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Abstract: Tree-width, and variants that restrict the allowable tree decom-
positions, play an important role in the study of graph algorithms and have
application to computer science. The zero forcing number is used to study
the maximum nullity/minimum rank of the family of symmetric matrices de-
scribed by a graph. We establish relationships between these parameters,
including several Colin de Verdière type parameters, and introduce numer-
ous variations, including the minor monotone floors and ceilings of some
of these parameters. This leads to new graph parameters and to new char-
acterizations of existing graph parameters. In particular, tree-width, largeur
d’arborescence, path-width, and proper path-width are each characterized
in terms of a minor monotone floor of a certain zero forcing parameter
defined by a color change rule. C© 2012 Wiley Periodicals, Inc. J. Graph Theory XX: 1–32, 2012
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1. INTRODUCTION

This paper introduces and studies several new graph parameters that are motivated by
the maximum nullity/minimum rank of the family of symmetric matrices described
by a graph. These new parameters are related to known parameters, including tree-
width, zero forcing number, and Colin de Verdière type parameters. We also obtain
new characterizations of existing parameters such as tree-width, largeur d’arborescence,
path-width, and proper path-width.
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PARAMETERS RELATED TO TREE-WIDTH, ZERO FORCING 3

A graph G = (VG, EG) means a simple undirected graph (no loops, no multiple
edges) with a finite nonempty set of vertices VG and edge set EG (an edge is a
two-element subset of vertices). All matrices discussed are real and symmetric; the
set of n × n real symmetric matrices is denoted by Sn(R). For A = [ai j] ∈ Sn(R),
the graph of A, denoted by G(A), is the graph with vertices {1, . . . , n} and edges
{{i, j} : ai j �= 0, 1 ≤ i < j ≤ n}. Note that the diagonal of A is ignored in determining
G(A). The set of symmetric matrices described by G is S(G) = {A ∈ Sn(R) : G(A) = G}.
The maximum nullity of G is M(G) = max{null A : A ∈ S(G)}, and the minimum rank of
G is mr(G) = min{rank A : A ∈ S(G)}. Clearly mr(G) + M(G) = |G|, where the order
|G| is the number of vertices of G. See Fallat and Hogben [17] for a survey of results and
discussion of the motivation for the minimum rank/maximum nullity problem.

The maximum positive semidefinite nullity of G is M+(G) = max{null A : A ∈ S(G), A
is positive semidefinite}, and the minimum positive semidefinite rank of G is mr+(G) =
min{rank A : A ∈ S(G), A is positive semidefinite}. Clearly mr+(G) + M+(G) = |G|.
See, for example, Booth et al. [10] and Hackney et al. [19], and references therein, for
more information on the minimum positive semidefinite rank problem.

Observation 1.1. For every graph G, M+(G) ≤ M(G) and mr(G) ≤ mr+(G).

The zero forcing number is a useful tool for determining the minimum rank of struc-
tured families of graphs and small graphs, and is motivated by simple observations about
null vectors of matrices (see [2] where this parameter was introduced). Zero forcing is the
same as graph infection used by physicists to study control of quantum systems [12,30].
Let G = (VG, EG) be a graph. A subset Z ⊆ VG defines an initial set of black vertices
(and all the vertices not in Z white). The color change rule is to change the color of a
white vertex w to black if w is the unique white neighbor of a black vertex u; in this case
we say u forces w. A zero forcing set for G is a subset of vertices Z such that if initially
the vertices in Z are colored black and the remaining vertices are colored white, applying
the color change rule until no more changes are possible turns all the vertices black. The
zero forcing number, Z(G), is the minimum of |Z| over all zero forcing sets Z ⊆ VG. For
any graph G, M(G) ≤ Z(G) [2, Proposition 2.4].

A tree decomposition of a graph G = (VG, EG) is a pair (T,W ), where T is a tree and
W = {Wt : t ∈ VT } is a collection of subsets of VG with the following properties:

(1) ∪{Wt : t ∈ VT } = VG.
(2) Every edge of G has both ends in some Wt .
(3) If t1, t2, t3 ∈ VT and t2 lies on a path from t1 to t3, then Wt1 ∩ Wt3 ⊆ Wt2 .

The bags of the tree decomposition are the subsets Wt . The width of a tree decompo-
sition is max{|Wt | − 1 : t ∈ Vt}, and the tree-width tw(G) of G is the minimum width of
any tree decomposition of G.

A k-tree is constructed inductively by starting with a complete graph on k + 1 vertices
and connecting each new vertex to the vertices of an existing clique on k vertices. Every
clique in a k-tree is part of a maximal clique of order k + 1, and the k-clique subgraphs
of a maximal clique are called its facets. We say that two maximal cliques are adjacent
if they share a facet. A k-tree is a k-connected chordal graph with maximum clique size
k + 1. It is known (see, e.g., [8]) that for a graph G, tw(G) is the minimum k such that G
is a subgraph of a k-tree.

Section 2 defines additional existing parameters related to maximum nullity, zero forc-
ing number, and tree-width, introduces related new parameters and new characterizations
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of existing parameters, and establishes some of their properties. In particular, tree-width,
largeur d’arborescence, path-width, and proper path-width are each characterized in terms
of a minor monotone floor of a certain zero forcing number. The new characterizations
may assist in the computation of these parameters. Open questions are presented in Sec-
tion 3. Appendix A contains many additional examples, including examples to show that
all but possibly one of the new inequalities established in Section 2 are strict, thereby
establishing that certain parameters are distinct, and examples showing noncomparability
of parameters.

Because there are many parameters and the relationships are quite complicated,
Table I summarizes the notation for the parameters discussed, and Fig. 1 describes the
relationships between these parameters, for graphs that have at least one edge. For each
parameter, the third column of Table I gives the location in this paper of the definition;
when a parameter was discussed in prior works, a reference in which it was defined is
also listed. A parameter that is not equal to another parameter in the table and for which
no external reference is given is new in this paper. Where parameters are described as
equal in the table or figure, this is for graphs that contain at least one edge.

When a parameter is listed with two names in Fig. 1, e.g., la(G) = 	Z+
(G), the
theorem that justifies the equality is listed in Table I in the entry for the second named
parameter, e.g., 	Z+
(G). In Fig. 1, a line between two parameters q, p means that for all
graphs G, q(G) ≤ p(G), where q is below p in the diagram. Each line has two numbers
adjacent to it. The upper number is the result that justifies the line, i.e., the parameter
bound, except in the case of the dashed line of small triangles, which is Conjecture
2.13. In all but one case, the lower number references an example from Section A of the
Appendix showing that the inequality can be strict. In that one case, the notation ?3.5
references Question 3.5, since the strictness of that inequality is an open question. When
there is not a monotone sequence of lines between q and p in Fig. 1, then in most cases
these parameters are not comparable. These noncomparability results are established in
Section B of the Appendix.

Parameters that involve matrices, such as the maximum nullity M(G), require taking
a maximum or minimum over an infinite family of matrices, and are thus usually more
difficult to compute than purely combinatorial parameters, such as the zero forcing
number Z(G). Software implementing known bounds on minimum rank is available
[13], but may not produce the exact value unless the upper and lower bounds coincide.
This software includes functions to compute Z(G) and Z+(G).

We need the following additional graph terminology. We denote the complete graph on
n vertices by Kn and the cycle on n vertices by Cn. The complement of a graph G = (V, E )

is the graph G = (V, E ), where E consists of all two-element sets from V that are not in
E. The union of Gi = (Vi, Ei) is ∪h

i=1Gi = (∪h
i=1Vi, ∪h

i=1Ei); a disjoint union is denoted

∪̇h
i=1Gi. The intersection of Gi = (Vi, Ei) is ∩h

i=1Gi = (∩h
i=1Vi,∩h

i=1Ei) (provided the
intersection of the vertex sets is nonempty). If G1 = (V1, E1) and G2 = (V2, E2) are
disjoint graphs, the join of G1 and G2, denoted by G1 ∨ G2, is the graph having vertex
set V (G1 ∨ G2) = V (G1) ∪ V (G2) and edge set E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ E,

where E consists of all the edges {u, v} with u ∈ V (G1), v ∈ V (G2). A subgraph H =
(VH, EH ) of a graph G = (VG, EG) is a spanning subgraph of G if VH = VG. For a graph
G = (VG, EG) and W ⊆ VG, the induced subgraph G[W ] is the graph with vertex set W
and edge set {{v, w} ∈ EG : v, w ∈ W }. The subgraph induced by W = VG \ W is usually
denoted by G − W , or in the case W is a singleton {v}, by G − v. Vertex v is a neighbor

Journal of Graph Theory DOI 10.1002/jgt
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TABLE I. Summary of graph parameter definitions.

Definition #, Section §#,
Symbol Name or external reference [#]

Z(G) Zero forcing number [2], §1
Ẑ(G) Enhanced zero forcing number 2.23
Z�(G) Loop zero forcing number 2.28
Z+(G) Positive semidefinite zero forcing number [3], §2.E
ppw(G) Proper path-width [31], §D
	Z
(G) Minor monotone floor of zero forcing number §1, 2.6

= proper path-width ppw(G), Theorem 2.39
CCR-	Z
(G) Defined by zero forcing rule for minor 2.23

monotone floor of zero forcing number
= proper path-width ppw(G), Theorem 2.38

lc(G) Largeur de chemin 2.15
= proper path-width ppw(G), Theorem 2.18

	Ẑ
(G) Minor monotone floor of enhanced zero forcing F and 2.23
number

pw(G) Path-width [16], §2.D
	Z�
(G) Minor monotone floor of loop zero forcing number 2.6 and 2.28

= path-width pw(G), Theorem 2.45
CCR-	Z�
(G) Defined by zero forcing rule for minor 2.41

monotone floor of loop zero forcing number
= path-width pw(G), Theorem 2.44

la(G) Largeur d’arborescence [15], §2.D
tstw(G) Two-sided (straight) tree-width [33], §2.D

= largeur d’arborescence la(G), [33]
	Z+
(G) Minor monotone floor of positive semidefinite 2.6 and §2.E

zero forcing number
= largeur d’arborescence la(G), Theorem 2.51

CCR-	Z+
(G) Defined by zero forcing rule for minor monotone 2.48
floor of positive semidefinite zero forcing number
= largeur d’arborescence la(G), Theorem 2.50

tw(G) Tree-width [16], §1, §2.D
CCR- tw(G) Defined by zero forcing rule for tree-width 2.55

= tree-width tw(G), Corollary 2.57
M(G) Maximum nullity [28], §1
M+(G) Positive semidefinite maximum nullity [34], §1
	M
(G) Minor monotone floor of maximum nullity §2.C
	M+
(G) Minor monotone floor of positive §2.C

semidefinite maximum nullity
ξ (G) Colin de Verdière type analog of M(G) [6], §2.B
μ(G) Colin de Verdière number [14], §2.B
ν(G) Colin de Verdière type analog of M+(G) [15], §2.B
�δ
(G) Minor monotone ceiling of minimum degree [18], §2.C
�κ
(G) Minor monotone ceiling of vertex connectivity [18], §2.C
δ(G) Minimum degree [16], §1
κ(G) Vertex connectivity [16], §1
P(G) Path cover number [21], §2.A
h(G) − 1 Hadwiger number minus one [16], §2.B
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FIGURE 1. Relationships between parameters related to maximum nullity.
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of u (and vice versa) if {u, v} is an edge of G; this is denoted by v ∼ u. The degree
of vertex v in graph G, degG v, is the number of neighbors of v; a leaf is a vertex of
degree 1. Let δ(G) denote the minimum degree of the vertices of G. Let κ(G) denote
the vertex connectivity of G, i.e., if G is not complete, the smallest number k such that
there is a set of vertices S, with |S| = k, for which G − S is disconnected. By convention,
κ(Kr) = r − 1. If κ(G) ≥ k, then G is k-connected.

Observation 1.2. It is well-known that for every graph G, κ(G) ≤ δ(G) (see, e.g., [16,
p. 20]). Results of Lovász et al. [25] and [26] imply that κ(G) ≤ M+(G).

A graph is planar if it can be drawn in the plane without crossing edges. Given two
graphs G and H, the Cartesian product of G and H, denoted by G � H, is the graph
whose vertex set is the Cartesian product of VG and VH , with an edge between two
vertices exactly when they are identical in one coordinate and adjacent in the other.

2. PARAMETERS

A. Path Cover Number

The path cover number P(G) of G is the smallest positive integer m such that there
are m vertex-disjoint induced paths P1, . . . , Pm in G that cover all the vertices of G
(i.e., VG = ∪̇m

i=1VPi ). Path cover number was first used in the study of minimum rank
and maximum multiplicity of an eigenvalue in Johnson and Leal Duarte [21] (since the
matrices inS(G) are symmetric, algebraic, and geometric multiplicities of eigenvalues are
the same, and since the diagonal is free, maximum multiplicity is the same as maximum
nullity).

In Johnson and Leal Duarte [21] it was shown that for a tree T , P(T ) = M(T ). In Barioli
et al. [5] it was shown that for graphs in general, P(G) and M(G) are not comparable
(see Examples A.2 and A.3).

Proposition 2.1. [3, Proposition 2.10] For any graph G, P(G) ≤ Z(G).

B. Colin De Verdière Type Parameters

In 1990 Colin de Verdière ([14], in English) introduced the graph parameter μ that is equal
to the maximum nullity among all matrices satisfying several conditions including the
Strong Arnold Hypothesis (defined below). The parameter μ, which is used to characterize
planarity, is the first of several parameters (called Colin de Verdière type parameters) that
require the Strong Arnold Hypothesis and that bound the maximum nullity from below.

The contraction of an edge e = {u, v} of G, denoted by G/e, is obtained by identifying
the vertices u and v, deleting any loops that arise in this process, and replacing any multiple
edges by a single edge. A minor of G arises by performing a sequence of deletions of
edges, deletions of isolated vertices, and/or contractions of edges. The notation H � G
means that H is a minor of G, and H ≺ G means that H is a proper minor of G, i.e.,
H � G and H �= G. A graph parameter β is minor monotone if for any minor H of G,
β(H) ≤ β(G). All the Colin de Verdière type parameters we discuss have been shown
to be minor monotone.

Journal of Graph Theory DOI 10.1002/jgt
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A real symmetric matrix A satisfies the Strong Arnold Hypothesis provided there
does not exist a nonzero real symmetric matrix X satisfying AX = 0, A ◦ X = 0, and
I ◦ X = 0, where ◦ denotes the Hadamard (entrywise) product and I is the identity matrix.
The Strong Arnold Hypothesis is equivalent to the requirement that certain manifolds
intersect transversally (see [36]). The Colin de Verdière number μ(G) is defined to be the
maximum nullity among symmetric matrices A = [ai j] such that: A ∈ S(G); A satisfies
the Strong Arnold Hypothesis; for all i �= j, ai j ≤ 0; and A has exactly one negative
eigenvalue (counting multiplicity). Another minor monotone parameter, introduced by
Colin de Verdière in [15], is denoted by ν(G) and defined to be the maximum nullity
among matrices A such that: A ∈ S(G); A satisfies the Strong Arnold Hypothesis; and A
is positive semidefinite. It is evident that for any graph G, ν(G) ≤ M+(G). As noted in
van der Holst [35], the following result can be derived from Lovász et al. [25].

Theorem 2.2. [25, 35] For every graph G, κ(G) ≤ ν(G).

It is easy to see that the zero forcing number is an upper bound for the minimum
degree, i.e., δ(G) ≤ Z(G) [7, Proposition 4.1]. It was conjectured [1] that for any graph
G, δ(G) ≤ M(G), or equivalently mr(G) ≤ |G| − δ(G). This conjecture, often referred
to as the delta conjecture, was proved for bipartite graphs in Berman et al. [7] but remains
open in general. In Lovász et al. [25] it is reported that in 1987, Maehara made a stronger
conjecture equivalent to δ(G) ≤ M+(G). Here we conjecture an even stronger claim.

Conjecture 2.3. For every graph G, δ(G) ≤ ν(G).

The parameter ξ (G) was introduced in Barioli et al. [6] as a Colin de Verdière type
parameter intended for use in computing maximum nullity and minimum rank, by re-
moving any unnecessary restrictions while preserving minor monotonicity. Define ξ (G)

to be the maximum nullity among real symmetric matrices such that A ∈ S(G) and A
satisfies the Strong Arnold Hypothesis. In Barioli et al. [6] it is shown that the parameter
ξ (G) is minor monotone.

Observation 2.4. For every graph G, ν(G) ≤ ξ (G), μ(G) ≤ ξ (G), and ξ (G) ≤ M(G).

The Hadwiger number of a graph G is the largest k for which Kk is a minor of G, and
is denoted by h(G) (see [16]).

Observation 2.5. For every graph G, h(G) − 1 ≤ μ(G) and h(G) − 1 ≤ ν(G). Con-
sequently, h(G) − 1 ≤ M+(G) ≤ M(G).

C. Minor Monotone Floor and Ceiling

As seen in Section B, Colin de Verdière’s work led to the study of numerous parameters
involving the Strong Arnold Hypothesis, since a variety of matrix-based graph parameters
acquire the very nice property of being minor monotone if one restricts consideration to
matrices that satisfy the Strong Arnold Hypothesis.

For a minor monotone graph parameter β and nonnegative integer k, define Forbk(β)

to be the set of all graphs G such that β(G) > k, but every proper minor H of G has
β(H) ≤ k. Then β(G) ≤ k if and only if there is no H in Forbk(β) such that H � G.
Robertson and Seymour’s famous result tells us that for any minor monotone graph
parameter β and any k, Forbk(β) is a finite set (see, for example, [16, Corollary 12.5.3]).
For every minor monotone parameter β that we discuss, it will be seen that Forbk(β)

Journal of Graph Theory DOI 10.1002/jgt
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contains Kk+2. Since Forbk(h − 1) = {Kk+2}, all the minor monotone parameters that we
discuss can be viewed as generalizations of h(G) − 1.

For any graph parameter taking values in the natural numbers (or in fact any well-
ordered set), a direct conversion to a minor monotone parameter can be made in two
possible ways, by taking a minimum over all graphs H that contain G as a minor, called
the minor monotone floor (this relates naturally to the Colin de Verdière type parameters),
or by taking a maximum over all graphs H that are minors of G, called the minor monotone
ceiling. Although the terms “minor monotone floor” and “minor monotone ceiling” are
not used, the definitions given below of these terms appear in Fijavž and Wood [18],
p. 80. The minor monotone floor of the crossing number, called the minor crossing
number, was introduced and studied in Bokal et al. [9].

Definition 2.6. Let p be a graph parameter whose range is well-ordered. The minor
monotone floor of p is 	p
(G) = min{p(H) : G � H}.

Observation 2.7. For any graph parameter p whose range is well-ordered, the minor
monotone floor 	p
 is characterized by the following three properties:

(1) If G � H, then 	p
(G) ≤ 	p
(H).
(2) For any graph G, 	p
(G) ≤ p(G).
(3) For any graph G, there exists a graph H such that G � H and 	p
(G) = p(H).

We consider the minor monotone floors 	M
(G) and 	M+
(G) (and in Section F also
the minor monotone floors of several zero forcing parameters).

Observation 2.8. If p and q are graph parameters such that for all graphs G, q(G) ≤
p(G), then 	q
(G) ≤ 	p
(G). If q is a minor monotone graph parameter, then q(G) =
	q
(G). In particular, for all graphs G,

(1) 	M+
(G) ≤ 	M
(G), since M+(G) ≤ M(G);
(2) ξ (G) ≤ 	M
(G), since ξ (G) ≤ M(G);
(3) ν(G) ≤ 	M+
(G), since ν(G) ≤ M+(G).

Example 2.9. Let G6 and G′
6 be the graphs shown in Fig. 2.

It is easy to see that M+(G6) = M(G6) = 3, and M(G′
6) = 2 because G′

6 is a 2-
connected partial linear 2-tree [20] (linear k-trees are defined in Section D below).
Since G6 is a minor of G′

6, 	M
(G6) ≤ M(G′
6) ≤ 2. Since G6 has a K3 minor, 2 =

ν(K3) ≤ 	M+
(K3) ≤ 	M+
(G6) ≤ 	M
(G6). Thus, 	M+
(G6) = 	M
(G6) = 2. For
use in Section B of the Appendix, we also note that P(G6) = 3.

Note that it is not always useful to consider the minor monotone floor for a graph
parameter. For example, 	δ
(G) = 0 because H = G∪̇K1 has G as a minor and δ(H) = 0.

FIGURE 2. The graphs G6 and G′
6.

Journal of Graph Theory DOI 10.1002/jgt
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Less trivially, for every graph G, 	P
(G) ≤ 2. Consider the join of two disjoint copies of
a path on n vertices, denoted by Pn ∨ Pn. Clearly P(Pn ∨ Pn) ≤ 2. Denote the vertices of
the two paths by U = {u1, . . . , un} and W = {w1, . . . , wn}, where each path has vertices
in numerical order. Contracting the edges {ui, wi}, i = 1, . . . , n produces the complete
graph Kn. Any graph G of order n is a minor of Kn, so 	P
(G) ≤ 2. Thus, 	P
(G) is
uninteresting and will not be discussed further.

Definition 2.10. Let p be a graph parameter with a totally ordered range. The minor
monotone ceiling of p is �p
(G) = max{p(H) : H � G}.

Observation 2.11. For any graph parameter p, the minor monotone ceiling �p
 is
characterized by three properties:

(1) If H � G, then �p
(H) ≤ �p
(G).
(2) For any graph G, p(G) ≤ �p
(G).
(3) For any graph G, there exists H � G such that �p
(G) = p(H).

We consider the minor monotone ceilings �δ
(G) and �κ
(G). Note that it is not
useful to consider the minor monotone ceiling for maximum nullity, since �M
(G) = |G|
because the discrete graph K|G| is a minor of G.

Observation 2.12. If p and q are graph parameters such that for all graphs G, q(G) ≤
p(G), then �q
(G) ≤ �p
(G). If q is a minor monotone graph parameter, then q(G) =
�q
(G). In particular:

(1) �κ
(G) ≤ �δ
(G), since κ(G) ≤ δ(G);
(2) h(G) − 1 ≤ �κ
(G), since the Kh(G) minor of G implies κ(Kh(G)) ≤ �κ
(G);
(3) �κ
(G) ≤ ν(G), since κ(G) ≤ ν(G).

Since ν is minor monotone, Observation 2.12 implies that Conjecture 2.3 is equivalent
to the following:

Conjecture 2.13. For every graph G, �δ
(G) ≤ ν(G).

Since κ(G) ≤ ν(G), and ν is minor monotone, any counterexample to Conjecture
2.13 would necessarily have �δ
(G) > �κ
(G), which is unusual in small graphs. The
Mader graph M12 in Example A.16 has �δ
(M12) = 5 > 4 = �κ
(M12), and we show
ν(M12) = 5.

D. Tree-width

Tree-width is one of the most widely studied minor monotone graph parameters and also
plays an important role in the Graph Minor Theorem. It is clear from the constructive
definition of a k-tree that if G is a subgraph of a k-tree, then δ(G) ≤ k. Thus, for every
graph G, δ(G) ≤ tw(G). The next result now follows from Observation 2.12 and the fact
that tree-width is minor monotone [16, Proposition 12.3.6].

Corollary 2.14. For every graph G, �δ
(G) ≤ tw(G).

Tree-width can be viewed as a zero forcing parameter, as defined in Section E below,
and several zero forcing parameters can be characterized as the minimum k for which
the graph is a subgraph of a certain type of k-trees. Here we define the types of k-trees
needed for these characterizations.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 3. (a) a linear 2-tree, (b) a 2-caterpillar that is not a linear 2-tree, (c) a
two-sided 2-tree that is not a 2-caterpillar, and (d) a 2-tree (the supertriangle T3)

that is not a two-sided 2-tree.

A linear k-tree is constructed inductively by starting with Kk+1 and connecting each
new vertex to the vertices of an existing Kk that includes a vertex of degree k (it can be
assumed that the new vertex is adjacent to the vertex just added); an example with k = 2
is shown in Fig. 3(a). Equivalently, a linear k-tree is either Kk+1 or a k-tree in which
exactly two vertices have degree k. Another equivalent definition of a linear k-tree is a
k-tree in which no more than two maximal cliques are adjacent along any given facet and
every maximal clique is adjacent to at most two other maximal cliques. A partial linear
k-tree is a subgraph of a linear k-tree. Partial linear k-trees have been used to characterize
forbidden minors for certain values of ξ (G) [20,22,35]. The proper path-width of a graph
G, denoted by ppw(G), is the minimum k for which G is a partial linear k-tree. Proper
path-width was introduced in Takahashi et al. [31], where acyclic forbidden minors for
proper path-width k were characterized.

A k-caterpillar is constructed inductively by starting with Kk+1 and at each stage
adding a new maximal clique by adjoining a new vertex to the k vertices of some facet
of the maximal clique that was added at the previous stage; an example with k = 2 is
shown in Fig. 3(b). A k-caterpillar can also be constructed by first constructing a linear
k-tree L, and then possibly adding extra vertices, with each new vertex joined to a facet
that is shared by two maximal cliques in L; L is called an underlying linear k-tree of
the k-caterpillar. In Fig. 3(b), the thicker lines and larger dots are used for the edges and
vertices of an underlying linear k-tree. A k-tree is a k-caterpillar if and only if (1) each
maximal clique is adjacent to other maximal cliques along at most two facets; and (2) all
but at most two of those adjacent maximal cliques have a vertex of degree k. The path-
width of a graph G, denoted by pw(G), is the minimum width of a tree decomposition of
G for which the tree is a path. Equivalently, the path-width of a graph G is the minimum
k for which G is a subgraph of a k-caterpillar.

A two-sided k-tree is constructed inductively by starting with Kk+1 and connecting
each new vertex to the vertices of an existing Kk that either includes a vertex of degree k
or is the same as the Kk to which some previous vertex was connected; an example with
k = 2 is shown in Fig. 3(c). A two-sided k-tree is also called a straight k-tree (there is
a distinction between these two terms for graphs with multiple edges that is irrelevant
here). A k-tree is a two-sided k-tree if and only if each maximal clique has a maximum
of two facets along which it is adjacent to any other maximal clique. Since K2 has only
two K1-facets, every tree is a two-sided 1-tree. The two-sided tree-width (also called
the straight tree-width) of a graph G is the minimum k for which G is a subgraph of a
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two-sided k-tree, and is denoted by tstw(G). Equivalently, the two-sided tree-width of a
graph G is the minimum width of a two-sided tree decomposition of G (see [33] for the
definition of two-sided tree decomposition).

Clearly any linear k-tree is a k-caterpillar, any k-caterpillar is a two-sided k-tree, and
any two-sided k-tree is a k-tree, but not vice versa, as illustrated in Fig. 3.

The largeur d’arborescence of G, la(G), was defined by Colin de Verdière in [15]
as the minimum k for which G is a minor of the Cartesian product Kk�T of a complete
graph on k vertices with a tree. The largeur d’arborescence is equal to two-sided (straight)
tree-width, i.e., for any graph G that has at least one edge, tstw(G) = la(G) [33]. We
now introduce the largeur de chemin as an obvious analogy to largeur d’arborescence for
path-width.

Definition 2.15. The largeur de chemin of G, denoted by lc(G), is the minimum k for
which G is a minor of the Cartesian product Kk�P of a complete graph on k vertices with
a path.

We will see that largeur de chemin is identical to proper path-width (Theorem 2.18).

Lemma 2.16. If G is a partial linear k-tree (respectively, partial k-caterpillar) of order at
least k + 1, then G is a spanning subgraph of a linear k-tree (respectively, k-caterpillar).

Proof. Since G is a partial linear k-tree (respectively, partial k-caterpillar), G is a
subgraph of a linear k-tree (k-caterpillar) L′. If L′ contains one or more vertices not in G,
we show how to produce a linear k-tree (k-caterpillar) L′′ still containing G as a subgraph
and having one fewer vertex. Repeated application of this process yields a linear k-tree
(k-caterpillar) L such that VL = VG.

We first consider a linear k-tree, and number the vertices 1, . . . , k + 1, k + 2, . . . , t as
follows: vertex k + 1 + i is the vertex added at the ith stage in the construction of L (from
the definition of linear k-tree). The vertices 1, . . . , k + 1 of the base maximal clique are
numbered such that they “drop off” the current Kk+1 in order as we move through the
stages (it need not be the case that a vertex from the base maximal clique drops off every
time we move to the next stage). That is, if 1 ≤ r < q ≤ k + 1 and vq �∼ v�, then vr �∼ v�.
If k + 1 < p < t, denote by m(p) the unique vertex such that m(p) < p, p ∼ m(p) and
p + 1 �∼ m(p); for 1 < p ≤ k + 1, let m(p) = 1.

Suppose p ∈ VL′ and p /∈ VG. If p = 1 or p = t, then just delete p; the result is the
linear k-tree L′′. For 1 < p < t, let L′′ be the linear k-tree obtained from L′ by contracting
{m(p), p}. Then L′′ is a linear k-tree that contains G as a subgraph and has one fewer
vertex not in G.

For the case of a k-caterpillar L′, number all the vertices of an underlying linear k-tree
1, . . . , s as above, and the remaining vertices s + 1, . . . , t. If degL′ p = k, simply delete
p; otherwise, follow the procedure for a linear k-tree to select the edge to contract. �

Observation 2.17. Any minor of a partial linear k-tree is a partial linear k-tree,
because proper path-width is minor monotone [31]. Any minor of a partial k-caterpillar
is a partial k-caterpillar, because path-width is minor monotone [8]. Any minor of a
partial two-sided k-tree is a partial two-sided k-tree, because two-sided tree-width is
minor monotone [33].

Theorem 2.18. For any graph G that has at least one edge, ppw(G) = lc(G).
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Proof. It is sufficient to show that for any path P, Kk�P is a minor of a linear k-tree, and
that every linear k-tree is a minor of Kk�P for some path P. For the special case where P is
a path on two vertices, call Kk�P a k-prism, with the two copies of Kk called the ends of the
k-prism. For longer paths P, Kk�P is obtained by “gluing” multiple k-prisms along their
ends. To each Kk+1 in a linear k-tree we also assign two ends, a pair of facets that include
any Kk along which it is adjacent to another maximal clique. One direction of inclusion
of minors comes from the fact that each k-prism can be triangulated to (and is thus a
minor of) a linear k-tree having the same ends as the original k-prism—the triangulation
consists of k maximal cliques glued along k − 1 facets. Conversely, a maximal clique
with two facets specified as ends is a minor of a k-prism with the same ends, and hence
a linear k-tree with n maximal cliques is a minor of Kk�P with n k-prisms. �

A smooth tree decomposition is one in which all bags contain the same number of
vertices. If a two-sided tree decomposition of width k exists, then a smooth two-sided
tree decomposition of width k exists [33].

Proposition 2.19. If G is a partial two-sided k-tree of order at least k + 1, then G is a
spanning subgraph of a two-sided k-tree.

Proof. Choose a smooth two-sided tree decomposition for G, and insert any additional
edges needed so that the vertices in each bag become a clique. �

E. Zero Forcing Parameters

In this section, we discuss several graph parameters that can be viewed as generalizations
of the zero forcing number. In each case, starting with a set of vertices colored black
(the remainder starting out white) there are certain moves (governed by a color change
rule) that allow white vertices to be changed to black. The value of the parameter is
the minimum size of a black set that eventually allows all vertices to become black.
Since we wish to generalize the zero forcing number, we restate the definition of the
zero forcing number Z(G) in parts, with the color change rule, which varies with the
parameter, separated from other parts of the definition.

Definition 2.20. Let G be a graph (or loop graph, see below).

(1) A subset Z ⊆ VG defines a coloring by coloring all vertices in Z black and all the
vertices not in Z white.

(2) A color change rule is a rule describing conditions on a vertex u and its neighbors
under which u can cause the color of a white vertex w to change to black. In this
case we say u forces w and write u → w.

(3) Given a coloring of G and a color change rule CCR-p, a CCR-p derived set is a set
of black vertices obtained by applying CCR-p until no more changes are possible.

(4) A CCR-p zero forcing set for G is a subset Z of vertices such that if initially the
vertices in Z are colored black and the remaining vertices are colored white, VG is
a CCR-p derived set.

(5) The CCR-p zero forcing parameter is the minimum of |Z| over all CCR-p zero
forcing sets Z ⊆ VG.

We can recast the definition given in Section 1 of the zero forcing number Z(G) in this
generalized form. The color change rule CCR-Z is as follows:
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CCR-Z If u is a black vertex, and exactly one neighbor w of u is white, then change
the color of w to black.

In order to obtain an improved bound on M, we consider graphs that allow loops. A
loop graph is a graph that allows loops, i.e., Ĝ = (VĜ, EĜ) where VĜ is the set of vertices
of Ĝ and the set of edges EĜ is a set of two-element multisets. A vertex u is a neighbor
of vertex v in Ĝ if {u, v} ∈ EĜ; note that u is a neighbor of itself if and only if the loop
{u, u} is an edge. The underlying simple graph of a loop graph Ĝ is the graph G obtained
from Ĝ by deleting all loops. The set of symmetric matrices described by a loop graph Ĝ
is S(Ĝ) = {A = [ai j] ∈ Sn(R) : ai j �= 0 ⇔ {i, j} ∈ EĜ}, and the maximum nullity of G is
M(Ĝ) = max{null A : A ∈ S(Ĝ)}. Note that a loop graph Ĝ constrains the zero–nonzero
pattern of the main diagonal entries of matrices described by Ĝ. There is a distinction
between a graph, i.e., a simple graph, and a loop graph that has no loops—the latter
forces the matrices to have zero diagonal, whereas the former does not.

Definition 2.21. The CCR-Z(Ĝ) is:

CCR-Z(Ĝ) If exactly one neighbor w of u is white, then change the color of w to
black.

The zero forcing number of a loop graph Ĝ, denoted by Z(Ĝ), is the zero forcing
parameter for CCR-Z(Ĝ).

In a simple graph, a vertex must be black to force another vertex because it is unknown
whether the diagonal entry is zero or nonzero, whereas in a loop graph it is known
whether the diagonal entry is zero or nonzero, and this information is used in the color
change rule. The proof of the following theorem is similar to that of Barioli et al. [2,
Proposition 2.4].

Theorem 2.22. For any loop graph Ĝ, M(Ĝ) ≤ Z(Ĝ).

The zero forcing number for digraphs (which allow loops) was introduced in Barioli
et al. [4]. The zero forcing number of a loop graph is the same as the zero forcing
number of the associated doubly directed digraph. The nonzero pattern of a digraph
(or loop graph) with vertex set {1, . . . , n} is the n × n matrix having (u, v)-entry equal
to ∗ if uv is an arc (edge) of the digraph and zero otherwise (* indicates a nonzero
entry in the associated family of matrices). As shown in Barioli et al. [4], |Ĝ| − Z(Ĝ) is
equal to the triangle number (size of the largest triangle) of the pattern of Ĝ for a loop
graph Ĝ.

Definition 2.23. The enhanced zero forcing number of a graph G, denoted by Ẑ(G), is
the maximum of Z(Ĝ) over all loop graphs Ĝ such that the underlying simple graph of
Ĝ is G.

Corollary 2.24. For any graph G, M(G) ≤ Ẑ(G) ≤ Z(G).

Proof. Let G be a graph. If Ĝ is a loop graph having G as its underlying simple graph,
then any CCR-Z zero forcing set Z for G is a CCR-Z(Ĝ) zero forcing set for Ĝ, so
Z(Ĝ) ≤ Z(G). Thus, Ẑ(G) ≤ Z(G). Let A ∈ S(G) be such that null A = M(G). Let Ĝ
be the loop graph of A; the underlying simple graph of Ĝ is G. Clearly null A ≤ M(Ĝ) ≤
M(G), so M(G) = M(Ĝ). By Theorem 2.22, M(Ĝ) ≤ Z(Ĝ) ≤ Ẑ(G). �

The next example illustrates the computation of Ẑ(G).
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FIGURE 4. The pentasun H5.

Example 2.25. For the pentasun H5 depicted in Fig. 4, it is shown in Barioli et al. [5] that
mr(H5) = 8 and thus M(H5) = 2. There are 210 possible loop graphs having underlying
simple graph H5, but we can reduce this number by symmetry and by grouping graphs
by the loop configuration on the leaves (degree 1 vertices).

(1) Let Ĝ0 be a loop graph that has no loops on leaves. Z(Ĝ0) = 0 since each leaf
can force its adjacent cycle vertex (i → i + 5, i = 1, . . . , 5) and then each cycle
vertex can force its adjacent leaf (i → i − 5, i = 6, . . . , 10).

(2) Let Ĝ1 be a loop graph that has at least one loop on a leaf, say, on vertex 1.
Z(Ĝ1) ≤ 2 since {2, 3} is a zero forcing set with the following forces 2 → 7, 3 →
8, 7 → 6, 8 → 9, 1 → 1, 6 → 10, 9 → 4, 10 → 5.

Thus, Ẑ(H5) ≤ 2. Since Ẑ(H5) ≥ M(H5) = 2, Ẑ(H5) = 2.

Zero forcing for positive semidefinite matrices was defined in Barioli et al. [3], using
the following color change rule.

CCR-Z+ Let B be the set consisting of all the black vertices. Let W1, . . . ,Wk be the
sets of vertices of the k components of G − B (note that it is possible that k = 1).
Let w ∈ Wi. If u ∈ B and w is the only white neighbor of u in G[Wi ∪ B], then
change the color of w to black.

The positive semidefinite zero forcing number of a graph G, denoted by Z+(G), is the
CCR-Z+ zero forcing parameter.

Forcing using color change rule CCR-Z+ can be thought of as decomposing the graph
into a union of certain induced subgraphs and using CCR-Z on each of these induced
subgraphs. The application of CCR-Z+ to a specific graph is illustrated in the next
example.

Example 2.26. The tree Y2 shown in Fig. 5 has Z+(Y2) = 1, because any one vertex is
a zero forcing set for CCR-Z+.

Theorem 2.27. [3, Theorem 3.5] For any graph G, M+(G) ≤ Z+(G).

FIGURE 5. Y2, the second long-Y.
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Note that M+(G) is denoted in Barioli et al. [3] by MR

+(G). In order to see in a natural
manner that Ẑ bounds Z+ from above, we introduce another parameter.

Definition 2.28. The loop zero forcing number of a graph G, denoted by Z�(G), is Z(Ĝ)

where Ĝ is the loop graph whose underlying simple graph is G, and such that Ĝ has a
loop at v ∈ VG if and only if degG v ≥ 1.

Although Z� is already defined as Z evaluated on a specific loop graph, we can see that
Z� is a zero forcing parameter, which aids in computing the value of this parameter.

CCR-Z� If u is black and exactly one neighbor w of u is white, then change the color
of w to black. If w is white, w has a neighbor, and every neighbor of w is black,
then change the color of w to black.

Each of the two parts of CCR-Z� is merely the simple graph interpretation of CCR-
Z(Ĝ) where Ĝ is the loop graph constructed from G in Definition 2.28.

Example 2.29. Any one vertex of the complete bipartite graph K1,3 is a CCR-Z� zero
forcing set and the empty set is not a CCR-Z� zero forcing set, so Z�(K1,3) = 1. It
is well-known (and obvious) that Z(K1,3) = M(K1,3) = 2, and Ẑ(K1,3) = 2. For use in
Section B of the Appendix, we also note that μ(K1,3) = 2 since K1,3 is a tree that is not
a path [36].

Example 2.30. The tree Y2 shown in Fig. 5 with Z+(Y2) = 1 has Z�(Y2) = 2, since any
two leaves are a CCR-Z� zero forcing set, and no one vertex can force all the others using
CCR-Z�.

For any graph G that is the disjoint union of connected components Gi, i = 1, . . . , k,
Ẑ(G) = ∑k

i=1 Ẑ(Gi), Z�(G) = ∑k
i=1 Z�(Gi), and Z+(G) = ∑k

i=1 Z+(Gi) (the analogous
results for M, M+ and Z are well-known).

Theorem 2.31. For any graph G, Z+(G) ≤ Z�(G) ≤ Ẑ(G).

Proof. It is immediate from the definition that Z�(G) ≤ Ẑ(G).
To show that Z+(G) ≤ Z�(G), assume first that G is connected and |G| ≥ 2. Let Ĝ be

the graph having a loop at every vertex whose underlying simple graph is G, and let Z
be a CCR-Z(Ĝ) zero forcing set for Ĝ such that |Z| = Z(Ĝ). We show Z is a CCR-Z+
zero forcing set for G. Suppose u forces w using CCR-Z(Ĝ), so w is the unique white
neighbor of u. Either u is black and w �= u, or w = u. If u is black then u forces w
using CCR-Z+. If w = u, then let B be the set consisting of all the black vertices (at
the stage at which w forces itself). The component containing w in G − B is {w}. Since
G is connected and |G| ≥ 2, w has a (necessarily black) neighbor v in G[B ∪ {w}]. So
v forces w using CCR-Z+. Thus, Z is a zero forcing set for G using CCR-Z+, and so
Z+(G) ≤ |Z| = Z(Ĝ).

The result for arbitrary G is obtained by summing over connected components, noting
that Z+(K1) = 1 = Z�(K1). �

F. Tree-width and Minor Monotone Floors of Zero Forcing

Parameters

We now turn our attention to the minor monotone floors of zero forcing parameters.
Although 	Z
, 	Z�
 and 	Z+
 are already defined as minor monotone floors, we show
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that they are also zero forcing parameters by exhibiting appropriate color change rules,
and show that they are equal, respectively, to proper path-width, path-width, and largeur
d’arborescence. We also show that tree-width itself is a zero forcing parameter.

The next observation follows from Observation 2.8 together with Corollary 2.24 and
Theorems 2.27 and 2.31.

Observation 2.32. For all graphs G,

(1) 	M
(G) ≤ 	Ẑ
(G) ≤ 	Z
(G).
(2) 	M+
(G) ≤ 	Z+
(G) ≤ 	Z�
(G) ≤ 	Ẑ
(G).

Definition 2.33.

CCR-	Z
 If u is black and w is the only white neighbor of u, then change the color of
w to black. If u is black, all neighbors of u are black, and u has not yet performed
a force, then change the color of any white vertex w to black; in this case we say
that u hops to w or u forces w by a hop. For u to hop, it is not required that u have
any neighbors.

We will denote the value on G of the zero forcing parameter associated with CCR-	Z

by CCR-	Z
(G) until we have proved that CCR-	Z
(G) = 	Z
(G) (see Theorem 2.39
below).

Observation 2.34. Since a vertex v must be black and have all but at most one neighbor
black in order for v to perform a CCR-	Z
 color change, δ(G) ≤ CCR-	Z
(G) for any
graph G.

It is convenient to define an active vertex to be a black vertex that has not performed
a force; an inactive vertex is a black vertex that has performed a force. Thus, the subset
Z ⊆ VG that defines a coloring is active initially. Only an active vertex can force another
vertex using CCR-	Z
 (or CCR-	Z�
 defined below), because a vertex can force at
most one other vertex. When vertex u forces vertex w, u becomes inactive and w becomes
active. Thus, the number of active vertices remains constant. The application of CCR-	Z

to a specific graph is illustrated in the next example.

Example 2.35. Recall that G6 and G′
6 are the graphs shown in Fig. 2. The set {1, 2} is a

CCR−	Z
 zero forcing set for G6, because:

� 1 forces 3; 2 and 3 are active;
� 2 forces 5 by a hop; 3 and 5 are active;
� 3 forces 6; 5 and 6 are active;
� 5 forces 4.

Thus, CCR-	Z
(G6) ≤ 2. Also 2 = δ(G6) ≤ CCR-	Z
(G6), so CCR-	Z
(G6) = 2. Per-
forming the hop from 2 to 5 is like adding edge {2, 5} to obtain the graph G′

6 shown on
the right in Fig. 2. Clearly G6 ≺ G′

6 and {1, 2} is a CCR-Z zero forcing set for G′
6, so

	Z
(G6) ≤ 2 (as a consequence of Theorem 2.39 below, 	Z
(G6) = CCR-	Z
(G6) = 2).

As noted in Barioli et al. [2], the CCR-Z derived set of a given set of black vertices is
unique. However, a derived set need not be unique when hopping is involved, as the next
example shows.

Example 2.36. The graph G in Fig. 6 has more than one CCR-	Z
 derived set for
coloring {1, 2, 3}: the set {1, 2, 3} is a CCR-	Z
 zero forcing set for G, with the forces:
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FIGURE 6. The graph G for Example 2.36.

� 2 forces 4 by a hop; 1, 3 and 4 are active;
� 4 forces 5; 1, 3 and 5 are active;
� 5 forces 6; 1, 3 and 6 are active;
� 6 forces 7.

But {1, 2, 3, 6} is also a CCR-	Z
 derived set for the same coloring, with the force

� 2 forces 6 by a hop; 1, 3 and 6 are active.

At this point no further forces are possible.

Lemma 2.37. Let H be a linear k-tree with k ≥ 1. Then Z(H) = k and a set consisting
of a vertex of degree k and all but one of its neighbors is a CCR-Z zero forcing set.

Proof. Since H is a k-tree, k = δ(H) ≤ Z(H). We show by induction on |H| that a
set consisting of a vertex of degree k and all but one of its neighbors is a zero forcing
set. The result is clear if H is Kk+1. Assume Lemma 2.37 to be true for all linear k-trees
of order less than |H|. Let Z be a vertex of degree k and all but one vertex to which it is
adjacent. The degree k vertex will then force its remaining neighbor. Remove the vertex
that just performed the force to obtain a smaller linear k-tree and set of black vertices
consisting of a set containing a vertex of degree k and all but one of its neighbors. �

Note that T3 shown in Fig. 3(d) is a 2-tree that is not linear, and Z(T3) = 3.

Theorem 2.38. For any graph G having at least one edge, CCR-	Z
(G) is the minimum
k for which G is a partial linear k-tree, i.e., CCR-	Z
(G) is equal to the proper path-width
of G.

Proof. Let � = ppw(G), and let H be a linear �-tree containing G as a subgraph. By
Lemma 2.16, we may assume VG = VH . By Lemma 2.37 there is a zero forcing set Z
of order � for H. Then Z is a CCR-	Z
 zero forcing set for G (a hop can be used in G
whenever v forces u in H and {v, w} /∈ EG). Thus, CCR-	Z
(G) ≤ Z(H) ≤ � = ppw(G).

Now let k = CCR-	Z
(G), and let Z be a CCR-	Z
 zero forcing set of G with |Z| = k.
Let VG \ Z = {u1, . . . , un−k} where ui is the ith vertex to turn black (under one particular
forcing order that turns all the vertices black). Construct an increasing sequence of linear
k-trees Hi on subsets of the vertices of G as follows. Let H1 be the complete graph on
Z ∪ {u1}. For each i = 2, . . . , n − k, construct Hi from Hi−1 by adding ui to the vertex
set and adding all the edges between ui and the k vertices that were active when ui was
forced. It is clear that H1 is a linear k-tree, and the active vertices after H1 is constructed
include a vertex of degree k. If Hi−1 is a linear k-tree and the active vertices after Hi−1 is
constructed include a vertex of degree k, then the same is true of Hi. Thus, each Hi is a
linear k-tree. Since Hn−k contains G as a subgraph, ppw(G) ≤ k = CCR-	Z
(G). �
Theorem 2.39. 	Z
 is the CCR-	Z
 zero forcing parameter. In other words, for every
graph G having at least one edge, ppw(G) = 	Z
(G) = CCR-	Z
(G).
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Proof. We show that for every graph G, 	Z
(G) ≤ CCR-	Z
(G) and CCR-	Z
(G) ≤
	Z
(G).

Let G be a graph and let Z be a CCR-	Z
 zero forcing set such that |Z| = CCR-	Z
(G).
Construct a graph G′ by adding the edge {u, w} for each hop from u to w. Then Z
is a CCR-Z zero forcing set for G′, so Z(G′) ≤ |Z| = CCR-	Z
(G). Since G � G′,
	Z
(G) ≤ CCR-	Z
(G).

Let k = 	Z
(G). There exists G′ such that G � G′ and Z(G′) = k. Since
CCR-	Z
(G′) ≤ Z(G′), G′ is a partial linear k-tree by Theorem 2.38. Since G � G′,
G is a partial linear k-tree by Observation 2.17. Then by Theorem 2.38, CCR-	Z
(G) ≤
k = 	Z
(G). �

Whereas M, M+, Z, Ẑ, Z�, and Z+ take the sum over connected components, many
minor monotone parameters take the maximum. For example, if G is the disjoint union
of connected components Gi, i = 1, . . . , k, then μ(G) = maxk

i=1 μ(Gi) [36], ν(G) =
maxk

i=1 ν(Gi) [15], ξ (G) = maxk
i=1 ξ (Gi) [6], and tw(G) = maxk

i=1 tw(Gi) (clear from
the definition). Theorem 2.39 can be used to establish a similar result for 	Z
.

Corollary 2.40. If Gi, i = 1, . . . , k are the connected components of a graph G, then
	Z
(G) = maxk

i=1	Z
(Gi).

Proof. Order the components so that 	Z
(Gi) ≥ 	Z
(Gi+1), i = 1, . . . , k − 1. Let Zi

be a CCR-	Z
 zero forcing set of minimum size for Gi. Let Z = Z1. Then Z can force
all the vertices in G1. There are still |Z| active vertices, which can force the vertices
in Z2 by hopping. Continuing in this manner, all vertices in G can be forced. Thus,
	Z
(G) ≤ 	Z
(G1). Since G1 is a minor of G, 	Z
(G1) ≤ 	Z
(G). �

The color change rule for 	Z�
 can be thought of as CCR-Z� with hopping.

Definition 2.41.

CCR-	Z�
 If u is black and exactly one neighbor w of u is white, then change the
color of w to black. If w is white, w has a neighbor, and every neighbor of w is
black, then change the color of w to black. If u is black, all neighbors of u are
black, and u has not yet performed a force, then change the color of any white
vertex w to black (this does not require that u have any neighbors).

The color change rule CCR-	Z�
 gives an associated zero forcing parameter whose
value on a graph G is denoted by CCR-	Z�
(G), although by Theorem 2.45 below this
may be shortened to 	Z�
(G). As with CCR-	Z
, an active vertex is a black vertex that
has not performed a force and the number of active vertices remains constant.

Observation 2.42. For any graph G, δ(G) ≤ CCR-	Z�
(G).

The proofs of Lemma 2.43 and Theorems 2.44 and 2.45 are very similar to the proofs
of Lemma 2.37 and Theorems 2.38 and 2.39, and are omitted.

Lemma 2.43. Let H be a k-caterpillar with k ≥ 1 constructed inductively by starting
with Kk+1 and at each stage adding a new maximal clique by adjoining a new vertex
to the k vertices of some facet of the maximal clique added at the previous stage. Then
Z�(H) = k and a set consisting of all but one of the vertices in the last maximal clique
added is a CCR-Z� zero forcing set.
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Theorem 2.44. For any graph G having at least one edge, CCR-	Z�
(G) is the minimum
k for which G is a subgraph of a k-caterpillar, i.e., CCR-	Z�
(G) is equal to the path-width
of G.

Theorem 2.45. 	Z�
 is the CCR-	Z�
 zero forcing parameter. Thus, for every graph
having at least one edge, pw(G) = CCR-	Z�
(G) = 	Z�
(G).

Corollary 2.46. If Gi, i = 1, . . . , k are the connected components of a graph G, then
	Z�
(G) = maxk

i=1	Z�
(Gi).

Remark 2.47. The value a minor monotone floor takes on a single graph is a minimum
over an unbounded collection of graphs, which naively requires an infinite calculation,
whereas a parameter defined by a color change rule has a finite-time algorithm. Of the
four zero forcing parameters Z, Ẑ, Z�, and Z+, we define a color change rule for the mi-
nor monotone floors of all but Ẑ. However, since 	Z
(G) = ppw(G), 	Z�
(G) = pw(G),
	Z�
(G) ≤ 	Ẑ
(G) ≤ 	Z
(G), and pw(G) ≤ ppw(G) ≤ pw(G) + 1 [32], 	Ẑ
(G) is al-
ways equal to at least one of 	Z�
(G) or 	Z
(G).

The following color change rule for 	Z+
 can be thought of as forcing with decompo-
sition and hopping.

Definition 2.48.

CCR-	Z+
 Let B be the set consisting of all the black vertices. Let W1, . . . ,Wk be
the sets of vertices of the k components of G − B (note that it is possible that
k = 1). For each component 1 ≤ i ≤ k, let Ci ⊆ B be the subset of black vertices
that are considered to be “active” with regard to that component. (Initially, each
Ci = B = Z.) If u ∈ Ci, w ∈ Wi, and u has no white neighbors in G[Wi ∪ B] − w,
then change the color of w to black. (This allows for either a normal forcing move,
or a hop from u to w.) To each connected component of G[Wi] − w, associate a
new active set equal to (Ci \ {u}) ∪ {w}.

The color change rule CCR-	Z+
 gives an associated zero forcing parameter whose
value on a graph G is denoted by CCR-	Z+
(G), although by Theorem 2.51 below
this may be shortened to 	Z+
(G). Note that for every component the number of active
vertices in B is the same (and equal to the number of vertices in the zero forcing set).

Lemma 2.49. Let H be a two-sided k-tree. If K is a k-clique such that K contains a
vertex of degree k or H − VK contains more than one component, then VK is a CCR-Z+
zero forcing set. Thus, Z+(H) = k.

Proof. Since H is a k-tree, Kk+1 is a subgraph of H, so k = ν(Kk+1) ≤ ν(H) ≤
M+(H) ≤ Z+(H). We show by induction on |H| that the set of vertices VK of any k-
clique K satisfying the hypothesis is a CCR-Z+ zero forcing set. The result is clear if H is
Kk+1. Assume true for all two-sided k-trees of order less than |H|. Let K be a k-clique such
that (1) K contains a vertex of degree k or (2) H − VK contains more than one component.
Case 1: If VK contains a vertex v of degree k, then v can force its one neighbor w that is
not in VK . By the construction of a two-sided k-tree, H − v is a two-sided k-tree in which
S = (VK \ {v}) ∪ {w} induces a k-clique that contains a vertex of degree k or (H − v) − S
contains more than one component. Case 2: If H − VK has more than one component,
let W1, . . . ,Wr be the vertices of the components of H − VK . Then for each i = 1, . . . , r,
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K has a vertex of degree k in H[K ∪ Wi]. In either case the problem is reduced and the
induction hypothesis completes the proof. �

The proofs of Theorems 2.50 and 2.51 are very similar to the proofs of Theorems 2.38
and 2.39, and are omitted.

Theorem 2.50. For any graph G, CCR-	Z+
(G) is the minimum k for which G is a
subgraph of a two-sided k-tree, i.e., CCR-	Z+
(G) = tstw(G).

Theorem 2.51. 	Z+
 is the CCR-	Z+
 zero forcing parameter. Thus, la(G) =
tstw(G) = CCR-	Z+
(G) = 	Z+
(G).

Corollary 2.52. For every graph G, tw(G) ≤ 	Z+
(G).

Corollary 2.53. If Gi, i = 1, . . . , k, are the connected components of a graph G, then
	Z+
(G) = maxk

i=1	Z+
(Gi).

We will now define the most complicated zero forcing parameter with the broadest
allowable moves, thus giving the lowest numerical value. We will prove that this parameter
is equivalent to tree-width. The proof is based on the cops-and-robber game [8].

In the usual description of the game, there is a single robber who moves with unlimited
speed from vertex to vertex of a graph G, only along edges, while the cops are slower
but move by way of helicopter (that is, they are not constrained to travel along edges). If
the robber and a cop ever occupy the same vertex simultaneously, the robber is caught;
in particular, at any given time the robber is confined to one component of the graph
obtained by deleting the vertices occupied by cops. All parties know the positions of
all others: the robber is visible to the cops, and can see in turn where a cop traveling
by helicopter is going to land. The cops win the game by restricting the freedom of
the robber until there is nowhere left to run. It is not hard to see that the cops gain no
advantage by ever having more than one helicopter in the air at a time, and it can also
be shown that without loss of generality a winning strategy for the cops monotonically
restricts the freedom of the robber, or in other words never allows the robber to revisit a
vertex that has once been occupied by a cop [8].

Formally, the game can be played in discrete time by two players (C and R) as follows:
First, Player C places all but one of the cops on a subset Z of the vertices of G, and Player
R then selects one component of G − Z on which the robber is understood to be traveling
freely. From then on, each complete turn proceeds as follows: Player C announces the
vertex w on which the airborne cop is about to land; then Player R, whose robber is
currently confined to a subgraph W of G, selects a component X of W − w in which
to remain once the cop has landed; then Player C chooses a vertex u from which a cop
will take to the air. (Choosing the vertex u potentially increases the size of the robber’s
component, but only, without loss of generality, if the cops have no winning strategy [8]).

Theorem 2.54. [8,29] The tree-width of a graph G is one less than the minimum number
of cops for which Player C has a winning strategy on G.

A winning strategy for the cops-and-robber game is equivalent to obtaining VG as a
derived set for the color change rule below. The set B of black vertices corresponds to
all vertices that have ever been occupied by a cop, with the current position of the cops
(other than one in the air) given by a set Ci that depends on which component Wi of G − B
the robber is in.
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Definition 2.55.

CCR- tw Let B be the set consisting of all the black vertices. Let W1, . . . ,Wk be
the sets of vertices of the k components of G − B (note that it is possible that
k = 1). For each component 1 ≤ i ≤ k, let Ci ⊆ B be the subset of black vertices
that are considered to be active with regard to that component. (Initially, each
Ci = B = Z.) Suppose that w is a vertex in Wi such that for each component X of
G[Wi] − w, there is a vertex uX ∈ Ci with no white neighbors in G[VX ∪ B]. Then
change the color of w to black and, to each component X , associate a new active
set equal to (Ci \ {uX }) ∪ {w}.

This provides for one complete turn of a winning strategy for the cops: Player C
announces that the cop in the air will land at vertex w, knowing that for any component
X of G[Wi] − w the robber then chooses there is a vertex uX ∈ Ci that the robber cannot
reach from X (because uX has no white neighbors in the graph G[VX ∩ B]). This will
allow the cop at uX to leave and become the cop in the air.

After w is added to B, the vertex sets of the components of G − B will be the same
except for a partition of Wi \ {w}. The only difference between CCR-	Z+
 and CCR- tw
is that in CCR-	Z+
 u is not allowed to depend on X , whereas in CCR- tw the forcing
vertex uX depends on what the components of G − B will be at the end rather than
the beginning of the step. The difference of one time step can be compensated for by
allowing one more vertex in the initially black set Z; it is a consequence of Corollary 2.57
(see below) and Theorems 2.51 and Colin de Verdière’s result [15] that for any graph
G, tw(G) ≤ la(G) ≤ tw(G) + 1, and that CCR- tw(G) is less than CCR-	Z+
(G) by at
most 1.

Lemma 2.56. The minimum number of cops required to catch the robber in a game of
cops and robber on G is equal to CCR- tw(G) + 1.

Proof. We prove an inequality in each direction. Let Z be a set of k vertices of G
that is a CCR- tw zero forcing set. Player C starts with k cops on the vertices of Z and
one in the air, and starts at the beginning of the complete list of zero forcing moves.
At the beginning of each complete turn, Player C looks through the list of zero forcing
moves to the step that involves the set of vertices Wi in which the robber is currently
trapped, and announces that the cop in the air will land at w. Player R must then choose
which component X the robber will flee to, and Player C then removes the cop from
the corresponding vertex uX . Since VG is a derived set of black vertices starting from Z,
eventually the list Wi is empty, implying that the robber has been caught.

Suppose, on the other hand, that a winning strategy for Player C using k + 1 cops
is known, which without loss of generality monotonically reduces the freedom of the
robber. Let Z consist of the k starting positions (not including the helicopter) of the cops
in this winning strategy, and color these vertices black. At any stage of the zero forcing,
let B be the set of black vertices. Unless B = VG, let Wi be some component of G \ B,
and assume by way of induction that all vertices in the set Ci considered active for Wi

are occupied by cops at a stage of the game when the robber is trapped in Wi. Let w be
the next winning move (choice of vertex) that Player C should then announce. For any
choice X that Player R can make of a component of G[Wi] − w, the strategy guarantees
a vertex uX in Ci holding a cop who will be able, once w is occupied, to take off in a
helicopter without increasing the freedom of the robber. This implies that for each X ,
the vertex uX has no white neighbors in G[B ∪ VX ], and thus it is a legal CCR-tw move
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to color w black and associate with each X the new active set (Ci \ {uX }) ∪ {w}. Since a
cop lands at w and another cop takes off from uX , these choices preserve the induction
hypothesis, and so we may continue to color vertices black until B = VG. �

Theorem 2.54 and Lemma 2.56 together justify the name CCR- tw.

Corollary 2.57. For any graph G, CCR- tw(G) = tw(G).

Remark 2.58. The cops-and-robber game is changed considerably if the location of
the robber is not known to the cops, so that instead of adapting their strategy based on
a known component Wi, they must systematically search the entire graph. Instead of
requiring one more cop than the tree-width of G, it is known that for the invisible robber
game the number of cops required is exactly one more than the path-width of G, and that
a winning strategy is without loss of generality monotone [24]. Indeed, Theorem 2.44 can
be proved either by following the proof of Theorem 2.38 or by showing, in the same way
as Lemma 2.56, that having VG as a derived set under CCR-	Z�
 starting with k vertices
is equivalent to a monotonic winning strategy for k + 1 cops to catch an invisible robber.

3. OPEN PROBLEMS

A major long-standing open question involves the relationship of minimum degree to
maximum nullity, in various forms.

Question 3.1.
� Is Conjecture 2.13, �δ
(G) ≤ ν(G), true?
� Is Maehara’s conjecture, δ(G) ≤ M+(G), true?
� Is the delta conjecture, δ(G) ≤ M(G), true?

As noted earlier, M, Z, and many other parameters sum their values over components.
However, the Colin de Verdière parameters and minor monotone floors of zero forcing
parameters take the maximum over components. This leads to the related questions for
minor monotone floors of maximum nullity parameters.

Question 3.2. Suppose Gi, i = 1, . . . , k are the connected components of a graph G.

� Does 	M
(G) = max
i=1,...,k

	M
(Gi)?
� Does 	M+
(G) = max

i=1,...,k
	M+
(Gi)?

Recall that given a graph G, we can realize 	Z
(G) as Z(G′) where G′ is obtained from
G by adding certain edges, and similarly for 	Z�
 and 	Z+
. Whenever this is true, the
minor monotone floor can be algorithmically computed.

Question 3.3. Let G be a graph.

� Is G a subgraph of a graph G′ with VG = VG′ and 	Ẑ
(G) = Ẑ(G′)?
� Is G a subgraph of a graph G′ with VG = VG′ and 	M
(G) = M(G′)?
� Is G a subgraph of a graph G′ with VG = VG′ and 	M+
(G) = M+(G′)?

For some parameter pairs, it is known that the discrepancy p(G) − q(G) is at most
1; this is true, for example, of ppw(G) − pw(G). For discrepancies between M and
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other parameters such as Z, it is often easy to see that if there is a graph where the
discrepancy is nonzero, then the discrepancy cannot be bounded (for example, by taking
disjoint unions). However, many of the minor monotone parameters take the maximum
over components rather than the sum. Thus, it is not obvious that the discrepancy is
unbounded, and there are several such lines in the diagram. The tree G13 in Example A.11
has 	M
(G13) − ξ (G13) = 1, and we do not know an example with a higher discrepancy.

Question 3.4. Is 	M
(G) − ξ (G) bounded?

Our last question relates to the lower label ?3.5 on the line between 	M+
 and ν(G)

in Fig. 1.

Question 3.5. Does there exist a graph G for which 	M+
(G) > ν(G)?

It is usually difficult to compute 	M
(G) or 	M+
(G), because computing a minor
monotone floor without a zero forcing rule is challenging. In Example A.11, the difference
between 	M
(G) and ξ (G) occurs for very low values of these parameters, where we
were able to use the characterization in Johnson et al. [22] of all graphs having M(G) ≤ 2.
Since the forbidden minors for 	Z+
(G) = la(G) ≤ 2, namely K4 and T3, are the same
as the forbidden minors for ν(G) ≤ 2 [23], it follows that if 	M+
(G) > ν(G), then
ν(G) ≥ 3, and quite possibly much larger. Notice that Example A.20, which shows
a difference between 	Z+
 and 	M+
, has 	M+
(H) = 10, whereas the pentasun has
	Z
(H5) > 	M
(H5) = 2.

APPENDIX: EXAMPLES

Before we discuss non-equality and non-comparability of parameters, we exhibit a
family of graphs for which all the parameters discussed are equal.

Example A.1. Let L be a linear 2-tree. Then Z(L) = 2, κ(L) = 2, P(L) = 2, and
h(L) = 3 so h(L) − 1 = 2. Thus, all the parameters in Fig. 1 are equal.

A. Examples for Non-equality between Parameters

We now give additional examples to show that all but possibly one of the inequalities
displayed in Fig. 1 are strict.

Example A.2. In K2s the vertices can be covered by s disjoint edges and no three vertices
can be on the same induced path, so for s ≥ 2, P(K2s) = s < 2s − 1 = h(K2s) − 1 =
M(K2s).

Example A.3. It was shown in Example 2.25 that Ẑ(H5) = 2, where H5 is the graph in
Fig. 4. 	Z
(H5) = 3 = Z(H5) because any three leaves are a zero forcing set, and H5 is
not a subgraph of a linear 2-tree [22] so it has proper path-width of at least 3. Since for
any graph G that is not a path, M(G) ≥ 2 and Ẑ(G) ≥ M(G), Ẑ(G) = 1 if and only if G
is a path. Thus, 	Ẑ
(H5) = 2, since H5 is not a minor of a path and 	Ẑ
(H5) ≤ Ẑ(H5).
Since C5 is a subgraph of H5, �δ
(H5) = 2 > 1 = δ(H5) and �κ
(H5) = 2 > 1 = κ(H5).
Since a path can contain at most two leaves, P(H5) = 3 > M(H5) = 2.

Observation A.4. The graph H5 satisfies Ẑ(H5) < Z(H5), 	Ẑ
(H5) < 	Z
(H5),
δ(H5) < �δ
(H5), and κ(H5) < �κ
(H5).
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For the graph G6 on the left in Fig. 2, it was shown in Example 2.9 that
M+(G6) = 3 and 	M+
(G6) = 2, and in Example 2.35 that 	Z
(G6) ≤ 2. Thus,
	M+
(G6) = 	M
(G6) = 	Z+
(G6) = 	Z�
(G6) = 	Ẑ
(G6) = 	Z
(G6) = 2. Further-
more, Z(G6) ≤ 3, since {1, 2, 4} is a CCR-Z zero forcing set. Thus, M+(G6) = M(G6) =
Z+(G6) = Z�(G6) = Ẑ(G6) = Z(G6) = 3. Observe that δ(G6) = 2 > 1 = κ(G6).

Observation A.5. The graph G6 satisfies 	Z+
(G6) < Z+(G6), 	Z�
(G6) < Z�(G6),
	Ẑ
(G6) < Ẑ(G6), 	Z
(G6) < Z(G6), 	M+
(G6) < M+(G6), 	M
(G6) < M(G6), and
κ(G6) < δ(G6).

As shown in Example 2.29, M(K1,3) = Ẑ(K1,3) = Z(K1,3) = 2 and Z�(K1,3) =
1. Since 1 ≤ M+(G) ≤ Z+(G) ≤ Z�(G) for every G, M+(K1,3) = 	M+
(K1,3) =
	Z�
(K1,3) = 1. 	M
(K1,3) = 2 because K1,3 is not a minor of a path, so 	Ẑ
(K1,3) = 2
also. In addition, h(K1,3) − 1 = 1 < 2 = μ(K1,3).

Observation A.6. The star K1,3 satisfies M+(K1,3) < M(K1,3), Z�(K1,3) < Ẑ(K1,3),
	M+
(K1,3) < 	M
(K1,3), 	Z�
(K1,3) < 	Ẑ
(K1,3), and h(K1,3) − 1 < μ(K1,3).

For the tree Y2 in Fig. 5, Z+(Y2) = 1 < 2 = Z�(Y2) was established in Examples
2.26 and 2.30. We also have 	Z+
(Y2) = 1 because 1 ≤ 	Z+
(Y2) ≤ Z+(Y2), and
	Z�
(Y2) = 2 because 	Z�
(Y2) ≤ Z�(Y2) = 2 and no one vertex can force all the others
using CCR-	Z�
.

Observation A.7. The tree Y2 satisfies Z+(Y2) < Z�(Y2) and 	Z+
(Y2) < 	Z�
(Y2).

Observation A.8. The graph G shown in Fig. A.1 establishes that the inequalities
μ(G) ≤ ξ (G) and ν(G) ≤ ξ (G) can be strict, since ξ (G) = 3 > 2 = μ(G) = ν(G)

(see [6]).

For the supertriangle T3 in Fig. 3(d), �δ
(T3) ≤ tw(T3) = 2 since T3 is a 2-tree, but
	Z+
(T3) ≥ ν(T3) = 3 [15].

Observation A.9. The supertriangle T3 satisfies tw(T3) < 	Z+
(T3) and �δ
(T3) <

ν(T3) (the latter shows that the conjectured inequality �δ
(G) ≤ ν(G) can be strict).

Observation A.10. The graph K4 satisfies P(K4) = 2 < 3 = Z(K4).

Example A.11. We show that the tree G13 on 13 vertices shown on the left in Fig. A.2
has 	M
(G13) = 3. In Johnson et al. [22, Theorem 5.1, Lemma 3.4] it is shown that if
M(G) ≤ 2, then G is a partial linear 2-tree or one of the exceptional graphs listed in
Appendix B of Johnson et al. [22]. In the terminology of Takahashi et al. [31], G13 is the
star-composition of three copies of K1,3, and it is shown there that G13 is a forbidden minor

FIGURE A.1. The graph G for Observation A.8.
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FIGURE A.2. The tree G13 and the graph G′ for Example A.11.

for partial linear 2-trees (this also follows from the software-verifiable fact that no two
vertices of G13 are a CCR-	Z
 zero forcing set). G13 is not a minor of any of the exceptional
graphs because G13 has nine leaves, and the maximum number of leaves in a connected
minor of any of the exceptional graphs is seven. Thus, 	M
(G13) ≥ 3. Since G13 is a
minor of the graph G′ shown on the right in Fig. A.2, 	M
(G13) ≤ M(G′) ≤ Z(G′) ≤ 3
(a top vertex with one of its neighbors, plus the pendant vertex, is a zero-forcing set).
Thus, 	M
(G13) = M(G′) = 3.

In Barioli et al. [6, Theorem 3.7] it is shown that any tree T that is not a path has
ξ (T ) = 2, so ξ (G13) = 2.

Observation A.12. The tree G13 satisfies ξ (G13) < 	M
(G13). This also shows that the
Strong Arnold Hypothesis imposes additional restrictions beyond minor monotonicity.

For the 4-antiprism G8 in Fig. A.3, �κ
(G8) ≥ κ(G8) = 4 but h(G8) − 1 ≤ 3 because
G is planar and thus 3 ≥ μ(G8) ≥ h(G8) − 1.

Observation A.13. The graph G8 satisfies h(G8) − 1 < �κ
(G8).

Example A.14. We show that the graph V8 in Fig. A.4 (also known as Möbius ladder
of order 8) has �δ
(V8) = 3. If δ(G′) ≥ 4, then |EG′ | ≥ 2|G′|, and this is impossible to
achieve in a minor of V8, since if δ(G′) ≥ 4, then |G′| ≥ 5, |EV8 | = 12, |V8| = 8, and a
contraction reduces the number of edges by at least 1 and the number of vertices by 1,
an edge deletion reduces the number of edges by 1 and the number of vertices stays the
same, and in order to delete an isolated vertex, the edges incident with the vertex would
first have to be deleted.

FIGURE A.3. The 4-antiprism G8.

FIGURE A.4. The graph V8 for Example A.14.
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It is well-known that V8 is a forbidden minor for tw(G) ≤ 3 (see, for example, [11,
F33 p. 112]), so tw(V8) ≥ 4.

Observation A.15. The graph V8 satisfies �δ
(V8) < tw(V8).

For a graph G, an orthogonal representation of G of dimension d is a set of vectors in R
d ,

one corresponding to each vertex, with the property that if two vertices are nonadjacent,
then their corresponding vectors are orthogonal. A faithful orthogonal representation of
G of dimension d is an orthogonal representation such that if two vertices are adjacent,
then their corresponding vectors are not orthogonal. In the minimum rank literature, the
term “orthogonal representation” is often used for what is here called a faithful orthogonal
representation, following the notation of Lovász et al. [25].

Example A.16. Mader [27, Fig. 7] exhibits the order 12 graph M12 shown in Fig. A.5
having �δ
(M12) = 5 and �κ
(M12) = 4. This graph is constructed from two copies of
C4 ∨ K2 (octahedron-plus-axis) by attaching one vertex of each C4 to the three remaining
vertices of the opposite C4 (in Fig. A.5, the 4-cycles are (1,2,3,4) and (7,8,9,10)).

It is not difficult to verify that the claimed values of �δ
 and �κ
 hold for Mader’s
graph, and we also show 	Z
(M12) = ν(M12) = 5, thereby also determining the values
of all the parameters in between. Every vertex has degree at least 5, so �δ
(M12) ≥ 5.
Since Z = {1, 2, 5, 6, 7} is a CCR-	Z
 zero forcing set for M12, 	Z
(M12) ≤ 5. Thus,
�δ
(M12) = 	Z
(M12) = 5. The two degree-7 vertices separate M12, so any minor G′ of
M12 with κ(G′) > 2 must lose all vertices to one side of the separation. Thus, G′ must
be a minor of one copy of C4 ∨ K2 plus a single vertex attached to all of C4. Any further
contraction to remove the degree-4 vertex leaves at most six vertices, but does not leave
K6. The minor G′ consisting of one copy of C4 ∨ K2 plus a single vertex attached to all
of C4 has κ(G′) = 4, thus �κ
(M12) = 4.

FIGURE A.5. The graph M12 for Example A.16.
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The matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 −1 −1 −1 0 0
0 1 1 1 0 0 1 1 1 1 0 0
1 1 −1 −2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 −2 1 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

gives a faithful orthogonal representation of M12. Note that BT B ∈ S(M12) and
null BT B = 5. It is straightforward (e.g., using a computer mathematics system) to
show that BT B satisfies the Strong Arnold Hypothesis. Thus, ν(M12) ≥ 5 and since
ν(M12) ≤ 	Z
(M12) = 5, ν(M12) = 5.

Observation A.17. The graph M12 satisfies �κ
(M12) < �δ
(M12) and �κ
(M12) <

ν(M12).

In order to provide an example of a graph having tree-width greater than maximum
nullity (Example A.20 below), we need some additional terminology and results. Let
G = (VG, EG) be a graph and let U,W ⊆ VG. We say U is connected if the subgraph
induced by U is connected, and U and W touch if U ∩ W �= ∅ or there exist u ∈ U, w ∈ W
such that {u, w} ∈ EG. A bramble is a set of mutually touching connected subsets of
vertices. A subset S is a cover of a bramble B if for all U ∈ B, S ∩ U �= ∅. The order of
a bramble B is the minimum number of vertices in a cover of B. For a positive integer
k, a graph G has tw(G) ≥ k if and only if G has a bramble of order greater than k [16,
Theorem 12.3.9].

Proposition A.18. If C4 is not induced in G, then EG is a bramble of G.

Proof. Let {u, v}, {x, y} ∈ EG. If {u, v} and {x, y} do not touch, then G[{u, v, x, y}] =
2K2 and G[{u, v, x, y}] = C4, a contradiction. �

Theorem A.19. If girth(G) ≥ 5, then tw(G) ≥ |G| − 3.

Proof. Neither K3 nor C4 is induced in G. By Proposition A.18, EG is a bramble
of G. Let S ⊆ VG with |S| ≤ |G| − 3. Let x, y, z ∈ VG\S. Since K3 is not induced in G,
G[{x, y, z}] contains an edge of G. Therefore S does not cover EG. So the order of the
bramble EG is greater than |G| − 3. Thus, by the bramble characterization of tree-width,
tw(G) ≥ |G| − 3. �

Example A.20. The Heawood graph H is shown in Fig. A.6; we consider its complement
H. It is well-known that H is the incidence graph of the Fano projective plane (the
numbering in Fig. A.6 follows Barioli et al. [4, Fig. 4.1] with vertices 1–7 interpreted
as the lines and vertices 8–14 interpreted as points). Any matrix in S(H) has the form

[ ∗ XF
XT

F ∗ ] where * indicates every entry is nonzero (except possibly on the diagonal) and

XF is the zero–nonzero pattern of the complement of the incidence pattern in the Fano
projective plane. So by Barioli et al. [4, Theorem 3.1], mr+(H) = mr(H) is equal to
the minimum of the ranks of the (not necessarily symmetric) matrices described by
XF , i.e., mr+(H) = mr(H) = 4, so M+(H) = M(H) = 10. This further implies that
	M
(H) ≤ 10 and 	M+
(H) ≤ 10.
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FIGURE A.6. The Heawood graph H.

Since girth(H) = 6, tw(H) ≥ 11 by Theorem A.19. But H is a subgraph of the 11-tree
obtained from K14 by deleting the three edges {1, 9}, {1, 10}, and {2, 10}, so tw(H) ≤ 11.
Thus, tw(H) = 11. This further implies that 	Z+
(H) ≥ 11, 	Ẑ
(H) ≥ 11, Z+(H) ≥ 11,
and Ẑ(H) ≥ 11.

Observation A.21. The graph H satisfies 	M+
(H) < 	Z+
(H), M+(H) < Z+(H),
	M
(H) < 	Ẑ
(H), and M(H) < Ẑ(H).

B. Noncomparability of Parameters

In this section we show that with the exception listed in Remark A.23, if the param-
eters p and q are not joined by a monotone sequence of lines in Fig. 1, then they are
noncomparable. Call (p, q) a minimal pair if

TABLE A.1. Minimal pairs.

p q Graph Example #

P h − 1 K2s, s ≥ 2 A.2

P κ K2s, s ≥ 2 A.2

Ẑ P H5 A.3, 2.25

	Z
 P G6 2.9, 2.35

Ẑ 	Z
 H5 2.25, A.4

	Z
 M+ G6 2.9, 2.35

Z+ 	Z�
 Y2 2.26, A.7

* M tw H A.20

tw ν T3 A.9

Z� μ K1,3 2.29

μ κ G8 A.13

* �κ
 δ M12 A.16

δ h − 1 paw A.22

*(M,tw) and (�κ
, δ) are minimal pairs if Conjecture 2.13 is true.
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FIGURE A.7. The paw.

� p is not above q;
� for every parameter p′ above p, p′ is above q;
� for every parameter q′ below q, q′ is below p.

It is sufficient to provide an example of a graph p(G) < q(G) for each minimal pair
(p, q), since for any pair (a, b) with a not above b, there is a minimal pair (p, q) such
that a(G) ≤ p(G) and q(G) ≤ b(G). Table A.1 below identifies examples for a complete
list of minimal pairs, modulo the exceptions listed in Remark A.23. One final example is
needed.

Example A.22. The paw, shown in Fig. A.7, has minimum degree equal to 1 and
Hadwiger number equal to 3.

Remark A.23. Conjecture 2.13 states that for all G, �δ
(G) ≤ ν(G), so we do not have
an example of a graph G such that ν(G) < �δ
(G). Since we do not have an example of
a graph G such that ν(G) < 	M+
(G), we do not have an example of a graph G such
that ξ (G) < 	M+
(G).
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