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Joint Source-Relay Design for Full–Duplex MIMO
AF Relay Systems
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Abstract—The performance of full-duplex (FD) relay systems
can be greatly impacted by the self-interference (SI) at relays.
By exploiting multi-antenna in FD relay systems, the spectral
efficiency of FD relay systems can be enhanced through spatial SI
mitigation. This paper studies joint source transmit beamforming
and relay processing to achieve rate maximization for FD MIMO
amplify-and-forward (AF) relay systems with consideration of
relay processing delay. The problem is difficult to solve due
mainly to the SI constraint induced by the relay processing delay.
In this paper, we first present a sufficient condition under which
the relay amplification matrix has rank one structure. Then, for
the case of rank one amplification matrix, the rate maximization
problem is equivalently simplified into an unconstrained problem
which can be locally solved using gradient ascent method. Next,
we propose a penalty-based algorithmic framework, called P-
BSUM, for a class of constrained optimization problems which
have difficult equality constraints in addition to some convex
constraints. By rewriting the rate maximization problem with a
set of auxiliary variables, we apply the P-BSUM algorithm tothe
rate maximization problem in the general case. Finally, numerical
results validate the efficiency of the proposed algorithms and
show that the joint source-relay design approach under the rank
one assumption could be strictly suboptimal as compared to the
P-BSUM-based joint source-relay design approach.

Index Terms—Full-duplex relaying, MIMO, joint source-relay
design, penalty method, BSUM.

I. I NTRODUCTION

To simplify transceiver design and reduce implementation
cost, traditional relay systems work inhalf-duplex (HD) mode,
where the source and relay transmit signal in two orthogonal
and dedicated channels. This inherently results in a waste of
channel resources and incurs loss of spectrum efficiency. As
compared to theHD relaying,full-duplex (FD) relaying, where
the relay node can simultaneously transmit and receive signals
over the same frequency band, has potential to approximately
double the system spectral efficiency. Hence, with the recent
advance of self-interference cancellation technologies,FD
relaying has received a great deal of attentions [1]–[5].

When the relay operates in the FD mode, theloopback
interference, also known as self-interference (SI), occurs due
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to signal loopback from the relay’s transmission side to its
reception side. Since the SI at the relay is generally much
stronger than the received signal from distant source (i.e., the
large power differential issue), it could exceed the dynamic
range of the analog-to-digital converter at the reception side
of the relay [2], [14], and make it almost impossible to retrieve
the desired signal. Hence, to ensure successful implementation
of full-duplex relaying, it is critical to sufficiently mitigate the
SI at relays. So far, a variety of SI mitigation technologies
were proposed, including mainly antenna, analog, digital,
spatial cancellations [5]. With these cancellation technologies,
encouraging experimental results showed that the SI can be
well mitigated (even can be suppressed to the noise level [3],
[4]) to make the FD communication feasible.

Multi-antenna technology can not only greatly improve the
spectral efficiency but also provide more degrees of freedom
for suppressing the SI in the spatial domain [5]. Hence, it is
natural to combine the MIMO and FD relaying technologies to
achieve higher spectral efficiency, leading to FD MIMO relay-
ing. Recently, FD MIMO relaying has gained a lot of research
interest, e.g., [5]–[19]. The work [5] focused on the mitigation
of self-interference (i.e., SI minimization) in spatial domain by
equipping the relay with a receive filter and a transmit filter,
and proposed antenna selection, beam selection, null-space
projection, and MMSE filtering schemes for transmit/receive
filter design. Among the above four schemes, null-space pro-
jection method can eliminate all loop interference in the ideal
case with perfect side information. The work [6] studied relay
design to achieve self-interference suppression by maximizing
the ratio between the power of the useful signal to the self-
interference power at the relay reception and transmission.
Such a design can suppress interference substantially withless
impact on the useful signal. The works [7], [8] proposed SINR-
maximization-based SI mitigation method for wideband full-
duplex regenerative MIMO relays.

While [5]–[8] focused on SI mitigation/suppression meth-
ods, the works [9]–[19] aimed at end-to-end performance
optimization for FD MIMO relay systems. In [9], the authors
treated the self-interference simply as noise and derived the
channel capacity of FD MIMO relaying systems. Based on
majorization theory, they proposed an optimal relay precoding
scheme to achieve the channel capacity.Differently from [9],
the works [10], [11] assumed that the SI can be completely
removed if its power is smaller than a threshold. Under this
assumption, they developed convex optimization based joint
source-relay precoding methods for achieving rate maximiza-
tion in FD MIMO relaying systems under different antenna
setups. In [12], transmit and receive filters of the multi-
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antenna full duplex relay systems were designed to achieve
near-optimal system throughput while removing the self-
interference. In [13], a novel joint transmit and receive filters
design scheme was proposed to eliminate the self-interference
while optimizing the end-to-end achievable rate for both
amplify-and-forward and decode-and-forward relay systems.
In [14], the authors derived tight upper and lower bounds on
the end-to-end achievable rate of decode-and-forward-based
full-duplex MIMO relay systems, and proposed a transmis-
sion scheme by maximizing the lower bound using gradient
projection method.The work [15] proposed several different
precoder and weight vector designs using the principles of
signal to leakage plus noise ratio, minimum mean square error,
and zero forcing to improve the rate performance of an FD
MIMO AF relay system, and derived a closed-form solution
for the relay signaling covariance matrix. In [16], the authors
showed that the loop interference effect can be significantly
reduced using massive relay antennas in an FD decode-and-
forward relay system with multiple single-antenna source-
destination pairs. In order to achieve the maximal end-to-end
link performance with single-stream transmission, the work
[17] investigated the optimization of FD in-band MIMO relay
systems via spatial-domain suppression and power allocation.

It is noted that the above works have assumed zerorelay
processing delay. However, the relay processing delay is
strictly positive in practice and neglecting it would cause
severe causality issues in the practical implementation of
relaying protocols (see [5], [20] for more discussion on the
consequences of neglecting the relay processing delay). Hence,
the relay processing delay should be taken into consideration
in FD relay system design. In [18], the authors considered
the relay processing delay insingle-stream FD MIMO AF
relay systems and proposed low-complexity joint precod-
ing/decoding schemes to optimize the end-to-end performance.
In addition, the work [19] studied the end-to-end performance
optimization for two-way FD relay systems with processing
delay, where all three nodes work in FD mode and only the
relay is equipped with multiple antennas.

In this paper, as in [18], we consider a three-node FD MIMO
AF relay system which consists of amulti-antenna source,
a multi-antenna FD relay, and a multi-antenna destination.
We extend the work [18] to the more generalmulti-stream
scenario and study joint source-relay design (i.e., jointly design
the source transmit beamformingV and relay amplification
matrix Q) to optimize the end-to-end achievable rate with the
consideration of the relay processing delay. As compared tothe
single-stream case in [18], the rate maximization problem in
the multi-stream case is much more involved due mainly to the
difficult zero-forcing SI constraintQHRRQ = 0, whereHRR

denotes the residualself-interference channel between the
relay output and the relay input. Thus it requires completely
different solutions.

The main contributions of this paper are threefold:
1) It is proven that, when the residual SI channelHRR has

full rank and the FD relay is equipped with no more than
three transmit and receive antennas, the relay amplifica-
tion matrixQ must be of rank one, implying thatsingle-
stream transmission can achieve the optimal system rate

in this case under the zero-forcing SI condition.
2) For the case when the relay amplification matrix has

rank one structure, we show that the rate maximization
problem can be equivalently turned into anunconstrained
problem. The derived unconstrained problem is locally
solved using gradient ascent method. In addition, we
propose two low complexity suboptimal solutions to the
rank one case, both of which are shown to be able to
achieveasymptotic optimality under the zero-forcing SI
condition.

3) For the general case (i.e., whenQ is not of rank
one), to deal with the difficulty arising mainly from the
zero-forcing SI constraint, we first develop a penalty-
based iterative optimization approach with a rigorous
convergence analysis. Then, we show that the proposed
approach can address the rate maximization problem of
general case, with better rate performance than the single-
stream transmission case.

The remainder of this paper is organized as follows. In
Section II, the rate maximization problem is formulated and
some property of the SI constraint is analyzed. We address the
rate maximization problem in the rank one case and the general
case in Section III and IV, respectively. Section V demonstrates
some numerical results, while Section VI concludes the paper.

Notations: scalars are denoted by lower-case letters, bold-
face lower-case letters are used for vectors, and bold-face
upper-case letters for matrices. For a scalar (resp., vector)
function f(x), ∇f(x) denotes its gradient (resp., Jacobian
matrix) atx. For a square matrixA, AT , AH , A†, Tr(A) and
Rank(A) denote its transpose, conjugate transpose, pseudo-
inverse, trace, and rank, respectively.I denotes an identity
matrix whose dimension will be clear from the context.|x|
is the absolute value of a complex scalarx, while ‖x‖ and
‖X‖ denote the Euclidean norm and the Frobenius norm of
a complex vectorx and a complex matrixX, respectively.
‖x‖∞ denotes the infinity norm. For am by n complex
matrix X, ∠(X) returns am by n matrix of phase angles
of entries ofX. The distribution of a circularly symmetric
complex Gaussian (CSCG) random vector variable with mean
µ and covariance matrixC is denoted byCN (µ,C), and
‘∼’ stands for ‘ distributed as’.Cm×n denotes the space of
m × n complex matrices andRn denotes the n-dimensional
real vector space. A projection of some pointX onto a setΩ
is denoted byPΩ{X} , minY∈Ω ‖X−Y‖. If Ω is a ball of
radiusr centered at the origin, i.e.,Ω = {X | ‖X‖ ≤ r}, then
PΩ{X} is equal tor X

‖X‖+max(0,r−‖X‖) .

II. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, we consider a three-node full duplex
MIMO relay network where the source S sends information to
the destination D with the aid of a full-duplex relay R. In the
network, the source and destination are equipped withNS > 1
and ND > 1 antennas, while the relay is equipped with
NT > 1 transmit antennas andNR > 1 receive antennas to
enable full-duplex operation. LetHSR ∈ CNR×NS denote the
channel between the source and relay, andHRD ∈ C

ND×NT

denote the channel between the relay and destination. In
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Fig. 1. A full-duplex MIMO relay network.

addition, let HRR ∈ CNR×NT represent theresidual self-
interference channel after imperfect SI cancellation. We as-
sume that all the channels are subject to independent block-
fading, i.e., they stay constant during one fading block but
change independently at the beginning of the next fading
block.

The processing time is required at the relay to implement
the FD operation. This results in processing delay at the
relay, which we assume is given by aτ -symbol duration.
Typically, the delay is much shorter than a time slot which
consists of a large number of data symbols. Therefore, its
effect on the achievable rate is negligible [19]. Additionally,
suppose that linear processing is employed at the source and
the relay to enhance the system performance. The source uses
beamforming matrixV ∈ C

NS×d to send its signal while the
relay uses the amplification matrixQ ∈ CNT×NR (i.e., AF
relay protocol) to process its received signal. Hence, at the
time instantn, the received signalr[n] ∈ CNR×1 at the relay
is

r[n] = HSRVs[n] +HRRxR[n] + nR[n] (1)

wheres[n] ∼ CN (0, Id) is a vector ofd transmit symbols,
nR[n] ∼ CN (0, σ2

RI) denotes the complex additive white
Gaussian noise (AWGN), and the termHRRxR[n] represents
the residual SI from the relay output to relay input. And the
transmit signalxR[n] at the relay is

xR[n] = Qr[n− τ ] (2)

Combining (1) with (2), the relay output can be rewritten as

xR[n] = QHSRVs[n− τ ] +QHRRxR[n− τ ]

+QnR[n− τ ]

= QHSRVs[n− τ ] +QHRRQr[n− 2τ ]

+QnR[n− τ ]

(3)

The termQHRRQr[n−2τ ] in (3) is a complicated function
of Q and makes the system design very difficult. To simplify
design,as in [18], [19], we impose a zero-forcing condition
onQ to null out the residual SI from the relay output to relay
input, i.e.,

QHRRQ = 0 (4)

which is referred to as (zero-forcing) SI constraint. Plugging
(4) into (3), we obtain

xR[n] = QHSRVs[n− τ ] +QnR[n− τ ]. (5)

Consequently, the received signal at the destination is

yD[n] = HRDxR[n] + nD[n]

= HRD (QHSRVs[n−τ ]+QnR[n−τ ]) +nD[n]
(6)

wherenD[n] ∼ CN (0, σ2
DI) denotes the complex AWGN.

According to (6), the system rate can be expressed as

R(V,Q)= log det

(

I+HRDQHSRVVHHH
SRQ

HHH
RD×

(

σ2
RHRDQQHHH

RD + σ2
DI

)−1
)

. (7)

Moreover, the power consumption at the relay is given by

pR(V,Q) = Tr
(

QHSRVVHHH
SRQ

H
)

+ σ2
RTr

(

QQH
)

(8)
and the power consumption at the source isTr(VVH).

In this paper, we are interested in joint source-relay design
to optimize the system rate subject to source/relay power
constraints and the SI constraint. Mathematically, the rate
maximization problem is formulated as

max
V,Q

R(V,Q)

s.t. pR(V,Q) ≤ PR,

QHRRQ = 0,

Tr(VVH) ≤ PS .

(9)

where PS and PR are the allowed maximum transmission
power at thesourceand relay, respectively. Problem (9) is
nonconvex and complicated mainly by the SI constraint. Even
if removing the SI constraint, the problem is still difficultdue
to the coupling of the optimization variables in the relay power
constraint. In this paper, we aim to provide systematic methods
to tackle the difficulties arising from both the SI constraint and
the coupling of variables.

A simple way to deal with the difficult SI constraint is by
assumingRank(Q) = 1 [18], [19]. With this assumption,
the SI constraint can be simplified and problem (9) becomes
more tractable. Thus, an interesting question is:under what
circumstance will the solution Q to problem (9) be of rank
one? The following proposition partly answers this question
and presents a sufficient condition under whichRank(Q) = 1.

Proposition 2.1: Suppose that the numbers of relay anten-
nasNT and NR satisfy NT , NR ∈ {2, 3} and the residual
SI channelHRR has full rank1. We haveRank(Q) = 1 if
QHRRQ = 0.

Proof: Please see Appendix A.
Generally speaking, spatial multiplexing can improve the

spectral efficiency of various MIMO systems. However, Propo-
sition 2.1 shows a key result for FD MIMO relay system
design, that is, when the residual SI channelHRR has full rank
and the FD relay is equipped with no more than three transmit
and receive antennas,single-stream transmission can achieve
the optimal system rate under the zero-forcing SI constraint.
This further motivates us to consider the rank one case in the
following section.

1In fact, a matrix has full rank with probability one if its elements are
randomly drawn from an absolutely continuous distribution[21, pp. 364].
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III. R ANK -1 STRUCTURED SUBOPTIMAL SOLUTION

In this section, we assume thatQ is structured asQ =
xtx

H
r (which is of rank one) and propose efficient solutions

to problem (9).
We start by simplifying problem (9) based on the rank one

structure. WhenQ = xtx
H
r , we have

QHSRVVHHH
SRQ

H = ‖xH
r HSRV‖2xtx

H
t ,

QQH = ‖xr‖
2xtx

H
t .

Using the above two relations,R(V,Q) reduces to

R(V,Q) = log

(

1 + ‖xH
r HSRV‖2xH

t HH
RD (10)

×

(

σ2
R‖xr‖

2HRDxtx
H
t HH

RD + σ2
DI

)−1

HRDxt

)

= log

(

1 +
‖xH

r HSRV‖2‖HRDxt‖2

σ2
R‖xr‖2‖HRDxt‖2 + σ2

D

)

(11)

where the second equality follows from the identity(I +
AB)−1A = A(I +BA)−1 [36, Sec. 3.2.4]. Similarly, using
the identityTr(AB) = Tr(BA), pR(V,Q) reduces to

pR(V,Q) = ‖xH
r HSRV‖2‖xt‖

2 + σ2
R‖xr‖

2‖xt‖
2. (12)

Furthermore,QHrrQ = 0 implies xH
r Hrrxt = 0. Hence,

together with the monotonicity of thelog function, problem
(9) can be equivalently written as follows

max
V,xt,xr

‖xH
r HSRV‖2‖HRDxt‖2

σ2
R‖xr‖2‖HRDxt‖2 + σ2

D

s.t. ‖xH
r HSRV‖2‖xt‖

2 + σ2
R‖xr‖

2‖xt‖
2 ≤ PR,

xH
r HRRxt = 0,

Tr(VVH) ≤ PS .

(13)

Although problem (13) has a simpler form than (9), it is still
very difficult to solve due mainly to the coupled SI constraint
and relay power constraint. Thanks to the special problem
structure, we can overcome these two difficulties and simplify
it as anunconstrained problem with respect toxr only, which
is stated in the following proposition.

Proposition 3.1: Define a projection operatorΠ , I −
HH

RRxrx
H
r HRR

‖HH
RR

xr‖2
and denote byλmax(xr) the largest eigenvalue

of the matrixHRDΠHH
RD.

1) Problem (13) can be recast as the following unconstrained
problem

max
xr

PS‖xH
r HSR‖2λmax(xr)

σ2
R‖xr‖2λmax(xr)+

σ2

D

PR
(PS‖xH

r HSR‖2+σ2
R‖xr‖2)

(14)

2) Given an optimal solutionxr to problem (14), the triple
(V∗,x∗

t ,x
∗
r) given below is an optimal solution to prob-

lem (13).

V∗ =
√

PS

HH
SRxr

‖HH
SRxr‖

(15)

x∗
t ∈ arg max

‖u‖=1
uHΠHH

RDHRDΠu (16)

x∗
r =

√

PR

PS‖xH
r HSR‖2 + σ2

R‖xr‖2
xr (17)

Proof: Please see Appendix B.
Now we consider algorithm design for problem (14).
1) Gradient ascent method in general case: Recall that

λmax(xr) is the largest eigenvalue of the matrixHRDΠHH
RD.

For randomly generated channel matricesHRD andHRR, the
nonzero eigenvalues of the matrixHRDΠHH

RD are distinctive
with probability one. As a result, the largest eigenvalue, i.e.,
λmax(xr), is generally differentiable with respect toxr. Let
u1 be the eigenvector ofHRDΠHH

RD corresponding to the
largest eigenvalue. Then the gradient ofλmax(xr) with respect
to xr is given by

∇λmax(xr) = ∇

(

−
‖uH

1 HRDHH
RRxr‖2

‖HH
RRxr‖2

)

= −
HRRH

H
RDu1u

H
1 HRDHH

RRxr

‖HH
RRxr‖2

+
‖uH

1 HRDHH
RRxr‖2HRRH

H
RRxr

‖HH
RRxr‖4

. (18)

It follows that the gradient of the objective of (14) can be easily
computed based on (18). With the easily obtained gradient, we
use the gradient ascent method [30] to solve problem (14).It
is readily known that the most costly step of gradient ascent
method is the gradient evaluation, which requires complexity
of O(N3) where it is assumed thatN = NS = NR = NT =
ND for simplicity. Let Ig denote the number of iterations
required by the gradient ascent method. Then its complexity
is O(IgN

3).
2) Global search method when NT = 2: It is well-known

that gradient ascent method is generally a local search method
for nonconvex problems. We here consider a special case when
the number of transmit antennas at the relayNT = 2, which
allows one-dimensional global search.

Since the matrixΠ , I − HH
RRxrx

H
r HRR

‖HH
RR

xr‖2
has a zero

eigenvalue, we haveRank(Π) = 1 whenNT = 2. It follows
that

λmax(xr) = Tr(HRDΠHH
RD)

= Tr(HH
RDHRD)−

‖HRDHH
RRxr‖

2

‖HH
RRxr‖2

. (19)

Let λ1 = λmax(xr) and definẽλ1 = Tr(HH
RDHRD)−λ1. We

can rewrite (19) as

xH
r HRR(H

H
RDHRD − λ̃1I)H

H
RRxr = 0.

It follows that problem (14) with fixedλmax(xr) = λ1 can be
recast as

v(λ1) ,max
xr

xH
r A1xr

xH
r A2xr

xH
r A3xr = 0.

(20)
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where

A1 , λ1PSHSRH
H
SR, (21)

A2 , σ2
R

(

λ1 +
σ2
D

PR

)

I+ σ2
D

PS

PR

HSRH
H
SR, (22)

A3 , HRR

(

HH
RDHRD − λ̃1I

)

HH
RR. (23)

Problem (20) can be transformed to a quadratically con-
strained quadratic program which can be globally solved via
semidefinte relaxation method [34]. In particular, whenNR=2
we show in Appendix C thatv(λ1) can be explicitly calculated
using matrix decomposition and variable substitution. Hence,
we can apply one-dimensional search to globally solve prob-
lem (14) whenNT = NR = 2. That is, we searchλ1 over
an interval (for whichA3 is not positive definite) and pick
the one with the maximumv(λ1) whilst obtaining an optimal
solution to problem (14).

3) Low complexity suboptimal solutions: Since the relay
power constraint must hold with equality at the optimality,
problem (51) is equivalent to

max
xt,xr

PS‖xH
r HSR‖2‖HRDxt‖2

σ2
R‖xr‖2‖HRDxt‖2 +

σ2

D

PR
(PS‖xH

r HSR‖2 + σ2
R‖xr‖2)

s.t. xH
r HRRxt = 0,

‖xt‖ = 1
(24)

which is further equivalent to

max
xt,xr

PS
‖xH

r HSR‖2

‖xr‖2 ‖HRDxt‖
2

σ2
R‖HRDxt‖2 +

σ2

D

PR

(

PS
‖xH

r HSR‖2

‖xr‖2 + σ2
R

)

s.t. xH
r HRRxt = 0,

‖xt‖ = 1.

(25)

It is readily seen that the objective function of the above
problem is increasing with respect to both the term‖xH

r HSR‖2

‖xr‖2

and‖HRDxt‖
2. Hence, with fixedxr in (25), the optimalxt

can be obtained by solving

s.t. max
xt

‖HRDxt‖
2

xH
r HRRxt = 0

‖xt‖ = 1,

(26)

while with fixed xt in (25), the optimalxr can be obtained
by solving

s.t. max
xr

‖xH
r HSR‖2

‖xr‖2

xH
r HRRxt = 0.

(27)

Problem (26) admits a closed-form solution as shown in (16)
and problem (27) can be similarly handled after restricting
‖xr‖ = 1. Motivated by the above observations, we propose
two low complexity suboptimal solutions as follows. One is
first choosing the leading eigenvector ofHH

RDHRD asxt and
then obtainingxr by solving (27) followed by scalingxr such
the relay power constraint, i.e., computing (17). The otheris
first choosing the leading eigenvector ofHSRH

H
SR asxr and

then computing (17) and (16). The correspondingV can be
calculated using (15).Let us assumeN = NS = NR =
NT = ND for simplicity. Then it can be easily shown that
the complexity of both suboptimal solutions isO(N3), which
is clearly lower than that of the gradient ascent method.

Remark 3.1: By introducing an additional linear receiver
at the destination, the authors of [18] formulated an SINR
maximization problem (i.e., (11) in [18]) for joint source-relay-
destination optimization under the assumption of single stream
transmission, and proposed two suboptimal solutions named
transmit ZF (TZF) and receive ZF (RZF). It can be shown that
these two suboptimal solutions are in essence the same as our
suboptimal solutions, although they have very different forms.
Furthermore, it is readily seen that, the suboptimal solutions
provided in [18] have a slightly higher complexity than ours
since the computation of the square root inverse of a symmetric
positive definite matrix (i.e.,E− 1

2 in [18]) is required in (15)
of [18].

For simplicity, following [18] we also refer to the first and
second low complexity solutions as TZF (corresponding to
(26)) and RZF (corresponding to (27)), respectively. Partic-
ularly, we show in the following proposition that both low
complexity solutions are asymptotically optimal to problem
(14) (or equivalently (13)).

Proposition 3.2: Assume that the entries ofHRD andHSR

are drawn i.i.d from a zero-mean continuous distribution. Then
the following holds true.

1) TZF is asymptotically optimal to problem (14) when
NDNT → ∞.

2) RZF is asymptotically optimal to problem (14) when
NSNR → ∞.

Proof: Please see Appendix D.
Proposition 3.2 indicates that, in the single-stream trans-

mission case, when the FD MIMO relay system is equipped
with a relatively large number of antennas at source, relay or
destination, the proposed low complexity solutions are prefer-
able for system design under the zero-forcing SI condition.
Moreover, if it is additionally assumed thatHRD andHSR

follow Rayleigh fading, and letN = NS = NR = NT = ND,
we then have for very largeN that [16]

HSRH
H
SR

N
≈ I,

HH
RDHRD

N
≈ I.

Using the above approximation andσ
2

Dσ2

R

N
≈ 0 for very large

N , the objective function of problem (25), i.e., the system
SINR, reduces to

PsPRN

PRσ
2
R + PSσ

2
D

. (28)

This implies that, with single-stream transmission and large
antenna array, the spectral efficiency of FD MIMO relay
systems scales linearly with respect to the logarithm of the
number of antennas equipped by the source, relay and desti-
nation. This validates an important advantage of large antenna
array that they can improve the system spectral efficiency or
equivalently save the system transmission power.
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IV. PENALTY-BSUM ALGORITHM FOR GENERAL CASE

In this section, we address problem (9) when the amplifica-
tion matrixQ is not necessarily of rank one. To deal with the
trouble arising from some difficult constraints (includingthe SI
constraint), we resort to a penalty method which penalizes the
violation of difficult constraints by adding a constraint-related
penalty term to the objective of (9). Moreover, we propose
using block successive upper-bound minimization (BSUM) al-
gorithm [25], [26] to address the penalized problem, hence the
name of the proposed algorithm, penalty-BSUM (abbreviated
as P-BSUM).

In the following, we first present P-BSUM algorithm in a
general framework and then show how it is applied to problem
(9).

A. Penalty-BSUM method

Consider the problem

(P ) min
x

f(x)

s.t. h(x) = 0,

x ∈ X .

(29)

where f(x) is a scalar continuously differentiable function
andh(x) ∈ Rp×1 is a vector ofp continuously differentiable
functions; the feasible setX is the Cartesian product ofn
closed convex sets:X , X1 ×X2 × . . .×Xn with Xi ⊆ Rmi

and
∑n

i=1 mi = m and accordingly the optimization variable
x ∈ Rm can be decomposed asx = (x1,x2, . . . ,xn) with
xi ∈ Xi i = 1, 2, . . . , n.

When the equality constraints are very difficult to handle,
it is interesting to tackle problem (29) using penalty method
[24], i.e., solving the penalized problem

(P̺) min
x

f(x) +
̺

2
‖h(x)‖2

s.t. x ∈ X .
(30)

where̺ is a scalar penalty parameter that prescribes a high
cost for the violation of the constraints. In particular, when
̺ → ∞, solving the above problem yields an approximate
solution to problem (29) [24]. However, it is still difficult
to globally solve problem(P̺) when f(x) and h(x) are
nonconvex functions. An interesting question is: can we reach
a stationary point of problem(P ) by solving a sequence of
problem(P̺) to stationary points? This motivates us to design
the P-BSUM algorithm.

The P-BSUM algorithm is summarized in TABLE I, where
BSUM(P̺k

, f̺̃k
,xk) means that, starting fromxk, the BSUM

algorithm [26] is invoked to iteratively solve problemP̺k

with a locally tight lower bound functioñf̺k
of f̺(x). The

P-BSUM algorithm is inspired by the penalty decomposition
(PD) method which was proposed in [27], [28] for general rank
minimization problems, where each penalized subproblem is
solved by a block coordinate descent method. Different from
the PD method, the penalized problem(P̺) is locally solved
using the BSUM method [26] in the P-BSUM algorithm.
The following proposition shows that any limit point of
the sequence generated by the P-BSUM algorithm satisfies

TABLE I
ALGORITHM 1: P-BSUMALGORITHM FOR PROBLEM(33)

0. initialize x
0 ∈ X , ̺0 > 0, and setc > 1, k = 0

1. repeat
2. x

k+1 = BSUM(P̺k , f̺̃k ,x
k)

3. ̺k+1 = c̺k

4. k = k + 1

5. until some termination criterion is met

the first-order optimality condition of problem(P ), hence a
stationary point of problem(P ).

Theorem 4.1: Let {xk} be the sequence generated by Al-
gorithm 2 where the termination condition for the BSUM
algorithm is

∥

∥PX {xk −∇f̺k
(xk)} − xk

∥

∥ ≤ ǫk, ∀k (31)

with ǫk → 0 ask → ∞. Suppose thatx∗ is a limit point of the
sequence{xk} and∇f(x∗) is bounded. In addition, assume
that Robinson’s condition2 [37, Chap. 3] holds for problem
(P ) at x∗, i.e.,

{∇h(x∗)dx : dx ∈ TX (x∗)} = R
p

whereTX (x∗) denotes the tangent cone ofX at x∗. Thenx∗

is a stationary point of problem(P ).
Proof: See Appendix E.

Remark 4.1: The termination condition (31) is used to
establish the convergence of the P-BSUM algorithm. In prac-
tice, however, it is also reasonable to terminate the BSUM
algorithm based on the progress of the objective valuef̺(x

k),

i.e., |f̺(x
k)−f̺(x

k−1)|
|f̺(xk−1)|

≤ ǫk. The advantage of this termina-
tion condition is the ease of computation in contrast toPX

whenX is complicated. In addition, since the penalty value
‖h(x)‖ vanishes when̺ goes to infinity, a practical choice
of the termination condition for the P-BSUM algorithm is
‖h(xk)‖∞ ≤ ǫO. Here,ǫO is some prescribed small constant.

Remark 4.2: In each iteration of Algorithm 1, we increase
the penalty parameter̺k by a factor ofc. Intuitively, a choice
of large c would push ‖h(xk)‖2 to quickly get close to
zero. However, it would also render the penalty problem ill-
conditioned and result in slow convergence of the BSUM
algorithm. Therefore, a choice ofc should be appropriately
made to balance the rate of convergence and the violation of
the constraints. In our numerical examples, the factorc could
be set within the interval(1 3].

B. The P-BSUM for problem (9)

In this subsection, we first derive a reformulation of problem
(9) and then apply the P-BSUM method to the reformulation.

2To precisely describe the first-order optimality condition, some constraint
qualification condition is needed. Robinson’s condition isa type of constraint
qualification condition (which reduces to the classical Mangasarian-Fromovitz
constraint qualification condition whenX = Rm) and the assumption is
a standard one that is made in many of previous works on constrained
optimization, e.g., [27], [28], [37], [38].
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1) Reformulation of problem (9): To efficiently make use
of the BSUM algorithm, we introduce a set of auxiliary
matrix variables{S, S̃, Ṽ, Q̃,R}. Define the variable set
X , {Q,V,S, S̃, Ṽ, Q̃,R}. Then we can rewrite problem
(9) equivalently as

max
X

log det

(

I+HRDSSHHH
RD×

(

σ2
RHRDQQHHH

RD + σ2
DI

)−1
)

s.t. Tr
(

S̃S̃H
)

+Tr
(

Q̃Q̃H
)

≤ PR,

Tr(VVH) ≤ PS ,

QHSRṼ = S̃,

RHQ = 0,

RH = QHRR,

S = S̃,

σRQ = Q̃,

V = Ṽ.

(32)

where the fourth and fifth constraints are equivalent to the
SI constraint in (9); the first, third, sixth, seventh, and eighth
constraints correspond to the relay power constraint in (9). By
penalizing the last six constraints of the above problem, we
get a penalized version of problem (32) as follows

max
X

log det

(

I+HRDSSHHH
RD×

(

σ2
RHRDQQHHH

RD + σ2
DI

)−1
)

− ρ

(

‖σRQ− Q̃‖2 + ‖S− S̃‖2 + ‖V − Ṽ‖2

+ ‖RHQ‖2 + ‖RH −QHRR‖
2 + ‖QHSRṼ − S̃‖2

)

s.t. Tr
(

S̃S̃H
)

+Tr
(

Q̃Q̃H
)

≤ PR

Tr(VVH) ≤ PS

(33)

whereρ is a scalar penalty parameter. It is easily seen that
a large ρ prescribes a high cost for the violation of the
constraints. In particular, whenρ → ∞, a solution to the
above problem is an approximate solution to problem (9). In
the following, we consider how to address problem (33) with
fixed ρ.

2) BSUM algorithm for (33): The BSUM algorithm is
employed to address the nonconvex problem (33). The basic
idea behind the BSUM algorithm for a maximization (resp.,
minimization) problem is to successively maximize a locally
tight lower (resp., upper) bound of the objective, finally
reaching a stationary point of the problem. Hence, the key
to the BSUM algorithm applied to (33) is to find a locally
tight lower bound for the objective of problem (33). For ease

of exposition, we define

R(S,Q) , log det

(

I+HRDSSHHH
RD×

(

σ2
RHRDQQHHH

RD + σ2
DI

)−1
)

, (34)

E(U,S,Q) ,
(

I−UHHRDS
) (

I−UHHRDS
)H

+ σ2
RU

HHRDQQHHH
RDU+ σ2

DUHU. (35)

Then, by applying the popular WMMSE algorithmic frame-
work [35], we can obtain a locally tight lower bound of
R(S,Q) as follows

R(S,Q) = max
W,U

log det(W)− Tr(WE(U,S,Q)) + d

≥ log det(W̄)− Tr(W̄E(Ū,S,Q)) + d, ∀Q,S, Q̄, S̄.

where

Ū =

(

σ2
RHRDQ̄Q̄HHH

RD + σ2
DI

)−1

HRDS̄, (36)

W̄ = (I− ŪHHRDS̄)−1. (37)

Using the above result, we can obtain a locally tight lower
bound for the objective of problem (33), i.e.,

log det(W̄)− Eρ(X ) + d

where

Eρ(X ) , Tr(W̄E(Ū,S,Q))

+ ρ

(

‖σRQ− Q̃‖2 + ‖S− S̃‖2 + ‖V− Ṽ‖2 (38)

+ ‖RHQ‖2 + ‖RH −QHRR‖
2 + ‖QHSRṼ− S̃‖2

)

.

The BSUM algorithm successively maximizes this lower
bound with respect to one block of variables while fixing the
others, equivalently, solve the following problem in a block
coordinate descent fashion

min
X

Eρ(X )

s.t. Tr
(

S̃S̃H
)

+Tr
(

Q̃Q̃H
)

≤ PR,

Tr(VVH) ≤ PS .

(39)

Specifically, in each iteration of the BSUM algorithm, we
perform the following three steps according to the block
structure of the optimization variables:

In Step 1, we solve (39) for(Q̃, S̃), R andV while fixing
(Q,S, Ṽ). The corresponding problem can be decomposed
into the following three independent subproblems.

The first subproblem with respect to(Q̃, S̃) is

min
Q̃,S̃

‖σRQ− Q̃‖2 + ‖S− S̃‖2 + ‖QHSRṼ − S̃‖2

s.t. Tr
(

S̃S̃H
)

+Tr
(

Q̃Q̃H
)

≤ PR.
(40)
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By completing the square, the above problem can be equiva-
lently written as

min
Q̃,S̃

‖Q̃− σRQ‖2 +

∥

∥

∥

∥

S̃−
1

2
(S+QHSRṼ)

∥

∥

∥

∥

2

s.t. Tr
(

S̃S̃H
)

+Tr
(

Q̃Q̃H
)

≤ PR.

(41)

Solving problem (41) is equivalent to computing a projection
of the point

(

σRQ, 1
2 (S+QHSRṼ)

)

onto the setΩ1 ,
{

(Q̃, S̃) | Tr
(

S̃S̃H
)

+Tr
(

Q̃Q̃H
)

≤ PR

}

, which admits a
closed-form solution given by

(Q̃, S̃) = PΩ1

{(

σRQ,
1

2
(S+QHSRṼ)

)}

. (42)

The second subproblem with respect toV is equivalent to
computing a projection of the point̃V onto the setΩ2 ,
{

V | Tr(VVH) ≤ PS

}

, whose solution is given by

V = PΩ2
{Ṽ}. (43)

The third subproblem with respect toR is an unconstrained
quadratic optimization problem which admits a closed-form
solution as follows

R = (I+QQH)−1HH
RRQ

H . (44)

In Step 2, we solve (39) forQ andS given (Q̃, S̃, Ṽ,R).
The corresponding problem can be decomposed into two
subproblems. The first subproblem with respect toQ is

minσ2
RTr(W̄UHHRDQQHHH

RDU) + ρ

(

‖σRQ− Q̃‖2+

+ ‖RHQ‖2 + ‖RH −QHRR‖
2 + ‖QHSRṼ − S̃‖2

)

.

(45)

Checking the first order optimality condition of the above
problem yields

(

σ2
R

ρ
HH

RDŪW̄ŪHHRD + σ2
RI+RRH

)

Q

+Q(HRRH
H
RR +HSRṼṼHHH

SR) (46)

= RHHH
RR + S̃ṼHHH

SR + σRQ̃

which can be recast as a standard linear equation by vectoriz-
ing Q and thus easily solved.

The second subproblem with respect toS is an un-
constrained quadratic optimization problem which admits a
closed-form solution as follows

S =
(

ρI+HH
RDŪW̄ŪHHRD

)−1
(ρS̃+HH

RDŪW̄) (47)

In Step 3, we solve (39) forṼ given(V,Q, S̃). The corre-
sponding problem is an unconstrained quadratic optimization
problem. Checking its first-order optimality condition yields a
closed-form solution as follows

Ṽ = (I+HH
SRQ

HQHSR)
−1(V +HH

SRQ
HS̃). (48)

Given (42-48), we summarize the BSUM algorithm for
problem (33) in TABLE II. Combining TABLE I & II, we can

TABLE II
ALGORITHM 2: BSUM ALGORITHM FOR PROBLEM(33)

0. initialize (Q,S,V) such that the power constraints and setṼ =
V

1. repeat

2. Ū =

(

σ2
RHRDQQHHH

RD + σ2
DI

)

−1

HRDS

3. W̄ = (I − ŪHHRDS)−1

4. (Q̃, S̃) = PΩ1

{(

σRQ, 1

2
(S+QHSRṼ)

)}

5. V = PΩ2
{Ṽ}

6. R = (I +QQH )−1HH
RR

QH

7. updateQ by solving (46) given(Ū,W̄, Q̃, S̃, Ṽ,R)

8. S =
(

ρI+HH
RDŪW̄ŪHHRD

)

−1
(ρS̃+HH

RDŪW̄)

9. Ṽ = (I+HH
SRQHQHSR)−1(V +HH

SRQH S̃)

10. until some termination criterion is met

finally establish the P-BSUM algorithm for problem (9).For
ease of complexity analysis, let us assumeN = NS = NR =
NT = ND > d. Then it is easily seen that, the per-iteration
complexity of the BSUM algorithm in TABLE II is dominated
by Step 7, which isO(N6). Hence, the complexity of the P-
BSUM algorithm isO(I1I2N

6), whereI1 and I2 represent
the maximum numbers of iterations required by Algorithm 1
and Algorithm 2, respectively.

V. NUMERICAL RESULTS

This section presents numerical results to illustrate the
rate performance of the proposed joint source-relay design
methods. We set the noise powerσ2

R = σ2
D = σ2, the

maximum source/relay powerPS = PR = P , and define
SNR , 10 log10

P
σ2 . Unless otherwise specified, we set

P = 10 dB and σ2 = 0 dB, and assume thatNS =
ND = NSD and NT = NR = NTR for simplicity. The
parameters3 c = 2, ǫ0 = ̺0 = 0.001, and ǫO = 1e − 6
are used for the P-BSUM algorithm. Moreover, it is assumed
that the source-relay and relay-destination channels experience
independent Rayleigh flat fading. Furthermore, each element
of the residual SI channelHRR is modeled as a complex
Gaussian distributed random variable with zero mean and
variance−20 dB. Note that all the simulation results are
averaged over1000 independent channel realizations.

In our simulations, we introduce two benchmark schemes
for performance comparison. The first one is obtained by
simply ignoring the zero-forcing SI constraint in (9) and
thus provides a performance upper bound that is useful to
evaluate the proposed algorithms. The second one is the
conventionaltwo-phase half-duplex MIMO relaying scheme,
which is equivalent to settingHRR = 0 in (9) and meanwhile
halving the objective value. Thus, the upper bound value
provided by the first benchmark scheme is twice the rate
value achieved by the half-duplex scheme. To obtain these two

3The parameterc can be also chosen around 2 andǫk =
ǫk−1

c
is used to

generate a decreasing sequence ofǫk. Meanwhile, to avoid some numerical
issue and also escape from the possible slow convergence, weterminate the
BSUM algorithm once the number of iterations exceed1000.
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values, we use the optimization framework provided in [39] to
address the half-duplex system rate maximization problem4.

A. The Rank-1 case

The rank-1 case happens when the FD relay is equipped
with no more than three transmit/receive antennas (see Prop.
2.1) or when only a single stream is transmitted each time. In
this case, the rate maximization problem reduces to the simple
form (13) and allows efficient solutions. Figure 2 illustrates
that the system rates achieved by various methods increase
with the SNR whenNSD = NTR = 2. It can be observed
that TZF and RZF achieve very similar performance. This is
because that the two low complexity algorithms (equivalently
TZF and RZF) are built on problem (24) which has statistically
cyclic symmetry inxt andxr when the system is symmetric5,
i.e., NT = NR, TS = ND, PS = PR, and σ2

D = σ2
R.

Moreover, it is seen that the gradient method can achieve the
maximum system rate as the global search method does and
outperforms the TZF/RZF method. Furthermore, with the aid
of the upper bound values, it is observed that the FD scheme
achieves approximately double rate of the HD scheme. This
implies that the zero-forcing SI condition does not impact
much on the rate of the FD scheme in the rank-1 case.

Figure 3 shows the average system rate versus the number
of relay transceiver antennasNT and NR. Differently from
the symmetry case, TZF and RZF could exhibit very different
performance whenNT andNR are not equal. Specifically, Fig.
3(a) (resp. 3(b)) indicates that RZF (resp. TZF) is preferable
over TZF (resp. RZF) and the gradient method when the num-
ber of relay receive (resp. transmit) antennas is relatively larger
than the number of relay transmit (resp. receive) antennas.
Moreover, it is seen that, RZF/TZF can achieve asymptotic
optimality as the number of relay receive/transmit antennas
increases. This validates the result of Proposition 3.2. In
addition, it is again observed that the FD scheme significantly
outperforms the HD scheme in the rank-1 case.

Figure 3 shows the average system rate performance of
symmetric FD MIMO relay systems withN = NSD = NTR

ranging from2 to 256. With the aid of the upper bound, it is
seen that both TZF and RZF achieve the optimal performance
whenN ≥ 16, implying that the low complexity methods are
preferred for large-scale FD MIMO systems. Particularly, it
can be observed that the average system rate scales indeed
linearly with respect tolog2(N) when N ranges from16
to 256, as predicted by (28). This implies that the spectral
efficiency of FD MIMO relay systems can be improved (or
equivalently the system transmission power can be saved) by
using large-scale antennas.

4Note that the half-duplex system rate maximization problemcan be
globally solved in the rank-1 case, but in general global optimality cannot be
easily achieved for the general case. Hence, technically speaking, the upper
bound values provided in the plots for the general case may not be thetrue
upper bound values. However, they are still useful for performance evaluation.

5Note that we can restrict‖xr‖=1 in (24) without loss of optimality. Then
it is readily known that the roles ofxt andxr are exchangeable in a statistical
sense in the symmetry case.
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Fig. 3. TZF/RZF achieves asymptotic optimality whenNT /NR increases
with fixed NSD = 4.

B. The general case

The general case, i.e., the rank of the amplification matrix
Q is not necessarily one, corresponds to the multiple-stream
transmission case. For comparison, we also demonstrate the
performance of the gradient method where it is assumed that
Rank(Q) = 1 (i.e., the single-stream transmission case).

Figure 5 illustrates the average system rate versus the SNR.
It is observed that the P-BSUM method can achieve better
rate performance than the gradient method in the high SNR
region. This implies that, using multiple-stream transmission,
the spectral efficiency of FD MIMO relay systems can be
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Fig. 4. The system rate scales linearly with respect tolog2(N) whenN =
NSD = NTR is very large.

further improved as compared to single-stream transmission.
Moreover, it is seen that the FD scheme outperforms the HD
scheme as in the rank-1 case. However, the former cannot
achieve the double rate of the latter. This indicates that the
zero-forcing SI condition impacts more on the system rate in
the general case than in the rank-1 case, which is intuitively
right because more zero-forcing constraints are imposed on
the system in the general case. In addition, it is interesting to
note that the FD scheme of single-stream transmission could
outperform the HD scheme of multiple-stream transmission in
the low SNR region. This further validates the advantage of
the FD scheme over the HD scheme.
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Fig. 5. The average system rate versus the SNR whenN = 6.

Figure 6 illustrates that the average system rate increases
with the number of streams/source-relay antennas. Again, it is
observed that the FD MIMO relay system of multiple-stream
transmission could achieve significantly better performance
than that of single-stream transmission, especially whenN

is large. Particularly, one can see that the P-BSUM method
achieves the same rate as the gradient method whenN = 2
(i.e., NR = NT = d = 2). This validates the result of
Proposition 2.1, i.e., we haveRank(Q) = 1 when NR =
NT = d = 2. In addition, it is again seen that the FD scheme
is always better than the HD scheme. Moreover, when the
source, relay and destination is respectively equipped with a
small number of antennas (i.e.,N < 6), the FD scheme of

2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

22

N

A
ve

ra
ge

 s
ys

te
m

 r
at

e 
(b

ps
/H

z)

 

 
Upper bound
Gradient method
P−BSUM
Half−duplex

Fig. 6. The average system rate versusN whenNSD = NTR = d = N .

single-stream transmission could outperform the HD scheme
of multiple-stream transmission.

VI. CONCLUSION

This paper have considered joint source-relay design for
rate maximization in FD MIMO AF relay systems with
consideration of relay processing delay. A sufficient condi-
tion on the rank one amplification matrix is first derived.
Then, for the rank one amplification matrix case, the rate
maximization problem is simplified into an unconstrained
problem, for which a gradient method is proposed. While for
the general case where the relay amplification matrix is not
necessarily of rank one, a simple algorithmic framework P-
BSUM has been proposed to address the difficulty arising
from the self-interference constraint.It is worth mentioning
that the proposed P-BSUM algorithmic framework can be used
to tackle other problems with nonlinear coupling constraints.

APPENDIX A
THE PROOF OF PROPOSITION2.1

First, it is trivial to seeRank(Q) > 0. Next, let us consider
the case whenNT ≤ NR ≤ 3. In this case, we have

Rank(QHRRQ) ≥ Rank(HRRQ) + Rank(Q)−NR

= 2Rank(Q)−NR (49)

where the inequality follows from theSylvester’s rank in-
equality [36] and the equality is due to the fact that
Rank(HRRQ) = Rank(Q) whenHRR has full column rank.
Since QHRRQ = 0 and NR ≤ 3, it follows from (49)
that Rank(Q) = 1. Similarly, we can prove the case when
NR ≤ NT ≤ 3. This completes the proof.

APPENDIX B
THE PROOF OFPROPOSITION3.1

Since Part 2) will be clear through the proof of Part 1), we
mainly provide the proof of Part 1), which is divided into the
following three steps.

In the first step, we show that, givenxr, the optimalV
should maximize‖xH

r HSRV‖2 subject to the source power



11

constraint. We prove this by contradiction. Assume for con-
trary that‖xH

r HSRV‖2 is not maximized with respect toV at
the optimality of problem (13). Hence, for fixedxr, we would
be able to slightly increase‖xH

r HSRV‖2 by choosing some
suitableV. Meanwhile, we can decrease the magnitude ofxt

a little bit so as to keep the terms‖xH
r HSRV‖2‖HRDxt‖

2

and ‖xH
r HSRV‖2‖xt‖2 constant. This implies that some

feasible(V,xt) can be found to increase the objective value,
contradicting the optimality. Therefore,‖xH

r HSRV‖2 is max-
imized with respect toV at the optimality of problem (13).
Apparently, (each column of) the optimalV should align with
the vectorHH

SRxr and satisfies the source power constraint
with equality. As a result, the optimal value of‖xH

r HSRV‖2

is equal toPS‖x
H
r HSR‖

2. It follows that problem (13) can
be equivalently written as

max
xt,xr

PS‖xH
r HSR‖2‖HRDxt‖2

σ2
R‖xr‖2‖HRDxt‖2 + σ2

D

s.t. PS‖x
H
r HSR‖

2‖xt‖
2 + σ2

R‖xr‖
2‖xt‖

2 ≤ PR,

xH
r HRRxt = 0.

(50)

In the second step, we show that the SI constraint can be
canceled by expressing the terms ofxt as functions ofxr.
First, note that, for arbitraryα, (αxt,

1
α
xr) is an optimal

solution to problem (50) if(xt,xr) is optimal. Hence, without
loss of optimality, we can assume‖xt‖ = 1. Hence, we can
rewrite (50) as

max
xt,xr

PS‖xH
r HSR‖2‖HRDxt‖2

σ2
R‖xr‖2‖HRDxt‖2 + σ2

D

s.t. PS‖x
H
r HSR‖

2 + σ2
R‖xr‖

2 ≤ PR,

xH
r HRRxt = 0,

‖xt‖ = 1.

(51)

On the other hand, it is noted thatxt lies in the null space
of HH

RRxr. Hence, in terms of the definition ofΠ, eachxt

such that the SI constraint can be expressed in the form of
xt = Πu, whereu is an arbitrary vector. By substituting it
into (51), we obtain an equivalent problem of (51) as follows

max
u,xr

PS‖xH
r HSR‖2‖HRDΠu‖2

σ2
R‖xr‖2‖HRDΠu‖2 + σ2

D

s.t. PS‖x
H
r HSR‖

2 + σ2
R‖xr‖

2 ≤ PR,

‖Πu‖ = 1.

(52)

Furthermore, it is noted that the objective function is increas-
ing in the term‖HRDΠu‖2. Hence, the term‖HRDΠu‖2 is
maximized with respect tou at the optimality of problem (52).
Let λu

max denote the optimal value of‖HRDΠu‖2. Thus, we
have

λu

max = max
u

‖HRDΠΠu‖2

s.t. ‖Πu‖ = 1.
(53)

where we have used the identityΠ2 = Π. (53) im-
plies that λu

max is the maximum eigenvalue of the matrix
ΠHH

RDHRDΠ, i.e., λu

max = λmax(xr). It follows that prob-

lem (52) reduces to

max
xr

PS‖xH
r HSR‖2λmax(xr)

σ2
R‖xr‖2λmax(xr) + σ2

D

s.t. PS‖x
H
r HSR‖

2 + σ2
R‖xr‖

2 ≤ PR.

(54)

In the third step, we show that (54) can be recast as an
unconstrained problem. It is noted that the objective of (54)
can be increased by scaling upxr. Hence, the inequality
constraint must be active at the optimality of (54). It follows
that problem (54) is equivalent to

max
xr

PS‖xH
r HSR‖2λmax(xr)

σ2
R‖xr‖2λmax(xr)+

σ2

D

PR
(PS‖xH

r HSR‖2+σ2
R‖xr‖2)

s.t. PS‖x
H
r HSR‖

2 + σ2
R‖xr‖

2 = PR.

(55)

Since scalingxr does not impact the objective value of (55),
we can consider solving the unconstrained version of (55),
i.e., (14) and then scaling its optimal solutionxr such that
the power constraintPS‖xH

r HSR‖2 + σ2
R‖xr‖2 = PR. This

completes the proof.

APPENDIX C
A GLOBALLY OPTIMAL SOLUTION TO PROBLEM (20)

Here we consider solving problem (20) withNT = NR = 2.
When A3 is positive semidefinite, it is readily known that
the solution to problem (20) is the unique zero eigenvector.
Thus below we consider the case whenA3 is not positive
semidefinite.

Let UΣUH be the eigen-decomposition ofA3 whereU
consists of the orthonormal eigenvectors andΣ is a diag-
onal matrix of eigenvalues. DefinẽA1 = UHA1U and
Ã2 = UHA2U. With these notations and variable substitution
x̃r = UHxr, problem (20) can be equivalently written as

v(λ1) ,max
x̃r

x̃H
r Ã1x̃r

x̃H
r Ã2x̃r

s.t. x̃H
r Σx̃r = 0.

(56)

Let x1 and x2 be the first and second entries ofx̃r, re-
spectively. Without loss of optimality, we restrictx2 to be
nonnegative. Hence, the equality constraint of problem (56)
reduces to

µ1|x1|
2 − µ2x

2
2 = 0

whereµ1 andµ2 are the absolute values of the first and second
diagonal entries ofΣ, respectively. As a result, we obtainx2 =
√

µ1

µ2

|x1|. Thus, we can writẽxr = |x1|
[

ej∠(x1)
√

µ1

µ2

]T

. Let

amn denote the(m,n)-th entry of Ã1 and bmn denote the
(m,n)-th entry ofÃ2. Then we have

x̃H
r Ã1x̃r = |x1|

2

(

a11 +
µ1

µ2
a22 + 2

√

µ1

µ2
|a12| cos(θ1)

)

,

x̃H
r Ã2x̃r = |x1|

2

(

b11 +
µ1

µ2
b22 + 2

√

µ1

µ2
|b12| cos(θ2)

)

,

whereθ1 = ∠(x1)−∠(a12) andθ2 = ∠(x1)−∠(b12). Since it
holds that∠(Ã2) = ∠(UHHSRHSRU) = ∠(Ã1), we have
∠(a12) = ∠(b12), equivalently,cos(θ1) = cos(θ2). Therefore,
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letting z = cos(θ1) and noting−1 ≤ z ≤ 1, we can recast
problem (56) as

v(λ1) , max
−1≤z≤1

φ(z, λ1). (57)

whereφ(z, λ1) ,
a11+

µ1

µ2
a22+2

√

µ1

µ2
|a12|z

b11+
µ1

µ2
b22+2

√

µ1

µ2
|b12|z

. Since the function

φ(z, λ1) is monotonic with respect toz, the optimalz is either
1 or −1. Hence, we have

v(λ1) = max (φ(1, λ1), φ(−1, λ1)) .

Once we determine the optimal solutionz and thus the
corresponding∠(x1), we can obtain an optimal solutionxr

to problem (20) asxr = U
[

ej∠(x1)
√

µ1

µ2

]T

.

APPENDIX D
THE PROOF OFPROPOSITION3.2

Let us first prove part 1) by inspecting (14) withND, NT >

1 and NDNT → ∞. Our proof is based on an important
argument thatλmax(xr) → ∞ when ND, NT > 1 and
NDNT → ∞, with fixed NS and NR. Thus, we below
first prove this argument. LetUE0U

H denote the eigenvalue
decomposition of matrixΠ, with E0 being a diagonal matrix
of descendingly ordered eigenvalues andU being aunitary
matrix whose columns are the corresponding eigenvectors.
Since the matrixH

H
RRxrx

H
r HRR

‖HH
RRxr‖2

has a unique nonzero eigen-
value equal to1, we can infer that the firstNT−1 diagonal
entries ofE0 are equal to1 and the last one is equal to0. It
follows thatE2

0 = E0. Then we have

λmax(xr) =λ1(HRDΠHH
RD)

=λ1(HRDUE2
0U

HHH
RD)

=λ1(E0U
HHH

RDHRDUE0)

=λ1(C)

(58)

where λi(X) denotes thei-th largest eigenvalue ofX, C

is the (NT−1) by (NT−1) leading principal submatrix of
E0U

HHH
RDHRDUE0, the third equality follows from the

identity λ1(AB) = λ1(BA) [36], and the last equal-
ity is due to the fact that the last row and column of
E0U

HHH
RDHRDUE0 are both zero vectors. Note thatC is

also the(NT−1) by (NT−1) leading principal submatrix of
UHHH

RDHRDU. Then, according to [29, Theorem 4.3.8], we
have

λ2(U
HHH

RDHRDU) ≤ λ1(C) ≤ λ1(U
HHH

RDHRDU).

SinceU is a unitary matrix andλmax(xr)=λ1(C), it follows
that

λ2(H
H
RDHRD) ≤ λmax(xr) ≤ λ1(H

H
RDHRD).

Using the assumption on channel coefficients and follow-
ing the law of large number, it can be shown that both
λ1(H

H
RDHRD) and λ2(H

H
RDHRD) go to infinity when

ND, NT > 1 and NTND→∞. As a result, for anyxr, we

haveλmax(xr) → ∞ whenND, NT > 1 andNTND→∞. In
this case, problem (14) can be approximated as

max
xr

PS‖xH
r HSR‖2

σ2
R‖xr‖2

(59)

implying that the optimalxr is approximately the leading
eigenvector ofHSRH

H
SR and accordingly the optimalxt

is given by (16) or equivalently (26) with fixedxr. This
completes the proof of part 1).

To prove part 2), we first reformulate problem (24) (i.e.,
equivalently (13)) as

max
xt,xr

PS‖xH
r HSR‖2

‖HRDxt‖
2

‖xt‖2

σ2
R‖xr‖2

‖HRDxt‖2

‖xt‖2 +
σ2

D

PR
(PS‖xH

r HSR‖2 + σ2
R‖xr‖2)

s.t. xH
r HRRxt = 0,

‖xt‖ = 1.
(60)

Note that the objective function and the constraint function
xH
r HRRxt of the above problem is invariant to the scale of

vr andvt. Hence, problem (60) is further equivalent to

max
xt,xr

PS‖xH
r HSR‖2

‖HRDxt‖
2

‖xt‖2

σ2
R

‖HRDxt‖2

‖xt‖2 +
σ2

D

PR
(PS‖xH

r HSR‖2 + σ2
R)

s.t. xH
r HRRxt = 0,

‖xr‖ = 1.

(61)

Following similar arguments as that for (51)-(54), we can
recast (61) as

max
xt

PS‖HRDxt‖
2λmax(xt)

σ2
R‖HRDxt‖2+

σ2

D

PR
(PSλmax(xt)+σ2

R)‖xt‖2
(62)

whereλmax(xt),λ1(H
H
SRΠtHSR), Πt,I − HRRxtx

H
t HH

RR

‖HRRxt‖2 .
Note that the above problem has similar form as problem (14).
Thus, by applying similar arguments as above for part 1), we
can prove part 2). This completes the proof.

APPENDIX E
THE PROOF OFTHEOREM 4.1

First, we show that a key inequality (see (64)) holds for
{xk}. Without loss of generality, we assume thatxk converges
to x∗ (otherwise we can restrict to a convergent subsequence
of {xk}). Hence, we havex∗ ∈ X by noting thatX is a
closed convex set. Letsk = PX {xk −∇f̺k

(xk)} − xk, i.e.,
the current optimality gap. Then by a well-known property of
the projection mapPX , we have
(

x−(xk + sk)
)T(

(xk−∇f̺k
(xk))−(xk + sk)

)

≤0, ∀k,x∈X .

It follows that

−
(

x− (xk + sk)
)T (

∇f̺k
(xk) + sk

)

≤ 0, ∀k,x ∈ X .

(63)
Defineµk , ̺kh(xk). Then we have∇f̺k

(xk) = ∇f(xk)+
∇h(xk)Tµk. Plugging this into (63) , we obtain

−
(

x− (xk + sk)
)T (

∇f(xk) +∇h(xk)Tµk + sk
)

≤ 0, ∀k,x ∈ X . (64)
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Next, we prove thatµk is bounded by contradiction and
using Robinson condition. Assume, to the contrary, thatµk is
unbounded. Definēµk ,

µ
k

‖µk‖
. Since{µ̄k} is bounded, there

must exist a convergent subsequence{µ̄kj}. Let µkj → µ̄

asj → ∞. On the other hand, since∇f(x∗) is bounded and
∇f(x) is continuous inx, ∇f(xk) is bounded for sufficiently
largek. By dividing both sides of (64) by‖µk‖ and using the
boundedness of∇f(xk) andsk, we have for sufficiently large
j

−
(

x− (xkj + skj )
)T (

∇h(xkj )T µ̄kj
)

≤ 0, ∀x ∈ X . (65)

Note that∇h(x) is continuous inx. Moreover, by assumption
∥

∥PX {xk −∇f̺k
(xk)} − xk

∥

∥ ≤ ǫk, ∀k, we havesk → 0 due
to ǫk → 0 ask → 0. In addition, it holds thatxkj → x∗ and
µkj → µ̄ as j → ∞. Hence, taking limits on both sides of
(65), we have

− (x− x∗)
T ∇h(x∗)T µ̄ ≤ 0, ∀x ∈ X . (66)

Since Robinson’s condition holds for problem(P ) atx∗, there
exists somex ∈ X andc > 0 such that−µ̄ = c∇h(x∗)(x−
x∗) [37]. This together with (66) implȳµ = 0, contradicting
the identity‖µ̄‖ = 1. Hence,{µk} is bounded.

Now we are ready to end up the proof. Since{µk} is
bounded and̺ k → ∞ ask → ∞, we haveh(xk) = µ

k

̺k
→ 0,

i.e.,h(x∗) = 0. In addition, due to the boundedness of{µk},
there exists a convergent subsequence{µkr}. Let it converge
to µ∗. By restricting to the subsequence{µkr} and taking
limits on both sides of (64), we have

(x− x∗)
T (∇f(x∗) +∇h(x∗)Tµ∗

)

≥ 0, ∀x ∈ X ,

Together with the facth(x∗) = 0 andx∗ ∈ X , we conclude
thatx∗ is a stationary point of problem(P ). This completes
the proof.
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