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Summary

• Cytochromes P450 (CYPs) play key role in generating the structural diversity of 

terpenoids, the largest group of plant natural products. However, functional 

characterization of CYPs has been challenging because of the expansive families 

found in plant genomes, diverse reactivity and inaccessibility of their substrates and 

products.

• Here we present the characterization of two CYPs, CYP76AH3 and CYP76AK1, 

that act sequentially to form a bifurcating pathway for the biosynthesis of 

tanshinones, the oxygenated diterpenoids from the Chinese medicinal plant Danshen.

• These CYPs had similar transcription profiles to that of the known gene responsible 

for tanshinone production in elicited Danshen hairy roots. Biochemical and RNA 

interference studies demonstrated that both CYPs are promiscuous. CYP76AH3 

oxidizes ferruginol at two different carbon centers, and CYP76AK1 hydroxylates 

C-20 of two of the resulting intermediates. Together, these convert ferruginol into 

11,20-dihydroxy ferruginol and 11,20-dihydroxy sugiol en route to tanshinones. 

Moreover, we demonstrate the utility of these CYPs by engineering yeast for 

heterologous production of six oxygenated diterpenoids, which in turn enabled 

structural characterization of three novel compounds produced by CYP-mediated 

oxidation.

• Our results highlight the incorporation of multiple CYPs in diterpenoids metabolic 

engineering, and a continuing trend of CYPs promiscuity generating complex 

networks in terpenoid biosynthesis.

Keywords

Cytochrome P450 monooxygenases; diterpenoids biosynthesis; enzymatic promiscuity; metabolic 
pathways; Salvia miltiorrhiza Bunge; synthetic biology

 Introduction

Terpenoids represent the largest group of plant natural products, with over 54,000 

structurally defined compounds. Many terpenoids have diverse biological activities and, 

thus, have been widely used as pharmaceuticals and medicines (Gershenzon & Dudareva, 

2007). For example, artemisinin and taxol are widely used agents in the treatment of malaria 

and cancer, respectively. Cytochrome P450 (CYP) enzymes are major players in generating 

the structural diversity of terpenoids, as more than 97% of the terpenoids are oxygenated via 

the biological activity of CYPs (Ashour et al., 2010; Hamberger & Bak, 2013; Renault et al., 
2014). In fact, CYPs represent the biggest superfamily of enzymes (approximately 1% of all 

protein encoding genes) in plants (Renault et al., 2014). While hydroxylation is the most 

commonly catalyzed reaction, CYPs can also catalyze many mechanistically more complex 

reactions (Mizutani & Sato, 2011). In addition to the typical regio- and stereo-specific 
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hydroxylation reactions (Renault et al., 2014), there are increasingly more examples of 

CYPs exhibiting promiscuity by accepting multiple substrates and/or producing multiple 

products (Ro et al., 2005; Swaminathan et al., 2009; Seki et al., 2011; Wang et al., 2012; Wu 

et al., 2013). The abundance of CYPs in plant genomes, together with their promiscuity, is 

one of the primary drivers of the chemical diversity of terpenoids. However, this presents 

daunting challenges to the identification of CYPs associated with the biosynthesis of 

particular natural products. For example, in the model plant Arabidopsis thaliana, more than 

70% of CYPs remain functionally uncharacterized (Bak et al., 2011). Therefore, functional 

characterization of plant CYPs is of general interest towards increasing our understanding of 

plant metabolism, and can provide valuable elements for metabolic engineering (Bak et al., 
2011).

Tanshinones are a group of abietane nor-diterpenoid quinone natural products found in the 

Chinese medicinal plant Salvia miltiorrhiza Bunge (also known as Danshen), which have 

been widely used in clinical for the treatment of cerebrovascular- and cardiovascular-related 

diseases (Zhou et al., 2005; Dong et al., 2011). The Fufang Danshen Dripping Pill, with 

Danshen as one of the major components, is widely used in China. The Pill also has been 

approved for phase III clinical trials in USA (Clinical Trials.gov Identifier: NCT01659580). 

There have been more than 40 tanshinones and structurally related compounds identified 

from Danshen. Studies have demonstrated that various tanshinones, such as tanshinone IIA 

(1), cryptotanshinone (2) and tanshinone I (3) (Fig. 1a), have antibacterial, antioxidant, anti-

inflammation, and anti-cancer activities (Zhou et al., 2005; Dong et al., 2011; Robertson et 
al., 2014). While tanshinones can be extracted from Danshen roots, the ever-growing 

demand cannot be met by cultivation of Danshen plants. Thus, attempts have been made to 

improve tanshinones production in Danshen hairy root cultures by enhancing the expression 

of key enzymes involved in the general isoprenoid/terpenoids precursor biosynthetic 

pathway (Kai et al., 2011). In addition, a synthetic biology approach has been employed to 

engineer the production of potential intermediates of tanshinone biosynthesis in recombinant 

Saccharomyces cerevisiae (yeast) (Dai et al., 2012; Zhou et al., 2012; Guo et al., 2013). 

However, the tanshinone biosynthetic pathway remains incompletely elucidated, particularly 

the latter modification steps, which impedes the application of such rational approaches to 

improve access to the tanshinones.

The formation of tanshinones is initiated by cyclization of (E,E,E)-geranylgeranyl 

diphosphate (GGPP), the general diterpenoid precursor, to the abietane miltiradiene (4), 

which is mediated by two enzymes, SmCPS1 and SmKSL1 (Fig. 1b) (Gao et al., 2009; 

Cheng et al., 2013). To transform 4 into tanshinones, multiple reactions are required, 

including oxidation, hetero-cyclization, aromatization and de-methylation, all of which fall 

into the repertoire of known CYP-mediated reactions (Mizutani & Sato, 2011). We 

previously demonstrated that 4 is the precursor to tanshinones, and identified a CYP, 

CYP76AH1, that can produce ferruginol (5) (Guo et al., 2013; Zi & Peters, 2013). In this 

study, two CYPs (CY76AH3 and CYP76AK1) were found to exhibit similar transcription 

profiles as CYP76AH1 in elicited Danshen hairy roots. Further biochemical analysis and 

RNA-interference (RNAi) in Danshen hairy root cultures suggested that both CYPs are 

promiscuous and act sequentially to form a bifurcating pathway for tanshinone biosynthesis. 
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When utilized in engineered yeast, these genes led to the production of six oxygenated 

diterpenoids, which provide materials for further biological study and the identification of 

subsequently acting CYPs. Our results further emphasize the utility of such a synthetic 

biology approach to characterization of plant CYPs (Kitaoka et al., 2015), and continued 

critical examination of the effect of CYP promiscuity on the complex nature of terpenoid 

biosynthesis (Wang et al., 2012; Wu et al., 2013).

 Materials and Methods

 Plant materials and chemicals

S. miltiorrhiza plants used to analyze organ specific CYP expression were collected in 

Beijing, China. Ferruginol and sugiol were purchased from BioBioPha (Yunnan, China). 

Tanshinone I, cryptotanshinone, tanshinone IIA and 11-hydroxy-sugiol were purchased from 

Chengdu Must Bio-Technology Co., Ltd (Sichuan, China). The purity of these commercial 

chemicals was >95% (HPLC).

 Heterologous expression in yeast and in vitro enzymatic activity assay

Full-length cDNAs of CYP76AH3 (Accession No. KR140168) and CYP76AK1 (Accession 

No. KR140169) were cloned as previously described (Guo et al., 2013), using the primers 

shown in Table S1. The open reading frame of CYP76AH3 was sub-cloned into the yeast 

epitope-tagged vector pESC-His using BamHI and SalI restriction sites, yielding pESC-

His::CYP76AH3. The open reading frame of CYP76AK1 was sub-cloned, using EcoRI and 

SpeI restriction sites, into plasmid pESC-His and pESC-His::CYP76AH3, yielding pESC-

His::CYP76AK1 and pESC-His::CYP76AH3/CYP76AK1. These plasmids were 

transformed into the yeast strain WAT11 that enables catalytic activity of plant CYPs by also 

expressing ATR1 (Urban et al., 1997). Yeast cultures were grown and microsomes prepared 

as described previously (Pompon et al., 1996; Guo et al., 2013).

In vitro enzymatic activity assays were performed on a shaking incubator (150 rpm), at 

30 °C for 4 hour in 500 µL of 100 mM Tris-HCl, pH 7.5, containing 0.5 mg total 

microsomal proteins, 500 µM NADPH, along with a regenerating system (consisting of 5 

µM FAD, 5 µM FMN, 5 mM glucose-6-phosphate, 1 Unit/mL glucose-6-phosphate 

dehydrogenase), and 100 µM of either miltiradiene (4), ferruginol (5), sugiol (6), or 11-

hydroxy sugiol (8). Reactions were stopped by addition of 500 µL of n-hexane and 

vortexing. Negative control reactions were carried out with microsomal preparations from 

recombinant yeast transformed with ‘empty’ pESC-His.

To produce sufficient amounts of the unknown CYP76AK1 product 11 for chemical 

structure characterization, these in vitro assays were scaled up. Microsomes were prepared 

from 4 L of yeast expressing CYP76AK1. These were used in a 40 mL reaction, with the 

buffer and NADPH regeneration system described above, and 20 mg of 11-hydroxy-sugiol 

(8) as substrate. The assay was performed on a shaking incubator (150 rpm), at 30 °C for 30 

h. The incubation products were extracted and 11 purified, using the methods described 

below, for chemical structure analysis by NMR.
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 RNA interference in hairy root of Danshen

Gene specific fragments of CYP76AH3 (nucleotides 636–1038) and CYP76AK1 
(nucleotides 651–1054) were cloned into the pENTR vector using the Directional TOPO 

Cloning Kits (Invitrogen) and the primers shown in Table S1, and further sub-cloned into the 

hpRNA binary vector pK7GWIWG2D using Gateway LR Clonase Enzyme Mix (Invitrogen) 

to generate RNAi knock-down vectors. Each of these constructs was introduced into A. 
rhizogenes C58C1 via a freeze-thaw transformation method (Weigel & Glazebrook, 2005). 

These recombinant A. rhizogenes were then transfected into Danshen leaf explants, using A. 
rhizogenes C58C1 harboring ‘empty’ pK7GWIWG2D(II) as a negative control, and the 

resulting transformed explants were used to generate hairy root cultures, as previously 

described (Cheng et al., 2013; Cheng et al., 2014). The transformed hairy root lines were 

cultured in 1/2 MS solid medium at 25 °C in the dark for 6–8 weeks and tissue then 

collected for qRT-PCR and metabolite analysis, as described below.

 Quantitative real-time PCR analysis

Total RNA was extracted from S. miltiorrhiza or RNAi transformed hairy root cultures using 

TRIzol reagent (Invitrogen) following the manufactures’ directions. First-strand cDNA was 

synthesized using the PrimeScriptR RT reagent Kit with gDNA Eraser (Takara, Tokyo, 

Japan). Relative transcript abundance was determined by qRT-PCR using the SYBR Premix 

Ex Taq II system (Takara, Tokyo, Japan) on an ABI 7500 instrument (Applied Biosystems, 

Foster City, CA, USA). The primers used for qRT-PCR analysis are listed in Table S1. The 

gene for actin was used as the endogenous control. At least three independent experiments 

were performed for each analysis.

 Engineering yeast for production of oxygenated tanshinones intermediates

To engineer yeast for production of intermediates from tanshinone biosynthesis, and obtain 

enough compound for structural characterization, pESC-His::CYP76AK1 or pESC-

His::CYP76AH3/CYP76AK1 were transformed into the ferruginol (5) production strain 

YJ35, using lithium acetate/single-stranded carrier DNA/polyethylene glycol transformation 

method (Daniel Gietz & Woods, 2002; Zhou et al., 2012), to produce the YJ51 and the YJ61 

strains (the genotype and characteristics of each of these are listed in Table S2). 

Transformants were selected on YNB medium containing 20 g/L glucose and grown at 

30 °C for 48 h. The recombinant yeast strains were grown in YNB medium containing 2% 

glucose (YNB/glucose) at 30 °C, shaking at 250 rpm, for 48 h, then transferred to 50 mL 

YNB/glucose medium in 250-mL flasks and grown to an initial OD600 of 0.05, and 

cultivated an additional 12–16 h to reach logarithmic phase. Cells were centrifuged and 

washed twice with sterile water to remove any residual glucose. The cells were then 

resuspended in 50 mL YNB medium containing 2% galactose (YNB/gal) for induction, and 

grown for 30–72 h to produce diterpenoids.

In order to simplify the fermentation procedure, the inducible promoters in the pESC-His 

vector were replaced by constitutive promoters from yeast. The constitutive promoters 

TEF1p and PGK1p were amplified from the genomic DNA of S. cerevisiae strain BY4741, 

and used to replace the GAL10 and GAL1 promoters, respectively, in pESC-His by overlap 

extension PCR. This replacement resulted in the plasmid pESC-TP. CYP76AH3 and 
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CYP76AK1 were sub-cloned downstream of the TEF1p and PGK1p promoter, respectively, 

using a previously described RF cloning strategy (Zhou et al., 2011). The resulting pESC-

TP::CYP76AH3/CYP76AK1 construct was confirmed by PCR screening and sequencing, 

and then transformed into YJ35, resulting in YJ62 (the genotype and characteristics of 

which are listed in Table S2).

Strain YJ62 was used for production of oxygenated tanshinones intermediates through fed-

batch fermentation. YJ62 was first inoculated into 1 L flask containing 0.2 L YNB medium, 

and grown at 30 °C. This starter culture was then transferred to a 5 L fermentor (GS-8000-P, 

ShanhaiGuangshi, Shanghai, China) containing 2 L YNB medium. Fermentation was carried 

out at 30 °C and 250 rpm. During fermentation, the dissolved oxygen was controlled at 

>40% saturation, and the pH was controlled and held at 4. Concentrated glucose solution 

(40%, wt/vol) was fed periodically to keep the glucose concentration above 1.0 g/L. 

Additional YNB (6.7g/L) was fed after the initial 30 h of fermentation. The culture was then 

harvested by extraction after 72 h total fermentation time.

 Homology modeling and docking analysis

Template selection was carried out by BLAST search (Altschul et al., 1997) of the 

CYP76AK1 amino acid sequence against the Protein Data Bank (PDB). The CYP76AK1 

model was constructed using DISCOVERY STUDIO v2.5 (http://www.accelrys.com). The 

model with the highest score was validated by PROCHECK (Laskowski et al., 1993).

Compounds 5, 6, 7, 8 were docked into CYP76AK1 using AutoDock 4.0 (Morris et al., 
1998). A grid size of 40×40×40 Å with grid point spacing of 0.375Å was set for ligand 

docking. Each compound was subjected to 100 runs of the AutoDock search using the 

Lamarckian genetic algorithm; all other parameters were set to default values.

 Metabolite extraction

In vitro enzymatic assays were extracted with an equal volume of n- hexane, which was 

separated and subjected to GC-MS and LC-MS analysis. Yeast cultures were extracted three 

times by ultrasonication with an equal volume of n-hexane. After separation, the organic 

extract was concentrated under vacuum, and the residue resuspended in n-hexane. For 

isolation of compound 6, the residue was loaded on silica gel column and eluted with a 20:1 

mixture of petroleum ether and ethyl acetate (V/V). Other diterpenoid products were 

purified by preparative HPLC, as described below. To determine the content of these 

compounds in hairy root cultures, approximately 25 mg of lyophilized tissue was extracted 

three times by ultrasonication in 1 mL methanol, the filtered extract then dried under 

vacuum, and resuspended in 120 µL acetonitrile for LC-MS analysis, as described below.

 LC-MS, GC-MS and NMR analysis

GC-MS was carried out using a Trace 1310 series GC with detection via a TSQ8000 MS 

(Thermo Fisher Scientific Co. Ltd.). Chromatographic separation was performed on a 

TR-5ms column capillary column (30 m × 0.25 mm ID DF = 0.25 µm; Thermo Fisher 

Scientific Co. Ltd.). Helium was used as the carrier gas at a constant flow rate of 1 mL/min 

through the column. The injector temperature was set at 280 °C. The temperature gradient 
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program was: 50 °C (1 min), 50 → 150 °C at 5 °C/min, 150 → 230 °C at 20 °C/min, 230 → 

300 °C linear at 30 °C/min, 300 °C (5 min). Each run analyzed 1 µL injections of the 

relevant sample using a 50:1 split ratio.

LC-MS was carried out using an Acquity UPLCTM system (Waters Corp., Milford, MA, 

USA) with an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 µm). The column 

temperature was set at 40 °C. The flow rate was kept at 500 µL/min. Mobile phases were 

water (A) and acetonitrile (B). The gradient was as follows: (0~8.0) min, 50%→80% B; 

(8.0~8.5) min, 80%→100% B; (8.5~11.0) min, 100% B; (11.0~11.5) min, 100%→50% B; 

(11.4~14.5) min, 50% B. Time-of-flight MS detection was performed with a Xevo G2-S MS 

system (Waters Corp., Manchester, UK). The data acquisition range was from 50–1500 Da. 

The source temperature was set at 100 °C, and the desolvation temperature was set at 

450 °C, with desolvation gas flow set at 900 L/h. The lock mass compound used was leucine 

enkephaline at a concentration 200 pg/µL. The capillary voltage was set at 2.5 KV. The cone 

voltage was set at 40 V. The collision energy was set as 6 eV for low-energy scan, and 50–65 

eV ramp for high-energy scan. The instrument was controlled by Masslynx 4.1 software 

(Waters Corp., Manchester, UK).

Preparative HPLC separation was performed using a Waters 600E-2487 instrument, using an 

YMC-Pack ODS-A column (250 mm × 20 mm, 5 µm). The mobile phase was a 4:6 mixture 

of water and acetonitrile (V/V) for compounds 9 and 10, or a 6:4 mixture of water and 

acetonitrile (V/V) for compound 11, in either case run with a flow rate of 6 mL/min.

For chemical structure characterization, 1H NMR (400 MHz), 13C NMR (100 MHz), and 

2D-NMR spectra were recorded with a Bruker DRX 400 spectrometer for 11-hydroxy 

ferruginol (6), 1H NMR (500 MHz), 13C NMR (125 MHz), and 2D-NMR spectra were 

recorded with a Bruker INOVA-500 spectrometer for 11,20-dihydroxy ferruginol (9) and 10-

hydroxymethyltetrahydromiltirone (10), 1H NMR (600 MHz), 13C NMR (150 MHz), and 

2D-NMR spectra were recorded with a Bruker AVIIIHD-600 spectrometer for 20-dihydroxy 

sugiol (11). TMS was used as internal standard. The observed chemical shift values were 

measured in ppm.

 Results

 Identification of candidate CYPs

Our previous study indicated that the ferruginol synthase, CYP76AH1, is the first CYP 

responsible for the generation of oxygenated diterpenoids precursors in tanshinone 

biosynthesis. We also carried out transcriptomic analysis of the elicitation process in 

Danshen hairy roots culture and found 125 CYPs expressed therein (Gao et al., 2014). To 

identify other CYPs involved in tanshinone biosynthesis, here we carried out further co-

expression analysis of this transcriptome dataset (Accession No. SRX224100). It was found 

that the expression of isotig10614 and isotig05577 was highly correlated with that of 

CYP76AH1 (Fig. S1). We cloned the corresponding full-length cDNA for these two isotigs, 

and identified these as CYP76AH3 (81% sequence similarity to CYP76AH1) and 

CYP76AK1 (46% sequence similarity to CYP76AH1), which represented promising 

candidates for further functional analysis.
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 Biochemical characterization of CYP76AH3 & CYP76AK1

Both CYPs were cloned and expressed in the yeast strain WAT11, which overexpresses the 

plant CYP reductase ATR1 from A. thaliana (Urban et al., 1997). Microsomal preparations 

from the resulting recombinant yeast were used for in vitro activity assays with 5 as the 

substrate. LC-MS analysis of the assay mixtures revealed that CYP76AH3 converted 5 into 

three compounds, namely, 6, 7 and 8, with retention times of 4.75 min, 1.72 min and 1.63 

min, respectively (Fig. 2, a–c). Compound 6 had an m/z of 301.2188 and it was determined 

to be 11-hydroxyferruginol based on structural analysis by NMR (Fig. S2). The retention 

times and mass spectra for compounds 7 and 8 matched those of authentic standards for 

sugiol and 11-hydroxy sugiol, respectively. Moreover, when microsomal preparations from 

the yeast cells expressing CYP76AH3 were assayed with 6 or 7 as the substrate, 8 was 

produced (Fig. S3 and Fig. S4). These results indicated that, at least under in vitro 
conditions, CYP76AH3 functioned as a promiscuous enzyme that not only catalyzes 

hydroxylation at C-11, but also sequential oxygenation/oxidation reactions at C-7 to form a 

keto group.

We then assayed microsomes from the yeast cells co-expressing CYP76AK1 and 

CYP76AH3 with 5 as the substrate. LC-MS analysis revealed the presence of three new 

compounds, namely, 9, 10 and 11, with retention times and m/z values of 3.31 min and 

317.2162, 1.70 min and 315.1954, and 1.22 min and 331.1949, respectively (Fig. 2, c–e). 

Compound 9 was the major product, and it was determined to be 11,20-dihydroxy ferruginol 

based on structural analysis by NMR (Fig. S5). Compound 10 was found to be 10-

hydroxymethyl tetrahydromiltirone, again based on structural analysis by NMR (Fig. S6). 

Compound 9 was unstable under ambient conditions and underwent spontaneous oxidization 

to 10. Compounds 9 and 10 were produced when microsomal preparations from yeast cells 

expressing CYP76AK1 were assayed with 6 as substrate (Fig. S3). We further assayed 

microsomal preparations from yeast cells expressing CYP76AK1 alone with 8 as substrate, 

and demonstrated that it was efficiently converted into 11 (Fig. S7 and S8). However, no 

products were found when 4, 5 or 7 were used as substrate. Accordingly, CYP76AK1 can 

catalyze hydroxylation at the C-20 position of the two differentially oxygenated abietanes 6 
and 8. Thus, while CYP76AK1 exhibits some promiscuity, it seems to only react with 

phenolic abietane diterpenoids that have hydroxy groups at C-11, as well as C-12.

 Physiological function of CYP76AH3 & CYP76AK1

It is well known that tanshinones accumulate predominantly in the root and rhizome of 

Danshen (Cui et al., 2015). To support physiological roles for CYP76AH3 and CYP76AK1 

in tanshinone biosynthesis, we examined the organ specific expression of CYP76AH3 and 

CYP76AK1 by real-time PCR. It was found that the expression of both genes was more 

abundant in the root than aerial tissues (Fig. 3a), consistent with a role for these two CYPs in 

the production of tanshinones. In addition, metabolite analysis of Danshen roots by LC-MS 

revealed the presence of all of the CYP products found here, namely 6 – 11 (Fig. S9), 

consistent with our in vitro biochemical analyses.

To provide more definitive evidence that CYP76AH3 and CYP76AK1 act in tanshinone 

biosynthesis, an RNAi approach was used to knock-down expression of the encoding genes 
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in Danshen hairy roots. Unique fragments from each gene were cloned into a previously 

described RNAi vector (Cheng et al., 2014), which then expresses self-complementary 

‘hairpin’ RNA fragments that induce silencing, and these constructs were used to transfect 

Danshen leaf explants to produce recombinant hairy root cultures via Agrobacterium 
rhizogene. RT-PCR analysis indicated that the expression of each targeted gene was 

efficiently suppressed in the transformed hairy root cultures, while those of known similar 

CYPs were not notably affected (Fig. 3b and Fig. S10). Targeted metabolite analysis 

indicated that suppression of CYP76AK1 led to significantly lower levels of tanshinones 1 – 

3 (Fig. 3c), as well as the direct CYP76AK1 products 9 and 11 (Fig. 3d). In addition, levels 

of the CYP76AK1 substrates, 6 and 8, were slightly increased in this hairy root culture (Fig. 

3d). These results indicate that CYP76AK1 functions as a C-20 hydroxylase for these two 

intermediates, and the net results suggest a potentially bifurcating pathway in tanshinone 

biosynthesis. Successful silencing of CYP76AH3 also was achieved (Fig. 3b), leading to 

significant reduction in levels of the direct CYP76AH3 products, 6 and 8, as well as 

downstream metabolites 9 – 11 (Fig. 3d). This indicates that CYP76AH3 plays a key role in 

the production of these intermediates. While the levels of tanshinones 1 – 3 were somewhat 

reduced, this was not statistically significant (Fig. 3c), implying that the reactions catalyzed 

by CYP76AH3 are not rate limiting in tanshinone biosynthesis.

 Homology modeling and docking analysis of CYP76AK1

To gain more insights into the chemo- and regio- selectivity of CYP76AK1, we performed 

homology modeling and molecular docking with compounds 5 – 8. The crystal structure of 

CYP1A2 (code: 2HI4) (Sansen et al., 2007) was selected as the template for homology 

modeling based on the 44.7% sequence similarity of CYP76AK1 to this human CYP (Fig. 

S11). As shown in Fig. S12, 88.3% of residues in the homology model are in the most 

favored region of the Ramachandran plot, with only four outliers in the structure, which 

suggests that this is a reasonable model for the CYP76AK1 protein structure, and can be 

used for further structural analysis. Docking results suggested that the distances between the 

C-20 methyl group in compound 5 and 7 and the catalytic heme iron were 10.8 Å and 9.7 Å, 

respectively, which are longer than those in the cases of compound 6 and 8 (8.1 Å and 7.0 Å) 

(Fig. 4). These data are in line with the fact that CYP76AK1 had no activity with 5 and 7, 

and to some extent, that the hydroxylation activity with 8 was higher than that with 6.

 Heterologous production of oxygenated tanshinones intermediates in yeast

To further confirm their functions and demonstrate the usefulness of CYP76AH3 and 

CYP76AK1, these were incorporated into a previously described ferruginol producing yeast 

strain, YJ35 (Guo et al., 2013). This strain harbors modules that express a GGPP synthase 

(BTS1) and farnesyl diphosphate synthase (ERG20) fusion, a SmCPS1 and SmKSL1 fusion, 

a truncated hydroxy-3-methylglutaryl coenzyme A reductase (tHMG1), and the ferruginol 

synthase CYP76AH1, as well as the Danshen CYP reductase (SmCPR1) (Zhou et al., 2012; 

Guo et al., 2013). We first incorporated a CYP76AH3 expression module under the control 

of the GAL10 promoter into YJ35 to produce a new strain, YJ51 (Fig. 5a). This YJ51 strain 

was grown in YNB medium, with glucose as the carbon source, to logarithmic phase, then 

induced by transferring the cells into medium containing 2% galactose as the carbon source 
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instead. After 72 h, the fermentation broth was extracted with n-hexane. LC-MS analysis of 

the extracts showed the presence of three diterpenoids, namely, 57.1% (percentage of total 

diterpenoid peak area) of 6, 40.6% of 8 and 2.4% of 7 (Fig. 5a). Indeed, it was this strain 

that provided sufficient amount of 6 for detailed structural characterization by NMR (Fig. 

S2).

We further added CYP76AK1 into the CYP76AH3 expression plasmid, and transformed this 

into YJ35 to generate the yeast strain YJ61 (Fig. 5b). The resulting strain was cultivated, and 

extracts prepared, as described above for the YJ51 strain. LC-MS analysis indicated that 

YJ61 produced 78.4% of 9, 18.2% of 10, 1.6% of 11, 1.4% of 7, and 0.4% of 6 (Fig. 5b), 

which indicated that most of the intermediates were efficiently converted to the more 

elaborated compounds 9 and 10. Again, it was this YJ61 strain that provided sufficient 

amounts of 9 and 10 for structural characterization by NMR.

The use of the GAL1p and GAL10p promoters for expressing CYP76AH3 and CYP76AK1 
required the use of galactose as the carbon source, necessitating a two-stage fermentation 

process. To avoid this, we replaced these GAL promoters with the constitutive promoters 

TEF1p and PGK1p (Zhou et al., 2011). This new expression plasmid was transformed into 

YJ35 to generate the yeast strain YJ62 (Fig. 5c). When YJ62 was cultivated for 72 h in 

medium containing glucose as the carbon source, oxygenated diterpenoids were produced 

with a distribution profile quite similar to that of YJ61, as the peak areas for 9 and 10 were 

92.8% of the total. Though total diterpenoid accumulation was lower than with YJ61, the 

YJ62 strain provides a more straightforward platform for the production of these diterpenoid 

metabolites, which should facilitate future studies of tanshinone biosynthesis, as well as the 

biological activity of these diterpenoid metabolites.

 Discussion

CYPs play key roles in producing the tremendous chemical diversity of terpenoids products. 

These heme-containing enzymes typically insert an oxygen atom into C-H bond, generating 

a hydroxyl group that enable further transformations, such as oxidation, acylation, 

methylation and glycosylation. In addition, CYPs can catalyze more unusual transformations 

as well (Ashour et al., 2010). However, functional characterization of eukaryotic CYPs 

remains challenging. This is particularly true in plants, where the CYP superfamily 

represents approximately 1% of all protein encoding genes (Renault et al., 2014). Moreover, 

terpenoid biosynthetic pathways routinely require multiple CYP-mediated biochemical 

transformations, further complicating the assignment of their functional roles (Pateraki et al., 
2015). For example, the CYPs implicated in catalyzing different steps of taxol biosynthesis 

share >70% amino acid sequence identity, yet this metabolic pathway remains incompletely 

elucidated (Kaspera & Croteau, 2006). Recently, thanks to advances in DNA sequencing 

technology, co-expression analysis has been shown to be useful for identifying pathway-

associated CYPs (Ehlting et al., 2008).

As extensively aromatized abietane-type ortho-quinone and furan ring containing nor-
diterpenoids, the tanshinones are formed from the olefinic precursor miltiradiene (4) via a 

series of oxidative transformations. In previous work, we demonstrated that CYP76AH1 
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produces ferruginol (5) (Guo et al., 2013; Zi & Peters, 2013). To identify CYPs responsible 

for subsequent steps in tanshinone biosynthesis, we carried out co-expression analysis of the 

transcriptome dataset to find CYPs whose expression profile matched that of CYP76AH1 
and identified two candidates from the CYP76 family, CYP76AH3 and CYP76AK1. We 

constructed yeast strains that expressed these CYPs, both separately and together. Using 5 as 

the substrate, microsomes from the CYP76AH3 expressing yeast produced three new 

products, compounds 6 – 8. When using microsomes that contain both CYPs, three 

additional products were observed, compounds 9 – 11. While the structures for 7 and 8 were 

readily established by comparison with those of authentic standards, the identities of the 

other four compounds remained elusive. To acquire sufficient amounts of these compounds 

for structural elucidation, we employed a synthetic biology approach to construct 

recombinant yeast for heterologous production of 6, 9 and 10, while 11 was produced via in 
vitro conversion of 8 at a preparative scale. Critically, RNAi knock-down of CYP76AH3 and 

CYP76AK1 expression in Danshen hairy root cultures afforded results in agreement with the 

functional assignment based on the biochemical information (vide ante). Taken together, 

these results highlight the utility of this approach towards characterization of CYPs involved 

in plant terpenoid biosynthesis.

Both CYP76AH3 and CYP76AK1 exhibit promiscuity. CYP76AH3 can take 5 and carry out 

hydroxylation at C-11 to form 6, or at C-7, with further oxidation to form the keto group of 

7. In either case, these initial products can be further transformed, via the alternative 

reaction, to produce 8. It should be noted that other CYP76 family members have also been 

shown to exhibit promiscuous activity in diterpenoids biosynthesis (Swaminathan et al., 
2009; Wang et al., 2012; Wu et al., 2013), but CYP76AH3 is unique because it shows 

promiscuity in substrate selectivity as well as catalytic activity. The complex mixture of 

products observed here suggests that CYP76AH3 may play a role in producing the wide 

range of tanshinones and structurally related compounds found in Danshen (Dong et al., 
2011). In addition, the multifunctional nature of CYP76AH3 indicates that this also might be 

useful as a biocatalyst to produce new diterpenoids – e.g., via metabolic engineering in 

yeast. By contrast, CYP76AK1 exhibits substrate promiscuity, carrying out hydroxylation at 

C-20 of either 6 or 8, to produce 9 or 11, respectively. Notably, the promiscuity exhibited by 

CYP76AH3 and CYP76AK1 leads to bifurcation of tanshinone biosynthesis. In particular, 

the CYP76AH3 products 6 and 8 can be observed in Danshen, serve as substrates for 

CYP76AK1, and both accumulate upon knocking down CYP76AK1 expression, which 

further represses the accumulation of tanshinones. Because of CYP promiscuity, divergent 

pathways become possible in plants, resulting in additional difficulties for pathway 

delineation. Such metabolic networks may be advantageous to bypass damages and 

mutations that may otherwise lead to the breakdown of the biosynthetic process. Perhaps 

more intriguingly, this also may provide arrays of similar natural products that might 

interfere with the ability of simple mutations in their molecular targets to escape inhibition.

It is conceivable that both 9 and 11 are precursors to tanshinones, as hydroxylation of C-20 

is a necessary step in oxidative removal of this methyl group, as well as the potentially 

associated aromatization of the B-ring. Indeed, the C-7 keto group in 11 represents further 

oxidation towards B-ring aromatization. However, the relevance of CYP76AH3 for this 
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transformation is not entirely clear, as knocking down CYP76AH3 expression has only 

limited effect on the production of 7. Consistent with this, C-7 keto containing diterpenoids 

are accumulated at low levels in the engineered yeast strains, indicating that CYP76AH3 

predominantly produces 6, and has relatively low catalytic activity on 6 and 7. In addition, 

knocking down CYP76AH3 expression only slightly reduces the accumulation of 

tanshinones, which may reflect a non-rate limiting role for CYP76AH3, and/or some 

redundancy. Given the presence of multiple CYP76 family members in Danshen (Chen et 
al., 2014), it seems likely that these CYPs may be responsible for C-7 oxidation and/or 

provide such redundant activity. Regardless, our results indicate that CYP76AK1 plays a key 

role in tanshinone production, suggesting that overexpression of this might improve yields, 

which is particularly important as the contents of tanshinones in Danshen are low and vary 

depending on the place of origin, the harvest season and the traditional processing methods 

(Hu et al., 2005; Wu et al., 2009).

In summary, we have functionally identified two CYPs involved in production of tanshiones, 

and whose promiscuity indicates bifurcation in this biosynthetic process, suggesting it 

comprises a complex metabolic network. Altogether, we have now identified three CYPs, 

including the previous reported CYP76AH1 (Guo et al., 2013), which insert up to four 

atoms of oxygen into the abietane hydrocarbon intermediate 4 en route to the tanshinones. 

This represents substantial advancement towards elucidating tanshinone biosynthesis (Gao et 
al., 2009; Wang & Wu, 2010), and enriches our understanding of the complex roles of CYPs 

in the metabolic networks underlying terpenoid production more generally. Moreover, we 

have demonstrated that the CYPs identified here can be used in a synthetic biology approach 

towards heterologous production of tanshinones in yeast. Indeed, the resulting diterpenoids 

not only provide intermediates for further investigation of tanshinone biosynthesis, but also 

material for investigation of their own biological activity.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Tanshinones and partial biosynthetic pathway in S. miltiorrhiza. (a) Representative 

tanshinones found in S. miltiorrhiza. (b) Proposed partial biosynthetic pathway of 

tanshinones. The red arrow indicates the oxidation reaction catalyzed by the CYP76AH3 

enzyme. The blue arrow indicates the oxidation reaction catalyzed by the CYP76AK1 

enzyme.
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Fig. 2. 
LC-MS analysis results of reaction mixtures of 5 catalyzed by yeast microsomes containing 

CYPs from S. miltiorrhiza. (a) The extracted ion current (EIC) chromatogram of 11-hydroxy 

ferruginol (6). (b) The EIC of sugiol (7). (c) The EIC of 11-hydroxy sugiol (8) and 10-

hydroxymethyl tetrahydromiltirone (10). (d) The EICs of 11,20-dihydroxy ferruginol (9). (e) 

The EIC of 11,20-dihydroxy sugiol (11). The resulting daughter ion mass spectra are shown 

in Fig. S2, S5, S6, and S8 for compound 6, 9, 10, and 11, respectively. The green, blue and 

red lines represent the yeast harboring the plasmid pESC-His, pESC-His::CYP76AK1 and 

pESC-His::CYP76AH3/CYP76AK1, respectively.
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Fig. 3. 
The relationship between the expression levels of CYP76AH3 and CYP76AK1 and the 

contents of different terpenoids products. (a) Expression levels of CYP76AH3 and 

CYP76AK1 in root, stem and leaf of in S. miltiorrhiza. (b) Expression levels of CYP76AH3 
and CYP76AK1 in RNAi down-regulated in S. miltiorrhiza hairy roots. (c) Contents of 

tanshinones 1, 2 and 3 in RNAi down-regulated in S. miltiorrhiza hairy roots. (d) Contents of 

oxygenated terpenoids intermediates 5 – 11 in RNAi down-regulated in S. miltiorrhiza hairy 

roots. Expression levels were normalized using β-actin as an internal standard. The error 

bars represent the standard error of means from three independent replications for tissue 

expression analysis and from 5 to 6 lines for RNAi down-regulated hairy roots. *P < 0.05, 

** P< 0.01 and *** P< 0.001 were determined by an unpaired t test using GraphPad Prism 

6.
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Fig. 4. 
Homology modeling and docking analysis of CYP76AK1 from S. miltiorrhiza. (a) 

Homology modeling of CYP76AK1. Docking poses of compound 5 (b), 6 (c), 7 (d), 8 (e). 

Compound structure is depicted as stick with carbons colored pink and oxygens red. Heme 

is depicted as stick with carbons colored yellow and iron blue. Distance between C20 and 

heme iron is indicated by dashed line with the length indicated in Å.
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Fig. 5. 
Engineered yeasts for the production of oxygenated terpenoids intermediates. YJ35 was 

constructed previously (Guo et al., 2013). The YJ51 (a) and YJ61 (b) were constructed by 

transforming pESC-His::CYP76AH3 and pESC-His::CYP76AH3/CYP76AK1 into YJ35, 

respectively. YJ62 (c) was constructed by replacing the GAL1 and GAL10 promoter in 

pESC-His::CYP76AH3/CYP76AK1 with the constitutive promoter TEF1 and PGK1 and 

transforming into YJ35. The pie chart and its area represent the percentages of ferruginol 

derivatives (compounds 6, 7, 8, 9, 10, and 11) and the accumulation of diterpenoids 

produced in the YJ51 (a), YJ61 (b) and YJ62 (c) after 72 h of shake-flask fermentation at 

250 rpm in YNB with galactose for YJ51 and YJ61, and YNB with glucose for YJ62. The 

data represent the mean value of three independent replications.
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