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Abstract

Domain speci�c knowledge bases are often built from domain-speci�c texts using rule-based
knowledge-retrieval algorithms. These algorithms are based on semantic extraction rules that
process text using a parser, looking at the resulting parse trees & dependency graphs and then
applying those rules to identify possible constructs for triple extraction. The performance of such
algorithms critically depends on how capable these rules are in extracting the knowledge (in the
form of triples) as a fraction of the total knowledge present in the text fragment. In this paper,
we propose a way to statistically analyze the signicance of these rules based on the fraction of
knowledge that they extract out of given text corpora.

1 Introduction

Building knowledge bases from domain-speci�c texts is a classic problem in knowledge acquisition.
These knowledge bases are often built by extracting individual knowledge constructs from domain-
speci�c texts using rule-based knowledge-retrieval algorithms [2]. These algorithms are based on se-
mantic extraction rules that process text using a parser, looking at the resulting parse trees and/or
dependency graphs and then applying those rules to identify possible constructs for knowledge extrac-
tion extraction. Part of this process is demonstrated in �gure 1, which shows a dependency graph for
the sentence - �Heart attack causes reduced average lifespan�.

A possible extraction rule for this graph can be - �If only the labels {nsubj, dobj} occur along a path in
the graph, extract that path as a knowledge contruct�. This rule alone would result in the extraction
of - �Causes-reduced-lifespan�, which doesn't seem to be a valid construct. However, if we add another
(higher priority) rule that says - �If any of the labels {nn}, {amod} appear along a path (edge) between
two nodes, merge them to generate a complex node�, then in conjunction with the �rst rule, we will
get - �{Heart, attack, causes}-reduced-{lifespan, average}, which certainy looks closer to what we want.

Figure 1: Example Dependency Graph
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Thus, these rules critically determine the performance of an extraction algorithm that traverses such
dependency graphs and uses these rules to extract knowledge structures. In the following sections,
we formalize the notion of rules, the problem and proceed with our approach to statistically analyze
the signi�cance of these rules based on the performance of the algorithms that utilize them to extract
knowledge.

2 Background and Motivation

Most of the existing rule-based algorithms are built with a speci�c domain of discourse in mind and
the underlying rules are formed heuristically based on nature of the domain. As a result, an empirical
need to evaluate the goodness of underlying rules doesn't arise. However, if one focuses on domain-
independent knowledge retrieval systems, there is a need to have some measure for quantifying the
goodness of the rules since di�erent rules (or sets of rules) would lead to di�erence in the amount of
knowledge extracted by the system on texts from di�erent domains. This quanti�cation of goodness
can lead to interesting insights into the kind of rules that lead to better performance of the system, and
this may ultimately lead to the characterization of an optimal (non-dominated w.r.t to the fraction of
knowledge extracted) rule-set. There is fair amount of existing work on experimentally verifying the
performance of rule-based algorithms that extract knowledge from domain-speci�c texts. Cartic et al
[2] recently proposed rule-based algorithms for relationship extraction from text specifc to Biomedical
domain and report the number of triples extracted for sample texts. There is also signi�cant literature
on rule-induction in text-based data mining, however our work is di�erent in that we are not trying
to induce rules but trying to test the statistical signi�cance of existing rules. There is similar work
for other domains, however, to the best of our knowledge, there isn't any published work describing a
similar framework to measure goodness of rulesets for knowledge extraction and discover those rules
that lead to the best generic performance across various text corpora.

3 De�nitions and Notations

3.1 Terminology

We utilize the following notations in describing the approaches that we've implemented.

pi : i− th Condition or premise for a rule described below.
ci :i− th consequent corresponding to the i− th premise.
ri : A rule of the form, {pi} −→ {ci} meaning If {pi} occurs, perform {ci}.
P : A labelled path in the dependency graph for a text sentence of the form show in �gure 1 comprising
of edges {ei}.
{li} : An ordered set of labels on the edges {ei} along a path, P .

The rules for the text extraction utilized by the algorithms described are of the following form:

De�nition 1: (Extraction Rule) For a path P , we de�ne an extraction rule as,

ri :{{P has an ordered set of labels {l1i} along the edges {e1i}}, ......} −→ {Extract {e1i}, ......}

Here, ri encodes the rule that if there exists a sequence of dependencies between the words of a
given sentence s.t. that sequence is captured by the ordered set {li}, then the sequence of words forms
a knowledge contruct and thus, the algorithm is recommended to extract it.

De�nition 2: (Peformance ratio) We de�ne the peformance ratio, Pk, due to the k − th rule-set
as the ratio of the number of extracted knowledge constructs to the total number of labelled constructs
in text.
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3.2 Problem Formulation

Given a set, S = {Rk}, of rule-sets, {ri} and a corresponding set of performance ratios, {Pk}, our
aim is to determine the signi�cance of using a given subset T of S in an extraction algorithm. We
intend to achieve this statistically by testing for the null hypothesis that the presence or absence of
a rule/rule-set and performance ratio are independent, or in other words, there is not a signi�cant
di�erence in the performance ratio achieved by an algorithm when it uses T as against when it does
not. We utilize a chi-square test of independence for achieving this as elaborated in the next section.

4 Approach

4.1 Chi-square Test for Determining Insigni�cant Set of Rules

Chi-squared test is a statistical hypothesis test in which the sampling distribution of the test statistic
is chi-square, meaning that the sampling distribution (if the null hypothesis is true) can be made to
approximate a chi-square distribution as closely as desired by making the sample size large enough.
The test is applied when we have two categorical variables from a single population. It is used to
determine whether there is a signi�cant association between the two variables.

We utilize this to test the null hypothesis that the presence or absence of a rule/rule-set and per-
formance ratio are independent. We map our problem for testing the signi�cance of a given subset T
of S to a chi-square test scenario as follows.

We de�ne the row variable as presense or absence of T . [meaning that the extraction algorithm
uses the rule or it doesn't], and column variable as performance ratios divided into 4 classes: C1 : 0 ≤
p < 0.2, C2 : 0.2 ≤ p < 0.5, C3 : 0.5 ≤ p < 0.8, C4 : 0.8 ≤ p ≤ 1. This is as indicated in the contigency
table below.

C1 C2 C3 C4 Row Totals

T cT1 cT2 cT3 cT4
∑4

i=1 cT i

∼ T c∼T1 c∼T2 c∼T3 c∼T4
∑4

i=1 c∼T i

Column Totals cT1 + c∼T1 cT2 + c∼T2 cT3 + c∼T3 cT4 + c∼T4 Total Sum

Here, cT i indicates the number of subsets of S which contain T such that the performance ratio
for those subsets is within the class Ci. Similarly, c∼T i indicates the number of subsets of S which do
not contain T such that the performance ratio for those subsets is within the class Ci.

Our null hypothesis, Ho is that the presence or absence of T and performance ratio are indepen-
dent, or in other words, there is not a signi�cant di�erence in the performance ratio achieved by an
extraction algorithm when it uses T as against the case when it does not.

Once, we've this table, we calculate the test statistic, χ2 =
∑

i[(Oi − Ei)2/Ei], where Oi are the
observed cell-values in the table above and Ei are the expected counts calculated using ni. ∗ n.j/n...
Eventually, we calculate the p-value corresponding to this statistic. For our purposes, we set the sig-
ni�cance level at 0.1 and if the p-value is less than this, we reject Ho.

De�nition 3 (Rule Signi�cance): We call a subset T of S to be signi�cant i� the p-value of the
test-statistic (as de�ned above) is ≤ 0.1.

Eventually, we intend to determine whether T remains signi�cant across a multitude of text cor-
pora since that would make it a domain independent generic rule, which can then be utilized in any
extraction algorithm. Along these lines, we do our evaluations in the following section.
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Table 1: Performance of extraction algorithm for di�erent rulesets

5 Evaluation and Results

5.1 Evaluation Scenario

For purposes of evaluation, we chose two di�erent text corpora from Health and Exercise Physiology,
which are not entirely similar domains, however they aren't hugely di�erent either and thus allow an
extraction algorithm to use the same set of rules for comparison. We planned to base our tests on a
subset of 10 rules, |{ri}| = 10. From the possible 2n combinations of the rules, we carefully chose 100
that corresponded to the set S of rule sets. The actual value of labeled knowledge constructs in the
text was n1 = 100 for Health and n2 =90 for Exercise Physiology. For each of these sets of rules, we
ran the extraction algorithm con�gured to use these rules and extract the knowledge constructs (xi)
and compute the corresponding performance ratios, pi. A part of these results for Health text is shown
in the table 1.

5.2 Analyzing the Data

Checking the Assumptions:

By the very nature of the problem, we've independent sample data. This is since one particular
ruleset, {ri}, leads to a performance ratio, which is completely independent of the case when we take
a negation of that particular ruleset. We also make sure that a su�ciently large sample size (100
rulesets) is undertaken for the analysis. Further, we also make sure that we've adequate cell sizes (>5
in most cases and non-zero in all cases).

As far as the condition of the hypothesized distribution being speci�ed in advance is concerned, we
can't say that this holds in our case since there isn't a way to know this without actually running the
extracting algorithm using the respective rulesets. The condition of non-directionality becomes redun-
dant in our case since we know how to interpret the result beforehand (rules cause the performance
ratio). Further, the variables have �nite values and observations are grouped in categories. Thus, most
of the assumptions of the test have been met for our experimental scenario.
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5.3 Calculations

We decided to demonstrate our method by calculating the signi�cance of rule {r2} and the ruleset
{r3, r5}. These rules are desribed below.

r2 : {If only the labels {nsubj, amod} occur along a pathP} −→ {extract P as a knowledge contruct}
r3 : {If the labels {dobj, pp} occur consecuteively along a pathP} −→ {extract P as a knowledge contruct}
r5 : {If the label {ccomp} occurs along a pathP} −→ {extract P as a knowledge contruct}

Intuitively, nsubj should always occurs with a dmod in text since it signi�es a subject and object
relation in linguistics. For this reason, we expect r2 and r3 not to a�ect the performance signi�cantly.
Further, ccomp signi�es a non-trivial sentence (eg., abc claims that bcd is good) and thus, it's extrac-
tion requires application of �ner-level of rules than r5. Thus, our overall expectation is that these rules
shoudn't a�ect the performance signi�cantly when applied with other rules that are better than these
in terms of extracting labelled knowledge constructs.

Using the values from the above table, we compute the following contingency tables for the two exper-
imental texts based on the methodology explained in 4.1

Text 1:

C1 C2 C3 C4

{r2} 8 5 7 9 29

∼ {r2} 8 7 12 10 37

16 12 19 19 66

C1 C2 C3 C4

{r3, r5} 7 8 7 6 28

∼ {r3, r5} 8 9 5 7 29

15 17 12 13 57

The tables of expected counts [ni. ∗ nj./n..] are as shown below:

C1 C2 C3 C4

{r2} 7.030303 5.272727 8.348485 8.348485

∼ {r2} 8.969697 6.727273 10.65152 10.65152

C1 C2 C3 C4

{r3, r5} 7.368421 8.350877 5.894737 6.385965

∼ {r3, r5} 7.631579 8.649123 6.105263 6.614035

Text 2:

C1 C2 C3 C4

{r2} 10 12 6 7

∼ {r2} 8 7 5 9

18 19 11 16

C1 C2 C3 C4

{r3, r5} 11 11 5 6 33

∼ {r3, r5} 5 7 8 8 28

16 18 13 14 61

Degrees of freedom for all the cases is the same, df = (4− 1) ∗ (2− 1) = 3.

The test statistic for �rst case is calculated as, χ2 = (8 − 7.03)2/7.03 + (5 − 5.27)2/5.27 + (7 −
8.348)2/8.348 + (9− 8.348)2/8.348
+(8 − 8.969)2/8.969 + (7 − 6.727)2/6.727 + (12 − 10.6515)2/10.6515 + (10 − 10.6515)2/10.6515 =
0.7426063.

Further, the p-value is 1− pchisq(0.7426, 3) = 0.863.

We now determine the p-values for all the above four cases.
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For Text 1:

O <- data.frame(c1=c(8,8), c2=c(5,7), c3=c(7,12), c4=c(9,10));
chisq.test(O);
Pearson's Chi-squared test
X-squared = 0.743, df = 3, p-value = 0.863

O <- data.frame(c1=c(7,8), c2=c(8,9), c3=c(7,5), c4=c(6,7));
chisq.test(O);
Pearson's Chi-squared test
X-squared = 0.5184, df = 3, p-value = 0.9148

For Text 2:

O <- data.frame(c1=c(10,8), c2=c(12,7), c3=c(6,5), c4=c(7,9));
chisq.test(O);
Pearson's Chi-squared test
X-squared = 1.3281, df = 3, p-value = 0.7225

O <- data.frame(c1=c(11,5), c2=c(11,7), c3=c(5,8), c4=c(6,8));
chisq.test(O);
Pearson's Chi-squared test
X-squared = 3.7321, df = 3, p-value = 0.2919

From the above analysis, we clearly see that none of the p-values is signi�cant enough to reject the
null hypothesis. We interpret this observation in the following section.

6 Discussion and Future Work

Our results indicate (as per our intuition) that the presence or absence of the rule {r2} and the
ruleset{r3, r5} is independent of the performance ratio, or doesn't a�ect it directly. It is critical to
observe that this independence is due to the presence of other rules in the ruleset used by the extraction
algorithm. This gives us an indication as to which rules we may want to ignore for future analysis
in analyzing text from Health and Exercise Physiology domains. Although it did not occur in this
experiment, the alternate case of rejection of the null can also occur (for other rules), and in that
case, we can have more interesting insights about what rules are actually a�ecting the performance
ratio in a signi�cant way. Based on this analysis, it would be interesting to investigate an optimal set
of rules that's applicable across multiple domains (which, in this case, is two). We intend to utilize
this framework in increasing the performance of generic knowledge retrieval algorithms by utilizing the
insights about optimally signi�cant rulesets.
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