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ABSTRACT: A methodology is developed for the quantitative identification of the
quasi-atomic orbitals that are embedded in a strongly correlated molecular wave
function. The wave function is presumed to be generated from configurations in an
internal orbital space whose dimension is equal to (or slightly larger) than that of the
molecular minimal basis set. The quasi-atomic orbitals are found to have large overlaps
with corresponding orbitals on the free atoms. They separate into bonding and
nonbonding orbitals. From the bonding quasi-atomic orbitals, localized bonding and
antibonding molecular orbitals are formed. The resolution of molecular density matrices in terms of these orbitals furnishes a
basis for analyzing the interatomic bonding patterns in molecules and the changes in these bonding patterns along reaction paths.
A new bond strength measure, the kinetic bond order, is introduced.

1. INTRODUCTION
The time-honored rationalizations of quantum chemical results
in terms of interpretations drawn from a pool of intuitive
qualitative notions are valuable and have the virtue of
simplicity. But they also have limitations, and it has been
recognized for some time that a more rigorous identification of
the physical synergisms embedded in rigorous ab initio wave
functions would be valuable. The development of rigorous
methods that can achieve this goalas distinct from methods
for the computation of measurable quantitiesis a fundamen-
tal part of chemical physics because it is relevant for a fruitful
contact between rigorous theory and empirical chemical
intuition.
The rigorous extraction of interpretative concepts from ab

initio many-electron wave functions is sufficiently challenging
that some computational quantum chemists regard it as
unattainable, in particular as regards the concept of an atom
in a molecule. This presumption shows that, although the goal
seems simple, some mathematical complexity is to be expected
of a formalism that generates an analysis for unraveling the
various physical interactions that are inherent in molecular
electronic wave functions.
In the present approach, the first step consists of identifying,

for a given molecular wave function, orbitals that have the
character of chemically deformed atomic orbitals and are also
capable of generating conf igurations f rom which the molecular
wave function can be reconstituted. A comprehensive general
method of identifying such quasi-atomic orbitals (QUAOs) for
Hartree−Fock (HF) wave functions was developed and
elaborated in detail in the first paper1 of the present series,
which will be referred to as the preceding paper or as paper I.
That paper also contained a review of prior work on related
problems. Other closely related work is discussed below in
Section 2.4.
In the present study, the approach is generalized from HF

wave functions to strongly correlated wave functions. In the
second section, the relation to the method of the preceding

paper is discussed. In the third section, certain revisions of and
additions to the method of the preceding paper are introduced.
In the fourth section, the theory is generalized to several types
of multiconfiguration self-consistent field (MCSCF) wave
functions, in particular, full valence space MCSCF wave
functions, reduced-valence-space MCSCF wave functions, and
multiple active space MCSCF wave functions, which are
particularly, although not only, relevant for reactions.
The qualitative and quantitative bonding information that

can be deduced by this analysis is exemplified in the subsequent
papers, namely, by an elucidation of the bonding structure of
the urea molecule2 and by exhibiting the changes in bonding
pattern that occur along the reaction path of the dissociation of
dioxetane into formaldehyde.3

2. RELATION TO THE ANALYSIS OF HARTREE−FOCK
WAVE FUNCTIONS OF THE PRECEDING PAPER

2.1. Internal Orbital Space and Strong Correlation.
Electronic structure descriptions that account for electron
correlation are based on wave functions that include correlating
configurations in addition to the HF self-consistent-field (SCF)
approximation. It is generally recognized and elaborated in the
preceding paper1 that correlated wave functions typically
consist of a strongly correlated part and a weakly correlating
part (also distinguished as nondynamic and dynamic
correlations.) The strongly correlated part is generated from a
set of internal orbitals. The weakly correlating part involves, in
addition, excitations into external orbitals.
The internal orbital space, which generates the strong

correlations, must be chosen judiciously. In the first three
periods of the periodic table, notably for most organic
molecules, the internal space is typically spanned by orbitals
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in the full valence space. This statement implies that full orbital
localization in the internal orbital space yields some quasi-
atomic orbital basis, that is to say, orbitals having the character
of deformed minimal basis set (MBS) orbitals of the free
atoms.4−11 In this case, the dimension of the internal space is
thus typically equal to the total number of MBS orbitals. There
are molecules (e.g., BF) for which the internal space contains
some additional orbitals outside the minimal basis model, for
instance, a correlating orbital for certain lone pair orbitals. Such
internal spaces will be considered as extended minimal basis set
(MBS+) spaces.
A reason that the orbitals of the internal space contribute

much more strongly to molecular wave function than the
external orbitals is that the interactions between the quasi-
atomic minimal basis orbitals are dominated by the one-
electron kinetic energy lowerings that create bonds between
atoms, and only to a lesser degree account for interelectronic
correlations. The major goal of the present analysis is to
generate orbitals in the internal space that are useful for
identifying both the bonding interactions and the strong
correlation interactions.
2.2. Strongly and Weakly Occupied Internal Orbitals.

The number of occupied HF orbitals is in general less than the
dimension of the internal space, i.e., the total number of MBS
orbitals. Nonetheless, it is possible to extract from the HF
unoccupied virtual orbital space a set of orbitals, viz., the valence
virtual orbitals (VVOs), that, together with the occupied HF
orbitals, span an orbital space that is a very good approximation to
the internal space (the “HF internal space”). This extraction can
be accomplished by exploiting the physical fact that the internal
space can be spanned by an orbital basis that has quasi-atomic
character. Thus, Lu, Wang, Schmidt, Bytautas, Ho, and
Ruedenberg12−14 developed a method to determine VVOs
and construct HF-QUAOs based on the following criteria: The
space spanned by the QUAOs

(i) is constrained to contain the space spanned by the
occupied molecular HF orbitals of the molecule;

(ii) deviates as little as possible from the space spanned by a
set of accurate minimal basis set orbitals of the free
atoms.

The method was slightly refined in the preceding paper.1

Typically, these HF internal spaces have been found15 to
provide more effective initial approximations for MCSCF
calculations in the full valence space than other previously
proposed16−20 “improved virtual orbitals”.
The occupied HF orbitals and the VVOs together provide an

orbital basis for the HF internal space with occupations of 2 or
0, respectively. For the internal space of a correlated wave
function, there exists a corresponding orbital basis of strongly
and weakly occupied internal orbitals, with respective occupations
of close to 2 (or 1 in case of an open-shell system) on the one
hand, and typically less than 0.4 and often much smaller on the
other hand. These orbitals can be identified, for example, by
determining natural (or canonicalized21) orbitals in the internal
space. By virtue of the strong resemblance between the HF
internal space and the internal space of a correlated wave
function, the analyses of the internal spaces of HF wave
functions and of correlated wave functions follow very similar
patterns.
In correlated wave functions, the number of occupied orbitals

is greater than in the HF case. There exist three possibilities:
The number of occupied orbitals is (i) still less than, (ii) equal

to, or (iii) greater than the dimension of the internal space. In
the following, the identification of the internal orbital space will
be considered for all three cases. Once the internal space of a
correlated wave function is determined, the orbital analysis in
its internal space follows the same general pattern as that
described for HF functions in the preceding paper.1 The
essential difference to the HF analysis of paper I is thus the
determination of the weakly occupied internal orbitals: in the
HF case, these orbitals are the VVOs (with occupations = 0); in
the present correlated case, some or all weakly occupied
internal orbitals are in fact optimized orbitals in the correlated
wave function.

2.3. Overview of the Sequence of Orbital Construc-
tions. Figure 1 outlines the general scheme of the analysis. The

numbers in the figure indicate the sequence of the steps. These
steps are analogous to the steps in Figure 1 of the preceding
paper1 and correspond to the following operations.

1. The molecular orbitals are separated into the chemical
core, the occupied valence orbitals, and the virtual
orbitals.

2. The QUAO basis for the chemical core space is
determined.

3.
a. If the number of occupied orbitals is less than the

dimension of the internal space, the required
number of VVOs is extracted from the virtual
MCSCF orbital space in order to obtain a full
internal orbital basis, as is done in the HF case.

b. If the number of occupied orbitals is equal to the
dimension of the internal space, the preceding step
is skipped.

c. If the number of occupied valence orbitals is larger
than the dimension of the internal space, the
internal space is identified as a subspace of the
occupied orbital space.

d. In the following discussions, the default choice for
the dimension of the internal space is taken to be
the number of MBS orbitals. This choice is
assumed unless explicitly stated otherwise.

4. The canonical internal orbital basis is determined, and
from it, the canonical quasi-atomic valence MBS is
generated by localization. The population-bond-order
matrix is constructed.

Figure 1. Overview of molecule-intrinsic orbital sets and the sequence
of their determination.
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5. On each atom, the canonical QUAOs are “hybridized” so
that they are oriented and exhibit the bonding patterns.
The population-bond-order matrix is updated in terms of
these oriented QUAOs. The oriented QUAOs are also
used to accomplish the next step.

6. In the internal space, the strongly occupied subspace and
the weakly occupied subspace are determined. Localized
molecular orbitals are then determined separately in the
strongly occupied internal subspace and in the weakly
occupied internal subspace. Together, they provide the
split-localized basis of the valence-internal space.

7. In the valence-external space, that is, the orbital space
that is orthogonal to the internal orbital space, a quasi-
atomic basis is determined.

The basic techniques that are required to implement the
various steps in this analysis of strongly correlated wave
functions are the same as those developed in the preceding
paper for the analysis of HF wave functions, subject to the
modifications discussed below in Section 3. The previously
developed techniques will be referenced where appropriate, but
they will not be rederived.
2.4. Notes on Related Work. Some of the above-

mentioned methods antedate the preceding paper.1 Thus, as
already noted, the QUAOs used here are only slight
modifications of the QUAMBOs that were introduced12−14,22

in 2004. However, the localization method formulated in the
preceding paper23 to generate the split-localized orbitals by
reference to the QUAOs goes back to a method24 of 1982,
seven years before the Pipek−Mezey localization,25 which is
somewhat related in spirit.
Interesting contributions have recently been made by

Knizia.26 He has independently devised an algorithm consisting
of a sequence of projections and matrix inversions involving
only the occupied HF orbitals. This algorithm generates a set of
orbitals that Knizia calls “intrinsic atomic orbitals”. By
establishing the formal mathematical equivalence as well as
by quantitative evaluations, Janowski27 has subsequently shown
that these intrinsic atomic orbitals span the same space as the
QUAOs of ref 1 on the same atom. Knizia furthermore
developed26 an adaptation of the Pipek and Mezey25

localization method to QUAOs, which made this method
very effective in the context of large basis sets. This approach26

is independent of the earlier localization method1,24 referred to
in the preceding paragraph, which is used in the present study.
The Pipek−Mezey−Knizia scheme maximizes an expression in
terms of total atomic populations, which are invariant under
intra-atomic orbital mixing. In the method used here, the
individual oriented QUAOs enter explicitly, so that the
optimization is sensitive to intra-atomic orbital mixing.

3. MODIFICATIONS OF AND ADDITIONS TO THE
PRECEDING PAPER

In light of our experiences with the methods outlined in the
preceding paper1 for HF wave functions, several modifications
and additions were made in that analysis, which are also used in
the approach discussed here.
3.1. Orthogonalization of Quasi-Atomic Orbitals in

the Internal Space. The first modification pertains to the
construction of the internal QUAOs in Step 4 of Figure 1.
These QUAOs are obtained by two sequential operations.28

First, preliminary QUAOs are determined separately for each
atom by singular value decompositions. Since the resulting

QUAOs of different atoms are not orthogonal to each other,
they are then orthogonalized. In the previously described
procedure, this is accomplished by using S−1/2, that is, by
symmetric orthogonalization using the overlap matrix, which
preserves the character of the nonorthogonal QUAOs as much
as possible. However, it seems more desirable to base this
orthogonalization on a criterion that would directly maximize
the quasi-atomic character of the orthogonal QUAOs. To that
end, a new orthogonalization was formulated. It is described in
the Appendix.

3.2. A New Weighted Orthogonalization of External
Quasi-Atomic Orbitals. The second modification pertains to
the orthogonalization of the external orbitals in Step 7 of Figure
1.29 To avoid contamination of compact orbitals by diffuse
orbitals, the interatomic orthogonalization of these orbitals was
performed with the weighted Carlson−Keller algorithm.30 This
algorithm was found to break down for too wide a spread in the
weights. A new stable weighted orthogonalization method was
developed and has been published.31

3.3. Kinetic Bond Orders. The interatomic off-diagonal
elements pAa,Bb of the density matrix for QUAOs32 provide
measures of constructive QUAO interferences, which generate
charge accumulations in bonds and, hence, of electron
delocalization between the QUAOs.33,34 [|Aa⟩ denotes orbital
a on atom A.] The pAa,Bb are therefore related to covalent
bonding and are denoted as bond orders.35,36 If the phases of
the QUAOs can be appropriately chosen, positive bond orders
can be taken as indicators of covalent bonding interactions and
negative bond orders as implying antibonding interactions. In
larger molecules, the interpretation is, however, less straightfor-
ward for several reasons. It is difficult to control the phases of
the QUAOs and, in some cases, constructive interference
(bonding) is associated with negative bond orders. Another
problem is that, in fact, the actual bonding interactions are
given by the products of bond orders and certain energy
integrals between the QUAOs. These energy integrals often
decay much faster than the corresponding bond orders as the
distance between the QUAOs increases.
To compensate for these shortcomings of the “population

bond orders” pAa,Bb between the QUAOs |Aa⟩ and |Bb⟩, the
pAa,Bb will be complemented by also considering the kinetic
interference energies, which are defined as

= − ∇ = ⟨∇ |∇ ⟩t p pAa
1
2

Bb Aa Bb /2Aa,Bb Aa,Bb
2

Aa,Bb

(1)

In these expressions the accidental phases of the QUAOs
manifestly cancel. In agreement with the general analysis of
covalent binding,33 the tAa,Bb have consistently been found to be
negative in all cases where the interactions between the
QUAOs were manifestly bonding, regardless of the phases of
the QUAOs. Moreover, these quantities tAa,Bb also incorporate
the distance dependence of the physical interactions.
Since the kinetic interference energies have been shown to be

responsible for covalent bonding,33 it is likely that the tAa,Bb
reflect bond strengths and can serve a similar purpose as
“resonance energies”. There are two caveats: (i) The tAa,Bb
represent energy lowerings between orthogonalized QUAOs,
between which interference energies are markedly larger in
magnitude than the corresponding energies would be between
nonorthogonal QUAOs; (ii) The interference contributions of
the potential energy, which are typically antibonding,33 are not
taken into account. In accordance with these considerations,
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the tAa,Bb values that have been found in organic molecules so
far have consistently been an order of magnitude larger than the
empirically inferred chemical bond energies. Notwithstanding
these considerations, it is found in the detailed analyses
documented in the two subsequent papers2,3 that nearly all
kinetic bond energies, the strong ones as well as the weak ones, are
negative, that is, bonding. Provisionally, we therefore consider
the empirically adjusted kinetic interference energies

= × = − ∇k t p0.1 Aa
1
2

Bb /10Aa,Bb Aa,Bb Aa,Bb
2

(2)

as reasonable measures for the covalent bonding implications of
the first order density matrix. These adjusted kinetic bond
energies will be denoted as kinetic bond orders (KBOs). Future
work will address the problem of resonance integrals in greater
depth. The various kinds of known noncovalent interactions may
call for different bonding measures.
3.4. Corrigenda to Paper I. Equations (A22a) and (A22b)

in Paper I contain two misprints. In eq (22a), the term 2P1112
should read 2P1122. In the expression for Pc in eq (A22b), the
term (−6P1112) should read (−6P1122).

4. ANALYSIS OF CORRELATED WAVE FUNCTIONS IN
AN INTERNAL ORBITAL BASIS

4.1. Full Valence Internal MCSCF Wave Function
(FORS). The conceptually simplest case is that of an MCSCF
optimized wave function in the full valence space, i.e., a
complete-active-space self-consistent-field (CASSCF) wave
function with the number of active orbitals being exactly
equal to the number of MBS orbitals. As in our original work on
this subject,4 we use the term full optimized reaction space
(FORS) model for these specific CAS(N, MBS) wave
functions, where N is the number of electrons. This type of
wave function is the most general optimal wave function based
on the use of all orbitals in the full internal space and only these
orbitals.
The optimized orbitals of the FORS wave function, the

FORS molecular orbitals (MOs), yield a full basis for the
internal space so that no VVOs are needed. The natural orbitals
(NOs) in the valence space provide a canonical basis in the
FORS internal space, which orders the internal FORS NO basis
according to the strengths of their occupations.
The determination of the QUAOs is accomplished by means

of singular value decompositions.37 The core QUAOs (Step 2
of Figure 1) are obtained exactly as in the HF case.38 The
determination of VVOs,39 i.e., Step 3 of Figure 1, is not needed,
as mentioned in the preceding paragraph, and is therefore
skipped. In Step 4, the canonical FORS valence QUAOs are
determined by a singular value adaptation40 followed by an
orthogonalization that is modified as described above in Section
3.1. Finally, in Step 5, the oriented QUAOs are determined by
the orientation algorithm.41 The representation of the first-
order density matrix in terms of the oriented QUAOs exhibits
the population distributions and the bond orders. The FORS
wave function can be expressed in terms of QUAOs.
In Step 6, the split-localized orbital basis of the internal space

is constructed.42 To this end, the internal FORS NOs must be
divided into a strongly occupied group and a weakly occupied
group on the basis of their occupation numbers. This division
must be made with judicious consideration of the bonding
situation, in particular, when one is following changes in

electronic structure and bonding along a reaction path. The
following criterion has been found effective:

(i) FORS NOs with occupations larger than 0.9 are taken to
be strongly occupied.

(ii) For all orbitals with lower occupations, the largest gap
between two consecutive occupation numbers is determined.
The orbitals above this gap are then included in the
strongly occupied subspace. The orbitals below this gap
form the weakly occupied subspace. After the strongly
and the weakly occupied FORS spaces have been
identified, the split-localized orbitals are determined by
maximizing the expression

∑ ∑ ∑ ϕ⟨ | ⟩Aa
n A a

n
4

(3)

separately in these two spaces.43,44 The sum∑A∑a in eq 3 runs
over all oriented QUAOs |Aa⟩ on all atoms, and the sum ∑n
runs, respectively, either over all strongly occupied or over all
weakly occupied split-localized orbitals ϕn. The FORS wave
function can also be expressed in terms of split-localized
orbitals.
As mentioned earlier, at the equilibrium geometry, the split-

localized orbitals typically represent localized bonding and
antibonding orbitals. In systems where the HF wave function is
a reasonable approximation, the strongly occupied FORS
orbital space is very close to the HF-occupied orbital space. The
weakly occupied FORS orbital space has a somewhat weaker,
but still strong, overlap with HF-VVO orbital space, as was
exemplified in Table 2 of the preceding paper.1 Because of this
correspondence, the occupied HF orbitals and the HF-VVOs
provide excellent first approximations for any iterative MCSCF
procedure that determines the FORS orbitals.
The virtual FORS orbitals furnish a basis for the external

space. Canonical and quasi-atomic external orbitals are
obtained by the algorithm45 described in Paper I, modified as
discussed above in Section 3.2.

4.2. Wave Functions Based on Multiple Active
Subspaces in a Full Internal Orbital Basis. 4.2.1. Wave
Functions in Reduced Full Valence Spaces. For full valence
spaces, the lengths of the configuration interaction (CI)
expansions increase very rapidly with the size of the molecular
system so that full valence space calculations cannot be used
even for molecules of moderate size. The search for reduced
spaces that generate effective strong correlations is therefore an
active research topic. In many instances, typically along reaction
paths and notably for transition metals compounds, useful
descriptions of the relevant electronic structures and energy
changes have been successfully obtained through MCSCF wave
functions that are formed in relevant subspaces of the entire full
valence space of the molecular system. Such reduced full
MCSCF calculations are widely used.
The GAMESS program suite46,47 contains a very general

MCSCF module that offers the options for calculations with a
wide range of reduced full configuration space choices. This
module allows for the optimization of wave functions in
occupation restricted multiple active spaces (ORMAS),48 which are
constructed as follows: The orthogonal molecular orbitals of
the system are divided into a number of ORMAS groups
(OGs). For each OG a number of orbitals are chosen. The
electron occupation of each OG can then vary between a
minimum and a maximum number of electrons. The number of
OGs, the number of orbitals in each OG, and the occupation
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minima and maxima of the OGs can all be arbitrarily chosen.
All configurations satisfying these constraints are taken into
account in the CI calculation, and all orbitals are optimized.
If the molecular orbital set from which an ORMAS wave

function is constructed is in fact the full basis of the internal
space (i.e., if their number is equal to the total number of MBS
orbitals), then the optimized orbitals of this wave function yield
again a full basis for the internal space. As was the case for the
FORS wave function in the preceding Section 4.1, there is no
need to determine VVOs. The virtual orbitals of the ORMAS
calculation span the external space in which canonical orbitals
and QUAOs are determined as described for the FORS wave
functions in Section 4.1.
4.2.2. Determination of Quasi-Atomic Orbitals. There

exist, however, two ways of forming the valence QUAOs in the
internal space, namely, whether MOs from different ORMAS
groups are allowed to mix or not in the construction of the
QUAOs:
Option 1: Unrestrained Quasi-Atomic Orbitals. In this case,

the core QUAOs, the canonical and the oriented valence
QUAOs, as well as the external orbitals, are determined in
exactly the same manner as described in the preceding Section
4.1 for FORS wave functions.
Option 2: ORMAS-Restrained Quasi-Atomic Orbitals. In

general, the QUAOs that result from the just-described
unrestrained procedure are linear combinations that encompass
MOs from dif ferent OGs. For some purposes however, it is
desired to construct the QUAOs in such a way that they belong
to individual OGs. For instance, this construction is required if
one wants to express the wave function in terms of QUAOs
under preservation of its original ORMAS format. The
procedure to determine such QUAOs differs from that in the
preceding Section 4.1 as follows.
The critical first step in determining QUAOs consists of

singular value decompositions of the overlap matrices ⟨VIn|
A*a⟩ between the valence-internal molecular orbitals |VIn⟩ and
the accurate atomic minimal basis set orbitals |A*a⟩ of each
individual atom.49 In the case of the FORS wave functions of
Section 4.1 (and in the procedure for unrestrained QUAOs),
the molecular orbitals |VIn⟩ in each overlap matrix ⟨VIn|A*a⟩
include all internal molecular orbitals. In the ORMAS-
restrained procedure, the MOs |VIn⟩ are restricted to the
molecular orbitals of one OG. Thus, for each of these overlap
matrices, the corresponding SVD is performed. Thereby, a set
of (positive) SVD eigenvalues is obtained for each atom in each
OG. From the collection of all these SVD eigenvalues, the
largest M values are chosen, where M is the total number of
MBS orbitals in the molecule. This procedure has been found to
assign the QUAOs appropriately to the atoms in each OG. The
determination of the oriented QUAOs is then also performed
separately in each OG on each atom.
4.2.3. Determination of Split-Localized Molecular Orbitals.

Regardless of the choice of the QUAOs, the construction of the
split-localized orbitals for ORMAS-type wave functions is
slightly different from the construction in the case of the FORS
wave functions discussed in the preceding Section 4.1. In that
case, every split-localized orbital ϕn is a linear combination of all
FORS MOs in the full internal space. Consequently, the sum
∑n in eq 3 runs, respectively, either over all strongly occupied
or over all weakly occupied split-localized orbitals ϕn. Using
this procedure in the ORMAS case would generate split-
localized orbitals that contain components from dif ferent
ORMAS groups so that they could not be used to reconstitute

the ORMAS wave function in the original format. Split-localized
orbitals of this kind are not considered at present.
To preserve the original ORMAS wave function format in

terms of the split-localized orbitals, the split-localized orbitals
are therefore generated separately for each ORMAS group. Hence,
the sum ∑n in eq 3 goes only over the (either strongly or
weakly occupied) split-localized orbitals from one OG at a time
so that each split-localized orbital becomes a linear combination
of the MOs from that OG only. The sum ∑A∑a, however, still
goes over all oriented QUAOs |Aa⟩ on all atoms. In terms of
these split-localized orbitals, the ORMAS wave function can
then be formulated in the original ORMAS format.

4.3. Wave Functions Based on Multiple Active Spaces
Constructed from Partial Internal Orbital Bases. Many
problems of concrete chemical interest in larger molecules
involve reactions within a limited region of the entire system.
For such cases, wave functions are useful in which a full
configuration space is generated that uses only the local orbitals
in the reactive region of interest. In this context, it is typically
useful to divide the molecular valence orbitals into active and
inactive orbitals. For instance, the former may be involved in a
reaction, while the latter are “spectators”. In such a case, the
valence part of the electronic wave function consists of a
multiconfigurational active part to describe the reactive part of
the system and an inactive spectator part of a set of closed-shell
doubly occupied orbitals. The active part can have the form of a
CAS-type or an ORMAS-type wave function. The set of all
inactive orbitals can be taken as one OG with the number of
electrons exactly equal to twice the number of orbitals.
The number of occupied molecular orbitals in such a wave

function, though larger than in the HF case, is typically less
than the total number of MBS orbitals. To generate a basis for
the full internal space, one manifestly must find those valence
virtual orbitals (VVOs) that complement the closed-shell
spectator part of the wave function. These VVOs are
determined by a procedure that is analogous to that developed
for HF wave functions.50 To this end, the singular value
decomposition is performed for the overlap matrix ⟨Vn|A#a⟩
where the |Vn⟩ run over all virtual (unoccupied) orbitals of the
MCSCF calculation and the |A#a⟩ run through all orthogonalized
Accurate [free] Atom Minimal Basis Set (AAMBS) orbitals51

on all atoms. The VVOs are then chosen as those singular
vectors in the virtual MCSCF space that correspond to the NVVO
largest singular values, where NVVO is now the dif ference between
the total number of minimal basis set orbitals and the number of
occupied MOs in the MCSCF wave function. These singular
values are typically close to unity, whereas the remaining
nonzero singular values are significantly smaller. The occupied
MCSCF orbitals together with the VVOs obtained in this way
provide then a basis that spans the internal orbital space.
For the calculation of the QUAOs, there exist again two

options, as was the case in Section 4.2.2. The unrestrained
QUAOs are obtained by allowing the mixture of all MOs of the
internal space (i.e., all occupied MCSCF orbitals plus all VVOs)
in the construction of all QUAOs. This option yields the most
localized QUAOs.
On the other hand, if one wants to be able to express the

wave function in terms of QUAOs under preservation of the
original ORMAS format, then restrained QUAOs are required.
They are now obtained by determining the QUAOs separately
for each ORMAS group, as described above in Section 4.2.2,
except for the ORMAS group that contains all inactive occupied
valence orbitals. Expressing the occupied inactive MOs in terms
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of QUAOs would manifestly destroy the closed-shell format of
this part of the ORMAS wave function. These spectator MOs
can however be expressed in terms of the occupied localized
bond orbitals and lone-pair orbitals, which result from the
transformation to split-localized orbitals. The procedure for
determining the split-localized MOs is the same as that
described above in Sections 4.1 and 4.2.3. That is also the case
for the determination of the externals QUAOs.

5. SUMMARY

The analysis of HF wave functions in terms of QUAOs, which
was developed in the first paper on this subject,1 has been
generalized for the analysis of strongly correlated wave
functions that are generated from configurations in an
optimized internal orbital space. The dimension of the internal
orbital space is typically perceived to be equal to that of the
conceptual MBS of the entire molecule, although the
dimension may slightly exceed the MBS space (see remarks
in Section 2.1). The wave function may encompass all internal
configurations (FORS/CAS), or it may comprise part of the
internal space in form of an ORMAS-type partitioning. Several
improvements and generalizations regarding the methodology
of the preceding paper1 have also been developed. All aspects of
the analysis described in this paper have been implemented,
tested, and included as a module in the GAMESS suite of
molecular programs.46,47 The accompanying studies of urea2

and the dioxetane dissociation3 demonstrate the capabilities of
the described methodology.

■ APPENDIX. ORTHOGONAL QUASI-ATOMIC
ORBITALS WITH MAXIMAL PROJECTIONS ON THE
ORBITAL SPACES OF THE FREE ATOMS

Let |ν⟩ be an orthonormal orbital set that spans the internal
orbital space. They are chosen to be the QUAOs obtained by
the symmetric orthogonalization of the nonorthogonal SVD-
QUAOs, as described in Section V.B.1 of the preceding paper.
They are therefore already associated with specific atoms. The
desired new set of orthogonal QUAOs, |Aa⟩, is obtained from
the |ν⟩ by an orthogonal transformation U:

∑ ν| ⟩ = | ⟩ =
ν

νAa U U U I;Aa
T

,
(A.0)

The orthogonal transformation U shall be determined by the
requirement that each |Aa⟩ has a maximal projection on the
small space spanned by the AAMBS orbitals |A*α⟩ on the
respective atom A. Here, the orbitals |A*α⟩ are the “Accurate
Atomic Minimal Basis Set orbitals” on atom A that were
introduced in Section III.B.2 of paper I.
Since the orbitals |A*α⟩ on any one atom are orthonormal,

the square of the projection of the QUAO |Aa⟩ onto the space
spanned by the orbitals |A*α⟩ of atom A is given by

∑ ∑ ∑ ∑α μ α α ν⟨ * | ⟩ = ⟨ | * ⟩⟨ * | ⟩
α μ ν

μ
α

νA Aa U [ A A ]U2
,Aa ,Aa

(A.1)

where the sum ∑α goes over all AAMBS orbitals on atom A,
whereas the sums ∑μ∑ν go over all basis orbitals of the
internal space.
The sum of these projection squares for all QUAOs |Aa⟩ that

belong to atom A is then

∑ ∑=
μ ν

μν μν( )( )P Q UA
A A

(A.2)

∑ μ α α ν= ⟨ | * ⟩⟨ * | ⟩μν
α

Q A AA

(A.3)

∑=μν μ νU U U( )( )
a

A Aa
A

, a ,
(A.4)

where the sum ∑a goes over all new orbitals |Aa⟩ to be
associated with atom A. The criterion for the determination of
the orthogonal matrix Uν,Aa is then taken as

∑= =P P maximal
A

A
(A.5)

The optimization is performed iteratively by a sequence of
Jacobi rotations. It is manifest from eq A.4 that the quantity
Uμν

A is invariant under any orthogonal transformation that
mixes only orbitals on the same atom. Consequently, only
those Jacobi rotations must be considered that involve orbitals
from two different atoms. Hence, for a given Jacobi rotation,
the sums ∑μ and ∑ν in eq A.2 run only over these two atoms,
and the same is true for the sum ∑A in eq A.5.
Let one orbital be on atom A and the other on an atom B.

Denote the known initial orbitals of a particular Jacobi iteration
as |μ⟩ = |Aa′⟩ and |ν⟩ = |Bb′⟩ and the f inal orbitals as |Aa⟩ and |
Bb⟩, corresponding to the notation in eq A.4. Then, the Jacobi
rotation is given by

θ θ

θ θ

| ⟩ = | ′⟩ + | ′⟩
= | ′⟩ + | ′⟩

| ⟩ = −| ′⟩ + | ′⟩
= −| ′⟩ + | ′⟩

′ ′

′ ′

Aa Aa U Bb U
Aa cos Bb sin

Bb Aa U Bb U
Aa sin Bb cos

Aa ,Aa Bb ,Aa

Aa ,Aa Bb ,Aa

(A.6)

Insertion of this rotation in place of U into eqs A.2 to A.5
yields, after some transformations:

γ θ= + + −P C D F( ) cos( 2 )2 2 1/2
(A.7)

with γ being defined by

γ = +D D Fcos /( )2 2 1/2
(A.8a)

γ = +F D Fsin /( )2 2 1/2
(A.8b)

where

= + + +′ ′ ′ ′ ′ ′ ′ ′C Q Q Q Q( )/2Aa ,Aa
A

Bb ,Bb
A

Aa ,Aa
B

Bb ,Bb
B

(A.9)

= − + −′ ′ ′ ′ ′ ′ ′ ′D Q Q Q Q( )/2Aa ,Aa
A

Bb ,Bb
A

Bb ,Bb
B

Aa ,Aa
B

(A.10)

= −′ ′ ′ ′F Q Q( )Aa ,Bb
A

Aa ,Bb
B

(A.11)

The projection sum P of eq A.7 is maximal for θ = γ/2 + nπ,
where n is an integer that should be chosen such that −π/2 < θ
< π/2.
If the molecular wave function is not given in the full valence

space but is of the ORMAS type, it is sometimes expedient to
construct restrained QUAOs, as discussed in Section 4.2.2 and
in the last paragraph of Section 4.3. In this case, the
summations over μ and ν in all equations are restricted to
indices within the same ORMAS group.
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