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INTRODUCTION 

Kuo and Munidasa [1] have reported a method by which a time-dependent optical 
intensity pattern is produced by the interference of laser light diffracted from a thermally 
induced bump with the light of the same laser reflected from the plane of the sample on 
which the bump was induced. In their experiment the thermal bump was induced by a 
second laser beam which was optically incoherent with the interfering light, but which was 
intensity modulated at frequencies ranging from the audio to the ultrasonic range. The 
resulting time-dependent patterns carry information about the thermal and elastic properties 
of the sample. The purpose of this work is to provide a first-principles calculation of those 
patterns so that those material properties can be measured with this technique. The starting 
point of the calculation is the solution to the coupled thermoelastic equations developed by 
Favro et al. [2-4]. That solution is expressed in terms of the three eigenmodes of the 
coupled equations: (1) a longitudinal acoustic wave consisting of propagating particle 
displacements and associated temperature variations arising from the compression and 
rarefaction of the material; (2) a transverse (shear) wave which consists only of propagating 
particle displacements and which does not cause any temperature variation as it propagates; 
and (3) a heavily-damped thermal wave which consists of propagating temperature 
variations and associated particle displacements arising from the thermal expansion it 
causes. The combination of surface displacements (i.e. "thermal bump") resulting from 
these three kinds of waves when a modulated laser beam is incident on the surface of an 
opaque solid can be calculated in a straight forward fashion from expressions given in [4]. 
If the heating beam is centered at the origin in the plane z = 0, the result of these 
calculations is given by the formula, 

(1) 

or equivalently, 

(1') 

where J0 is the zero-order Bessel function, 
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(2) 

R = a(3A. + 21J.) 
1 2 2 

(A+ 21J.)(q - k0) 

(3) 

and where roo is the (angular) modulation frequency, R the (Gaussian) radius of the 
incident beam, a the thermal expansion coefficient, A. the Lame constant, 1J. the shear 
modulus, q the thermal-wave wave number, ks the shear wave number, and ko the 
longitudinal wave number. The integration variable p is effectively the radial component of 
all three waves' wave-vectors, and the quantities p1,p2, and P3 are the normal components 
of those wave-vectors given by (k02- p2)112, (k/- p2)112, and (q2- p2)112respectively. 
Although this result is written in a compact form as one term, it is actually the sum of four 
terms, each representing a different physical contribution to the bump. The terms which 
contribute consist of the normal components of the motion associated with, the directly 
generated longitudinal wave and its reflection from the surface, the longitudinal wave 
generated at the surface by mode conversion of the thermal wave, the shear wave generated 
at the surface by the mode conversion of the thermal wave, and the shear wave generated at 
the surface by mode conversion of the directly generated longitudinal wave. There is no 
normal displacement associated with the thermal waves themselves, because the normal 
displacements associated with the incident and reflected thermal waves are in opposite 
directions, and cancel each other to a high degree of precision. 

When a probe laser beam is incident on the surface exhibiting the bump described by 
Eq.(l), the reflected and diffracted beam can be calculated by assuming the surface struck 
by the beam to be a source of secondary wavelets (Huygens principle). If the probe beam 
has a Gaussian profile and is incident in the normal (negative z) direction on the surface, the 
incident probe beam amplitude can be expressed as (see Ref. [1]), 

[(x- x/ +(y- YJl 
ik--:-:-'----:--:-~ . z0 i[k(z1- z) - (J)tj 2(z - z - izJ 

E(x,y,z,t) = -1E0 ( . , e e 1 

Z - Z- lZO' 
(4) 

where the parameter Zo determines the radius of the waist of the probe beam through the 
relation w0 =(2zofk)l!l, and where the waist is located at z=z1. Eo is the amplitude of the 
wave at the waist, ro is the optical frequency, and the beam is centered at the point (x0,y0) 
on the surface. With the surface of the sample taken to be at z = 0, the reflected wave given 
by Huygens principle can be written as, 

[ 
iklr - r'l l 

Er = 2-ik JJdx' dy' e lr 'I E(x' ,y', z' , t) 
1t - r z' = h(x', y', t) 

(5) 

It should be noted here that the time dependences in Eqs. (1) and (4), although written as 
complex numbers, are implicitly real. Therefore care must be taken in combining them in 
Eq. (5) to ensure that the two real parts are taken separately and no mixing of the complex 
numbers occurs. 

In the Kuo-Munidasa experiment, the observation distances are such that the 
diffraction pattern from the thermal bump is in the Fresnel regime. Therefore the phase in 
the exponential factor in Eq. (5) must be accurate at least to second order in the variables x' 
and y'. However, since the bump height is of the order of an Angstrom or less, the 
dependence on z' need only be retained to first order. In fact, z' (=h(x',y',t)) is so small that 
the approximation, 
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eikz'= 1 - ikh(x' ,y', t) (6) 

is always valid. Hence, the reflected probe beam will consist of two terms. The ftrst is the 
contribution of the "1" in Eq. (6) which corresponds to ~ero bump height. This term just 
produces a reflection of the Gaussian probe beam from the surface z = 0. The second is the 
contribution of the second term in Eq. (6). This term produces a diffraction pattern of the 
thermal bump. It is the interference of this diffracted beam with the reflected beam 
produced by the first term which is responsible for the interference pattern in the 
experiment. The pattern is effectively a hologram of the bump, with the role of the 
reference beam's being played by the first term in Eq. (6). With the approximations 
described above in mind, we may write the reflected probe beam as, 

[(x · x')2 + (y • Yll 
ik JJ ikz ik Er=i1t dx'dy'ez e Zz E(x' ,y',o,t)[1-2ikh(x',y',t)]. (7) 

It should be noted here that there are two contributions (and hence a factor of 2) from the 
height of the bump in this expression. The first comes from the (-ikz) term in the first 
exponential in Eq. (4). It represents the phase shift that results from the fact that the 
incident beam strikes the bump sooner than it strikes the surrounding surface. The second, 
which represents the corresponding phase shift in the outgoing wave, comes from the 
exponential in Eq. (5). If the expression (1 ') for the bump height is substituted into Eq. (7), 
the integrations over x' and y' can be performed analytically leaving only the Px and Py 
integrations to be performed. When this is done the result consists of two terms. One, 
with no remaining integrations, just represents the reflected probe beam, and is of the same 
form as Eq. ( 4) but with the sign of z changed. Its time dependence is entirely at the optical 
frequency ro. The other, the term arising from the bump, contains the remaining 
integrations and has the optical frequency mixed with the modulation frequency Wo· When 
the sum of these two terms is squared, the cross terms beat at the modulation frequency and 
produce the time-dependent interference pattern. Since the total expression is rather 
cumbersome, we will present only these time-dependent interference terms here, and will 
compact the notation somewhat by replacing the variables (x,y) and the beam offset 
position (x0,y0) by the two-dimensional vectors rand r0 respectively. The interference 
term is then given by, 

where the symbol [Im] indicates the taking of the imaginary part of the expression in the 
brackets that follow, and where the multiplicative factor 10 is the intensity of the reflected 
probe beam given by, 

(9) 

There is one special case in which one of the two remaining integrations In Eq. (8) can be 
performed analytically. This occurs when the vectors rand r0 are parallel, corresponding 
to the physical situation in which the point of observation is in the same vertical plane as the 
offset line between the heating and probe beams. If we take this line to be along the x-axis, 
Eq. (8) can be simplified to the form, 

2 2 z(zl . izo>p2 
PR 

I =-2k I JP dp <l>(p, t) e--4- [Im] { e 2ik(zl+ z . izo> J [ zxo+ (zl- ~zo>x ] } 
0 0 (z1+ z- 1zo) 

(10) 

0 
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Fig. 1. Intensity distributions at a distance of 10 em from the sample as a function of scan 
distance for 4 different values of the diffusion length. The vertical scale is arbitrary 
but the relative scales from plot to plot are correct. 

Figure 1 shows typical ac diffraction patterns at a distance of 10cm from the sample 
calculated from Eq. (10) for the case of a 20 J..Lm diameter heating beam, with the offset 
between the heating and probe beams set equal to zero, and with thermal diffusion lengths 
of 1, 8, 64 and 512!-Lm. Each change in diffusion length corresponds to a (downward) 
change of the modulation frequency by a factor of 64. It should be noted that these changes 
have two obvious effects. One is the increase in the magnitude of the signal with 
decreasing frequency (increasing diffusion length). This results from the increased time for 
heating during the modulation period which produces-both an increased bump height, and 
an increased lateral extent of the bump. This change in the bump configuration can be seen 
in Fig. 2, which shows the real and imaginary parts of the bump heights calculated from 
Eq. (1) for three different ratios of the diffusion length to the heating-beam radius. The 
other obvious effect of the changing frequency in the curves of Fig. 1 is the steady increase 
in the importance of the real part of the signal with respect to the imaginary part as the 
diffusion length increases. This is the result of the corresponding changes in phase which 
occur in the bump height as seen in Fig. 2. Figure 3 is similar to Fig. 1 except that the offset 
between the heating and probe beams is set equal to 200 11m. This causes the interference 
patterns to lose their left-right symmetry. 

Equations (8) and (10), from which the results above were calculated, were derived 
under the assumption that the probe beam was normally incident on the surface of the 
sample. In the Kuo-Munidasa experiment the probe beam is usually tilted away from the 
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Fig. 2. Real and imaginary parts of the bump height for three different ratios of the 
diffusion length to the heating-beam radius. The abscissa is the radial distance from 
the center of the heating beam in units of the radius of that beam. 
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Fig. 3. Intensity distributions at a distance of 10 em from the sample as a function of scan 
distance for 4 different values of the diffusion length with the heating and probe 
beams offset by a distance of 200 ~J,m. The vertical scale is arbitrary but the relative 
scales from plot to plot are correct. 
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normal by an angle which may be as large a 40° or so. The calculation for a tilted beam is 
very similar to the one leading to Eq. (8), but the mathematical expressions involved in the 
derivation are significantly longer and will not be displayed here. Also, the experimental 
setup uses a lim; detector (a slit in front of a large-area detector) rather than the point 
detector assumed in calculating Figs. 1 and 3, and hence the signal corresponds to a line 
integral of Eq. (8) in they-direction. Numerical calculations of these more complicated 
results are currently underway, but the computation time is greatly increased over that 
needed to evaluate Eq. (10), both by increase in the the number of parameters involved and 
by the destruction of the symmetry which allowed Eq. (8) to be reduced to Eq. (10). The 
results presented here are therefore to be considered as preliminary in the sense that they do 
not yet correspond to the exact experimental arrangement. However, it is expected that 
detailed curve fits of the more general formulae to the experimental data will allow the 
extraction of some of the thermal and elastic parameters of the sample from the data. 
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