84] due to power outages [16], weather [30], and technical problems [15].

However, the vulnerabilities that have accounted for these past losses of availability are not

unique to the cloud model and are equivalent for virtually all IT data centers. As inferred from

many CSPs service level agreements (SLAs), outages are to be expected. Amazons EC2 [2]

and Microsoft’s Azure [121] provide availability guarantees of 99.95% uptime. While a single

two-hour outage might grab news headlines, over the course of a month this loss of availability

is well within the stated CSPs SLAs. If a mission-critical service is unable to tolerate periodic

and inevitable periods of unavailability, it is likely that these services are not suitable for the

cloud.

Despite fault-tolerance resource planning and novel features such as horizontal scaling,

CSPs have not been resilient to DDoS attacks. In one specific instance, a tenants cloud-

based web server was denied service for more than 19 hours [78]. While DDoS attacks are

not unique to the cloud model and have been experienced by Internet-facing services for quite

some time, the increased reliance on Internet-facing services raises the risk for such attacks.

Further complicating the issue is that tenants must not only accept the risk of such attacks on

their resources but must also account for the collateral damage resulting from attacks targeting

collocated tenants.

In addition to traditional threat sources, the architecture and shared resources that are

inherent to the cloud model increase the threat-surface for those seeking to deprive availability.

As a cornerstone of the cloud computing business model, multi-tenant provisioning results in

multiple tenants information processing needs being serviced by common resources. Relating

to availability, resource consumption by each tenant draws from a common pool of CPU, RAM,

network infrastructure, and disk storage to name a few. In such an environment, the attack

27

has more control over the compute environment (i.e. IaaS service platform giving the attacker

the most control and the SaaS service platform giving the attacker the least control), thus

enabling the attacker to disrupt availability of service for fellow tenants. Recent research has

focused on an attackers ability to map the cloud network topology [73] and also the attackers

ability to place a VM on the same physical host as their victim [98]. In the former example,

by mapping out the network topology, an attacker can perform flooding attacks on limited

network bandwidth between subnets and thus denying service to tenants on the same subnet.

In the latter example, by placing a VM adjacent to that of the victim, the attacker is able to

observe the victims network activity. This provides the attacker with the insight of when peak

loads occur and when to inflict a DDoS that will cause maximum damage.

Transferring information processing or data into the cloud that was traditionally hosted on

private networks increases operational availability exposure and introduces new vulnerabilities

attackers can exploit. In spite of this downside, the cloud model enables the acquisition of

enormous amounts of computing resources and each tenant must answer the question of whether

or not the cloud model can provide higher availability in comparison to in-house hosting.

Missing from initial threat modeling and research is the consideration of availability in

respect to the long-term financial viability of a cloud tenant to operate in the cloud. While

unexpected costs in the cloud can originate from mismanaged or unanticipated usage [115],

such costs can also be inflicted by an attacker seeking to exploit the utility pricing model that

governs the usage of resources in the public cloud. This gap in threat modeling and research

is the problem this dissertation seeks to address.

2.6.4 Utility

Utility of information should be considered on a wide range of information abstractions.

What is an application or virtual web server platform, but information that performs with

a purpose? In many cases these infrastructure and application platforms are as essential as

the data being processed in order to obtain utility from the data [117]. Although information

utility is not a commonly discussed term, lock-in is of great concern [13, 22, 117]. Lock-in is the

circumstance that data, application design or implementation security controls require signifi-

28

cant transformation efforts in order to operate these elements in a different CSP environment

or back in-house. The concept of lock-in is not unique to cloud computing when one considers

difficulty related to moving on-premises applications to different platforms (e.g., legacy appli-

cations). The lack of standard interfaces, APIs, security control architectures, databases, and

implementation parameters cause much of the lock-in [13, 22, 117]. Beyond the data processing

aspects, proprietary data formatting is also a concern [22].

Exit strategies may be a means to avoid lock-in [13, 96]. Whether the language is the

SLA [96] or another contractual document [13] the format of the data should be agreed upon

for when the tenant wishes to leave the CSP. It is unclear whether there will be value lost

in terms of metadata or structure when the data is exported to a neutral or widely accepted

format.

One strategy in avoiding lock-in would be for a tenant to self-manage as much of the cloud

services environment as possible. In other words, the more the CSP does for the tenant the

more the CSP unique methodologies, applications, programming platforms and interfaces bind

the tenant to the CSP [13]. This strategy defeats the value of cloud computing for some tenants,

because the necessary skills, labour and software licenses increase the upfront and ongoing costs

of entry for a tenants desired services.

Use of predicate and homomorphic encryption has been suggested to improve control and

confidentiality [22], but it may also be a means to improve utility. High assurance implementa-

tions of these technologies will require widely recognized standards of use (e.g., AES is a usage

standard for the Rijndael cipher) as well as vetted implementations. As a result, there is likely

to be greater portability of programs written to use these technologies as well as that data

format thus allowing for portability across CSPs or for internal processing. Key management

will be an important consideration, because any purpose requiring the data to be in clear-text

may be thwarted if the keys are lost or unavailable.

2.6.5 Authenticity

Authenticity is generally desirable for all information types. Authentic academic transcripts,

health records, tax filings, market prices for corporate shares or bonds, corporate financial

29

records clearly demand authenticity since decisions are dependent on this information being

true to fact. There is a greater tolerance for doubt in authenticity for data like today’s weather

forecast or whether a staff meeting has been rescheduled, but one would desire authenticity

if verifiability or accountability could be easily achieved. When control of data storage and

information processing is entrusted to a third-party how does one assure the authenticity of

the information and services in their control?

Authenticity is an emergent property whereby trust in an information object is a result

of demonstrable discipline that results from properties like: transparency of operations, gov-

ernance of information services, change control, separation of duties, auditing, authentication

and accountability. Outsourcing information processing and business services like managed

data centers, payroll or credit card processing is a fairly well-understood business practice.

What makes public cloud computing more challenging is: the purposeful use of multi-tenancy;

dynamic broad geographical dispersion of information storage and processing; a highly compet-

itive cloud services market; proprietary cloud architectures, management systems and service

offerings technology; unrestricted customer base and global Internet user access. Verifiable

discipline in an environment as described can dissuade conservative customers from adopting

public cloud computing.

Analysts and researchers have made some progress in identifying and addressing these au-

thenticity challenges. Researchers [22] have raised the issues of lack of transparency in cloud op-

erations, frequent change in cloud services, the challenges of auditing a dispersed environment,

the heightened need for appropriate client authentication, the governance issues surrounding

the CSP practice of outsourcing services to a subcontractor and the lack of accountability for

potential loss of intellectual property. Some solutions have been suggested to address cloud

risks like: using tenant controlled middleware that ensures authentic data transactions for data

stored with an untrusted storage provider [110]; implementing trusted computing to address

the lack of transparency by providing high-assurance remote server attestation [22]; and [62]

reports that VMWare has released an API that provides hypervisor transparency.

Progress to address authenticity has been made; however, until authenticity becomes an

explicit objective of information security practitioners it will remain a second order issue.

30

2.6.6 Possession

When analysts explore the root cause for the concerns over public cloud computing, pos-

session is the root of all control concerns. Loss of control not only jeopardizes the other five

elements of security, but is also a source of practical and legal challenges in its own right. It

would seem that the fundamental need for information protection and the desire for cheap

plentiful information processing are irreconcilable. For some tenants this may never change,

but research into this challenging problem may help others identify a means to safely adopt

public cloud computing.

As for practical problems, when a third-party possesses data how does one assure proper

deletion of information especially when some providers leverage their enormous collection of

tenant data for mining purposes [22]? These cross-purposes between the tenants needs and

providers revenue sources raise trust issues. Although not discussed by others, possession raises

residual data handling concerns after a tenant abandons an application. The risks may not be

borne by the tenant, but by the subjects of or the end-users who were using the abandoned

records. Although CSP departures from the market have been documented [22], the prospect

of mergers and acquisitions within the CSP population or by other firms looking to diversify

may raise the potential for a tenant to be in competition with its CSPs parent company. In

other words, a competitor may come into possession of a tenants data. Combine this prospect

with lock-in, the tenant is in a difficult position.

As for legal problems, which will vary by jurisdiction, there are privacy and other regulatory

concerns. Concerns about regulatory compliance have been raised by [55] and [22], and these

authors associate the root issue to be possession. However, if authenticity is verifiable the

regulatory concerns regarding possession may be mitigated in cases where regulation does not

stipulate geo-location. Privacy can be viewed from two perspectives. One is the privacy of

the tenant and the other is privacy of the user. US legal standing of information held by a

third-party is murky. Currently, the US Fourth Amendment does not appear to apply to the

cloud thus there appears to be no need for judicial review for governmental access to data

stored in the cloud. Antiterrorism and criminal pursuits enabled by the US PATRIOT Act and

31

the Stored Communications Act ease the burden of proof by the government and may limit the

cloud tenants awareness that their information has been obtained by the government [41]. Geo-

location of data is a regulatory constraint for individual-privacy laws as specified in European

Union Directive 95/46/EC and the associated national legislation for each of European Unions

member countries. The controller as designated in Directive 95/46/EC is the tenant who is

operating an application obtaining personal privacy information. Although the responsibility

for privacy protection is initially upon the tenant, it may be possible to share responsibility

with the CSP if the CSP is deemed to be influencing the means by which privacy information is

being processed. Per [22], CSPs are responding by allowing tenants to target the geo-location

of their data.

One suggestion to address cloud possession issues is to enable information to be self-

protecting [13], which essentially moves the security perimeter to be around the individual

data object. In addition, the use of predicate encryption and homomorphic encryption [22, 43]

may help alleviate disclosure-risk related to data remnants and trust issues related to CSP

ownership. Others have sought to provide solutions that would enable a cloud tenant to verify

the geo-location of data stored in the cloud [8].

Safe relinquishing or sharing of information possession is an open problem where potential

solutions have value far beyond cloud computing.

2.7 Discussion

Research papers on public cloud security have been reviewed using a framework of six

security elements. The practical reality is that tenants need to account for all six security

elements simultaneously. Each tenant must decide the significance and priority these elements

have with respect to their needs. For comprehensive security within the cloud, researchers and

practitioners need to work on addressing all security elements. Such complex evaluations and

decisions that follow will be costly.

Beyond the technical challenges of identifying research problems and solutions, the cloud

computing subject is plagued by realistic problems. Each CSP has implemented a cloud in

their own unique fashion, which stymies efforts to generalize technical topics and solutions.

32

The competitive nature of cloud computing discourages openness and access to the underlying

layers of abstraction. To complicate the issue further, cloud computing and related terms (e.g.,

SaaS) remain ill-defined thus challenging efforts to define the target of evaluation with precision.

Moreover, the target of analysis (i.e. the individual cloud) is undergoing constant change. A

finding discovered today may be moot in a matter of days or weeks. This amorphous target

being presented by CSPs only promotes security through obscurity. Without standards with

respects to terms, functionality, protocols and interfaces, meaningful security research in cloud

computing that is comprehensive will be difficult to conduct. Unless standards are embraced

and the gaps like those raised in the Analysis Section are addressed, security will be an ongoing

obstacle to public cloud computing despite its alluring advantages such as cost savings.

33

CHAPTER 3. FRAUDULENT RESOURCE CONSUMPTION ATTACK

Chapter contains modified content from the following published conference paper:

Idziorek, J. and Tannian, M. ”Exploiting Cloud Utility Models for Profit and Ruin.” In Pro-

ceedings of the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD ’11).

Washington, DC. 4-9 July 2011. pp. 33-40, c� IEEE 2011. (Acceptance Rate 36/196 =

18%)

3.1 Abstract

This chapter introduces and discusses an attack on the cloud computing model by which

an attacker subtly exploits a fundamental vulnerability of current utility compute models over

a sustained period of time. Internet-accessible cloud services expose resources that are me-

tered for billing purposes. These resources are subject to fraudulent resource consumption

that is intended to run-up the operating expenses for public cloud service customers. The

details and significance of this attack are discussed as well as initial detection and attribution

methodologies and there respective experimental results. This inaugural work investigates a

potentially significant vulnerability of the cloud computing model that could be exploited from

any Internet-connected device. Because the explored exploit is simply a matter of making well-

crafted web transactions that only differ in intent but not in content of the attacking client,

such attacks are challenging to differentiate and thus this attack may be difficult to detect and

mitigate.

34

3.2 Introduction

Computing services that were traditionally hosted on organizations’ servers and networks

are being outsourced to third-party Cloud Service Providers (CSPs). Transferring sensitive

data and computing operations outside of a trusted environment raises obvious concerns of

confidentiality, integrity, availability, authenticity, utility, and possession for all aspects of a

CSP’s service platform (Chapter 2). Initial focus, research, and threat modeling has concen-

trated on both the confidentiality and integrity of data stored and computed in the cloud.

Absent from these works is an analysis of the external threat sources that have the ability to

directly or indirectly affect the availability of cloud-based services and exploit the integrity of

the billing model that governs this emerging computing model.

Despite uncertainty and unknown security vulnerabilities, early adopters of the cloud com-

puting model have utilized cloud-based resources for a number of services including search

engines, web hosting, content delivery, and application hosting [3]. Adopting cloud services

remains an unknown risk for many customers; however, initial customers have recognized the

benefits of reduced overhead of capital expenses and the attractiveness of the more novel cloud

infrastructure features such as horizontal scaling and the pay-as-you-use billing model. An

obvious threat that CSP customers face is the loss of availability. Although high-profile CSPs

like Amazon, Google, and Microsoft have experienced undesirable downtime in the past [84]

due to Distributed-Denial-of-Service (DDoS) attacks [78], lightening [30], and technical prob-

lems [12], these CSPs offer service availability guarantees in the range of 99.9% to 99.95%

uptime [2, 45, 121]. The vulnerabilities that have accounted for past losses of availability are

not unique to the cloud model and have analogs in virtually any web-based service. With an

increased reliance on web-based services, including the outsourcing of applications that were

traditionally desktop-centric services, an organization raises the likelihood of DDoS attacks

affecting those operations hosted in the cloud.

While semantic and flooding DDoS attacks are well known and the associated risks are well

researched [87], this work will explore a subtle attack more akin to an application-layer DDoS

attack. The threat-source considered in this paper is an attacker who seeks to fraudulently

35

consume bandwidth of web-based cloud services that in turn incur a financial burden on the

cloud consumer. Utility computing is particularly vulnerable to an attack by which the attacker

seeks to exploit the utility pricing model in order to financially harm the victim.

The attack scenario depicted in Figure 3.1 illustrates a vulnerability of the cloud utility

model. A botnet consisting of potentially thousands of bot clients under skillful control of

the botmaster can consume cloud resources by mimicking legitimate client behavior. The

aggregation of these requests is the problem this work seeks to address.

Cloud
Access Point

Internet

Internet

CSP Environment
Legitimate Clients

Botmaster

Bot Clients
(Attackers)

Control

Cloud
Compute
Servers

Cloud
Storage
Servers

Cloud Consumer

Figure 3.1: Cloud Attack Network Model

In this chapter, two initial methodologies to mitigate Fraudulent Resource Consumption

(FRC) attacks on metered web resources are presented. The first is a detection methodology

that applies the properties of Zipf’s law to the analysis of aggregated user web consump-

tion patterns. The second approach is an entropy-based attribution methodology that detects

anomalous behaviors in request dynamics for individual attackers. The experimental results

demonstrate that both methodologies show promise of being effective at detecting FRC attacks.

The rest of the chapter is organized as follows. Section 3.3 provides the background for the

cloud computing model. A detailed description of the FRC attack is described in Section 3.4

and the detection and attribution methodologies as well as experimental results are presented

in Section 3.5. Related areas of work are analyzed in Section 3.6. Finally, future work and the

conclusion are presented in Section 3.7.

36

3.3 Background

The attack described in this paper is not unique to the cloud model and could be carried out

in similarly hosted environments that makes use of utility pricing such as content distributed

networks. Despite the fact that this type of attack is not specific to cloud computing, the cloud

model does provide a well-documented and practical application of the utility computing model

to demonstrate such an attack. To better understand this attack and to provide context for

remainder of the chapter, this section provides a brief overview of public cloud computing and

the utility model.

3.3.1 Cloud Computing

When broken down, cloud computing is a specialized distributed computing model. Build-

ing upon the desirable characteristics of cluster, grid, utility, and service-oriented comput-

ing, cloud computing introduces a unique complement of features to create a new computing

paradigm [37]. The technologies comprising much of cloud computing have existed for a while

(e.g. virtualization, broadband, high-density storage, multi-core processors); however, it has

not been until recent years that these technologies have all matured to the point where a syn-

thesis of these elements could be realized. One of the novel characteristics of the cloud model

- as compared to past computing offerings - is that consumers have the ability to self-provision

computing resources. This allows a cloud consumer to quickly establish an Internet-facing web

presence. Furthermore, CSPs offer such services at attractive prices by way of a utility pricing

model as made possible by virtualization and economies-of-scale.

To keep the terminology straight throughout the rest of the chapter, the following roles are

defined:

• Cloud Service Provider (CSP) - The CSP (e.g. Amazon, Microsoft, or Rackspace) offers

client-provisioned and metered computing resources that can be leased for flexible time

durations.

• Cloud Consumer - The cloud consumer is a person or organization that employs the

services of a CSP and is financially responsible for any and all resource consumption.

37

• Client - The client is a legitimate user that requests services offered by the cloud consumer.

• Attacker - The attacker is a malicious user that fraudulently consumes resources offered

by the cloud consumer.

3.3.2 Utility Compute Pricing Model

The utility model, by which cloud services are offered, enables the attractive payment model

of pay-as-you-use. Customers pay only for the resources they consume and only for the time

that they consume them. The flexibility that this model facilitates is advantageous to a cloud

consumer because of the low cost of entry and avoidance of major capital expenses. Table

3.1 represents a subset of the direct costing metrics established by Amazon’s Elastic Compute

Cloud (EC2) platform [4]. Although cloud computing makes for a compelling use case of the

utility model, the concept of utility computing has origins that date back to time-sharing on

mainframe computers.

Table 3.1: EC2 Pricing Metrics for a Large Linux Instance Residing in Northern Virginia (as
of January 2012)

Standard Compute Instance
Large Linux $0.34 per inst. hour

Data Transfered In
All Transfered In $0.10 per GB

Data Transfered Out
First 1 GB per Month $0.00 per GB
Up to 10 TB per Month $0.15 per GB
Next 40 TB per Month $0.11 per GB
Next 100 GB per Month $0.09 per GB
Over 150 GB per Month $0.08 per GB

As seen in Table 3.1, the cost of computing in the cloud is billed in units of Cost-Per-Hour

(CPH) consumed and derivatives of Cost-of-Data-Transferred (CDT) in and out of the CSP’s

environment. The total cost of computing in the cloud model can then be modeled as follows:

Total Cost = CPH(hours) + CDT (bytes) (3.1)

38

Equation 3.1 represents the cost of cloud resources as a generic model that allows for the

analysis of cloud consumer costs independent of a particular CSP and their respective cost

metrics.

3.4 Fraudulent Resource Consumption (FRC) Attack

This section provides a conceptual foundation for the FRC attack. In order to provide a

comprehensive explanation, the target of the attack, the threat model, an attack description

and an exploration of the direct costs associated to this attack are provided.

3.4.1 Target

For the purposes of this work, the target of this attack is a website or web application

hosted in a third-party CSP environment. The CSP will generate revenue by providing hosting

services on a utility model basis. In this service environment, resources consumed by clients

result in a direct cost to the cloud consumer.

The characteristics of the websites considered in this paper are those that have been de-

signed to serve predominantly public web content that is accessible to Internet users. Although

the use of authentication on the site would significantly reduce the amount of content readily

available to the general anonymous public and thus potentially restrict the amount of ex-

ploitable resources, this website feature is not considered for it is assumed the cloud consumer

desires to host public content. It has also been assumed that the target website is hosted in

an environment in which the web server is properly configured, patched and is protected be-

hind a firewall that conforms to a well-considered information security policy and employs best

practice filtering techniques.

An additional characteristic is that the website does not make use of reverse-Turing tests [58]

to differentiate humans from zombie computers. The use of such tests is detrimental to the

overall goals of the cloud consumer, as these types of tests will result in a certain percentage

of legitimate users choosing not to solve the puzzles as well as preventing search bots from

indexing the website’s content. Therefore employment of such techniques to restrict access to

public-facing web content is regarded as excessive and not considered in this work.

39

In an effort to simplify the experimental design used to assess the chosen detection and

attribution techniques, the scope of HTTP protocol request methods is limited to HTTP GET

requests. All HTTP request methods consume resources on the server and supporting network,

but do vary by degree of consumption. These consumption distinctions would be necessary to

consider if a precise cost calculation is desired, but for the purpose of this initial work on the

FRC attack the focus is on the general relation between client actions and direct cost to the

cloud consumer.

3.4.2 Threat Model

The threat sources for the target described in Section 3.4.1 are the common threat sources

typically associated with Internet applications and services, such as a script-kiddy, hacktivist,

extortionist and a person performing information warfare for commercial or government pur-

poses [28]. The universal access that the target’s service provides enables remote access from

any Internet-connected threat source.

With a black market of hackers or botnets for hire [58], a threat-source is not required to be

capable of performing the attack themselves. Whoever performs the attack will require sufficient

compute resources and bandwidth to implement a sustained and significant resource utilization

attack, which is fairly given the current computer technology, capacity, and bandwidth.

In the past, Internet attacks were generally regarded as being less financially motivated

and driven by attackers need for self-fulfillment, political motivation, fun, or proof of skill [72].

Today, however, cyber criminals have been moving towards making a profit. The motivation of

the hired attacker in this threat model is purely financial and the attacker benefits directly from

either from a service fee or from an extortion fee paid by the victim. The original threat-source,

who hired the botnet master, achieves their objective by decreasing the economic health of the

victim.

In this threat model, the attacker will factor in time for attack completion, attack success

likelihood, and attack detection as key variables as resources are allocated and as an attack

methodology is chosen. By understanding the utility models published by CSPs, the attacker

can determine what transactions or actions will cost. Although optimal attack strategies are

40

outside the scope of this paper, a wise attacker will construct an attack to consume significant

amounts of resources but will stay clear of extreme resource consumption to avoid detection.

The attacker will craft proper functional transactions in order to ideally exercise as many bill-

able resources per transaction as possible while remaining undetected. Unlike a SYN flooding

attacks that seeks to consume available socket resources by forming numerous incomplete TCP

connections, fully-established application-layer HTTP connections are much more effective at

consuming large volumes of resources while remaining undetectable by current signature and

anomaly-based detection mechanisms.

The threat source attacks by generating web traffic consistent in comparison to legitimate

traffic. However, it is assumed that the threat source does not have the ability to access

historical records/logs from the victim’s servers nor the ability to insert a traffic-logging device

in front of the victim’s web-based services. Although collusion with an inside person would do

away with the previous assumptions, these fairly realistic restrictions prevent the attacker from

creating statistically indistinguishable traffic patterns in comparison with legitimate traffic seen

by the site. From the victim’s perspective, malicious and legitimate traffic are interwoven and

only differs in intent not content.

3.4.3 Attack Description

As evidenced by recent trends in DDoS attacks, attackers are employing the services of

botnets consisting in size of upwards of tens of thousands of compromised hosts and are using

these botnets as an attack medium [58, 87]. To increase effectiveness and circumvent current

detection mechanisms, attackers are moving away from network-layer attacks such as SYN

floods and attacking application-layer resources by means of HTTP flooding attacks. This

paper and the description of the FRC attack anticipates a natural evolution of these attacks

on the computing resources metered for utility pricing as found in the cloud computing model.

The recent emergence of cloud computing and its attractiveness has raised the prospect that

current utility model structures may prove to be a significant vulnerability to cloud consumers.

The attack is simply a matter of making properly formed and seemingly legitimate requests for

application services in sufficient quantity that expenses accumulate over time to a level that

41

is unsustainable for the cloud consumer. One key objective of the attacker is to blend into

the noise of legitimate activity so that their malicious resource consumption is undetected by

current measures and their activities remain unimpeded. What makes the attack unsustainable

for the victim is that the victim’s business objectives for the cloud-based services are not

achieved regardless of the disproportionate amount of expenses paid.

In order to describe this attack more precisely, one could consider a continuum of Malicious

Resource Utilization (MRU) as seen in Figure 3.2. Reading from bottom to top, the y-axis on

the left-hand side of the figure depicts a gradual increase of resource utilization (%) for a busy

NASA web server over a two-week duration of time (x-axis). The y-axis on the right-hand side

of the figure denotes the number of requests per second experienced by the web server. Because

of the historical nature of the data set, a direct mapping of this relationship is not known, but

is depicted to represent a conservative estimate given the capacity of modern day web servers.

0%

Requests per
Second

Resource
Utilization (%)

FRC Attack Region

100%

J2

Normal Activity

DDoS Attack Region

FRC Attack
J1Nuisance Activity

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Days

10

30

50

70

90

110

130

150

0

Figure 3.2: Malicious Resource Utilization Continuum

Initial attack intensity above normal activity is a range labeled nuisance activity because

the resultant costs are insignificant to the cloud consumer. However, as the malicious activity

intensifies beyond the nuisance activity range, the malicious costs to the cloud consumer start

to become a matter of concern. This transition point is labeled J1. Malicious activity that

exceeds J1 enters into the FRC Attack Region. Within this region, a FRC attack is neither

nuisance activity nor does it significantly degrade the QoS of the web server. With a utility

model assigning costs for all resources consumed, this region is of interest to an attacker who

wishes to inflict economic pain. If the attack intensity increases above J2, the aggregate resource

consumption will reach a point when the QoS starts to significantly degrade as the increase

42

resource utilization results in an increase in system response latency. It is at this point detection

like, as stated in [56, 58, 120], current application-layer DDoS detection and mitigation schemes

will be activated. The transition point between the inability and ability to detect malicious

resource consumption is denoted as J2 on Figure 3.2. The initial objective of the FRC attack

research is to improve detection sensitivity and push J2 closer to J1 by improving detection of

attacks that appear as legitimate traffic and transactions, but differ in the requestor’s intent.

Availability in the context of this discussion is not a binary measure in which the system

is nearly incapacitated at the time of the attack. The technical infrastructure of a website

and its provider will have no trouble functioning while the FRC attack is underway. Instead,

availability is a long-term consideration defined as the cloud consumer’s ability to withstand the

financial consequences of such an attack over a prolonged period of time. Unlike a short-lived

DDoS attack, the duration of a FRC attack is intended to last weeks or months. As shown in

Figure 3.3, a FRC attack is similar to a slow-and-low approach in which the costs for resources

maliciously consumed are additive to that of normal traffic. The challenge the FRC attack

raises is that of the detection of malicious activity that blends in with normal behaviors with

the intention of subtly exploiting the resource sensitivity of current utility pricing models in

order to incrementally increase operating costs thus inflicting financial damage.

3.4.4 Direct Cost of a FRC Attack

DDoS attacks have always resulted in some from of financial loss for the victim. Whether

directly or indirectly, the victim experiences loss when legitimate clients are not able to access

revenue generating services, productivity is halted, or the service or corporation’s reputation

is damaged. Not until resource consumption was directly billable to the consumer, as is the

case in the cloud model, was it possible to associate a direct monetary cost to the compute and

networking resources consumed during a DDoS attack. The focus of this work can be seen as

a much more subtle variation of a DDoS attack. Because of this, both FRC and DDoS attacks

on services hosted in the cloud model can be modeled in terms of resources consumed and the

resulting monetary loss for the victim.

Regardless of the motive, an attacker and cloud consumer must consider the same set of

43

A
ct
ua
l C
os
t

Billing Period
J F M A M J J A S O

Malicious
Resource
Use

Aggregate
FRC Attack
Cost Curve

Legitimate
Resource
Use

Figure 3.3: FRC Attack Cost Curve

parameters in order to calculate the expected or actual cost of resources consumed in the cloud.

The one distinction between these calculations is that the attacker only considers resource usage

in excess of normal activity while the cloud consumer must account for the total cost of all

resources consumed despite the intention of the requestor.

From the parameters presented in Table 3.2, the total amount of data transferred into the

cloud consumer’s environment via HTTP GETs over a given time period (γ) can calculated

as Din = ρ · δ · γ · θ and the corresponding amount of data transferred out during the same

time period can be calculated as Dout = φ · δ · γ · θ. The subscripts “N” and “A” are used

to differentiate between normal activity and resources consumed as part of a FRC attack

respectively.

Base Cost = f(DinN , DoutN , γ, µ) (3.2)

Total Cost = f(DinN +DinA , DoutN +DoutA , γ, µ) (3.3)

FRC Attack Cost = Total Cost−Base Cost (3.4)

44

Table 3.2: CSP Bandwidth Cost Parameters

Parameters Description

Number of clients (δ) Number of distinct clients requesting
resources

Average resource size (φ) Average size in bytes for each out-
bound resource request

Average request size (ρ) Average size in bytes for each inbound
request

Request frequency (θ) Requests per time period

Time duration (γ) Time elapsed between the beginning
and end of an observed period

Cost model (µ) CSP pricing model

Cost function f(Din,Dout,γ,µ) Cost of resource consumption

Tiered costing models such as the one used by Amazon’s EC2 (Table 3.1) require that the

FRC Attack Cost be calculated as the Total Cost of all activity minus the Base Cost. Data

consumed during a FRC attack is additive to that of normal activity and the FRC Attack Cost

cannot be accurately calculated without knowing the Base Cost.

The consequences of a FRC attack may be best illustrated by quantifying the cost of an

attack based on a realistic scenario. Presented next is a scenario of a FRC attack on a web

service hosted on Amazon’s EC2. Proposing hypothetical attacks in conjunction with the FRC

Attack Cost highlights the potential impact FRC attacks can have on a web-based resources

hosted in the cloud.

3.4.4.1 Scenario - EC2

Google calculates that the average web page currently found on the Internet is 320KB in

size [95]. Assuming this is the average page size of the cloud consumer’s website, which consists

of multiple distinct pages, an attacker is able to consume on average 320KB per each primary

HTTP GET request and its subsequent secondary in-line requests. In this scenario, normal

activity is assumed to be 1TB of data per month resulting in a Base Cost of $153.45. At the

45

rate of requesting one page per minute every minute for a month, a single attacker is able

to consume approximately 13 GB of data. Applied to the FRC Attack Cost equation, this

attack alone results in a charge of $2.04 for data transferred in and out of the cloud consumer’s

environment.

Table 3.3: Single Attacker Scenario

Parameters Value

Number of clients (δ) 1

Average resource size (φ) 320KB

Average request size (ρ) 1KB

Duration (γ) 31 days

Request frequency (θ) 1 req/min

Cost model (µ) Amazon EC2

FRC Attack Cost $2.04

The cost accrued from a single attacker at the given rate in Table 3.3 would likely be

characterized as nuisance activity found below J2 as established on the MRU continuum (Figure

3.2). Although a non-zero cost, this malicious resource consumption is likely to blend in with

the noise of an average monthly service bill.

Table 3.4: Multiple Attacker Scenario

Parameters Value

Number of clients (δ) 1000

Average resource size (φ) 320KB

Average request size (ρ) 1KB

Duration (γ) 31 days

Request frequency (θ) 200 reqs/day

Cost model (µ) Amazon EC2

FRC Attack Cost $283.81

In the next attack variation, the number of active bots in the attack is increased and each

bot attacks with a request frequency of 200 transactions per day. These adjustments change the

46

magnitude of the attack from nuisance activity to an attack intensity above J1 and thus into the

FRC attack region. The consequence of the utility model vulnerability as presented in Table 3.4

is a bit more apparent. If the attack were distributed throughout the course of a month, even

at 200 requests per day from a 1000 bots, the attack does not begin to significantly degrade the

QoS of the website (4 x 1.2 GHz 2007 Xeon CPUs, 7.5 GB RAM, 850GB storage) - assuming

the system was designed with sufficient performance headroom for the normal activity.

As seen by the attack scenarios in the case study of Amazon’s EC2, a FRC attack can inflict

a noticeable financial burden on the cloud consumer over time. As the number of attacking

resource consumption bots increases, damaging attacks can be mounted without being able to

associate a significant usage footprint to a single client, as compared to what was seen in the

single attacker scenario. Because current detection efforts are focused on excessive amounts of

HTTP requests over a short period of time [56, 87, 120], as is the case in DDoS attack and

flash crowds, it is likely that FRC attacks will go undetected.

One important observation worth mentioning is the relative cost of conducting the FRC

attack. Although there may be costs associated with lease time and/or the corresponding attack

intensity, the amount of bandwidth and compute cycles for a bot to perform 200 requests per

day (i.e. on average, one request every 432s) over 31 days is a mere fraction of what a reasonably

modern computer is capable of producing. Based on this presented scenario, there should be

sufficient performance margin for many more requests per second for each bot being devoted

to the attack or other attacks concurrently. While the FRC attack described in this work is

presented as a subtle attack, this does not preclude the much more obtuse DDoS attack from

exploiting the same vulnerability of the cloud model. For a cloud DDoS victim, not only would

they be hindered by the loss of availability, they would also be financially responsible for the

bandwidth necessary for an attacker to mount such an attack.

3.5 Detection and Attribution Methodologies

In this section, initial methodologies for both FRC detection and attribution will be dis-

cussed. In the context of the described FRC attack, detection refers to being able to differenti-

ate increases in normal aggregate traffic from that of a FRC attack. Attribution, on the other

47

hand, refers to the ability to accurately identify malicious clients from that of legitimate clients.

Because the realm of FRC attack detection and attribution have been largely unexplored, the

methodologies explored in this chapter are an initial attempt to push J2 down the Malicious

Resource Consumption Continuum (Figure 3.2) towards J1. By pushing J2 to a lesser intensity,

attackers will need to sustain their attack longer to achieve the same cost impact or increase

the number of bots needed to mount a successful attack. As performance of these initial de-

tection methods are evaluated, the common concerns of computational efficiency and overall

detection latency are less of a factor for detection and attribution solutions due to the long du-

ration of a FRC attack. Although ultimately desirable, such efficiencies are not an immediate

concern in the short-term, especially if attack clients initiate attack footprints on the order of

200 requests per day. Unlike click fraud or DDoS attacks, which require solutions that have

optimized computational efficiencies to deal with these events in a very timely manor, accuracy

is the overwhelming key factor for the mitigation of FRC attacks. Just as it is assumed that

a web server under a FRC attack will have no problem providing a high quality of service, it

is also assumed that such a server will be able to calculate the presented metrics in sufficient

time to make a timely detection/attribution decision.

3.5.1 Detection using Zipf’s Law

The first question to answer when attempting to mitigate a FRC attack is whether or not

a system is under attack. Although such knowledge does not directly lessen or prevent a FRC

attack, such knowledge is crucial when considering attribution trade-offs and for performing

risk analysis. If it can be accurately determined that an increase in traffic volumes is the result

of legitimate client behavior, then it is counter productive for the cloud consumer (i.e. FRC

defender) to deploy a mitigation solution that will unnecessarily introduce false positives into

the system and hinder or reject legitimate clients.

The objectives of this section are to investigate an application of the properties of Zipf’s

law [132] for detecting anomalies in web request logs as well as to discuss experimental design

and empirical results of applying Zipf’s law to the detection of FRC attacks. This initial

detection methodology holistically explores a web server log in terms of web document frequency

48

and the relative document popularity (i.e. document rank).

An effective anomaly detection approach could be a useful indicator for fraud in metered

web services. In the past, Zipf’s law has been used for detection of anomalous patterns in

large data sets such as in detecting blog spam [81] and accounting fraud [52]. With respect to

applying Zipf’s law to the web, Zipf-like distributions of web logs have been used for modeling

and formalizing web caching models and algorithms [14]. A key property of Zipf’s law is that

it allows for the broad analysis of very large sets of data.

Consider a web server log that contains user-generated request records for a website con-

sisting of N distinct web pages. Let fi be the frequency of requests for the ith of N web pages

and let ri be the rank of that document. To construct a Zipf distribution and given a web log,

let all the web pages and their respective request frequencies be ranked in descending order of

the popularity where the most frequently referenced page is assigned the rank of one and the

ith page is the ith most popular page. If Zipf’s law holds, the frequency of a request for the ith

most popular web page is inversely proportional to the rank of the page and is represented as

follows:

fi ∝
1

i
(i = 1, ..., N) (3.5)

If K is the number of occurrences for the most frequently requested web page (i.e. rank of

one), then given the rank of any web document, its frequency can be calculated as follows:

fi =
K

i
(3.6)

Shown in Table 3.5 is the rank and corresponding frequencies for a fictional website whose

user base conforms exactly to Zipf’s law and therefore abides by Equation 3.5. When the

corresponding rank (ri) and frequency (fi) are plotted on a log-log scale (Figure 3.4), the

observed slope (ψ) of the best-fit line is negative with a value of unity.

While the synthetic example conforms exactly to Zipf’s law, it has been shown through

research efforts [14, 56] that web page requests for an actual website instead generally follow

a Zipf-like distribution where the frequency of a request for the ith most popular page is a

49

Table 3.5: Theoretical Zipf Distribution Rank and Frequency

Rank(ri) Frequency (fi) Log10(ri) Log10(fi)
1 10000 0.00 4.00
2 5000 0.30 3.70
3 3333 0.48 3.52
4 2500 0.60 3.40
5 2000 0.70 3.30
6 1667 0.78 3.22
7 1429 0.85 3.15
8 1250 0.90 3.10
9 1111 0.95 3.05
10 1000 1.00 3.00
11 909 1.04 2.96
12 833 1.08 2.92
13 769 1.11 2.89
14 714 1.15 2.85
15 667 1.18 2.82
16 625 1.20 2.80
17 588 1.23 2.77
18 556 1.26 2.74
19 526 1.28 2.72
20 500 1.30 2.70
21 476 1.32 2.68
22 455 1.34 2.66
23 435 1.36 2.64
24 417 1.38 2.62
25 400 1.40 2.60
26 385 1.41 2.59
27 370 1.43 2.57
28 357 1.45 2.55
29 345 1.46 2.54
30 333 1.48 2.52

power-law function such that:

fi ∝
1

iψ
(3.7)

To provide a more accurate illustration, Table 3.6 provides the rank and respective frequen-

cies from the NASA dataset (introduced in Chapter 4 and Figure 3.2). As it can be seen in

the corresponding plot in Figure 3.5, common distributions of web page requests are not truly

consistent with Zipf’s law as Zipf’s law states that ψ is unity. However, web page requests tend

to be consistent with a more general Zipf-like distribution that allows ψ to be close to but not

unity.

Using the resulting slope of the regression line from a Zipf-like distribution as a detection

metric, experiments seeking to exploit the consistencies in Zipf-like distributions for a particular

website were performed using datasets from web request logs produced by Iowa State Univer-

50

0 0.5 1 1.5
2

2.5

3

3.5

4

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

y = x + 4.0

Figure 3.4: Synthetic Zipf Distribution

sity’s public web server (www.iastate.edu) over the course of nine consecutive weeks from late

2010. The first week of data served as the training data set and was used as the model of the

site’s normal web page access patterns. The subsequent weeks served as test data sets as well

as the background traffic in which synthetically generated attack patterns were inserted.

The evaluation consisted of generating an attack through synthetic construction of malicious

requests and then interleaving these requests within the test data sets. The advantage of

synthetic generation is that it enables expedient testing of a number of scenarios and request

patterns of attackers in order to test the limitation of the Zipf-like distribution based detection

approach. In order to emulate a FRC attack, synthetic requests were generated to consume

a percentage of web-based resources above that of normal activity. The synthetic request

construction methodology assumed that the attacker had a priori knowledge of the magnitude

of normal web page requests for a given site. Although contrary to Section 3.4.2, such an

assumption was made to allow the attacker to generate more challenging attacks that start at

J1 and increase in intensity up the MRC (Figure 3.2) continuum. The web request pattern

generated was the union of normal and attack web requests. For each week of test data, five

51

Table 3.6: Empirical Zipf Distribution Rank and Frequency

Rank(ri) Frequency (fi) Log10(ri) Log10(fi)
1 9577 0.00 3.98
2 1026 0.30 3.01
3 983 0.48 2.99
4 867 0.60 2.94
5 824 0.70 2.92
6 813 0.78 2.91
7 768 0.85 2.89
8 757 0.90 2.88
9 707 0.95 2.85
10 693 1.00 2.84
11 651 1.04 2.81
12 594 1.08 2.77
13 578 1.11 2.76
14 502 1.15 2.70
15 497 1.18 2.70
16 475 1.20 2.68
17 471 1.23 2.67
18 423 1.26 2.63
19 363 1.28 2.56
20 362 1.30 2.56
21 361 1.32 2.56
22 338 1.34 2.53
23 330 1.36 2.52
24 328 1.38 2.52
25 311 1.40 2.49
26 306 1.41 2.49
27 285 1.43 2.45
28 267 1.45 2.43
29 266 1.46 2.42
30 265 1.48 2.42

synthetic attack data sets were constructed in addition to the original data set. In the attack

data sets, the attack modeled uniformly random page requests totaling 5%, 10%, 20%, 30%

and 40% more requests than that of the original data set for a given week.

Based on the hypothesis that two weeks of web traffic would produce statistically similar

Zipf-like distributions, the detection methodology compared the training data set and each of

the test data sets using Analysis of Covariance (ANCOVA). The first step was to compute the

Zipf-like distribution for the training data set and each test data set. The second step was to

determine if there was a statistically significant difference between the slopes of the two Zipf-

like distributions under examination. This required the computation of a linear regression line

for each distribution. The slopes of the respective linear regressions were compared with the

statistical hypothesis that the slopes are the same. If analysis indicated that the slopes were

significantly different, then this result was interpreted to signify that a sufficiently large web

page request pattern anomaly took place thus performing as the fraud detection threshold.

52

0 0.5 1 1.5
2

2.5

3

3.5

4

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

y = 0.75x + 3.54

Figure 3.5: Actual Zipf Distribution

Given the lack of specific attacker attribution, additional detection techniques, as presented

next, would also need to be deployed.

Table 3.7: Zipf Detection Confusion Matrix

Actual/Predicted Positive Negative

Positive 95% 5%

Negative 11% 89%

To measure the effectiveness of this application of Zipf’s law for the 48 tests performed,

a confusion matrix of detection results is given in Table 3.7. Preliminary empirical results

show that the methodology produces a False Positive Rate (FPR) of 5% and a False Negative

Rate (FNR) of 11%. These initial results would lead one to believe that this broad analysis

methodology appears to be an effective way to examine large sets of web logs for the purpose of

detecting possible fraud motivated access patterns in web request logs. However, this proposed

detection methodology has its limitations. Namely, as will be addressed in Chapter 5, the tail of

a Zipf-like distribution tends to deviate from Zipf’s law and thus provides inconsistencies that

53

lead to errant classifications. Furthermore, this presented methodology only considers a single

aspect of a web log. Applying the lessons learned from this initial work on FRC detection,

Chapter 5 will explore a much more complete solution that also consider the completeness and

accuracy of compared web logs in addition to a revised application of Zipf’s law.

3.5.2 Entropy-Based Attribution

Once a web log has been successfully determined to contain FRC attack requests, the next

logical question to answer is which of the clients in the web log are malicious and which are

legitimate. Similar to the previously discussed work on FRC detection, this section provides

an preliminary methodology for FRC attribution.

Web server user interactions can be modeled as a series of successive requests grouped

together to form web sessions over a given time period. Requests are human-initiated events

utilizing HTTP protocol commands such as GET in order to retrieve web content. A series

of related requests generated by a specific user form a single web session. Web request logs

provide no indication of when sessions end or start. In order to establish user sessions within the

request logs it was assumed that a 900 second or greater pause between consecutive requests of

a single user indicated an end of a previous and start of a new web session [67]. Session length

was defined as the number of web documents requested during a web session. While previous

research has examined the use of statistics derived from web request logs such as source IP

address frequency [70] or request inter-arrival times [87] within a web session, the focus of this

detection methodology is to model individual user behavior by analyzing the entropy of session

lengths generated by an individual over a fixed duration of time in order to detect FRC attacks

on the utility model.

Publicly available web request logs, commonly used for flash crowd and DDoS detection

research [70, 87], were used as normal activity (i.e. training datasets) to conduct the entropy-

based detection experiments. One data set originated from activities observed by a busy ISP

web server over a two-week period [23]. The second collection is two months of web logs from

a busy NASA website [82].

The attacks within the experiments were modeled as a botnet that consisted of 500 distinct

54

bots that generated for each bot, on average, a total of 200 malicious requests over a given

week. This fixed volume of traffic represented 46-113% more traffic than the original volume

for a particular week. Motivated by the threat model established by Oikonomou [87] in which

attack bots randomly requested web sessions lengths between 1 and 50, the malicious web

sessions used for the purposes of these experiments were composed to resemble much more

realistic usage patterns by generating uniformly random session lengths between 1 and 15 web

content requests.

The hypothesis of this initial FRC attribution solution is that randomly generated session

lengths, as previously described, deviate sufficiently from a profile of normal user behavior in

such a way that detection and attribution of attacking bots is possible using an entropy-based

detection scheme.

The proposed detection methodology includes both a learning stage and a detection stage.

The learning stage involves computing a standard of entropy of normal session lengths for users

that invoke five or more sessions as observed in a web request log designated as the training

data set. The detection stage consists of computing entropy of session lengths for each unique

user and comparing the entropy result to the standard. If a user’s session length entropy is

outside the standard, the user is designated as malicious.

Entropy has been used in many detection contexts, including application-layer DDoS de-

tection [118, 124]. If the probability that a discrete random variable X takes on a value xi,

given by p(xi) = P(X=xi), then the entropy of session length for session j is Hj composed of

the n events is defined as follows:

Hj = −
n�

i=1

pilog2(pi) (3.8)

The entropy of session lengths for a given data set is a random variable H that exhibits the

properties of a normal distribution. Each weekly web request log data set served as a training

data set while the remaining seven data sets represented potential FRC attacks. One advantage

of training on each week is that if flash crowds were present they would not be errantly detected

as malicious as is the case with some DDoS approaches. Only relative anomalous behavior is

flagged as malicious.

55

To distinguish normal user behaviors from anomalous behaviors, a tolerance interval bound-

ing 90% of the assumed usual traffic (γ=0.90) was calculated with 95% confidence (α=0.05)

using a two-sided tolerance interval h̄ ± k2s where h̄ =
�
i=1

hi/n is the mean of the entropy of

session lengths for the n respective clients, s is the sample variance and k2 is:

k2 =

����(N − 1)(1 + 1
N
)z2(1−p)/2

χ2
γ,N−1

(3.9)

For this two-sided tolerance interval, γ is the critical value of the chi-square distribution

with N-1 degrees of freedom. This test considers α percent of the sample population with

z(1−p)/2 as the critical value for the normal distribution with confidence (1-p)/2.

This metric was applied as the standard of entropy to the test data sets that potentially

contained attack traffic mimicking a FRC attack. Experimental results for FPR and FNR are

shown in Table 3.8 and Table 3.9 respectively. These tables summarize the findings of the 56

experiments utilizing the two months of NASA web request logs that were segregated into 8

weekly subsets. The ISP Web logs experiments produced the following results: week 1 as the

training set FPR: 4.0%; FNR: 1.2%, week 2 as the training set FPR: 9.1%; FNR: 0.6%.

Table 3.8: Attribution False Positive Rates (%)

Train/Test Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8

Wk1 - 4.4 5.1 8.2 6.1 7.7 7.1 11.6

Wk2 8.0 - 6.5 9.2 8.2 13.9 5.7 14.2

Wk3 4.0 4.4 - 7.1 6.1 7.7 7.1 12.2

Wk4 4.0 3.7 4.4 - 6.1 7.7 5.7 10.3

Wk5 4.0 3.7 4.4 4.1 - 7.7 5.7 10.3

Wk6 1.3 2.5 2.9 3.1 4.1 - 4.3 7.1

Wk7 2.7 3.1 3.6 3.1 4.1 4.6 - 7.7

Wk8 2.0 1.9 2.9 3.1 4.1 1.5 5.7 -

Initial experimental results show that entropy-based detection of session length variation is

potentially an effective means to detect and reduce the effectiveness of FRC attacks. Like most

attributions schemes, the methodology as it is currently devised can be defeated. By increasing

the number of attacking bots and decreasing the amount of sessions produced by each bot, the

attacker can achieve their objective and moderate the amount of entropy the attack produces

56

Table 3.9: Attribution False Negative Rates (%)

Train/Test Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8

Wk1 - 3.4 5.8 4.8 4.4 3.4 3.2 4.0

Wk2 7.0 - 6.4 4.8 6.8 8.8 4.6 6.4

Wk3 5.4 3.2 - 4.6 6.0 3.8 2.6 5.2

Wk4 3.6 3.6 3.8 - 3.0 3.6 3.2 4.2

Wk5 6.8 4.6 6.4 6.8 - 4.2 7.2 5.4

Wk6 9.2 10.2 9.0 6.8 6.0 - 7.0 7.6

Wk7 7.2 5.0 7.4 4.8 6.8 5.6 - 7.0

Wk8 5.4 6.0 7.0 6.4 5.0 6.0 5.4 -

thus remaining within the tolerance limit. Furthermore, if an attacker consumes less than five

web sessions, they will also go unidentified. In a practical context with an attacker lacking the

insight on usage patterns, staying within the tolerance limit can be difficult to judge by the

attacker.

While the proposed attribution scheme exhibited limited success, like the initial FRC de-

tection solution proposed, it is not a general solution and requires further refinement. Chapter

6 will improve upon this approach by considering a more apt and encompassing set of client

web usage characteristics.

3.6 Related Work

This section provides a survey of related work that has bearing and similarities with that

of a FRC attack. Because the mitigation and description of the FRC attack has been largly

unexplored and unaddressed, the related bodies of work are derived from many areas.

3.6.1 Economic Denial of Sustainability

The notion of an Economic Denial of Sustainability (EDoS) attack has been previously

discussed in non-academic forums. The term was first presented on a blog posting by cloud

computing security professional Christopher Hoff [51] and has since been discussed in similar

contexts [24, 91]. Hoff describes the EDoS attack as a purposeful manipulation of a utility

pricing model that exceeds the economic means of a cloud consumer. This description of the

57

vulnerability of the utility model in the cloud has served as a key motivation for this work.

This work on the FRC attack is a refinement that considers a more subtle threat model and

subsequent detection and attribution.

Taken at face value, an EDoS attack is an attack category that encompasses DoS/DDoS,

click fraud, and FRC attacks. Whether directly or indirectly, the majority of DoS/DDoS at-

tacks have had economic motivations. The victim suffers financially by degradation of service

capabilities, by payment of an extortion fee, loss of reputation, or elects to spend additional

resources to bolster defense capabilities. Likewise, click fraud has always been an economi-

cally motivated attack in which the attacker directly benefits from surreptitious requests. In

comparison to the previously stated attacks, the FRC attack, as discussed in Section 3.4, has

deep-rooted economic motivations in which the attacker uses a slow-and-low strategy to per-

form an attack that leads to an EDoS over a prolonged period of time. Although Hoff first

proposed the concept of a FRC-like attack, this work formalizes a concrete understanding of

the utility model vulnerability, proposes both detection and mitigation solutions, and considers

this problem in the context of similar technologies, research, and mitigation strategies.

3.6.2 Application-Layer DDoS

There have been a number of key works that have explored application-layer DDoS attacks

that have resulted in potential detection and mitigation techniques that may be applicable to

FRC attacks. Although the attacker’s objectives and request intensities of DDoS attacks are

significantly different from that of a FRC attack, this particular body of work is relevant because

both attacks employ similar attack methods to mimic the behaviors of legitimate clients.

Within this body of work, some have sought to distinguish flash crowds from DDoS at-

tacks [56, 120, 124]. It was found that the number of overall client requests in a flash crowd

was proportional to the number of users [124] and that flash crowds do not exhibit higher

per-client request rates [56]; both are behaviors that differ from DDoS attacks. While signif-

icant, these findings are not applicable to the detection on a FRC attack. The FRC attack

is fundamentally different from the behaviors of flash crowds as these events are composed of

dramatically increased amounts of normal traffic over a short period of time.

58

Due to the nature of DDoS attacks - a large amount of requests during a short period

of time - detection and attribution of malicious clients has focused on statistical methods for

detecting such behavior. Ranjan et al. [97] implemented a DDoS defense that consists of a

suspicion assignment technique that is reliant on an abnormal increase in the inter-arrival

request frequency for individual users and an increased session inter-arrival frequency over all

clients to be successful. Oikonomou et al. [87] proposed a technique to model normal user

behavior by exploring increased metrics for session and request inter-arrival times as well as

the average inter-arrival rate per client session. Finally, Jung et al. [56] used similar methods

of flagging offending attackers by monitoring per-client request rates. The effectiveness of each

of these three solutions is contingent on the individual malicious clients performing requests

at a significantly higher rate during a DDoS than that of normal traffic. This is contrary to a

FRC attack in which a malicious attacker would only need to make on the order of 200 requests

over a given day that would not be detected by these DDoS detection methodologies.

Others have analyzed request semantics of users [87, 124], which appears prima facie to

be a promising area for future work that could be used in tandem with the presented FRC

detection methodologies.

To be fair, the approaches discussed in this section were not designed nor analyzed with

respect of a FRC attack by their respective authors. Until now, the FRC attack has not been a

research subject. Future examination and experimentation will answer the question of whether

or not these detection methodologies are limited to application-layer DDoS attacks or whether

they possess qualities that can be adapted for the purpose of detecting significantly reduced

but still malicious consumption of web content.

3.7 Future Work & Conclusion

Future research on this topic will focus on shifting the J2 point on the MRU continuum

ideally to where J2 = J1 - � or in other words the FRC attack has been relegated to below

nuisance activity. While research in the area of application-layer DDoS attacks has been fo-

cused on mitigating attacks when the QoS of the target begins to degrade, methodologies and

approaches from this body of work serve as a promising catalog of techniques on which to base

59

attribution and detection methodologies that are appropriate for more subtle attacks like the

FRC.

Utility models as they are structured today for cloud computing are vulnerable to remote

exploits. By allowing any user with access to consume resources that are in turn metered and

billed to the cloud consumer, exposes the cloud consumer to a risk that is only mitigated by

time, detection and accountability. Until now there have been no previously known mitigation

strategies. Awareness and understanding are a key means of defense, and this chapter strived

to achieve those goals. This chapter provided a thorough description of the FRC attack and

described initial detection and attribution methodologies that may contribute to or motivate

solutions to mitigate such attacks. Unless utility models are restructured to obviate the FRC

attack, research in mitigating the FRC attack is necessary in order to ensure long-term sustain-

ability of cloud consumers and remove one more impediment that has dissuaded organizations

from adopting utility model based computing services like cloud computing.

60

CHAPTER 4. TRAFFIC GENERATION

Chapter contains modified content from the following published conference paper:

Idziorek, J., Tannian, M. and Jacobson, D. ”Modeling Web Usage Profiles of Cloud Services

for Utility Cost Analysis.” In Proceedings of the 2011 Winter Simulation Conference (WSC).

Phoenix, AZ. 11-14 Dec. 2011. pp. 3318-3329, c� IEEE 2011. (Invited Paper)

4.1 Abstract

Early proponents of public cloud computing have come to identify cost savings a key factor

for adoption. However, the adoption and hosting of a web application in the cloud does not

provide any such guarantees. This is in part due to the utility pricing model that dictates the

cost of public cloud resources. In this work we seek to model and simulate data usage for a web

application for the purpose of utility cost analysis. Although much research has been performed

in the area of web usage mining, previously proposed models are unable to accurately model web

usage profiles for a specific web application nor do they define the necessary analytical metrics

needed to measure such accuracy. The first objective of this chapter is to present a simulation

model and corresponding algorithm to model web usage based on empirical observations. The

validation of the proposed model is performed using four metrics that holistically summarize

web usage and results show that the simulated output conforms to that of what was observed

and is within acceptable tolerance limits. Building on this work and in the context of the FRC

attack, the second objective of this work is to determine the most formidable attack scenario

to employ when analyzing the proposed detection and attribution methodologies.

61

4.2 Introduction

With the advent of the public cloud computing model, web services that were once hosted on

private servers and networks are being outsourced to third-party cloud service providers (CSPs)

- Amazon’s EC2 is a well-known example. Early proponents of this emerging compute model

have come to identify cost savings as a key motivation for the adoption of the cloud model.

In comparison to more traditional computing models, economic efficiencies in the public cloud

have been enabled by the fundamental paradigm shifts in the way computing infrastructure is

hosted (e.g., multi-tenant hosting through virtualization, economies of scale, thin provisioning)

and the pay-as-you-go business model that dictates costs for resource usages by the cloud

consumer (i.e. a person that rents computing infrastructure from a CSP) - namely, the utility

compute costing model. However, the adoption and hosting of a web service in the cloud does

not provide any guarantees of cost savings as there are many factors that must be taken into

consideration [39, 46].

Under the utility compute costing model, much like the utility model that governs the

cost of electricity consumption, cloud consumers only pay for the resources they use and only

for the time they use them. For instance, the data transfer costs in and out of Amazon’s EC2

environment by a cloud consumer’s clients (those that patron the cloud-hosted web application)

is governed by the Amazon’s Web Services costing model (Figure 4.1) and accrues a cost that

is a function of the total data transferred [4]. At the conclusion of the month - a typical cloud

billing cycle - the aggregated costs are billed to the cloud consumer. Because data usage in the

cloud environment is uncertain, the cost for data transfer is as well, which is not typically the

case for private web service hosting. The pay-as-you-go billing structure fundamentally changes

how those who adopt the cloud model view the monthly data usage of their web applications

and motivates the need for modeling and simulation of web usage profiles. Being able to

accurately forecast accumulated resource consumption in advance allows one to anticipate costs

and manage application designs in order to address costs proactively.

The first objective of this chapter is to model and simulate data usage for a web application

for the purpose of utility cost analysis. More specifically, the goal is to explore the minimum

62

Internet

Internet

CSP Environment
Clients

Cloud Web
Servers

Cloud
Storage
Servers

Cloud Consumer

Cloud
Access Point

Cost = f(data usage)

Figure 4.1: Cloud Network Diagram.

number of days of training data necessary to achieve acceptable accuracy of the simulation

output. Although much research has been performed in the area of web usage mining - tech-

niques to model and simulate web user transactions - previously proposed models that generate

web traffic are unable to accurately model web usage profiles for a specific web application.

Either these models generate generic web document requests or such requests are based on

theoretical distributions. The approach presented in this chapter differs in that web document

requests are derived from trace-driven, and first- and second-order Markov models trained on

empirical observations of how the web application under consideration was used in actuality.

Additionally, this chapter proposes four analytical metrics with which to measure the holistic

accuracy of the simulated output - analysis which is also lacking from previous works. The

deliverable is a simulation model and corresponding algorithms to model web usage based on

empirical observations. The validation of the proposed model shows that the simulated output

conforms to that of what was observed and is within acceptable tolerance limits.

Building on the constructed simulation model for web traffic, this chapter further explores

how such a model could be used to generate attack traffic with which to analyze the proposed

detection and attribution methodologies. It follows that the second goal of this chapter is to

determine which simulation algorithm - trace-driven, first- or second-order Markov - presents

the most formidable attack scenario. In other words, which of the listed simulation algorithms

would be considered the worst-case scenario for the FRC defender. To make such a distinction,

the analytical metrics proposed for the analysis of the simulation model will be applied to a

63

scenario when a FRC attacker attempts to consume 100% more traffic than is expected.

The rest of the paper is organized as follows. Section 4.3 discusses related works in the

context of this work. Section 4.4 describes the dataset used to train and validate the simulation

algorithm as well as considerations taken when cleansing the original dataset. To model web

usage profiles, in Section 4.5 describes a simulation modeling and corresponding algorithm.

Based on this model, Section 4.6 provides the experimental metrics, design, and results used

to validate the proposed model. In Section 4.7, this experimental design is used to discover the

worst-case FRC attack scenario. Lastly, future work and a conclusion are discussed in Sections

4.8 and 4.9 respectively.

4.3 Related Work

The related works that have bearing on this paper are derived from the research areas of web

usage mining and web traffic generation. Although web usage modeling and traffic generation

are not mutually exclusive, this chapter will explore a shortcoming in the synthesis of these

two research fields. At present, a complete model that takes into account all the necessary

sub-models needed to accurately simulate realistic web traffic for a specific website does not

appear to exist. Furthermore, there is no model suitable for predictive cost modeling of web

traffic. In this section, the described work is briefly describe in the context of these related

bodies of work.

Much research has been performed in area of web usage mining since the seminal work done

by Arlitt and Williamson [7]. Many of these works, similar to that of [75], [114], and [128] have

sought to characterize, model and validate the distributions that depict the way individual

users and user populations interact with websites. Extrapolating from this body of research,

a number papers have made use of and extended these models to simulate web traffic for a

number of purposes. Cao et al. [19] presented a model to simulate generic web traffic on

high-speed backbone links. Their objective differs from the objective of this work in that this

chapter and the resultant simulation algorithm seeks to model aggregate user behavior for a

distinct website as observed by the web server as opposed to modeling link traffic. Luo and

Marin [74] devised a model to simulate realistic Internet background traffic, including the web,

64

for constructing a network intrusion detection environment. Similarly, Kroc et al. [67] focused

on modeling the theoretical distributions that together compose a single web user session.

While such modeling may be sufficient for background noise and generating realistic user-side

web sessions respectively, neither of these two works model specific page requests as observed

for a given website. Instead they model web interactions as generic requests. Moreover, the

requested web document size is attributed a value based on a theoretical distribution, which is

not sufficient for the purposes of accurately modeling actual data usage for a specific website

with real document sizes. Instead, specific web requests need to be represented by their known

data sizes, which is discussed in Section 4.4.1.

Burklen et al. [17] present a general model and algorithm to synthetically generate a se-

quence of web requests for a single user. This work is based on known and previously studied

web usage behaviors and models in addition to the hyperlink structure of individual web pages

and their relationship to other web pages for a given website. While notionally similar to the

work in this chapter, the scope of such an algorithm is limited to that of a single user session,

not multiple users over a prolonged period of time, which is a key objective of this work. Fur-

thermore, the synthesizing of a single user session is predicated on a theoretical relationship

between web pages derived from the site’s hyperlink structure and not from leveraging historical

observations of how users have traversed the website. We instead generate individual requests

that compose a web session from a Markov model based on learned browsing patterns.

In contrast to modeling generic or request sequences based hyperlink structures, Markov

chains have been shown to provide accurate models for simulating web usage [71]. Under

this guise, Markov models have been used in a number of contexts including performance

analysis [21] and caching algorithms [20]. Most similar to the work presented in this chapter

are papers that have sought to predict user web sessions by means of Markov models. Nigam

and Jain [85] presented a model based on a dynamic nested Markov model for predicting the

next page accessed by a user given an observed series of requests. Borges and Levene have

produced a number of works - summarized in [10] - that investigate the next page request

of individual users and the accuracy of predicting n-grams of requests with various Markov

models. While effective for their given purposes, neither of these works provide analysis of

65

the accuracy and summarization ability of using Markov models for generating and predicting

aggregate web traffic based on actual server logs.

In their own respective way, each of these works presented in this section falls short of being

able to provide a complete model and simulation framework for data usage transferred by a

specific website. To fill this gap, this work creates a synthesis between many of the sub-models

presented in these works to provide a more relevant modeling of content usage for a specific

website based on training from session logs. This model can then be used for the purposes of

modeling usage profiles of cloud-based service for predictive cost analysis and dually for the

purposes of FRC attack traffic generation.

4.4 Dataset Description and Considerations

The datasets used for the purposes of this paper are two 56-day web server logs. The first

web server log (denoted as ECpE) originates from our department’s web server and the second

log was produced by a busy NASA web server (denoted as NASA) [82]. To demonstrate the

generality of the proposed algorithm, each of the web logs are used to both train the proposed

model as well as for the experimental validation of the simulation proposed algorithms presented

in Section 4.5.

Web server usage is often represented as Zipf-like distributions [14] in which the frequency

of a requested document p(i) is proportional to its rank i such that p(i) ∝ 1/iα where α is

close to unity. Figure 4.2 depicts a Zipf-like distribution for the ECpE dataset as a log-log

plot of request frequency vs. rank. Figure 4.3 shows a similar log-log plot of document rank

vs. data usage. Drawing from Figure 4.2, the 356 most requested pages represent 90% of all

requests and of these pages their weight in data usage totals over 97% of data requested (Figure

4.3) over the observed 56-day span for the ECpE dataset. Given these empirical distributions

and observations, the modeling of data usage for the given dataset is heavily dependent upon

accurately modeling the most frequently requested documents.

66

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

90% of all
requests

i356

Figure 4.2: Zipf-like Distribution for Request Frequency.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

log10(Rank)

lo
g 10

(D
at

a
U

sa
ge

)

90% of all
requests

i356

Figure 4.3: Zipf-like Distribution for Data Usage.

4.4.1 Web Usage Mining and Modeling Components

A web server log maintains an itemized journal of all users’ content requests and provides

the necessary observations for deriving empirical distributions and models used in the study of

web usage. Figure 4.4 provides an illustration of web usage metrics and will be used as a guide

to explain these metrics as well as the considerations taken to cleanse the observed web server

log from its original form to what was used for the purposes of this chapter.

Primary Web Document Request - An individual web request within a web log is

depicted as a vertical line in Figure 4.4. As seen annotated in the call-out, requests are composed

of an IP address for the requesting client, time stamp, document requested, and the data size

67

Request inter-arrival
time

Web document
request

Session inter-arrival
time

t
. . .

 (entry) [IP address] [time stamp] [page request] [size]

 (1) 192.168.3.2 1:30:30 /index.html 9392

 (2) 192.168.3.2 1:30:35 /students/index.html 9933

 (3) 192.168.3.2 1:30:35 /scripts/style.ccs 233

 (4) 192.168.3.2 1:30:36 /pictures/students.png 3399

 (5) 192.168.3.2 1:30:55 /academics/courses.html 6758

 (6) 192.168.3.2 1:30:59 /pictures/books.png 567

Web session A
Length = 3

Web session B
Length = 2

(1) (2)

(3) (4)

(5)

(6)

Log Entries

Figure 4.4: Web Usage Modeling Components.

of the respective document.

The modeling and simulation objectives of this work are reliant on the accuracy of the

data size attributed to each client-invoked request (i.e. a primary request). The data size, as

shown in Figure 4.4, for each individual HTML request can be misleading as it is not a com-

plete account of the data usage needed to view the expected web page, but instead the entry

only reports the size of the HTML file itself. Typically, a single request for a HTML docu-

ment invokes other secondary in-line requests to retrieve embedded objects within the primary

HTML page such as pictures, scripts, and videos. In Figure 4.4, both (3)/scripts/style.css and

(4)/pictures/students.png are secondary in-line requests, shown as shorter lines, of the primary

request, shown as a taller line, for (2)/students/index.html. Together, the size of the primary

and associated secondary requests represent the total data usage for a single client-invoked

request, which is one of the objectives of this analysis. While both primary and secondary

requests are registered in a web log, archival analysis is inadequate to determine whether an

entry is a primary or a secondary request, and relate secondary requests with its parent primary

request. Client-side and distributed caching further complicate the task of reconstructing these

relationships from a web log.

Therefore, in lieu of these impediments and in order to accurately capture the data size

for each primary client-invoked request and its accompanying secondary requests, analysis was

performed on the active departmental website (i.e. the ECpE dataset). The URL for each

primary request in the web log - assumed to be an HTML document or URI - was requested

from the website with a script capable of capturing the data usage footprint for the primary

request as well as all secondary requests. After accumulating the footprint of each primary

68

request and relevant secondary requests, the total replaced the original primary request size

and the secondary entries were discarded. Such analysis and post-processing can only be

performed with access to a live website and thus such analysis was not performed on that

NASA dataset. Therefore, the presented initial results for data usage modeling are limited to

that of a single website, since access to web logs of an active web site is severely limited.

Web Session - A web session is a set of consecutive requests generated by an individual user

during a single viewing period. As seen in Figure 4.4, web session A contains three primary

web requests and thus has a web session length of three. A web log is composed of many

interleaved web sessions initiated by multiple users. Within the observed web logs described

in this section, web session lengths ranged from well over 100 documents in length with some

sessions as long as 1400 primary requests. In order to provide a more accurate modeling of how

the majority of normal users actually traversed the website, web session lengths were truncated

to 35 primary requests, which falls within the 99th percentile.

Often web logs do not contain the complete information necessary to discern when a web

session for a user ends and when the user’s next web session begins. Research in this area has

sought to differentiate between sessions using time-oriented heuristics [130] and transitional

request probabilities using a first-order Markov model [92]. However, for simplicity, it is as-

sumed in this work that a 900 second or greater time lapse between primary requests denotes

the end of one web session and the beginning of a new session. This assumption is consistent

with previous works in the field [67].

Session Inter-arrival Time - Session inter-arrival time is the measure of time between

the beginning of two consecutive web sessions. In Figure 4.4, the session inter-arrival time is

depicted as the time between the beginning of web session A and that of web session B.

Request Inter-arrival Time - Within a given session greater in length than one, there

is an intermittent amount of time experienced between each respective primary web request

by the client. This is referred to as the request inter-arrival time and is shown between web

session A requests (4) and (5) in Figure 4.4.

69

4.4.2 Dataset Limitations

As with many empirically based models, the simulation results are heavily dependent on the

quality of the training data. Moreover, the training of trace-driven and Markov models based

on the actions that have been observed in the web logs restricts the model to only the web

pages requested and conditional probabilities between pages that have been observed. Lastly,

due to the necessity of performing analysis on a live website and limited cooperation of website

operators, the results of this work is currently limited. Although there are no indications that

the presented model and algorithm would not provide a general solution, such claims can only

be made after further analysis of a broader set of websites.

4.5 Simulation Algorithms

The objective of the proposed simulation algorithms are to generate web traffic in accordance

with what has been observed. The uniqueness of the outlined approaches in comparison to the

papers discussed in Section 4.3 is that the described simulation algorithms generate web traffic

crafted from empirical distributions from a specific web application and utilizes trained models

to generate page requests that reflect actual primary request patterns. In this section, modeling

considerations and algorithms based on first-order and second-order Markov models in addition

to a trace-drive simulation model will be discussed. The primary objective of this section is to

describe a proposed Markov-based simulation algorithm by dissecting a second-order Markov

model and its underlying modeling components. Although not overtly described in the same

detail as the algorithm for the second-order Markov model, a similar algorithm using a first-

order Markov model was also constructed for modeling web usage.

4.5.1 Description of Markov-Based Simulation Algorithms

Given a web server log composed of N days of observed requests as an input, the objective

of Algorithm 1 is to simulate a web server log that conforms to the empirical distributions

derived from the input dataset while preserving web usage behaviors as they were deduced

from sessions within the input web log. The output of the simulation algorithm is a web server

70

log L composed of many users’ web sessions that emulates actual clients as they utilize the

website over a period of time.

A web server log L is composed of many independent and, at times, overlapping sessions

s that represent the actions taken by a website’s user base. Each session s ∈ L is a tuple

s =< ipAddress, sessionLength, P > that is composed of the IP address of the individual

requester, the number of web pages requested during a given session, and the set of primary

web page requests P . Each p ∈ P is also a tuple p =< page, time, size > that denotes the

specific web page, time stamp, and size of each individual web page request within a session.

Algorithm 1 Modeling Web Usage from a Second-Order Markov Model

Require: Observed Web Server Log
Ensure: Generated Web Server Log
1: generateLog() : L {
2: absoluteT ime ← 0, i ← 0, currentRequests ← 0;
3: while currentRequests < totalRequests do
4: si.sessionLength ← generateSessionLength();
5: si.ipAddress ← generateIpAddress();
6: absolute time + = generateSessionInterarrivalTime();
7: currentRequests+ = si.sessionLength;
8: for j ← 1 to si.sessionLength do
9: if j == 1 then

10: pj .page ← returnFirstPage();
11: pj .time ← absoluteT ime;
12: relative time ← absoluteT ime;
13: else
14: if j == 2 then
15: pj .page ← returnPageFirstOrderMarkov(pj−1.page);
16: else
17: pj .page ← returnPageSecondOrderMarkov(pj−1.page, pj−2.page);
18: end if
19: relativeT ime + = generateRequestInterarrivalTime();
20: pj .time ← relativeT ime;
21: end if
22: pj .size ← pageSize();
23: end for
24: L = L ∪ si;
25: i++;
26: end while
27: return L;
28: }

71

4.5.2 Algorithm Modeling Components

The presented algorithm illustrates a high-level overview of this approach to simulating

web usage profiles. The underpinnings of the algorithm are derived from published web usage

metrics in coordination with generating primary request sequences by using a Markov model.

The following descriptions provide a thorough analysis of the algorithm components used for

experimental evaluation, which is reviewed in the next section.

Line 3: totalRequests - Although not formally presented in in this paper, linear regression

analysis was performed on each training dataset to extrapolate the expectation of the

number requests for the given target of accumulated simulation days. This value was

used as the control parameter to dictate the length of each simulation run.

Line 4: generateSessionLength() - The session length defines the number of primary web

requests by an individual user during a single browsing period. Session lengths were

modeled as a Lognormal distribution with the following parameters: α = 0.44-0.48, β

= 0.76-0.78, µ = 2.47-2.49 pages, σ = 3.45-3.46 pages. The modeled session length

distribution is consistent with [114].

Line 5: generateIpAddress() - The IP addresses chosen for each individual session were

modeled and drawn from a continuous, piecewise-linear empirical distribution that was

populated based on the pre-processing analysis of the training data set.

Line 6: generateSessionInterarrivalT ime() - The session inter-arrival times were modeled

as an exponential distribution with a mean that varied between 113 and 126 seconds.

Although in [67], session length was modeled with a Weibull distribution, we found an

exponential distribution to be a more appropriate fit for the given data sets.

Line 10: returnFirstPage() - Each simulated session is initialized by determining the first

page to be synthetically generated for a given user and for each individual session. The

first page distribution is an initial state vector learned from the first page views of the

sessions extracted from the training dataset. Due to the self-similarity of web traffic,

the distribution of first page requests can also be depicted with a Zipf-like distribution

72

similar to that of the aggregate request distributions presented in Section 4.4. Figure 4.5

represents the first-page distribution of the training data set and Figure 4.6 represents

the simulated first-page distribution.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

Log10(Rank)

Lo
g 10

(R
eq

ue
st

 F
re

qu
en

cy
)

Figure 4.5: Actual First-Page Zipf Distribution.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

Log10(Rank)

Lo
g 10

(R
eq

ue
st

 F
re

qu
en

cy
)

Figure 4.6: Generated First-Page Zipf Distribution.

Line 15: returnPageF irstOrderMarkov() - A Markov model is used to generate the actual

page requests and is trained by analyzing web server logs. Based on the presented algo-

rithm, if a session length is at least two, the second request generated in a web session

is drawn from a first-order Markov model such that pij = Pr(xn+1 = j|xn = i). For

a thorough explanation of training and building Markov models, which is accompanied

examples, please see [10].

73

Line 17: returnPageSecondOrderMarkov() - For web session lengths greater than two, all

subsequent requests are generated from a second-order Markov model such that pijk =

Pr(xn+2 = k|xn+1 = j, xn = i). The second-order model was constructed in a manner

similar to the first-order model.

Line 19: generateRequestInterarrivalT ime() - Each request inter-arrival time was gener-

ated from a Weibull distribution with the scale parameter ranging between 28.57 and 33.8

and the shape parameter between 0.57 and 0.62. The fitting of this distribution aligns

with that in [67].

4.5.3 Description of Trace-Driven Simulation Algorithm

Different than a Markov-based model, a trace-driven simulation model is simply the replay-

ing of randomly chosen web sessions as they were experienced in the training dataset. Instead of

constructing conditional probabilities between successive requests, in this model, the selection of

primary web requests is a product of a randomly chosen web session that reflect exactly how real

users traversed the website under consideration. To construct such a model, web sessions were

extracted from the training dataset and assembled into datastore that allowed for both random

selection and quick retrieval. Unlike Algorithm 1, the generateSessionLength() function for

the trace-driven algorithm was not determined by a theoretical distribution but instead by the

empirical distribution of actual sessions and their respective lengths. Furthermore, because of

the prescribed nature of this model, the returnFirstPage(), returnPageF irstOrderMarkov(),

and returnPageSecondOrderMarkov() functions were replaced by a much simpler function

that injected the appropriate primary web request from the chosen web session selection. To

preserve the flexibility of the simulation and modeling ability of the Markov-based algorithm,

the simulation of IP addresses and inter-session and inter-arrival times is similarly performed

for the trace-driven algorithm. The hypothesis tested by introducing the trace-driven algorithm

is whether or not first-order or second-order Markov models are better equipped at modeling

web usage in comparison to replaying what was observed.

74

4.6 Experimental Evaluation

This section presents the experimental metrics, experimental design and related experi-

mental results. Validation of the described algorithms relies on four key measures : 1) relative

proportionality and rank of aggregate requests (Zipf Metric - Section 4.6.1.1) 2) summariza-

tion accuracy (Spearman Footrule Distance - Section 4.6.1.2), 3) summarization completeness

(Overlap Metric - Section 4.6.1.3), and 4) modeling of data usage error (Section 4.6.1.4). To-

gether these four metrics are used to assess the output of the simulation models relative to

actual web usage recorded by the respective websites.

4.6.1 Experimental Metrics

4.6.1.1 Zipf Metric

As described in Section 4.4, a Zipf-like distribution for a web dataset can be depicted by

constructing a log-log plot of requested document frequency vs. rank. Through experimentation

of Zipf-like distributions of web datasets, it has been found that constructing a linear regression

line of the top 10% of primary requests yields a consistent metric with which to measure the

relative proportionality and rank of aggregate web documents. The capturing of only the top

10% of web documents is motivated by the inconsistencies in the tail of Zipf-like distributions

formed from web logs. Figures 4.7 and 4.8 represent Zipf values for both an actual and simulated

web datasets.

Because the Zipf metric is an empirical measure of a single dataset, the percent error (Equa-

tion 4.1) between between the actual Zipf value for the target web log and the corresponding

Zipf value (i.e. the slope of the regression line) for the simulated results were calculated to

produce a consistent metric with which to compare and analyze.

PercentError =
Experimental −Actual

Actual
∗ 100 (4.1)

Due to the fact that the Zipf metric only measures the relative volume of aggregate requests

between the expected and simulation web logs, it does little to express the actual accuracy and

75

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

y = 0.9891x + 3.89

Figure 4.7: Actual Zipf-like Distribution

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

y = 0.9893x + 3.91

Figure 4.8: Simulated Zipf-like Distribution

completeness of the web documents that were requested. For this analysis, the Spearman

Footrule distance and the overlap metrics are introduced next.

4.6.1.2 Spearman Footrule Distance

The Spearman’s Footrule distance [32] is a non-parametric measure of association between

two ranked lists. This measure was used in a similar context to measure the accuracy of pre-

dicting individual session n-grams generated from Markov models [10]. For this work, however,

the Spearman’s Footrule distance is instead utilized to measure the summarization accuracy of

the simulation algorithm by analyzing the ranked lists of the top-10% of the simulated primary

76

requests output in comparison to that of the web logs.

The purpose of employing the Spearman’s Footrule is to find an aggregated ranking that

minimizes the distance between two ranked lists. However, for the purposes of this paper,

the proximity between two ranked lists will instead be considered as it is a more appropriate

measure that aligns with the described analysis objectives.

Drawing on the notation established in [10], the Spearman’s Footrule proximity is defined as

follows: Given two ranked top-k lists L1 and L2 as inputs, with each list containing k entries, let

L be the union of the two lists such that L = L1 ∪L2. Furthermore, let L1 be the reference list

that is assumed to be the ground truth and L2 be the comparison list, which in all actuality is a

partial list in comparison to that of the reference list. To obtain the ranking of a list item i ∈ L

in L1, we define the function f(i) and similarly g(i) for i ∈ L2. In either function f(i) or g(i)

if i /∈ L, then the subsequent ranking is assigned that of a location parameter l = k + 1 [105].

Given these preliminaries, the Spearman’s Footrule proximity is defined as follows:

F (L1, L2) = 1−

�
i∈L

|f(i)− g(i)|

k(k + 1)
(4.2)

In order to provide a measure of similarity or proximity instead of a measure of difference

or distance, the normalized summation in Equation 5.3 is subtracted from one. In the case

that both ranked lists were identical, the Spearman proximity would be one. It follows that

two disjoint lists would yield a Spearman proximity value of zero.

To provide a tangible example for the calculation and purpose of the Spearman proximity

measure, Table 4.1 provides a modified listing of the top-15 requested web pages for both the

ECpE dataset (i.e. Actual) - reference list - and the simulated results using first-order Markov

model as described in Section 4.5 (i.e. Simulated). The respective Spear values, according to

Equation 5.3, can be found in the fourth column in Table 4.1. As can bee seen, the 10th most

popular web age for the Actual dataset is not present in the Simulated dataset, which incurs

the extraction penalty of 16 (i.e. k+1). Once summed and normalized, the provided example

results in an overall Spearman proximity value of 0.73.

77

Table 4.1: Spearman and Overlap Comparison

Rank Reference List (L1) (L2) Spear
1 / / 0
2 /who-we-are/faculty-new.html /who-we-are.html 1
3 /who-we-are.html /who-we-are/faculty-new.html 1
4 /academics/courses.html /academics/courses.html 0
5 /research.html /students/graduate-students.html 3
6 /students/graduate-students.html /students.html 1
7 /students.html /academics.html 1
8 /academics.html /research.html 1
9 /admissions/grad-guidelines.html /admissions/grad-guidelines.html 0
10 /academics/calendar.html /who-we-are/staff.html 16
11 /admissions.html /academics/ee-major.html 1
12 /learning.html /admissions.html 16
13 /academics/flowcharts.html /academics/flowcharts.html 0
14 /research/funding.html /research/research-groups.html 16
15 /who-we-are/people.html /academics/cpre-major.html 16

Spearman 0.70

4.6.1.3 Overlap Metric

In conjunction with the Spearman’s Footrule proximity, the overlap between the reference

list L1 and the comparator list L2 is measured to provide a broad indication of the summariza-

tion ability of the simulation model output. The overlap is defined as the percentage of items

in the comparator list L2 that appear in the reference list L1 such that:

O(L1, L2) =
|L1 ∩ L2|

|L1|
(4.3)

In comparison to the Spearman distance, the overlap value measures the completeness

between the two analyzed datasets. As seen in Table 4.1, a similar example is provided to

demonstrate the calculation for the overlap measure. From this analysis, it is shown that the

Simulated dataset contains 11 of the 15 web documents contained in the Actual dataset (i.e.

the reference list). As a result, the overlap value for the two lists is 11/15 = 73%.

4.6.1.4 Percent Error

Lastly, the percent error (Equation 4.1) between the expected value of the aggregate data

usage (in bytes) as produced by the output from the simulation model and the actual data usage

from that of the observed logs is measured. This measure compliments the Zipf, Spearman and

overlap values to provide a comparative indication of the model’s ability to accurately forecast

78

aggregate data usage, which is a key variable in public cloud utility costing models.

4.6.2 Experimental Design

The available datasets were utilized to there full extent by using a sliding window for both

the input training days and for the output comparison. A goal of this work was to explore

the minimum number of training days necessary to accurately simulate future aggregate use.

In the context of cloud computing and due to monthly billing cycles, future aggregate use is

most appropriately defined as the 30 days in advance of the first observed day of the given

training window. For example, as illustrated in Figure 4.9, the simulation run A is trained

on the days 1-10 of accumulated logs and is tasked with simulating the aggregate usage of the

web application from days 1-30. The results of such a simulation output are then compared to

that of the observed web log. To provide multiple simulation runs for a given training window

size, the simulation was repeated by shifting the simulation window into the future one day

and repeating. As shown in Figure 4.9, the simulation run B was trained on the logs from

days 2-11 and was tasked with simulating the aggregate usage for days 2-31 and thus a sliding

training window of 10 days.

1 2 3 4 5 6 7 8 9 10 11 12 . . . 27 28 29 53 54 5530 31 32 . . .

Simulation Output
Training Window

Days

Simulation Run A

1 2 3 4 5 6 7 8 9 10 11 12 . . . 27 28 29 53 54 5530 31 32 . . .

Simulation Output
Training Window

Simulation Run B

Days

Figure 4.9: Experiment Simulation Design.

To explore the minimum number of training days necessary to simulate future aggregate

use, a sliding window of observed days ranging from 4 days to 29 days was used. The size of

the training window (in days) is denoted as the x-axis for the Figures in both Section 4.6.3

79

and 4.7. For each training window size, 25 simulation runs were conducted and the metrics

described in Section 4.6.1 were calculated. Each datapoint on the following figures represents

an average for the given metric resulting from 25 simulations runs per training window size.

4.6.3 Experimental Results

To generate web sessions that together form a web log, experimental simulations were

performed using trace-driven and both first- and second-order Markov models. Having prior

access to the accumulated data logs allowed for the comparison of the simulation model output

with that of what actually transpired.

Figure 4.10 provides a comparison the of percent error in accumulated data usage between

generating web requests from a trace-drive and first- and second-order Markov models. From

the analysis of the ECpE dataset, it can be seen that the trace-drive simulation model provides

a more accurate modeling of data usage than both of the Markov-based models for training

window sizes larger than four days. While it takes approximately eight days of observed web

logs for the trace-driven model to produce a 30-day projection of data usage that is within

a 5% error tolerance of the actual value, it takes more than twice as many observed days to

for the Markov-based models to achieve the same results. As expected, the initial prediction

capability of the three models improves as the training window sizes increases. However, the

trace-drive model reaches a limitation of accuracy after approximately 21 days while the first-

and second-order Markov models exhibits a more linear improvement in accuracy after seven

days while maintaining a proportional relationship as the training window size increases. While

similar analysis of the NASA dataset would be beneficial, the historic nature of the website

did not lend itself to being able to accurately attribute secondary-line inline requests to their

respective primary requests and thus it was not possible to accurately model the total data

footprint for each primary request. Despite this drawback, the remaining metrics previously

discussed are applicable to both the ECpE and NASA dataset.

Figures 4.11 and 4.12 show the Spearman’s Footrule proximity between the simulated output

and the observed logs for the top-10% of requests for both the ECpE and the NASA datasets.

The results show that across all training window sizes, the trace-driven model provides a

80

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Training Window Size

Pe
rc

en
t E

rro
r (

%
)

Trace
First order
Second order

Figure 4.10: ECpE - Data Percent Error.

consistently better accuracy in summarization ability in comparison to that of the Markov-

based models. This is in part due to the nature of Markov models. In this context, first-order

models accurately represent the first two requests of a session but do not accurately represent

all second-order conditional probabilities for session lengths greater than two. Second-order

models on the other hand, accurately model second-order conditional probabilities and thus

have a higher accuracy in reflecting reality but do so at the loss of coverage. The completeness

of the summarization strengths of the trace-driven can further be seen in Figures 4.13 and 4.14,

which provides a higher-level comparison of the overlap, or the completeness in summarization

between the top-10% of requests.

0 5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

Training Window Size

Sp
ea

rm
an

 F
oo

tru
le

 P
ro

xi
m

ity
10

%

Trace
First Order
Second Order

Figure 4.11: ECpE: Spearman’s Proximity.

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

Training Window Size

Sp
ea

rm
an

 F
oo

tru
le

 P
ro

xi
m

ity
10

%

Trace
First order
Second order

Figure 4.12: NASA: Spearman’s Proximity.

Similar to the Spearman proximity analysis, the overlap between the top-10% of requested

81

documents yields results that show the trace-driven model is more adept at providing a more

accurate completeness of summarization between the three analyzed simulation models.

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

Training Window Size

Pe
rc

en
t O

ve
rla

p 10
%

Trace
First Order
Second Order

Figure 4.13: ECpE: Overlap Percentage.

0 5 10 15 20 25 30
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Training Window Size

Pe
rc

en
t O

ve
rla

p 10
%

Trace
First order
Second order

Figure 4.14: NASA: Overlap Percentage.

To complement the data usage and summarization (i.e. Spearman and overlap) metrics, the

Zipf analysis provides a measure of the relative proportionality of request volume between the

top-10% of requested documents. Because the aforementioned summarization metrics are non-

parametric measures, they do not account of the volume of requests attributed to each respective

primary request. As can been seen in Figures 4.15 and 4.16, the Zipf value for the trace-

driven model provides a significantly better result in comparison Markov-based models, which

is consistent the previously analyzed results. These results are also a product of the decreased

coverage of Markov models and the bias they create towards the most popular documents.

0 5 10 15 20 25 30
0

5

10

15

20

Training Window Size

Zi
pf

 P
er

ce
nt

 E
rro

r(%
) 10

%

Trace
First Order
Second Order

Figure 4.15: ECpE: Zipf Value.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Training Window Size

Zi
pf

 P
er

ce
nt

 E
rro

r (
%

) 10
%

Trace
First order
Second order

Figure 4.16: NASA: Zipf Value.

Through this study, a trace-driven simulation model has been shown to provide a consis-

tently more accurate modeling of web data usage than a either a first- or second-order Markov

82

model. In addition to the less accurate ability to model web usage, the drawback of Markov

models, in general and as they increase in order, is that they consume a exponentially higher

state-space and longer model runtimes than that of lower-order or trace-driven models. For

the application of data usage forecasting a trace-driven model has been shown to be definitely

the best of the analyzed models in all four provided measures.

4.7 Attack Traffic Generation

As discussed in the Section 4.2, the provided algorithm and results serve a dual purpose for

this work. Although the primary focus of this chapter was centered on modeling and simulating

web traffic for a specific website or web application, the presented results can also be used to

generate realistic attack traffic that can be used for the purposes of testing proposed FRC

detection and attribution solutions. Formal modeling enables for the creation of worst-case

attack scenarios that can test methodologies under challenging scenarios.

Different than the analysis in Section 4.6.3, the objective of this section is to simulate web

usages in volumes that would be indicative of a FRC attack. To test the three simulation models

adeptness at creating realistic attack data in excess of normal, the experiments provided in this

section were constructed to consume 100% more requests than the previously targeted 30-day

value. Comparing the actual 30-day value from the observed web logs with the simulated attack

data will provide the answer as to what simulation methodology would best be suited for the

purposes of simulating a stealthy FRC attack.

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

Training Window Size

Sp
ea

rm
an

 F
oo

tru
le

 P
ro

xi
m

ity
10

%

Trace
First order
Second order

Figure 4.17: ECpE: Spearman’s Proximity.

0 5 10 15 20 25 30
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Training Window Size

Sp
ea

rm
an

 F
oo

tru
le

 P
ro

xi
m

ity
10

%

Figure 4.18: NASA: Spearman’s Proximity.

83

0 5 10 15 20 25 30
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Training Window Size

Pe
rc

en
t O

ve
rla

p 10
%

Figure 4.19: ECpE: Overlap Percentage.

0 5 10 15 20 25 30
0.9

0.92

0.94

0.96

0.98

1

Training Window Size

Pe
rc

en
t O

ve
rla

p 10
%

Trace
First order
Second order

Figure 4.20: NASA: Overlap Percentage.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Training Window Size

Zi
pf

 P
er

ce
nt

 E
rro

r (
%

) 10
%

Trace
First order
Second order

Figure 4.21: ECpE: Zipf Value.

0 5 10 15 20 25 30
0

1

2

3

4

5

Training Window Size

Zi
pf

 P
er

ce
nt

 E
rro

r (
%

) 10
%

Trace
First order
Second order

Figure 4.22: NASA: Zipf Value.

Similar to the experimental results presented in Section 4.6.3 and despite the 100% increase

in simulated traffic volume, the trace-driven model outperformed both the first- and second-

order Markov models in respect to the Zipf, Spearman, and overlap metrics. As a result,

throughout the rest of this work, the trace-driven attack scenario will be considered the most

formidable attack.

4.8 Future Work

Further validation and future work on this topic will be heavily dependent on obtaining a

sufficient number of daily web logs from an active websites of sufficient length and that are

suited for data usage modeling. To test the generality of the result presented, it would also

be beneficial to obtain numerous web logs from diverse web sites or web applications and of

varying user volume. While desirable, privacy and security concerns are significant impediments

84

to accessing web logs for research use. In order to make due with what is available, and thus to

render existing publicly available datasets useful for such analysis, heuristic-based approaches

will be necessary in order to identify primary requests and to reconstruct data usage footprints

from associated secondary in-line requests. Within the study of Markov models, there exist a

number of methodologies that could be implemented (or expanded upon) to further refine the

accuracy of session generation components of the model, which could potentially lead to more

precise data usage modeling and provide for a more accurate coverage of overall requests. In

addition to the modeling of web usage for utility cost analysis, many other aspects of a CSP

platform like server instant hours, data I/O, and storage could be modeled and simulated to

provide a more holistic account the total expenses a cloud consumer incurs.

4.9 Conclusion

Resource planning is not unique to where an application is hosted. However, having accurate

profiles of future web application usage allows for more efficient management and expectations

of costs in the cloud. In order to address this challenge, modeling needs to be able to charac-

terize a given web application trained with actuals usage patterns. In summary, the presented

approach was to do the following: 1) obtain actual page sizes (i.e. size of primary and secondary

in-line requests); 2) determine empirical distributions from actual web logs; 3) build Markov

models that represent page request order based on actual usage; 4) apply an algorithm that

leverages the models in 2) and 3) to generate web log entries for the target number of days;

and 5) evaluate accuracy and summarization of the resultant logs compared with actual logs.

In a practical setting the last step would not be possible until after the target day has passed,

but step 5) would be helpful to establish ongoing confidence in and possibly tune parameters

within the approach.

This paper contributes to the field of modeling and simulation by offering a modeling

approach that approximates actual web application usage behavior with greater fidelity by

tailoring modeling to the application instance. Moreover, the developed algorithm provides a

means to utilize these models to produce days of complete web server logs. Thus providing

one an ability to evaluate the qualities of this approach with a practical benchmark. Results

85

have shown that a minimum of eight days of observed logs coupled with a trace-driven model

is necessary to provide a sufficiently accurate projection of logs for a cloud billing cycle. Lastly,

it was shown that the trace-driven model was best suited to provide the most formidable FRC

attack scenario.

86

CHAPTER 5. FRC DETECTION

Chapter contains modified content from the following published conference paper:

Idziorek, J., Tannian, M. and Jacobson, D. ”Detecting Fraudulent Use of Cloud Resources.”

In Proceedings of the 2011 ACM Workshop on Cloud Computing Security (CCSW ’11) at CCS.

Chicago, IL. 21 Oct. 2011. pp. 61-72, c� 2011, Association for Computing Machinery, Inc.

(Acceptance Rate 13/45 = 29%)

5.1 Abstract

Initial threat modeling and security research on the public cloud model has primarily focused

on the confidentiality and integrity of data transferred, processed, and stored in the cloud.

Little attention has been paid to the external threat sources that have the capability to affect

the financial viability, hence the long-term availability, of services hosted in the public cloud.

Similar to an application-layer DDoS attack, a Fraudulent Resource Consumption (FRC) attack

is a much more subtle attack carried out over a longer duration of time. The objective of the

attacker is to exploit the utility pricing model which governs the resource usage in the cloud

model by fraudulently consuming web content with the purpose of depriving the victim of their

long-term economic availability of hosting publicly accessible web content in the cloud. This

chapter thoroughly describes the FRC attack and discusses why current application-layer DDoS

detection schemes are not applicable to a more subtle attack. The chapter goes on to propose

three detection metrics that together form the criteria for identifying a FRC attack from that

of normal web activity. Experimental results based on three plausible attack scenarios show

87

that an attacker without knowledge of the training web log has a difficult time mimicking the

self-similar and consistent request semantics of normal web activity.

5.2 Introduction

The inevitable trade-off for the potential cost savings and convenience afforded by public

cloud computing is the exposure to both new and old security risks. While both the confiden-

tiality and integrity of data transferred, processed, and stored in the cloud has attracted much

of the focus from initial threat modeling and research, little attention has been paid to the

external threat sources that have the capability to affect the financial viability and thus the

long-term availability of services hosted in the public cloud.

A defining characteristic of the public cloud model is the pay-as-you-go pricing model [77]

that governs resource consumption costs (e.g. server hours, bandwidth, storage, etc.) - more

broadly known as utility pricing. Under this pricing structure, public-facing web content is

vulnerable to remote exploitation in which attack clients purposefully request web content in

volumes that are economically unsustainable for the cloud consumer - one that rents services

from a Cloud Service Provider (CSP) (Figure 5.1).

Internet

CSP Access Point

CSP NetworkPublic Internet

CSP Compute Servers

CSP Data Storage

Cloud Consumer

Legitimate
Clients

Attack
Clients

Control

Botmaster

Figure 5.1: Cloud Network Attack Diagram

Notionally similar to an application-layer DDoS attack, a Fraudulent Resource Consumption

(FRC) attack is a much more subtle attack and is carried out over a longer duration of time. The

objective of the attacker is to exploit the utility pricing model by fraudulently consuming web

content with the purpose of depriving the victim of their long-term economic viability of hosting

88

publicly accessible web content in the cloud. To avoid detection by current application-layer

DDoS solutions, fraudulent request rates of attack clients are of moderate intensity and requests

attempt to blend into the normal activity of the target website. For the cloud consumer,

differentiating data usage of legitimate clients from that of attack clients is difficult because

requests only differ in the intentions of the attacker not in the structure or semantics of the

requests.

Known as the free-rider problem in field of economics [59], the unobstructed access to web

resources (i.e. non-excludable goods) by the general nondescript public via the Internet creates

a scenario in which the cost of excessive resource consumption is shouldered not by the request-

ing users but instead by the cloud consumer. In this context, excessive consumption leads to

market failure for the victim and abandonment of the public cloud model. The exploitation

of utility models is not a new concept. Telephone networks have experienced their fair share

of similar fraudulent consumption in the past [36]. However, unlike the telephone networks,

which have since abandoned in-band signaling and thereby addressing a well-known vulnera-

bility, public access and the pay-as-you-go business model are an architectural dichotomy that

remain at the root of this problem. Until the systemic vulnerability is addressed, detection and

mitigation of fraudulent usage of the public cloud should commence in earnest. At this time,

there appear to be no viable detection mechanisms capable of differentiating a FRC attack

from that of a normal increase in the web traffic volume for a given website. This work seeks

to contribute to the effort of addressing this detection gap.

In the context of this chapter, the term detection is defined to be a method of distinguishing

a FRC attack from that of normal user activity and attribution to be the process of properly

identifying individual attack clients. The focus of this chapter is to provide a thorough analysis

of FRC attack detection methodologies. Attribution of such attacks is reserved for Chapter 6.

The contributions of this paper are threefold. (1) The FRC attack is differentiated from that

of application-layer DDoS attacks and flash crowds and it is demonstrated why solutions for

such problems are not viable for detecting a FRC attack. (2) A methodology is described that

incorporates three detection metrics that together exploit the self-similarity [27] of site-level

web usage. (3) Three attack scenarios are provided that test the proposed detection metrics

89

and provide extensive experimental results.

The rest of the chapter is organized as follows. Section 5.3 provides the background for the

cloud and utility model. The FRC attack, threat model, cloud web server profiling, and related

works are thoroughly discussed in Section 5.4. In Section 5.5, the datasets that is used for

both training and detection are described. The detection metrics are described in Section 5.6

and the attack scenarios used to test the given detection mechanisms are described in Section

5.7. Experimental evaluation is provided in Section 5.8 and the FRC attack is discussed in

context of a flash crowd in Section 5.9. Finally, Future Work and the Conclusion are presented

in Sections 5.10 and 5.11 respectively.

5.3 Background

This section provides the background and context useful for the remainder of the chapter.

5.3.1 Cloud Computing and FRC Actors

As illustrated in Figure 5.1, the following roles are defined in the context of cloud computing

to provide a consistent reference to the actors that play a role in a FRC attack.

• Cloud Service Provider (CSP) - The CSP (e.g. Amazon EC2, Microsoft Azure, or

Rackspace) offers consumer-provisioned and metered computing resources that can be

leased for flexible time durations.

• Cloud Consumer - The cloud consumer is a person or organization that employs the

services of a CSP and is financially responsible for resource consumption. The cloud

consumer also plays the dual role of the victim.

• Client - The client is a legitimate user that requests web content offered by the cloud

consumer.

• Attacker - Although a FRC attack is ultimately carried out by one or more attack clients,

the attacker (e.g. bot master) is the mastermind that orchestrates the FRC attack among

the attack clients.

90

• Attack Client - The attack client is a malicious user (e.g. bot) that fraudulently consumes

resources offered by the cloud consumer.

5.3.2 Cloud Utility Pricing Model

The utility pricing model is the offering of computing, bandwidth, and storage resources

as a metered service. In some respects, the utility model is similar to traditional tariffs public

utilities charge for resources like electricity, because both computing oriented and public utility

oriented revenue is based on the quantity of resources consumed by their customers. Unlike the

electricity networks however, the information services offered by a CSP are accessible through

an open global network (i.e. the Internet).

Table 5.1: Amazon EC2 Data Transfer Pricing Metrics for US East(Virginia) as of January
2012

Data Transfered Out

First 1 GB/Month $0.00 per GB
Up to 10 TB/Month $0.12 per GB
Next 40 TB/Month $0.09 per GB
Next 100 GB/Month $0.07 per GB
Over 150 GB/Month $0.05 per GB

Cloud consumers only pay for the CSP resources they use and only for the time they use

them. Although there are many metered services provided by CSPs, the focus of this paper

is on the data transferred out of a CSP environment. To illustrate the actual costs of data

usage in the cloud, Table 5.1 provides a summary of the costing metrics for Amazon’s Elastic

Compute Cloud (EC2) platform [4]. Under this pricing model and bounded by a Terms of

Agreement, the cloud consumer is responsible for all data usage regardless of the intent of the

requesting client.

Given that an average web page - including both primary and secondary objects - is 320KB

in size [95], Figure 5.2 enumerates the accumulated daily cost of data usage when applied to

Table 5.1 for a website that experiences 1, 5 and 10 requests per second respectively over a

billing period (typically a month). Even on the order of 5 requests per second, data usage -

91

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Days

C
os

t (
$)

10 reqs/s

5 reqs/s

1 reqs/s

Figure 5.2: Accumulated Data Usage Costs

consumed maliciously or not - amounts to a significant monthly cost for the cloud consumer.

5.4 FRC Attack

This section provides the description for the FRC attack including a threat model, the

profiling of cloud-based web servers, and related works in context of the described attack.

5.4.1 Threat Model

Similar to those that carry out DDoS attacks, a FRC attacker considered in this work

is financially motivated by a fee for services rendered, by an extortion payment, or has an

enjoyment-based intrinsic motivation [69]. Although in practicality an attacker could carry out

a FRC attack from any Internet-connected device, for the purposes of this work it is assumed

that the attacker has amassed a botnet of sufficient size and capability to easily perform a FRC

attack.

In order to achieve the greatest cost burden, the attacker is interested in maintaing a

sustained attack over a long duration of time. This is best accomplished by avoiding aggressive

behavior and instead subtly inflating resource consumption in order to avoid detection. Ideally

for the attacker, the size of the resource consumption push is large enough to achieve the cost

burden objectives in the least amount of time. Attack optimization is not in scope of this work.

92

The target of the attacker is a public-facing web application or website hosted in a public

CSP environment that is governed by a utility compute pricing model. Content from the

victim’s website is public-facing and intended to be viewed by the general public. While

authentication such as passwords could be used to de-annoynimize the requesting clients and

limit the amount of publicly exposed web content, such access control is considered counter-

productive for distributing public-facing web content. Furthermore, the victim does not make

use of reverse Turing tests [116] to differentiate between humans and attack clients. Turing tests

have been found to be unreliable and have been circumvented by mechanical Turks [18] and

puzzle breaking schemes [126, 131]. Moreover, requiring a casual web user to solve a graphical

puzzle to simply view a webpage is counter to the goals of the target web application as some

users are unable or simply unwilling to deal with the hassle [87, 97].

It is also assumed that the web server on which the victim’s website resides is properly

patched, adheres to a well-managed security policy and is buffered from the Internet by a firewall

that employs security best-practice filtering rules. Furthermore, all requests generated by the

attacker adhere to all protocols specifications. The only exploitable vulnerability considered in

this threat model is the utility compute model.

5.4.2 Cloud Web Server Profiling

Measuring the capacity of web servers hosted in the cloud is a key component for better

understanding the vulnerability that the utility pricing model presents to the cloud consumer.

Enumerating cloud server capacity highlights the significant gap that exists between normal

web server request rates and cloud web server performance capacity. To enumerate this gap,

a number of experiments were performed on Amazon’s EC2 - actual cloud infrastructure. The

objective of these experiments was to determine the requests per second capacity of the various

EC2 server offerings for a range of average web page sizes. The three standard server instant

sizes offered by EC2 and thus considered in this work are presented below [5]. Included in

this description are the hardware and software specifications of these instances. Although EC2

does offer other high-performance instances with increased memory or CPU capabilities, the

experiments performed were considered to be general use-case scenarios. It is assumed and

93

expected that such high-performance instances would be able to handle an equal amount or

more requests than the standard server instances presented.

Small Instance

1.7 GB memory

1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)

I/O Performance: Moderate

SUSE Linux Enterprise Server 11 Service Pack 1 basic install, EBS boot, 32-bit architec-

ture with Amazon EC2 AMI Tools preinstalled; Apache 2.2, MySQL 5.0, PHP 5.3, Ruby

1.8.7, and Rails 2.3.

Large Instance

7.5 GB memory

4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)

I/O Performance: High SUSE Linux Enterprise Server 11 Service Pack 1 basic install,

EBS boot, 64-bit architecture with Amazon EC2 AMI Tools preinstalled; Apache 2.2,

MySQL 5.0, PHP 5.3, Ruby 1.8.7, and Rails 2.3.

Extra Large Instance

15 GB memory

8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)

I/O Performance: High SUSE Linux Enterprise Server 11 Service Pack 1 basic install,

EBS boot, 64-bit architecture with Amazon EC2 AMI Tools preinstalled; Apache 2.2,

MySQL 5.0, PHP 5.3, Ruby 1.8.7, and Rails 2.3.

The web servers examined in these experiments were used to gauge the capacity of a web

server (i.e. FRC target) hosted in the cloud. To provide consistency throughout the many

experiments, the requesting host (i.e. FRC attacker) was deployed on a small EC2 instance.

The purpose of the attack host was to simulate an aggregate user request base (legitimate or

malicious) by enacting requests for a web document on the target web server by utilizing the

Apache web server benchmarking tool [6]. To determine the capacity of requests per second for

94

a given instance, requests were generated from the attack host located in the same geographical

region (i.e. East 1-d) as the target host in order to reduce the effects of network latency, among

other factors, in this measure.

To accurately gauge the average size of the web documents being publicly hosted by the

target server, which is necessary to provide a realistic experiment, Table 5.2 provides a selection

of web metrics calculated by Google [95] describing websites and web documents as found on

the World Wide Web (WWW).

Table 5.2: Google Web Metrics

Metric Top Sites All Sites Description

Pages 380 million 4.2 billion Number of pages analyzed
GETs Average number of GETs per page

Mean 42.14 43.91

Median 33 37

Network Size (KB) Average size per page
Mean 312.04 320.24

Median 176.23 177.47

KB per GET Average size per GET
Mean 7.32 7.19

Median 2.36 1.93

Given that the average webpage, encompassing both primary and secondary requests (Sec-

tion 4.4.1) is 320KB in size and that the average web page consists of nearly 44 web elements,

then, as shown in Table 5.2, the average object size, for all websites on the WWW, is 7.19KB.

Based on this average measure, web pages of both 1KB and 2KB smaller and larger than

7.19KB were constructed and hosted on the target web server to provide a range of measures

for capacity testing. To enact requests from the attacking host, the Apache benchmark tool

was utilized by requesting 10,000 requests in total, allowing for 20 concurrent requests for the

attack host at any one time.

To give context to the experimental results and to provide a reference for the normal requests

per second observed by an actual web server, consider Iowa State’s public web domain. During

a 12-week period in the Fall of 2011, the iastate.edu domain experienced, on average, 5.63 total

95

request per second (including both primary and secondary requests). Similarly, the NASA data

set [82], used throughout this work, experienced a rate of 0.72 total requests per second over a

two-month period. Although these websites are not indicative of all sites on the WWW, they

provide a baseline with which to compare to the capacity of EC2 web server instances. To

reiterate, the objective of these tests is to measure the capacity of a web server hosted in the

cloud to illustrate the gap between the actual request intensity experienced by a common web

server and the upper bound of what a cloud instance is capable of handling. The results are

expected to show that cloud-based web servers are sufficiently over provisioned and thus create

a significant gap with which an attacker can wage a FRC attack without being detected by

current DDoS detection mechanisms.

Depicted in Figure 5.3 are the average results of five test iterations for the previously

described experiments. For each a small, large, and extra large EC2 instance, requests per

second measures were taken for web document sizes of 5.19, 6.19, 7.19, 8.19, and 9.19 KB. As

it can be seen, for the average web document size found on the WWW (i.e. 7.19KB), even a

small instance running as a web server is capable of servicing 2000 requests per second, three

orders of magnitude more than the rate generated by the described reference websites (i.e.,

iastate.edu and NASA). For large and extra large instance, this capacity, in terms of requests

per second, increases by over 200%.

96

5 6 7 8 9 100

1000

2000

3000

4000

5000

Web Object Size (KB)

To
ta

l R
eq

ue
st

s
pe

r S
ec

on
d

Small
Large
Extra Large

Figure 5.3: EC2 Capacity Profiling: All Requests

As the result of presenting many measures in this work in terms of primary requests, Figure

5.4 illustrates the translation from all requests in Figure 5.3 to the expect primary requests per

the statistics shown in Table 5.2. In essence, this figure provides the measure of actual user

generated requests, which is calculated be 1/44 of all requests.

5 6 7 8 9 100

20

40

60

80

100

120

Web Object Size (KB)

Pr
im

ar
y

Re
qu

es
ts

 p
er

 S
ec

on
d

Small
Large
Extra Large

Figure 5.4: EC2 Capacity Profiling: Primary Requests

97

As demonstrated by these experiments, modern day web server capacity in the cloud is

sufficiently capable of handling the request loads for an average sized web site. Even a one

or two order of magnitude increase in each of the example request rates provided would still

leave sufficient headroom for a small server instance hosted in the cloud to operate without

diminishing the QoS for the end user. Given this gap between normal request rates and the

capacity of cloud infrastructure, the FRC attack will be described in detail and an explanation

will be provided as to why current DDoS detection and attribution methodologies do not apply

to a much more subtle FRC attack.

5.4.3 FRC Attack Description

Together flash crowds and application-layer DDoS attacks provide an apt comparison with

which to illustrate the request dynamics and subtleties of a FRC attack. Like flash crowds and

application-layer DDoS attacks, an attack client involved in a FRC attack also victimizes the

application layer by way of making protocol adherent requests. Differentiating a FRC attack

is that the aggregate requests do not degrade availability of a given site. A FRC attack is

intended to run-up the data usage cost for the victim by consuming bandwidth in excess of

normal usage. In order to provide a clear description of the FRC attack and to explain why

currently proposed application-layer DDoS solutions are largely ineffective for mitigating FRC

attacks, Figure 5.5 illustrates the key differences between flash crowds and application-layer

DDoS attacks.

5.4.3.1 Flash Crowds and DDoS Attacks

Depicted in Figure 5.5a is a graph of the all requests per second for a week-long web trace

from a busy NASA web server [82]. Based on observations of flash crowds and application-

layer DDoS attacks [56, 124], request dynamics for each of these two web phenomena were

synthesized and interwoven into the web log trace in order to provide an illustration for the

following example. For the purposes of continuity, each event was synthetically generated within

the same web trace over non-overlapping periods. Figure 5.5b depicts the corresponding ratio

of requests per client for these two events and interleaving request activity. Together Figures

98

DDoS AttackFlash Crowd

Days

J2

Denial of Service Region

R
eq
ue
st
s
pe
r S
ec
on
d

R
eq
ue
st
s
pe
r S
ec
on
d

2000

5
10
15

20

2100

1990

2200
2300

0 1 2 3 4 5 6 7
0

(a) Requests per Second

2

1

R
eq
ue
st
s
pe
r C
lie
nt

0 1 2 3 4 5 6 7Days

100
200

0 1 2 3 4 5 6 7
0

300

(b) Requests per Client

Figure 5.5: Flash Crowd and Application-layer DDoS Comparison

5.5a and 5.5b provide the necessary context to describe and differentiate the FRC attack from

flash crowds and application-layer DDoS.

Beginning at Day 1 and culminating at Day 2.5, a flash crowd was generated to depict the

request dynamics of this event. Flash crowds are defined as a significant number of legitimate

clients simultaneously requesting web content from a given site. Often triggered by a major

news [111] or sporting event [56], the individual clients that participate in this phenomenon

are not malicious in nature. However, the aggregation of their actions is detrimental to the

availability of the site under consideration. As shown in Figure 5.5b, the resulting per client

request rate throughout the duration of the flash crowd remains consistent with normal usage

despite the dramatic increase in requests per second. Clients that unintentionally participate in

a flash crowd continue to behave in a manner that is consistent with the normal user behavior

and thus during a flash crowd the request volume maintains the same proportion with the

number of clients accessing the site. As observed in [56], request per client rates have actually

been shown to decrease during a flash crowd as clients react to the diminished QoS of the

system.

Although consequences may be similar, application-layer DDoS attacks provide a stark

and malicious contrast to flash crowds. Attack clients participating in a application-layer

DDoS attack utilize legitimate HTTP GET requests in excessive volumes to overwhelm a

99

target’s resources. Consequently, legitimate clients are subjected to a significantly diminished

or unavailable service due to the reduction in throughput and increased server response latency.

As shown in Figure 5.5a, beginning at approximately Day 4.7 and terminating on Day 5.5, a

DDoS attack is an abrupt increase in the amount of requests per second experienced by a site

- similar in the peak request rate to that of a flash crowd. However, as depicted in Figure 5.5b,

the dramatic increase in the request per second rate during a DDoS attack is attributed to

the increase in the per client request rate, which is significantly different from that of a flash

crowd or normal usage. DDoS attacks are characterized by relatively few clients requesting

web content at a very high rate or many malicious clients requesting at a lower, but still at a

saturating rate. In either of these two cases or anywhere in between, the per client request rate

deviates greatly from that of normal activity. Thus in an application-layer DDoS attack, the per

client request rate increases in direct proportion to the increase in the per second request rate.

It is this very observation that has been used as a key differentiator in proposed application-

layer DDoS detection methods that seek to to distinguish flash crowds from application-layer

DDoS attacks [56, 70, 97, 120].

Given the two web phenomena in Figure 5.5a and within this context, as the aggregate

request intensity increases significantly (three order of magnitude more than is shown) above

normal activity - whether it be malicious or not - this intensity significantly degrades the QoS

of the web server. The scale chosen in Figure 5.5a was based on the experimental results from

Section 5.4.2 for a small server instance on the EC2 platform and for an average file size of

7.19KB. As shown, such a server is a conservative estimate given modern computing capacity

in the cloud. Aggregate request intensity depicted between 2000 and 2300 requests per second

- labeled as the Denial of Service Region - is where the QoS of the system degrades to the point

where the clients’ user-experience is intolerable. Just below the Denial of Service Region is

the threshold labeled as J2 on Figure 5.5a and is the point at which application-layer DDoS

attacks and/or flash crowd mitigation solutions begin to sense and activate in order to quell

the pending threat of unavailability [58, 120]. The threshold J2 is an approximate sensitivity

benchmark indicating the state-of-the-art of reliable detection.

Considering request intensities above J2 is outside the scope of this work as it is assumed

100

Denial of Service Region

FRC Attack Region

FRC Attack

Nuisance
Activity

Normal
Activity

DDoS AttackFlash Crowd
R
eq
ue
st
s
pe
r S
ec
on
d

Days

J2

J1

J1

2000

5
10
15

20

2100

1990

2200
2300

0 1 2 3 4 5 6 7
0

(a) Requests per Second

2

1

3

4

5
6

0R
eq
ue
st
s
pe
r C
lie
nt

5 7Days 6 743210

(b) Requests per Client

Figure 5.6: FRC Attack Illustration

that current solutions would be able to mitigate such anomalous request activity. Instead the

focus of this paper is on fraudulent request intensities below J2. Below this point, currently

proposed mitigation solutions are not enabled because the QoS of the system is not significantly

affected and would inevitably trigger on false positives which lead to the unnecessary rejection

of legitimate clients.

5.4.3.2 FRC Attack

In comparison to the previously described flash crowd and application-layer DDoS attack,

a FRC attack is a much more subtle event. For a FRC attacker to be successful, they need

not deny service to the system but instead consume enough bandwidth to incur a fraudulent

and unsustainable cost onto the cloud consumer. Building on Figure 5.5, Figure 5.6 depicts

the request per second (Figure 5.6a) and requests per client (Figure 5.6b) characteristics of a

FRC attack. As was the case in Figure 5.5, a FRC attack was synthesized and interwoven with

that of the same week-long NASA web trace. In Figure 5.6a the request per second behaviors

of both the flash crowd and DDoS attack were persevered to provide contrast and emphasis on

the subtleness of a FRC attack.

The lowest layer of web traffic illustrated in Figure 5.6a is that of normal activity as gen-

erated by legitimate clients - labeled in the callout. Normal activity represents the requests

101

generated by the legitimate clients that frequent and interact with the site under considera-

tion. The requests generated by legitimate clients provide value to the cloud consumer that is

necessary to justify the costs of hosting the web application in a CSP environment.

In the presence of a FRC attack, data usage consumed by fraudulent requests is additive to

that of normal activity. At the lowest intensities of illegitimate use, the resulting costs do not

significantly impact the financial well-being of the cloud consumer. Such request intensities are

considered nuisance activity and can be expected given the ever present noise originating from

the Internet.

As malicious resource consumption intensifies, it will reach a point where the cost to the

cloud consumer is no longer trivial. This threshold is denoted as J1 on Figure 5.6a. As shown

in the callout, request volumes in excess of J1 are considered to be that of a FRC attack.

The requests performed by attack clients in a FRC attack have no intention of providing value

to the site and seek to only incur fraudulent charges. For a FRC attacker to be successful,

they need only to increase the amount of data usage consumed over a given period of time in

comparison to that of normal activity. Such an increase in request volume can be produced

by malicious clients utilizing published web usage distributions [7, 75]. Thus for attack clients

to increase the data usage for a given site by over 500% - shown as request activity above the

J1 threshold in Figure 5.6a - the malicious request dynamics need not exhibit a higher than

normal per-client request ratio as shown in Figure 5.6b nor exhibit highly aggressive request

patterns on which many application-layer attack detection and attribution mechanisms depend

to distinguish malicious clients from that of normal clients.

As a recap, the FRC attack region is defined as the aggregate request intensities between

thresholds J1 and J2 on Figure 5.6a. At the lower end of the continuum (J1), fraudulent

requests begin to financially impact the cloud consumer. As FRC attack intensities increase,

the resulting cost becomes more significant. At point J2, a FRC attack exhibits behavior

characteristics that are comparable to a DDoS attack and thus detectable. It is assumed that

for request intensities above J2 that current DDoS mitigation strategies would be able be

effective. As FRC attack detection improves, the J2 threshold will drop and ideally reaching

J1 in the future. It is significant to note the substantial gap between J1 and J2 (i.e. the FRC

102

attack range) on Figure 5.6a. As shown, an FRC attacker can achieve success by consuming

10 reqs/s to nearly 1980 req/s more than normal traffic while avoiding extreme usage patterns

that would lead to detection. While the significant over provisioning of web servers is helpful

in many contexts, when a utility pricing model is applied, the gap between normal activity and

J2 presents and unaddressed vulnerability of the current cloud computing infrastructure.

5.4.4 Related Work

The catalyst for this work is directly attributed to security professional Christopher Hoff

who first described the Economic Denial of Sustainability (EDoS) attack [51] on the cloud

model as a manipulation of the utility pricing model that results in unmanageable costs for the

cloud consumer. The premise of the EDoS attack, as described by Hoff, is for an attacker to

exploit the horizontal scaling capability [77] of both compute and storage resources hosted in

the cloud. This present work instead explores a much more subtle threat model in which the

FRC attacker does not seek to exploit resource costs in an overwhelming manner, which would

require a significant amount of malicious resource consumption over a short period of time.

Instead FRC is a slow-and-low attack over a longer duration of time that exploits resources

much more gradually. Additionally, when taken a face value, an EDoS attack is a class of

attacks of which FRC, DDoS, and click fraud are members for they inevitably deprive a victim

of economic value through direct costs, loss of business, or damaged reputation. In the context

of cloud computing, the FRC attack as described in this chapter and in this work, aptly defines

the subtle exploitation of resources governed by a utility pricing model.

The related bodies of research that have bearing on the FRC attack can be broadly cat-

egorized as detection schemes that seek to differentiate flash crowds from application-layer

DDoS attacks and attribution methodologies that aim to distinguish legitimate clients from

application-layer DDoS attack clients. Each of these bodies of work and subsequent papers will

be examined in the context of the FRC attack.

103

5.4.4.1 Detection

To better understand the nature of abrupt changes in HTTP GET request rates, Wen et

al. [120] proposed an entropy-based solution that compares the ratio of observed source IPs

and target webpages. The results reported in [120] are consistent with the analysis in Section

5.4.3.1. While their observations may lead to the classification of dramatic increases of web

traffic, as evidenced in Section 5.4.3.2, FRC attack clients need not exhibit the same aggressive

nature of attack clients that participate in a DDoS attack to accomplish their goal. As a result,

entropy of per document request diversity is unlikely to differentiate a FRC attack from any

non-aggressive increase in normal activity. Similarly, solutions that trigger on the slope of

request intensity [70] are also likely to be ineffective at detecting FRC attacks based on the

same principles.

In contrast to the request intensities of the user population, other solutions have sought to

differentiate flash crowds from application-layer DDoS attacks based on the source IP distribu-

tion of the requesting clients [56, 70]. The hypothesis is that malicious clients participating in a

DDoS attack will originate from IP clusters not previously experienced by the site. However, as

stated in [58, 97, 124], such a solution is not reliable as it is likely that geographically distributed

attack clients will originate from similar IP prefixes and clusters belonging to legitimate clients.

5.4.4.2 Attribution

To exploit the limitations of automated attack clients, Kandula et al. [58] proposed a scheme

that makes use of graphical puzzles to differentiate human initiated requests from those au-

tomatically generated. Although effective, such an approach is not generally regarded as a

practical solution [87, 124] to prevent an application-layer DDoS attack. Graphical puzzles

are out scope in the FRC attack context, see the Section 5.4.1. Similarly, the use of honey-

tokens [40] - human-invisible objects imbedded in web content - has also been proposed to

identify automated clients [87]. The premise of this methodology is that only attack clients

that haphazardly traverse web content will request invisible objects and thus be flagged as

malicious. Despite positive results, such a solution is only applicable to a very limited threat

104

model.

In addition to visual approaches, others have sought to differentiate attack clients by scru-

tinizing the transitional probabilities between successive client requests [87, 124]. Albeit a

promising solution for a subset of attack scenarios considered for the FRC attack, this ap-

proach can be defeated with little effort by an attacker.

In the context of the FRC attack, the greatest downfall of many of the previously proposed

application-layer DDoS mitigation solutions is that they do not activate until the victim web

server is under extreme duress [58, 120]. Even if activated, many solutions are predicated upon

the fact that attack clients exhibit anomalous inter-session and inter-request arrivals times in

comparison to that of request dynamics from normal activity [56, 97, 120]. While effective

for detection of an attack client participating in a DDoS attack, as was discussed in Section

5.4.3.2, such solutions are not viable for the detection of a FRC attack. This is due the lack of

necessity of the attack client to request higher than average request intensities.

In fairness to the mentioned authors, their research focus was not on detecting a FRC

attack. Although each of the works cited are successful at accomplishing their own respective

objectives, these solutions are not directly applicable to the detection or attribution of a FRC

attack.

5.5 Dataset Description

Two 56-day web log traces are used for both training and testing of the proposed detection

metrics presented in this chapter. The first dataset is a web trace from ISU’s Department

of Electrical and Computer Engineering’s public-facing web server (referred to as ECpE). The

second dataset is a historical web trace from a busy NASA web server (referred to as NASA) that

has been made available to researchers [82]. The request per day plots for each dataset in Figure

5.7 illustrates the fluctuation in the day-to-day request volumes experienced by each respective

site. The daily volume variation is potentially as much as 100% and that characteristic has

driven the search for detection metrics with limited sensitivity towards request volumes.

Although both datasets follow a similar cyclical pattern, the nature of the datasets - one

being a departmental website and the other being a public website for a U.S. Governmental

105

5 10 15 20 25 30 35 40 45 50 55
1.0

1.5

2.0

2.5

Days

of

 R
eq

ue
st

s

x 103

(a) ECpE Requests

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5 x 104

Days

of

 R
eq

ue
st

s

(b) NASA Requests

Figure 5.7: Detection Dataset Description

agency - provide sufficient contrast in the request volumes (Table 5.3) and user demographics

to test the generality of the proposed detection scheme.

For the purposes of this paper, each of the datasets have been reduced from their origi-

nal form. As is typical in the retrieval of web content, primary client-issued requests invoke

secondary (or inline) requests to retrieve supporting web content such as embedded pictures,

scripts and style sheets. The focus of this chapter is on the primary requests invoked by the

user and, as a result, all secondary requests were removed from the datasets.

106

Table 5.3: Description of Experimental Datasets

Metric ECpE NASA

Days 56 56
Total Requests 94 681 977 930
Max Reqs/Day 2 405 34 566
Min Reqs/Day 1 020 9 171

Clients 14 891 130 128
Sessions 39 929 304 207

Avg Daily Req Variation 56.87% 74.91%

5.5.1 Attack Scenario

To quantify a FRC attack, consider the NASA dataset. At an average request volume of

17 463 requests per day, for a FRC attacker to increase the request volume by 100% with a

1000-client botnet - modest by current standards - each attack client would only be required to

request 18 web documents per day. At such a small and low intensity quota, individual clients

will have no problem blending in with the request dynamics of normal clients. It follows that

to increase the web traffic by 1000% or 10 times the average cost, attack clients would need to

request 180 web documents per day. Even at a request volume 10 or 100 times greater than

that of normal activity and given the capacity of cloud computing infrastructure, the target site

would be far from experiencing request volumes that would result in a DDoS. The hypothesis

this chapter seeks to verify is that despite the malicious request volumes, the structure of the

accumulated malicious requests will deviate sufficiently from normal activity to be detectable.

5.6 Detection Metrics

There are two objectives for detection mechanisms that have been identified in this section.

The first is to take advantage of the consistency and self-similar nature of aggregate web

activity. The second is to be able detect the presence of resource usage fraud within an inspected

dataset. In other words, the detection techniques characterize the level of consistency of request

semantics relative to normal activity as opposed to factoring in volatile request volumes. This

section describes three detection metrics that are used together to detect FRC attacks.

107

5.6.1 Zipf’s Law

The properties of Zipf’s law [132] provide a useful metric for measuring relative frequency

and self-similarity of web document popularity. Although Zipf’s law has been used as an

anomaly detection metric to detect accounting fraud [52] and blog spam [81], the predominant

application of Zipf’s law in relation to web requests has been in the modeling and formulation

of web caching schemes [65]. Based on these related works, this section provides a description

of Zipf’s law and description of the means by which Zipf’s law is applied in order for it to be

a key metric for the detection of FRC attacks.

Given a web server log that is composed of client-initiated request records for a website

hosting multiple web pages, let N be the total number of distinct web pages requested for a

given period of time. Let fi define the frequency - the number of times the page was requested

- for each i ∈ N web pages. Based on the request frequency of each respective page, let the

pages be ranked as a list in descending order based on their popularly such that the most

frequently requested page assumes the rank of one and the ith page is the ith most requested

page. Based on this ranked list of aggregate client requests, for Zipf’s law to apply, the request

frequency for the ith most popular web page is inversely proportional to the rank of the page

and is represented as follows:

fi ∝
1

i
(5.1)

As shown in past research efforts [14, 17, 125], aggregate web requests do not strictly follow

Zipf’s law, but instead more generally conform to a Zipf-like distribution in which the frequency

for the ith most popular page is a power-law function such that [125]:

fi ∝
1

iψ
(5.2)

For Zipf’s law to directly apply to a distribution of web requests, ψ would assume the

value of unity. Instead, when a web request distribution is plotted on a log-log scale as a

rank-frequency plot, the resulting slope (ψ) of the best-fit regression line for the Zipf-like

108

distribution is typically negative and approximately unity. The Zipf-like distribution for the

ECpE and NASA datasets are shown in Figures 5.8 and 5.9 respectively.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

Y = 1.67x + 5.57
 R = 0.975

Figure 5.8: Zipf-like Distribution for ECpE Dataset

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

Y = 2.18x + 7.64
 R = 0.948

Figure 5.9: Zipf-like Distribution for NASA Dataset

In the context of a FRC attack, the primary interest is the set of web documents that

represent the majority of overall data usage. As shown in Figure 5.10, a three-day trace from

the NASA dataset, 10% (154 web pages) account for 90% of all web requests. Furthermore,

it is observed that to the left of this point the plotted data conforms to that of a power-

law distribution, and to the right of this point the plot diverges and is considered to be an

exponential tail. As a result, the detection metric presented in this paper focuses only on the

109

top k documents that summarize 90% of all web requests for the respective dataset.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

log10(Rank)

lo
g 10

(R
an

k)

Y = 1.14x + 3.97
 R = 0.996

90% of all requests

154i

Figure 5.10: Calculation of Zipf-like Regression Slope

As shown through experimentation (Section 5.8.1), the regression slope of 90% of web

requests has provided a consistent measure of aggregate use patterns that conform to the

principles of self-similarity. The hypothesis of this detection measure is that it would be a tall

order for an attacker to initiate requests that conform with the Zipf-like distribution of the

overall normal activity of a particular website. This detection metric is utilized by computing

the 90% regression slope of a sample data set and determining if the slope falls within a tolerance

interval relative to normal activity. To succeed in foiling this detection technique, the attacker

would need to be privy to the website’s usage patterns. This measure will be referenced as the

Zipf value.

5.6.2 Spearman’s Footrule

The Spearman’s Footrule distance [32] is a non-parametric measure of similarity, or lack

thereof, between two ranked lists. Although this measure has been used in other web-related

contexts such as measuring the accuracy of predicting individual session n-grams generated

from Markov models [10], Spearman’s footrule appears not to have been used as a metric for

the detection of anomalous web usage. While the more general use of the Spearman’s Footrule

110

is to find an aggregated ranking that minimizes or maximizes the distance between two ranked

lists, for the purposes of this paper, the proximity between two ranked lists will instead be

considered as it is a more appropriate measure for the objectives of anomaly detection. Thus

the greater the Spearman proximity between two top k ranked lists, the more similar the two

lists are in respect to each other.

Building on the notation established in [10], the Spearman’s Footrule proximity is defined

as follows: Given two ranked top-k lists L1 and L2 as inputs, with each list containing k entries,

let L1 be the reference list that is assumed to be the ground truth and L2 be the comparison

list that is highly likely to be a partial list in comparison to that of the reference list. The

term partial list refers to a comparator list being of equal cardinality as the reference list, but

its membership is missing one or more elements present in the reference list. To obtain the

ranking of a list item i ∈ L1, we define the function f(i) and similarly g(i) for i ∈ L2. In

function g(i) if i /∈ L2, then the subsequent ranking is assigned that of a location parameter

l = k + 1 [105], where k = |L1|. Given these preliminaries, the Spearman’s Footrule proximity

is defined as follows:

S(L1, L2) = 1−

�
i∈L1

|f(i)− g(i)|

k(k + 1)
(5.3)

In the case that both ranked lists are identical, the Spearman proximity would result in

the value of one and in the case of two disjoint lists the Spearman proximity value would be

zero. In order to provide a measure of similarity or proximity instead of a measure of difference

or distance, the normalized summation in Equation 5.3 is subtracted from 1. This measure of

similarity between a training and test dataset is known as the Spearman value.

5.6.3 Overlap

To complement the Spearman value, the Overlap between the reference list L1 and the

comparator list L2 is measured to provide a broad indication of the similarity between the

training data and that of test data respectively and is referred to as the Overlap value. The

lists L1 and L2 are defined in the same manner as in Spearman’s Footrule. As experienced

111

through experimentation, when used separately the Spearman and Overlap values are prone

to misclassifications but when used together the synergy between the two detection metrics

provide a consistent non-parametric measure of relative document popularity. The Overlap

value is defined as the percentage of items in the comparator list L2 that appear in the reference

list L1 such that:

O(L1, L2) =
|L1 ∩ L2|

|L1|
(5.4)

Thus given two equal sized lists, the Overlap between them is the cardinality between the

intersection of L1 and list L2 divided by the number of elements in the reference list.

5.6.4 Detection Training and Testing

As a product of the detection metric calculations from the training data, a statistical toler-

ance interval [86] for each metric was constructed to serve as a detection criterion. The use of

a tolerance interval in this context bounds a confidence interval that covers a percentage of an

assumed normal sample population with which one would expect an individual sample value

to fall such that X̄ ± g(1−α,p,n)s where 1− α is the confidence, p is the percent coverage of the

sample, n is the sample size and s is the standard deviation.

g =

����(N − 1)(1 + 1
N
)z2(1−p)/2

χ2
γ,N−1

(5.5)

For each of the three previously described detection metrics, a 80% tolerance interval sum-

marizing 99% of the training data were calculated. When a detection measure is outside the

tolerance interval, the understanding is that a FRC attack has been detected. Likewise, if the

detection measure falls within the tolerance interval the understanding is the test sample is

likely clear of an attack. In order to measure quality of the detection metrics, the false positive

rates (FPRs) and false negative rates (FNRs) were computed. A false positive (FP) is when the

detection measure falls outside the tolerance interval but the data is free of a FRC attack. Fur-

thermore, a false negative (FN) is when the detection measure is within the tolerance interval,

but the data contains an attack.

112

Given many different attack strategies, the Spearman, Zipf and Overlap detection metrics

are individually prone to unacceptably high FPRs and FNRs. However, when used in combi-

nation, the complementary nature of the metrics yield a reliable approach for the detection of

FRC attacks.

5.7 Attack Description

The quality of a detection scheme is a product of the environment in which it is tested. This

section describes three probable attack strategies that are used for the experimental evaluation

of the described detection metrics and are likely to be carried out by a FRC attacker. While

attack patterns can be crafted in a way that will be detected with a high measure of success,

the attack strategies chosen for the purposes of this chapter were done so to highlight both

the strengths and weaknesses of the proposed detection metrics. In order to challenge the

methodology, the attacker is given a great deal of latitude with which to mount a FRC attack.

5.7.1 Attack Assumptions

Overall, it is assumed that the attacker has full knowledge of the web logs before the

onset of a FRC attack. The three proposed attack strategies depict different ways with which

the attacker could use such information to fraudulently consume web content. A simplifying

assumption has been made in that the training data used to prime the detection metrics is free

of attack behaviors.

5.7.2 Attack Strategies

5.7.2.1 Random Attack

In the random attack strategy, the attacker creates an unsorted list of the distinct web

pages requested by the legitimate clients as seen in the web logs. To mount an attack, the

attacker randomly chooses web documents from this list. To introduce a degree of variability

into this attack pattern, the percent parameter - denoted Pct - is used to narrow the scope of

the content requested by the attacker. For example, for a Pct=0.5 the attacker would randomly

113

generate fraudulent requests from a list of 50% of the known web content previously requested

from the target site. Although the random attack is the least sophisticated of the proposed

attack patterns, it perhaps is the easiest attack to employ and can be performed without prior

access to the web log.

5.7.2.2 Heavy-Hitter Attack

The heavy-hitter attack simulates a scenario in which the attacker seeks to consume the

most frequently requested documents experienced by the target site. To carry out the heavy-

hitter attack, the attacker creates a ranked list from requested documents from the web log.

From the ranked list of the most popular web pages, similar to that of the random attack

pattern, the attacker randomly requests content from the top Pct of available web documents.

For instance, for a ranked list of 100 web documents and Pct=0.1, the attacker would only

request the 10 most popular web pages from the victim’s site. For a Pct=1.0, the heavy-hitter

attack strategy would be no different from that of the random attack strategy. More cunning

than the random attack, the heavy-hitter attack seeks to blend into the normal activity of a

site by requesting the most frequently requested documents.

5.7.2.3 Trace-Driven Attack

As shown in Chapter 4, the most cunning attack strategy is a trace-driven attack in which

the attacker replays request sequences extracted from that of the observed training data. Sim-

ilar to the two previous attack scenarios, the Pct parameter is used to limit the scope of the

attacker to a smaller percentage of known sequences of requests. Given a web log that has 500

distinct request sequences, with a Pct=0.40, the attacker would only have access to 200 of the

request sequences. The trace-driven attack scenario is very similar to that of a prescribed-path

attack strategy - an attack in which the attacker guesses popular web request sequences with

which to mount an attack - however, such an attack is more formidable as the attacker is not

required to guess, but only replay known request patterns.

114

5.8 Experimental Evaluation

To explore the robustness of the proposed detection metrics, this section provides the ex-

perimental results performed to calculate both the FPRs and the FNRs for each of the datasets

and the attack strategies presented in Section 5.7.2.

5.8.1 False Positive Rate Results

To calculate the FPRs for the proposed detection scheme, each of the two 56-day datasets

were partitioned into separate training and testing datasets. Using a window of three days,

15 detection metric measurements were taken and tolerance intervals summarizing 99% of the

data with a 80% confidence - chosen to minimize the false-positives and false-negatives - were

calculated for each of the three detection metrics. With the remaining dataset partitioned

for testing, the respective detection metrics were calculated and applied to each of the three

tolerance intervals.

For a test iteration to be deemed a true negative, the test window under consideration,

known to be free of an attack, is required to satisfy each of the three proposed metrics (i.e.,

Zipf, Spearman, and Overlap) by producing a measure within the respective tolerance intervals.

A single breach of a tolerance interval for any of the three tests would be considered anomalous

and thus register as a false positive. As shown in Figures 5.11b, 5.11a, and 5.11c for the ECpE

dataset, the detection schemed failed to yield a single false positive for any of the test iterations

and thus had a FPR = 0.0% for the stated parameters.

Similarly for the NASA dataset, as seen in Figure 5.12, the detection scheme performed

equally well resulting in zero false detections and likewise had a FPR=0.0%.

As shown in both Figures 5.11 and 5.12, the proposed detection metrics exhibit a consistent

and reliable measure of normal activity for each of the respective datasets. These results

supports the hypothesis that the self-similarity of the aggregate web traffic for a given website

can be exploited despite the variance in the day-to-day request volume in the training and test

datasets (Table 5.3).

115

15 10 5 0 5 10 15 20 25 30
0.65

0.7

0.75

0.8

Training and Test Iterations

O
ve

rla
p

Va
lu

e

TestTraining Lower TI

Upper TI

(a) Overlap

0 5 10 15 20 25 30

0.56

0.58

0.6

0.62

0.64

0.66

Training and Test Iterations

Sp
ea

rm
an

 V
al

ue

Upper TI

Lower TITestTraining

(b) Spearman’s Footrule

0 5 10 0 5 10 15 20 25 30
0.98

0.96

0.94

0.92

0.9

0.88

0.86

Training and Test Interations

Zi
pf

 V
al

ue

Upper TI

Training Test
Lower TI

(c) Zipf’s Law

Figure 5.11: ECpE False Positive Confidence Intervals

5.8.2 False Negative Rate Results

Given the three attack strategies, the objective of this section is to determine the percentage

of data usage above that of normal activity an attacker can consume without being flagged as

malicious. For each attack strategy and dataset (ECpE and NASA), a table presenting the

results for each of the test cases is provided. For each of these tables, the rows denote the

percentage of data usage consumed in excess of normal activity - labeled as Att. For example,

Att=0.4 would represent a test case in which the attacker consumed 40% more data than that of

normal traffic over the given training window size. The column headings represent the percent

parameter - labeled Pct - that was described in the context of each of the attack strategies

discussed in Section 5.7.2.

116

15 10 5 0 5 10 15 20 25 30
0.85

0.9

0.95

Training and Test Iterations

O
ve

rla
p

Va
lu

e

Training Test
Lower TI

Upper TI

(a) Overlap

15 10 5 0 5 10 15 20 25 30
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Training and Test Iterations

Sp
ea

rm
an

 V
al

ue

Training Test

Upper TI

Lower TI

(b) Spearman’s Footrule

15 10 5 0 5 10 15 20 25 30

1.15

1.1

1.05

Training and Test Iterations

Zi
pf

 V
al

ue

Training Test

Upper TI

Lower TI

(c) Zipf’s Law

Figure 5.12: NASA False Positive Confidence Intervals

Different than the FPR results presented in Figures 5.11 and 5.12, in the context of detecting

a FRC attack, for an attacker to succeed and not be detected (i.e. produce a FN), the result

of an attack must produce measures that are within the trained tolerance intervals for all three

detection metrics. If one of the three metrics falls outside of a tolerance interval, just as was

the case in the calculation of the FPRs, the test iteration would be considered an attack and

thus a TP.

5.8.2.1 Random Attack Strategy

In the random attack strategy, the attacker randomly requests a percentage (Pct=0.1-1.0)

of the known requested web pages and uses this knowledge to mount a FRC attack. Presented

117

in Table 5.4 are the FNRs for the ECpE dataset. Based on these results, little success is

achieved by the attacker. At the worst, the attacker is able to consume 30% of data usage in

addition to that of normal activity with a success rate of 17%. In the context of the ECpE

dataset 30% more than normal would amount to a subtle 0.006 requests per second in addition

to normal traffic - a non-aggressive rate as far as of DDoS detection schemes are concerned. For

the remaining tests cases, the attacker was only able to achieve minor success consuming 10%

more bandwidth than normal, which also translates to nuisance activity as found on Figure

5.6a.

Table 5.4: ECpE: Random Attack Strategy - False Negative Rates (%)

Att/Pct 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.07 0.002 0.02 0.01 0.02 0.03 0.02 0.08 0.09 0.09

0.2 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.171 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Examining the first highlighted cell in Table 5.4 (Pct=0.1, Att=0.3) - denoted by the

superscript 1 - shows a minor ineffectiveness of the detection scheme against the random attack

strategy. As shown in Figure 5.13, individually each of the three detection metrics produces a

high number of FNs. However, when used together as was previously described, one can see

the effectiveness of the overall detection scheme presented in this chapter. For this particular

attack scenario, the random attack pattern was able to stay within all three of the calculated

tolerance intervals for 5 out of 29 test iterations producing a FNR of 17%.

To contrast the previous results, the second highlighted cell in Table 5.4 (Pct=0.2, Att=0.1)

- denoted by the superscript 2 - depicts a case in detection methodology that failed to record

a single FN, which overall was the predominant trend for the random attack strategy. In this

118

FN FN FN FN FN

Figure 5.13: ECpE: Random Attack Scenario - Pct=0.1, Att=0.3

case, as can be seen in Figure 5.14, the random attacker pattern consistently altered the Zipf

value to a point where each test iteration produced a TN measure and thus an overall FNR =

0.00%.

The general trend across all test iterations was that the Overlap and Spearman values pro-

duced more FNs measures as the diversity of requests used in the attack increased. Randomly

requesting webpages from an equally likely distribution caused the Overlap and Spearman

metrics to remain consistent in terms of accuracy and completeness with that of normal traffic

but inflated the volume of each of the requested documents. As a result, the predominant

metric that caused the random attack pattern to fail (i.e. produce TNs) can be attributed to

the Zipf metric. Especially as seen in Figure 5.14, the biasing of request volume caused by

the random request pattern eroded the expected proportionality between consecutively ranked

documents, which resulted in a decrease in the slope of the regression line for the resultant

Zipf-like distributions.

The NASA dataset (Table 5.5) also achieved similar results for the random attack strategy.

At best, the attacker was only be able to consume 10% more than normal data usage with a

success rate of 0.03%, which would easily fall into the classification of nuisance activity as well.

Similar to the ECpE dataset, a test iteration of Pct=0.1 and Att=1.0, highlighted in Figure

5.15, outputs very similar results for the NASA dataset. Due to randomness and low diversity

of requests enacted by the attacker, both the Overlap and Spearman values are skewed enough

119

Figure 5.14: ECpE: Random Attack Scenario - Pct=0.2, Att=0.1

Table 5.5: NASA: Random Attack Strategy - False Negative Rates (%)

Att/Pct 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.03 0.03 0.03

0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

to point where they registered intermittent TP and FN marks. Consistent with the ECpE

dataset, the random request attack pattern is unable to preserve the relative volume of requests

between consecutively rank documents and thus the Zipf metric produces a large number of

TP measures. As depicted in Figure 5.15, the Zipf metric recorded a single FN given 29 test

iterations. To the strength of the detection scheme, both the Overlap and Spearman metrics

registered as TP for the single Zipf metric that registered as a FN and thus overall produced

a TP classification.

The results of the random attack strategy demonstrates that although this attack strategy

would be the simplest of the three strategies for an attacker to perform, the attacker would

120

Figure 5.15: NASA: Random Attack Scenario - Pct=0.1, Att=1.0

not be able to consume enough data to mount a substantial FRC attack. For the attacker

to achieve success against the presented detection methodology, it is clear the attacker must

attempt to preserve the Zipf-like distribution produced by normal users.

5.8.2.2 Heavy-Hitter Attack Strategy

Similar to the random attack strategy, for the heavy-hitter strategy the attacker also ran-

domly draws page requests from a list, but in this case the list is sorted based on the pop-

ularity of the given web document. This attack strategy tests the detection scheme’s ability

to withstand an attack that attempts to mask its occurrence by drawing on the most popular

documents as requested by legitimate clients. In this context, Pct=0.1-1.0 in Tables 5.6 and

5.7 represents the pool of most popularly requested documents the attack clients draw from.

For instance Att=0.1 would be the top 10% of documents and 100% would be all documents

and thus no different than that of a random attack strategy.

As seen in Table 5.6 (Pct=0.3) and Table 5.7 (Pct=0.1), the heavy-hitter strategy exploits a

weakness of the detection methodology. Based on the natural composition of the two datasets

and the resulting tolerance intervals, the stated Pct values represent a range of the top k

documents that can be fraudulently consumed, with varying success, while still satisfying each

of the three detection metrics.

In Table 5.6 for Pct=0.3, Att=0.1-1.0, it can be seen that the detection scheme breaks down

121

Table 5.6: ECpE: Heavy-Hitter Attack Strategy - False Negative Rates (%)

Att/Pct 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.28 0.55 0.45 0.29 0.07 0.01 0.02 0.07 0.14 0.15

0.2 0.00 0.29 0.41 0.20 0.03 0.00 0.00 0.00 0.00 0.00

0.3 0.00 0.07 0.38 0.08 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.00 0.01 0.33 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.00 0.00 0.28 0.06 0.00 0.00 0.00 0.00 0.00 0.00

0.6 0.00 0.001 0.302 0.05 0.00 0.00 0.00 0.00 0.00 0.00

0.7 0.00 0.00 0.29 0.06 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.00 0.00 0.30 0.06 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.00 0.00 0.28 0.03 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.00 0.00 0.26 0.03 0.00 0.00 0.00 0.00 0.00 0.00

for a specific range of generated requests. Figure 5.16 displays the detection results for the first

highlighted cell in Table 5.6 (Pct=0.2, Att=0.6) - denoted by the superscript 1 and in the

column or attack percentage adjacent to the trouble area. From these results, it is quite clear,

just as it was for the random attack strategy, that the Zipf metric prohibits the attacker from

conducting a FRC attack unnoticed. Because the heavy-hitter attack strategy only initiates

requests from the most frequently sought documents, the effect of the attack on the Spearman

and Overlap metrics is beneficial to the attacker. The heavy-hitter attack pattern does not

significantly change the rank of the most requested documents, thus the large number of FNs.

Requesting the most popular documents does, however, alter the Zipf value to the point where

it is considered anomalous.

Examining the individual detection metric values for the highlighted cell (Pct=0.3, Att=0.6)

adjacent previously discussed cell - denoted by the superscript 2 - presents a clearer picture

of why the detection scheme failed for the range of requested documents where Pct=0.3. As

shown in Figure 5.17, the attack pattern was able to produce a number of measures within

the predetermined Zipf tolerance interval. Coupled with the failure of both the Overlap and

Spearman metrics for this particular range of requested documents, the attacker was able to

achieve some success defeating the detection scheme. Comparing the trend in Zipf values

between Figures 5.16 and 5.17 shows that the for a Pct=0.3 in Figure 5.17 the Zipf value

122

Figure 5.16: ECpE: Heavy-Hitter Attack Scenario - Pct=0.2, Att=0.6

produces measures that are in the range of the Zipf tolerance interval while in Figure 5.16

the Zipf values are clearly larger than the stated tolerance interval. Although not presented,

the Zipf metric values for the test case where Pct=0.4, Att=0.6 exhibits a consistent increase

in the Zipf value, moving swing of calculated measures sufficient below the tolerance interval

to produce very little FNs. Thus given the heavy-hitter attack scenario, there is a natural

deficiency that, if found, could be exploited by an FRC attacker. However, despite this short

coming, by only being able to achieve a success rate of 25% (i.e. a FNR of 25%), the amount

of requests generated by such an attack, from an accumulated cost perspective, would be

insignificant and is thus labeled as nuisance activity.

FN FN FN FN FN FN FN FN FN

Figure 5.17: ECpE: Heavy-Hitter Attack Scenario - Pct=0.3, Att=0.6

123

For the NASA dataset, the overall results from the heavy-hitter attack scenario differ slightly

in Table 5.7 due to the contrast in composition of the two datasets but present the same general

trend as previously discussed for the ECpE dataset. The range of documents that is able to

defeat the Zipf metric for the NASA dataset occurs when Pct=0.1.

Table 5.7: NASA: Heavy-Hitter Attack Strategy - False Negative Rates (%)

Att/Pct 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.901 0.002 0.00 0.00 0.05 0.09 0.05 0.06 0.06 0.05

0.2 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.6 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.7 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 5.18 presents the results for the first highlighted cell (Pct=0.1, Att=0.1) in Table

5.7 - denoted by the superscript 1. Similar to measures produced in Figure 5.16, the necessary

structure in the data logs has been preserved to keep the Zipf value within the calculated

tolerance interval. At an Att=0.1, the heavy-hitter attack scenarios appears to have bested the

detection methodology. However, at Att=0.1, even with a success rate of 90%, the attacker is

only consuming 10% more bandwidth than normal and thus the impact over the overall attack

does not enter into the FRC attack range. For Pct=0.1, the observed trend in Table 5.7 is that

as the attack intensity increases the effectiveness of the attack result decreases.

Consistent with the results for the ECpE dataset, an increase in the percentage documents

requested causes the heavy-hitter attack strategy to fail. The test iterations for the adjacent

cell (Pct=0.2, Att=0.1) - denoted by the superscript 2 - in Table 5.7, shown in Figure 5.19,

presents a consistent result of the decrease in the Zipf value as Pct increases.

In comparison to the random attack strategy, an attacker employing the heavy-hitter strat-

egy is able to defeat the FRC detection scheme with a higher degree of success. Despite this

124

FN FN

Figure 5.18: NASA: Heavy-Hitter Attack Scenario - Pct=0.1, Att=0.1

Figure 5.19: NASA: Heavy-Hitter Attack Scenario - Pct=0.1, Att=0.1

limited success however, the detection metrics are able to detect a vast majority of the attack

test cases and not a single registered test case yielded a FNR that would result in a successful

FRC attack.

5.8.2.3 Trace-Driven Attack Strategy

The third and most formidable attack scenario is the Trace-Driven attack strategy in which

the attacker simply replays the request sequences of users that have already visited the site.

Even without the assumption of allowing the attacker to have knowledge of the training logs,

a trace-driven attack scenario can be easily carried out by an attacker by crafting potential

125

request sequences that mimic the web traversal patterns of a legitimate user interacting with

the victim’s site. Choosing highly likely request sequences, not requesting random and un-

popular pages that defy the link structure of a given website, thwarts detection efforts that

seek to identify malicious clients based on known transitional probabilities between successive

requests [87, 124].

The objective of this attack strategy is to explore the diversity of request sequences needed

and volume of web traffic that can be consumed without being detected as malicious. In this

scenario, both the attack volume and percentage parameter differ from that of the two previous

attack strategies. A trace-driven attack that makes between 10% to 100% more requests than

that of normal traffic is too subtle to be detected and thus a range of 100% to 1000% is

instead considered. Furthermore, enabling an attacker to replicate 50% to 100% of known

sequences likewise produces unacceptably high FNRs. Therefore, the attacker’s knowledge

has been restricted to that of 5% to 50% of known sequences. For each of these two omitted

ranges, these results are to be expected because the resulting consumption patterns within these

ranges are no different from that produced by the site’s normal clientele and daily fluctuations

in request volumes.

To highlight the point of the FRC ineffectiveness against the trace-driven attack for the

given ranges, consider the results in Figure 5.20 for an attack that consumes 1000% more

requests than normal by replaying all available sequences observed (Pct=1.0, Att=10.0). Thus

in many respects this test scenario generates a flash crowd, an event the detection scheme

should not regularly detect. Even at 10 times the request volume of normal traffic, the detection

methodology fails to detect this action consistently as a FRC attack, which, given the context,

is the desired result.

The experimental results shown in Tables 5.8 and 5.9 depict the FNRs for synthesized

attacks that ranged in excess between 100% and 1000% (Att=1.0-10.0) of normal activity and

replayed 5% to 50% (Pct=0.05-0.50) of the known web request sequences. As can be seen by

the trend of FNRs in Table 5.8 for the ECpE dataset, the more diversity and subtleness in

request volume the attacker exhibits, the more difficult a FRC attack is to detect and thus the

danger of a FRC attack. For an attacker to accomplish their goal, substantial financial damage

126

FN FNFN FN

Figure 5.20: ECPE: Trace-Driven Attack Scenario - Pct=1.0, Att=10.0

can be inflicted by requesting less intense volumes over longer durations of time.

Table 5.8: ECpE: Trace-Driven Attack Strategy - False Negative Rates (%)

Att/Pct 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

1.0 0.00 0.07 0.22 0.37 0.48 0.53 0.56 0.56 0.57 0.66

2.0 0.00 0.00 0.03 0.13 0.25 0.37 0.40 0.47 0.57 0.55

3.0 0.00 0.00 0.00 0.08 0.18 0.30 0.39 0.44 0.56 0.54

4.0 0.00 0.00 0.00 0.07 0.17 0.24 0.36 0.44 0.44 0.51

5.0 0.00 0.00 0.01 0.07 0.14 0.17 0.31 0.39 0.46 0.53

6.0 0.00 0.00 0.00 0.05 0.11 0.22 0.36 0.37 0.46 0.49

7.0 0.00 0.00 0.00 0.06 0.09 0.20 0.30 0.37 0.45 0.48

8.0 0.00 0.00 0.00 0.05 0.07 0.16 0.26 0.33 0.45 0.48

9.0 0.00 0.00 0.00 0.03 0.07 0.13 0.25 0.32 0.47 0.48

10.0 0.00 0.00 0.00 0.05 0.06 0.17 0.31 0.36 0.40 0.47

Of the 39 939 observed request sequences for the ECpE dataset, 20% (i.e. column 2 in

Table 5.8) represents 7 986 of those sequences. Likewise for the NASA dataset that consists of

304 207 distinct request sequences, 20% of these request patterns equate to 60 841 sequences.

To put the less than desirable FNR results in Tables 5.8 and 5.9 into perspective, these results

are predicated upon the fact that an attacker either has full access to the web logs or is able

to accurately guess 8 000 or 61 000 web request sequences for each of the respective websites.

Thus for less knowledgable attacker and given the proposed detection metrics and experimental

results shown, it would be difficult for an attacker to mount a successful FRC attack and avoid

127

detection.

Table 5.9: NASA: Trace-Driven Attack Strategy - False Negative Rates (%)

Att/Pct 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

1.0 0.00 0.14 0.49 0.71 0.72 0.84 0.89 0.90 0.90 0.94

2.0 0.00 0.00 0.18 0.43 0.64 0.69 0.82 0.86 0.90 0.92

3.0 0.00 0.00 0.07 0.30 0.52 0.66 0.80 0.83 0.89 0.91

4.0 0.00 0.00 0.05 0.24 0.52 0.59 0.69 0.86 0.91 0.92

5.0 0.00 0.00 0.03 0.16 0.47 0.62 0.72 0.77 0.85 0.93

6.0 0.00 0.00 0.02 0.17 0.43 0.56 0.69 0.75 0.82 0.92

7.0 0.00 0.00 0.03 0.14 0.41 0.55 0.70 0.72 0.85 0.90

8.0 0.00 0.00 0.02 0.15 0.41 0.61 0.67 0.78 0.82 0.90

9.0 0.00 0.00 0.03 0.13 0.39 0.54 0.68 0.70 0.85 0.90

10.0 0.00 0.00 0.03 0.14 0.39 0.57 0.69 0.76 0.83 0.89

Based on these experimental results from the three presented attack scenarios, it can be

seen that an attacker with knowledge of the web logs can perform a FRC attack with varying

degrees of success given the detection metrics presented in this paper. Without the knowledge

of the training data, the experimental results indicate that it would be very difficult for an

attacker to mimic the aggregate web usage patterns to consume an appreciable amount of web

data without being detected as malicious.

5.8.3 Self-Similarity and Consistency of Training Data

Like fractals, aggregate web traffic has been shown to possess self-similar characteristics [27,

29]. This scale-invariant quality of web data, more specifically the collective patterns of client

HTTP requests, is relevant in context of FRC detection as it enables the presented detection

methodology to be applied to various scales of time (i.e. training and test window sizes) based

on the needs or requirements of a particular cloud environment. Although the experimental

results shown in Sections 5.8.1 and 5.8.2 were performed for a training and test window size

of three days, this parameter of the detection methodology is not fixed. Figures 5.21, 5.22,

and 5.23 presents the experimental results for the NASA dataset for the testing portion of the

detection methodology. By varying the training window size from one to seven days it can be

seen that these results, the average Spearman, Overlap and Zipf values, exhibit statistical self-

128

similar qualities that lend this methodology to be applicable for more than a single training

window size. While the average Spearman, Overlap, and Zipf values remain consistent, the

tightening of the upper and lower tolerance intervals, for each of the presented figures, is in

larger part due the decrease in variance of the metric measures as the training window increases.

1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

Training Window (Days)

Av
er

ag
e

Sp
ea

rm
an

 V
al

ue

Upper TI

Lower TI

Figure 5.21: Spearman’s Proximity: Self-
similarity of NASA Dataset

1 2 3 4 5 6 7
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Training Window (Days)

Av
er

ag
e

O
ve

rla
p

Va
lu

e

Lower TI

Upper TI

Figure 5.22: Overlap Value: Self-similarity of
NASA Dataset

1 2 3 4 5 6 7

1.3

1.2

1.1

1

0.9

Training Window (Days)

Av
er

ag
e

Zi
pf

 V
al

ue Upper TI

Lower TI

Figure 5.23: Zipf Value: Self-similarity of NASA Dataset

To supplement the previously described self-similar characteristics of the aggregate web

requests, Tables 5.10 and 5.11 provide the FPR results for training window sizes of one to

seven days to enumerate the consistency of the measures. The motivation for presenting the

results of the three-day training window size in Section 5.8.1 was due to the fact that each of

the training windows sizes for both datasets yielded a FPR of 0.00% for a tolerance interval

with 80% confidence. While a 0.00% FPR is ideal, it is certainly not always obtainable given

the inherent characteristics of the datasets and the inevitable give-and-take between FPRs

129

and FNRs. Furthermore, given this variance, a tolerance interval of 80% is considered in this

context to be an aggressive measure for the purposes of anomaly detection, especially when the

emphasis of the methodology is to reduce false positives in lieu of false negatives. As a result,

lower confidence tolerance intervals are not expected to yield FPRs = 0.00% for all training

window sizes. To show the contrast in experimental results for a more conservative tolerance

interval, measures in Tables 5.10 and 5.11 were performed with a confidence of 95%.

Table 5.10: ECpE: Consistency of Detection Metrics Across Training Window Sizes

ECpE Dataset FPRs

Window Size (Days) Zipf Spear Overlap Total

1 1/37 = 2.70% 0/37 = 0.00% 0/37 = 0.00% 1/37 = 2.70%

2 1/33 = 3.03% 0/33 = 0.00% 0/33 = 0.00% 1/33 = 3.03%

3 0/29 = 0.00% 0/29 = 0.00% 0/29 = 0.00% 0/29 = 0.00%

4 1/25 = 4.00% 0/25 = 0.00% 0/25 = 0.00% 1/25 = 4.00%

5 0/21 = 0.00% 0/21 = 0.00% 0/21 = 0.00% 0/21 = 0.00%

6 1/17 = 5.88% 0/17 = 0.00% 0/17 = 0.00% 1/17 = 5.88%

7 0/13 = 0.00% 0/13 = 0.00% 0/13 = 0.00% 0/13 = 0.00%

To present a higher fidelity view of the data presented in Table 5.10 for the training window

size of four days, Figure 5.24 depicts each of the three detection metrics, their corresponding

tolerance intervals, and a visual indication of whether or not the test iteration registered as a

false positive. Despite registering a FPR = 4.00%, which may be acceptable in some circum-

stances, it can be seen that the four-day training window size yields consistent measures for

both the Spearman or Overlap values. The overall FPR can be attributed to the single FP

measure recorded for the Zipf metric as seen in Figure 5.24. Referring back to Table 5.10, there

is a general trend that the consistency of the Spearman and Overlap value and inconsistency

of the Zipf value for the ECpE dataset is generally not unique to the training window size.

Although the Zipf metric is more prone to erroneous measures, as there is more variance within

130

its measures, it is an absolutely necessary measure for the detection of the FRC attacks. While

the Spearman and Overlap metrics can easily be defeated by an attacker requesting a handful

of popular web pages (i.e. heavy-hitter attack scenario), the Zipf metric provides the necessary

measure to ensure that ranked aggregate requests conform to the relative proportionality in

volume as found in Zipf-like distributions.

FP

Figure 5.24: ECpE: FPR Results for Four-Day Windows Size

In comparison to the ECpE dataset, the measure of FPRs experienced by the NASA dataset

for each of the detection metrics and across varying training window sizes, as seen in Table 5.11,

yields more consistent and favorable marks. While specifying the root cause of these differences

is difficult as there are many dissimilarities between the datasets that could effect this outcome,

future research and access to a diversity of web logs will better help investigate the qualities

of a dataset in respect to the consistencies (or inconsistencies) of its FRC detection measures.

What is worth noting, however, is the applicability and accuracy of the given measures and the

resultant FPRs for two very different websites and user bases.

As show in Table 5.11, a training window size of seven days for the NASA dataset also

results in a FPR = 0.00%. As shown in Figure 5.25, although the window size has increased to

seven days, due to the self-similar nature of the detection metrics, which can be observed for

all graphed tolerance intervals, the resulting values provide a consistent measure with which to

base an anomaly-based detection methodology.

While the FPRs will vary from website to website, the results reported show a promising

131

Table 5.11: NASA: Consistency of Detection Metrics Across Training Window Sizes

NASA Dataset FPRs

Window Size (Days) Zipf Spear Overlap Total

1 0/37 = 0.00% 0/37 = 0.00% 0/37 = 0.00% 0/37 = 0.00%

2 0/33 = 0.00% 0/33 = 0.00% 0/33 = 0.00% 0/33 = 0.00%

3 0/29 = 0.00% 0/29 = 0.00% 0/29 = 0.00% 0/29 = 0.00%

4 0/25 = 0.00% 0/25 = 0.00% 0/25 = 0.00% 0/25 = 0.00%

5 0/21 = 0.00% 0/21 = 0.00% 0/21 = 0.00% 0/21 = 0.00%

6 0/17 = 0.00% 0/17 = 0.00% 0/17 = 0.00% 0/17 = 0.00%

7 0/13 = 0.00% 0/13 = 0.00% 0/13 = 0.00% 0/13 = 0.00%

solution that is more general than the reported findings. The experimental results presented in

this section demonstrate the applicability of the formulated detection metrics given a range of

variability in the parameters that govern the experimental design of performing FRC detection.

Furthermore, the characterization of the given datasets shows that the self-similar nature of

web requests enables flexibility in the resolution of the training and testing window sizes.

5.8.4 Discussion

The detection of a FRC attack is fundamentally different than that of application-layer

DDoS attack or systems compromise. With respect to a FRC attack, detection is not a binary

measure in which the system is available or not, nor is it a question of whether a system’s con-

fidentiality or integrity have been compromised. Although ultimately desirable, the complete

detection of a FRC attack is not necessary, just a sufficient amount that enables the entire FRC

mitigation solution to relegate fraudulent use to that of nuisance activity. Reliable FRC attack

detection thus answers whether a cloud consumer has been subjected to fraudulent resource

use within a billing period or smaller unit of time. Building on this knowledge and as will be

discussed in Chapter 6, once a FRC attack has been detected, it is then necessary to apply a

132

Figure 5.25: NASA: FPR Results for Four-Day Windows Size

FRC attribution solution to identify the malicious actors.

The methodology presented in this chapter relies on reviewing data over relatively large

periods of time. The detection metrics were chosen for their ability to characterize aggregate

data not for their computational performance. Although ideally FRC attack detection would

be performed in real-time in a compute efficient manner, these qualities have lower priority

relative to the need for low FPRs and FNRs. The FRC attack spans many days, weeks and

possibly months, therefore available time and compute power are relatively abundant.

5.9 Flash Crowds and FRC Attacks

Relevant to the topic of FRC detection is to determine whether or not the presented FRC

detection methodology detects flash crowds and, if so, whether or not this is a desirable quality.

In this context, a flash crowd is a noticeable increase in the aggregate client request volume

over a finite period of time. Flash crowds are typically short-lived anomalies triggered by an

event that prompts a large number of unique clients to request a few web pages from a specific

website. The abrupt and collective actions of a flash crowd can be troublesome to a web server

as this behavior can inflict significant strain on available resources. Similar in nature to flash

crowds are DDoS attacks that are composed of a relatively smaller number of malicious bot

computers that each invoke a large number of requests. As has been previously discussed in

Section 5.4.3.1, the telling characteristic that distinguishes flash crowds from DDoS attacks is

133

that the average per-client request rate for a flash crowd does not increase during such an event

while the average per-client request rate increases significantly during a DDoS attack.

A FRC attack is comparable to that of a flash crowd in that the average per client request

rate does not increase during an attack and thus such a measure cannot be used to make a

distinction. However, there are other telling characteristics that can be used to differentiate

these two events. As is central to the objectives of a FRC attack, the average per client request

volume will increase over a given time period, which is different than that of a flash crowd.

Similarly, the duration of a flash crowd is short-lived while a FRC attack as described in this

work is to last weeks or months. Even if a FRC attack masks itself as a flash crowd, the overall

impact of a short-lived event will not incur significant charges onto the cloud consumer.

The objective of the FRC detection methodology is to determine if increases in accumulated

client traffic are consistent with that of what has been observed in the past or whether the

request volume can be attributed to fraudulent consumption. To this affect, the FRC detection

methodology should detect FRC attacks, DDoS attacks, and flash crowds as anomalies because

each of these respective events are not indicative of normal traffic patterns. However, just

because the presented FRC detection methodology deems each of these events as anomalous,

this characterization does not infer that each of these events are a FRC attack. Once an

increase in traffic have been determined to be anomalous, based on the duration of the event,

constructs of the volume increase, and prior research, determining if an event is indeed a flash

crowds, DDoS attacks, and FRC attacks is a matter of further analysis. The focus of this work

is not on the events of extreme usage (i.e., flash crowds or DDoS attack) but instead on the

task of differentiating very subtle increases in traffic from that of normal, which occurs on the

other end of the attack spectrum. It is assumed that any resource usage in which the malicious

clients behavior or request intensities deviate from normal will be trivial to detect and identify

given the presented methodologies in this work. The challenging problem is detecting subtle

attack clients attempting to mimic normal behaviors.

There is a historical precedence that when proposing a DDoS detection scheme that it should

be able to accurately differentiate between DDoS attack and flash crowds, and, rightfully so, as

the objectives of the website owner differ greatly depending on the nature of the spike in traffic.

134

In the case of a DDoS attack, the goal is to block or deny access to as many offending clients

as possible to enable legitimate clients to access the given website. Handling flash crowds, on

the other hand, it is the website owners objective to handle as many client requests as possible.

The same motivation is true when differentiating between a FRC attack and an increase in

traffic volume. In respect to the former, if the increased cost of traffic volume is not countered

by added business value, then the long-term sustainability of operating in the cloud may not

be feasible. As a result, a FRC attribution scheme would be used to identity and ultimately

mitigation offending bots.

The operational purpose of the FRC detection and attribution methodologies should also be

taken into account in this discussion. Like Intrusion Detection Systems (IDSs), the presented

FRC detection methodology is a passive system that monitors traffic patterns for possible

fraudulent or anomalous incidents and itself is not does not take action to stop a potential

attack [103]. Similar to an Intrusion Prevention System (IPS), the FRC attribution method-

ology is tasked with identifying and blocking suspected clients based on the clients individual

behaviors. In a sequence of events, a report of anomalous behavior from the FRC detection

methodology would lead to the activation of the FRC attribution methodology. The reason the

attribution methodology is not persistently engaged is that it would unnecessarily introduce

false positive when the presence of an attack has not been shown.

Even if a FRC detection methodology errantly detects a flash crowd and engages the at-

tribution methodology, such an action will have a minimum impact on true flash crowd users

as they historically have been shown to abide by the normal usage characteristics of individual

clients (i.e. requesting a few web pages). This is not to say that their collective actions rep-

resent normal traffic, just their individual request semantics. On the other hand, if an FRC

attacker masquerades as a flash crowd, as seen in either the heavy-hitter or trace-driven attack

patterns, then if the characteristics of this attack persist over a longer period of time, even if

the individual clients rates are non-aggressive, the client usage patterns will be deemed to be

anomalous and thus quelled.

At present, there does not exist a methodology that is able to distinguish increases in

normal web activity from the actions of a FRC attack. In this regard, it is not sufficient to

135

attribute either an increase in aggregate request volume or increases individual request volume

as malicious. The FRC detection methodology is volume independent in the sense that it

focuses on the collective behaviors of clients and not the amount of requests that were enacted.

This design principle is key in order to differentiate a surge in a web sites popularity versus

fraudulent activity.

5.10 Future Work

The focus of this chapter, as was described in Introduction, was to detect FRC attacks from

that of normal or increases in normal activity. Although positive results were achieved, there

is still much work to be done in this problem space to truly reduce all FRC attack scenarios

to that of nuisance activity. The detection mechanisms presented are for the broad analysis of

request usage, and are not applicable for the identification of individual attack clients. Building

on the results of this chapter, it would be ultimately desirable to perform the given detection

methodology on a range of datasets that encompass and number of client volumes, website

structure and purposes, and client demographics.

The detection scheme presented in this work was targeted at primary requests generated by

clients. By analyzing only the primary requests, secondary requests were discarded before the

training and testing phases of the methodology. Future research into exploring the same general

approach but applied to the entire breadth of the web data logs would be interesting from the

perspective of whether or not such analysis provides a more accurate profiling of normal client

behavior and application of the presented detection metrics.

One of the primary objectives of this detection methodology was to find a solution that was

independent of the aggregate request volume and that focused on the semantics of aggregate

user behaviors. To develop a detection solution based on request volume, researching the

feasibility of using the y-intercept of the regression line for the Zipf-like distribution would

potentially provide an indication of fraud. Coupled with knowledge of the expect or normal

request volumes, these metrics could provide a broad indication of the expect parameters for

request volumes given a specific training window size.

As is evident in Figure 5.7, web usage follows a cyclical pattern dependent on the days of

136

the week. In the approach presented in this chapter, each day used in the training and test

windows was done so without regard for which day in the week was present. If more days of

data logs were available, it would be worth exploring if the usage characteristics for particular

week days can be modeled in order to provide a more accurate profiling of daily aggregate web

usage.

The attacks presented in this chapter enabled the attacker to have great latitude in his/her

attack by having access to the training web logs before the onset of the attack. An beneficial

research project would be to generate attack profiles, without knowledge of the training web

logs, and based on the structure of a target website. This formulation of attack requests

would require a live website and ability to collect the resultant logs. Such analysis and the

attack patterns formalized would provide additional test cases utilizing the presented detection

methodology against a diversity of new attacks.

5.11 Conclusion

As it is currently structured, the pay-as-you-go public cloud utility model is vulnerable

to remote exploitation from any Internet-enabled device. Given the lack of attention and

mitigation solutions for this open vulnerability, an attacker has the unrestricted ability to

consume significant volumes of data usage that can result in a severe financial impact for a cloud

consumer. The challenge this chapter sought to address was that of accurately differentiating

aggregate data usage of legitimate clients from that of attack clients. Such a problem is difficult

because requests only differ in the intentions of the attacker not in the structure or semantics

of the request.

Presented in this chapter are three detection metrics that together provide the criteria ca-

pable of detecting three plausible FRC attack scenarios. To test the robustness of the proposed

detection scheme against a worse-case scenario, the stated threat model enabled the attacker

to access the log data before the onset of the a FRC attack. Despite the advantages of the

attacker, the experimental results demonstrated that the proposed FRC detection scheme has

had qualified success under very challenging attack scenarios.

137

CHAPTER 6. FRC ATTRIBUTION

Chapter contains modified content from the following submitted conference paper:

Idziorek, J., Tannian, M. and Jacobson, D. Attribution of Fraudulent Resource Consumption

in the Cloud. 2012 IEEE 5th International Conference on Cloud Computing (CLOUD ’12),

c� IEEE 2012.

6.1 Abstract

Obligated by a utility pricing model, Internet-facing web resources hosted in the public cloud

are vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-

layer DDoS attack that consumes resources with the goal of disrupting short-term availability,

a FRC attack is a considerably more subtle attack that instead seeks to disrupt the long-term

financial viability of operating in the cloud by exploiting the utility pricing model over an

extended time period. By fraudulently consuming web resources in sufficient volume (i.e. data

transferred out of the cloud), an attacker (e.g. botnet) is able to incur significant fraudulent

charges to the victim. This chapter proposes an attribution methodology to identify malicious

clients participating in a FRC attack. Experimental results demonstrate that the presented

methodology achieves qualified success against challenging attack scenarios.

6.2 Introduction

The offering of resources as a metered service is an essential characteristic that defines

cloud computing [77]. Analogous to public utilities like electricity and gas, cloud consumers

138

are charged for computing resources like storage, processing, and bandwidth on a pay-per-use

basis. As an example, consider a web-based service hosted in the cloud. Each GB of bandwidth

consumed in support of client requests is applied to a utility pricing model and a fee is assessed

to the cloud consumer. Pursuant to a Cloud Service Provider’s (CSP) Terms of Agreement,

cloud consumers are financially responsible for all bandwidth consumed in support of their web

services whether clients consume these resources in good faith or not.

Obligated by a utility pricing model, public-facing web resources hosted in the cloud are

vulnerable to Fraudulent Resource Consumption attacks. Unlike an application-layer DDoS

attack that consumes resources with the goal of disrupting short-term availability, a FRC

attack is a considerably more subtle attack that instead seeks to disrupt the long-term financial

viability of operating in the cloud by exploiting the utility pricing model over an extended time

period. By fraudulently consuming bandwidth in sufficient volume (i.e. data transferred out of

the cloud), an attacker (e.g. botnet) is able to incur significant fraudulent charges to the victim.

Such attacks are difficult to detect because the malicious clients’ requests are non-aggressive,

protocol compliant, and only different in the intent of the requester.

Building on the previously explored topic of FRC detection (Chapter 5), the main contri-

bution of this chapter is an attribution methodology capable of identifying FRC attack clients.

This work seeks to reduce the impact of fraudulent clients while minimizing the misclassi-

fication of legitimate clients. Different than application-layer DDoS solutions that focus on

request rates of attack clients, the attribution methodology presented in this paper targets four

aspects of client web browsing behavior. These four qualities are formulated into an attribution

methodology that is tested through the use of three progressively challenging attack scenarios.

This chapter is organized as follows. Section 6.3 provides a brief risk analysis of utility

computing. Related works are discussed in Section 6.4. Section 6.5 describes the datasets

used for experimental purposes. The attribution methodology is presented in Section 6.6 and

the experimental evaluation is provided in Section 6.7. Section 6.8 presents a more thorough

analysis of FRC risk. A discussion and future work will be in Section 6.9 and lastly the

conclusion is provided in Section 6.10.

139

6.3 Risk of Utility Computing

The utility pricing model is advantageous to a cloud consumer for it enables a low barrier

of entry and avoidance of upfront capital expenses. In respect to bandwidth pricing, CSPs like

Amazon Elastic Compute Cloud (EC2) [4], Microsoft Azure [122], and Rackspace [94] charge

$0.12/GB (up to 40 TB), $0.12/GB and $0.18/GB respectively for data transferred out of a

cloud environment (i.e. bandwidth). While the utility model is convenient, it is not without

its risks.

Internet

CSP Access Point

CSP NetworkPublic Internet

Cloud Consumer

Legitimate
Clients

Attack Clients
(bots)

Control

Botmaster
Cloud-based Website

$$$$
$

$

$

$$
$

$
$$

$ $ $ $

$

$ $ $

$ $$ $

Figure 6.1: FRC Attack Illustration

As illustrated in Figure 6.1, each cloud-hosted web document represents a cost that is a

function of the document’s size and the CSP’s pricing model. Thus each request serviced

by a web site or web application translates to a direct cost that is assessed to the cloud

consumer. Because malicious clients requests differ only in intent, all requests are serviced by

the web application. The unlimited costs resulting from aggregate outbound replies triggered

by malicious requests is the risk this paper seeks to help mitigate. This section will explore

the likelihood that the utility pricing model vulnerability is exploited and the impact an FRC

attack would have on a cloud consumer (i.e. victim).

The likelihood of a FRC attack is contingent upon the exploitability of the utility pricing

vulnerability and the threat source’s skill level, capacity, and motivation. Discovering the

utility model vulnerability is a simple task for the attacker because data usage pricing is openly

published [4, 94, 122] and the utility pricing model vulnerability has been discussed in both

academic and non-academic forums [51]. Exploiting the utility model is simply a matter of

making legitimate requests for publicly-hosted web content in sufficient volume to inflict a

140

malicious cost burden on the cloud consumer. As a result, a FRC attack could conceivably

be performed by any Internet-connected device. Whether fraudulent requests originate from

a simple Perl script or through the use of the more recently infamous Low Orbit Ion Cannon

- an open-source software tool that enables individuals to perform or participate in DDoS

attacks - there exists few technical barriers to conduct a FRC attack. The worst-case threat

source, however, is that of a large botnet. Based on the sophistication and recent increase in

number and volume of DDoS attacks [25], the worst-case threat source undeniably possesses the

technical knowledge and resources necessary to conduct and sustain an impactful FRC attack.

Given the discoverability and ease of exploiting the utility pricing model vulnerability,

the only significant factor preventing a FRC attack is the motivation of the attacker. Like

botmasters that perform DDoS attacks, the source of a FRC attacker’s motivation is wide-

ranging and likely includes ego, hacktivism, monetary gain, extortion, revenge, creating a

competitive advantage, and/or economic espionage [82].

The financial damage resulting from a FRC attack is largely a product of the attacker’s

average request intensity and the duration of the attack. While a FRC attack could easily

exploit the utility model vulnerability with a DDoS attack, the attacker would do so at the

increased risk of detection and ultimately mitigation. To enumerate the financial impact of an

overt FRC attack, consider that the average bandwidth for a DDoS attack recorded in the last

quarter of 2011 was 5.2Gbps [25]. Applied to the utility pricing model, at $0.12/GB, if such

an attack were sustained on the cloud model the resultant costs would be $4.68/min, $280.8/h,

$6739/day, and $47,174/week. On the other end of the spectrum, an attacker could employ

a slow-and-low attack strategy to avoid detection but would then be required to sustain the

attack over a longer duration of time to achieve the desired cost impact. Given a more subtle

attack approach, all that is necessary for a 100,000 node botnet to double the data usage costs

of a website that averages five requests per second would be for each bot client to request eight

web pages a day. Such a un-assuming attack is the focus of this work as it would go undetected

by current firewalls, DDoS mitigation, and intrusion/detection solutions.

141

6.4 Related Work

The closest body of work to that of FRC attribution is research that seeks to identify bot

clients participating in application-layer DDoS attacks. Given that both attacks utilize HTTP

requests to accomplish their goals, these works have served as a natural starting point for

exploring FRC attribution options. The following analysis is presented to motivate the need

for attribution methodologies that are able to detect much less intense attacks.

To identify application-layer DDoS attack clients, Ranjan et al. [97] devised statistical

methods to build profiles of normal client behaviors by considering client inter-session arrival

times, inter-request arrivals times and session workload parameters. Similarly, Oikonomou et

al. [87] examined a number of web browsing features to distinguish bot clients that exhibit

aggressive behaviors. Central to both of these attribution methodologies is the reliance on

time-based parameters (i.e. request rates). While these researchers report success against

application-layer DDoS attacks, such methodologies would prove ineffective against a FRC

attack because individual clients need not resort to short-term aggressive request patterns in

order to accomplish the attacker’s long-term goals.

To differentiate legitimate clients from bot clients, Kandula et al. [58] proposed an attri-

bution scheme based on graphical puzzles. While effective in some contexts, such an approach

is not generally considered a practical solution [87], especially as a proactive approach for web

content that is intended to be publicly hosted. More transparent approaches include the use of

honey-tokens [40] - invisible decoy hyperlinks errantly requested by automated bots. Although

clever, this attribution methodology only considers a limited threat model.

Other approaches to differentiating legitimate clients from DDoS bots includes analyzing the

transitional probabilities between successive client requests [87, 123, 124]. The premise of these

works is that bots are unable to deduce common request sequences for a particular web site.

While potentially applicable to FRC attribution, these solutions only consider a single aspect

of a client’s overall request characteristics and thus are restricted to a limited threat model

not considered sufficiently general for this work. Additionally, Kruegel et al. [68] proposed a

web-based anomaly detection methodology for the identification of attacks that attempted to

142

exploit web-based software or configuration vulnerabilities. This work is distinctly different in

that the objectives of a FRC attack is not application or host compromise, but to use the utility

pricing model as a weapon. In this respect, the proposed attribution methodology focuses on

anomalous usage characteristics of individual clients, not on the semantics of a query string in

a HTTP GET request.

More practical and less academic solutions include the assistance of web server anti-DDoS

software modules. Developed for the Apache web server, mod evasive is a DDoS detection and

mitigation tool that prohibits individual IP addresses from requesting the same webpage more

than three times in a second and issuing more than 50 concurrent requests per second [129].

Through statistical tracking of IP addresses and URIs, mod evasive also perform blacklisting of

offending clients. While effective for DDoS attacks, this solution directly targets the aggressive

rate of requesting clients, which is not considered a quality of a FRC attack client considered

in this work.

From this survey of related works, it should become apparent that current application-

layer DDoS attribution methodologies are not tailored to identify FRC attack clients. Instead

of focusing on time-based parameters, which often go hand-in-hand with resource exhaustion

attacks, attribution solutions that explore the behavioral characteristics of malicious client

requests are instead needed to identify surreptitious FRC attack clients that attempt to mimic

legitimate client behaviors.

6.5 Dataset Description

6.5.1 Web Log Properties

A web server log is a time-based record of all clients’ content requests and provides the

necessary observations for extracting features for deriving profiles of normal web activity. Figure

6.2 provides an illustration of the web usage features used for the purposes of attribution in

this work and also provides the context for the data preprocessing steps.

Each vertical line in Figure 6.2 depicts individual web requests that compose a web server

log. Denoted as tall lines, each primary web document request is an explicit request from

143

t. . .

Web session B
Length = 4

Web document
request

(1)

(2) (3)

(4) (5)

(6)

(entry) [IP address] [time stamp] [page request] [size]

 (1) 192.101.3.1 4:29:30 /index.html 4392
 (2) 192.101.3.1 4:29:35 /scripts/style.ccs 933
 (3) 192.101.3.1 4:29:37 /image/welcome.jpeg 2333
 (4) 192.101.3.1 4:29:57 /courses/cpre.html 391
 (5) 192.101.3.1 4:30:01 /academics/grad.html 758
 (6) 192.101.3.1 4:30:06 /photos/student.png 5637

Web Log Entries

Web session C
Length = 5

Web session A
Length = 3

Client 1 =

Client 2 =

Figure 6.2: Web Log Components

a client. As is typical for web documents, a single request often initiates other secondary

in-line requests to retrieve other web content embedded within the primary web document

such as figures, scripts or videos. Secondary in-line requests, as seen in the callout in Fig-

ure 6.2, are depicted as shorter lines that follow a primary request. For example, the pri-

mary request of (1)/index.html is followed by two secondary requests (2)/scripts/style.css

and (3)/images/welcome.png. While both primary and secondary requests are reflected in a

web log, without the live website from which a web log was obtained, it is difficult to differ-

entiate primary and secondary requests with complete accuracy. Client-side and distributed

network caching further complicate the task of reconstructing these relationships from a web

log. Therefore, in lieu of this ambiguity, web documents reflected as URLs for HTML docu-

ments or URIs were assumed to be primary requests and other web document requests such as

pictures and styles sheets were discarded during the preprocessing of the log as they are not

necessary to profile normal client behaviors.

Several terms need to be defined before discussing the proposed attribution methodology.

They are:

Request Volume - The quantity of primary requests invoked by a client within an obser-

vation time period.

Web Session - A set of consecutive primary requests generated by an individual client

during a single viewing period is known as a web session. As seen in Figure 6.2, web session A

contains three primary web requests and thus has a web session length of three. Although it

144

is logical to think of usage bursts as sessions, web protocols do not inherently support such a

distinction. In order to construct a session, a pause in a client’s recorded activity longer than

900 seconds is considered to be a separation between sessions [67].

Session Length - The number of primary requests in a web session.

Average Session Length - An individual client may invoke one or more web sessions of

varying lengths and thus this term denotes the mean of these lengths.

Session Volume - The quantity of web sessions attributed to a single client within an

observation period.

6.5.2 Experimental Datasets

Two datasets consisting of 56 consecutive days of web logs from two websites were par-

titioned into 28-day datasets for training and test. The first dataset (denoted NASA) is a

historically popular research dataset from a busy NASA web server [83]. The second dataset

(denoted ECpE) originates from our department’s public web server. It is assumed that these

weblogs are a reasonable representation of each of the respective sites beyond the 56 days

collected. Table 6.1 provides a description of these datasets in respect to the client charac-

teristics. These descriptions will prove to be useful when evaluating the experimental results.

Although the purpose, volume of requests, and nature of the websites are quite different, there

are consistencies between the websites that enable the formulation and experimental testing of

a generalized solution that is tuned but not designed for a specific web site.

6.6 Attribution Methodology

Attribution in the context of this work is the ability to accurately identify malicious clients

- based on IP addresses - from that of legitimate clients. The objective of this section is

to describe the anomaly detection methodology evaluated in Section 6.7.4. This attribution

methodology exploits the choices that an attack client must make under the hypothesis that it

is difficult to replicate normal client behavior without having access to web server logs or the

training dataset.

145

Table 6.1: Description of Experimental Datasets (all measures cover a 28-day observation
period)

Metric ECpE NASA

Total Requests
Training 45 953 564 090

Test 45 268 413 839

Avg Reqs per Client
Training 5.54 7.18

Test 5.64 5.99

Avg Session Length
Training 2.26 2.12

Test 2.37 2.00

Avg Sessions per Client
Training 2.93 3.17

Test 2.98 2.97

This methodology seeks to find statistical outliers among clients based on four observed

usage characteristics: request volume (reqvol), average session length (sesavg), volume of ses-

sions (sesvol), and chi-square statistic (chistat) of requested documents. In the evaluation of

a client, each attribution variable returns a probability score between 0.0 and 1.0 indicating

the likelihood that the resource usage footprint for a client is anomalous. As the attribution

variable approaches 1.0, the likelihood of usage behavior being anomalous increases. The four

respective metrics are summed together to produce an overall attribution score (ATTSCORE)

for each client.

ATTSCORE = reqvol + sesvol + sesavg + chistat (6.1)

After the ATTSCORE is calculated for a client, it is then compared to a threshold that is

the cutoff between designating a client as benign or malicious. This threshold is the sensitivity

parameter of the attribution methodology. The following subsections describe each of the

respective attribution metrics in detail.

146

6.6.1 Request Volume

Based on the objective of a FRC attack, it is in the best interest of an attack client to

consume as much bandwidth as possible over a certain duration of time without being identified.

As a result, the per client request volume becomes a natural discriminator of a client’s website

usage, and is therefore useful in performing anomaly detection. Figure 6.3 shows the cumulative

distribution function (CDF) for the per client request volumes for both the ECpE and NASA

training datasets over a period of 28 days. Although the two datasets are an order of magnitude

apart in terms of total request volume, the per client request volumes seen in these datasets

exhibit very similar characteristics, an observation that is repeated for each of the remaining

attribution metrics. Due to the overwhelming majority of clients that invoke very few requests

(Table 6.1), the CDF describing per client request volumes was constructed with a minimum

threshold of five requests to provide a larger contrast in the distribution of clients that invoke

the most requests.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Per Client Request Volume

C
um

ul
at

iv
e

Pe
rc

en
ta

ge

ECpE
NASA

5

Figure 6.3: Request Volume CDF (min. threshold of 5 requests)

Based on the CDF in Figure 6.3, each client in the test dataset is assessed an attribution

variable value, reqvol = FX(x), between 0.0 and 1.0 by determining the probability that a given

normal client’s request volume x would be less than or equal to that which was observed overall

such that:

FX(x) = P (X ≤ x) (6.2)

Thus the more requests that a particular client makes, the larger the reqvol value will be

147

assigned to that particular client. As seen in Figure 6.3, a client requesting more than 20

requests over 28 days is in the 80th percentile resulting in a reqvol score greater than 0.8.

6.6.2 Session Volume

In an attempt to avoid discovery and to mimic that of normal client usage patterns, an

individual attack client participating in a FRC attack is likely to distribute their resource

consumption over the course of many days by launching multiple fraudulent web sessions.

Without access to the web server log, the attacker does not know the amount of web sessions a

normal client typically makes over a given time period. Figure 6.4 depicts the CDF of session

counts per individual clients for both the ECpE and NASA training datasets. Similar to the

rational for the request volume CDF, a minimum threshold of two web sessions is considered.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Per Client Session Count

C
um

ul
at

iv
e

Pe
rc

en
ta

ge

ECpE
NASA

2

Figure 6.4: Sessions per Client CDF (min. threshold of 2 sessions)

The sesvol attribution variable is assigned a probability value between 0.0 and 1.0 resulting

from applying Equation 6.2 within the context of the session count CDF as shown in Figure

6.4. The probability value returned is the likelihood a normal client would have launched a

less than or equal number of sessions than was invoked by the overall client population (i.e.

nth percentile). Given that the per client average web session is nearly three for both datasets

(Table 6.1), malicious clients requesting slightly more than three sessions over a 28-day period

will likely be flagged as anomalous.

148

6.6.3 Average Session Length

In addition to distributing requests over multiple web sessions, an attacker attempting to

mimic normal behavior must also determine each web session length. As shown in the CDF

for the per client average session length, well over 80% of individual clients exhibit an average

session length less than that of five requests.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Per Client Average Session Length

C
um

ul
at

iv
e

Pe
rc

en
ta

ge

ECpE
NASA

1

Figure 6.5: Average Session Length CDF

The sesavg score is the probability that a normal client’s average session length is less than

or equal to that of what was observed overall. In order for an attacker to avoid a high sesavg

score, the attacker is forced to initiate more web sessions, which in turn contributes to a higher

sesvol score. Like the other attribution variables, sesvol will take on values from 0.0 to 1.0.

6.6.4 Chi-Square Statistic

Pearson’s chi-square test has been used as an anomaly detection methodology to compare

multinomial distributions in a number of related contexts including network-layer DDoS de-

tection [34] and intrusion detection [68]. In the context of the FRC attack, however, Pearson’s

chi-square statistic is instead used to evaluate the actual web pages a client requests in com-

parison to the web page request frequency distribution for an entire website. The Zipf-like

distribution [132] for the ECpE training dataset is shown in Figure 6.6 - a log-log plot of

document frequency (i.e. popularity) vs. document rank. Used in a similar context for FRC

detection(Chapter 5), the Zipf-like distribution broadly states that 10% of the requested docu-

ments are requested 90% of the time. Discrete bins representing continuous ranks of requested

149

web documents can be formed based on what the Zipf-like distribution states. As shown in

Figure 6.6, two bins are formed. Bin 1 contains the m most popular documents and Bin 2

contains the remaining documents in the web log. When comparing a client’s collection of web

document requests to overall website usage, these bins form probabilities that indicate, given k

requests, X% of the requests are expected to fall into Bin 1 and likewise Y% of the requests fall

into Bin 2. This test leverages the notion that a significant fraction of normal client behavior

is reasonably self-similar to the overall client population.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

log10(Rank)

lo
g 10

(F
re

qu
en

cy
)

Bin 2Bin 1

m most popular
requests

Figure 6.6: Application of Chi-Square Test to a Zipf Distribution

Given these preliminaries and given a client’s collection of ranked web requests, let the

ranked web pages be grouped into two or more discrete bins B1, B2, ...Bk and let each bin

represent a probability π1,π2, ...πk such that given n observed web requests, the expectation

for each bin is Ei = nπi. Partitioning a client’s requests into k bins, ni is defined as the

number of requests that fall in the ith bin and Ei is the expected number of requests based

on observations from the training dataset. Under the premise that the frequency distribution

established from the training dataset is consistent with a test client’s requests, the chi-square

statistic can be calculated as follows:

χ2 =
B�

i=1

(ni − Ei)2

Ei

(6.3)

While often used for hypothesis testing, the chi-square statistic in this context is instead used

as a relative measure of similarity or dissimilarity between individual client request distributions

and the overall population distribution. For each client in the training dataset, a chi-square

150

statistic is computed and an overall CDF, as shown in Figure 6.7, is constructed. Based on

this CDF, Equation 6.2 can be applied to assign a value (0.0-1.0) to chistat. While it would

be tempting to assign a p-value to chistat based on the chi-square statistic, the application of

a p-value in this context would be erroneous.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Per Client Chi Statistic

C
um

ul
at

iv
e

Pe
rc

en
ta

ge

ECpE
NASA

Figure 6.7: Chi-Square Statistic CDF

The power of this attribution variable is that it is difficult for an attacker to prescribe a

page request frequency distribution that resembles that of which was observed in the training

dataset. Although this particular attribution variable is subject to high false-positive rates,

the overall methodology operates under the assumption that legitimate clients that exhibit a

particularly high chistat will achieve typical statistics for the other variables and thus not be

classified as malicious.

The overall objective of this attribution methodology is to limit the amount of resources

that an attacker can consume without being detected. As presented, it is difficult for a FRC

attacker to consume a large quantity of resources without drawing suspicion. Although the

range of typical usage characteristics appear to be tightly bounded, there are legitimate clients

that deviate from normal and the experimental evaluation of the proposed scheme will uncover

the inevitable accuracy trade-offs of attacker attribution.

6.7 Experimental Evaluation

In order to conduct a FRC attack, the attacker must devise a methodology for individual

attack clients by specifying: how many web documents, which specific documents, how many

151

sessions, and the length of the sessions an individual bot node will make. This section fo-

cuses on the tactical decisions an attacker must consider in order to conduct a FRC attack.

Some of the decision combinations have been instantiated for testing and the corresponding

experimental results are presented. For the sake of brevity, not every possible combination of

attack parameters can be evaluated and presented here. Instead, a few specific FRC attack

profiles have been crafted in order to enable the evaluation of the effectiveness of the attribution

methodology. Although attribution criteria is applied to a 28-day test dataset, the method-

ology is not confined to this observation period. Instead, the methodology is sensitive to the

usage characteristics of clients’ requests.

6.7.1 Attacker Simulation

Three progressively challenging attack scenarios have been chosen to illustrate the effective-

ness and limits of the presented methodology. Although in practice it would be safe to assume

that the attacker does not have access to a web server’s logs (i.e. the training dataset) prior to

attacking, for two of the three attack scenarios evaluated this assumption is relaxed to give the

attacker an advantage in order to challenge the proposed methodology. In each of the attack

scenarios the attacker is utilizing a 100,000 node botnet. Each attack is implemented by syn-

thesizing and interweaving attack entries into the test datasets. The attribution methodology

is then applied to the test datasets after having trained on the training datasets.

6.7.1.1 Random Attack

The most näıve of the attack methodologies considered is where an attacker randomly

requests web pages from a website without considering the popularity or the contextual relation

between consecutive requests. Similar to spidering a website, an attacker requests a webpage

and then randomly requests one of the hyperlinks present in the retrieved webpage. This

process is repeated until a web session reaches the specified session length. In this scenario,

the attacker randomly makes between five and ten random content requests per web session.

152

6.7.1.2 Prescribed-Sessions

Under the assumption that the attacker knows the top-100 most requested web sessions of

at least three documents in length, the prescribed-sessions methodology simulates a more so-

phisticated attack in which each attack client is tasked with simply replaying the most popular

web sessions experienced by the website under attack. In this case, the attacker does not de-

termine the session length directly, but instead by the observed length of the chosen prescribed

session.

6.7.1.3 Trace-Driven

The trace-driven attack methodology is the most challenging attack scenario for the defender

and is considered the worst-case scenario. By replaying web sessions as captured in the training

dataset, the attacker is able to craft an attack that is derived from how legitimate clients actually

use a particular website. Like the prescribed-session methodology, each web session length is

determined by the observed session chosen by the attack client.

6.7.2 Evaluation Criteria

Given the attribution metrics described in Section 6.6 and the evaluation of an individual

client, there are four possible classification outcomes. If a client is malicious and is classified

as positive, it is denoted as a true positive (TP); if a client is legitimate and is classified as

negative, it is denoted as a true negative (TN); if a client is malicious but is classified as a

negative, it is denoted as a false negative (FN); lastly, if a client is legitimate but is classified

as a positive, it is denoted as a false positive (FP). In order to evaluate the attribution scheme,

a False Positive Rate (FPR) and a False Negative Rate (FNR) is computed as a percentage for

each test iteration.

FalsePositiveRate(FPR) =
FP

FP + TN
(6.4)

FalseNegativeRate(FNR) =
FN

FN + TP
(6.5)

153

6.7.3 Baseline FPR

When analyzing malicious bots, a natural starting point would be to examine the total

volume of requests invoked by each client and use this threshold as a identification criterion.

For instance, if any client invoked more than 40 documents, regardless of their other usage

characteristics, the client would be considered malicious and be challenged by some form of

authentication. As a baseline measure of comparison, if the request volume were indeed the

sole discriminant (i.e. Request Threshold), then Table 6.2 displays the FPRs for the ECpE and

NASA datasets. It follows that the FNRs for each these measures would subsequently be 0.00%

if the attacker requested greater than or equal to the volume of the set request threshold. A goal

of this attribution methodology is to significant improve upon these FPRs while maintaining

FNRs that relegate aggregate requests to that of nuisance activity. Depending on the size of an

attacking botnet and the set request threshold of the attribution methodology, a FNR of 0.00%

or nearly 0.00% is not necessary if the data usage from the malicious requests that register

as FNs do not eclipse J1 in Figure 5.6a. While a FNR of 0.00% is ultimately desirable, the

following experimental results will be analyzed in the context of minimizing the FPRs while

maintaining tolerable FNRs.

Ultimately the goal of a FRC attacker is to achieve a cost burden onto the cloud consumer

that equates to a certain number of terabytes of data. While it would be logical to model the

data usage footprint of each individual client to look for statistical outliers, as is also discussed

in the future work, there does not exist a current body of work to support this analysis. To

model and simulate individual clients’ data usage footprints, one must be able to accurately

model the dependencies between primary and secondary requests for a given website. Such

modeling can only be done with access to the live website from which the archived log entries

were originated. Additionally, the caching of both primary secondary requests must also be

taken into account and historical logs provide incomplete evidence to make accurate assertions.

Despite this need for future work and given the presented attribution methodology, the attacker

is still constrained to generating attack behaviors that are in accordance with normal client

behaviors. Based on these constraints, attack optimization in terms of data usage may prove

154

Table 6.2: ECpE and NASA Request Threshold FPRs

Request ECpE NASA
Threshold FP TN FPR FP TN FPR

0 8007 0 100.00 67008 0 100.00
5 2134 5873 26.65 15818 51190 23.61
10 1128 6879 14.09 7277 59731 10.86
15 622 7385 7.77 4283 62725 6.39
20 383 7624 4.78 2905 64103 4.34
25 249 7758 3.11 2113 64895 3.15
30 179 7828 2.24 1626 65382 2.43
35 137 7870 1.71 1311 65697 1.96
40 108 7899 1.35 1044 65964 1.56
45 96 7911 1.20 853 66155 1.27
50 77 7930 0.96 701 66307 1.05
55 60 7947 0.75 609 66399 0.91
60 52 7955 0.65 538 66470 0.80
65 48 7959 0.60 473 66535 0.71
70 46 7961 0.57 414 66594 0.62
75 42 7965 0.52 375 66633 0.56
80 40 7967 0.52 338 66670 0.50
85 33 7974 0.41 309 66699 0.46
90 28 7979 0.35 276 66732 0.41
95 25 7982 0.31 249 66759 0.37
100 20 7987 0.25 232 66776 0.35

to be difficult for the attacker.

6.7.4 Experimental Results

Tables consolidating the FPRs and FNRs for each attack scenario and dataset follow shortly.

Each of these tables has the same structure. The first column denotes the threshold applied to

each computed AttSCORE resulting in client attribution. The scale of 3.00 to 3.45 was chosen

to capture a gradient of FNRs in contrast to the FPRs, which are presented in the second

column. The remaining columns are each labeled by the number of requests the attacker made

and the cells populated underneath these column headings represent the resultant FNRs for

a given threshold specified in the first column. Each FNR cell value is an average of three

distinct attack simulation runs using the same attack parameters.

155

Due to the many ways a given website can be utilized, the AttSCORE for legitimate clients

yields a considerable amount of variance leading to undesirable FPs. Unlike an intrusion

detection system in which a FN could potentially result in an undetected compromise of a

system, a FN in the context of a FRC attack is comparatively less worrisome. The result of a

misclassified attack client is incremental charges to the cloud consumer for those resources the

attack client consumed. Because of this fundamental characteristic of a FRC attack, Section 6.8

will provide context for the FNRs through a risk analysis.

6.7.4.1 Random Attack Results

The results reported in Tables 6.3 and 6.4 are for that of attack clients requesting random

pages and issuing web sessions of random length between 3 and 13 documents. As can been,

when employing such an attack strategy, the individual attack clients have a difficult time

requesting more than 30 requests without being flagged as malicious. The motivation for

choosing a random session lengths of the stated values was derived from attack scenario crafted

by Oikonomou et al. for a similar profiling of attack clients behaving in a DDoS attack [87].

In this work, attack clients’ behavior was modeled as an attacker requesting between 5 and 50

documents per session. Using a common dataset (i.e. NASA) and based on the results of the

CDF in Figure 6.5, such a model for session lengths is clearing going to register as anomalous.

Instead, this attack scenario considers attack strategy more aligned with that of a realistic, but

naive attacker. The objective is to show that attack clients cannot employ a primitive attack

strategy and achieve success against the presented attribution methodology.

Based on the anomalous nature of the attack scenario, if a FPR of approximately 1.43%

is acceptable to the cloud consumer, the threshold can be set to identify malicious clients

requesting 25 or more web documents without registering a single FN. As is often the case

in the evaluation of anomaly detection systems, one thing to observe is that as the threshold

increases (i.e. sensitivity decreases) so too does the FNRs while the FPRs decrease. This

observation holds true for the remaining attack scenarios and context for this inevitable trade-

off will be discussed in Section 6.8. Moreover, the FPRs are the same for a given website across

attack scenarios because the attribution methodology and original log entries remain constant.

156

Table 6.3: Random - ECpE Attack Results (%)

FNR (Reqs per Attacker)

Threshold FPR 20 25 30 35 40 45 50 55 60 65

3.00 2.77 14.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.05 2.50 14.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.10 2.16 14.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.15 1.77 15.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.20 1.43 71.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.25 1.20 71.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.30 1.02 97.50 36.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.35 0.84 100.0 36.43 8.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.40 0.52 100.0 83.87 8.37 0.33 0.00 0.00 0.00 0.00 0.00 0.00

3.45 0.39 100.0 100.0 54.90 0.33 0.00 0.00 0.00 0.00 0.00 0.00

To put the result in Table 6.3 into perspective, consider the shaded cell denoted by the

superscript one. If using the per-client request volume were the sole attribution criterion, then

at an attack intensity of 30 requests per attacker, based on the results in Table 6.2, the cloud

consumer could achieve a FNR = 0.00% if a FPR = 2.24% were acceptable. Given that the

objective of the FRC attribution methodology is not to detect every malicious client but instead

a sufficient amount of malicious clients in order to reduce the impact of a FRC attack, then a

FNR = 8.37% would be preferable given the comparably less impactful FPR = 0.84% yielded

by the given attribution methodology.

It is highly tempting to compare attribution performance across websites in addition to

across attack scenarios. However any conclusions drawn would be erroneous. The websites are

sufficiently dissimilar resulting in “apples to oranges” comparisons. With that in mind, the

explanation for lower FNRs in the NASA results is due to the sessions per client CDF for the

NASA dataset resulting from a higher volume at lower sessions counts. The NASA dataset

yields a slightly higher sesvol for the same attack parameters and thus produces a consistently

lower FNR.

Applying Equation 6.1 to the described attack scenario for the NASA dataset illustrates

why this particular attack scenario fails for the FRC attacker. As highlighted in Table 6.4,

consider the attack scenario in which attack clients request 20 web documents. First, because

157

Table 6.4: Random - NASA Attack Results (%)

FNR (Reqs per Attacker)

Threshold FPR 20 25 30 35 40 45 50 55 60 65

3.00 2.22 15.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.05 1.99 15.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.10 1.78 15.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.15 1.59 15.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.20 1.42 15.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.25 1.25 16.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.30 1.12 72.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.35 0.99 72.90 35.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.40 0.84 100.0 35.73 7.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.45 0.73 100.0 35.77 7.97 0.50 0.00 0.00 0.00 0.00 0.00 0.00

the attacker is simply requesting random documents, this usage pattern is not indicative of the

overall client population. As a result, attackers consistently score a chistat with µ = 1.0 and

σ = 0.0. While enacting sessions lengths between 3 and 13 documents limits the sesavg score

to µ = 0.6, it does provide a some amount of variability leading to a σ = 0.05. Even at 20

requests, this attack scenario yields a reqvol score of µ = 0.80 and a sesvol score of µ = 0.51 with

σ = 0.23. It is this variability that is responsible for the changes in the FNR for 20 requests

(i.e., FNRs = 15.13, 16.77, 72.73, 72.90, and 100.0). While the chistat and sesavg scores remain

fairly consistent as the request intensity increases, both the reqvol and sesvol do increase as the

request intensity increases and thus the FNR decreases given the common thresholds. These

results make it difficult for the attacker to request much more than 25 requests per bot when

simply requesting random web pages.

6.7.4.2 Prescribed-session Attack Results

In this attack strategy, the attacker is given knowledge of the 100 most requested web

sessions from the training dataset of length three or greater. It is conceivable that an attacker

would attempt to guess a number of common web sessions and distribute these session among

a botnet. Despite the advantage of being privy to such knowledge, as seen in Tables 6.5 and

6.6, individual attack clients yield limited success in this attack scenario. From the attacker’s

158

perspective, the achieved results are slightly better than the random attack scenario, because

the prescribed-pattern attack benefits from a lower sesavg score produced by replaying actual

web sessions.

Table 6.5: Prescribed-Session - ECpE Attack Results (%)

FNR (Reqs per Attacker)

Threshold FPR 20 25 30 35 40 45 50 55 60 65

3.00 2.77 12.80 0.50 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.05 2.50 46.27 3.33 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.10 2.16 57.83 3.40 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.15 1.77 100.0 3.40 0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00

3.20 1.43 100.0 20.00 0.97 0.03 0.03 0.00 0.00 0.00 0.00 0.00

3.25 1.20 100.0 59.20 5.70 0.13 0.03 0.00 0.00 0.00 0.00 0.00

3.30 1.02 100.0 100.0 58.93 0.33 0.30 0.00 0.00 0.00 0.00 0.00

3.35 0.84 100.0 100.0 99.90 15.57 1.93 0.03 0.00 0.00 0.00 0.00

3.40 0.52 100.0 100.0 100.0 86.40 12.93 0.57 0.07 0.00 0.00 0.00

3.45 0.39 100.0 100.0 100.0 100.0 93.60 22.47 1.60 0.27 0.00 0.00

One of the primary reasons the prescribed-session attack is not able to overcome the attri-

bution methodology is that despite knowledge of popularly requested web sessions, individual

attack clients are not able to decrease their chistat score, which, for an attack intensity of 20

requests, has a µ = 0.98 and σ = 0.03. This example plays to the strength of the chistat

attribution metric. Because the individual documents that compose the 100 most popular web

sessions primarily fall into Bin 1 in Figure 6.6, the expectation that roughly 10% of the request

generated by the attacker should fall into Bin 2 is seldom fulfilled and thus the consistently

high chistat scores are recorded leading to a higher overall ATTSCORE .

Of the 100 web sessions chosen by the attacker for the ECpE dataset, the majority of the

sessions are of length three or four. Generating web session lengths closer to that experienced

by normal users reduces the attack clients sesavg score and significantly reduces the respective

standard deviation. While advantageous for the attacker, the effect this reduction has the

sesavg increases the sesvol score to a µ = 0.75 with σ = 0.02 at a request intensity of 20

documents - a trend that continues increase and request intensity increases.

As can be observed for each of the attack scenarios, the significant increases in FNRs

159

between thresholds and attack request volumes can be attributed to the homogeneity of the

attack profiles or, in other words, a lack of variance in the attribution metric scores a result

to the attacker scenarios. As a result, an increase in the threshold value of 0.05 can yield

noticeable differences or no difference at all in the FNRs. This point can be illustrated in

Table 6.5 between the two highlighted cells.

Table 6.6: Prescribed-Session - NASA Attack Results (%)

FNR (Reqs per Attacker)

Threshold FPR 20 25 30 35 40 45 50 55 60 65

3.00 2.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.05 1.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.10 1.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.15 1.59 91.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.20 1.42 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.25 1.25 100.0 51.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.30 1.12 100.0 99.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.35 0.99 100.0 100.0 100.0 77.13 0.00 0.00 0.00 0.00 0.00 0.00

3.40 0.84 100.0 100.0 100.0 99.97 35.70 0.00 63.23 0.00 0.00 0.00

3.45 0.73 100.0 100.0 100.0 100.0 100.0 99.97 63.23 22.80 0.00 49.43

The CDFs in Figures 6.3 and 6.4 show that given the same attack parameters, the attri-

bution scheme would yield similar results with the exception of the session count CDF (Figure

6.5). The attack parameters derived from the respective training datasets are dissimilar enough

to produce a noticeable contrast in final FNR results. On average, the replayed web sessions for

the NASA conformed less closely to that of normal traffic and thus exhibit higher ATTSCORE

on average than that of the 100 most popular web sessions observed in the ECpE dataset.

6.7.4.3 Trace-Driven Attack Results

A trace-driven attack is extremely challenging for anomaly detection because the attacker

has managed to emulate normal usage behavior. In order to identify significant variation in

FNR performance, the range of per client request volume for this attack scenario has been

extended. Increasing the per request volume translates to each client launching more trace

driven sessions thus providing a greater opportunity for detection. As shown in Tables 6.7

160

and 6.8, even though an attacker is requesting a significant amount of web documents (i.e.

reqvol) and thus web sessions (i.e. sesvol), the overall FNRs remain quite high. As the number

of requests and web sessions increase, the attacker approaches the 99th percentile for each

dataset’s request volume CDF and session count CDF resulting in reqvol and sesvol scores

returning values of where µ = 0.98 is σ = 0.03. However, because the attacker is simply

replaying web sequences of normal request patterns for a website, both the chistat (µ = 0.62

and σ = 0.31) and sesavg (µ = 0.44 and σ = 0.24) scores remain within the bounds of normal

despite the increase in request volume and thus do not contribute sufficiently to the overall

score ATTSCORE necessary to yield lower FNRs.

Table 6.7: Trace-Driven - ECpE Attack Results (%)

FNR (Reqs per Attacker)

Threshold FPR 20 40 60 80 100 120 140 160 180 200

3.00 2.77 90.47 69.57 64.90 61.73 63.07 59.67 59.30 59.03 57.53 58.80

3.05 2.50 93.97 73.43 67.53 63.93 67.10 63.57 62.87 63.73 60.40 62.43

3.10 2.16 96.50 77.37 70.77 67.03 70.33 66.37 65.17 66.60 62.30 64.70

3.15 1.77 98.50 81.90 75.87 72.17 72.97 69.40 68.87 68.40 64.87 66.90

3.20 1.43 99.37 85.37 78.50 76.50 77.17 73.83 73.70 74.03 70.67 70.87

3.25 1.20 99.83 87.97 81.47 79.30 80.03 76.90 77.50 78.73 74.67 75.30

3.30 1.02 100.0 91.33 84.80 82.60 83.10 80.20 80.03 81.57 77.40 77.90

3.35 0.84 100.0 93.90 87.57 86.23 87.20 84.33 83.50 84.10 81.23 82.17

3.40 0.52 100.0 96.20 91.53 90.53 90.83 89.17 88.60 88.87 86.80 87.50

3.45 0.39 100.0 97.67 94.77 93.57 94.53 93.70 93.87 93.37 92.60 92.37

Similar to the prescribed-path scenario, the differences in FNRs are mainly a product of

the random web session replayed by the attack clients. Although high, the observed FNRs

were anticipated. If an attacker is able to learn the web session patterns of normal clients

and use this knowledge to mount an attack, then the resulting attack client request footprints

should largely be within the scope of normal. Under more formidable attack patterns like the

trace-driven scenario, Equation 6.1 can be altered by assigning a weight to each variable placing

greater emphasis on client’s usage characteristics that are more likely to be anomalous (e.g.,

reqvol or sesvol) for a given FRC attack.

In many ways, enabling the attacker to have access to the training logs is a hefty assumption.

161

Table 6.8: Trace-Driven - NASA Attack Results (%)

FNR (Reqs per Attacker)

Threshold FPR 20 40 60 80 100 120 140 160 180 200

3.00 2.22 70.10 50.60 44.77 42.90 39.50 39.63 37.73 39.00 35.73 37.07

3.05 1.99 79.90 54.90 47.77 44.73 42.30 41.57 40.87 41.40 39.43 40.33

3.10 1.78 80.63 57.87 50.40 48.77 44.00 45.03 42.40 44.37 41.37 42.57

3.15 1.59 89.50 62.70 53.40 50.87 45.47 46.10 44.07 45.77 43.17 44.60

3.20 1.42 94.60 67.07 57.47 54.30 48.07 48.40 46.07 48.23 44.37 46.07

3.25 1.25 97.00 73.97 61.70 58.37 51.90 51.13 48.97 50.67 47.00 49.47

3.30 1.12 98.90 79.50 67.17 64.43 57.07 55.03 52.67 53.50 49.37 52.63

3.35 0.99 99.70 83.67 74.87 69.67 62.33 60.67 58.37 59.43 55.97 56.67

3.40 0.84 100.0 86.90 78.80 77.70 70.63 68.63 66.87 66.23 64.47 64.20

3.45 0.73 100.0 90.70 84.23 82.33 76.87 75.60 74.10 73.30 71.03 71.60

Even though the attribution methodology yields undesirable FNRs for large volumes of requests,

this behavior was expected as the attribution methodology was designed for this very purpose.

An objective of the attribution methodology was to decrease the FPRs for legitimate clients

that request a larger than average amount of web documents. Instead of issuing an attribution

threshold based solely on request volume, as is shown in Table 6.2, the attribution methodology

operates on four criterion that together describe normal traffic. This way, a legitimate client

that requests more than 40 documents and subsequently registers higher than normal scores

for the reqvol or sesvol metrics can compensate by scoring closer to normal for the sesavg and

chistat scores.

6.8 FRC Risk Analysis

Exploring the proposed attribution methodology in terms of FPRs and FRNs provides a

recognized measure that is common in the evaluation of anomaly detection schemes. In the

context of a FRC attack, however, such an measure does not provide a sufficient amount of

information for the cloud consumer to analyze the risk (i.e. risk = likelihood * impact) of

a respective attack scenario, threshold value, and resulting FPR and FNRs [82, 113]. This

section explores the results presented in Section 6.7 with the purpose of better understanding

the likelihood of such attacks and enumerating the impact that they would have on a cloud

162

consumer.

6.8.1 Likelihood

The likelihood of an impactful FRC attack is largely dependent on two factors: the threat

source and the vulnerability [82].

6.8.1.1 Vulnerability

The ease of discovering the utility model as an exploitable vulnerability should be easy for

the attacker as the vulnerability has been published in a number of academic and non-academic

forums and is literally hiding in plain sight. A potentially more difficult challenge for the threat

source would be to determine whether or not a particular target is hosted in a CSP environment

without the aide of an endorsement to a specific cloud vendor or a public acknowledgement.

Once the threat source identifies the vulnerability, exploiting the utility model is simply a

matter of making protocol adherent requests to the target website. As this document contains

the seminal work in both FRC detection and attribution, current cloud consumers are unlikely

to detect such an attack through technical measures. Outside inference of an attack based

increases in request volume and/or the audit of the monthly bill.

6.8.1.2 Threat Source

As evidenced by the growing number, capacity, and sophistication of both botnets and

DDoS attacks respectively [11], the worst-case threat source (i.e. botmaster) undoubtedly

possesses the skill level to mount a FRC attack. As discussed in Section 3.4.2, the motive

for performing such an attack ranges from ego and hacktivism to monetary gain, revenge,

creating a competitive advantage and/or economic espionage [113]. Although a FRC attack

could conceivably be carried out from any Internet-connected device, the worst-case scenario is

the attack origination from a large bot. An objective this risk analysis seeks to address is the

minimum botnet size, given the results presented in Section 6.7, that an threat source must

be in control of in order to eclipse the threshold of nuisance activity and perform a successful

FRC attack.

163

Determining the minimum size of a botnet needed to carry out a FRC attack is a function

of the target’s detection rate (i.e FNR) and cost threshold (i.e. J1). Tables 6.9, 6.10, and 6.11

display the resulting cost of a FRC attack for botnets consisting in size of 10,000, 100,000, and

500,000 respectively. The first column in these graphs represents the FNR from the attribution

methodology in Section 6.6 and the row heading denotes the average number of request each

individual bot client issues. For example, as reported in Table 6.9 for a 10,000 node botnet, if

each client is to issue 20 requests and the FNR is 10.0% then the resultant monthly cost to the

cloud consumer would be $0.92. As the number of requests and corresponding FNRs increase,

so do the fraudulent costs.

Table 6.9: Monthly Costs of a FRC Attack ($) - 10,000 Client Botnet

Average Requests per Attacker

FNR 20 40 60 80 100 120 140 160 180 200

10.0 0.92 1.83 2.75 3.66 4.58 5.49 6.41 7.32 8.24 9.16

20.0 1.83 3.66 5.49 7.32 9.16 10.99 12.82 14.65 16.48 18.31

30.0 2.75 5.49 8.24 10.99 13.73 16.48 19.23 21.97 24.72 27.47

40.0 3.66 7.32 10.99 14.65 18.31 21.97 25.63 29.30 32.96 36.62

50.0 4.58 9.16 13.73 18.31 22.89 27.47 32.04 36.62 41.20 45.78

60.0 5.49 10.99 16.48 21.97 27.47 32.96 38.45 43.95 49.44 54.93

70.0 6.41 12.82 19.23 25.63 32.04 38.45 44.86 51.27 57.68 64.09

80.0 7.32 14.65 21.97 29.30 36.62 43.95 51.27 58.59 65.92 73.24

90.0 8.24 16.48 24.72 32.96 41.20 49.44 57.68 65.92 74.16 82.40

100.0 9.16 18.31 27.47 36.62 45.78 54.93 64.09 73.24 82.40 91.55

From the analysis of the 10,000 node botnet, it can be seen that a cloud instance that does

not deploy any sort of defense against a FRC attack (i.e. FNR = 100%) that the resultant costs

are likely to be insignificant to the cloud consumer - if the individual bot request rate is under

200 documents a month - and thus would be classified as nuisance activity. Such analysis is,

however, relative to each cloud consumer and their budgeted monthly costs and expected data

usage. For a FNR=30%, even at 200 requests per bot client over a given month, the resultant

costs would be approximately $27.47. For a FRC attacker to be successful, even against a

Trace-Driven attack, a 10,000 node botnet would not be sufficient unless clients requested a

significant amount of web documents larger than what was analyzed (i.e. greater than 200

164

requests per client in a given month).

Increasing the size of the attack botnet subsequently increases the risk of a FRC attack.

While a 100,000 node botnet is certainly more rare than a 10,000 node botnet, a FRC attacker

is not restrict to performing the attack from a single botnet. Recent analysis has suggested

botnet owners are aware that larger botnets draw attention from law enforcement agency and

security professions and in turn attackers have reacted by creating smaller botnets of less than

50,000 nodes to remain hidden [11]. As a result, a FRC attack could be conducted from many

smaller botnets and together the aggregate clients from these botnets could amass to much

larger numbers.

Comparing the presented attack costs in Table 6.9 with that in Table 6.10, it can be seen

that the financial impact of a FRC attack is linearly proportional to the resulting size of the

botnet. Given the costs in Table 6.10 for a 100,000 node botnet requesting 200 documents

per client, the FRC attack has the potential to transition from nuisance activity into the FRC

attack region. Given these stated attack parameters, the resultant attack rate needed to sustain

such an attack would be 7.71 requests per second, well within the performance capacity of a

CSP server instance.

Table 6.10: Monthly Costs of a FRC Attack ($) - 100,000 Client Botnet

Average Requests per Attacker

FNR 20 40 60 80 100 120 140 160 180 200

10.0 9.16 18.31 27.47 36.62 45.78 54.93 64.09 73.24 82.40 91.55

20.0 18.31 36.62 54.93 73.24 91.55 109.86 128.17 146.48 164.79 183.11

30.0 27.47 54.93 82.40 109.86 137.33 164.79 192.26 219.73 247.19 274.66

40.0 36.62 73.24 109.86 146.48 183.11 219.73 256.35 292.97 329.59 366.21

50.0 45.78 91.55 137.33 183.11 228.88 274.66 320.43 366.21 411.99 457.76

60.0 54.93 109.86 164.79 219.73 274.66 329.59 384.52 439.45 494.38 549.32

70.0 64.09 128.17 192.26 256.35 320.43 384.52 448.61 512.70 576.78 640.87

80.0 73.24 146.48 219.73 292.97 366.21 439.45 512.70 585.94 659.18 732.42

90.0 82.40 164.79 247.19 329.59 411.99 494.38 576.78 659.18 741.58 823.97

100.0 91.55 183.11 274.66 366.21 457.76 549.32 640.87 732.42 823.97 915.53

Increasing the size of the botnet by a factor of five does elevates the potential cost impact

for a cloud consumer but it does so at the loss of subtlety. While the FRC attack considered

in this work was done so under the guise that the attacker attempted to be as surreptitious as

possible in order to avoid detection, this certainly is not the only concern. The utility model

165

is also vulnerable to blatant DDoS attacks in which the loss of availability to the victim is

magnified by the high data usage costs. To enumerate this potential, the peak DDoS rate

reported in 2011 was that of 45Gbps which was launched from a 250,000 node botnet over the

course of a week [25]. If such a DDoS attack were performed on a CSP instance, assuming the

target website was continued to operate in the cloud, among other considerations, the resultant

costs to the cloud consumer would be approximately $0.68/s, $40/min, $2430/h, $58,320/day,

and $408,240/week.

Table 6.11: Monthly Costs of a FRC Attack ($) - 500,000 Client Botnet

Average Requests per Attacker

FNR 20 40 60 80 100 120 140 160 180 200

10.0 45.78 91.55 137.33 183.11 228.88 274.66 320.43 366.21 411.99 457.76

20.0 91.55 183.11 274.66 366.21 457.76 549.32 640.87 732.42 823.97 915.53

30.0 137.33 274.66 411.99 549.32 686.65 823.97 961.30 1098.63 1235.96 1373.29

40.0 183.11 366.21 549.32 732.42 915.53 1098.63 1281.74 1464.84 1647.95 1831.05

50.0 228.88 457.76 686.65 915.53 1144.41 1373.29 1602.17 1831.05 2059.94 2288.82

60.0 274.66 549.32 823.97 1098.63 1373.29 1647.95 1922.61 2197.27 2471.92 2746.58

70.0 320.43 640.87 961.30 1281.74 1602.17 1922.61 2243.04 2563.48 2883.91 3204.35

80.0 366.21 732.42 1098.63 1464.84 1831.05 2197.27 2563.48 2929.69 3295.90 3662.11

90.0 411.99 823.97 1235.96 1647.95 2059.94 2471.92 2883.91 3295.90 3707.89 4119.87

100.0 411.99 823.97 1235.96 1647.95 2059.94 2471.92 2883.91 3295.90 3707.89 4119.87

From the analysis of the threat source, given the implementation of presented attribution

scheme and in the context of the two presented datasets, a FRC attacker is going to be required

to possess control of a botnet near the size of 500,000 bots or larger to carry out a successful

attack. While results will vary from site to site, perhaps the simplest measure to take to

decrease the risk of a FRC attack is to limit the amount of requests a single client can enact

in a time certain period of time regardless of the affect that the client has on the QoS of the

web server or network.

As a result of the cloud utility vulnerability being openly published and conceivably easily

discoverable, the likelihood of a FRC attack is largely dependent on the motive of the threat

source and the size of the attacking botnet. As evidenced by the provided analysis, the potential

impact of a FRC attack can be significant, adding to the overall risk of a FRC attack.

166

6.8.2 Impact

For the cloud consumer, the impact of a FRC attack can be broken down in to technical

impact factors and business impact factors.

6.8.2.1 Technical Impact Factors

Following the exploitation of the cloud utility model, the predominant concern for the

victim would not be the loss of confidentiality or integrity of data but instead the loss of the

availability or financial viability of hosting public web content in the cloud. When coupled with

the concern of vendor lock-in (Section 2.6.4), a FRC attack could potentially lead to not only

significant monetary costs but also extensive service interruptions while the cloud consumer

extracts and relocates their web-based business presence.

6.8.3 Business Impact Factors

While the predominant impact of a FRC attack has been described as a financial loss due

to the exploitation of the utility model, the data usage costs are not the only toll a FRC attack

inflicts on its victim. In addition to bandwidth costs, a cloud consumer must also consider

auxiliary technical costs of attempting to mitigate a FRC attack as well as the indirect costs

that such measures will have on legitimate users as a result of the inevitable FPs presented in

this chapter. Weighing these factors, the cloud consumer must ultimately determine whether

the business risk justifies investing in mitigation solutions.

The task of assessing the severity of the risk associated to a FRC attack must be done on

an individual cloud consumer basis. The conclusions that can be draw from this FRC risk

analysis is that there exist motivated threat sources highly capable of exploiting the utility

pricing model. Given the both the direct and indirect costs of a FRC attack, the impact has

the potential to be severe.

167

6.9 Discussion and Future Work

Presented in this paper is a reactive solution to the FRC attack based on the principles

of anomaly detection. By assuming that each client is innocent until proven guilty, the major

limitation to this approach is if an attacker can learn normal request patterns. As with any

anomaly detection based scheme, when the attackers actions are no longer anomalous, the

methodology is rendered ineffective. Although not directly explored in this work, an upper

bound can be placed on the request volume as an additional detection safeguard. For example,

if an attack client consumes more than 50 web documents and the client’s usage footprint is not

flagged as malicious, the attack client is then subjected to some form of challenge or hindrance.

The inevitable downside to this approach is that normal clients requesting over 50 documents

will also be burdened by the same mitigation technique.

Beyond pursuing attack attribution, a cloud consumer could take a proactive stance by lim-

iting the available web content that is publicly accessible. This is commonly performed through

user authentication, access control and serving graphical puzzles to limit readily available web

content. However, these solutions are not without their faults as they are not immune to attack

and they themselves frustrate legitimate user who my be unable or unwilling to engage with the

control. These user frustration considerations are not new with the introduction of the FRC

attack, however the cost benefit equation has shifted knowing that freely available content in

the Cloud could cost the cloud consumer even more in terms of operational expenses.

Given this initial work on FRC attribution, there are several avenues of future work to

explore. While optimized attack strategies were not considered as part of the threat model

in this work, a future endeavor will be to consider the data usage footprint of each client.

In this case, the attacker seeks to minimize the volume of requests by choosing the largest

web documents hosted. Although such an attack would still likely be identifiable by presented

attribution methodology, examining individuals’ data usage provides an addition dimension for

limiting the risk of a FRC attack. Similarly, other aspects of observed client behavior such as

the use of client-side caching, or lack thereof, and the categorization and distributions of both

primary and secondary requests will also be explored. In addition, diurnal, daily, weekly and

168

seasonal traffic patterns will also be considered to better characterize normal client behaviors.

In this work it is also assumed that the cloud consumer is able to prime the attribution

methodology with a given period of training days. Future work will also explore non-supervised

machine learning techniques when the cloud consumer is not afforded such a luxury.

6.10 Conclusion

The pay-as-you-go pricing model introduces a vulnerability into current CSP offerings.

Web content hosted under a CSP’s utility model enables an attacker to perform a FRC attack

by simply making protocol compliant requests. Due to the ease of exploitation, the only

factor preventing a FRC attack is the threat source’s motivation. With limited prevention

controls available, attribution methodologies are necessary for cloud consumers to defend their

commitments to cloud computing. Based on the results from three progressively challenging

attack scenarios, the proposed attribution methodology has achieved qualified success.

169

CHAPTER 7. PREVENTION AND MITIGATION

Chapter contains modified content from the following submitted journal paper:

Idziorek, J., Tannian, M. and Jacobson, D. Insecurity of Cloud Utility Models. IEEE IT

Professional, c� IEEE 2012.

The predominant focus of this work is on the detection and attribution of FRC attacks

on public cloud utility models. Bookends between these to aspects of security are prevention

and mitigation respectively. This chapter briefly discusses methodologies that cloud be used to

quell a FRC attack before it comes to fruition and how a cloud consumer could respond once

a FRC attack has been detected and individual malicious clients have been identified.

7.1 Prevention

A common way to prevent the exploitation of a vulnerability is to download and apply a

patch for it. However, in the context of the utility pricing model, the bug is not a software

defect but a common business model deployed by CSPs. Until this vulnerability is exploited

on a frequent basis, the cloud business model is not likely to change. In lieu of a patch for this

vulnerability there are several, albeit limited, prevention options.

7.1.1 User Authentication

The first option for the cloud consumer would be to limit the amount of readily available

public-facing, and thus exploitable, content by implementing a user authentication control into

a given website. By first requiring a user to authenticate to gain access to the majority of a

site’s content lessens the consumable footprint available to a malicious client and potentially

170

lends itself well to a more focused attribution solution. Furthermore, authentication assists

in the identification and mitigation of malicious clients as login credentials can be suspended

or revoked independent of an IP address. There are trade-offs, however - by enabling a user

authentication mechanism for content that is intended to be publicly viewable and indexable on

the WWW, such an approach may lead to clients unwilling to go through the necessary steps to

establish login credentials or clients not being able to search for the desired content in the first

place as authentication prevents search engines from indexing content. Lastly, although the

user authentication would potentially limit the amount of exploitable content, the login page

itself and other publicly available content is not impervious to a FRC attack. Although user

authentication may be effective in some contexts, this control is only viable if it is consistent

with the web applications objectives.

7.1.2 Graphical Puzzels

The second option is to challenge those that initiate requests at the onset of a connection

with a CAPTCHA like puzzle. Often used in the prevention of DDoS attacks, CAPTCHAs

challenge the requesting client with a visual puzzle under the assumption that humans can easily

solve the puzzle while bot computers can not. Again, while effective in some circumstances,

such graphical puzzles often complicate the process for clients to obtain the information that

they are seeking, causing some clients to lose interest. Similar to the user authentication

prevention option, CAPTCHAs are not immune to attacks and a motivated attacker could easily

established multiple user accounts or manually defeat CAPATCHAs to bypass this technical

control. In essence, the two presented authentication controls are simply raising the bar of

effort required by the attacker to perform a sustained and successful FRC attack.

7.1.3 Application Design

The third option for the cloud consumer is to work with application and content developers

on minimizing the resource footprint of the common or average web object. Limiting the

impact of client requests increases the costs for the FRC attacker and the risk of detection and

attribution. As was shown in Chapter 6, the more requests a individual client invokes, the

171

more anomalous they become. While such a solution certainly does not completely obviate a

FRC attack, it does provide a more client-focused and transparent solution in comparison to

the discussed authentication controls.

7.1.4 Web Hosting Environment

Lastly, if the perceived risk of a FRC attack coupled with other security concerns, such

as vendor lock-in, is a serious concern to the cloud consumer, a potential prevention solution

would be to simply host the web application in an environment not governed by a utility

pricing model. Given the systems of analysis presented in Chapter 2, the cloud consumer must

ultimately decide whether the benefits and cost savings of moving to the cloud are worth the

risks as such an act is a voluntary business decision.

Unfortunately, without a utility model patch, the presented controls will not thwart a

motivated attacker. Facing limited prevention capability, the next line of defense is the detection

of FRC attacks as presented in Chapter 5.

7.2 Mitigation

Once a FRC attack has been detected and malicious clients have been identified, it is

advantageous that the cloud consumer has a mitigation strategy or policy in place to deal with

the suspected malicious actors. When formulating mitigation solutions, the cloud consumer

must consider the potential for legitimate clients being errantly classified as malicious, which

is an undesirable and largely unavoidable aspect of anomaly detection.

7.2.1 Attacker Identification

Malicious requests that compose a FRC attack are likely to originate from zombie or bot

computers that unwittingly and surreptitiously participate in an attack unbeknownst to their

owners. As a result of an anomaly-based attribution scheme, mitigation of a FRC attack could

be accomplished by serving a suspected client a graphical puzzle to prove that the client is

indeed a human. In this context, the graphical puzzle is being served to a potential attack

172

client after the defender has reason to believe the client is malicious. This technique has also

been proposed as a mitigation solution for DDoS attacks [58].

Because it is in the best interest of attack clients to form fully-completed TCP connections

in order to attack application-layer resources, attack clients are prevented from spoofing their

IP address. While knowing the true IP address of an attack client aides in the process of

attribution and mitigation, the defender has limited options to actually act on this information

to resolve the problem at the source of the attack. Instead of seeking out individual bots, the

defender is better off filtering or rate-limiting the offending IP address.

7.2.2 Filtering

While heavy-handed approaches like blacklisting first-time offenders may prove to do more

harm than good given the ever-present FPR rates, filtering offending attackers is a realistic

strategy to decrease the financial impact of attack clients. In other contexts, filtering options

have been employed using a “three strikes and you’re out” rule.

7.2.3 Rate Limiting

In contrast to filtering, less absolute mitigation strategies include assessing anomalous

clients a back-off timeout in which requests from an IP address are not all serviced. Clients,

whether malicious or not, could also be given a data usage quote. Like many popular news

websites, after a quota has been reached the requesting client is either required to authenticate,

given restricted access, or is denied service all together.

These reactive approaches discussed in this section are available today, but with limited

detection and attribution solutions available to cloud consumers, the deployment and mainte-

nance of such solutions will be challenging.

173

CHAPTER 8. CONCLUSION

8.1 Future Work

The impact this work will have on the larger research and cloud communities will be highly

dependent on the future work and understanding of this vulnerability by other researchers

and security practitioners. While the solutions presented in this work are novel and highly

effective given the presented attack scenarios, one must be reminded that these are also the

seminal works on this specific topic. If history is any indicator, the critique and reformulating

of these ideas through several iterations or perhaps new approaches will be needed to address

the presented vulnerability of the cloud utility model.

The body of ideas discussed in this work fundamentally change the way researchers and

security practitioners address anomaly detection of web traffic. With the introduction of the

utility model, much more subtle attack behaviors can have an impactful effect and thus the

analysis of such subtle attacks has opened the door for new research ideas, methodologies

and contributions. In addition to addressing the FRC attack, the detection and attribution

methodologies and metrics presented are relevant beyond the state context and could also be

applicable in other areas of study including DDoS detection and web usage mining.

Apart from the chapter specific areas of Future work addressed in Sections 4.8, 5.10, and

6.9, a key component that will enable future work in area of FRC detection and attribution will

be for security researchers to have access to a diversity of web logs from live websites. Although

historical analysis of web logs is beneficial, much more interesting and comprehensive analysis

can be performed given the structure of a live website.

174

8.2 Contributions

The contributions of this dissertation are: (1) Conducted a broad security assessment of

the public cloud computing model by applying the Parkerian Hexad as a system of analysis;

(2) Provided detailed evidence that the utility pricing model is an unexplored and unaddressed

vulnerability of the public cloud computing model; (3) Formalized a threat model and clearly

defined the Fraudulent Resource Consumption (FRC) as an attack that exploits the utility

model vulnerability; (4) Examined, differentiated, and applied the relevant bodies of work in

related fields of study to the analysis of the FRC attack; (5) Developed a web traffic generation

algorithm and accompanying characterization metrics to simulate and model the worst-case

FRC attack scenario; (6) Formulated a FRC detection methodology by utilizing three qualities

of aggregate web traffic to distinguish normal web traffic from that of a FRC attack; (7) Devised

a FRC attribution solution by characterizing four aspects of individual client request behavior

to identify normal clients from that of FRC attack clients.

8.3 Summary

As they are structured today, cloud utility models are vulnerable to exploitation. By

allowing any client with access to the Internet to consume resources that are in turn metered and

billed exposes the cloud consumer to a risk that is only mitigated by time, detection, attribution

and accountability. Apart from the solutions presented in this dissertation, there have been

no previously known defensive strategies. In addition to technical measures, awareness and

understanding of this vulnerability are a key means of defense, and the works that composes this

document has strived to achieve those goals. Unless utility models are restructured to remove

the threat of a FRC attack, research in detection and attribution is necessary to ensure long-

term sustainability of cloud consumers and remove one more impediment that could dissuade

organizations from adopting public cloud computing.

To date, there have been no known public acknowledgements of a FRC attack occurring

on the public cloud. The absence of such knowledge, however, does not confirm that such

a vulnerability has not or will not be exploited. As an analog, back in the early 1990’s,

175

Internet-facing firewalls were new and thought to be sufficient to secure a connected enterprise.

However, reality was that attacks were occurring and intrusion detection systems soon pointed

out these threats. Perhaps the utility model has been exploited and, as an security and research

community, we are presently ill equipped to detect its presence or identify its culprits.

176

BIBLIOGRAPHY

[1] Amazon. Amazon S3 Availability Event. http://status.aws.amazon.com/

s3-20080720.html, July 2008.

[2] Amazon. Amazon EC2 Service Level Agreement. http://aws.amazon.com/ec2-sla/,

November 2010.

[3] Amazon. Case Studies. http://aws.amazon.com/solutions/case-studies/, Septem-

ber 2010.

[4] Amazon Web Services. Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/,

November 2011.

[5] Amazon Web Services. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/

instance-types/, February 2012.

[6] Apache. Apache HTTP Server Benchmarking Tool. http://httpd.apache.org/docs/

2.0/programs/ab.html, January 2012.

[7] Martin F. Arlitt and Carey L. Williamson. Web Server Workload Characterization: The

Search for Invariants. SIGMETRICS Performance Evaluation Review, 24:126–137, May

1996.

[8] Karyn Benson, Rafael Dowsley, and Hovav Shacham. Do You Know Where Your Cloud

Files Are? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security

Workshop, CCSW ’11, pages 73–82, New York, NY, USA, 2011. ACM.

[9] Sören Bleikertz, Thomas Groß, and Sebastian Mödersheim. Automated verification of

177

virtualized infrastructures. In Proceedings of the 3rd ACM Workshop on Cloud Computing

Security Workshop, CCSW ’11, pages 47–58, New York, NY, USA, 2011. ACM.

[10] Jose Borges and Mark Levene. Evaluating variable-length markov chain models for anal-

ysis of user web navigation sessions. IEEE Transactions on Knowledge and Data Engi-

neering, 19(4):441–452, April 2007.

[11] Mark Bowden. Worm: The First Digital World War. Grove/Atlantic, Inc., 2011.

[12] Tony Bradley. Google Outages Damage Cloud Credibility. http://www.pcworld.com/

businesscenter/article/172614/google_outages_damage_cloud_credibility.

html, September 2009.

[13] Mary Brandel. Cloud Computing: Dont Get Caught Without an Exit Strategy. http:

//www.computerworld.com/s/article/9128665/, March 2009.

[14] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web Caching and

Zipf-like Distributions: Evidence and Implications. In IEEE Communications Society,

editor, Eighteenth Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE INFOCOM ’99., volume 1, pages 126–134, March 1999.

[15] Jon Brodkin. Cloud Computing Outages: Amazon Customers the Latest to Suffer Down-

time. http://www.networkworld.com/community/node/48961, December 2009.

[16] Jon Brodkin. Microsoft issues service credits after cloud outage. http://

www.networkworld.com/news/2010/091310-microsoft-cloud-outage.html, Septem-

ber 2010.

[17] Susanne Burklen, Pedro Jose Marron, Serena Fritsch, and Kurt Rothermel. User Centric

Walk: An Integrated Approach for Modeling the Browsing Behavior of Users on the Web.

In Proceedings of the 38th annual Symposium on Simulation, pages 149–159, 2005.

[18] Elie Bursztein, Steven Bethard, Celine Fabry, John C. Mitchell, and Dan Jurafsky. How

Good are Humans at Solving CAPTCHAs? A Large Scale Evaluation. In 2010 IEEE

Symposium on Security and Privacy, pages 399–413, 2010.

178

[19] Jin Cao, William S. Cleveland, Yuan Gao, Kevin Jeffay, F. Donelson Smith, and Michele

Weigle. Stochastic Models for Generating Synthetic HTTP Source Traffic. In Twenty-

third Annual Joint Conference of the IEEE Computer and Communications Societies

INFOCOM 2004, volume 3, pages 1546–1557, March 2004.

[20] Xin Chen and Xiaodong Zhang. A Popularity-Based Prediction Model for Web Prefetch-

ing. IEEE Computer, 36(3):63–70, March 2003.

[21] Shuxing Cheng, Carl K. Chang, and Liang-Jie Zhang. Stochastic Modeling Study for

Competitive Web Services Market. In IEEE International Conference on Web Services,

pages 960–967, July 2007.

[22] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon, Ryusuke

Masuoka, and Jesus Molina. Controlling Data in the Cloud: Outsourcing Computation

Without Outsourcing Control. In Proceedings of the 2009 ACM Workshop on Cloud

Computing Security, CCSW ’09, pages 85–90, New York, NY, USA, 2009. ACM.

[23] ClarkNet-HTTP. http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html, 1995.

[24] Reuven Cohen. Cloud attack: Economic denial of sustainability (edos). http://groups.

google.com/group/cloudforum/browse_thread/thread/8eeb522dd378edb7?pli=1,

2009.

[25] Lucian Constantin. Largest DDoS Attack so Far This Year Peaked at

45 Gbps, Says Company. http://www.networkworld.com/news/2011/

112411-largest-ddos-attack-so-far-253462.html, November 2011.

[26] Lucian Constantin. Denial-of-service Attacks Are on the Rise, Anti-DDoS Ven-

dors Report. http://www.pcworld.com/businesscenter/article/249438/

denialofservice_attacks_are_on_the_rise_antiddos_vendors_report.html,

February 2012.

[27] Mark E. Crovella and Azer Bestavros. Self-Similarity in World Wide Web traffic: Evi-

179

dence and Possible Causes. IEEE/ACM Transactions on Networking, 5:835–846, Decem-

ber 1997.

[28] Dorothy Elizabeth Robling Denning. Information Warfare and Security. ACM Press

Series. ACM Press, 1999.

[29] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan, D. Sivakumar, and

Andrew Tomkins. Self-Similarity in the Web. ACM Transactions on Internet Technology,

2:205–223, August 2002.

[30] Andrew Donoghue. Lightning Zaps Amazon Cloud. http://news.cnet.com/8301-1001_

3-10263425-92.html, June 2009.

[31] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.

ReVirt: Enabling Intrusion Analysis Through Virtual-Machine Logging and Replay. In

Proceedings of the 5th Symposium on Operating Systems Design and Implementation,

OSDI ’02, pages 211–224, New York, NY, USA, 2002. ACM.

[32] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank Aggregation Methods

for the Web. In Proceedings of the 10th International Conference on World Wide Web,

WWW ’01, pages 613–622. ACM, 2001.

[33] Victor Echeverria, Lorie M. Liebrock, and Dongwan Shin. Permission Management Sys-

tem: Permission as a Service in Cloud Computing. In IEEE 34th Annual Computer

Software and Applications Conference Workshops (COMPSACW), pages 371–375, July

2010.

[34] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred. Statistical

Approaches to DDoS Attack Detection and Response. In In Proceedings of the DARPA

Information Survivability Conference and Exposition, volume 1, pages 303–314, April

2003.

[35] Jun Feng, Yu Chen, Wei-Shinn Ku, and Pu Liu. Analysis of Integrity Vulnerabilities

180

and a Non-repudiation Protocol for Cloud Data Storage Platforms. In 39th International

Conference on Parallel Processing Workshops (ICPPW), pages 251–258, September 2010.

[36] Mary Pat Flaherty. Bethesda Man Guilty in $4 Million Pay Phone

Scams. http://www.washingtonpost.com/blogs/crime-scene/post/

bethesda-man-guilty-in-4-million-pay-phone-scam/2011/09/21/gIQAfRrElK_

blog.html, September 2011.

[37] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and Grid Com-

puting 360-Degree Compared. In Grid Computing Environments Workshop, pages 1–10,

November 2008.

[38] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Archi-

tecture for Intrusion Detection. In In Proceedings of Network and Distributed Systems

Security Symposium, pages 191–206, 2003.

[39] Owen Garrett. Keeping Cloud Costs Grounded. http://www.forbes.com/2010/06/02/

internet-software-zeus-technology-cloud-computing-10-garrett.html, June

2010.

[40] Dimitris Gavrilis, Ioannis Chatzis, and Evangelos Dermatas. Flash Crowd Detection

Using Decoy Hyperlinks. In 2007 IEEE International Conference on Networking, Sensing

and Control, pages 466–470, April 2007.

[41] Roger Gellman. Privacy in the Clouds: Risks to Privacy and Confidentiality from Cloud

Computing. http://www.worldprivacyforum.org/pdf/WPF_Cloud_Privacy_Report.

pdf, February 2009.

[42] Frank Gens. New IDC IT Cloud Services Survey: Top Benefits and Challenges. www.

http://blogs.idc.com/ie/?p=730, December 2009.

[43] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the

41st annual ACM symposium on Theory of computing, STOC ’09, pages 169–178, New

York, NY, USA, 2009. ACM.

181

[44] Dan Goodin. Webhost Hack Wipes Out Data for 100,000 Sites. http://www.

theregister.co.uk/2009/06/08/webhost_attack/, June 2009.

[45] Google Apps. Google Apps Service Level Agreement. http://www.google.com/apps/

intl/en/terms/sla.html, February 2012.

[46] Tim Greene. Unchecked Usage Can Kill Cost Benefits of Cloud Services.

http://www.cio.com/article/682289/Unchecked_Usage_Can_Kill_Cost_Benefits_

of_Cloud_Services?page=1&taxonomyId=3045, May 2011.

[47] Grant Gross. Obama Internet Kill Switch Plan Approved by

US Senate Panel. http://news.techworld.com/security/3228198/

obama-internet-kill-switch-planapproved-by-us-senate/, June 2010.

[48] Nils Gruschka and Meiko Jensen. Attack Surfaces: A Taxonomy for Attacks on Cloud

Services. In 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD),

pages 276–279, July 2010.

[49] Zhiyun Guo, Meina Song, and Junde Song. A Governance Model for Cloud Computing.

In 2010 International Conference on Management and Service Science (MASS), pages

1–6, August 2010.

[50] U. Gurav and R. Shaikh. Virtualization: A Key Feature of Cloud Computing. In Proceed-

ings of the International Conference and Workshop on Emerging Trends in Technology,

ICWET ’10, pages 227–229, New York, NY, USA, 2010. ACM.

[51] Christopher Hoff. Cloud Computing Security: From DDoS (Distributed De-

nial Of Service) to EDoS (Economic Denial of Sustainability). http://www.

rationalsurvivability.com/blog/?p=66, November 2008.

[52] Shi-Ming Huang, David C. Yen, Luen-Wei Yang, and Jing-Shiuan Hua. An Investigation

of Zipf’s Law for Fraud Detection. Decision Support Systems, 46:70–83, December 2008.

[53] Wassim Itani, Ayman Kayssi, and Ali Chehab. Privacy as a Service: Privacy-Aware Data

Storage and Processing in Cloud Computing Architectures. In Eighth IEEE International

182

Conference on Dependable, Autonomic and Secure Computing (DASC’09), pages 711–

716, December 2009.

[54] Mario Jensen, Jorg Schwenk, Nils Gruschka, and Luigi Lo Iacono. On Technical Security

Issues in Cloud Computing. In IEEE International Conference on Cloud Computing

(CLOUD’09), pages 109–116, September 2009.

[55] Kaustubh R. Joshi, Guy Bunker, Farnam Jahanian, Aad van Moorsel, and Joseph Wein-

man. Dependability in the Cloud: Challenges and Opportunities. In International Con-

ference on Dependable Systems Networks, pages 103–104, July 2009.

[56] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich. Flash Crowds and

Denial of Service Attacks: Characterization and Implications for CDNs and Web Sites.

In Proceedings of the 11th International Conference on World Wide Web, pages 293–304,

New York, NY, USA, 2002. ACM.

[57] Balachandra Reddy Kandukuri, Ramakrishna V. Paturi, and Atanu Rakshit. Cloud

Security Issues. In IEEE International Conference on Services Computing (SCC’09),

pages 517–520, September 2009.

[58] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger. Botz-4-Sale: Sur-

viving Organized DDoS Attacks that Mimic Flash Crowds. In Proceedings of the 2nd

conference on Symposium on Networked Systems Design & Implementation, pages 287–

300, 2005.

[59] Michael L. Katz and Harvey S. Rosen. Microeconomics. Irwin/McGraw-Hill Advanced

Series in Economics. McGraw-Hill, 1998.

[60] Charlie Kaufman. What’s Different About Security in a Public Cloud? In Proceedings

of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW ’11, pages

27–28. ACM, October 2011.

[61] Lori M. Kaufman. Data Security in the World of Cloud Computing. Security Privacy,

IEEE, 7(4):61–64, July 2009.

183

[62] Lori M. Kaufman. Can a Trusted Environment Provide Security? IEEE Security Privacy,

8(1):50–52, January 2010.

[63] Lori M. Kaufman. Can Public-Cloud Security Meet Its Unique Challenges? IEEE

Security Privacy, 8(4):55–57, July 2010.

[64] Samuel T. King and Peter M. Chen. SubVirt: Implementing Malware with Virtual

Machines. In 2006 IEEE Symposium on Security and Privacy, pages 14–27, May 2006.

[65] Isao Kotera, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi. Modeling of

cache access behavior based on zipf’s law. In Proceedings of the 9th workshop on MEmory

performance: DEaling with Applications, systems and architecture, MEDEA ’08, pages

9–15, 2008.

[66] Michael Kretzschmar, Mario Golling, and Sebastian Hanigk. Security Management Ar-

eas in the Inter-cloud. In 2011 IEEE International Conference on Cloud Computing

(CLOUD), pages 762–763, July 2011.

[67] Lukas Kroc, Stephan Eidenbenz, and James P. Smith. SessionSim: Activity-Based Ses-

sion Generation for Network Simulation. In M. D. Rossetti, R. R. Hill, B. Johansson,

A. Dunkin, and R. G. Ingalls, editors, Proceedings of the 2009 Winter Simulation Con-

ference, pages 3169–3180, Piscataway, New Jersey, December 2009. Institute of Electrical

and Electronics Engineers, Inc.

[68] Christopher Kruegel and Giovanni Vigna. Anomaly Detection of Web-based Attacks.

In Proceedings of the 10th ACM conference on Computer and Communications Security,

CCS ’03, pages 251–261, 2003.

[69] Nir Kshetri. The Economics of Click Fraud. IEEE Security Privacy, 8(3):45–53, May

2010.

[70] Quyen Le, Marat Zhanikeev, and Yoshiaki Tanaka. Methods of Distinguishing Flash

Crowds from Spoofed DoS Attacks. In 3rd EuroNGI Conference on Next Generation

Internet Networks, pages 167–173, May 2007.

184

[71] Zhao Li and Jeff Tian. Testing the Suitability of Markov Chains as Web Usage Models. In

27th Annual International Computer Software and Applications Conference, COMPSAC

2003, pages 356–361. IEEE Computer Society, November 2003.

[72] Zhen Li, Qi Liao, and Aaron Striegel. Botnet Economics: Uncertainty Matters. In

Managing Information Risk and the Economics of Security, pages 245–267. Springer US,

2009.

[73] Huan Liu. A New Form of DOS Attack in a Cloud and its Avoidance Mechanism. In

Proceedings of the 2010 ACM Workshop on Cloud Computing Security Workshop, CCSW

’10, pages 65–76. ACM, 2010.

[74] Song Luo and Gerald A. Marin. Realistic Internet Traffic Simulation Through Mixture

Modeling and a Case Study. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and

J. A. Joines, editors, Proceedings of the 2005 Winter Simulation Conference, page 9,

Piscataway, New Jersey, December 2005. Institute of Electrical and Electronics Engineers,

Inc.

[75] Bruce A. Mah. An Empirical Model of HTTP Network Traffic. In Sixteenth Annual

Joint Conference of the IEEE Computer and Communications Societies, INFOCOM ’97.,

volume 2, pages 592–600, April 1997.

[76] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to Build a Trusted

Database System on Untrusted Storage. In Proceedings of the 4th conference on Sympo-

sium on Operating System Design & Implementation, OSDI’00, page 10, Berkeley, CA,

USA, 2000. USENIX Association.

[77] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing (Draft).

http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf, February 2012.

[78] Cade Metz. DDoS Attack Rains Down on Amazon Cloud. http://www.theregister.

co.uk/2009/10/05/amazon_bitbucket_outage/, October 2009.

185

[79] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can Homomorphic En-

cryption be Practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing

Security Workshop, CCSW ’11, pages 113–124, New York, NY, USA, 2011. ACM.

[80] Kara Nance, Matt Bishop, and Brian Hay. Virtual Machine Introspection: Observation

or Interference? IEEE Security Privacy, 6(5):32–37, September 2008.

[81] Kazuyuki Narisawa, Daisuke Ikeda, Yasuhiro Yamada, and Masayuki Takeda. Detecting

Blog Spams Using the Vocabulary Size of All Substrings in Their Copies. In In Proceedings

of Workshop on Weblogging Ecosystem, 2006.

[82] NASA-HTTP. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology, February 2012.

[83] NASA-HTTP. http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, February

2012.

[84] Network World Staff. From Sidekick to Gmail: A Short History of

Cloud Computing Outages. http://www.networkworld.com/news/2009/

101209-sidekick-cloud-computingoutages-short-history.html, October 2009.

[85] Bhawna Nigam and Suresh Jain. Generating a New Model for Predicting the Next

Accessed Web Page in Web Usage Mining. In 2010 3rd International Conference on

Emerging Trends in Engineering and Technology (ICETET), pages 485–490, November

2010.

[86] NIST. Tolerance Intervals for a Normal Distribution. http://www.itl.nist.gov/

div898/handbook/prc/section2/prc263.htm, February 2012.

[87] G. Oikonomou and J. Mirkovic. Modeling Human Behavior for Defense Against Flash-

Crowd Attacks. In IEEE International Conference on Communications, pages 1–6, 2009.

[88] Lewis Page. Join in the Wikileaks DDoS war from your iPhone or iPad. http://www.

theregister.co.uk/2010/12/10/loic_for_iphone/, December 2010.

186

[89] Donn B. Parker. Fighting Computer Crime. Scribner, 1983.

[90] Gunnar Peterson. Don’t Trust. And Verify: A Security Architecture Stack for the Cloud.

IEEE Security Privacy, 8(5):83–86, September 2010.

[91] Guest Posts. When the Cloud Bursts Someone Gets Wet. http://www.cloudave.com/

2544/when-the-cloud-bursts-someone-gets-wet/, January 2009.

[92] M. Požandenel, V. Mahnič and, and M. Kukar. Separation of Interleaved Web Sessions

with Heuristic Search. In 2010 IEEE 10th International Conference on Data Mining

(ICDM), pages 411–420, December 2010.

[93] Michael Price. The Paradox of Security in Virtual Environments. IEEE Computer,

41(11):22–28, November 2008.

[94] Rackspace. Bandwidth Pricing. http://www.rackspace.com/cloud/cloud_hosting_

products/servers/pricing/, February 2012.

[95] Sreeram Ramachandran. Web Metrics: Size and Number of Resources. http://code.

google.com/speed/articles/web-metrics.html, May 2010.

[96] S. Ramgovind, M.M. Eloff, and E. Smith. The Management of Security in Cloud Com-

puting. In Information Security for South Africa (ISSA), pages 1–7, August 2010.

[97] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, Antonio Nucci, and Edward

Knightly. DDoS-shield: DDoS-resilient scheduling to counter application layer attacks.

IEEE/ACM Transactions on Networking, 17:26–39, February 2009.

[98] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You, Get

Off of my Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In

Proceedings of the 16th ACM Conference on Computer and Communications Security,

CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM.

[99] John C. Roberts, II and Wasim Al-Hamdani. Who Can You Trust in the Cloud?: A Re-

view of Security Issues Within Cloud Computing. In Proceedings of the 2011 Information

187

Security Curriculum Development Conference, InfoSecCD ’11, pages 15–19, New York,

NY, USA, 2011. ACM.

[100] Francisco Rocha, Salvador Abreu, and Miguel Correia. The Final Frontier: Confidential-

ity and Privacy in the Cloud. IEEE Computer, 44(9):44–50, September 2011.

[101] Farzad Sabahi. Cloud Computing Security Threats and Responses. In IEEE 3rd In-

ternational Conference on Communication Software and Networks, pages 245–249, May

2011.

[102] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. Towards Trusted Cloud

Computing. In Proceedings of the 2009 Conference on Hot Topics in Cloud Computing,

HotCloud’09, Berkeley, CA, USA, 2009. USENIX Association.

[103] Karen Scarfone and Peter Mell. NIST Special Publication 800-94: Guide to Intrusion De-

tection and Prevention Systems (IDPS). http://www.csrc.nist.gov/publications/

nistpubs/800-94/SP800-94.pdf, February 2007.

[104] Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar, Trent Jaeger, and Patrick

McDaniel. Seeding Clouds with Trust Anchors. In Proceedings of the 2010 ACM Work-

shop on Cloud Computing Security Workshop, CCSW ’10, pages 43–46, New York, NY,

USA, October 2010. ACM.

[105] D. Sculley. Rank Aggregation for Similar Items. In Proceedings of the Seventh SIAM

International Conference on Data Mining. SIAM, 2007.

[106] Shubhashis Sengupta, Vikrant Kaulgud, and Vibhu S. Sharma. Cloud Computing

Security-Trends and Research Directions. In 2011 IEEE World Congress on Services,

pages 524–531, July 2011.

[107] Stephen Shankland. Google Docs Suffers Privacy Glitch. http://news.cnet.com/

google-docs-suffers-privacy-glitch, March 2009.

188

[108] Zhidong Shen, Li Li, Fei Yan, and Xiaoping Wu. Cloud Computing System Based on

Trusted Computing Platform. In International Conference on Intelligent Computation

Technology and Automation (ICICTA), volume 1, pages 942–945, May 2010.

[109] Zhidong Shen and Qiang Tong. The Security of Cloud Computing System Enabled by

Trusted Computing Technology. In 2nd International Conference on Signal Processing

Systems (ICSPS), volume 2, pages 11–15, July 2010.

[110] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan Michalevsky, and Dani

Shaket. Venus: Verification for Untrusted Cloud Storage. In Proceedings of the 2010 ACM

Workshop on Cloud Computing Security Workshop, CCSW ’10, pages 19–30, New York,

NY, USA, 2010. ACM.

[111] MG Siegler. The Web Collapses Under The Weight Of

Michael Jackson’s Death. http://techcrunch.com/2009/06/25/

the-web-collapses-under-the-weight-of-michael-jacksons-death/, June 2009.

[112] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg Schwenk, Nils Gruschka, and

Luigi Lo Iacono. All Your Clouds are Belong to Us: Security Analysis of Cloud Manage-

ment Interfaces. In Proceedings of the 3rd ACM Workshop on Cloud Computing Security

Workshop, CCSW ’11, pages 3–14, New York, NY, USA, October 2011. ACM.

[113] Gary Stoneburner, Alice Goguen, and Alexis Feringa. NIST Special Publication 800-

30: Risk Management Guide for Information Technology Systems. csrc.nist.gov/

publications/nistpubs/800-30/sp800-30.pdf, 2002.

[114] Phuoc Tran-Gia, Dirk Staehle, and Kenji Leibnitz. Source Traffic Modeling of Wireless

Applications. International Journal of Electronics and Communications, 55(1):27–36,

2001.

[115] Bob Violino. Preparing for the Real Costs of Cloud Computing. http:

//www.computerworld.com/s/article/9218984/Preparing_for_the_real_costs_

of_cloud_computing, August 2011.

189

[116] Luis von Ahn, Manuel Blum, and John Langford. Telling Humans and Computers Apart

Automatically. Communications of the ACM, 47:56–60, February 2004.

[117] Phil Wainewright. Cogheads Demise Highlights PaaS Lock-out Risk. http://www.

zdnet.com/blog/saas/cogheads-demise-highlightspaas-lock-out-risk/668,

February 2009.

[118] Jin Wang, Xiaolong Yang, and Keping Long. A New Relative Entropy Based App-DDoS

Detection Method. In IEEE Symposium on Computers and Communications (ISCC),

pages 966–968, June 2010.

[119] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling Public Auditability

and Data Dynamics for Storage Security in Cloud Computing. IEEE Transactions on

Parallel and Distributed Systems, 22(5):847–859, May 2011.

[120] Sheng Wen, Weijia Jia, Wei Zhou, Wanlei Zhou, and Chuan Xu. CALD: Surviving

Various Application-Layer DDoS Attacks That Mimic Flash Crowd. In 4th International

Conference on Network and System Security (NSS), pages 247–254, 2010.

[121] Windows Azure. Service Level Agreements. http://www.microsoft.com/

windowsazure/sla/, November 2010.

[122] Windows Azure. Pricing Overview. http://www.microsoft.com/windowsazure/

pricing/, February 2012.

[123] Yi Xie and Shun-Zheng Yu. A Novel Model for Detecting Application Layer DDoS

Attacks. In First International Multi-Symposiums on Computer and Computational Sci-

ences., volume 2, pages 56 –63, June 2006.

[124] Yi Xie and Shun-Zheng Yu. Monitoring the Application-Layer DDoS Attacks for Popular

Websites. IEEE/ACM Transactions on Networking, 17(1):15–25, February 2009.

[125] Toshihiko Yamakami. A Zipf-Like Distribution of Popularity and Hits in the Mobile Web

Pages with Short Life Time. In Proceedings of the Seventh International Conference on

190

Parallel and Distributed Computing, Applications and Technologies, PDCAT ’06, pages

240–243, 2006.

[126] Jeff Yan and Ahmad Salah El Ahmad. A Low-Cost Attack on a Microsoft CAPTCHA.

In Proceedings of the 15th ACM Conference on Computer and Communications Security,

CCS ’08, pages 543–554, New York, NY, USA, 2008.

[127] Jinhui Yao, Shiping Chen, Surya Nepal, David Levy, and John Zic. TrustStore: Making

Amazon S3 Trustworthy with Services Composition. In 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing (CCGrid), pages 600–605, May 2010.

[128] K.H. Yeung and C.W. Szeto. On the Modeling of WWW Request Arrivals. In 1999

International Workshops on Parallel Processing, pages 248–253, 1999.

[129] Jonathan Zdziarski. mod evasive. http://www.zdziarski.com/blog/?page_id=442,

2011.

[130] Jie Zhang and Ali A. Ghorbani. The Reconstruction of User Sessions From a Server Log

using Improved Time-Oriented Heuristics. In Ali A. Ghorbani, editor, Second Annual

Conference on Communication Networks and Services Research, 2004, pages 315–322,

May 2004.

[131] Bin B. Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu, Ning Xu, Meng Yi, and Kaiwei Cai.

Attacks and Design of Image Recognition CAPTCHAs. In Proceedings of the 17th ACM

Conference on Computer and Communications Security, CCS ’10, pages 187–200, New

York, NY, USA, 2010. ACM.

[132] George K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley,

1949.

