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 

Abstract—To effectively solve the electromagnetic scattering or 

radiation properties from the perfect electric conductor (PEC) 

objects containing closed-open surface junctions, how to establish 

the hybrid combined field integral equation-electric field integral 

equation (CFIE-EFIE) is studied, which is different with the 

existing scheme for the objects where the closed and open parts are 

separate. Further, it is found that when the integral equation is 

solved using the method of moments (MoM), if the widely used 

RWG basis functions are employed to expand the induced surface 

current, the CFIE-EFIE may give inaccurate numerical results for 

the objects containing fine structures. The numerical accuracy can 

be improved by introducing the linear-linear (LL) basis functions. 

Moreover, to pursue a high computational efficiency, the LL and 

RWG basis functions are simultaneously used to expand the 

current on the fine structures and other relatively smooth surfaces 

respectively, whose validity is verified by numerical results. 

 
Index Terms—Basis functions, iterative solution, method of 

moments, surface integral equations. 

 

I. INTRODUCTION 

N the analysis of electromagnetic (EM) scattering or 

radiation properties, the integral equations in conjunction of 

the method of moments (MoM) are competitive approaches [1], 

[2]. During the numerical modeling of perfect electric 

conductor (PEC) objects which often contain both open and 

closed surfaces, traditionally, the electric field integral equation 

(EFIE) is formulated due to its independence of the surface type 

[3]. Unfortunately, for the closed PEC part, using the EFIE 

alone may encounter the interior resonance problem. Moreover, 

discretizing the EFIE which is a first-kind Fredholm integral 

equation usually yields an ill-conditioned matrix equation that 

is difficult to converge during the iterative solution. To avoid 

the interior resonance problem as well as to improve the matrix 

condition, some articles proposed the so-called hybrid 

combined field integral equation-electric field integral equation 

(CFIE-EFIE) [4]-[7]. That is, on the closed PEC parts of the 

objects establish the second-kind CFIE [8], which is derived 

from the linear combination of the EFIE and the magnetic field 

integral equation (MFIE), while the open parts still keep the 

EFIE. When the major part of the object is closed, the hybrid 

CFIE-EFIE can improve the solving efficiency substantially. 
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Nevertheless, the existing articles only presented the 

discussions when the closed and open parts are separate [4]-[7], 

or dealt with the surface-wire junctions [9], [10]. For the objects 

containing closed-open surface junctions, the derivation of a 

rational CFIE-EFIE is more complicated, which will be shown 

in Section II of this letter. 

In the process of MoM solution, the induced surface current 

is expanded with a series of basis functions. Because of the 

convenience of discretizing arbitrary surfaces and the quality of 

being free of pseudo line charges, the divergence-conforming 

RWG basis functions based on triangular patches are being 

widely used [3]. However, with the RWG basis functions, the 

numerical results from the MFIE are usually not as accurate as 

that from the EFIE [11]-[13]. This phenomenon will be more 

obvious when the calculated objects contain sharp edges or tips. 

Some researchers focused on looking for the reasons of this 

inaccuracy, such as the singularities arising in the outer 

integrals [11], [12], the improper expression of solid angle [13], 

and so on. Among them, the most likely one is that for the MFIE, 

the solution accuracy strongly depends on the quality of the 

current expression, while the “constant-normal” and “linear-

tangential” RWG basis functions cannot properly represent an 

arbitrarily continuous current distribution [14], [15]. To 

overcome this problem, lots of novel basis functions were 

proposed [16]-[22]. The set of curl-conforming ˆ RWGn  basis 

functions was used to improve the MFIE accuracy, while it is 

not suitable for the solution of CFIE [16], [17]. The monopolar-

RWG basis functions were proposed in [18] for the sharp-edged 

objects accurately solved by the MFIE, and were then combined 

with the RWG basis functions to form a hybrid discretization 

scheme for the CFIE implementation by setting the monopolar-

RWG for those edges between non-coplanar triangles and the 

RWG for the others [19]. Besides, the linear-linear (LL) basis 

functions, also called as Trintinalia-Ling (TL) functions, which 

are “linear-normal” and “linear-tangential” and capable of 

expressing any linear current distribution, are attractive. The LL 

basis functions were first employed for the accurate solution of 

EFIE [20], and then extended to the MFIE and CFIE [21], [22]. 

It was shown that with the use of the LL functions, the results 

from the MFIE and CFIE can be significantly improved 

compared with the RWG functions. 
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However, since one LL basis function concurrently contains 

two linear vector functions associated with each common edge 

shared by two adjacent triangles, for a same object, the number 

of unknowns using the LL basis functions is the double of that 

using the RWG functions. As a result, the use of LL basis 

functions sacrifices the computational efficiency. As is well 

known, the distribution of induced current usually changes 

rapidly over the fine structures, while the change is slow for the 

smooth surfaces. Based on this fact, in this letter, the LL and 

RWG basis functions are simultaneously used to expand the 

surface current for the solution of the CFIE-EFIE, which will 

be established in Section II for the objects containing closed-

open surface junctions. To be more specific, the LL basis 

functions are used to express the current on the fine structures, 

while the RWG basis functions are on other relatively smooth 

surfaces. The validity of this strategy is verified in Section III. 

II. CFIE-EFIE FORMULATIONS AND LL BASIS FUNCTIONS 

Consider a PEC object in the free space that contains both 

closed surface Sc and open surface So, illuminated by an incident 

EM wave iE , iH  from an arbitrary direction. By vanishing the 

tangential component of total electric field, the EFIE is formed 

on all the open and closed surfaces [2], [3]. Imposing the 

boundary condition on the magnetic field over the closed 

surface Sc, the MFIE can be obtained and linearly added to the 

EFIE to form the so-called hybrid CFIE-EFIE as [4]-[6] 

    0CFIE EFIE MFIEr r      (1) 

where both α and β are r -dependent real combined coefficients, 

and η0 is the intrinsic impedance of the free space. In [5], it was 

stated that    1r r   , and  0 1r   when cr S  

while   1r   for or S . If the closed and open surfaces are 

totally separate, we can take the values of α and β like this 

without any doubt. On the contrary, however, if the object 

contains closed-open surface junctions where the closed and 

open surfaces have conjunct boundary, how to set up the values 

of α and β is worth further discussion. 

Using the Galerkin’s MoM, (1) is transformed into a 

generalized impedance matrix equation. During the current 

discretization, at the closed-open junctions, the basis functions 

are defined using the rule established in [23] to ensure no line 

charge accumulation. The matrix entry Zji, which denotes the 

interaction between the ith basis function 
if  whose domain is 

Si and the jth testing function jf  with domain Sj, is obtained by 
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where j 1  , ε0 and μ0 are the permittivity and permeability 

of the free space, P.V. means the principal value integral, S
  

denotes the surface divergence operation, and  ,G G r r  is 

the Green’s function in the free space. The jth element of the 

excitation vector is 
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ˆ
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j j j
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In (2), it is noticed that for the second term, the gradient 

operator is placed on the observation point r , leading to a two 

-order singularity during r r . To reduce the order of 

singularity, taking the surface Gauss theorem, the second term 

of (2) is usually transformed into 
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where ˆ
jSn

 denotes the outer-normal direction of ∂Sj, the 

boundary of Sj. Through this transformation, the singularity 

order is degraded to one. On the other hand, it is observed that 

the surface divergence operators are placed on not only the 

single  if r  but also the product    jr f r , both of which 

are then restricted to be divergence conforming. Under this 

restriction, if jr S  which belongs to a junctional region 

containing both the part of closed surface Sc and the part of open 

surface So, the value of  r  for cr S  and that for or S  

must be the same. In other words,  r  should be constant 

everywhere. Therefore, in the implementation, we set 
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        (5) 

while α0 is constant and 0<α0<1 (α0 = 0.5 in all numerical 

examples presented later). Please note that mathematically, the 

values of α and β in (2) depend on the position of observation 

point, but not the row number of the matrix equation as [4]-[6]. 

In the choice of basis functions to solve the CFIE-EFIE, 

because there is no accumulation of pseudo line charges, the 

divergence-conforming RWG basis functions are widely used 

[3]. However, as mentioned above, the set of RWG basis 

functions cannot express arbitrary current distribution, while 

the MFIE is sensitive to the accuracy of current expression. 

Therefore, if the CFIE-EFIE that contains MFIE is used to 

model the object, the use of RWG basis functions may lead to 

inaccurate results. To express the surface current more 

accurately, a set of LL basis functions has been developed [20]-

[22]. Similar to the RWG basis functions, the LL basis 

functions are also defined on pairs of adjacent triangles. The LL 

basis function shares the following two properties with the 

RWG basis function: 1) Its normal component on the common 

edge is continuous when across the common edge, while that 

on the non-common edges is strictly equal to zero. 2) Its surface 

divergence is piecewise uniform which is inversely 

proportional to the corresponding triangle area, accomplishing 

charge neutrality over the pair of adjacent triangular patches. 

Actually, adding the two linear functions of the ith LL function 

can obtain the ith RWG function. Due to this property, the 
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computational code using the LL basis functions can be 

obtained by modifying the conventional one using the RWG 

basis functions easily, while the LL and RWG basis functions 

can be simultaneously used to discretize objects without 

worrying about the mesh boundary continuity. 

III. NUMERICAL VALIDATIONS 

In the following calculations, the GMRES with a restart 

number 100 is used as the iterative solver to reach 0.001 

residual error [24]. All calculations are executed serially on a 

workstation with 3.2 GHz CPU and 16 GB RAM. 

In the first case, using the RWG basis functions, the bistatic 

radar cross section (RCS) at xoz plane of a PEC semisphere of 

radius 1.5λ clung to a square plate of side length 3.1λ, 

propagating along the negative z-axis, is calculated. After 

discretization with an average 0.1λ mesh size, the numbers of 

triangles on the closed semisphere part and the other open part 

are 5,304 and 576, respectively, which results in 8,805 

unknowns. The numerical results from the EFIE and CFIE-

EFIE (CFIE for the closed semisphere and EFIE for the 

remaining open part) are shown in Fig. 1. In addition, the CFIE-

EFIE result from the wrong choice of  r , i.e.,  r  is 0.5 

for cr S  and 1 for or S , is also given. It is observed that 

the results from the EFIE and CFIE-EFIE are almost in 

excellent agreement everywhere, while the result with wrong α 

shows a totally unacceptable difference. It states that for simple 

objects, the rational use of the CFIE-EFIE companied with the 

RWG basis functions can give reliable results. During the 

iterative solution, the CFIE-EFIE reaches the convergence with 

81 iterations and 1.6 s CPU time, about four times faster than 

the EFIE converged after 329 iterations with 6.1 s CPU time. 

On the other hand, if the area of the bottom plate becomes larger, 

the advantage of the CFIE-EFIE on the convergence speed will 

be weaker. That is to say, the CFIE-EFIE is actually effective 

only when the closed part occupies a main proportion of the 

calculated object. 

In the second case, the radiation patterns and the input 

impedances of a monopole mounted on the center of a PEC box 

are calculated at 300 MHz. The size of the box is 1 m × 1 m × 

0.1 m, and the length and width of the strip-shaped monopole 

are 0.25 m and 0.01 m, respectively. After discretizing, the 

number of triangles is 546. In the CFIE-EFIE implementation, 

the EFIE and CFIE are applied to the open PEC monopole and 

the six faces of the closed PEC box, respectively. The monopole 

is fed with a delta-function voltage source associated with the 

common edge that belongs to the closed-open surface junction. 

According to [25, (4.2)], the incident electric field within the 

edge can be expressed as 
iE    with the electric potential 

φ. From the Maxwell’s equation 0ji iE H   , we have 

0iH  . Therefore, when the integral in (3) is executed over the 

closed triangular patches that contains the feed edge, the second 

term of the kernel related to the magnetic field is zero. The 

calculated radiation patterns are shown in Fig. 2, while the input 

impedances as well as the computational details such as the 

numbers of unknowns and iterations are listed in Table I. For 

comparison, the result from the EM simulation software Altair 

FEKO [26] is also shown as the baseline. It is observed that 

compared with the FEKO result, the EFIE one shows a good 

agreement, while the CFIE-EFIE result has a clear difference. 

The maximum difference of the radiation patterns between the 

FEKO and CFIE-EFIE results occurring over the peak range 

(2.62 dBi vs. 1.62 dBi at about 56°) is about 1 dB. Physically, 

besides the monopole part, the top face of the box also has a big 

influence on the numerical results, while the influence of other 

five faces is believed to be slight. Modeled by the CFIE-EFIE 

and expanded by the RWG basis functions, the normalized 

magnitude of the current density on the top face of the PEC box 

is shown in Fig. 3 (a). It is evident that the center current nearby 

the fine feed port mightily changes and abruptly varies on both 

sides of the common edge. As the CFIE-EFIE solution accuracy 

involving the MFIE strongly depends on the quality of current 

expression, the result difference in Fig. 2 between RWG&EFIE 

and RWG&CFIE-EFIE implementations is obvious. 
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Fig. 1.  Bistatic RCS of a PEC semisphere of radius 1.5λ clung to a square plate 

of side length 3.1λ. 
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Fig. 2.  Radiation patterns of a 0.25m×0.01m strip-shaped monopole mounted 

on a 1m×1m×0.1m PEC box at 300 MHz using different implementations. 

 
(a) RWG basis functions                       (b) LL basis functions 

Fig. 3.  Normalized magnitude (in dB) of the current density solved by the 
CFIE-EFIE on the top face of the PEC cube, on whose center the striped 

monopole is mounted. 
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TABLE I 

COMPUTATIONAL DETAILS FOR DIFFERENT IMPLEMENTATIONS, INPUT 

IMPEDANCE FROM FEKO IS 42.8+J27.0 

Strategy UN IE IN 
Time 

(s) 
MD 
(dB) 

Input 
impedance 

RWG 814 
EFIE 93 2.31 0.02 42.9+j26.9 

CE 28 0.84 1.01 57.7+j18.6 

LL 1,628 CE 57 3.92 0.03 43.6+j25.7 

fine RWG 3,208 CE 121 10.1 0.54 51.9+j23.1 

LR τ=0.1λ 832 

CE 

30 0.87 0.37 46.4+j24.6 

LR τ=0.15λ 848 32 0.90 0.19 45.0+j25.2 

LR τ=0.2λ 874 35 1.02 0.06 44.1+j25.4 

LR τ=0.3λ 922 49 1.49 0.05 43.9+j25.5 

Note - CE: CFIE-EFIE, LR: LL-RWG, UN: unknowns number, IE: integral 

equation, IN: iterations number, Time: total CPU time, MD: maximal 

difference over the peak range between the computational and the FEKO results. 
 

To express the surface current more accurately, using the LL 

basis functions, the monopole object is recalculated, while the 

numerical results and computational details are also shown in 

Fig. 2 and Table I, respectively. For comparison, we remesh the 

whole object with a fine mesh size and use the RWG basis 

functions alone to expand the current (denoted by fine RWG). 

It is seen that when the LL basis functions are used, the result 

from the CFIE-EFIE is in quite agreement with the FEKO result, 

which demonstrates that the accuracy problem of the CFIE-

EFIE arising from the RWG basis functions can be mitigated 

by employing the LL basis functions. The normalized 

magnitude of the current density on the top face is shown in Fig. 

3 (b). As expected, the current behavior obtained from the LL 

basis functions is clearly smoother than that from the RWG 

basis functions, which illustrates that the LL basis functions 

provide a much better representation of the current distribution. 

This is also the main reason why the result accuracy from the 

CFIE-EFIE can be improved. On the other hand, the fine 

meshes with the RWG basis functions have a very limited role 

in improving the numerical accuracy. In other words, when the 

RWG basis functions are used, the numerical accuracy cannot 

be significantly improved just through a fine-mesh scheme. 

However, the cost of the improvement using the LL is that 

the number of unknowns is doubled, resulting in more memory 

usage, relatively slow convergence during the iterative solution, 

and long total CPU time, as shown in Table I. To alleviate this 

problem, the necessity of the LL basis functions is analyzed 

carefully. Logically, because of the location of the fine feed port, 

the magnitude of the current density on the center of the top 

face of the PEC cube is distinctly larger than other regions and 

drastically changes, where the discontinuity of the current 

distribution is then obvious. The phenomenon shown in Fig. 3 

conforms to this anticipation. Due to this fact, we discretize the 

closed box parts modeled by the CFIE using different kinds of 

basis functions simultaneously, i.e., the LL basis functions are 

used to express the center region of the top face which contains 

the fine feed port, while the RWG basis functions are to other 

parts (denoted by LL-RWG). Since the striped monopole is 

modeled by the EFIE, it is still expressed by the RWG basis 

functions. On the choice of the LL and the RWG regions, we 

use a flexible mesh information-based strategy with the 

following filtering criterion 

 
feed LL region

otherwise RWG region

c c

m m

m

r r T

T

   




  (6) 

where 
c

mr  and feed

cr  are the centers of the triangle Tm on the top 

face and the feed port, respectively, and τ is a tuning parameter. 

In the LL-RWG strategy, the computational accuracy and 

efficiency can be conveniently controlled by setting different τ. 

Please note that for this monopole object, the distance between 

some triangles on the bottom face and the feed port center may 

be also smaller than τ, but because the bottom face is not 

illuminated by the monopole directly, these triangles also 

belong to the RWG region. Under this criterion, with different 

values of τ, the numerical results and computational details are 

shown in Fig. 4 and Table I, respectively. It is found that the 

LL-RWG strategy does an excellent job on improving the 

calculation accuracy with slightly more unknowns and an 

acceptable convergence rate. When τ=0.2λ, the maximal 

difference over the peak range between the result from FEKO 

and that from the CFIE-EFIE with the LL-RWG (2.62 dBi vs. 

2.56 dBi) is about 0.06 dB. Through massive numerical 

experiments, it is found that τ=0.2λ can give an acceptable 

accuracy for most radiation problems. 

IV. CONCLUSION 

In this letter, the hybrid CFIE-EFIE is presented to model the 

objects that contain closed-open surface junctions. In the MoM 

solution, when the RWG basis functions are used to expand the 

current distribution, because the RWG basis functions cannot 

properly expand the current distribution, the CFIE-EFIE may 

result in less accurate solutions. The LL basis functions are 

introduced to solve this problem. Nevertheless, the number of 

unknowns using the LL basis functions is twice of that using 

the RWG basis functions, leading to a better accuracy but less 

efficient. To break this limitation, we use the RWG and LL 

basis functions to discretize different parts of the objects 

simultaneously according to their structural characters, while a 

criterion with a tuning parameter to determine how to choose 

the LL region is proposed. Numerical results show that this 

strategy has an acceptable accuracy with a high efficiency. 

τ 
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