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Joint Source-Relay Design for Full-Duplex MIMO
AF Relay Systems

Qingjiang Shi, Mingyi Hong, Xigi Gao, Enbin Song, Yunlong iC&/eigiang Xu

Abstract—The performance of full-duplex (FD) relay systems
can be greatly impacted by the self-interference (Sl) at relys.
By exploiting multi-antenna in FD relay systems, the spectl
efficiency of FD relay systems can be enhanced through spaitial
mitigation. This paper studies joint source transmit beambrming
and relay processing to achieve rate maximization for FD MIMO
amplify-and-forward (AF) relay systems with consideration of
relay processing delay. The problem is difficult to solve due
mainly to the Sl constraint induced by the relay processing élay.
In this paper, we first present a sufficient condition under which
the relay amplification matrix has rank one structure. Then, for
the case of rank one amplification matrix, the rate maximizaton
problem is equivalently simplified into an unconstrained poblem
which can be locally solved using gradient ascent method. Xg
we propose a penalty-based algorithmic framework, called P
BSUM, for a class of constrained optimization problems whih
have difficult equality constraints in addition to some conex
constraints. By rewriting the rate maximization problem with a
set of auxiliary variables, we apply the P-BSUM algorithm tothe
rate maximization problem in the general case. Finally, nurerical
results validate the efficiency of the proposed algorithms rad
show that the joint source-relay design approach under the ank
one assumption could be strictly suboptimal as compared tohe
P-BSUM-based joint source-relay design approach.

Index Terms—Full-duplex relaying, MIMO, joint source-relay
design, penalty method, BSUM.

|. INTRODUCTION

To simplify transceiver design and reduce implementatign

cost, traditional relay systems work alf-duplex (HD) mode,

where the source and relay transmit signal in two orthogo
and dedicated channels. This inherently results in a wéste
channel resources and incurs loss of spectrum efficiency.

compared to thélD relaying,full-duplex (FD) relaying, where
the relay node can simultaneously transmit and receiveatsg

double the system spectral efficiency. Hence, with the itecen

advance of self-interference cancellation technologkes,

relaying has received a great deal of attentions [1]-[5].
When the relay operates in the FD mode, tbepback

interference, also known as self-interference (Sl), occurs d
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n
over the same frequency band, has potential to approxiynate

to signal loopback from the relay’s transmission side to its
reception side. Since the Sl at the relay is generally much
stronger than the received signal from distant source the.
large power differential issue), it could exceed the dyrami
range of the analog-to-digital converter at the receptiode s

of the relay[[2], [14], and make it almost impossible to td

the desired signal. Hence, to ensure successful impletienta
of full-duplex relaying, it is critical to sufficiently migjate the

Sl at relays. So far, a variety of Sl mitigation technologies
were proposed, including mainly antenna, analog, digital,
spatial cancellation$[5]. With these cancellation te¢hgies,
encouraging experimental results showed that the SI can be
well mitigated (even can be suppressed to the noise Ievel [3]
[4]) to make the FD communication feasible.

Multi-antenna technology can not only greatly improve the
spectral efficiency but also provide more degrees of freedom
for suppressing the Sl in the spatial domaih [5]. Hence, it is
natural to combine the MIMO and FD relaying technologies to
achieve higher spectral efficiency, leading to FD MIMO relay
ing. Recently, FD MIMO relaying has gained a lot of research
interest, e.g.[[5]=[19]. The work][5] focused on the mitiga
of self-interference (i.e., SI minimization) in spatialrdain by
equipping the relay with a receive filter and a transmit filter
and proposed antenna selection, beam selection, nulespac
rojection, and MMSE filtering schemes for transmit/reeeiv
iliter design. Among the above four schemes, null-space pro-
ASFtion method can eliminate all loop interference in theaid
case with perfect side information. The work [6] studiedcayel

esign to achieve self-interference suppression by makigi

A2 ratio between the power of the useful signal to the self-
interference power at the relay reception and transmission
Sluch a design can suppress interference substantiallylegith
impact on the useful signal. The works [7]} [8] proposed SINR
Mmaximization-based S| mitigation method for wideband-full
duplex regenerative MIMO relays.

While [5]-[8] focused on SI mitigation/suppression meth-
u%ds, the works[[9]£[19] aimed at end-to-end performance
optimization for FD MIMO relay systems. In][9], the authors
treated the self-interference simply as noise and deritied t
channel capacity of FD MIMO relaying systems. Based on
majorization theory, they proposed an optimal relay praapd
scheme to achieve the channel capadfterently from [9],
the works [[10], [11] assumed that the SI can be completely
removed if its power is smaller than a threshold. Under this
assumption, they developed convex optimization based join
source-relay precoding methods for achieving rate maxmiz
tion in FD MIMO relaying systems under different antenna
setups.In [12], transmit and receive filters of the multi-
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antenna full duplex relay systems were designed to achieve in this case under the zero-forcing Sl condition
near-optimal system throughput while removing the self-2) For the case when the relay amplification matrix has
interference. In[[113], a novel joint transmit and receiveefs rank one structure, we show that the rate maximization
design scheme was proposed to eliminate the self-intexdere problem can be equivalently turned into @mconstrained
while optimizing the end-to-end achievable rate for both problem. The derived unconstrained problem is locally
amplify-and-forward and decode-and-forward relay system  solved using gradient ascent method. In addition, we
In [14], the authors derived tight upper and lower bounds on  propose two low complexity suboptimal solutions to the
the end-to-end achievable rate of decode-and-forwardeébas rank one case, both of which are shown to be able to
full-duplex MIMO relay systems, and proposed a transmis- achieveasymptotic optimality under the zero-forcing Sl
sion scheme by maximizing the lower bound using gradient condition.

projection methodThe work [15] proposed several different 3) For the general case (i.e., whe@Q is not of rank
precoder and weight vector designs using the principles of one), to deal with the difficulty arising mainly from the
signal to leakage plus noise ratio, minimum mean square,erro  zero-forcing Sl constraint, we first develop a penalty-
and zero forcing to improve the rate performance of an FD based iterative optimization approach with a rigorous
MIMO AF relay system, and derived a closed-form solution  convergence analysis. Then, we show that the proposed
for the relay signaling covariance matrix. [n_[16], the arth approach can address the rate maximization problem of
showed that the loop interference effect can be signifigantl  general case, with better rate performance than the single-
reduced using massive relay antennas in an FD decode-and- stream transmission case.

forward relay system with multiple single-antenna source- The remainder of this paper is organized as follows. In
destination pairs. In order to achieve the maximal endrib-esection |1, the rate maximization problem is formulated and
link performance with single-stream transmission, the kiWokome property of the SI constraint is analyzed. We address th
[17] investigated the optimization of FD in-band MIMO relay;ate maximization problem in the rank one case and the genera
systems via spatial-domain suppression and power altitaticase in Section 11l and IV, respectively. Section V demaatsts

It is noted that the above works have assumed zel@ some numerical results, while Section VI concludes the pape
processing delay. However, the relay processing delay is Notations: scalars are denoted by lower-case letters, bold-
strictly positive in practice and neglecting it would causgyce |ower-case letters are used for vectors, and bold-face
severe causality issues in the practical implementation l%per-case letters for matrices. For a scalar (resp., Recto
relaying protocols (see [5][_[20] for more discussion on thgnction f(z), Vf(z) denotes its gradient (resp., Jacobian
consequences of neglecting the relay processing delapéie matrix) atz. For a square matriA, A7, A7, Af, Tr(A) and
the relay processing delay should be taken into consid)erathank(A) denote its transpose, conjugate transpose, pseudo-
in FD relay system design. In_[18], the authors considergqerse, trace, and rank, respectivelydenotes an identity
the relay processing delay isingle-stream FD MIMO AF  matrix whose dimension will be clear from the contejt]
relay systems and proposed low-complexity joint precogks the absolute value of a complex scalgrwhile ||z|| and
ing/decoding schemes to optimize the end-to-end perfocmanHX” denote the Euclidean norm and the Frobenius norm of
In addition, the workI[19] studied the end-to-end perforeean 5 complex vectorz and a complex matrixX, respectively.
optimization fortwo-way FD relay systems with processingHw”00 denotes the infinity norm. For a by n complex
delay, where all three nodes work in FD mode and only thgarix X, Z(X) returns am by n matrix of phase angles
relay is equipped with multiple antennas. of entries of X. The distribution of a circularly symmetric

In this paper, as in[18], we consider a three-node FD MIM@ymplex Gaussian (CSCG) random vector variable with mean
AF relay system which consists of raulti-antenna source, p and covariance matrixC is denoted byCA (p, C), and
a multi-antenna FD relay, and a multi-antenna destination.  « _+ stands for * distributed as'C™*" denotes the space of
We extend the work([18] to the more generaliti-siream ,,, . ;, complex matrices an@&™ denotes the n-dimensional
scenario and study joint source-relay design (i.e., jpidéisign o4 vector space. A projection of some paKitonto a set
the source transmit beamformilg and relay amplification 5 genoted byPo{X} 2 minyeq | X — Y|. If Qis a ball of

matrix Q) to optimize the end-to-end achievable rate with thg,§iys, centered at the origin, i.6Q = {X | |X|| < r}, then
consideration of the relay processing delay. As compar#ukto Po{X} is equal tor X -

single-stream case in_[[18], the rate maximization problam i
the multi-stream case is much more involved due mainly to the
difficult zero-forcing Sl constrainf@HzrQ = 0, whereHggr
denotes the residuaelf-interference channel between the As depicted in Figl1l, we consider a three-node full duplex
relay output and the relay input. Thus it requires compyeteMIMO relay network where the source S sends information to
different solutions. the destination D with the aid of a full-duplex relay R. In the
The main contributions of this paper are threefold: network, the source and destination are equipped Wigh> 1
1) Itis proven that, when the residual SI chankkkr has and Np > 1 antennas, while the relay is equipped with
full rank and the FD relay is equipped with no more thatvy > 1 transmit antennas an¥ > 1 receive antennas to
three transmit and receive antennas, the relay amplifiaable full-duplex operation. L& sz € CV=*Ns denote the
tion matrix Q@ must be of rank one, implying thaingle- channel between the source and relay, hgp € CNo* N7
stream transmission can achieve the optimal system ratelenote the channel between the relay and destination. In

1 X[[+max(0,r—[IX][)*

II. SYSTEM MODEL AND PROBLEM FORMULATION



‘< wherenp(n] ~ CN(0,0%1I) denotes the complex AWGN.
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Fig. 1. A full-duplex MIMO relay network.
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Moreover, the power consumption at the relay is given by
addition, letHrr € CNrXN7 represent theesidual self-

interference channel after imperfect SI cancellation. We as-pp(V, Q) = Tr (QHsz VVZHY,Q") + 0% Tr (QQ™)

sume that all the channels are subject to independent block- (8)

fading, i.e., they stay constant during one fading block bahd the power consumption at the sourc&ig§VV ).

change independently at the beginning of the next fadingin this paper, we are interested in joint source-relay desig

block. to optimize the system rate subject to source/relay power
The processing time is required at the relay to implemegénstraints and the Sl constraint. Mathematically, the rat

the FD operation. This results in processing delay at thgaximization problem is formulated as
relay, which we assume is given by rasymbol duration.

Typically, the delay is much shorter than a time slot which max R(V,Q)

consists of a large number of data symbols. Therefore, its vQ

effect on the achievable rate is negligible][19]. Additibya st pr(V, Q) < Pr, 9)
suppose that linear processing is employed at the source and QHRrQ =0,

the relay to enhance the system performance. The source uses Tr(VVH) < Pg.

beamforming matrixvV € CVs*9 to send its signal while the

relay uses the amplification matriQ ¢ CN7*Nr (i.e., AF where Ps and Py are the allowed maximum transmission

relay protocol) to process its received signal. Hence, at thower at thesourceand relay, respectively. Problef] (9) is

time instantn, the received signat[n] € CV=*1 at the relay nonconvex and complicated mainly by the Sl constraint. Even

is if removing the Sl constraint, the problem is still difficatie
r[n] = HsrVs[n| + Hrrxr[n] + ng(n] (1) to the coupling of the optimization variables in the relayveo

constraint. In this paper, we aim to provide systematic mdsh

where s[n] ~ CN(0,1;) is a vector ofd transmit symbols, LN L .
nrln] ~ CN(0,031) denotes the complex additive Whiteto tackle the difficulties arising from both the Sl consttand

Gaussian noise (AWGN), and the telhz rx r[n] represents the coupling of variables.

) : A simple way to deal with the difficult SI constraint is by
the residual Sl from the relay output to relay input. And the . X . :
transmit signatz z[n] at the relay is assumingRank(Q) = 1 [18], [19]. With this assumption,

the Sl constraint can be simplified and problém (9) becomes

xr[n] = Qrin — 7] (2) more tractable. Thus, an interesting questionuisder what
Scircurnstance will the solution Q to problem (@) be of rank
one? The following proposition partly answers this question
xr[n] = QHsrVsn — 7] + QHrrarn — 7] and presents a sufficient condition under whitink(Q) = 1.
+ Qngln — 7]
= QHspVs[n — 7] + QHRrrQr[n — 27] ®) Proposition 2.1: Suppose that the numbers of relay anten-
nas Ny and Ny satisfy Nr, N € {2,3} and the residual

Combining [1) with [2), the relay output can be rewritten a

+ Qrgln =] Sl channelHyy has full ranll. We haveRank(Q) = 1 if
The termQHrrQr[n—27] in @) is a complicated function QHzzQ = 0.
of Q and makes the system design very difficult. To simplify  proof: Please see AppendiX A. m

design,as in [18], [19] we impose a zero-forcing condition  Generally speaking, spatial multiplexing can improve the
on Q to null out the residual SI from the relay output to relagpectral efficiency of various MIMO systems. However, Propo

Input, 1.e., sition 2.1 shows a key result for FD MIMO relay system
QHRrQ =0 (4)  design, that is, when the residual S| char¥iglx has full rank
which is referred to as (zero-forcing) Sl constraint. Pingg @nd the FD relay is equipped with no more than three transmit
@) into (3), we obtain and receive antennasngle-stream transmission can achieve
the optimal system rate under the zero-forcing Sl condtrain
zr[n] = QHsrVs[n — 7] + Qngln — 7). (5)  This further motivates us to consider the rank one case in the

Consequently, the received signal at the destination is  following section.

L [n] - HRDwR[n] T nD [n] (6) in fact, a matrix has full rank with probability one if its ehents are
=Hpgp (QHsrVs[n—7]+Qng[n—7]) +npn] randomly drawn from an absolutely continuous distributi@f, pp. 364].



IIl. RANK-1 STRUCTURED SUBOPTIMAL SOLUTION

lem (I3).

In this section, we assume th@ is structured a€Q = V* = /Pg—287" Hepa, (15)

xx! (which is of rank one) and propose efficient solutions ”HSR |
to problem [9). x; € arg IImli&X w"TIHE ;H R pTTu (16)

We start by simplifying probleni{9) based on the rank one _
structure. WherQ = x,xz’, we have ot — Pr . 17
D s A PR E
HytH H __ H 2 H

QHsprVVTHgzQ" = [z, Hsp V| z:z;", Proof: Please see Appendix B. [ ]

QQ" = ||z, |z Now we consider algorithm design for problefnl(14).

1) Gradient ascent method in general case: Recall that
Amax () is the largest eigenvalue of the matHggDHHgD.
For randomly generated channel matri¢®gp, andHgg, the
nonzero eigenvalues of the matiIiI(RDl'IH are distinctive
with probability one. As a result, the Iargest eigenvalue,, i
Amax (), 1S generally differentiable with respect .. Let
u; be the eigenvector cHzpITH% ) corresponding to the

—1
2 2 HyyH 2
x | oslle |"Hrpxix, HAH + 051 Hgrpx . - .
( rll@r"Hrozi@, Hyp D> b t) largest eigenvalue. Then the gradient\gf, (x,-) with respect
Hu1 HRDH

to x,. is given by
= log <1+ ) $r||2>
[HE g, |

(11)
where the second equality follows from the identitl + HrrHE juiwiHppHYE o2,
AB)"'A = A(I1+BA) ! [36, Sec. 3.2.4]. Similarly, using H . ||
the identityTr(AB) = Tr(BA), pr(V, Q) reduces to |ufHppHE o, | 2H p pHE 2,

[HE g, |*

It follows that the gradient of the objective 6f{14) can bsika
computed based oh (18). With the easily obtained gradiemt, w
use the gradient ascent method|[30] to solve problerh (14).
is readily known that the most costly step of gradient ascent
method is the gradient evaluation, which requires compfexi
of O(N?) where it is assumed thaf = Ng = Ng = Ny =
Np for simplicity. Let I, denote the number of iterations
required by the gradient ascent method. Then its complexity
is O(I,N3).

2) Global search method when Nt = 2: It is well-known
that gradient ascent method is generally a local searchadeth
for nonconvex problems. We here consider a special case when

Although problem[(IBB) has a simpler form th&h (9), it is stilthe number of transmit antennas at the reMy = 2, which
very difficult to solve due mainly to the coupled SI consttairallows one-dimensional global search.
and relay power constraint. Thanks to the special problemSince the matrixII = I — W has a zero

structure, we can overcome these two difficulties and siynplieigenvalue, we hav&ank(IT) = 1 when Ny = 2. It follows

Using the above two relation®(V, Q) reduces to
R(V,Q) = log (1 + |z Hsr V|2 HE (10)

|z HsrV|?|Hrpa|?

ofller|?[Hrpa:|? + oF

SRS

(18)

Pr(V.Q) = |2 Hsr V||| + oz, |* =] (12)

Furthermore,QH,..Q = 0 implies z//H,,.x; = 0. Hence,
together with the monotonicity of thag function, problem
(9 can be equivalently written as follows

A |z HsrV|?[Hrpe: |
Ve, oplle.|?|[Hrpz||? + 0
st || HspV|? 2| + ofllz.|?|2:]|* < Pr,
meRRmt = 0,
Tr(VVH) < Ps.

(13)

it as anunconstrained problem with respect ta,. only, which  that
is stated in the following proposition. -
Proposition 3.1: Define a projection operatafl £ 71— Amax(@r) = Tr(HrpITHE )

HRRme HRR
IHE pa.?
of the matrixHppITHE .

and denote by,,.x(x,) the largest eigenvalue

|HrpHE g, ||?

= Tr(HgDHRD) - HHH T H2
RR*T

(19)

1) Problem[(IB) can be recast as the following unconstraink@t A1 = Amax(:) and define\; = Tr(Hf{,Hrp) — 1. We

problem

PsHmﬁHSRHQ/\maX(mr)

max
@,

2
TRl |[* Amax (1) + 22 (Ps | Hs |+ 0% | 2. 1%)

2) Given an optimal solutior:,. to problem [T#), the triple
x)) given below is an optimal solution to prob-

(V" 7,

can rewrite[(IP) as
T, HRR(HRDHRD — Xll)HgRﬂ?r =0.

It follows that problem[(I#) with fixed\,.x () = A1 can be
recast as

HA
v(A1) 2 max Tr 1%
T

xHAsx,
H
z,  Azzx, = 0.

(20)



where then computing[{17) and_(IL6). The correspondWgcan be
calculated using[(15)Let us assumeV = Ng = Ny =
A= AlPSHSRHQgR’ » (21) N = Np for simplicity. Then it can be easily shown that
a2 ) 2 L5 H the complexity of both suboptimal solutions@ N?), which
Az = 0 (Al * PR) T+op Pr HsrHsp,  (22) is clearly lower than that of the gradient asggnt r21ethod.
A H 3 H Remark 3.1: By introducing an additional linear receiver

As = Hrn (HRDHRD /\II) Hir. @3) at the destination, the authors of [18] formulated an SINR
Problem [2D) can be transformed to a quadratically comaximization problem (i.e., (11) in[18]) for joint sourcelay-
strained quadratic program which can be globally solved vifestination optimization under the assumption of singkessh
semidefinte relaxation methdd [34]. In particular, whép=2 transmission, and proposed two suboptimal solutions named
we show in Appendik that()\;) can be explicitly calculated transmit ZF (TZF) and receive ZF (RZF). It can be shown that
using matrix decomposition and variable substitution. ¢¢en these two suboptimal solutions are in essence the same as our
we can apply one-dimensional search to globally solve profuboptimal solutions, although they have very differentre.
lem (I4) whenNr = Ny = 2. That is, we search\; over Furthermore, it is readily seen that, the suboptimal sohgi
an interval (for whichAj is not positive definite) and pick provided in [18] have a slightly higher complexity than ours
the one with the maximum();) whilst obtaining an optimal since the computation of the square root inverse of a synienetr
solution to problem[{14). positive definite matrix (i.e £~z in [18]) is required in (15)

3) Low complexity suboptimal solutions. Since the relay of [18].

power constraint must hold with equality at the optimality, For simplicity, following [18] we also refer to the first and
problem [51) is equivalent to second low complexity solutions as TZF (corresponding to

Ps||2 H g2 Hrpa:2 (28)) and RZF (corresponding td_(27)), respectively. Rarti

Inax — — . ularly, we show in the following proposition that both low
o' ol [Hepm|” + 52 (Ps|z"Hsrll* + ofll@.[*)  complexity solutions are asymptotically optimal to prable
st. B Hppe, =0, (I4) (or equivalently[{T13)).
| =1 Proposition 3.2: Assume that the entries ®1zp andHgg

(24) are drawn i.i.d from a zero-mean continuous distributidmer™

the following holds true.

which is further equivalent to
q 1) TZF is asymptotically optimal to probleni_{14) when

Pg HwﬁmHiéQIFHHRDthQ NpNp — oo.
max P THoT 2) RZF is asymptotically optimal to problenh_{14) when
" ol Hnne? + 5 (PR £ 0h) g T Nolg o oo
s.t. e Hppe, = 0, Proof: Please see Appendix D. [ |
||| = 1. Proposition[3.2 indicates that, in the single-stream trans

mission case, when the FD MIMO relay system is equipped

It is readily seen that the objective function of the above. .
with a relatively large number of antennas at source, retay o

H 2
problem is increasing with respect to both the téﬁ'ﬂiﬁff” destination, the proposed low complexity solutions ardegure
and|[Hgpz:[|*. Hence, with fixedr,. in @25), the optimale;  aple for system design under the zero-forcing SI condition.
can be obtained by solving Moreover, if it is additionally assumed th#lz, and Hgp
follow Rayleigh fading, and lelV = Ng = Np = Npr = Np,

s.t. max |[Hgpx:|?
Tt we then have for very larg& that [16]

a)ﬁHRth =0 (26)
H H
el =1, Hartlsn g Mantno
while with fixed z; in (25), the optimalz,. can be obtained
by solving Using the above approximation arf\fé]\‘,i ~ 0 for very large
|z Hgp|? N, the objective function of probleni_(P5), i.e., the system
5.t -l
s H;‘C}X ENE @27) SINR, reduces to
P;,PrN

H —
Z, HRRiL‘t =0.

Problem [26) admits a closed-form solution as showr_in (16)

and problem[{27) can be similarly handled after restrictinbhis implies that, with single-stream transmission andéar
|lz.|| = 1. Motivated by the above observations, we proposmtenna array, the spectral efficiency of FD MIMO relay
two low complexity suboptimal solutions as follows. One isystems scales linearly with respect to the logarithm of the
first choosing the leading eigenvectoridf! ,Hrp asz; and number of antennas equipped by the source, relay and desti-
then obtaininge,. by solving [2T) followed by scaling.,. such nation. This validates an important advantage of largermate

the relay power constraint, i.e., computiig](17). The oiker array that they can improve the system spectral efficiency or
first choosing the leading eigenvectorEfszrHY,, asz, and equivalently save the system transmission power.

PRU}Q%+P50%- (28)



TABLE |
IV. PENALTY-BSUM ALGORITHM FOR GENERAL CASE ALGORITHM 1: P-BSUMALGORITHM FOR PROBLEM(Z3)

In this section, we address probleinh (9) when the amplifica-
tion matrix Q is not necessarily of rank one. To deal with the

i . . . . 0. initialize z° € X', g9 > 0, and sett > 1, k=0
trouble arising from some difficult constraints (includitng SI 1. repeat
constraint), we resort to a penalty method which penalizes t 5 @b+l = BSUM (P, , fo,, @)
violation of difficult constraints by adding a constraietated 3. Okl = cok
penalty term to the objective of](9). Moreover, we propose 4 k=Fk+1
using block successive upper-bound minimization (BSUM) al 5. until some termination criterion is met

gorithm [25], [26] to address the penalized problem, hehee t
name of the proposed algorithm, penalty-BSUM (abbreviated
as P-BSUM). _ _ _ the first-order optimality condition of problerf’), hence a
In the following, we first present P-BSUM algorithm in 3stationary point of probleniP)
general framework and then show how it is applied to problem

Theorem 4.1: Let {x*} be the sequence generated by Al-

()8 gorithm 2 where the termination condition for the BSUM
algorithm is

A. Penalty-BSUM method

Consider the problem [Paf{z" = Vo (2)} — 2" < e, Vk (31)

(P) min f(x) with ¢, — 0 ask — oo. Suppose that* is a limit point of the
* sequencgz®} and Vf(z*) is bounded. In addition, assume

s:t. h(z) =0, (29) " that Robinson's conditior] [37, Chap. 3] holds for problem
xreX. (P) atz*, i.e.,
where f(x) is a scalar continuously differentiable function (Vh(z)dg : dg € Tae(z*)} = RP

andh(zx) € RP*! is a vector ofp continuously differentiable

functions; the feasible set’ is the Cartesian product of where7y (z*) denotes the tangent cone &fat z*. Thenz*
closed convex setst £ Xy XXy x ... x X, with X; C R™i is a Stationary point of prob|er€f))_

and>_" ; m; = m and accordingly the optimization variable  pyoof: See Appendix E. -

x € R™ can be decomposed as= (z1,zs, ..., ®,) With Remark 4.1: The termination condition[{31) is used to

T €Aii=12...,n establish the convergence of the P-BSUM algorithm. In prac-

~ When the equality constraints are very difficult to handigice however, it is also reasonable to terminate the BSUM
it is interesting to tackle probleni(R9) using penalty mdthoalgorithm based on the progress of the objective valife")
[24], i.e., solving the penalized problem

i.e., % < ¢,. The advantage of this termina-
tion condition is the ease of computation in contrast?e
(P,) min f(x) + §||h(ac)||2 when X is complicated. In addition, since the penalty value
* (30) ||[h(x)|| vanishes wherp goes to infinity, a practical choice
of the termination condition for the P-BSUM algorithm is
where ¢ is a scalar penalty parameter that prescribes a high(x*)||., < ¢o. Here,co is some prescribed small constant.
cost for the violation of the constraints. In particular,emh  Remark 4.2: In each iteration of Algorithm 1, we increase
o — oo, solving the above problem yields an approximatge penalty parameter, by a factor ofc. Intuitively, a choice
solution to problem[{29)[24]. However, it is still difficult of large ¢ would push ||h(;13k)”2 to quickly get close to
to globally solve problem(P,) when f(x) and h(x) are zero. However, it would also render the penalty problem ill-
nonconvex functions. An interesting question is: can weheaconditioned and result in slow convergence of the BSUM
a stationary point of probleniP) by solving a sequence of algorithm. Therefore, a choice af should be appropriately
problem(F,) to stationary points? This motivates us to desigiade to balance the rate of convergence and the violation of

the P-BSUM algorithm. the constraints. In our numerical examples, the factoould
The P-BSUM algorithm is summarized in TABLE |, wherepe set within the interva(l 3].

BSUM(P,, , fo., ") means that, starting from*, the BSUM
algorithm [26] is invoked to iteratively solve probler,,
with a locally tight lower bound functiorf,, of f,(z). The B. The P-BSUM for problem (9)

P-BSUM algorithm is inspired by the penalty decomposition |, this subsection, we first derive a reformulation of proble

(PD) method which was proposed in [27]. [28] for general ranf) and then apply the P-BSUM method to the reformulation.
minimization problems, where each penalized subproblem is

solved by a block coordinate descent method. Different froszO precisely describe the first-order optimality conditi@eme constraint
the PD method, the penalized probléi®,) is locally solved qualification condition is needed. Robinson’s conditior itype of constraint
using the BSUM method[@6] in the P-BSUM a|gorithm_qua|ification condition (which reduces to the classical @sarian-Fromovitz

. L. - . constraint qualification condition whe®” = R™) and the assumption is
The followmg proposition shows that any I'm'.t point .Of.a standard one that is made in many of previous works on eonet
the sequence generated by the P-BSUM algorithm satisfig@gmization, e.g.,[[27],128][137],138].

st.xe X.



1) Reformulation of problem (@): To efficiently make use of exposition, we define
of the BSUM algorithm, we introduce a set of auxiliary
matrix variables{S,S,V,Q,R}. Define the variable set
X 2 {Q,V,S,S,V,Q,R}. Then we can rewrite problem

R(S, Q) £ logdet (I +HrpSSTHE %
(@ equivalently as

-1
<U%HRDQQHH§D+U%I> ) (34)

maxlog det <I +HrpSS"H E(U,S,Q) £ (I- U"HgpS) (I~ UHHRDS)H
+ 03 UPHRpQQPHE, U + o3 U U. (35)

-1
2 HytH 2
(URHRDQQ Hpgp + UDI) ) Then, by applying the popular WMMSE algorithmic frame-

o o work [35], we can obtain a locally tight lower bound of
s.t. Tr (SS ) +Tr (QQ ) < Pg, R(S, Q) as follows

TI‘(VVH) < Ps, (32)
QHsrV =S8, R(S,Q) = maxlog det(W) — T{(WE(U,S, Q) +d

H = — ’ — — —_ —
Ra=0 > log det(W) — Te(WE(T, S, Q) + 4,¥Q, 8, Q. 5.
R"” = QHgg,
S =8, where

-1

URQ ~: Q’ I_J = (0'12%HRDQQHHED + U%I) HRDS, (36)
V=V

: _ _ W = (I-U"HgpS) . (37)
where the fourth and fifth constraints are equivalent to the

S| constraint in[(P); the first, third, sixth, seventh, angh¢h Using the above result, we can obtain a locally tight lower

constraints correspond to the relay power constraiffflin§9) bound for the objective of problerh (33), i.e.,
penalizing the last six constraints of the above problem, we B

get a penalized version of problef{32) as follows log det(W) — E,(X) +d
where
max log det ( I+ HppSS"Hip, x o
E,(X) £ Tr(WE(U, S,Q))

—1
<0%HRDQQHH§D+U%I> ) +p<|aR<.;z—Q|2+|S—S||2+|V—\7|2 (38)

- p<||URQ QP+ IS=SI*P+V-V|? +IRTQI? + R — QHpz|? + |QHsrV — S||2>.

+ |IR7Q|? + |R” — QHRgr|? + |QHsV — S|? The BSQM algorithm successively n_1aximizes. th?s. lower
bound with respect to one block of variables while fixing the
t S&H 5OH) < others, equivalently, solve the following problem in a toc
st Tr (SS ) I (QQ ) < Pr coordinate descent fashion
Tr(VVH) < Py

(33) m)én E,(X)
where p is a scalar penalty parameter. It is easily seen that s.t. Tr (SSH) +Tr (QQH) < Pg, (39)
a large p prescribes a high cost for the violation of the Tr(VVH) < Pg.

constraints. In particular, whep — oo, a solution to the
above problem is an approximate solution to problEn (9). fpecifically, in each iteration of the BSUM algorithm, we

the following, we consider how to address problém (33) witerform the following three steps according to the block
fixed p. structure of the optimization variables:

2) BSUM algorithm for 33) The BSUM algorithm is  In Step 1 we solve[(3P) for(Q, S), R and V' while fixing
employed to address the nonconvex problgnj (33). The baé®, S, V). The corresponding problem can be decomposed
idea behind the BSUM algorithm for a maximization (respinto the following three independent subproblems.
minimization) problem is to successively maximize a logall The first subproblem with respect (Q, S) is
tight lower (resp., upper) bound of the objective, finally ) - - .
reaching a stationary point of the problem. Hence, the key mlgHoRQ - Q"+ S —S[I*+[|QHsrV — S|
to the BSUM algorithm applied td_(83) is to find a locally ' . .
tight lower bound for the objective of problef{33). For ease s-t- 1Ir (SSH) +Tr (QQH) < Pg.

(40)



. . TABLE II
By completing the square, the above problem can be equiva- ALGORITHM 2: BSUMALGORITHM FOR PROBLEM(Z3)

lently written as

min HQ _ O'RQ||2 + Hg _ %(S + QHSRV) 2 0. i‘r;itialize (Q, S, V) such that the power constraints and Vet
Qs (41) 1 ‘
4n (s57) 1 (0a) <7 :
s.t. Tr (SS™ ) +Tr < IRr. ) oo (J%HRDQQHHgD +‘72DI> Hop8
Solving pr_oblemlﬂlll) is equivalen:c to computing a projelmtio 3 W = (I— OHHppS)~
of the point (O'RQ, 5(S+ QHSRV)) onto the set; = 4 (Q.8) = Pq, {(O'RQ7 1(s+ QHSRV))}
{(Q, S) | Tv (ssH) Ty (QQH) < PR}, which admits a | 5. V=P, {V}
closed-form solution given by 6. R =(I+QQ") 'H{ Q"
] 7. updateQ by solving [48) given(U, W, Q, S, V,R)
(Q,S) =Pq, {(O’RQ, §(S+QHSRV)) } (42) 8. S = (p1+HE UWUHHgp) ' (oS + HE, OW)
9. V= (1+HY,Q"QHsr) 1(V +HE,Q!S)
The second subproblem with respect¥ois equivalent to 10. until some termination criterion is met
computing a projection of the poiriV onto the setQ), £

{V | Tr(VV#) < Ps}, whose solution is given by
V = Po, (V). 43) finally establish the P-BSUM algorithm for problef ($or
2 ease of complexity analysis, let us assuve- Ng = N =
The third subproblem with respect R is an unconstrained N = Np > d. Then it is easily seen that, the per-iteration
quadratic optimization problem which admits a closed-formomplexity of the BSUM algorithm in TABLE Il is dominated
solution as follows by Step 7, which isDO(N%). Hence, the complexity of the P-
e iarH  ~H BSUM algorithm isO(I, I,N°®), whereI; and I, represent
R=(1+QQ") HzzQ". 449 the maximum numbeEs of iter)ations required by Algorithm 1
In Step 2 we solve [(3P) forQ andS given (Q,S,V,R). and Algorithm 2, respectively.
The corresponding problem can be decomposed into two
subproblems. The first subproblem with respec€¥as

V. NUMERICAL RESULTS

min o2 Te(WUPHrpQQPHE, U) + p HURQ_QH2+ This section presents numencallr(_asults to illustrate t_he
rate performance of the proposed joint source-relay design

o methods. We set the noise powef, = o7 = o2, the

+ IR7Q|> + |IR” — QHRgr|? + |QHsrV — S| |. maximum source/relay powePs = Pr = P, and define
SNR £ 10log,, . Unless otherwise specified, we set

(45) P = 10 dB ando? = 0 dB, and assume thals =

Checking the first order optimality condition of the abovéVp = Nsp and Ny = Nr = Nrp for simplicity. The

problem yields parametefsc = 2, ¢¢ = oo = 0.001, andep = le — 6
9 are used for the P-BSUM algorithm. Moreover, it is assumed
(U_RHngJV‘V{jHHRD + o021+ RRH) Q that the source-relay and relay-destination channelsreme
P independent Rayleigh flat fading. Furthermore, each eléemen
+ QHzpHYE, + HsrVVHIHEY,) (46) of the residual SI channdiyy is modeled as a complex
—RYHE, + SVIHY, + 0rQ Gaussian distributed random variable with zero mean and

variance —20 dB. Note that all the simulation results are
which can be recast as a standard linear equation by vectotizeraged ovet000 independent channel realizations.
ing Q and thus easily solved. In our simulations, we introduce two benchmark schemes

The second subproblem with respect ® is an un- for performance comparison. The first one is obtained by
constrained quadratic optimization problem which admits simply ignoring the zero-forcing SI constraint ifil (9) and
closed-form solution as follows thus provides a performance upper bound that is useful to

_ H vrwithH -1, & H 71 evaluate the proposed algorithms. The second one is the
5= (pI +HrpUWU HRD) (S +HppUW) (47) conventionaltwo-phase half-duplex MIMO relaying scheme,

In Step 3 we solve[[3D) foV given(V, Q,S). The corre- which is equivalent to settinfl zz = 0 in (@) and meanwhile
sponding problem is an unconstrained quadratic optintimatihalving the objective value. Thus, the upper bound value
problem. Checking its first-order optimality condition igis a provided by the first benchmark scheme is twice the rate
closed-form solution as follows value achieved by the half-duplex scheme. To obtain these tw

7 H H -1 H ~HG&
V= (I +HgrQ QHsr) (V +HgrQ S)' (48) 3The parameter: can be also chosen around 2 and= 6’”%1 is used to

. . . enerate a decreasing sequence of Meanwhile, to avoid some numerical
Given M)’ we summarize the BSUM algorlthm f0|gssue and also escape from the possible slow convergenctermaate the

problem [[38) in TABLEI. Combining TABLE I & I, we can BSUM algorithm once the number of iterations exce@g0.



values, we use the optimization framework provided in [29] t = —Upper bound

address the half-duplex system rate maximization prafilem 7| © Global search
—%— Half-duplex

Gradient metho
RZF
slL—=—=T12F

A. The Rank-1 case

The rank-1 case happens when the FD relay is equipped
with no more than three transmit/receive antennas (see. Prop
2.1) or when only a single stream is transmitted each time. In
this case, the rate maximization problem reduces to thelsimp
form (I3) and allows efficient solutions. Figuré 2 illusast o
that the system rates achieved by various methods increase
with the SNR whenNsp = Nrgr = 2. It can be observed
that TZF and RZF achieve very similar performance. This [89. 2. The average system rate versus the SNR wiep = Nrp = 2.
because that the two low complexity algorithms (equivdyent
TZF and RZF) are built on problemi{24) which has statisticall > e m ===
cyclic symmetry inz; andx, when the system is symmegj:c 5
i.e., Nr = Ngr, Ts = Np, Ps = Ppg, and 0'% = 0'%.
Moreover, it is seen that the gradient method can achieve the
maximum system rate as the global search method does and
outperforms the TZF/RZF method. Furthermore, with the aid
of the upper bound values, it is observed that the FD scheme
achieves approximately double rate of the HD scheme. This 3 ]
implies that the zero-forcing Sl condition does not impact ?/V/,V/v———‘
much on the rate of the FD scheme in the rank-1 case. 28 1

Figure[3 shows the average system rate versus the number e
of relay transceiver antennd@$r and Ng. Differently from N
the symmetry case, TZF and RZF could exhibit very different
performance wheiN; and Ny are not equal. Specifically, Fig. .
(resp[3(B)) indicates that RZF (resp. TZF) is prefierab N ISP e A
over TZF (resp. RZF) and the gradient method when the num- 5peiT :
ber of relay receive (resp. transmit) antennas is relatieeger
than the number of relay transmit (resp. receive) antennas.
Moreover, it is seen that, RZF/TZF can achieve asymptotic
optimality as the number of relay receive/transmit antsnna
increases. This validates the result of Proposificd 3.2. In
addition, it is again observed that the FD scheme signifigant 3
outperforms the HD scheme in the rank-1 case.

Figure[3 shows the average system rate performance of 3

symmetric FD MIMO rel_ay syste_ms Withh = Ngp = NTR _ e T

ranging from2 to 256. With the aid of the upper bound, it is Ny

seen that both TZF and RZF achieve the optimal performance

whenN > 16, implying that the low complexity methods are

preferred for large-scale FD MIMO systems. Particularty, Fi_gr.1 3. dT]\Z[F/RZFZLachieves asymptotic optimality whéf-/Np increases

can be observed that the average system rate scales in&\éteé'xe sp==

linearly with respect tolog,(N) when N ranges from16

to 256, as predicted by[(28). This implies tha’F the spectrd The general case

efficiency of FD MIMO relay systems can be improved (or ) o )

equivalently the system transmission power can be saved) by "€ general case, i.e., the rank of the amplification matrix

using large-scale antennas. Q’is not necessarily one, corresponds to the multiple-stream
transmission case. For comparison, we also demonstrate the
performance of the gradient method where it is assumed that

“Note that the half-duplex system rate maximization probleam be _ ; ; _ icai
globally solved in the rank-1 case, but in general globainoglity cannot be Rank(Q) =1 (i.e., the single-stream transmission case).

easily achieved for the general case. Hence, technicabylképg, the upper Figure[§ illustrates the average system rate versus the SNR.
bound values provided in the plots for the general case maypadhetrue It is observed that the P-BSUM method can achieve better

upper bound values. However, they are still useful for perénce evaluation. rate performance than the gradient method in the high SNR
5Note that we can restridtz,-||=1 in 24) without loss of optimality. Then

it is readily known that the roles @f; andx,. are exchangeable in a statistical region. This |mpll_es that, using mUIt'ple'Stream transnas,
sense in the symmetry case. the spectral efficiency of FD MIMO relay systems can be

Average system rate (bps/Hz)

aiD

0 5 10 15 2
SNR (dB)

4.5 - - - -
— — — Upper bound
4 —%— Half-duplex
—=©— Gradient method|
RZF
—— TZF

3.5

Average system rate (bps/Hz)

(a) The average system rate §g, with N = 2.

4.
3 — — — Upper bound

—%— Half-duplex

—©— Gradient method
RZF

—*— TZF

4

3.5

Average system rate (bps/Hz)

(b) The average system rate \i§g, with Ny = 2.
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— — — Upper bound — — - Upper bound -

12 RZF 1 20f| —=— Gradient metho e
1 ——T12F 18 —6— P-BSUM > <
—— Half-duplex -
16 »7

12
10

Average system rate (bps/Hz)

=

Average system rate (bps/Hz)

D

2 3 4 5 6 7 8 9 1C
Iogz(N) N
Fig. 4. The system rate scales linearly with respedbtn,(N) when N =  Fig. 6. The average system rate versisvhen Ngp = Nygp =d = N.

Nsp = Nrg is very large.

single-stream transmission could outperform the HD scheme
further improved as compared to single-stream transnmissi@f multiple-stream transmission.

Moreover, it is seen that the FD scheme outperforms the HD
scheme as in the rank-1 case. However, the former cannot
achieve the double rate of the latter. This indicates that th i o )
zero-forcing Sl condition impacts more on the system rate in This paper h_ave _conS|dered joint source-relay deS|gr_1 for
the general case than in the rank-1 case, which is intujtivéPt€ maximization in FD MIMO AF relay systems with.
right because more zero-forcing constraints are imposed gf'sideration of relay processing delay. A sufficient cendi
the system in the general case. In addition, it is intergsiin 0N 0N the rank one ampl|f|<_:§1t|or.1 matrix is first derived.
note that the FD scheme of single-stream transmission codligen: for the rank one amplification matrix case, the rate
outperform the HD scheme of multiple-stream transmission faximization p_roblem IS_SImpIIerd into an unconstrgmed
the low SNR region. This further validates the advantage Bfoblem, for which a gradient method is proposed. While for

VI. CONCLUSION

the FD scheme over the HD scheme. the general case where the relay amplification matrix is not
necessarily of rank one, a simple algorithmic framework P-
30— e — BSUM has bgen proposed to addre_ss the difficul_ty grising
—6— P-BSUM . from the self-interference constraint.is worth mentioning
g ® iﬁﬁisg;gftho e 1 that the proposed P-BSUM algorithmic framework can be used
:320 - ’ | to tackle other problems with nonlinear coupling constiin
g -
é 15 »7 g
2 . APPENDIX A
§ 10 THE PROOF OF PROPOSITIOR.1
< First, it is trivial to seeRank(Q) > 0. Next, let us consider
the case whetVy < Ng < 3. In this case, we have
0

0 5 10 15 2 Rank(QHzzQ) > Rank(HzzQ) + Rank(Q) — Ng

SNR (dB)
= 2Rank(Q) — Ng (49)
Fig. 5. The average system rate versus the SNR whien 6. . . .
where the inequality follows from th&ylvester’s rank in-

uality [36] and the equality is due to the fact that

Figure[® illustrates that the average system rate increa asnk(HRRQ) — Rank(Q) whenH z has full column rank.

with the number of streams/source-relay antennas. Adgams, i _ .

observed that the FD MIMO relay system of muItipIe—strear?P:gf ?{glil(l(ng_l. %ir?w?lgrjlszi C3E;nltp]:’?)l\|/zV\lti ef rg;;e(%% en
transmission could achieve significantly better perforoeaanN < N < 3. This completés the proof

than that of single-stream transmission, especially when =21 =" '
is large. Particularly, one can see that the P-BSUM method

achieves the same rate as the gradient method When 2 APPENDIX B
(i.e., Np. = Npr = d = 2). This validates the result of THE PROOF OFPROPOSITIONZ.T
Proposition 2.1, i.e., we havBank(Q) = 1 when Ny = Since Part 2) will be clear through the proof of Part 1), we

N7 = d = 2. In addition, it is again seen that the FD schemmainly provide the proof of Part 1), which is divided into the
is always better than the HD scheme. Moreover, when tfalowing three steps.

source, relay and destination is respectively equippet wit In the first step, we show that, given,., the optimalV
small number of antennas (i.eN < 6), the FD scheme of should maximize|z’HszV||? subject to the source power
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constraint. We prove this by contradiction. Assume for cotem (52) reduces to
trary that||z7Hgz V||? is not maximized with respect 7 at
y [z, Hsr V| pect Ps||zBHg /|2 Amax (1)

the optimality of problem[{13). Hence, for fixes)., we would max —; 5 5

be able to slightly increasgz?Hsr V|2 by choosing some o UR”:ZTH /\““;X(mrz + D (54)
suitableV. Meanwhile, we can decrease the magnitude:of s.t. Psll@, Hsr|” + okl < Pr.

a little bit so as to keep the termiac/ Hsz V|*|[Hrp: || In the third step, we show thaf {54) can be recast as an

and |lz/HsrV|?||z|* constant. This implies that someynconstrained problem. It is noted that the objective[0) (54
feasible(V, x;) can be found to increase the objective valugan be increased by scaling up.. Hence, the inequality
contradicting the optimality. Thereforgz"Hsr V/||* is max-  constraint must be active at the optimality Bfi(54). It fol®
imized with respect tov' at the optimality of problem[(13). that problem[(54) is equivalent to

Apparently, (each column of) the optinsll should align with o )

the vectorH%,z, and satisfies the source power constraint 5« Ps||@, Hsr[|* Amax(2r)

with equality. As a result, the optimal value (2 HgzV||? T 0'}2%H:BTH2/\max(:BT)+%(P5||.’1}£IHSR||2+O'}2%H:BT||2)
i H 2 )
is equal to Pg ||z’ HSRH . It follows that problem[(I3) can Ps|z"Hsg|? + 02|z, |? = Pg.
be equivalently written as (55)
Ps||lzEHsg|?|Hrpx:|)? Since scalinge, does not impact the objective value bf{(55),
2z, 0% ||@, |2 Hrpe:||2 + 02, we can consider solving the unconstrained version[af (55),

50) ing i i '
st. PsllafHggl 2z + o]z 2]® < Pr. (50) i.e., (I3) and theq scallng its 0p2t|mal250Iut|2mz such that
the power constrainPs ||z Hgg|? + o%|z,||*> = Pg. This

H —
z,  Hrpx: = 0. completes the proof.

In the second step, we show that the Sl constraint can be
canceled by expressing the termsaf as functions ofx,.. APPENDIXC
First, note that, for arbitraryy, (ax, %:cr) is an optimal A GLOBALLY OPTIMAL SOLUTION TO PROBLEM (20)
solution to problem({80) ifx,, x, ) is optimal. Hence, without ~ Here we consider solving problem{20) witr = N = 2.
loss of optimality, we can assunjez,|| = 1. Hence, we can When A; is positive semidefinite, it is readily known that

rewrite [50) as the solution to problem(20) is the unique zero eigenvector.
Thus below we consider the case whan is not positive
Ps|lxfHgsg|?|Hrpa:|? semidefinite.
zi.ar 0|22 Hrp||? + 03 Let UXU" be the eigen-decomposition df; where U
s.t. Ps|zHHgg|? + 02|z |? < Pr, (51) consists qf the o_rthonormal elge_nv~ectors aﬁ}gﬂs a diag-
Hy _0 qnal matrix of eigenvalues. Defind; = U“”A;U and
Ly HRRT: = U, A, = UH A,U. With these notations and variable substitution
||| = 1. &, = Uz, problem [2D) can be equivalently written as
On the other hand, it is noted that lies in the null space a z, A,
H . e 'U()\l) =max ——=———
of Hzrx,. Hence, in terms of the definition dil, eachx; . zHALZ, (56)
such that the Sl constraint can be expressed in the form of st #1%%. —0
4. &) »=0.

x; = IMu, wherew is an arbitrary vector. By substituting it

into (5), we obtain an equivalent problem Bfi(51) as follows€t #1 and z; be the first and second entries af., re-
spectively. Without loss of optimality, we restriat; to be

Ps||lzfHsr|?|Hrpul? nonnegative. Hence, the equality constraint of problen) (56
w, o, P[HrpIul? + 0% reduces to
st. Psl|aHgl? + o3z |2 < P, O paf2a? = powd =0
[Tu| = 1. wherey; andyu, are the absolute values of the first and second

diagonal entries ok, respectively. As a result, we obtain =
Furthermore, it is noted that the objective function is @as- I s % T
o ’ . M1 |. Thus, we can writes, = [J (z1) ,/ﬂ} . Let
ing in the term||HzpITu||%. Hence, the termHzpIlul|? is pz 1] " |x~1| ¢ H2
maximized with respect ta at the optimality of probleni(82). @mn» denote the(m, n)-th entry of A; andb,,,, denote the

Let A». denote the optimal value dfHl zpITu|/2. Thus, we (1, n)-th entry of A,. Then we have
have HX = 2 M1 M1
x, Az, = |$1| a11 + —agg + 2 —|a12| COS(el) ,
A% = max | Hg p I u|? 53) H2 H2
u
st ||l = 1. & Agi, = |21 ]? (bll + %bn +24/ %|b12| COS(9Q)> )

where we have used the identiffi?> = TII. (B3) im- wheref; = /(x1)—Z(a12) andfy = Z(x1)— Z(b12). Since it

plies that \,_ is the maximum eigenvalue of the matrixholds that/(Ay) = Z(UHgrHsrU) = Z(A,), we have
IMHY HepIl, i.e., A%, = Amax(x,). It follows that prob-  Z(a12) = Z(b12), equivalently,cos(f;) = cos(6s). Therefore,

max
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letting z = cos(61) and noting—1 < z < 1, we can recast have,.x(x,) — oo whenNp, Ny > 1 and Ny Np—oc. In

problem [56) as this case, probleni_{14) can be approximated as
H 2
v(A1) & max ¢z, \1). 57 Ps|lz; Hsg|
e (57) = A (59)
antilass+2,/tla|z . implying that the optimale, is approximately the leading
where¢(z, A1) = +g;zm+2\/g|bm|z' Since the function eigenvector ofHsgHY, and accordingly the optimai;
B(z, A1) is monotonic with respect to, the optimalz is either is given by [16) or equivalently[ (26) with fixed:,. This
1 or —1. Hence, we have completes the proof of part 1).
To prove part 2), we first reformulate probleml(24) (i.e.,
v(A1) = max (¢(1, M), d(—1, A1) . equivalently [IB)) as
Once we determine the optimal solutianand thus the PSHccﬁHSRHQ%
corresponding/(z1), we can obtain an optimal solutian, — aXx Hppo: |2

2
2@ 62 |z, 2 ] + 22 (Ps||zHHgg|2 + o3|z, 2)

) T
to problem[(2D) ase, = U [e-?é(wl) /%} [ENE

s.t. HRth =0,

]| = 1.

60
APPENDIXD (60)
THE PROOF OFPROPOSITIONZ.Z Note that the objective function and the constraint functio

! ) ) . xPHprx, of the above problem is invariant to the scale of
Let us first prove part 1) by inspecting {14) witMi, N7 > " and.,. Hence, probleni{80) is further equivalent to
1 and Np Ny — oo. Our proof is based on an important

argument that\y..(x,) — oo when Np,Nr > 1 and PS”-'B?HSR”Q%

NpNr — oo, with fixed Ng and Nr. Thus, we below X Hrowil? . o5 " > 2

first prove this argument. L&TE, U denote the eigenvalue Y 0R e t P, (PsllafHsr|? + o) (61)
decomposition of matriXI, with Ey being a diagonal matrix s.t. meRR:nt =0,

of descendingly ordered eigenvalues andJ being aunitary .| = 1.

matrix whose columns are the corresponding e|genvectors

Since the matanRR‘"’“if’”‘IT;“?R has a unique nonzero eigen-

Following similar arguments as that for (51)-[54), we can

recast[(6ll) as
value equal tol, we can infer that the firstvy—1 diagonal )
entries ofE, are equal tol and the last one is equal @ It max PSHHRDwt” Amax (2+) 62)
follows thatE2 = Eq. Then we have 0% |Hrpx |2+ 32 (PS)\mdx(:pt)JraR)Hth?
Amas(r) =M1 (HepTTH ) where Ao (@) 20 (HE,IT, Hgp), T, AT - Paarer B
=\ (HrpUEZUPHE ) Note that the above problem has similar form as probIEn (14).
=\ (EqUPHE H;pUE) (58) Thus, by applying similar arguments as above for part 1), we
M (C) can prove part 2). This completes the proof.
A1
where )\;(X) denotes thei-th largest eigenvalue oKX, C APPENDIXE
is the (Ny—1) by (Ny—1) leading principal submatrix of THE PROOF OFTHEOREMEA.T
E.UPHE HprpUE,, the third equality follows from the First, we show that a key inequality (s€el(64)) holds for
identity \;(AB) = X (BA) [36], and the last equal- {x*}. Without loss of generality, we assume thétconverges

ity is due to the fact that the last row and column ofo =* (otherwise we can restrict to a convergent subsequence
E\U”HE HrpUE, are both zero vectors. Note th@tis of {z*}). Hence, we haver* € X by noting thatX is a

also the(Nr—1) by (Nr—1) leading principal submatrix of closed convex set. Let* = Py{z* — V£, (z*)} — zF, i.e.,
UHHE HprpU. Then, according td [29, Theorem 4.3.8], wehe current optimality gap. Then by a well-known property of
have the projection maP~, we have

Ao (UMHELHRpU) < A1 (C) < M (UMHELHRpU).  (2—(2" +59) (@ =V, ()~ (@* + s*)) <0, vk, ze.

SinceU is a unitary matrix anchyax(, )=A; (C), it follows It follows that
that — (z — (& +5%)" (Vfy(ah) + %) <0,k € X.

H H (63)
A2(HppHrp) < Amax(®r) < A(HppHpp). Definep* £ orh(xy). Then we havéy f,, (z¥) = Vf(x*)+
Using the assumption on channel coefficients and followZf(z")" ¥, Plugging this into[(88) , we obtain
ing the law of large number, it can be shown that both .  p\7T k T, k| ok
MHE, Hgp) and \(HE,Hgp) go to infinity when (@ — (@ +5")" (VF(@") + VA" p" +s7)
Np,Np > 1 and Ny Np—oo. As a result, for anye,, we <0,Vk,z € X. (64)
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Next, we prove thaj”* is bounded by contradiction and[10] J. Zhang, O. Taghizadeh, and M. Haardt, “Joint source eelay

using Robinson condition. Assume, to the contrary, jifais

unbounded. Defin@g* £ HZ—:H Since{p"*} is bounded, there [11]

must exist a convergent subsequedges }. Let pu* —

as;j — oo. On the other hand, sinc€ f(z*) is bounded and 5
V f(z) is continuous inz, V f(x*) is bounded for sufficiently
largek. By dividing both sides of(84) byjx*|| and using the
boundedness o¥ f(x*) ands*, we have for sufficiently large

J
—(z— (= + skj))T (Vh(z*)"@h) <0,vx € x. (65)

precoding design for one-way full-duplex MIMO relaying ®ms,” in
Proc. 10th Int. Symp. Wireless Commun. Syst., pp.1-5, 2013.

T. Omid, J. Zhang, and M. Haardt. “Transmit beamformiaigled
amplify-and-forward MIMO full-duplex relaying with liméd dynamic
range.”Sgnal Processing, no. 127, pp. 266-281, 2016.

D. Choi and D. Park, “Effective self-interference caltation in full
duplex relay systemsFElectron. Lett., vol. 48, no. 2, pp. 129-130, Jan.
2012.

[13] B. Chun and H. Park, “A spatial-domain joint-nulling thed of self
interference in full-duplex relays/EEE Commun. Lett., vol. 16, no. 4,
pp. 436-438, Apr. 2012.

[14] B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniterulifluplex
MIMO relaying: achievable rates under limited dynamic mh¢EEE J.
Sdl. Areas Commun., vol. 30, no. 8, pp. 1541-1553, Sep. 2012.

Note thatVh(x) is continuous inc. Moreover, by assumption [15] C. Y. A. Shang, P. J. Smith, G. K. Woodward, and H. A. Sieera,

|Px{xh — V fo, (%)} — ¥ | < e, Yk, we haves® — 0 due
to €, — 0 ask — 0. In addition, it holds thate® — z* and

pki — @ asj — oo. Hence, taking limits on both sides ofl1€l

(€63), we have

—(x—a") Vh(z*) p<0,Vo e X. (66)

Since Robinson’s condition holds for probld®) atz*, there
exists somer € & andc¢ > 0 such that—g = cVh(z*)(x —
x*) [37]. This together with[{86) implyz = 0, contradicting
the identity|| | = 1. Hence,{u*} is bounded.

Now we are ready to end up the proof. Sin¢p*} is
bounded ang;, — oo ask — oo, we haveh(z*) = ‘;—: -0,
i.e., h(x*) = 0. In addition, due to the boundedness{pf*},
there exists a convergent subsequefyeé }. Let it converge
to p*. By restricting to the subsequendg’~} and taking
limits on both sides of (84), we have

(x —x*)" (Vf(x*) + Vh(z*)"p*) > 0,Ve € X,

Together with the fach(z*) = 0 andz* € X, we conclude

“Linear transceivers for full duplex MIMO relays,” ifProc. Australian
Communications Theory Workshop (AusCTW 2014), Sydney, Australia,
Feb. 2014, pp. 17-22.

H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larss®/ulti-
pair full-duplex relaying with massive arrays and lineanqassing,1EEE
J. Selected Areas Commun., vol. 32, pp. 1721-1737, Sept. 2014.

[17] U. Ugurlu, T. Riihonen, and R. Wichman, “Optimized iasm full-
duplex MIMO relay under single-stream transmissiditEE Trans. \Veh.
Technal., vol. 65, no. 1, pp. 155-168, Jan. 2016.

[18] H. A. Suraweera, |. Krikidis, G. Zheng, C. Yuen, and PStith, “Low
complexity end-to-end performance optimization in MIMQlHduplex
relay systems,1EEE Trans. Wireless Commun., vol.13, no.2, pp. 913-
927, Feb. 2014.

[19] G. Zheng, “Joint beamforming optimization and powentcol for full-
duplex MIMO two-Way relay channel/EEE Trans. Sgnal Process., vol.
63, no. 3, Feb. 2015.

[20] T. Riihonen, S. Werner, and R. Wichman, “Spatial loopeiference

suppression in full-duplexMIMO relays,” ifProc. 43rd Ann. Asilomar

Conf. Sgnals, Syst. Comput., Nov. 2009.

F. R. P. CavalcantiResource Allocation and MIMO for 4G and Beyond,
Springer, 2014.

[22] Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, and S. Zhang, “Selefi-
nite relaxation of quadratic optimization problem&ZEE Trans. Sgnal
Process. Mag., vol. 27, no. 3, pp. 20-34, Mar. 2010.

[23] Y. Huang and D. P. Palomar, “Rank-constrained separabmidefinite
programming with applications to optimal beamformin¢gZEE Trans.
Sgnal Process., vol. 58, no. 2, pp. 664-678, Feb. 2010.

[21]

thatz* is a stationary point of problertP). This completes [24] D. BertsekasNonlinear Programming, 2nd ed. Belmont, MA: Athena

the proof.
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