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ABSTRACT

Symbolic data structures and algorithms are increasingly popular tools for the analysis of com-

plex systems. Given a high-level model of a system, such as a Petri Net, we can automatically

verify certain properties about it. In this thesis, we develop data structures and techniques that

can be used to improve such analyses.

First, we show how decision diagrams can be used efficiently in traditional explicit generation

algorithms. Next, we show how symbolic reachability analysis can be used to detect deadlocks in

Petri Nets. We also present a symbolic approach that can detect deadlocks in unbounded Petri

Nets.

Finally, we introduce a new type of decision diagram, ESRBDD, that combines multiple reduc-

tion rules, is canonical, and produces a more compact representation than previous efforts. We

show that operations on ESRBDDs are at least as efficient as those on the underlying decision di-

agrams and introduce extensions to ESRBDDs that improve on their compactness and operational

efficiency.
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CHAPTER 1. INTRODUCTION

Model Checking, introduced by Clarke and Emerson (1981) and Queille and Sifakis (1982),

is the process of automatically and exhaustively checking if the model of a system satisfies a set

of temporal properties. Over the years, Model Checking has helped identify errors in a variety of

systems including digital circuits, communication protocols, distributed software, and safety-critical

systems, to name a few [refer to Clarke et al. (1996) for a survey].

Model Checking was typically performed in two stages:

• Construction of the State Graph: A State Graph, R, composed of the set of reachable states

S and the transitions between these states, was constructed, and

• Verification of the State Graph: The State Graph was verified to satisfy a set of properties,

ϕ, typically specified in Temporal Logic (Pnueli, 1977).

Early efforts in Model Checking were stymied by the so-called State Explosion Problem. Con-

sider a system composed of n sub-systems where the behavior of each sub-system is represented

by a finite-state automaton, R. Combining these automata could result in an exponentially larger

overall State Graph O(
∏n
i=1 |Ri|). This State Explosion Problem limited the size of systems that

could be verified to approximately 106 reachable states. The causes for this limitation were: a very

large state space S, stored using an explicit data structure whose space-complexity was propor-

tional to |S|; the algorithm for generating S had a time-complexity proportional to |R|; and a

verification procedure whose time- and space-complexity was O(|R|.|ϕ|).

Vardi and Wolper (1986) performed model verification by constructing a Büchi automaton

representing the language L(R∩¬ϕ) and checking it for emptiness, and showed that this procedure

was optimal. Future efforts, therefore, were directed towards the problems of reducing the state

space, and improving its representation and generation. These efforts could be broadly classified

as: (a) Reduce the size of the Reachability Set, and (b) Symbolic Reachability Set generation.
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Reducing the Reachability Set: These efforts retained the explicit generation algorithms and data

structures. Their focus was on removing, abstracting, or collapsing states from the Reachability

Set that had no impact on the correctness of the verification. Partial Order Reduction (Peled,

1994), Abstraction (Clarke et al., 1994), Symmetry (Norris IP and Dill, 1996), and Compositional

Reasoning (Clarke et al., 1999b) were able to reduce the Reachability Set and State Graphs to

manageable sizes, and greatly increased the size of systems that could be verified by Explicit Model

Checking methods.

Symbolic Reachability Set Generation: Symbolic Model Checking, introduced in McMillan

(1993), attempted to use Reduced Ordered Binary Decision Diagrams (BDDs from here on), to

compactly represent large sets of states. As described in Bryant (1986), BDDs in many instances

do not grow linearly with the size of the set they represent—in fact, a set and its complement

require the same amount of space when represented by BDDs—and, in practice, are able to rep-

resent large sets of states compactly. In addition, operations over BDDs have a time-complexity

proportional to the complexity of the operand BDDs—as opposed to the size of the sets represented

by the operands. As a result, Symbolic Model Checking increased the size of systems that could

be handled to 1020 (Burch et al., 1992).

But there were drawbacks to using BDDs: BDDs could not guarantee a compact representation

for all sets. The order of the BDD variables played a significant part in the size of the BDD,

and finding an optimal variable-ordering was shown to be NP-Complete by Bollig and Wegener

(1996). In addition, Bryant (1986) demonstrated that there are functions for which no compact

BDD representation exists, and the BDD representation can require as much space as an explicit

data structure. To alleviate this problem, heuristics have been proposed to compute reasonably

good orderings (Fujita et al., 1991), and to dynamically change the variable order [Sifting, Rudell

(1993)]. Since then, there has been plenty of empirical evidence to demonstrate the ability of BDDs

to compactly represent very large reachable states spaces of complex real-world systems.

The Symbolic Generation algorithms have also evolved over the years: techniques such as

Event-Chaining (Roig et al., 1996), and later Saturation (Ciardo et al., 2001) have reduced the
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time and space complexity for generating the Reachability Set by many orders of magnitude. The

restrictions placed on the Saturation algorithm when first introduced, have been gradually removed,

and the Saturation algorithm itself has been periodically improved: recent improvements include (a)

Fine-grained Saturation introduced node-level chaining in Chung et al. (2006), and (b) Extensible

Decision Diagrams were introduced in Wan and Ciardo (2009) to improve the reuse of nodes (and

related cache entries) when the maximum bounds of system variables were not known a priori.

1.1 Contributions

Our contributions can be broadly divided into two categories: extending the application of

symbolic data structures and algorithms, and improving on the symbolic data structures themselves.

Explicit State Space Generation

Decision diagrams, as discussed previously, have been successfully used for quite some time to

generate the state space and reachability graph from models expressed in a high–level formalism. A

variety of efficient, symbolic algorithms, which manipulate sets of states instead of individual ones,

are known for this purpose. However, there are explicit generation algorithms that have not yet

been replaced by any symbolic algorithm; notable examples include algorithms that utilize partial

order reduction or otherwise exploit symmetry to reduce the size of the state space that must be

generated. We show how explicit generation algorithms can efficiently use decision diagrams as the

data structures to store the set of known reachable states, the list of reachable states to explore,

and the reachability graph. We present the necessary decision diagram algorithms, and suggest

small changes to the traditional explicit generation algorithm, to make the generation process more

efficient. We illustrate the efficiency of our algorithms using several example models, and compare

with the traditional algorithm using traditional data structures.
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Deadlock Detection in Petri Nets

Deadlock detection in Petri Nets has tradtionally been performed by structural analysis of the

Petri Net, and when the structural analysis is inconclusive, an explicit exploration of the reachable

state space is performed. Symbolic techniques have grown in popularity for exploring the reachable

states of Petri Nets, but are traditionally used to build the entire set of reachable states. We

present symbolic data structures and algorithms that can be used for this purpose. Further, the

state-of-the-art in symbolic reachability analysis, Saturation, explores states in a depth first order,

which is not suited to Petri Nets that may be potentially unbounded. We present a modified

Saturation-based strategy that is guaranteed to find a deadlock (if one exists) in an unbounded

Petri Net. We provide experimental evidence of the effectiveness of these symbolic approaches.

Extensions to Decision Diagrams

Next, we present a generalization of decision diagrams that combines multiple reduction rules.

Various versions of binary decision diagrams (BDDs) have been proposed in the past, differing in

the reduction rule needed to give meaning to edges skipping levels. The most widely adopted, fully-

reduced BDDs and zero-suppressed BDDs, excel at encoding different types of boolean functions (if

the function has many don’t-care, or it tends to have value zero when one of its arguments is nonzero,

respectively). Lately, new classes of BDDs have been proposed that, at the cost of some additional

complexity and larger memory requirements per node, exploit both cases. We introduce a new

type of BDD, BDDs with Edge-Specified Reductions or ESRBDDs, that we believe is conceptually

simpler, has small memory requirements in terms of node size, tends to result in fewer nodes, and

can easily be further extended with additional reduction rules. We present a formal definition, prove

canonicity and provide experimental results to support our claims. Finally, we present extensions

to ESRBDDs by including additional reductions rules, and show that the extensions are canonical,

more compact then BDDs, ZDDs and regular ESRBDDs, and also more efficient than BDDs and

ZDDS for decision diagrams operations.
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1.2 Organization

The remainder of the thesis is organized as follows. Chapter 2 describes our approach for inte-

grating decision diagrams into explicit state space generation algorithms. In chapter 3 we present

our novel technique on using symbolic algorithms for detecting deadlocks in Petri Nets. Chapter 4

introduces a new type of decision diagram ESRBDDs that can combine multiple reduction rules,

details the proof of its canonicity, and provides comparisons with existing efforts. Chapter 5 details

the manipulation algorithms on ESRBDDs, and provides formal and emperical evidence for their

effciency. Chapter 6 extends ESRBDDs to include more reduction rules and backs our claim on

their extensibility. Finally, Appendix describes specialized versions of the Apply operation for

ESRBDDs, and discusses their time-complexity.
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CHAPTER 2. EXPLICIT STATE SPACE AND REACHABILITY GRAPH

GENERATION USING DECISION DIAGRAMS

Decision diagrams have been successfully used for quite some time to generate the state space

and reachability graph from models expressed in a high–level formalism. A variety of efficient,

“symbolic” algorithms, which manipulate sets of states instead of individual ones, are known for

this purpose. However, there are explicit generation algorithms that have not yet been replaced by

any symbolic algorithm; notable examples include algorithms that utilize partial order reduction

or otherwise exploit symmetry to reduce the size of the state space that must be generated. In this

chapter, we show how explicit generation algorithms can efficiently use decision diagrams as the

data structures to store the set of known reachable states, the list of reachable states to explore,

and the reachability graph. We present the necessary decision diagram algorithms, and suggest

small changes to the traditional explicit generation algorithm, to make the generation process more

efficient. We illustrate the efficiency of our algorithms using several example models, and compare

with the traditional algorithm using traditional data structures.

2.1 Introduction

Generating the state space and reachability graph from a model described in a high–level formal-

ism, such as a Petri net, is a necessary first step for many types of analysis. Important applications

that utilize this information include model checking (Clarke et al., 1999a), where the reachability

graph and propositions on states form a Kripke structure that can be checked against a formula

expressed in an appropriate logic, and performance evaluation (e.g., Molloy (1982); Muppala et al.

(1993)) or stochastic model checking (e.g., Baier et al. (2003)), where the reachability graph is

converted to a Markov chain and analyzed. The well–known state explosion problem, in which a
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“small” high–level model may describe a huge state space and reachability graph, effectively limits

the size and complexity of systems that may be analyzed in this manner.

A successful approach to help manage the state explosion problem has been the use of so–called

“symbolic” or implicit algorithms, which utilize decision diagrams (e.g., Bryant (1986); Kam et al.

(1998)), a structure that represents finite sets of integer vectors in a compact way for many (but not

all) practical sets. As the symbolic algorithms work directly with decision diagrams, by building

a transition relation from the high level model and constructing the state space by a sequence of

operations on decision diagrams, they are limited by the sizes of the decision diagrams generated,

which can remain small even for huge state spaces. Once this was realized (Burch et al., 1992),

many other researchers adopted the idea and expanded upon it; for example, by applying it to

Petri nets (Pastor et al., 1994), by developing generation algorithms (Ciardo et al., 2007; Derisavi

et al., 2003), or by proposing new forms of decision diagrams (Couvreur and Thierry-Mieg, 2005;

Lai et al., 1996; Miner, 2004; Yoneda et al., 1996). The literature on symbolic approaches is vast,

and the above list is certainly not meant to be complete; a more thorough discussion may be found,

for example, in (Clarke et al., 1999a) or (Miner and Parker, 2004).

While symbolic generation algorithms have enjoyed widespread success, they have not completely

replaced explicit algorithms. For state space and reachability graph (or Markov chain) generation,

the following are examples of cases where explicit algorithms are often or exclusively still used in

practice. On–the–fly LTL model checking (cf. Clarke et al. (1999a)) explicitly generates states

while performing an intersection with a property automaton; since this process terminates once a

counter-example is found, often only a fraction of the complete state space is searched. Generation

algorithms that utilize partial order reduction (Clarke et al., 1999a) to reduce the size of the state

space, such as those implemented in SPIN (1990), tend to be explicit; there has been work, however,

on integrating partial order reduction with symbolic generation (for example, Alur et al. (1997)).

Other algorithms that exploit symmetry, such as the generation algorithms for Stochastic Well–

Formed Nets (Chiola et al., 1993) that immediately build a lumped process, remain explicit, despite

preliminary work to make them symbolic (Delamare et al., 2003).
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In this work, we propose the use of decision diagrams as data structures to represent the state

space and reachability graph (or Markov chain) while using explicit generation algorithms. This

approach is not intended to compete with symbolic generation algorithms (although, for certain

models, symbolic generation can be quite slow and explicit generation is a viable alternative);

rather, the intention is to allow cases that cannot (or for various reasons, do not) use symbolic

generation, such as those discussed above, to utilize decision diagrams. As decision diagrams are

usually much more compact than traditional explicit data structures, the goal is to reduce the

memory requirements during generation, and to do so without greatly increasing the generation

times. Once the state space and reachability graph have been generated as decision diagrams,

symbolic algorithms may be used as appropriate (for example, to perform CTL model checking).

Decision diagrams have been used with explicit algorithms for some time. For instance, to

analyze a Markov chain represented with decision diagrams, a “hybrid” solution is usually employed

(Miner and Parker, 2004), in which the solution vector is stored explicitly, and the numerical

solver runs explicitly, with the decision diagram serving as a data structure for matrix storage.

Algorithms for classifying the states of a Markov chain, again stored using decision diagrams, into

recurrent and transient classes, are part explicit: the initial “seed” states are chosen, one at a

time, at random; each seed state and potentially a large set of other states may then be classified

using symbolic operations (Xie and Beerel, 1998). The “symblicit” approach for analyzing Markov

Decision Processes (Wimmer et al., 2010) is a combination of explicit and symbolic approaches.

Similarly, the lumping algorithm (Derisavi, 2007) is “mostly” symbolic, but does contain explicit

loops over states.

However, for state space and reachability graph generation, most algorithms are either com-

pletely explicit or completely symbolic. We are only aware of a few exceptions to this rule, and

these previous works are most relevant to our approach. In Miner (2001), a type of decision dia-

gram called matrix diagram is used to store the Markov chain, and an explicit algorithm is used to

generate the Markov chain. However, this work assumes that the state space is already known and

is represented using a decision diagram. Recently, in Babar et al. (2010), an explicit state space
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generation algorithm was integrated into GreatSPN; however, this uses a fairly simple algorithm.

The work presented here (Babar and Miner, 2014) builds upon these works, with extensions over

Miner (2001) and algorithm improvements over Babar et al. (2010).

The remainder of this chapter is organized as follows. Section 2.2 briefly recalls the traditional,

explicit generation algorithms and motivates the data structure requirements. Section 2.3 formally

defines decision diagrams, describes how the data structure requirements are met, and introduces

new decision diagram algorithms for this purpose. Section 2.4 describes how decision diagrams can

be efficiently integrated into explicit generation algorithms, with some small modifications; some

implementation details are discussed here as well. Section 2.5 gives experimental results for our

new algorithms. Finally, section 2.6 concludes the work.

2.2 Background

Rather than use a specific high–level formalism, we use an abstract model definition. We assume

a model consists of the following.

• A set of L state variables, vL, . . . , v1. Each state variable may assume a finite number of possi-

ble values; for simplicity, we assume these are the first naturals, i.e., vi ∈ Si = {0, 1, . . . , bi−1}.

The possible states of the model are therefore Ŝ = SL×· · ·×S1. While we assume the existence

of bounds bL, . . . , b1, we do not require that these are known a priori.

• A finite set of actions, A, which change the state of the model. If a given action a ∈ A occurs

when the model is in state s, then we denote the set of possible new states as Occurs(s, a),

with Occurs(s, a) = ∅ when action a cannot occur in state s.

• An initial set of states I with ∅ ⊂ I ⊆ Ŝ.

The state space of the model, S, is the set of all states that can be reached from the initial

states, when zero or more actions occur. Formally, S is the smallest superset of I that satisfies

s ∈ S ⇒ ∀a ∈ A,Occurs(s, a) ⊆ S. The reachability graph of the model, E ⊆ S × S, holds the
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edges (s, s′) such that state s′ can be reached via a single action from state s; formally,

(s, s′) ∈ E ⇔ s ∈ S,∃a ∈ A : s′ ∈ Occurs(s, a).

In practice, it may be useful to annotate the edges with additional information, such as the action

name(s) or a rate.

Algorithm 2.1 One–pass algorithm to generate the state space and reachability graph.

1: S ← I;

2: U ← I;

3: while U 6= ∅ do

4: Choose and remove some s from U ;

5: for all a ∈ A, s′ ∈ Occurs(s, a) do

6: if s′ 6∈ S then

7: S ← S ∪ {s′};
8: U ← U ∪ {s′};
9: E ← E ∪ {(s, s′)};

A traditional algorithm to generate the state space and reachability graph is shown in Algo-

rithm 2.1. In some cases, it may be beneficial to generate the reachability graph after the state

space is known (for example, by collecting information while generating the state space, so that a

more compact data structure may be used for the reachability graph); this may be done using the

two–pass algorithm shown in Algorithm 2.2.

Algorithm 2.2 Two–pass algorithm to generate the state space and reachability graph.

1: S ← I;

2: U ← I;

3: while U 6= ∅ do

4: Choose and remove some s from U ;

5: for all a ∈ A, s′ ∈ Occurs(s, a) do

6: if s′ 6∈ S then

7: S ← S ∪ {s′};
8: U ← U ∪ {s′};
9: for all s ∈ S do

10: for all a ∈ A, s′ ∈ Occurs(s, a) do

11: E ← E ∪ {(s, s′)};
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In either case, the generation algorithm requires data structures for S, the currently–known

state space; U , a set of states that still need to be explored; and E , the edges in the reachability

graph. The critical operations for S are adding states (see line 7), and determining if a given state

is contained in the set (see line 6). The critical operations for U are checking if the set is empty

(see line 3), adding states (see line 8), and removing some state (see line 4). Note that if U removes

states in FIFO order (i.e., U is a queue), then the generation algorithm uses breadth–first search;

however, this is not required. A critical operation applicable only to the Two–pass algorithm is

enumeration (see line 9). The only critical operation for E is to add edges.

There are many possibilities for S, U , and E in implementation, and the design choice for one

may affect the others. A traditional strategy is to store the states explicitly (but compacted) in

such a way that each state has a unique index that coincides with the discovery order of the states;

use any classical dictionary data structure (such as a splay tree or hash table) to determine if states

are already contained in S; use a single integer u for U , which specifies that all states with index

greater or equal to u are unexplored; and use a dynamic data structure for sparse graphs, such as

adjacency lists, for E . See for example Chiola (1989) for a more thorough discussion of efficient

techniques for explicit generation.

2.3 Decision Diagrams

In this work we are exploring using Ordered Decision Diagrams (DDs) to store S, U , and E .

Decision Diagrams come in many forms, but for this work we propose to use Multi-Valued Decision

Diagrams (MDDs) for S and U , and Matrix Diagrams (MxDs) for E .

A Decision Diagram is a directed acyclic graph used to represent function on a finite number L of

variables, where each variable xk can assume a finite number nk of values. Nodes are either terminal

(no outgoing edges), or non-terminal (labeled with a variable). Ordered Decision Diagrams require

an ordering of nodes (there is a total ordering � on the variables such that any outgoing edge from

a node labeled xk must go to either a terminal node or to a node labeled xl with xk � xl). Also,
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the set of possible values for variable xk is Dk = {0, 1, . . . , nk−1}. We refer to an ordered collection

of variables with specified sizes as a domain, which we write as D = DL × · · · × D1.

Decision Diagrams employ reduction rules to eliminate duplication of nodes. Different reduction

rules combined with different variable types and ranges, produce a variety of decision diagrams.

Our work uses two types: MDDs and MxDs. Both of these decision diagrams (among others) are

provided by Meddly (Babar and Miner, 2010) an open-source C/C++ library.

MDDs are used to represent functions of the form f : D → {0, 1}. MxDs on the other hand are

used to represent functions of the form f : D×D → {0, 1}. In Meddly, MxDs use an “interleaved”

ordering xL � x′L � · · · � x1 � x′1, where x′L, ..., x
′
1 represent the function’s range.

2.3.1 Representing S, U and E

Representing S, U and E is quite straightforward using Meddly. First, we construct a domain

of size L with each state variable vi represented by a domain variable xi. Now, each state s ∈ S is

represented using the unprimed variables of the domain (i.e. xL, ..., x1). U is similarly represented

since it is also a set of states. For E we used both the unprimed and the primed variables, namely

x′L, ..., x
′
1, of the domain. The s in edge (s, s′) ∈ E is represented using the unprimed variables,

while the s′ is represented using the primed variables.

Conveniently, Meddly allows domain variables to be resized when needed. Therefore, we start

domain variables at the smallest size, 1, and enlarge them as needed. This is quite useful as it

allows us to start constructing the reachability graph without knowing the final bounds of each

variable.

2.3.2 Efficiency of critical operation

Representing the decision diagrams is only one part of the equation. Just as important is the

efficiency of the critical operations discussed in Section 2.2. To recall:

• Adding states to MDDs (S and U).

• Adding edges to MxDs (E).
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• Checking if a state is contained in an MDD.

• Checking if an MDD is empty.

• Enumerating the states in a MDD.

• Removing a state from an MDD.

2.3.2.1 Adding elements to MDDs and MxDs

Adding states to MDDs or MxDs can be done in multiple ways using Meddly. The methods

that interest us are:

• Using CreateEdge one can build an MDD or MxD representing a minterm, and then use

the UNION operator to add it to an another MDD or MxD.

• Using CreateEdge one can also build an MDD or MxD to represent an array of minterms.

These can also be added to other MDDs or MxDs using the UNION operator.

• Using temporary edge and Accumulate to “accumulate” a batch of minterms in to a tem-

porary edge. A temporary edge is so named because it has not been processed using the

reduction rules applicable to the decision diagram. Another version of Accumulate can

add an MDD or MxD to an existing temporary edge. Once this a “accumulation” is com-

plete, the temporary edge is “reduced” into a MDD or a MxD.

The first use of CreateEdge above suggests building an MDD for each minterm and then

combining these MDDs in some fashion. This involves the heavy use of MDD Union (or equivalent

for MxDs). The algorithm that CreateEdge uses to build a MDD from an array of minterms

(given in Figure 2.3) aims to avoid using such relatively expensive operations. The central idea is to

sort the minterms lexicographically (where a minterm is read as xL, ..., x1), but to do so efficiently.

To achieve this, a Radix Sort is employed at each level (since the size of variable bounds are usually

not very large). After sorting for xL, all minterms whose xL value is the same are grouped together.

Note that in the final MDD, all such minterms will be accessed via the same child of the root node.
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Algorithm 2.3 Algorithm to build an MDD from an array of minterms.

1: procedure SortBuild(var k, int** M, int n)

2: if k = 0 then

3: return true;

4: RadixSort(M , n);

5: /* Items are in order; now we recurse and build the node. */

6: node r ← new node at level k;

7: int i ← 0;

8: for all i′ ∈ {1, . . . , n} do

9: if (i′ = n) ∨ (M[i′][k] 6= M[i][k]) then

10: node r′ ← SortBuild(k − 1, M + i, i′ − i);
11: j ←M[i][k];

12: r[j]← r′;

13: i← i′;

14: return Reduce(r);

The process then repeats via a recursive call for this group of minterms. The result of the above

algorithm is that exactly one temporary node is created at level xi for all minterms who values for

variables xL through xi+1 are identical. As seen in Figure 2.3 this algorithm can be implemented

using a depth-first traversal to keep memory requirements low.

The Accumulate based approach uses both forms of accumulation: accumulating minterms

and accumulating MDDs (or MxDs). Accumulating minterms leads to branching of nodes but

this branching also makes accumulating MDDs into the temporary edges very fast. When using

a limited buffer-size (in terms of the number of minterms added to the temporary edge before

the temporary edge is reduced), this could be an effective balance between speed and memory

usage. The algorithm that Meddly uses for accumulating minterms and decisions diagrams into

a temporary edge before reducing it into a decision diagram was first described in Miner (2001),

although the Canonical Matrix Diagrams (CMDs) used there had a different structure due to the

use of different reduction rules. The algorithms discussed in Miner (2001), use CMDs to construct

the reachability graph once the set of reachable states is computed (therefore the bounds of domain

variables are also known before building the reachability graph). Although this gives CMDs an
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advantage it also limits the use of CMDs. For the sake of thoroughness, we have implemented and

compared them to Meddly’s MxDs where applicable, namely the Two–pass algorithm,

2.3.2.2 Checking if a state exists in an MDD

Checking if a state (represented by a minterm) is contained in an MDD is performed via the

evaluate operation in Meddly. This operation’s complexity is linear in the size of the minterm

(the size of the minterm is equivalent to the number of variables in the domain).

2.3.2.3 Checking for an empty MDD

Checking if an MDD is empty is a trivial operation for MDDs. This is because an empty MDD

reduces to single terminal node indicating “false”.

2.3.2.4 Enumerating the elements in a MDD

The second pass of the Two–pass algorithm requires the ability to enumerate the elements in S.

Meddly provides iterators that are specifically built to enumerate the minterms stored in MDDs or

MxDs. Meddly’s iterators are based on the approach described in Miner and Parker (2004). These

iterators can be initialized, incremented and checked for “any more minterms to enumerate?” They

can also be copied so that it is possible to have multiple iterators to the same MDD, pointing at

different minterms. One thing to keep in mind is that when an MDD is modified, its associated

iterator (if any) is no longer valid, and will need to be reinitialized before being used. Also worth

noting is that Meddly’s MxD iterators can be used to enumerate minterms “by row” and “by

column”. Please refer to Miner and Parker (2004) for more details.

2.3.2.5 Removing some state from an MDD

A state can be removed from an MDD using multiple ways in Meddly. The most straightfor-

ward method is to use CreateEdge to build a MDD representation of a minterm. This MDD

can then be “subtracted” from the original MDD using the MDD Difference operation. But be-
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fore using CreateEdge and minterms needs to be “read” from the MDD. Meddly provides the

FindFirstElement operation for this purpose. It returns the lexicographically-first element in

the MDD in the form of a minterm. Multiple accesses to FindFirstElement will return the same

minterm unless the MDD in question is modified.

Note that a combination of FindFirstElement, CreateEdge and MDD Difference can also

be used to enumerate the minterms in an MDD as follows:

• Use FindFirstElement to get a minterm from an MDD.

• Build a MDD using CreateEdge and the minterm.

• Subtract the MDD representing the minterm from the original MDD.

• Repeat.

This approach has one advantage over using iterators—there are no iterators to be invalidated.

But, this may potentially be expensive because of the cost of building an MDD and using MDD

Difference.

2.4 Explicit Generation with Decision Diagrams

In this section we alter our original algorithms (One– and Two–pass) to take advantage of the

features offered by MDDs and Meddly. Specifically, we will explore the effects of using buffered

addition when dealing with S, U and E . We also explore the difference between using one-at-a-time

removal using FindFirstElement and a buffered removal using Meddly’s iterators. Although

there is a vast difference in the implementation between the buffered versions of CreateEdge

and Accumulate, the central idea and the interface is similar. For the purpose of this thesis, we

abstract the details out and use a generic version of AddBatch as shown in Algorithm 2.4.

The steps involved with buffered CreateEdge are straightforward:

• Add minterms to the array buffer.
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Algorithm 2.4 Generic version of AddBatch.

1: procedure AddBatch(DD A, Buffer A′, minterm m, bool force)

2: A′ ← A′ ∪ {m};
3: if A′ is full OR force is true then • Add buffer to A and clear the buffer

4: if using Accumulate then • Buffer is a temporary edge

5: A′ ← A′ ∪ A;

6: A ← Reduce(A′);
7: A′ ← ∅;
8: else • Buffer is an array of minterms

9: A ← A ∪ CreateEdge(A′);
10: A′ ← ∅;

• When the array buffer is full, call CreateEdge to build an MDD from the minterms in the

buffer.

• Clear the buffer and re-use it.

In the case of Accumulate a slightly different strategy is used to take advantage to the fast

addition using AccumulateMxd between a temporary edge and an existing MDD:

• Add minterms to the temporary edge using AccumulateMinterms.

• When “enough” minterms have been added to the temporary edge, call AccumulateMxd

to add an existing MDD to the temporary edge.

• Reduce the temporary edge to obtain a cumulative MDD.

• Temporary edge can be clear and re-used.

Note that AddBatch has a variable force. This is used to force the minterms to be transferred

from the buffer into the primary Decision Diagram. This is useful when the primary Decision

Diagram has run out of minterms but the buffer still has some in it. This will be illustrated in the

algorithms below.

Now that we have a generic version of AddBatch, we provide modified versions of the One–

and Two–pass algorithms that are differentiated mainly in the manner in which U is handled.
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2.4.1 One-at-a-time Removal

The One-at-a-time Removal algorithm (Algorithm 2.5) accesses a minterm from U , removes

it from U , and then processes it. Here, the minterms are removed from U one at a time. This

strategy is applied using FindFirstElement, CreateEdge on a single minterm, and finally

MDD Difference.

Note that line 14 forces the minterms in the buffer to be moved to U when U is empty. This is

one of the things to be careful about when using buffers in updating the MDDs.

2.4.2 Batch Removal

The Batch Removal algorithm (Algorithm 2.6) uses a buffered approach to removing minterms

from U , using an MDD iterator and a buffered storage of minterms.

The algorithm looks more complex here because of the management of the iterator. As men-

tioned in Section 2.3.2.4, iterators are invalidated when the MDD associated with the iterator is

modified. This situation can occur when a call to AddBatch for U results in the U getting up-

dated with the minterms in U ′. Another point where the iterator will get invalidated, is when it

has reached the end of the MDD to which it is associated. In this algorithm, once the iterator has

reached the end of MDD U , U must be updated with the contents of U ′ and the iterator reset to

the beginning of U .

We have provided the algorithms for One-at-a-time and Batch Removal for the One–pass algo-

rithm. The equivalent Two–pass algorithms easily follow from this.

2.5 Experimental Results

The decision diagram algorithms discussed in Section 2.3 are implemented in Meddly (Babar and

Miner, 2010), and our explicit generation algorithms based on decision diagrams are implemented

in version 3 of SMART (Ciardo et al., 2009). Experiments were run on a 2.13 Ghz Intel Xeon

processor running Linux, with sufficient RAM to avoid paging to disk.
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Algorithm 2.5 One-At-A-Time Removal.

1: S ← I;

2: U ← I;

3: S ′ ← ∅;
4: U ′ ← ∅;
5: while U 6= ∅ do

6: s ← FindFirstElement(U);

7: U ← U \ CreateEdge(s);

8: for all a ∈ A, s′ ∈ Occurs(s, a) do

9: if s′ 6∈ S ∧ s′ 6∈ S ′ then

10: AddBatch(S, S ′, s′, false);

11: AddBatch(U , U ′, s′, false);

12: AddBatch(E , E ′, {(s, s′)}, false);
13: if U = ∅ then

14: AddBatch(U , U ′, s′, true);

Algorithm 2.6 Batch Removal.

1: S ← I;

2: U ← I;

3: S ′ ← ∅;
4: U ′ ← ∅;
5: while U 6= ∅ do

6: i← begin(U);

7: while i is not at the end do

8: s = minterm(i);

9: for all a ∈ A, s′ ∈ Occurs(s, a) do

10: if s′ 6∈ S ∧ s′ 6∈ S ′ then

11: AddBatch(S, S ′, s′, false);

12: AddBatch(U , U ′, s′, false);

13: AddBatch(E , E ′, {(s, s′)}, false);
14: if U was modified then

15: i← begin(U);

16: else

17: Move iterator i to the next minterm.

18: U ← ∅;
19: AddBatch(U , U ′, s′, true);
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2.5.1 Models

We tested our algorithms on a variety of Petri net models taken from the literature.

The Kanban model describes a manufacturing system. The model parameter, N, determines

the number of parts circulating in the system. The number of places is fixed at 16, and we use a

decomposition where each MDD variable corresponds to a single place. As N increases, the number

of variables remains fixed, but the set of possible values for each variable increases.

The dining philosophers model specifies the number of philosophers and number of forks, N,

as a model parameter; our model decomposition uses MDD variables for the forks and for the

philosophers. The MDD has 2N variables whose size remains fixed as N increases. Since each

philosopher is modeled by several Petri net places, we index the submarkings for each philosopher

and use the submarking index as the value in each minterm.

The Swaps model describes an array of N distinct integers, with operations to exchange values

of neighboring array slots. Since all possible permutations are allowed, this model describes exactly

N! reachable states. As N increases, the number of MDD variables increases, as does the size of

each variable.

Finally, the FMS model describes a flexible manufacturing system where model parameter N

specifies the number of pallets to move parts. We use a coarse partitioning of the model into 4

state variables, where the number of possible submarkings for each state variable (again, using the

submarking index in each minterm) grows with N.

For a more thorough discussion of the Kanban, dining philosophers, and FMS models, see for

example Ciardo et al. (2007). It must be pointed out that all the models we used in our experiments

can be used with symbolic methods.

2.5.2 Observations

Figure 2.1 shows the time required to generate the reachability graph (assuming the state space

is known) for the Kanban model with parameter N = 4, for different buffer sizes. Note that

the x–axis is in log2 scale. In the figure, “CMDs” refers to the implementation based on Miner
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Figure 2.1 Reachability graph generation times for the Kanban model as a function of
buffer size.

(2001); “array” refers to the Meddly–based implementation, using an array of states as a buffer, and

“unreduced” refers to the Meddly–based implementation, using unreduced nodes as a buffer. For

reference, “sparse” refers to a traditional implementation using sparse graphs, that does not use a

buffer. The buffer size refers to the maximum number of additions, before converting the structure

into reduced, canonical form. Figure 2.2 shows the time required to generate the reachability set for

Kanban with N = 4 for different buffer sizes. In the figure, “single removal” and “batch removal”

refer to the One-at-a-time Removal and Batch Removal algorithms respectively. In both figures,

once the buffer size exceeds around 210, the generation times essentially remain constant. For the

other models we tried, and for both the one–pass and two–pass algorithms, we found that the
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results were consistent with those shown in Figure 2.1 and Figure 2.2: a buffer size of 210 tends to

be sufficient. We have, therefore, used a buffer size of 210 for the experiments below.

The results of our experiments are tabulated in Table 2.1. Alg 1 uses the One-at-a-time Removal

algorithm and Alg 2 uses the Batch Removal algorithm. CMDs are based on the 2001 implementa-

tion. As noted earlier, they only work for generating the reachability graph once the state space is

known. Therefore, they are only employed in the Two–pass section of the tabulated results. Array

buffer indicates the use of a batch of minterms stored as arrays (CreateEdge). Mdd buffer refers

to the temporary edge based implementation using Accumulate.
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There are some interesting results observed. The first interesting observation is that in some

circumstances it is possible for the Two–pass algorithm to take less time than the equivalent One–

pass algorithm. But, this is only observed for the Decision Diagram based implementations. In

almost every case, the array based buffer using CreateEdge is faster than the Accumulate

based algorithm. Also, in almost every case, the Batch Removal algorithm seems to run faster than

the equivalent One-at-a-time Removal Algorithm.

CMDs have done quite well in terms of speed when compared to the MxD versions, although

they do not do as well when it comes to peak memory usage. MxDs use the least peak memory

here for constructing the reachability graph. This is despite not having a priori knowledge of the

bounds of the domain’s variables. The BST based approach is consistently the fastest, but uses up

about a 1000 times more memory than the decision diagram based implementations.

2.6 Conclusion

We have shown that decision diagrams can be used to efficiently store the set of known reachable

states, the list of reachable states to explore, and the reachability graph. We have presented decision

diagram algorithms that improve the performance of decision diagrams when used by traditional

explicit generation algorithms. We have also presented small changes to the traditional explicit

generation algorithms to take advantages of these decision diagram algorithms.

Our experimental results show that decision diagrams can greatly reduce the peak memory

requirements of traditional explicit generation algorithms. There is a very obvious trade-off between

the BST based implementation and the MDD based implementation. The BSTs are sometimes 20

times as fast as the fastest MDD implementation, but at the expense of using 1000 times as much

memory. Models for which traditional explicit implementations run low on available memory could

be prime candidates for the MDD based explicit generation.

We have been working to integrate Meddly’s decision diagrams into GreatSPN Chiola et al.

(1995). Our previous effort are mentioned in Babar et al. (2010), but our recent work should

improve on that effort, as we our explicit generation algorithms have improved.
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We have noticed that the CMDs structure lends themselves to explicit generation algorithms.

Although we cannot be sure at this moment, we believe that it is a combination of CMDs reduction

rule (which do not reduce primed level nodes), as well as the sparse storage of the prime level nodes

that helps them accumulate minterms quickly.

While we do prefer the peak memory requirements of MxDs, we would like to explore if a CMD-

like reduction rule, will improve MxD performance. In the future, we plan to incorporate this work

into algorithms that exploit model symmetry.
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CHAPTER 3. SYMBOLIC DEADLOCK DETECTION

Deadlock detection in Petri Nets has traditionally been performed by structural analysis of the

Petri Net. If the structural analysis is inconclusive, an explicit exploration of the reachable state

space is undertaken to either find a reachable deadlock state or to rule out the possibility of reaching

such a state.

Explicit techniques for state space exploration have their limitations since their time- and space-

complexity is proportional to the size of state graph. Symbolic techniques have grown in popularity

for the reachability analysis of structured high-level models such Petri Nets. But symbolic reacha-

bility analysis is used to efficiently build the entire set of reachable states, and, as is, may not be

suitable to the search for a single (or a set of) deadlock states. In this chapter, we present symbolic

data structures and algorithms that can be used for deadlock detection in Petri Nets.

In addition, the state-of-the-art in symbolic reachability analysis, Saturation, explores reachable

states in a depth first order, which is not suited to Petri Nets that may be potentially unbounded.

We present a modified Saturation-based strategy that is guaranteed to find a deadlock (if one

exists) in an unbounded Petri Net. We provide experimental evidence of the effectiveness of these

symbolic approaches.

3.1 Introduction

Petri Nets, introduced in Petri (1962), are a popular high-level formalism for modeling dynamic

systems. They are comprised of a net, composed of places (state variables) and transitions (events

that modify places), and a marking, representing the overall state of the structure (a snapshot

composed of the state of each place). A deadlock in a Petri Net is a reachable marking that

disables all transitions in the Petri Net. Detecting deadlocks in Petri Nets has been well-studied

over the years (Hack, 1972; Murata, 1989; Esparza, 1998, etc.). These techniques are typically a
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combination to two well-known kinds of Petri Net analysis: structural and behavioral. Structural

analysis can be relatively fast since it is performed on the net structure without considering the

initial marking (the starting state of the Petri Net), but in many cases (including for deadlock

detection) this analysis is not complete. Behavioral analysis, on the other hand, includes the initial

marking in the analysis and can therefore give conclusive answers, but it can be much slower than

structural analysis.

Existing techniques for deadlock detection proceed as follows: perform structural analysis on

the Petri Net to rule out the possibility of a deadlock, and if structural analysis is not conclusive

perform behavioral analysis to arrive at a conclusion. Performing structural analysis, even when

inconclusive, reduces the search space that the behavioral analysis must explore. Traditionally,

behavioral analysis for deadlock detection involves exploring the reachable markings in the state

space of the Petri Net until a deadlock state is found, and time- and space-complexity of this

exploration using existing techniques is linear in terms of the reachability graph.

Symbolic data structures and algorithms have become popular for the reachability analysis of

Petri Nets. Symbolic data structures, such as decision diagrams (Bryant, 1986), have been known

to compactly represent the structured state space of Petri Nets (Miner and Ciardo, 1999; Ciardo

et al., 2001). In addition, symbolic algorithms for manipulating decision diagrams have a time- and

space- complexity proportional to the size of the symbolic data structures (instead of the number of

elements stored in those data structures), making them more efficient than explicit algorithms for

exhaustive state space exploration, especially when combined with state-of-the-art variable ordering

heuristics (for example, Smith and Ciardo (2018) and Amparore et al. (2019)).

Our work focuses on using symbolic approaches for detecting deadlocks in Petri Nets, by re-

placing explicit exploration with symbolic exploration. Although symbolic reachability analysis

has been shown to be efficient, its purpose is to build the entire set of reachable states. Detection

of deadlocks, on the other hand, can terminate when a deadlock is found. We present symbolic

data-structures and algorithms that integrate deadlock detection within the state space exploration.
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The state-of-the-art in symbolic reachability analysis is the Saturation algorithm (introduced in

Miner and Ciardo (1999)), which has been shown to be orders of magnitude faster than traditional

symbolic state space exploration algorithms. But, Saturation explores the states in a depth-first

order, which poses a problem when a Petri Net is potentially unbounded. We present a symbolic

exploration algorithm, based on Constrained Saturation (Zhao and Ciardo, 2009), that is guaran-

teed to find a deadlock (if one exists) in a Petri Net, even when it is not known a priori if the Petri

Net is bounded.

The rest of this chapter is organized as follows. Section 3.2 briefly describes Petri Nets and

decision diagrams. Section 3.3 discusses our approach to detection deadlocks in Petri Nets using

decision diagrams and the saturation heuristic. Section 3.4 details the experiments we have per-

formed to study the effectiveness of our approach relative to existing works. Section 3.5 discusses

the experimental results, and Section 3.6 concludes the work.

3.2 Background

This section describes the class of models that we consider in our work, and the symbolic data

structures and algorithms to explore their state space.

3.2.1 Petri Nets

Petri Nets are one among many high-level formalisms that can represent the class of models

that our work is focused on. Therefore, we first define the class of generic high-level discrete-state

models that our work applies to. A discrete-state model M is defined by a tuple (V, E , i0, δ−, δ)

where:

• V = {v1, v2, . . . , vL} is a finite set of state variables of the model. Each state variable vk can

assume a value from the set of natural numbers. A (global) state i of M is then an L-tuple

(i1, i2, . . . , iL) ∈ NL.

• E = {e1, e2, . . . , e|E|} is a finite set of events of the model.
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• i0 ∈ NL is the initial state of the model.

• δ−ej ,vk ∈ N is the enabling condition for event ej in terms of place vk. We say that an event ej

is enabled in state i if ∀k ∈ [1, L], ik ≥ δ−ej ,vk .

• δej ,vk ∈ Z is the change in variable vk when event ej occurs. If x is the current state of

place vk, then x′, the state of vk after event ej occurs, is defined as x′ ← x + δej ,vk . We

say that if an event ej occurs then the model changes from state i to i′, ik
ej−→ i′k, such that

∀k ∈ [1, L], i′k ← ik + δej ,vk .

We require that ∀e ∈ E , ∀v ∈ V, δ−e,v+δe,v ≥ 0. This ensures that any reachable state i satisfies

i ∈ NL.

For example, an ordinary Petri net (Murata, 1989) can be expressed using our model: the set

V can correspond to the set of Petri net places, the set E can correspond to the set of Petri net

transitions, the initial state i0 will correspond to the initial marking of the Petri net, and δ− and

δ will correspond to the Petri net firing rules. Specifically, for a place pk and a transition t, we say

that t is enabled with respect to pk in state i, if ik ≥ δ−t,pk , i.e. ik is greater than or equal to the

number of edges from pk to t, and we say that jk ← ik + δt,pk , where j is the state reached from

state i after firing transition t, and δt,pk equals the number of edges from t to pk minus the number

of edges from pk to t. An example “fork-join” Petri net model is shown in Figure 3.1, where the

circles correspond to places and the squares correspond to transitions. Transition e1 performs a

fork operation and transition e6 performs a join operation.
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v1

v2

v3

v4

v5
e1

e2

e4

e3

e5

e6

V = {v1, v2, v3, v4, v5}
E = {e1, e2, e3, e4, e5, e6}

δ− =



e1 e2 e3 e4 e5 e6

v1 1

v2 1

v3 1

v4 1 1

v5 1 1



δ =



e1 e2 e3 e4 e5 e6

v1 −1 +1

v2 +1 −1 +1

v3 +1 −1 +1

v4 +1 −1 −1

v5 +1 −1 −1


i0 = {[10000]}
S = {[10000], [01100], [00110], [01001], [00011]}

Figure 3.1 A fork-join Petri net model, its description and reachability set.
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For a given model M = (V, E , i0, δ−, δ), we can define the following.

• The next state function for event e, Ne : NL → 2N
L
, is defined as

Ne(i) = {j : ∀k ∈ [1, L], ik ≥ δ−e,vk ∧ jk = ik + δe,vk}

We then define the overall next state function as N (i) =
⋃
e∈E Ne(i), which gives the set

of states reachable via the occurrence of one event from a single starting state, and further

extend this to sets of starting states: N (I) =
⋃

i∈I N (i).

• The reachability set S ⊆ NL is the set of states reachable via the occurrence of zero or more

events from the initial state i0, and is the least fixed point satisfying S = {i0} ∪ S ∪ N (S).

As an example, the reachability set S is shown in Figure 3.1 for the fork-join Petri net model, where

a state is shown as (p1, p2, p3, p4, p5).

3.2.2 Reachability Analysis using Decision Diagrams

The focus of this paper is to use symbolic reachability algorithms for the purpose of deadlock

detection. In this section, we briefly describe decision diagrams and well-known symbolic algorithms

that use decision diagrams to build the set S for Petri Nets.

3.2.2.1 Decision Diagrams

Decision diagrams come in many forms: we use Multi-valued Decision Diagrams (MDDs) for

representing the set S, and Extensible Decision Diagrams (XDDs) for representing the set of po-

tential deadlock states Ĉ.

An MDD is a defined as follows:

• It is an directed acyclic graph over a finite number L of variables, V = {v1, v2, . . . , vL}. Each

variable vk can assume a value in the range [0, |vk|) where |vk| is a finite natural number. We

refer to |vk| as the bound of variable vk.

• There is a total ordering � on the variables: vL � vL−1 . . . � v1.
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• There are two terminal nodes 0 (representing false), and 1 (representing true). Terminal

nodes have no children.

• Each non-terminal node p is labelled with some variable vk ∈ V and can have up to |vk|

children. Each child node, referred by p[i], where i ∈ [0, |vk|), is either a terminal node or a

non-terminal node labelled vj such that vk � vj .

• No duplicate nodes: An MDD cannot have two non-terminal nodes pi and pj such that

– pi and pj are labelled vk ∈ V, and

– ∀k ∈ [0, |vk|), pi[k] = pj [k].

• No redundant nodes: An MDD cannot have a non-terminal node pi such that ∀k ∈ (0, |vk|), pi[0] =

pi[k].

MDDs represent functions of the form NL → B, with a finite set of variables L where each

variable vk has a finite bound |vk| ∈ N. We denote the size of a graph G as |G| and the number of

paths in it to terminal node 1 as Π(G).

3.2.2.2 Extensible Decision Diagrams

Extensible Decision Diagram (XDDs) are a generalization of MDDs: like MDDs, XDDs are also

defined over a finite set of variables L but the variables do not need to have finite bounds, i.e.

|vk| ∈ N ∪∞. XDDs represent functions of the form (N ∪∞)L → B.

3.2.3 Overview of Symbolic Reachability Algorithms

We have previously described explicit reachability algorithms in Section 2.2, Therefore, in the

rest of this section we give a brief overview of existing symbolic reachability algorithms.

3.2.3.1 Breadth-First Reachability

The first symbolic reachability algorithms explored the state space in breadth-first order, i.e.

from the initial set of states S0, the states that are reachable in one step are found S1, followed by
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those that are reachable in two steps S2, and so on, until no more new states are discovered. This

algorithm is shown in Algorithm 3.1. In this algorithm, Si+1 is built by finding the states reachable

from Si by firing each event e ∈ E on the set of unexplored states U and accumulating the result.

U is known as the frontier set as it only contains the states that need to be explored.

Algorithm 3.1 Breadth-First Reachability.

1: procedure BFS(i0) • i0: initial states

2: S ← ∅; • Reachable states

3: U ← i0; • Unexplored states

4: repeat

5: S ← S ∪ U ;

6: U ′ ← ∅; • U ′: states reachable in one step from U

7: for all e ∈ E do

8: U ′ ← U ′ ∪Ne(U);

9: U ← U ′ \ S;

10: until U = ∅;
11: return S;

3.2.3.2 Breadth-First with Event Chaining

A significant improvement over the BFS algorithm was Chaining (Roig et al., 1995) described in

Algorithm 3.2. In BFS, every Ne(U) in iteration i is performed over the same set U . On the other

hand, in Chaining, every Ne(S′) is performed over the set of all states that have been discovered so

far. This is likely to reduce the number of calls to Ne, and has been shown to significantly reduce

the time- and memory-requirements for reachability analysis compared to BFS.

Algorithm 3.2 Breadth-First Reachability with Chaining.

1: procedure Chaining(i0) • i0: initial states

2: S ← i0; • Reachable states

3: S′ ← i0; • States reachable from S in one additional iteration

4: repeat

5: S ← S′;

6: for all e ∈ E do

7: S′ ← S′ ∪Ne(S′);
8: until S′ = S;

9: return S;
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If S′i,0 and S′i,|E| denote S′ at the start and end respectively, of iteration i, then their relationship

can be recursively expressed as

S′i,j = S′i,j−1 ∪Nej (S′i,j−1)

for all j ∈ [1, |E|].

While it may be obvious that Chaining reduces the number of calls to Ne(S′), it may not

be obvious how this reduces the time- and space-requirements compared to BFS. We note that

Ne is implemented as a symbolic algorithm, and therefore its time- and space-requirements are

dependent on the size of the MDDs representing event e and S′, i.e. |e| and |S′| respectively, and

not on the cardinality of e and S′, i.e. Π(e) and Π(S′) respectively. For many MDDs Si and Sj ,

|Si ∪ Sj | � Π(Si ∪ Sj). In addition, |Si ∪ Sj | < |Si| + |Sj |. Therefore, Ne(Si ∪ Sj) will usually

require less work than Ne(Si) ∪Ne(Sj), and this is borne out by the results in Roig et al. (1995).

3.2.3.3 Saturation

Ciardo et al. (2001) introduced the Saturation technique for generating the reachable states of

Petri Nets. Saturation takes advantage of the locality of transitions to determine the order in which

they are fired. To recall, each PN transition affects a subset of PN places. When representing Ne

and S as MDDs, the order of variables (i.e. places) can be used to order the transitions by the

highest variable they depend on or effect. An example is shown in Figure 3.1: assuming a variable

order of v5 � v4 � v3 � v2 � v1, the events in descending order of “top” variable are: e1, e2, e3,

e4, e6, e5.

In BFS and Chaining, each iteration fires every transition once. In Saturation, the transitions

fired depends on the MDD node being saturated. If the node p being saturated is labelled vk,

then all transitions whose highest variable is at or below vk, E≤vk , are fired until a fixed point is

reach. Node p is then considered to be saturated with respect to E≤vk . The saturation algorithm

is described in Algorithm 3.3. Saturation, in many instances, was shown to orders of magnitude

faster than Chaining and BFS for reachable set generation.
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Algorithm 3.3 Saturation Part 1.

1: procedure Saturate(s) • s: qrmdd node

2: if s is a terminal node then

3: return s

4: if Cache contains 〈Saturate, s, r〉 then

5: return r

6: r ← ∅
7: for i ∈ [0, |s|) do

8: ri ← Saturate(si)

9: repeat

10: for all e ∈ E s.t. Top(e) = l(s) do

11: for i ∈ [0, |r|) do

12: for j ∈ [0, |ei|) do

13: r′j ← RecFire(ri, ei,j) • See Algorithm 3.4

14: rj ← rj ∪ r′j
15: until r is a fix-point

16: r′ ← UniqueTableInsert(r)

17: Store 〈Saturate, s, r′〉 in Cache

18: return r′

In addition, the memory requirement were also orders of magnitude smaller. One of the draw-

backs of symbolic reachability algorithms is that the peak memory requirements are usually many

times larger than the final memory requirements. This is because the the MDD representing the

final set of reachable states can be much more compact than an intermediate set. Therefore, during

the construction of the set of reachable states it is desirable to build nodes that are likely to be a

part of the final MDD, and Saturation aims to do just that (saturated nodes), and consequently,

tends to use significantly lower peak memory than BFS and Chaining.

3.2.3.4 Constrained Saturation

Constrained saturation, introduced in Zhao and Ciardo (2009), constrained state exploration

to a set of states satisfying given properties, while still being able to exploit event locality and

recursive local fixed point computations (vis-à-vis Saturation). The constraint is represented as

an MDD and used in the recursive calls (of Saturation) to limit the paths to be explored. This
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Algorithm 3.4 Saturation Part 2.

1: procedure RecFire(s, e) • s: states, e: transition

2: if s is 0 or e is 0 then

3: return 0

4: if e is 1 then

5: return s

6: if Cache contains 〈RecFire, s, e, r〉 then

7: return r

8: r ← ∅
9: for i ∈ [0, |s|) do

10: for j ∈ [0, |ei|) do

11: r′j ← RecFire(si, ei,j)

12: rj ← rj ∪ r′j
13: r′ ← UniqueTableInsert(r)

14: r′′ ← Saturate(r′)

15: Store 〈RecFire, s, e, r′′〉 in Cache

16: return r′′

algorithm is shown to be effective at building the set of states satisfying EU and EG properties

(EU and EG are temporal operators in Computation Tree Logic).

Now that we have seen various symbolic algorithms for reachability analysis, the next section

will discuss using these algorithms for detecting deadlocks in Petri Nets.

3.3 Deadlock Detection in Petri Nets

Petri Net theory tells us that the deadlock detection problem is reducible to the general reach-

ability problem. Mayr (1984) showed that reachability is decidable for (General) Petri Nets, and

Lipton (1976) showed that reachability belongs to EXSPACE by describing a PN to generate 22
n

tokens in a net with kn places, where k is a constant. Therefore even though deadlock detection

for PNs is decidable in the general case, it is still a hard problem.

The language described by PNs, L(PN) is a superset of Regular languages. PNs can represent

some (but not all) Context-free and Context-sensitive grammars, and L(PN) is a proper subset

of Context-sensitive languages. Adding inhibitor arcs to Petri Nets makes them Turing-equivalent

under certain cases, and therefore undecidable (Hack, 1976; Esparza, 1998).
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In this section, we define what a deadlock means in a Petri Net, and describe symbolic algorithms

for bounded Petri Nets. Later, we provide semi-algorithms that are guaranteed to find a deadlock

in unbounded Petri Nets.

Definition 3.3.1 Bounded Petri Net

A k-bounded Petri Net is one in which every place can have at most k tokens, where k is a finite

non-negative integer. Any k-bounded Petri Net is a bounded Petri Net.

Definition 3.3.2 Unbounded Petri Net

Any Petri Net that is not bounded is an unbounded Petri Net.

Definition 3.3.3 Petri Nets with Inhibitor Arcs

An inhibitor arc in a PN, is an edge between a place vk ∈ V and a transition e ∈ E . We define

I : |V| → |E|, to be a partial relation such that (vk, ei) ∈ I if and only if there is an inhibitor arc

from place vk to transition ei.

If a PN has inhibitor arcs, the enabling condition for any transition must also satisfy the

following: if a place vk ∈ V has one or more tokens in it, then any transition ei ∈ E such that

(vk, ei) ∈ I is disabled. Formally, we say that an event ej is enabled in state i iff

1. ∀k ∈ [1, L], ik ≥ δ−ej ,vk , and

2. ∀k ∈ [1, L], (vk, ej) ∈ I =⇒ ik = 0.

We note that all bounded Petri Nets with inhibitor arcs are decidable under reachability. Indeed,

even unbounded Petri Nets with inhibitor arcs are decidable under reachability as long as the places

from which the inhibitor arcs originate are bounded.

Definition 3.3.4 Potential Deadlock

We define a potential deadlock in a Petri Net as any marking that disables all transitions.

Definition 3.3.5 Deadlock

We define a deadlock to be any potential deadlock that is also reachable.
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3.3.1 Building the Set of Potential Deadlock States, C

The set of potential deadlock states, C can be built using δ− and I. For each transition, ei,

the algorithm builds an XDD representing the disjunction of its disabling conditions (using δ−ei and

Iei). Recall that a transition ei is disabled in marking m when

∃vk ∈ V,m(vk) < δ−ei,vk ∨ (m(vk) > 0 ∧ (vk, ei) ∈ I).

The XDD representing the conjunction of the disabling conditions for each event represents the set

of potential deadlock states, and this construction is described in Algorithm 3.5, and an example

is illustrated in Figure 3.2.

Algorithm 3.5 Algorithm for building the set of potential deadlock states.

1: procedure BuildDeadlockStates(E) • E is the set of transitions

2: C ← true

3: for all ei ∈ E do

4: Ci ← false

5: for all δ−ei,vk > 0 do

6: Ci,k ← XDD respresenting vk < δ−ei,vk
7: Ci ← Ci ∨ Ci,k
8: for all (vk, ei) ∈ I do

9: Ci,k ← XDD respresenting vk > 0

10: Ci ← Ci ∨ Ci,k
11: C ← C ∧ Ci
12: return C

3.3.2 Deadlock detection using S and C

According to Definition 3.3, a deadlock is any potential deadlock that is also reachable. There-

fore, a straightforward approach to detecting deadlocks in bounded Petri Nets is described in

Algorithm 3.6:

1. Build the set of reachable states S using existing reachability algorithms,

2. Build the set of potential deadlock states C using the procedure described in Algorithm 3.5,

and
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Figure 3.2 Building the XDD representing the constraint C for a Petri Net.



40

3. The intersection of S and C gives the deadlock states.

Any of the reachability algorithms described in Section 3.2.3 can be used for generating S.

Algorithm 3.6 Deadlock detection using S and C.

1: procedure FindDeadlock(S0, E) • S0: initial states, E : events

2: S ← ReachableStates(E ,S0)

3: C ← BuildDeadlockStates(E)

4: if S ∩ C is empty then

5: return false

6: else

7: return true

3.3.3 Deadlock detection using Interrupted Symbolic Reachability Algorithms

The next set of deadlock detection algorithms are also for bounded Petri Nets. In these we

employ the BFS, Chaining, Saturation and Constrained Saturation algorithms for generating S,

but during every “iteration” we check if we have reached a potential deadlock state.

Checking if we have reached a potential deadlock state becomes an important operation. If S′

is the MDD representing the intermediate set of reachable states for which we want to perform

this check, we could perform the check as follows: “is S′ ∩ C = ∅?”. If the answer is “false” then

a deadlock state has been discovered in S′. But, computing S′ ∩ C is likely to create many MDD

nodes that may never be used again, and increase the peak memory requirements. We instead use

the symbolic procedure IsIntersectionEmpty described in Algorithm 3.7 to answer this query

without needing to build any nodes.

Algorithms 3.8, 3.9, and 3.10 describe these “interrupted” reachability based deadlock detection

algorithms for BFS, Chaining and Saturation respectively.

3.3.3.1 Interrupted BFS

Algorithm 3.8 describes Interrupted BFS for deadlock detection. There are two choices for when

to perform the deadlock check: every time U ′ is updated, or when U is updated. In Algorithm 3.8,

we perform this check when U is updated.
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Algorithm 3.7 Check if A ∩B is empty without building an MDD for A ∩B.

1: procedure IsIntersectionEmpty(A, B) • A, B: mdds

2: if A = 0 ∨B = 0 then

3: return true

4: else if A = 1 ∨B = 1 then

5: return false

6: else if 〈IsIntersectionEmpty, A,B, r〉 ∈ Cache then

7: return r

8: r ← true

9: for i ∈ [0,Min(|A|, |B|)) and r = true do

10: r ← IsIntersectionEmpty(Ai, Bi)

11: Store 〈IsIntersectionEmpty, A,B, r〉 in Cache

12: return r

Algorithm 3.8 Deadlock detection using Interrupted BFS.

1: procedure InterruptedBFS(S0, C, E) • S0: initial states, C: constraint

2: S ← ∅; • Reachable states

3: U ← S0; • Unexplored states

4: repeat

5: S ← S ∪ U ;

6: if IsIntersectionEmpty(S, C) is false then

7: return 〈true, S〉
8: U ′ ← ∅; • U ′: states reachable in one step from U

9: for all e ∈ E do

10: U ′ ← U ′ ∪Ne(U);

11: U ← U ′ \ S;

12: until U = ∅;
13: return 〈false, S〉;
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3.3.3.2 Interrupted Chaining

Algorithm 3.9 describes Interrupted Chaining for deadlock detection. Again, there are two

choices for when to perform the deadlock check: when S′ is updated, or when S is updated. In

Algorithm 3.9, we perform this check when S′ is updated.

Algorithm 3.9 Deadlock detection using Interrupted Chaining.

1: procedure InterruptedChaining(S0, C, E) • S0: initial states, C: constraint

2: S ← ∅; • Reachable states

3: S′ ← S0; • States reachable from S in one additional iteration

4: repeat

5: S ← S′;

6: if IsIntersectionEmpty(S, C) is false then

7: return 〈true, S〉
8: for all e ∈ E do

9: S′ ← S′ ∪Ne(S′);
10: until S′ = S;

11: return 〈false, S〉;

3.3.3.3 Interrupted Saturation

Algorithm 3.10 describes Interrupted Saturation for deadlock detection. This algorithm is

similar to the Constrained Saturation algorithm described in Section 3.2.3.4 except that it does not

use the constraint to limit the paths that are explored, and instead uses it to check for deadlocks

once a node has been saturated. There are some additional details in Algorithm 3.10, to ensure

that any saturated node p retains the same semantics as before, namely, p is saturated with respect

to E≤vk .

Algorithm 3.10 Deadlock detection through Interrupted Saturation.

1: procedure InterruptedSaturation(S0, C, E) • S0: initial states, C: constraint

2: if IsIntersectionEmpty(S0, C) is true then • See Algorithm 3.7

3: return IntSaturate(S0, C, E) • See Algorithm 3.11

4: else

5: return 〈true, S0〉
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Algorithm 3.11 Interrupted Saturation Part 1.

1: procedure IntSaturate(s, c, E) • s: states qrmdd, c: constraint qrxdd

2: if s is a terminal node then

3: return 〈¬IsIntersectionEmpty(s, c), s〉
4: if c is a terminal node then

5: if c = 0 then

6: return 〈false,Saturate(s)〉
7: else

8: return 〈true, s〉 • ∵ s is non-empty

9: if Cache contains 〈IntSaturate, s〉 then

10: r ← Cache〈IntSaturate, s〉
11: return 〈¬IsIntersectionEmpty(r, c), r〉
12: r ← ∅
13: for i ∈ [0, |s|) do

14: 〈status, ri〉 ← IntSaturate(si, ci)

15: if status is true then

16: return 〈true, r〉
17: repeat

18: for all t ∈ E s.t. Top(t) = Level(s) do

19: for i ∈ [0, |r|) do

20: for j ∈ [0, |ti|) do

21: 〈status, r′j〉 ← IntRecFire(ri, cj , ti,j , E) • See Algorithm 3.12

22: rj ← rj ∪ r′j
23: if status is true then

24: r′ ← UniqueTableInsert(r)

25: return 〈true, r′〉
26: until r is a fix-point

27: r′ ← UniqueTableInsert(r)

28: Store 〈IntSaturate, s, r′〉 in Cache

29: return 〈false, r′〉
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Algorithm 3.12 Interrupted Saturation Part 2.

1: procedure IntRecFire(s, c, t, E) • s: states, c: constraint, t: transition

2: if c is 0 then

3: return 〈false, RecFire(s, t, E) 〉
4: if s is 0 or t is 0 then

5: return 〈false, 0〉
6: if t is 1 then

7: return 〈¬IsIntersectionEmpty(s, c), s〉
8: if Cache contains 〈IntRecFire, s, t〉 then

9: r ← Cache〈IntRecFire, s, t〉
10: return 〈¬IsIntersectionEmpty(r, c), r〉
11: r ← ∅
12: for i ∈ [0, |s|) do

13: for j ∈ [0, |ti|) do

14: 〈status, r′j〉 ← IntRecFire(si, cj , ti,j , E)

15: rj ← rj ∪ r′j
16: if status is true then

17: r′ ← UniqueTableInsert(r)

18: return 〈true, r′〉
19: r′ ← UniqueTableInsert(r)

20: 〈status, r′′〉 ← IntSaturate(r′, c, E)

21: if status is false then

22: Store 〈IntRecFire, s, t, r′′〉 in Cache

23: return 〈status, r′′〉
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All of these algorithms will construct the reachable set of states if no deadlock is found, and

will construct a partial set of reachable states S′ otherwise, containing at least one deadlock state.

3.3.4 Deadlock Detection in Unbounded Petri Nets

Next we discuss modifications to existing reachability algorithms that can be used to find

deadlocks in unbounded Petri Nets.

Breadth-first exploration algorithms such as Interrupted BFS explore states at increasing dis-

tances from the set of initial states, where distance of state si from state sj is the minimum number

of events that must be fired to reach i from j.

Interrupted Chaining can also be placed in a similar category as Interrupted BFS since every

iteration fires each transition once. Therefore any state discovered in iteration k, is (at most) at a

distance of k × |E| steps from the set of initial states.

If a deadlock exists, Interrupted BFS and Interrupted Chaining are guaranteed to find it even

if the Petri Net is unbounded. If a deadlock does not exist in a unbounded Petri Net, neither

algorithm will terminate, so we refer to them as semi-algorithms. But, as discussed previously, this

is an undecidable problem, and building an efficient semi-algorithm is the best we can hope for.

Interrupted Saturation, on the other hand, pursues a depth-first exploration strategy, and makes

no guarantees on the order in which states are discovered with respect to the distance from the

set of initial states. Therefore, if a Petri Net is unbounded, we cannot guarantee that Interrupted

Saturation will find a deadlock (if one exists).

3.3.4.1 Interrupted Saturation with Interrupted Chaining

We describe a algorithm that combines Interrupted Saturation with Interrupted Chaining that

is guaranteed to find a deadlock in an unbounded Petri Net, if one exists.

Definition 3.3.6 Net Effect of a Transition
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The Net Effect δe of a PN transition e ∈ E , is defined as

δe =
∑
vk∈V

δe,vk .

Definition 3.3.7 Net Effect Transitions

• A positive net effect transition as any transition e ∈ E that increases the number of tokens in

the Petri Net when fired. The set of all such transitions is denoted by E>0, and defined as

E>0 = {e|e ∈ E ∧ δe > 0}.

• A negative net effect transition as any transition e ∈ E that decreases the number of tokens

in the Petri Net when fired. The set of all such transitions is denoted by E<0, and defined as

E<0 = {e|e ∈ E ∧ δe < 0}.

• A no net effect transition as any transition e ∈ E that does not change the number of tokens

in the Petri Net when fired. The set of all such transitions is denoted by E=0, and defined as

E=0 = {e|e ∈ E ∧ δe = 0}.

• We also define the set of transitions that do not increase the number of tokens in the Petri

Net when fired, E≤0 as

E≤0 = {e|e ∈ E ∧ δe ≤ 0} = E<0 ∪ E=0.

• We say that a marking m is covered by marking m′, m ≤ m′ if

∀k ∈ V,mk ≤ m′k.

• We say m is strictly covered by m′, m < m′, if

1. m ≤ m′, and
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2. ∃k ∈ V,mk < m′k

We observe that, in a general Petri Net (no inhibitor arcs), if a marking m enables transition

e, then any marking m′ such that m < m′ also enables e. Also, by definition, m must have fewer

tokens than m′. In any unbounded Petri Net, there must be markings m and m′, such that m < m′

(Karp and Miller, 1969). Therefore, if e∗ is a bag of transitions that transforms m to m′, m
e∗−→ m′,

there must be some ei ∈ e∗ such that ei ∈ E>0.

We have previously stated that we cannot guarantee that a depth-first exploration strategy

such as Interrupted Saturation will find a deadlock (if one exists) in an unbounded Petri Net. We

know that Interrupted Saturation will terminate if a fix-point can be computed. We also know that

Interrupted BFS and Interrupted Chaining are guaranteed to find a deadlock (if one exists) even if

the fix-point cannot be computed. One way to improve Interrupted BFS and Interrupted Chaining

is to hand-off exploration of a bounded subspace of markings to Interrupted Saturation.

If we restrict Interrupted Saturation to the set of events in E≤0, then, as shown below, it is

guaranteed to terminate since the set of reachable markings with respect to any initial marking

and E≤0, is finite.

Theorem 3.3.1

For any finite marking, and a set of events that do not increase the token count in the Petri Net,

the set of reachable markings is finite.

Proof: Let n represent the token count in the given marking. By definition, n is a non-negative

integer. The set of states whose token count is at most n, S≤n, is a subset of Vn = v1×v2×· · ·×v|V|

where each vi ∈ [0, n]. Vn is a finite set, therefore S≤n is also finite. Since no event can increase

the token count in any marking reachable from the initial marking, it follows that the state space

to be explored is a subset of S≤n. Since S≤n is finite, the set of reachable markings is finite. �

This leads to Algorithm 3.13 for the detection of deadlocks in unbounded Petri Nets. It classifies

the events into two sets, E≤0 and E>0, and calls InterruptedSaturation on E≤0 and Inter-
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ruptedChaining on E>0, until either a deadlock is found, or, if the reachable state space is finite,

a fixed-point is reached.

Algorithm 3.13 Deadlock detection in unbounded Petri Nets with Saturation.

1: procedure InterruptedSaturationWithChaining(S0, E) • S0: initial states

2: S ← S0;

3: C ← BuildDeadlockStates(E);

4: E>0 ← {e|e ∈ E ∧ δe > 0};
5: E≤0 ← E \ E>0;

6: repeat

7: 〈r, S〉 ← InterruptedSaturation(S,C,E≤0);
8: if r = true then return 〈true, S〉;
9: 〈r, S〉 ← InterruptedChaining(S,C,E>0);

10: if r = true then return 〈true, S〉;
11: until S is a fixed point

12: return 〈false, S〉;

3.3.4.2 Interrupted Saturation with Interrupted Chaining and Invariant Analysis

We hypothesize that we can improve Algorithm 3.13 by increasing the cardinality of E≤0, i.e.

the events that we can hand-off to Saturation. We make the following observations:

1. Any place vk ∈ V can be marked bounded if ∀e ∈ E , δe,vk ≤ 0. In other words, if none of the

transitions increase the number of tokens in vk, the number of tokens in vk in any reachable

marking is bounded, and is at most S0(vk), the number of tokens placed in vk by the initial

marking S0.

2. Any place vk ∈ V that is a part of a p-semiflow is bounded. In other words, if a Petri Net

satisfies the invariant, a.vi + b.vj = c, where a, b, c ∈ N, and vi, vj ∈ V, then vi and vj are

bounded by c. Also, since the invariant must be true of the initial marking, it follows that

c = a.S0(vi) + b.S0(vj).

Our idea for enlarging the number of transitions in E≤0 is to ignore bounded places when

computing the net effect of transitions.
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V = {v1, v2, v3}
E = {e1, e2}
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−− −− −−
δV ′,e +1 0


E>0
V ′ = {e1}

Figure 3.3 A Petri net model showing the effect of invariant analysis on E>0.



50

Definition 3.3.8 Net Effect of a Transition with respect to a Set of Places

δe,V ′ , the Net Effect of a transition e ∈ E with respect to places V ′ ⊆ V, is defined as

δe,V ′ =
∑
vk∈V ′

δe,vk .

Definition 3.3.9 E>0 with respect to a Set of Places

We define the set of places as V̂ ⊆ V, and the set of positive effect transitions with respect to V̂ as

E>0
V̂ = {e|e ∈ E , δe,V̂ > 0}.

Algorithm 3.14 describes our refinement to Algorithm 3.13. The only difference between the

two algorithms is in the construction of set E>0. Figure 3.3 illustrates the computation E>0 over V

and V ′, where V ′ = V \ V̂, and V̂ is the set of places that are bounded based on invariant analysis.

Algorithm 3.14 Interrupted Saturation with Invariant Analysis.

1: procedure InterruptedSaturationWithChaining(S0, E) • S0: initial states

2: S ← S0;

3: C ← BuildDeadlockStates(E);

4: Build V̂ ⊆ V, the set of bounded places;

5: V ′ ← V \ V̂;

6: E>0 ← {e|e ∈ E ∧ δe,V ′ > 0};
7: E≤0 ← E \ E>0;

8: repeat

9: 〈r, S〉 ← InterruptedSaturation(S,C,E≤0);
10: if r = true then return 〈true, S〉;
11: 〈r, S〉 ← InterruptedChaining(S,C,E>0);

12: if r = true then return 〈true, S〉;
13: until S is a fixed point

14: return 〈false, S〉;
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3.4 Experimental evaluation

The algorithms discussed in Section 3.3 were implemented using Meddly (Babar and Miner,

2010) and SMART (Ciardo et al., 2009). Experiments were run on a 2.13 Ghz Intel Xeon processor

running Linux, with sufficient RAM to avoid paging to disk.

We tested our algorithms on a variety of Petri Net models taken from the 2018 Model Checking

Contest https://mcc.lip6.fr/2018/. Most of these models have scaling parameters that affect

their size and complexity, yielding N = 767 model instances.

3.4.1 Bounded Petri Nets

28BFS

121Ch

364Sat

62IBFS

204ICh

417ISat

449ISatCh

438ISatChInv

0 100 200 300 400 500
Number of bounded models solved

Figure 3.4 Results for bounded Petri Nets.

All but one of the 767 model instances are known to be bounded. Figure 3.4.1 gives the results for

these bounded models. We used a time limit of 3600 seconds and a memory limit of 16 gigabytes for

each model instance and counted the number of model instances each algorithm is able to complete.

In the table, BFS, Ch, Sat, IBFS, ICh, ISat, ISatCh and ISatChInv refer to Breadth-first reachability

described in Algorithm 3.1, Chaining in Algorithm 3.2, Saturation in Algorithm 3.3, Interrupted

BFS in Algorithm 3.8, Interrupted Chaining in Algorithm 3.9, Interrupted Saturation in Algorithm

https://mcc.lip6.fr/2018/
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3.10, Interrupted Saturation with Chaining in Algorithm 3.13, and Interrupted Saturation with

Chaining and Invariant Analysis in Algorithm 3.14, respectively.

The table clearly shows that Sat outperforms Ch which in turn outperforms BFS. Based on ex-

isting empirical evidence, this was the expected result. The corresponding interrupted counterparts

IBFS, ICh and ISat were able to solve a larger number of models with ISat solving more than

ICh, and ICh in turn solving more than IBFS, although the difference between ISat and ICh is

proportionally smaller than the difference between Sat and Ch. This may indicate that in these

models the distance between the initial state and the deadlock is relatively small.

Surprisingly ISatCh and ISatChInv did quite well on these bounded models. This may be

partially due to the distance of the deadlocks from the initial state, as discussed above. In addition,

ISatCh and ISatChInv are biased towards firing the transitions that remove tokens from the PN,

which may have been beneficial for these set of models.

3.4.2 Potentially Unbounded Petri Nets

8BFS

19Ch

46Sat

58IBFS

162ICh

61ISat

396ISatCh

385ISatChInv

0 100 200 300 400 500
Number of bounded/unbounded models solved

Figure 3.5 Results for bounded/unbounded Petri Nets.

Since only one of the MCC models is known to be unbounded, we modified these models to

induce unboundedness. The procedure to induce unboundedness was relatively straightforward:
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add an output arc from a randomly selected transition to a randomly selected place. We note

that this is not guaranteed to make the model unbounded. Figure 3.4.2 gives the results for these

models. Once again, we used a time limit of 3600 seconds and a memory limit of 16 gigabytes for

each model instance and counted the number of model instances each algorithm is able to complete.

As was the case for bounded models, Sat performed better than Ch which in turn performed

better than BFS. But they completed far fewer models when compared to the corresponding bounded

model experiments. ICh performed much better than ISat, and ISatCh and ISatInv complete more

than twice as many models as ICh and ISat.

3.5 Discussion

The experiments indicate that among the set of algorithms described in this chapter, ISatCh is

best for bounded as well as for unbounded models. We think this may be a misleading conclusion

as discussed below.

For the set of bounded models, the set of models solved by ISat is a superset of the models

solved by Sat, but the set of models solved by ISatCh is not a superset of ISat. Compared to

ISatCh, ISat is faster at computing the set of reachable states S, and detecting the absence of

deadlocks. ISatCh on the other hand is better at detecting the presence of deadlocks since they

are usually found at relatively short distances from initial state (at least in this set of models). We

also note that almost 59% (432 out of 738) of the model instances are known to contain deadlocks,

and may indicate why ISatCh performs better than ISat on this set of models.

For the set of unbounded models, ISatCh is clearly better than ISat. It is revealing how much

worse ISat fares when the model is unbounded, and confirms our hypothesis that an unguided

depth-first search in a potentially unbounded search space is likely to get trapped in an unbounded

subspace. It may be possible to improve ISat by prioritizing the set of transitions based on their

net effect.

ISatChInv did not do as well as we expected for these models, and the simpler ISatCh performed

better. This may be due to the additional processing required for the invariant analysis, which may
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be significant since many of the models are rather large in terms of the number of places and

transitions. It is also possible that removing the effect of bounded places in the calculation of the

net effect was heavy-handed, and a more nuanced approach might yield better results.

We have discussed improvements to reachability analysis towards detecting deadlocks in Petri

Nets. As stated in Section 3.1, structural analysis on Petri Nets can be extremely fast. State

Equation analysis (Murata, 1989) and Siphon-Trap analysis (Hack, 1972), for example, can rule

out the possibility of a deadlock in a Petri Net, or guarantee its presence without having to do

any state space exploration. But, structural analysis techniques for deadlock detection in Petri

Nets are known to be incomplete, i.e. the analysis may be inconclusive. Still, considering the cost

of reachability analysis, it should only be performed when structural analysis is inconclusive. An

additional advantage of performing structural analysis first, is that it may help reachability analysis

by simplifying the Petri Net and by reducing the state space to be explored.

3.6 Conclusions

We have presented novel symbolic algorithms for detecting deadlocks in Petri Nets and given

empirical evidence of their effectiveness in relation to existing symbolic algorithms. We have also

demonstrated that these algorithms can be used to detect deadlocks in unbounded Petri Nets.

Interrupted Saturation was shown to outperform all existing symbolic algorithms for detecting

deadlocks in bounded Petri Nets. Interrupted Saturation with Chaining performed very well even

on unbounded Petri Nets and avoided the pitfalls of using a depth-first algorithm when exploring

infinite state spaces.

We plan to integrate our algorithms into Petri Net analysis tools that perform structural analysis

before reachability analysis, and compare them to explicit reachability techniques. Also, invariant

analysis did not help Interrupted Saturation with Chaining as much as we expected, and we plan

to make a more nuanced adjustment to the computation of net effect in the future.
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CHAPTER 4. BINARY DECISION DIAGRAMS WITH EDGE-SPECIFIED

REDUCTIONS

Various versions of binary decision diagrams (BDDs) have been proposed in the past, differing in

the reduction rule needed to give meaning to edges skipping levels. The most widely adopted, fully-

reduced BDDs and zero-suppressed BDDs, excel at encoding different types of boolean functions

(if the function has many “don’t-care”, or it tends to have value zero when one of its arguments

is nonzero, respectively). Lately, new classes of BDDs have been proposed that, at the cost of

some additional complexity and larger memory requirements per node, exploit both cases. In this

chapter we introduce a new type of BDD, Binary Decision Diagrams with Edge-Specified Reductions

or ESRBDDs, that we believe are conceptually simple, have a smaller memory requirements for

each node, tend to need fewer nodes, and can easily be extended with additional reduction rules.

We present a formal definition, prove canonicity, and provide experimental results to support our

efficiency claims.

4.1 Introduction

Decision diagrams (DDs) have been widely adopted for a variety of applications. This is due

to their often compact, graph-based representations of functions over boolean variables, along with

operations to manipulate those boolean functions based on the sizes of the graph representations,

rather than the size of the domain of the function. Most DD types are canonical for boolean

functions: for a fixed ordering of the function variables, each function has a unique (modulo graph

isomorphism) DD representation, or encoding.

Compactness, and canonicity, is achieved through careful rules for eliminating nodes. All canon-

ical DDs eliminate nodes that duplicate information: if nodes p and q encode the same function,

one of them is discarded. Additional compactness comes from a reduction rule (or rules) that
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specifies both how to interpret “long” edges that skip over function variables, and how to eliminate

nodes and replace them with long edges. Two popular forms of decision diagrams, Binary Decision

Diagrams (BDDs) (Bryant, 1986) and Zero-suppressed binary Decision Diagrams (ZDDs) (Minato,

2001), use different reduction rules. Some applications are more suitable for BDDs while others

are more suitable for ZDDs, depending on which of the two reductions can be applied to a greater

number of nodes. Unfortunately, it is not always easy to know, a priori, which reduction rule is

best for a particular application. Worse, there are applications where both rules are useful.

Tagged BDDs (TBDDs) (van Dijk et al., 2017) and Chain-reduced BDDs (CBDDs) or ZDDs

(CZDDs) (Bryant, 2018) have been introduced to combine the reduction rules of BDDs and ZDDs.

We introduce a new type of BDD, called Edge Specified Reduction BDDs (ESRBDDs), that we

believe is conceptually simpler and has smaller node storage requirements than TBDDs, CBDDs,

and CZDDs, while still exploiting the BDD and ZDD reduction rules. Additionally, ESRBDDs are

flexible in that additional reduction rules may be added with low cost. Finally, unlike TBDDs,

CBDDs, and CZDDs, ESRBDDs treat the BDD and ZDD reduction rules equally: there is no need

to prioritize one rule over another.

The chapter is organized as follows. Section 4.2 recalls definitions for BDDs and ZDDs and

describes related work. Section 4.3 formally defines ESRBDDs, gives their reduction algorithm,

proves that they are a canonical form, and compares them to related DDs. Section 4.4 provides

experimental results to show how the various DDs compare in practice. Section 4.5 provides

conclusions.

4.2 Related Decision Diagrams

We focus on various types of DDs that have been proposed to efficiently encode boolean functions

of boolean variables, and briefly recall DDs relevant to our work. For consistency in notation, all

DD types we present encode functions of the form f : BL → B and have L levels, with level L at

the top.
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The first and most widely-known type is the reduced-ordered binary decision diagrams (BDDs) (Bryant,

1986). A BDD is a directed acyclic graph where the two terminal nodes 0 and 1 are at level 0, we

write l(0) = l(1) = 0, while each nonterminal node p belongs to a level l(p) ∈ {1, ..., L} and has

two outgoing edges, p[0] and p[1], pointing to nodes at lower levels (this is the “ordered” property).

The “reduced” property instead forbids both duplicate nodes (p and q are duplicates if l(p) = l(q),

p[0] = q[0], and p[1] = q[1]), and redundant nodes (p is redundant if p[0] = p[1]). The function Fp

encoded by BDD node p is defined as

Fp(x1:L) =


Fp[xl(p)](x1:L) l(p) > 0

p l(p) = 0,

where (x1:L) is a shorthand for the boolean tuple (x1, ..., xL).

Another widely-used type is the zero-suppressed binary decision diagrams (ZDDs) (Minato,

2001), which differ from BDDs only in that they forbid high-zero nodes (node p is high-zero if

p[1] = 0) instead of redundant nodes. The function encoded by ZDD node p is defined with respect

to a level n ≥ m = l(p), as

Fnp (x1:n) =



0 n > m ∧ ∃i,m < i ≤ n, xi = 1

Fmp (x1:m) n > m ∧ ∀i,m < i ≤ n, xi = 0

Fm−1p[xm](x1:m−1) n = m > 0

p n = m = 0.

Both BDDs and ZDDs are canonical : any function f : BL → B has a unique node p encoding

it, an essential property guaranteeing time efficiency. Just as important is their memory efficiency,

i.e., the number of nodes required to encode a given function. In this respect, BDDs and ZDDs

are particularly suited to different situations. BDDs require fewer nodes if there are many “don’t

cares”, i.e., it often happens that Fp(x1:L) = Fp(y1:L) when x1:L and y1:L differ in one position, as

this corresponds to redundant nodes, not stored in BDDs. ZDDs require fewer nodes if the function

tends to have value 0 when many arguments have value 1 as this corresponds to high-zero nodes,

not stored in ZDDs.
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Quasi-reduced BDDs (QBDDs) (Kimura and Clarke, 1990) are also canonical: they are just like

BDDs (or ZDDs) except they only forbid duplicate nodes. QBDD edges connect nodes on adjacent

levels, therefore nodes do not need to store level information. This also means that redundant and

high-zero nodes are not eliminated. A useful variation is to eliminate only redundant (or high-zero)

nodes whose children are 0, and thus allow long edges directly to 0. In either case, QBDDs require

at least as many nodes as BDDs and ZDDs to encode a given function, so they provide an upper

bound on both the BDD and the ZDD size.

Various decision diagrams have been proposed to combine the characteristics of BDDs and

ZDDs and exploit their reduction potential. Tagged binary decision diagrams (TBDDs) (van Dijk

et al., 2017) associate a level tag to each edge. BDD reductions are implied along the edge from the

level of the node until the level of the tag, and ZDD reductions are implied from the level of the tag

to the level of the node pointed to by the edge. Alternatively, TBDDs can apply reductions in the

reverse order along an edge: ZDD reductions first and BDD reductions second. Either reduction

order can be used in TBDDs, but a TBDD can only use one of them, i.e., they cannot both be

used in the same TBDD.

Chain-reduced BDDs (CBDDs) and chain-reduced ZDDs (CZDDs) (Bryant, 2018) augment

BDDs and ZDDs by using nodes to encode chains of high-zero nodes and redundant nodes, respec-

tively. Each node specifies two levels, the first level indicating where the chain starts (similar to

the level of an ordinary BDD or ZDD node), and the second, additional, level indicating where the

chain ends.

Finally, ordered Kronecker functional decision diagrams (Drechsler and Becker, 2006) allow

multiple decomposition types (Shannon, positive Davio, and negative Davio), enabling both BDD

and ZDD reductions. However, each level has a fixed decomposition type, thus this approach is less

flexible, potentially less efficient, and hindered by the need to know a priori which decomposition

will perform best for each level.
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4.3 ESRBDDs

Definition 4.3.1

An L-level (ordered) edge-specified reduction binary decision diagram (ESRBDD) is a directed

acyclic graph where the two terminal nodes 0 and 1 are at level 0, l(0) = l(1) = 0, while each

nonterminal node p belongs to a level l(p) ∈ {1, ..., L} and has two outgoing edges, p[0] and p[1],

pointing to nodes at lower levels. An edge is a pair e = 〈e.r,e.p〉, where e.r is a reduction rule in

{S, L0, H0, X} and e.p is the node to which edge e points. For i ∈ {0, 1}, if l(p[i].p) = l(p)−1, we say

that p[i] is a short edge and require that p[i].r = S. If instead l(p[i].p) < l(p) − 1, the only other

possibility, we say that p[i] is a long edge, since it “skips over” one or more levels, and require that

p[i].r ∈ {H0, L0, X}. �

The reduction rule on an edge specifies its meaning when skipping levels, thus it is just S for

short edges while, for long edges, the rules H0, L0, and X correspond to the “zero-suppressed” rule

of Minato (2001), the “one-suppressed” rule (a new rule analogous to the zero-suppressed, as we

shall see), and the “fully-reduced” rule of Bryant (1986), respectively. To make this more precise,

we recursively define the boolean function Fn〈κ,p〉 : Bn → B encoded by an ESRBDD edge 〈κ,p〉 with

respect to a level n ∈ {0, ..., L}, subject to l(p) ≤ n, as

Fn〈κ,p〉(x1:n) =



if l(p) = n = 0 p

if l(p) = n > 0 (xn) ? Fn−1p[1] (x1:n−1) : Fn−1p[0] (x1:n−1)

if l(p) < n, κ = X, (xn) ? Fn−1〈κ,p〉(x1:n−1) : Fn−1〈κ,p〉(x1:n−1)

if l(p) < n, κ = H0, (xn) ? 0 : Fn−1〈κ,p〉(x1:n−1)

if l(p) < n, κ = L0, (xn) ? Fn−1〈κ,p〉(x1:n−1) : 0,

where the if-then-else operator (xn)?f1:f0 is a shorthand for (¬xn ∧ f0) ∨ (xn ∧ f1).

We defined an ESRBDD as a directed acyclic graph, so it can potentially have multiple roots

(nodes with no incoming edges). However, since our focus is on the size of the DD encoding a given
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function, we assume from now on that our ESRBDDs have a single root node p?, pointed to by

a dangling edge with rule κ?. We denote the set of all nodes reachable from p? (and therefore all

nodes in the ESRBDD) as Nodes(p?). The dangling edge 〈κ?,p?〉 encodes the function FL〈κ?,p?〉,

which is independent of κ? only if l(p?) = L, in which case we require κ? = S, while we require

κ? ∈ {L0, H0, X} if l(p?) < L. Finally, we will informally say “ESRBDD 〈κ?,p?〉” to refer to the

entire graph below (and including) dangling edge 〈κ?,p?〉.

Before introducing reduced ESRBDDs and showing they are canonical, we need some terminol-

ogy. We say that an ESRBDD nonterminal node q:

• duplicates node p if l(p) = l(q), p[0] = q[0], and p[1] = q[1] (Figure 4.1),

r0 r1 r0 r1

Figure 4.1 Duplicate nodes.

• is redundant if q[0] = q[1] = 〈κ,p〉, with κ ∈ {S, X} (Figure 4.2),

r r ∈ {S, X}

Figure 4.2 A redundant node.

• is high-zero if q[0].r ∈ {S, H0}, and q[1].p = 0 (Figure 4.3),

• is low-zero if q[0].p = 0, and q[1].r ∈ {S, L0} (Figure 4.4).
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0

S, H0

Figure 4.3 A high-zero node.

0

S, L0

Figure 4.4 A low-zero node.

Note that BDDs (Bryant, 1986) can be viewed as ESRBDDs where the edge labels are restricted

to {S, X}, and a reduced BDD corresponds to an ESRBDD with no duplicate nodes and no redun-

dant nodes. Similarly, ZDDs (Minato, 2001) can be viewed as ESRBDDs where edge labels are

restricted to {S, H0}, and a reduced ZDD corresponds to an ESRBDD with no duplicate nodes and

no high-zero nodes. Also, we note that there is no corresponding definition in the existing literature

for the version of ESRBDDs where the edge labels are restricted to {S, L0}.

Definition 4.3.2

An ESRBDD is reduced if the following restrictions hold:

R1. There are no duplicate nodes.

R2. There are no redundant nodes.

R3. There are no high-zero nodes.

R4. There are no low-zero nodes.

R5. For any edge e = 〈κ,0〉, κ ∈ {S, X}. The last restriction disallows edges 〈H0,0〉 and 〈L0,0〉

in the reduced ESRBDD. This is because Fn〈H0,0〉 ≡ F
n
〈L0,0〉 ≡ F

n
〈X,0〉 ≡ 0, and since we want to enforce
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canonicity in the reduced ESRBDD, we have arbitrarily chosen 〈X,0〉 as the unique representation

for such long edges.

4.3.1 Reducing an ESRBDD

Algorithm 4.1 Reduce an ESRBDD.

1: procedure Reduce(ESRBDD 〈κ?,p?〉)
2: V ← Nodes(p?);

3: ∀κ ∈ {H0, L0}, replace all 〈κ,0〉 edges with 〈X,0〉;
4: while V contains a high-zero, low-zero, redundant, or duplicate node do

5: Choose a high-zero, low-zero, redundant, or duplicate node q ∈ V ;

6: if q duplicates p then

7: ∀κ ∈ {S, X, H0, L0}, replace all 〈κ,q〉 edges with 〈κ,p〉;
8: else

9: if q is a redundant node then

10: κ′ ← X; d′ ← q[1].p;

11: else if q is a high-zero node then

12: κ′ ← H0; d′ ← q[0].p;

13: else if q is a low-zero node then

14: κ′ ← L0; d′ ← q[1].p;

15: if d′ = 0 then

16: ∀κ ∈ {S, X, H0, L0}, replace all 〈κ,q〉 edges with 〈X,0〉;
17: else

18: Replace all 〈S,q〉 edges with 〈κ′,d′〉;
19: Replace all 〈κ′,q〉 edges with 〈κ′,d′〉;
20: for all rules κ ∈ {X, H0, L0} \ {κ′}, such that an edge 〈κ,q〉 exists do

21: Create node q′ at level l(q) + 1 and add q′ to V ;

22: if κ = X then

23: q′[0]← 〈κ′,d′〉; q′[1]← 〈κ′,d′〉;
24: else if κ = H0 then

25: q′[0]← 〈κ′,d′〉; q′[1]← 〈X,0〉;
26: else if κ = L0 then

27: q′[0]← 〈X,0〉; q′[1]← 〈κ′,d′〉;
28: Replace all 〈κ,q〉 edges with 〈κ,q′〉 or 〈S,q′〉;
29: Remove q from V ;

An ESRBDD can be converted into a reduced ESRBDD using Algorithm 4.1. The algorithm

first replaces any edges 〈H0,0〉 or 〈L0,0〉 with 〈X,0〉, to satisfy restriction R5. Then, it repeatedly

chooses a high-zero, low-zero, redundant, or duplicate node q and eliminates it. If node q duplicates
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node p, then it redirects all incoming edges from q to p (line 7). Otherwise, q is a high-zero, low-zero,

or redundant node, and lines 9–14 find a node d′ with l(d′) < l(q) = n−1, and a rule κ′ ∈ {X, H0, L0}

such that Fn〈S,q〉(x1:n) = Fn〈κ′,d′〉(x1:n). Note that a short edge to node q becomes a long edge to

node d′ because l(d′) < l(q). For the special case of d′ = 0, any edge to q is equivalent to edge

〈X,0〉, so the algorithm replaces those edges (line 16).

When d′ 6= 0, we have Fn〈S,q〉(x1:n) = Fn〈κ′,d′〉(x1:n) for n = l(q) + 1, and these edges are replaced

in line 18. It follows that Fn〈κ′,q〉(x1:n) = Fn〈κ′,d′〉(x1:n) for n > l(q) + 1; these replacements are made

in line 19. For rules κ ∈ {X, H0, L0} with κ 6= κ′, we cannot replace 〈κ,q〉 with a single long edge

to node d′, because the edge needs different reduction rules: the κ rule is needed above level l(q),

and the κ′ rule is needed from level l(q) down. So lines 21–27 of the algorithm create a new node

q′ at level l(q) + 1, of the appropriate shape such that Fn〈κ,q〉(x1:n) = Fn〈S,q′〉(x1:n) for n = l(q′) + 1.

It then follows that Fn〈κ,q〉(x1:n) = Fn〈κ,q′〉(x1:n) for n > l(q′) + 1. These replacements are made in

line 28, where the replacement 〈κ,q′〉 is used for long edges, and 〈S,q′〉 is used for short edges.

In the above discussion, any edge that is replaced by the algorithm encodes the same function

as its replacement, giving us the following lemma.

Lemma 4.3.1

In Algorithm 4.1, each edge replacement preserves the function encoded by the ESRBDD 〈κ?,p?〉.

It remains to show that the algorithm always terminates.

Lemma 4.3.2

Algorithm 4.1 terminates in O(|Nodes(p?)|) steps.

Proof: The proof is based on the observation that, at every iteration of the algorithm, a node q is

chosen to be processed (line 5), at most two nodes are created at level l(q)+1 (line 21), and node q

is removed (line 29). These new nodes (q′ on line 21), by construction, satisfy one of the following

patterns:

• q′[0] = q′[1] = 〈κ′,d′〉, where d′ 6= 0, and κ′ ∈ {H0, L0},
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• q′[0] = 〈X,0〉, and q′[1] = 〈κ′,d′〉, where d′ 6= 0, and κ′ ∈ {X, H0},

• q′[0] = 〈κ′,d′〉, and q′[1] = 〈X,0〉, where d′ 6= 0, and κ′ ∈ {X, L0}.

These nodes are neither redundant, high-zero, nor low-zero, but they could be duplicates. Since

the elimination of duplicate nodes (line 7) does not create new nodes, the two nodes created at

level l(q) + 1 generate at most two additional iterations of the algorithm. Therefore, for every node

in the original ESRBDD, the algorithm iterates at most three times. �
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Theorem 4.3.1

Algorithm 4.1 converts ESRBDD 〈κ?,p?〉 to an equivalent reduced ESRBDD in O(|Nodes(p?)|)

steps.

Proof: Lemma 4.3.1 establishes that Algorithm 4.1 terminates in O(|Nodes(p?)|) steps. Based on

the condition of the while loop, when the loop terminates, we know that the ESRBDD contains

no high-zero, low-zero, redundant, or duplicate nodes. From line 3 and the fact that the algorithm

never adds an edge of the form 〈H0,0〉 or 〈L0,0〉, we conclude that when Algorithm 4.1 terminates,

any edge to terminal node 0 must have edge rule S or X. Therefore, when the Algorithm terminates,

the ESRBDD is reduced. Lemma 4.3.1 establishes that Algorithm 4.1 produces an equivalent (in

terms of encoded function) ESRBDD. �

While we have established that Algorithm 4.1 always terminates and produces a reduced ES-

RBDD, we have not yet established that the Algorithm produces the same reduced ESRBDD,

regardless of the order in which nodes are chosen in line 5. This is guaranteed by the canonicity

property, discussed next. Additionally, we note here that, unlike most other decision diagrams

(including BDDs, ZDDs, CBDDs, CZDDs, and TDDs), a reduced ESRBDD is not necessarily a

minimum size ESRBDD encoding of a function, even for a fixed variable order, as elimination of

some node q during the reduction could trigger the creation of two new nodes. An example of this

is shown in Figure 4.7, where redundant node q is eliminated. Edges 〈S,q〉 and 〈X,q〉 can be simply

redirected as 〈X,p〉, but the 〈H0,q〉 and 〈L0,q〉 edges require the creation of two new nodes qH0 and

qL0 .

While the “chaotic” non-deterministic reduction procedure in Algorithm 4.1 is handy in proving

termination under the most general conditions, in practice we utilize a deterministic depth-first

version of this algorithm that reduces a node only after having reduced its children.

4.3.2 Canonicity of reduced ESRBDDs

We are now ready to discuss the canonicity of reduced ESRBDDs, i.e., to show that a function

has a unique encoding as a reduced ESRBDD. In the following, we say that functions Fn〈κ,p〉 and
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xi

xj

xk
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X H0

L0

S

X X

−→ Algorithm 4.1 −→

qH0 qL0s′

p

X

H0 L0

X X X

Figure 4.7 A worst-case example where elimination of node q creates two nodes.

Fn〈κ′,p′〉 are equivalent, written Fn〈κ,p〉 ≡ Fn〈κ′,p′〉, if Fn〈κ,p〉(x1:n) = Fn〈κ′,p′〉(x1:n) for all possible inputs

(x1:n) ∈ Bn.

Theorem 4.3.2

In a reduced ESRBDD, for any n ∈ N, for any two edges e = 〈κ,p〉, e′ = 〈κ′,p′〉 with l(p) ≤ n,

l(p′) ≤ n, if Fne ≡ Fne′ then (1) p = p′, and (2) if l(p) < n then κ = κ′.

Proof: The proof is by induction on n. For the base case, we use n = 0 and from the definition of

F we have F 0
e ≡ F 0

e′ → p = p′.

Now, suppose the theorem holds for n = m, where m ≥ 0, we will prove it holds for n = m + 1.

Regardless of 〈κ,p〉, we have

Fn〈κ,p〉(x1:n) = (xn)?f1(x1:n−1):f0(x1:n−1)

for some functions f0 and f1. Similarly, we have

Fn〈κ′,p′〉(x1:n) = (xn)?f ′1(x1:n−1):f
′
0(x1:n−1).

It follows that Fn〈κ,p〉 ≡ F
n
〈κ′,p′〉 if and only if f0 ≡ f ′0 and f1 ≡ f ′1.

First, suppose l(p) = n and l(p′) = n. From the definition of F , it follows that Fn−1p[0] ≡ Fn−1p′[0] and

Fn−1p[1] ≡ Fn−1p′[1] . By inductive hypothesis, p[0].p = p′[0].p and p[1].p = p′[1].p. If l(p[0].p) < n − 1,

then by inductive hypothesis, p[0] = p′[0]; otherwise, l(p[0].p) = n− 1 and we must have p[0].r = S
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and p′[0].r = S, thus p[0] = p′[0]. By a similar argument, it follows that p[1] = p′[1]. We therefore

have either that p = p′ and the theorem holds, or that p duplicates p′, which is impossible because

of restriction R1.

Next, suppose l(p) < n and l(p′) < n. If κ = κ′, then in all cases for F we conclude that

Fn−1〈κ,p〉 ≡ Fn−1〈κ′,p′〉 and by inductive hypothesis we have that p = p′, so the theorem holds. We now

show that κ 6= κ′ is impossible, by contradiction. Consider the possible cases for κ 6= κ′:

1. κ = X: If κ′ = L0 or κ′ = H0, from the definition of F we conclude that Fn−1〈κ,p〉 ≡ Fn−1〈κ′,p′〉 and

that Fn−1〈κ,p〉 ≡ 0.

2. κ = L0: If κ′ = H0, from the definition of F we conclude that Fn−1〈κ,p〉 ≡ 0 and Fn−1〈κ′,p′〉 ≡ 0.

3. The remaining cases are symmetric.

In all cases, we conclude that Fn−1〈κ,p〉 ≡ 0 and Fn−1〈κ′,p′〉 ≡ 0. By the inductive hypothesis, we have

that p = 0 and p′ = 0. According to R5, if p = 0 then κ cannot be L0 or H0. But this implies κ = X

and κ′ = X, contradicting our assumption that κ 6= κ′.

Finally, suppose l(p) = n and l(p′) < n (the case l(p) < n and l(p′) = n is symmetric). We show

that this is impossible, by contradiction. Consider the possible cases for κ′:

1. κ′ = X: From the definition of F , we must have Fn−1p[0] ≡ Fn−1〈κ′,p′〉 and Fn−1p[1] ≡ Fn−1〈κ′,p′〉. By

the inductive hypothesis, we conclude that p[0].p = p′ and p[1].p = p′. If l(p′) = n − 1, then

we have p[0] = p[1] = 〈S,p′〉; otherwise, we have l(p′) < n − 1 and by inductive hypothesis,

p[0] = p[1] = 〈κ′,p′〉 = 〈X,p′〉. Either way, node p is redundant, and from R2 we have a

contradiction.

2. κ′ = H0: From the definition of F , we must have Fn−1p[0] ≡ Fn−1〈κ′,p′〉 and Fn−1p[1] ≡ 0. By

the inductive hypothesis, we conclude that p[0].p = p′ and p[1].p = 0. If l(p′) = n − 1,

then we have p[0] = 〈S,p′〉; otherwise, we have l(p′) < n − 1 and by inductive hypothesis,

p[0] = 〈κ′,p′〉 = 〈H0,p′〉. Either way, node p is high-zero, and from R3 we have a contradiction.
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3. κ′ = L0: From the definition of F , we must have Fn−1p[0] ≡ 0 and Fn−1p[1] ≡ Fn−1〈κ′,p′〉. By

the inductive hypothesis, we conclude that p[0].p = 0 and p[1].p = p′. If l(p′) = n − 1,

then we have p[1] = 〈S,p′〉; otherwise, we have l(p′) < n − 1 and by inductive hypothesis,

p[1] = 〈κ′,p′〉 = 〈L0,p′〉. Either way, node p is low-zero, and from R4 we have a contradiction.

�

The canonicity result establishes that, regardless of how a ESRBDD is constructed for a given

function, the resulting reduced ESRBDD is guaranteed to be unique (assuming a given variable

order). Thus, we can determine in constant time whether two functions encoded as reduced ES-

RBDDs are equivalent (as is already the case for reduced ordered BDDs and ZDDs). From now

on, unless otherwise specified, we assume that all ESRBDDs are reduced.

4.3.3 Comparing ESRBDDs to other types of decision diagrams

For the remainder of this section, we consider the relative size of the different types of DD based

on the interpretation of long edges, namely, BDDs, ZDDs, CBDDs, CZDDs, TBDDs, and ESRB-

DDs. We also consider ESRBDDs without the L0 edge label, denoted ESRBDD−L0. These are

summarized in Table 4.1, some entries (comparisons between BDDs, ZDDs, CBDDs, and CZDDs)

are known from prior work (Bryant, 2018; Knuth, 2011), some entries are discussed below, and

some entries are unknown. Entry [T1, T2] describes the worst-case increase in the number of nodes,

as a multiplicative factor, More formally, it is the bound for “number of nodes required to encode

f using T2” divided by “number of nodes required to encode f using T1” for all functions f over

L boolean variables. Note that the node counts always include both terminal nodes. A factor of 1

indicates that type T1 cannot require fewer nodes than type T2.

First, we discuss how an arbitrary BDD can be converted into a TBDD or ESRBDD, and fill in

the BDD row in Table 4.1. To build a TBDD from a BDD, every edge to a non-terminal node p in

the BDD is annotated with the level tag l(p). By definition, any such annotated edge in a TBDD

implies BDD reductions for the skipped levels. A TBDD thus constructed is no larger than the

BDD, and may be further reduced (since it could contain high-zero nodes) by applying the TBDD
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Table 4.1 Worst-case relative increase when converting one DD type into another.

†: Knuth (2011); ‡: Bryant (2018)

BDD ZDD CBDD CZDD TBDD ESR−L0 ESR

BDD → — L/2 † 1 ‡ 2 ‡ 1 1 1

ZDD → L/2 † — 3 ‡ 1 ‡ 1 1 1

CBDD → ? ? — 2 ‡ ? 2 2

CZDD → ? ? 3 ‡ — ? 2 2

TBDD → ? ? ? ? — 3 3

ESRBDD−L0 → L/2 L/2 3 2 1 — 3/2

ESRBDD → 2L/3 2L/3 L/2 L/2 L/2 L/2 —

reduction described in van Dijk et al. (2017). Similarly, we can annotate long edges in the BDD

with X (Figure 4.10(a)), and short edges with S, to obtain an unreduced ESRBDD. We then apply

Algorithm 4.1. We now show that this will not increase the ESRBDD size, and thus the resulting

ESRBDD cannot be larger than the original BDD.

Lemma 4.3.3

Suppose we have an unreduced ESRBDD where, for every node q, there exists a rule κ ∈ {X, H0, L0}

such that every edge to q is either 〈S,q〉 or 〈κ,q〉. Then reducing the ESRBDD will not increase the

number of nodes.

Proof: Apply Algorithm 4.1 and in line 5, always choose a node at the lowest level. Then, when

a node q is chosen, all incoming edges to q will be labeled either with S or with κ. The 〈S,q〉 edges

will not cause any node to be created. The 〈κ,q〉 edges will cause at most one node to be created.

But then node q is removed. Thus, the overall number of nodes cannot increase. �

It is also easy to convert a ZDD into a TBDD or ESRBDD. To obtain a TBDD, annotate every

edge from non-terminal node p with the level tag l(p), so that ZDD reductions are used for all the

edges; then reduce the TBDD. To obtain an ESRBDD, annotate long edges in the ZDD with H0,

see Figure 4.10(b), and short edges with S, and apply Algorithm 4.1.
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“Converting from A to B could increase the
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Figure 4.8 ESRBDD−L0 size comparison.
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Figure 4.9 ESRBDD size comparison.
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The conversion from a chained DD to an unreduced ESRBDD is illustrated in Figure 4.10(c)

and (d). For each chain node xk:xi with xk > xi, create a “top node” with variable xk, and a

“bottom node” with variable xi, that is only pointed to by its corresponding top node. In a CBDD,

the top node will be a high-zero node, and all top nodes and non-chained nodes will have incoming

edges labeled with X or S. In a CZDD, the top node will be a redundant node, and all top nodes

and non-chained nodes will have incoming edges labeled with H0 or S. At worst, the unreduced

ESRBDD has twice the nodes of the original CBDD or CZDD and, from Lemma 4.3.3, reducing

this ESRBDD does not increase its size.

xi

xj

xk

xl

(a) BDD (b) ZDD (c) CBDD (d) CZDD (e) TBDD

X H0

xk : xi

X

H0 xk : xi

H0

X X

xk xj

X

X

H0
H0

Figure 4.10 Converting to ESRBDDs.

In a TBDD, each edge can be characterized as short, purely X, purely H0, or partly X and partly

H0. To convert into an ESRBDD, the short edges are labeled with S, the purely X edges are labeled

with X, the purely H0 edges are labeled with H0. Edges that are partly X and partly H0 require the

addition of a node at the level where the reduction rule changes, as shown in Figure 4.10(e). The

worst case occurs when every edge requires such a node. Then, since every TBDD node has two

outgoing edges, the resulting unreduced ESRBDD will have triple the number of nodes. Since all

of the introduced nodes have incoming X edges, and all other nodes have incoming S or H0 edges,

from Lemma 4.3.3 this ESRBDD will not increase in size when it is reduced. We note here that,

if there are some purely X edges in the TBDD, then Lemma 4.3.3 no longer applies; however, the

number of nodes that would be added during reduction is no more than the number of nodes saved

by not having to introduce a node on the purely X edges.
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We now consider converting from ESRBDDs into the other DD types. In the case where L0

edges are not allowed (row ESRBDD−L0 in Table 4.1), the worst case BDD is from ESRBDD 〈H0,1〉

and the worst case ZDD is from ESRBDD 〈X,1〉. In both cases, the ESRBDD has 2 nodes, while

the resulting BDD/ZDD has L+ 2 nodes, giving ratios of L/2 + o(L), similar to the discussion in

(Knuth, 2011, p. 250). The example ZDD in Bryant (2018), which produces a CBDD with three

times as many nodes, can be converted into an ESRBDD of the same size. Similarly, the example

BDD in Bryant (2018), which produces a CZDD with twice as many nodes, can be converted

into an ESRBDD of the same size. Any ESRBDD without L0 edges can be converted into a

TBDD by labeling X edges with a level tag such that the X rule is always applied, and labelling

H0 edges with a level tag such that the H0 rule is always applied. Therefore, the TBDD cannot

be larger than the ESRBDD. An ESRBDD−L0 can be converted into an ESRBDD by running

Algorithm 4.1 to eliminate any low-zero nodes. For each low-zero node that is eliminated, we

could have an incoming X and H0 edge, causing the creation of two nodes. Suppose we eliminate

n low-zero nodes that cause creation of two nodes. Then, because each low-zero node must have

2 incoming edges, we must have 2n incoming edges to these nodes. Above, we must have at least

2n − 1 nodes to produce these edges. We could then “stack” such a pattern m times. This gives

an ESRBDD with m(n + 2n − 1) + 2 = m(3n − 1) + 2 nodes, and a reduced ESRBDD with

m(2n + 2n − 1) + 2 = m(4n − 1) + 2 nodes. The upper bound of this ratio is 3/2, which occurs

when n = 1 and m goes to infinity.

For the case of ESRBDDs with all types of edges (row ESRBDD in Table 4.1), the L0 edge

allows us to build different worst cases. Consider an ESRBDD 〈S,p〉 where l(p) = L, p[0] = 〈H0,1〉,

and p[1] = 〈L0,1〉. This ESRBDD has 3 nodes. Because BDDs cannot exploit H0 or L0 edges, this

will produce a BDD with 2(L − 1) + 3 = 2L + 1 nodes, giving a worst-case ratio of 2L/3. The

ZDD worst-case is similar, using instead p[0] = 〈X,1〉. Finally, for DD types that can exploit both

X and H0 edges, the ESRBDD 〈L0,1〉 corresponds to the worst case: the CBDD, CZDD, TBDD,

and ESRBDD−L0 will all require L+ 2 nodes.
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4.4 Experimental results

We compare the performance of QBDDs (with long edges to 0), BDDs, ZDDs, CBDDs, CZDDs,

TBDDs, and ESRBDDs on three sets of benchmarks. The first two benchmarks are similar to those

used in Bryant (2018), and representative of general textual information and digital logic functions,

respectively. The third benchmark is typical in state space analysis of concurrent systems.

4.4.1 Dictionaries

A dictionary can be encoded as an indicator function over the set of strings of a given length

from either the compact alphabet consisting of the distinct symbols found in the dictionary plus

NULL, or the full alphabet of all 128 ASCII characters (to ensure that all encoded strings have

the same length, shorter ones are padded with the ASCII symbol NULL). We use the encoding

schemes described in Bryant (2018): one-hot and binary. Therefore, each dictionary generates four

benchmarks, one for each choice of encoding and alphabet.

We compare the different DD types on two dictionaries. The first one is the English words in

file /usr/share/dict/words under MacOS, containing 235,886 words with lengths ranging from

1 to 24. Its compact alphabet contains lower and upper case letters plus hyphen and NULL (54

in total). The second one is a set of passwords from SecLists (Miessler and Haddix) (non-ASCII

characters are replaced with NULL), containing 999,999 passwords with lengths ranging from 1 to

39. Its compact alphabet consists of 91 symbols including NULL.

Table 4.2 reports the number of nodes required to store each dictionary, according to different

encodings and alphabets (the best result on each row is in boldface). Except for QBDDs and

BDDs, the one-hot encoding results in fewer nodes, demonstrating the effectiveness of the zero-

suppressed idea when encoding large, sparse data. Among the DD types we consider, ESRBDDs

have the fewest nodes, regardless of encoding and alphabet. For binary encodings, ESRBDDs use

19% ∼ 39% fewer nodes than TBDDs, the second best choice. With one-hot encodings, ZDDs,

CZDDs, TBDDs, and ESRBDDs tie for best because (a) there are no redundant nodes and (b)

any low-zero nodes that are eliminated do not cause an overall decrease in the number nodes in
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the ESRBDDs. Indeed, redundant nodes are rare even with binary encodings, as they arise when

two words w1 and w2 not only have bit patterns that differ in a position, but they also share all

their possible continuations, i.e., w1w
′ is a word if and only if w2w

′ is also a word, for all w′. In the

English word list, “Hlidhskjalf” and its alternate spelling “Hlithskjalf” is one such rare instance

(note that no w′ can continue either of them to form an additional word).

4.4.2 Combinational Circuits

BDDs are commonly used to synthesize and verify digital circuits. We select a set of combi-

national circuits from the LGSynth’91 benchmarks (Yang, 1991) and, for each circuit, we build a

DD encoding all its output logic functions. For each circuit, the variable order is determined using

Sifting (Rudell, 1993) while building the BDD.

Table 4.2 reports the number of nodes needed to encode all outputs of each circuit. In contrast

to the dictionaries, these benchmarks place importance on the ability to eliminate redundant nodes.

Thus, QBDDs and ZDDs have the worst performance. TBDDs and ESRBDDs are always the two

best representations, and the difference between them is less than 0.7%.

4.4.3 Safe Petri Nets

Decision diagrams are frequently used in symbolic model checking to represent sets of states.

We have selected a set of 37 safe Petri nets from the 2018 Model Checking Contest https://

mcc.lip6.fr/2018/. A safe Petri net is one where every place can have at most one token—each

place can, therefore, be mapped directly to a boolean variable. Most of these models have scaling

parameters that affect their size and complexity, yielding N = 103 model instances.

https://mcc.lip6.fr/2018/
https://mcc.lip6.fr/2018/
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Providing detailed results for all the model instances would require excessive space, so to sum-

marize over all model instances, Table 4.4 shows a score for each DD type i. The score is the

geometric mean (Fleming and Wallace, 1986):

score(i) = N

√√√√ N∏
n=1

Ti(n)

Tmin(n)

where N is the total number of model instances, Ti(n) is the number of nodes needed to represent

the state space of instance n using DD type i, and Tmin(n) is the smallest number of nodes needed

to represent the state space of instance n by any DD type. ESRBDDs have by far the smallest

overall score, barely larger than 1, indicating that they are either the smallest or slightly larger

than the smallest for each model instance.

Table 4.3 shows Ti(n) for each DD type i, for the largest instance n of every model, but only

if it required more than 250,000 nodes in the QBDD representation. We also include results for

DiscoveryGPU — the only model where ESRBDDs were not the best (they were a close second).

4.4.4 Memory considerations: the size of nodes

So far, we have compared DD types based on how many nodes they require. However, the

actual memory consumption also depends on the size of the respective nodes. All of these DDs

store two child pointers. In addition, BDDs and ZDDs store a level, CBDDs and CZDDs store two

levels, TBDDs store three levels, while ESRBDDs store a level and two edge rules. Since all short

edges must be labeled by S, it is only necessary to label the long edges, and this requires log2 n

bits per edge if there are n non-S reduction rules. Without L0 edges, a single bit distinguishes

H0 from X; otherwise, two bits are required for rules {H0, L0, X}. QBDD nodes are therefore the

smallest (typically requiring 64 or 128 bits, when 32–bit or 64–bit pointers are used, respectively)

and Table 4.5 indicates the additional cost required for each node type, when the level integers

Table 4.4 Final scores for the safe Petri net benchmarks.

QBDD BDD CBDD ZDD CZDD TBDD ESR

3.108 2.971 2.038 1.215 1.167 1.160 1.001
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Table 4.5 Overhead of node sizes (bits per node) as compared to QBDD nodes.

Level bits BDD ZDD CBDD CZDD TBDD ESR−L0 ESR

16 +16 +16 +32 +32 +48 +18 +20

20 +20 +20 +40 +40 +60 +22 +24

32 +32 +32 +64 +64 +96 +34 +36

are stored using 16 bits (as suggested by Bryant (2018)), 20 bits (as suggested by van Dijk et al.

(2017)), and 32 bits.

ESRBDDs are clearly more memory efficient than CBDDs, CZDDs and TBDDs. There are a

few instances in our experiments where TBDDs use marginally fewer nodes than ESRBDDs (less

than 3.2% fewer nodes in every such instance), but not enough to overcome their per-node memory

overhead.

4.5 Conclusions

We have shown that ESRBDDs are a simple, yet efficient, generalization of previous attempts

at combining reduction rules. Unlike previous efforts, they are not biased towards any particu-

lar reduction rule and therefore eliminate the need for the user to prioritize the reduction rules.

They also provide a framework for further generalizations through additional reduction rules—for

example, “high-one” and “low-one”, the duals of “low-zero” and “high-zero” respectively.

ESRBDDs allow users to select a subset of reduction rules that suit their needs, and make

it possible to integrate domain-specific reduction rules (a common phenomenon) with a subset

of existing ones. ESRBDD nodes are also more compact than all previous such efforts, and new

reduction rules can be added at a small cost—log2 n bits per edge, where n is the number of

reduction rules.

In the following chapters, we will demonstrate that ESRBDDs are easily extendable by including

complement edges and other reduction rules, such as “high-one” or “low-one” reductions, while

maintaining canonicity. We shall also demonstrate the compounding benefits of the compactness

of ESRBDDs when combined with symbolic manipulation algorithms.
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CHAPTER 5. ESRBDD OPERATIONS

In this chapter, we take a closer look at operations over ESRBDDs. First we give a deterministic

depth-first reduction algorithm for ESRBDDs in Section 5.1. Next, in Section 5.2, we describe the

Apply operation over ESRBDDs. We then give theoretical results that attest to the efficiency of

Apply operations on ESRBDDs compared to BDDs and ZDDs.

5.1 Depth-First Reduction of ESRBDDs

We have previously seen a chaotic reduction algorithm in Algorithm 4.1, and proved that it

terminates in time linear to the number of reducible nodes in the unreduced ESRBDD. In practice,

we utilize a deterministic depth-first version of this algorithm, described in Algorithm 5.1. The

depth-first reduction of any edge 〈κ,p〉 that starts at level n proceeds as follows:

1 Reduce node p to 〈κ′,p′〉:

i Initialize 〈κ′,p′〉 with 〈S,p〉.

ii Reduce each child edge of p′ using a recursive call to ReduceEdge(l(p′)− 1,p′[i]).

iii If p′ matches a replacement pattern (duplicate, redundant, low-zero or high-zero), replace

〈κ′,p′〉 with the result of the pattern replacement.

2 Merge κ with 〈κ′,p′〉:

i If p = 0, then 〈X,0〉 is the reduced edge.

ii If l(p) = l(p′), then 〈κ,p′〉 is the reduced edge.

iii Otherwise, l(p) must be greater than l(p′). If κ = κ′, then 〈κ′,p′〉 is the reduced edge.

iv Otherwise, we have a κ that is not compatible with κ′, We resolve it by building a node p′′

representing pattern κ, one level above p. One of edges of p′′ is 〈κ′,p′〉, and depending on
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κ, the other is either 〈κ′,p′〉 (if κ = X), or 〈X,0〉 (if κ ∈ {L0, H0}). p′′ by construction is not

reducible, and the reduced edge is 〈κ,p′′〉.

v Finally, if the resulting edge does not skip any levels, we label it S.

Algorithm 5.1 Depth-first reduction of an ESRBDD.

1: procedure Reduce(ESRBDD 〈κ?,p?〉)
2: return ReduceEdge(L, 〈κ?,p?〉)

3: procedure ReduceEdge(Level n, ESRBDD 〈κ,p〉)
4: 〈κ′,p′〉 ← ReduceNode(p)

5: return MergeEdge(n, κ, l(p), 〈κ′,p′〉)

Algorithm 5.2 Reduce an ESRBDD node.

1: procedure ReduceNode(Node p)

2: if l(p) = 0 then return 〈S,p〉;
3: p′ ← empty node at l(p)

4: for all i ∈ {0, 1} do p′[i]← ReduceEdge(l(p)− 1, p[i]);

5: if p′ is a redundant node then

6: 〈κ′,p′〉 ← 〈X,p′[0].p〉
7: else if p′ is a low-zero node then

8: 〈κ′,p′〉 ← 〈L0,p′[1].p〉
9: else if p′ is a high-zero node then

10: 〈κ′,p′〉 ← 〈H0,p′[0].p〉
11: else

12: if p′ is a duplicate of q then

13: p′ ← q

14: 〈κ′,p′〉 ← 〈S,p′〉
15: return 〈κ′,p′〉

The time-complexity of the depth-first algorithm is linearly proportional to the number of

reducible nodes in the DD, i.e. the same as Algorithm 4.1. But, the depth-first algorithm may be up

to twice as fast: consider a node that is redundant, and whose child is a high-zero node, illustrated

in Figure 5.1(a). The chaotic reduction might eliminate the redundant node first resulting in

Figure 5.1(b), before eliminating the high-zero node resulting in Figure 5.1(c) – which cannot be
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Algorithm 5.3 Merge an ESRBDD edge 〈κ,p〉 originating at level n with an incoming edge labelled
κ̂ originating at level n̂.

1: procedure MergeEdge(Level n̂, Rule κ̂, Level n, ESRBDD 〈κ,p〉)
2: if p = 0 ∨ n̂ = n ∨ κ̂ = S ∨ κ̂ = κ then

3: 〈κ′,p′〉 ← 〈κ,p〉
4: else if κ = S then

5: 〈κ′,p′〉 ← 〈κ̂,p〉
6: else • κ̂ 6= S ∧ κ̂ 6= κ′ ∧ κ′ 6= S

7: 〈κ′,p′〉 ← BuildPattern(n+ 1, κ̂, 〈κ,p〉)
8: κ′ ← κ̂

9: if n̂− l(p′) < 2 then κ′ ← S

10: return 〈κ′,p′〉

Algorithm 5.4 Build ESRBDD node at level n according to pattern κ̂.

1: procedure BuildPattern(Level n, Pattern κ̂, ESRBDD 〈κ,p〉)
2: /*Require: κ̂ 6= S ∧ κ̂ 6= κ */

3: p′ ← new node at level n

4: if κ̂ = X then

5: p′[0]← 〈κ,p〉 p′[1]← 〈κ,p〉
6: else if κ̂ = L0 then

7: p′[0]← 〈X,0〉 p′[1]← 〈κ,p〉
8: else • κ̂ = H0

9: p′[0]← 〈κ,p〉 p′[1]← 〈X,0〉
10: if p′ is a duplicate of q then p′ ← q;

11: return 〈S,p′〉
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Figure 5.1 Chaotic vs Bottom-Up Reduction: (a) Unreduced ESRBDD, (b) Removing
Redundant first, (c) Removing Highzero first.

further reduced. But, Algorithm 5.1 will reduce the child edges first, and will therefore eliminate

the high-zero node first, and get to the final reduced ESRBDD in single step.

5.2 Apply operation

The Apply operation is an essential tool for manipulating decision diagrams (Bryant, 1986). In

its most common form, it can be used to perform binary boolean operations over two decision dia-

grams, for example, conjunction and disjunction. The Apply operation over BDDs (Apply-BDD)

is outlined in Algorithm 5.5, and it works recursively by applying the operation over corresponding

child nodes before applying the operation over the parent nodes. Note that Apply-BDD is able to

skip over levels that are skipped by both operands due to the semantics of a long edge in a BDD.
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The Apply operation over ZDDs (Apply-ZDD) is outlined in Algorithm 5.6, and works similar

to Apply-BDD except that it recurses one level at-a-time. ZDD operations such as OR and AND

are based on an alternate algorithm (Apply-ZDD-0) that allows skipping of levels. What sets

operations such as OR and AND apart from general boolean operations for ZDDs, is that the

result of 〈0⊕ 0〉 is 0, and therefore, the result of applying such an operation over long edges to p0

and p1 is a long edge to p0 ⊕ p1. When 〈0⊕ 0〉 is 1, such as the boolean operation NOR, we must

either use Apply-ZDD or perform a negation on the result of the complementary operation (for

NOR, perform OR and negate the result).

Algorithm 5.5 Apply for BDDs.

1: procedure BddEdge(Level n, BDD p, int i) • i: index, i ∈ {0, 1}
2: if n = l(p) then return p[i]

3: /* interpreting a long edge */

4: return p

5: procedure Apply-BDD(Opcode ⊕, BDD p0, BDD p1)

6: if l(p0) = 0 ∧ l(p1) = 0 then return p0 ⊕ p1
7: if “⊕, p0, p1, p” ∈ CT then return p

8: n←Max(l(p0), l(p1))

9: p← new node at level n

10: p[0]← Apply-BDD(⊕,BddEdge(n, p0, 0),BddEdge(n, p1, 0))

11: p[1]← Apply-BDD(⊕,BddEdge(n, p0, 1),BddEdge(n, p1, 1))

12: p← Reduce(p)

13: CT← CT ∪ “⊕, p0, p1, p”

14: return p

5.2.1 Time-complexity

The run-time complexity of Apply-BDD is O(|BDD(A)|.|BDD(B)|) (Bryant, 1986), where A

and B are boolean functions over L variables, BL → B, BDD(f) is the BDD representing a boolean

function f , and |G| is the number of nodes and edges in graph G.
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Algorithm 5.6 Apply for ZDDs.

1: procedure ZddEdge(Level n, ZDD p, int i) • i: index, i ∈ {0, 1}
2: if n = l(p) then return p[i]

3: /* interpreting a long edge */

4: if i = 0 then return p

5: return 0

6: procedure Apply-ZDD(Opcode ⊕, Level n, ZDD p0, ZDD p1)

7: if l(p0) = 0 ∧ l(p1) = 0 then return p0 ⊕ p1
8: if “⊕, n, p0, p1, p” ∈ CT then return p

9: p← new node at level n

10: p[0]← Apply-ZDD(⊕, n− 1,ZddEdge(n, p0, 0),ZddEdge(n, p1, 0))

11: p[1]← Apply-ZDD(⊕, n− 1,ZddEdge(n, p0, 1),ZddEdge(n, p1, 1))

12: p← Reduce(p)

13: CT← CT ∪ “⊕, n, p0, p1, p”

14: return p

15: procedure Apply-ZDD-0(Opcode ⊕, ZDD p0, ZDD p1)

16: /* Requires: 0⊕ 0 is 0 */

17: if l(p0) = 0 ∧ l(p1) = 0 then return p0 ⊕ p1
18: if “⊕, p0, p1, p” ∈ CT then return p

19: n′ ←Max(l(p0), l(p1))

20: p← new node at level n′

21: p[0]← Apply-ZDD-0(⊕,ZddEdge(n′, p0, 0),ZddEdge(n′, p1, 0))

22: p[1]← Apply-ZDD-0(⊕,ZddEdge(n′, p0, 1),ZddEdge(n′, p1, 1))

23: p← Reduce(p)

24: CT← CT ∪ “⊕, p0, p1, p”

25: return p
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The run-time complexity of Apply-ZDD is O(|ZDD(A)|.|ZDD(B)|) for boolean operations ⊕

that satisfy 0⊕ 0 = 0, and is O(|ZDD(A)|.|ZDD(B)|.L) otherwise (Minato, 2001), where ZDD(f)

is the ZDD representing a boolean function f .

The run-time complexity of BDDs (and ZDDs) is based on the use of memoization of com-

putation results, and is the count of the number of unique recursive calls made by Apply. Let

Ψj,⊕ represent number of unique recursive calls made by the Apply algorithm when perform-

ing operation ⊕ over decision diagrams of type j, where ⊕ is a binary boolean operation, and

j ∈ {BDD,ZDD,CBDD,CZDD,TBDD,ESR}. We know that

ΨBDD,⊕ ≤ |BDD(A)|.|BDD(B)| for any ⊕ , (5.1)

ΨZDD,⊕ ≤ |ZDD(A)|.|ZDD(B)| when 0⊕ 0 = 0, and (5.2)

ΨZDD,⊕ ≤ |ZDD(A)|.|ZDD(B)|.L when 0⊕ 0 6= 0. (5.3)

Algorithm 5.7 Return the low or high edge of an ESRBDD edge w.r.t to a given level.

1: procedure Edge(Level n, ESRBDD 〈κ,p〉, Index i)

2: if n = l(p) then return 〈κ′,p′〉 ← p[i]

3: if κ = X ∨ (i = 0 ∧ κ = H0) ∨ (i = 1 ∧ κ = L0) then

4: 〈κ′,p′〉 ← 〈κ,p〉
5: else

6: 〈κ′,p′〉 ← 〈X,0〉
7: if n = l(p′) + 1 then κ′ ← S

8: return 〈κ′,p′〉

The Apply operation over ESRBDDs is described in Algorithm 5.8. It works in similar fashion

to the Apply over BDDs, but in addition to the operands ESR(A) and ESR(B), Apply-ESR

requires level n, resulting in

ΨESR,⊕ ≤ |ESR(A)|.|ESR(B)|.L

unique recursive calls, and a time complexity of

ΦESR = O(|ESR(A)|.|ESR(B)|.L).
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Algorithm 5.8 Apply for ESRBDDs.

1: procedure Apply-ESR(Opcode ⊕, Level n, ESRBDD 〈κ0,p0〉, ESRBDD 〈κ1,p1〉)
2: if n = 0 then return 〈S,p0 ⊕ p1〉
3: if “⊕, n, 〈κ0,p0〉, 〈κ1,p1〉, 〈κ,p〉” ∈ CT then return 〈κ,p〉
4: p← new node at level n

5: for all i ∈ {0, 1} do

6: 〈κ′0,p′0〉 ← Edge(n, 〈κ0,p0〉, i)
7: 〈κ′1,p′1〉 ← Edge(n, 〈κ1,p1〉, i)
8: n′ ← n− 1

9: if l(p′0) < n′ ∧ l(p′1) < n′ ∧ κ′0 = κ′1 ∧ (κ′0 = X ∨ 0⊕ 0 = 0) then

10: n′ ← Max(l(p′0), l(p′1)); • operation can skip levels

11: p[i]← Apply-ESR(⊕, n′, 〈κ′0,p′0〉, 〈κ′1,p′1〉)
12: p[i]← MergeEdge(n− 1, κ′0, n

′, p[i]) • merge κ′0 with p[i]

13: else

14: p[i]← Apply-ESR(⊕, n′, 〈κ′0,p′0〉, 〈κ′1,p′1〉)
15: 〈κ,p〉 ← ReduceEdge(n, 〈S,p〉)
16: CT← CT ∪ “⊕, n, 〈κ0,p0〉, 〈κ1,p1〉, 〈κ,p〉”
17: return 〈κ,p〉

This time-complexity is better than it seems at first-glance, and we prove that for any operation

⊕, the number of unique recursive calls in Apply-ESR is less than twice the number of unique

recursive calls in Apply-BDD and Apply-ZDD.

Theorem 5.2.1

The time complexity of Algorithm 5.8 is O(|ESR(A)|.|ESR(B)|.L).

Proof: We observe that for each pair of edges (ei, ej) and non-negative integer n where ei ∈

ESR(A), ej ∈ ESR(B) and n ∈ [0, L] we can construct |ESR(A)| × |ESR(B)| × L distinct tuples

to pass as arguments to Apply. Any other tuple would be a duplicate call whose result has been

previously computed and stored in the compute cache. �

Definition 5.2.1

We define a simple-long-edge to be a long-edge in a BDD (or a ZDD) whose destination node does

not fit any of the reduction rules of ESRBDDs.
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Long-edges that are not simple-long-edges can be further reduced by ESRBDDs since they end

in nodes that satisfy an ESRBDD reduction pattern. For example, consider the edge 〈X,a〉. If a is

a high-zero node, then, after reduction, a is eliminated and a node a′ at level l(a) + 1 is created

such that a′[0] = a′[1] = 〈H0,a〉. We point out that a′ cannot be further reduced. As discussed

previously, this reduction rule in ESRBDDs is used to enforce canonicity. We have previously shown

that ESR(A) is never larger than BDD(A), and there are situations when they are of the same size,

but even in those situations they are not guaranteed to be isomorphic. BDD(A) and ESR(A) are

isomorphic only when there is no node in BDD(A) that satisfies an ESRBDD reduction pattern.

The above implies that all the long-edges in BDD(A) must be simple-long-edges.

Theorem 5.2.2

The number of unique recursive calls to Apply-ESR in Apply-ESR is less than twice the number

of unique recursive calls to Apply-BDD in Apply-BDD.

ΨESR,⊕ ≤ 2×ΨBDD,⊕

Proof: First, we assume that BDD(A) and BDD(B) are isomorphic with ESR(A) and ESR(B).

This implies that there are no high-zero or low-zero nodes in BDD(A) and BDD(B), are therefore

all long edges in BDD(A), BDD(B), ESR(A) and ESR(B) are also simple-long-edges. For every

pair of edges (ei, ej) in BDD(A) and BDD(B), there is at most one unique recursive call to Apply-

BDD (since any duplicate will cause a cache hit). Similarly, for every pair of simple-long-edges

(ei, ej) in ESR(A) and ESR(B), due to lines 9–12 in Algorithm 5.8, there is at most one unique

recursive call to Apply-ESR and any duplicate will cause a cache hit. Therefore, when all long

edges are simple-long-edges, ΨESR,⊕ ≤ ΨBDD,⊕.

Next, we allow BDD(A) and BDD(B) to contain low-zero and high-zero nodes, but we retain

the assumption that any long-edge is a simple-long-edge. From the above discussion we know that

when restricted to simple-long-edges ΨESR,⊕ ≤ ΨBDD,⊕. Therefore, we consider only those cases

where at least one of the operands to Apply-BDD and Apply-ESR is a low-zero or high-zero
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node, and a L0 or H0 edge respectively. In the discussion that follows, the operands to Apply-ESR

are edges 〈κi,pi〉 and 〈κj ,pj〉, n is the level at which the edges originate (or are being evaluated),

and n′ is the higher of two nodes pi and pj and is defined as n′ = Max(l(pi), l(pj)).

• If κi = κj = H0, or κi = κj = L0, there is at most one unique call to Apply-ESR per

level, between levels n and n′. This is because at every such level, one of the two calls is

a duplicate call that is equivalent to 〈⊕, 〈X,0〉, 〈X,0〉〉. Apply-BDD will require at least one

unique recursive call per level for levels n to n′, because these long edges represent unreducible

high-zero or low-zero node at each level in BDDs. It follows that ΨESR,⊕ ≤ ΨBDD,⊕ in this

case.

• If κi = X and κj = H0, there is at most one unique call to Apply-ESR per level, between

levels n and n′ since at least one of the two calls is a duplicate call that is equivalent to

〈⊕, 〈X,pi〉, 〈X,0〉〉. Apply-BDD will require at least one unique recursive call per level for

levels n to n′, because the H0 edge represents unreducible high-zero nodes at each level in the

corresponding BDD. It follows that ΨESR,⊕ ≤ ΨBDD,⊕ in this case. The cases, κi = X and

κj = L0, κj = X and κi = H0, and κj = X and κi = L0 are symmetric.

• If κi = L0 and κj = H0, there are two calls generated at level n for Apply-ESR and Apply-

BDD, namely, 〈⊕, 〈X,0〉, 〈H0,pj〉〉 and 〈⊕, 〈L0,pi〉, 〈X,0〉〉. Both these calls have been shown

above to satisfy ΨESR,⊕ ≤ ΨBDD,⊕.

• The remaining cases are symmetric.

Finally, we discuss the general case, where BDD(A) and BDD(B) may contain long edges that

are not simple-long-edges. Without loss of generality, we restrict our discussion to the cases where

at least one of the operands to Apply-BDD is a long edge ending in a high-zero node (since all

other cases are symmetric or have been dealt with above). Let pi be the high-zero node, and pj be

a node that is neither high-zero nor low-zero. In ESR(A), pi is eliminated and a node p′i is created

at level l(pi) + 1 such that p′i[0] = p′i[1] = 〈H0,pi[0]〉 (see Figures 5.1(b) and 5.1(c)). There are three

cases depending on l(pi) and l(pj):
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1. l(pi) = l(pj) + 1:

Three unique recursive calls to Apply-BDD are generated:

(a) 〈⊕, pi, pj〉.

(b) 〈⊕, pi[0], pj〉.

(c) 〈⊕, pi[1], pj〉.

Four unique recursive calls to Apply-ESR are generated:

(a) 〈l(p′i),⊕, p′i, pj〉.

(b) 〈l(p′i)− 1,⊕, p′i[0], pj〉.

(c) 〈l(p′i) − 1,⊕, p′i[1], pj〉 which is equivalent to 〈l(p′i) − 1,⊕, p′i[0], pj〉 since p′i[0] = p′i[1].

This generates a cache hit and is not counted as a unique recursive call.

(d) 〈l(p′i)− 2,⊕, p′i[0], pj〉.

(e) 〈l(p′i)− 2,⊕, p′i[0], pj〉.

2. l(pi) = l(pj):

Three unique recursive calls to Apply-BDD are generated:

(a) 〈⊕, pi, pj〉.

(b) 〈⊕, pi[0], pj [0]〉.

(c) 〈⊕, pi[1], pj [1]〉.
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Four unique recursive calls to Apply-ESR are generated:

(a) 〈l(p′i),⊕, p′i, pj〉.

(b) 〈l(p′i)− 1,⊕, p′i[0], pj〉.

(c) 〈l(p′i) − 1,⊕, p′i[1], pj〉 which is equivalent to 〈l(p′i) − 1,⊕, p′i[0], pj〉 since p′i[0] = p′i[1].

This generates a cache hit and is not counted as a unique recursive call.

(d) 〈l(p′i)− 2,⊕, p′i[0], pj [0]〉.

(e) 〈l(p′i)− 2,⊕, p′i[0], pj [1]〉.

3. l(pi) = l(pj)− 1:

At most seven unique recursive calls to Apply-BDD are generated:

(a) 〈⊕, pi, pj〉.

(b) 〈⊕, pi, pj [0]〉.

(c) 〈⊕, pi, pj [1]〉.

(d) Two calls for children of pi and pj [0].

(e) Two calls for children of pi and pj [1].

We note that since pj [0] 6= pj [1], there can be at most one duplicate recursive call among

these seven. There are exactly the same number of unique recursive calls to Apply-ESR

generated:

(a) 〈l(p′i),⊕, p′i, pj〉.

(b) 〈l(p′i)− 1,⊕, p′i[0], pj [0]〉.

(c) 〈l(p′i)− 1,⊕, p′i[1], pj [1]〉.

(d) Two calls for children of pi and pj [0].

(e) Two calls for children of pi and pj [1].

4. The cases where pi and pj are more than one level apart are analogous.
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The case when both long edges end in high-zero or low-zero nodes are similar to the case above

with single a non-simple-long-edge, so we restrict our discussion to the worst-case for Apply-ESR.

Let pi and pj be high-zero or low-zero nodes. In ESR(A), pi is eliminated and a node p′i is created

at level l(pi) + 1 such that p′i[0] = p′i[1] = 〈κi,pi[0]〉 and κi ∈ {L0, H0}. Similarly, in ESR(B), pj

is eliminated and a node p′j is created at level l(pj) + 1 such that p′j [0] = p′j [1] = 〈κj ,pi[0]〉 and

κj ∈ {L0, H0}. We discuss the case where l(pi) = l(pj) since, the rest of the cases do not increase

the ratio ΨESR,⊕ : ΨBDD,⊕.

Three unique recursive calls to Apply-BDD are generated (illustrated in Figure 5.2(c)):

1. 〈⊕, pi, pj〉.

2. 〈⊕, pi[0], pj [0]〉.

3. 〈⊕, pi[1], pj [1]〉.

Four unique recursive calls to Apply-ESR are generated (illustrated in Figure 5.2(f)):

1. 〈l(p′i),⊕, p′i, p′j〉.

2. 〈l(p′i)− 1,⊕, p′i[0], p′j [0]〉.

3. 〈l(p′i)− 1,⊕, p′i[1], p′j [1]〉 which is equivalent to 〈l(p′i)− 1,⊕, p′i[0], p′j [0]〉 since p′i[0] = p′i[1] and

p′j [0] = p′j [1]. This generates a cache hit and is not counted as a unique recursive call.

4. 〈l(p′i)− 2,⊕, p′i[0], p′j [0]〉.

5. 〈l(p′i)− 2,⊕, p′i[0], p′j [1]〉.

Therefore, in every case ΨESR,⊕ ≤ 2×ΨBDD,⊕

�
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Theorem 5.2.3

The number of unique recursive calls in Apply-ESR is less than twice the number of unique

recursive calls in Apply-ZDD.

ΨESR,⊕ ≤ 2.ΨZDD,⊕

Proof: The proof is analogous to the proof for BDDs but with simple-long-edges representing

ZDD reductions ending in nodes that are neither redundant nor low-zero. Lines 9–12 in Apply-

ESR ensure that it skips the levels that are skipped by Apply-ZDD-0 for operations that satisfy

0⊕ 0 = 0. �

Theorem 5.2.4

The number of unique recursive calls in Apply-ESR is less than twice the number of unique

recursive calls in Apply-BDD and Apply-ZDD.

ΨESR,⊕ ≤ Min


2.ΨBDD,⊕

2.ΨZDD,⊕

Proof: From Theorem 5.2.1 and Theorem 5.2.1. �

5.3 Conclusions

In Chapter 4, ESRBDDs were shown to be simpler and more compact than existing works. In

this chapter, we have shown that the Apply operation on ESRBDDs is at least as fast as those

on BDDs and ZDDs. Indeed, for any binary function, ESRBDDs are at least as compact as the

smaller of the two representations (BDDs and ZDDs); and for Apply operations over such functions,

ESRBDDs are at least as fast as the faster of the two representations.
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CHAPTER 6. ESRBDDS WITH COMPLEMENTARY EDGES

In Chapter 4, we defined ESRBDDs to eliminate duplicate, redundant, low-zero and high-zero

nodes; proved that they were canonical and gave experimental evidence for their compactness. In

Chapter 5, we proved that the Apply operation over ESRBDDs has a time-complexity at most

that of BDDs and ZDDs. In this chapter, we demonstrate the extendability of ESRBDDs, as

claimed in (Babar et al., 2019), by eliminating complementary, low-one, and high-one nodes and

their counterparts.

The rest of this chapter is organized as follows. Section 6.1 gives a brief introduction to the

additional reduction rules we intend to integrate into ESRBDDs. Section 6.2 defines ESRBDDs

with complement edges, CESRBDDs. Section 6.3 defines reduced CESRBDDs and provides a

reduction algorithm. Section 6.4 proves the canonicity of reduced CESRBDDs. Section 6.5 makes

a comparison between the size of CESRBDDs and BDDs, ZDDs, CBDDs, CZDDs, TBDDs and

ESRBDDs, and Section 6.6 concludes.

6.1 Introduction

We have defined a few node patterns in Chapter 4, namely, redundant, high-zero and low-zero

nodes, and replaced them in ESRBDDs with long edges labelled X, H0 and L0 respectively. We now

expand the set of patterns that we would like to eliminate in ESRBDDs.

The high-one pattern is derived from the high-zero pattern by replacing high edges to 0 with 1.

Further, for any high-zero edge going to node p, there is an implicit reference to terminal node 0.

Swapping these two nodes in the high-zero pattern, produces the high-swap-zero pattern. Similarly,

for any high-one edge going to node p, there is an implicit reference to terminal node 1. Swapping

these two nodes in the high-one pattern, produces the high-swap-one pattern. Figure 6.1 illustrates

these patterns.
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Figure 6.1 High patterns.

Left to right: High-zero H0, High-one H1, High-t Ht.
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Figure 6.2 High-Swap patterns.

Left to right: High-swap-zero H̃0, High-swap-one H̃1, High-swap-t H̃t.

Following the same process for the low-zero pattern we derive the low-one, low-swap-zero and

low-swap-one patterns illustrated in Figure 6.3.

Complementary edges introduced in Brace et al. (1990) for BDDs and in S. Minato et al. (1990)

for ZDDs, can reduce the number of nodes in the decision diagram by a factor of two by representing

a node and its complement with the same node. To ensure canonicity Brace et al. and S. Minato

et al. described the idea of node normalization: a normalized node cannot have a complemented

low edge, and a reduced decision diagram cannot contain non-normalized nodes. A node can be

normalized by complementing both child edges and any incoming edge. From here on we refer to

ESRBDDs that incorporate all of the above patterns as “ESRBDDs with complementary edges”,

or CESRBDDs for short.
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qt

Figure 6.3 Low patterns.

Left to right: Low-zero L0, Low-one L1, Low-t Lt.

v

0q

v

1q

v

tq

Figure 6.4 Low-Swap patterns.

Left to right: Low-swap-zero L̃0, Low-swap-one L̃1, Low-swap-t L̃t.

We note that for certain functions these patterns overlap. For example, a high-zero pattern

for a function over a single boolean variable may be match a low-one pattern. In the rest of this

chapter, we give more precise definitions for these patterns and show that reduced CESRBDDs are

canonical.

6.2 Definition of CESRBDDs

An L-level (ordered) complementary edge-specified reduction binary decision diagram (CES-

RBDD) is a directed acyclic graph where the only terminal node Ω is at level 0, l(Ω) = 0, while

each nonterminal node p belongs to a level l(p) ∈ {1, ..., L} and has two outgoing edges, p[0] and

p[1], pointing to nodes at lower levels. An edge is a triple e = 〈e.r,e.c,e.p〉, where e.r is a reduction

rule in {S, X, L0, H0, L1, H1, H̃0, L̃0, H̃1, L̃1}, e.p is the node to which edge e points, and e.c is a boolean

(0 and 1 representing false and true respectively), that indicates whether the function encoded by

e.p should be complemented. For i ∈ {0, 1}, if l(p[i].p) = l(p)−1, we say that p[i] is a short edge and
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require that p[i].r = S. If instead l(p[i].p) < l(p)− 1, the only other possibility, we say p[i] is a long

edge, since it “skips over” one or more levels, and require that p[i].r ∈ {X, L0, H0, L1, H1, H̃0, L̃0, H̃1, L̃1}.

0

S, H0

1

S, H1

t

S, Ht

Figure 6.5 High-zero, high-one and high-t nodes.

S, H̃0 S, X S, H̃1 S, X S, H̃t S, X

Figure 6.6 High-swap-zero, high-swap-one and high-swap-t nodes.

0

S, L0

1

S, L1

t

S, Lt

Figure 6.7 Low-zero, low-one and low-t nodes.

The reduction rule on an edge specifies its meaning when skipping levels, thus for short edges it

is just S. Chapter 4 defined redundant (Figure 4.2), high-zero (Figure 4.3) and low-zero (Figure 4.4)

nodes and represented them as edges labelled X, H0 and L0 respectively. We also define new rules:

H1 (high-one) and L1 (low-one) are analogous to H0 and L0 respectively, L̃0 (low-swap-zero), L̃1 (low-

swap-one), H̃0 (high-swap-zero), and H̃1 (high-swap-one) are duals of H0, H1, L0, and L1 respectively.
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S, X S, L̃0 S, X S, L̃1 S, X S, L̃t

Figure 6.8 Low-swap-zero, low-swap-one and low-swap-t nodes.

Figures 6.5, 6.6, 6.7, and 6.8 illustrate these reductions. In addition, we allow edges to be

complemented (Brace et al., 1990; S. Minato et al., 1990).

To make this more precise, we recursively define the boolean function Fn〈κ,c,p〉 : Bn → B encoded

by an CESRBDD edge 〈κ,c,p〉 with respect to a level n ∈ {0, ..., L}, subject to l(p) ≤ n, as

Fn〈κ,c,p〉(x1:n) =



if l(p) = n ∧ n = 0, c

if l(p) = n ∧ n > 0, c⊕ Fn−1p[xn]
(x1:n−1)

if l(p) < n ∧ κ = X, Fn−1〈κ,c,p〉(x1:n−1)

if l(p) < n ∧ κ = Ht, xn ? t : Fn−1〈κ,c,p〉(x1:n−1)

if l(p) < n ∧ κ = Lt, xn ? Fn−1〈κ,c,p〉(x1:n−1) : t

if l(p) + 1 < n ∧ κ = H̃t, xn ? Fn−1〈X,c,p〉(x1:n−1) : Fn−1〈κ,c,p〉(x1:n−1)

if l(p) + 1 = n ∧ κ = H̃t, xn ? Fn−1〈S,c,p〉(x1:n−1) : t

if l(p) + 1 < n ∧ κ = L̃t, xn ? Fn−1〈κ,c,p〉(x1:n−1) : Fn−1〈X,c,p〉(x1:n−1)

if l(p) + 1 = n ∧ κ = L̃t, xn ? t : Fn−1〈S,c,p〉(x1:n−1)

where (x1:n) is a shorthand for the tuple (x1, ..., xn), t is a boolean (0 and 1 representing false

and true respectively), and the if-then-else operator (xn)?f1:f0 is a shorthand for (¬xn∧f0)∨ (xn∧

f1).

We defined an CESRBDD as a directed acyclic graph, so it can potentially have multiple roots

(nodes with no incoming edges). However, since our focus is on the size of the encoding for a given

function, we assume from now on that our CESRBDDs have a single root. Furthermore, we defined
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the function encoded by an edge 〈κ,c,p〉 with respect to a level n, because the function encoded

by a node p would be well-defined only with respect to level l(p), not levels above that. Since this

applies also when p is the root node and we are interested in discussing functions over L booleans,

we assume a dangling edge 〈κ?,c?,p?〉, which encodes the function FL〈κ?,c?,p?〉; this function is

independent of κ? only if l(p?) = L, in which case we require κ? = S. Finally, we will informally

say “CESRBDD 〈κ?,c?,p?〉” to mean “the CESRBDD whose nodes are the nodes reachable from

root node p?, pointed to by a dangling edge with rule 〈κ?,c?〉”.

6.2.1 Equivalence relationships

Based on the definition of CESRBDDs we observe the following equivalences.

• The constant function 1 can be represented in multiple ways:

Fn〈X,1,Ω〉 ≡ F
n
〈L1,1,Ω〉 ≡ F

n
〈H1,1,Ω〉 ≡ F

n
〈L̃1,1,Ω〉 ≡ F

n
〈H̃1,1,Ω〉 ≡ 1 (6.1)

• The constant function 0 can be represented in multiple ways:

Fn〈X,0,Ω〉 ≡ F
n
〈L0,0,Ω〉 ≡ F

n
〈H0,0,Ω〉 ≡ F

n
〈L̃0,0,Ω〉 ≡ F

n
〈H̃0,0,Ω〉 ≡ 0 (6.2)

• There are 22
n

functions over n boolean variables. Therefore there are four functions over the

lowest variable in a CESRBDD. The functions 1 and 0 are covered in equations 6.1 and 6.2.

The remaining are covered by equations 6.3 and 6.4 below.

F 1
〈L0,1,Ω〉 ≡ F

1
〈H1,0,Ω〉 ≡ F

1
〈L̃0,1,Ω〉 ≡ F

1
〈H̃1,0,Ω〉 (6.3)

and,

F 1
〈L1,0,Ω〉 ≡ F

1
〈H0,1,Ω〉 ≡ F

1
〈L̃1,0,Ω〉 ≡ F

1
〈H̃0,1,Ω〉 (6.4)
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• We also observe that all long edges to Ω labelled with L̃0, L̃1, H̃0, and H̃1 have equivalents in

terms of X, L0, L1, H0, and H1.

Fn〈L̃0,0,Ω〉 ≡ F
n
〈X,0,Ω〉 (6.5)

Fn〈L̃0,1,Ω〉 ≡ F
n
〈L1,0,Ω〉 (6.6)

Fn〈L̃1,0,Ω〉 ≡ F
n
〈L0,1,Ω〉 (6.7)

Fn〈L̃1,1,Ω〉 ≡ F
n
〈X,1,Ω〉 (6.8)

Fn〈H̃0,0,Ω〉 ≡ F
n
〈X,0,Ω〉 (6.9)

Fn〈H̃0,1,Ω〉 ≡ F
n
〈H1,0,Ω〉 (6.10)

Fn〈H̃1,0,Ω〉 ≡ F
n
〈H0,1,Ω〉 (6.11)

Fn〈H̃1,1,Ω〉 ≡ F
n
〈X,1,Ω〉 (6.12)

• If a swap edge skips a single level n, we observe that there is an equivalent non-swap edge for

it.

Fn〈L̃0,c,p〉(xn−1:n) ≡ Fn〈H0,c,p〉(xn−1:n) (6.13)

Fn〈L̃1,c,p〉(xn−1:n) ≡ Fn〈H1,c,p〉(xn−1:n) (6.14)

Fn〈H̃0,c,p〉(xn−1:n) ≡ Fn〈L0,c,p〉(xn−1:n) (6.15)

Fn〈H̃1,c,p〉(xn−1:n) ≡ Fn〈L1,c,p〉(xn−1:n) (6.16)

• The complement of a function represented as a CESRBDD can be constructed by comple-

menting any edges to the terminal node, i.e. any edge 〈κ,c,Ω〉 is replaced with 〈κ,¬c,Ω〉.

Applying this to the patterns discussed so far, produces the following equivalences.
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¬Fn〈X,c,p〉 ≡ F
n
〈X,¬c,p〉 (6.17)

¬Fn〈L0,c,p〉 ≡ F
n
〈L1,¬c,p〉 (6.18)

¬Fn〈L1,c,p〉 ≡ F
n
〈L0,¬c,p〉 (6.19)

¬Fn〈H0,c,p〉 ≡ F
n
〈H1,¬c,p〉 (6.20)

¬Fn〈H1,c,p〉 ≡ F
n
〈H0,¬c,p〉 (6.21)

¬Fn〈L̃0,c,p〉 ≡ F
n
〈L̃1,¬c,p〉 (6.22)

¬Fn〈L̃1,c,p〉 ≡ F
n
〈L̃0,¬c,p〉 (6.23)

¬Fn〈H̃0,c,p〉 ≡ F
n
〈H̃1,¬c,p〉 (6.24)

¬Fn〈H̃1,c,p〉 ≡ F
n
〈H̃0,¬c,p〉 (6.25)

6.3 Reduced CESRBDDs

Before we define reduced CESRBDDs and show that they are canonical, we need some more

terminology. We say that a CESRBDD nonterminal node q is:

normalized if q[0].c = 0.

Normalization of nodes is a standard technique discussed in Brace et al. (1990) and S. Mi-

nato et al. (1990) to canonicalize complement edges. A normalized node cannot have a low

edge that is complemented, and a node that is not normalized (or unnormalized) must be

normalized before it can be used in a canonical representation. Normalization of a node q is

performed by:

1. Replacing edge q[0] with its complement (see equations 6.17–6.25).

2. Replacing edge q[1] with its complement.

3. Replacing any edge 〈κ,c,q〉 with edge 〈κ,¬c,q〉.

From here on, we assume that a node is normalized, i.e. q[0].c = 0, before it is reduced.
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duplicate if there exists a node p such that l(p) = l(q), p[0] = q[0], and p[1] = q[1].

If q is a duplicate of p, then q can be eliminated and any edge 〈κ,c,q〉 can be replaced with

〈κ,c,p〉.

redundant if q[0] = q[1] = 〈κ,0,p〉, with κ ∈ {S, X}.

If q is redundant it can be eliminated and replaced with the edge 〈X,0,p〉.

low-zero if q[0] = 〈{S, X},0,Ω〉, and q[1] = 〈{S, L0},c,p〉.

If q is low-zero it can be eliminated and replaced the edge 〈L0,c,p〉.

low-one if q[0] = 〈{S, X},1,Ω〉, and q[1] = 〈{S, L1},c,p〉.

If q is low-one it can be eliminated and replaced with the edge 〈L1,c,p〉. Note that a normalized

node cannot also be a low-one node. But edges labelled L1 can be produced when L0 edges

are complemented during node normalization.

high-zero if

1. q[0] = 〈{S, H0},0,p〉, and q[1] = 〈X,0,Ω〉, or,

2. l(p) = 2, q[0] = 〈L1,0,Ω〉, and q[1] = 〈X,0,Ω〉.

If q satisfies the first rule, it can be eliminated and replaced with the edge 〈H0,0,p〉. If q is

satisfies the second rule, it can be eliminated and replaced with the edge 〈H0,1,Ω〉.

The first rules ensures that edges labelled H0 are not produced for edges that have equivalent

X and L1 edges. Since the first rule eliminates edges labelled H0 over the bottom-most variable,

the second rule (written using a L1 edge that is equivalent to 〈H0,1,Ω〉) is needed to construct

edges labelled H0 that skip the lowest n variables where n > 1.

high-one if

1. q[0] = 〈{S, H1},0,p〉, and q[1] = 〈X,1,Ω〉, or,

2. l(p) = 2, q[0] = 〈L0,1,Ω〉, and q[1] = 〈X,1,Ω〉.
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If q satisfies the first rule, it can be eliminated and replaced with the edge 〈H1,0,p〉. If q is

satisfies the second rule, it can be eliminated and replaced with the edge 〈H1,0,Ω〉.

The first rules ensures that edges labelled H1 are not produced for edges that have equivalent

X and L0 edges. Since the first rule eliminates edges labelled H1 over the bottom-most variable,

the second rule (written using a L0 edge that is equivalent to 〈H1,0,Ω〉) is needed to construct

edges labelled H1 that skip the lowest n variables where n > 1.

low-swap-one if

1. q[0] = 〈X,0,p〉, q[1] = 〈L̃1,0,p〉, and p 6= Ω, or,

2. q[0] = 〈X,0,p〉, q[1] = 〈H1,0,p〉, l(q)− l(p) = 2, and p 6= Ω.

If q satisfies one of these rules, it can be eliminated and replaced with the edge 〈L̃1,0,p〉. Note

that p cannot be terminal node Ω.

These rules ensure that edges labelled L̃1 are not produced for edges that have equivalent

X, Lt, Ht edges, including edges over the lowest two variables as well as edges that skip a

single level. The second rule (written using a H1 edge that is equivalent to 〈L̃1,0,p〉) is needed

to construct edges labelled L̃1 that skip the lowest n variables where n > 2, and for edges

labelled L̃1 that skips more than one level.

low-swap-zero if

1. q[0] = 〈X,0,p〉, q[1] = 〈L̃0,0,p〉, and p 6= Ω, or,

2. q[0] = 〈X,0,p〉, q[1] = 〈H0,0,p〉, l(q)− l(p) = 2, and p 6= Ω.

If q satisfies one of these rules, it can be eliminated and replaced with the edge 〈L̃0,0,p〉. Note

that p cannot be terminal node Ω.

These rules ensure that edges labelled L̃0 are not produced for edges that have equivalent

X, Lt, Ht edges, including edges over the lowest two variables as well as edges that skip a

single level. The second rule (written using a H0 edge that is equivalent to 〈L̃0,0,p〉) is needed
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to construct edges labelled L̃0 that skip the lowest n variables where n > 2, and for edges

labelled L̃0 that skips more than one level.

high-swap-one if

1. q[0] = 〈H̃1,0,p〉, and q[1] = 〈X,0,p〉, or,

2. q[0] = 〈L1,0,p〉, q[1] = 〈X,0,p〉, l(q)− l(p) = 2, and p 6= Ω.

If q satisfies one of these rules, it can be eliminated and replaced with the edge 〈H̃1,0,p〉. Note

that p cannot be terminal node Ω.

These rules ensure that edges labelled H̃1 are not produced for edges that have equivalent

X, Lt, Ht edges, including edges over the lowest two variables as well as edges that skip a

single level. The second rule (written using a L1 edge that is equivalent to 〈H̃1,0,p〉) is needed

to construct edges labelled H̃1 that skip the lowest n variables where n > 2, and for edges

labelled H̃1 that skips more than one level.

high-swap-zero if

1. q[0] = 〈H̃0,0,p〉, and q[1] = 〈X,0,p〉, or,

2. q[0] = 〈L0,0,p〉, q[1] = 〈X,0,p〉, l(q)− l(p) = 2, and p 6= Ω.

If q satisfies one of these rules, it can be eliminated and replaced with the edge 〈H̃0,0,p〉. Note

that p cannot be terminal node Ω.

These rules ensure that edges labelled H̃0 are not produced for edges that have equivalent

X, Lt, Ht edges, including edges over the lowest two variables as well as edges that skip a

single level. The second rule (written using a L0 edge that is equivalent to 〈H̃0,0,p〉) is needed

to construct edges labelled H̃0 that skip the lowest n variables where n > 2, and for edges

labelled H̃0 that skips more than one level.

We say that a CESRBDD edge e is a one-level-skip-edge if it:

• starts from node q and ends at node p such that, l(q)− l(p) = 2, or
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• is a long edge in a CESRBDD with a single level.

Definition 6.3.1

A CESRBDD is reduced if the following restrictions hold:

R1. There are no unnormalized nodes.

R2. There are no duplicate nodes.

R3. There are no redundant nodes.

R4. There are no low-zero nodes.

R5. There are no low-one nodes.

R6. There are no high-zero nodes.

R7. There are no high-one nodes.

R8. There are no low-swap-zero nodes.

R9. There are no low-swap-one nodes.

R10. There are no high-swap-zero nodes.

R11. There are no high-swap-one nodes.

R12. For any edge e = 〈κ,0,Ω〉, κ /∈ {L0, H0, L̃0, H̃0}.

R13. For any edge e = 〈κ,1,Ω〉, κ /∈ {L1, H1, L̃1, H̃1}.

R14. For any edge e = 〈κ,c,Ω〉, κ /∈ {L̃0, L̃1, H̃0, H̃1}.

R15. For any one-level-skip-edge e = 〈κ,c,p〉, κ /∈ {H̃0, H̃1, L̃0, L̃1}.

R16. For any one-level-skip-edge e = 〈κ,c,Ω〉, κ /∈ {H0, H1}.

We observe that the restrictions R12 and R13 force long edges that represent Fn〈κ,c,p〉 ≡ 0 and

Fn〈κ,c,p〉 ≡ 1 to be of the form 〈X,0,Ω〉 and 〈X,1,Ω〉, respectively. Based on equations 6.1 and 6.2 we

know that are multiple ways to represent 1 and 0 respectively. But we must assign one reduction

for such long edges if we want to enforce canonicity, and we choose X. We can also choose any of

the other equivalent representations and rewrite any dependent rules accordingly.
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Restriction R14 ensures that there are no swap edges to Ω. This is also to enforce canonicity,

since equations 6.5–6.12 show that all such edges can also be represented using X, L0, L1, H0, or H1

edges. Again, our choice of replacing these swap edges with non-swap edges is arbitrary and has

no impact on which nodes are reducible, since swap nodes have been defined with respect to swap

edges as well as non-swap edges.

Restriction R15 ensures that there are no one-level-skip-edges labelled with L̃1, L̃0, H̃1 or H̃0,

since (as shown in equations 6.13–6.16) they can be represented by equivalent H1, H0, L1 and L0

edges respectively.

Restriction R16 ensures that there are no one-level-skip-edges labelled with H1 or H0 that skip

over the bottom level, since (as shown in equations 6.3 and 6.4 respectively) they can be represented

by equivalent L0 and L1 edges respectively.

We note that there are implied restrictions in the node definitions: redundant nodes are defined

in terms of S and X edges; low-t nodes are defined in terms of S, X and Lt edges; high-t nodes

are defined in terms of S, X, Lt and Ht edges; and finally, swap nodes are defined in terms of

their respective swap edges in addition to S, X, Lt and Ht edges. These implied restrictions ensure

canonicity by eliminating the possibility of multiple reduction rules being applicable to the same

node. At the same time, they are not biased towards any particular reduction rule since the

hierarchy of reduction rules only impacts nodes that fit more than one pattern, and in every

such case the node is eliminated and the representative edge is labelled based on the implicit rule

hierarchy.

6.3.1 Reducing a CESRBDD

A CESRBDD can be converted into a reduced CESRBDD using Algorithm 6.1, which reduces

the CESRBDD by traversing it in depth-first order, recursively reducing edges to child nodes before

reducing the parent node.

The procedure ReduceEdge reduces an edge 〈κ,c,p〉 with respect to level n as follows:

• Reduces node p using the procedure ReduceNode. This produces the edge 〈κ′,c′,p′〉.
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Algorithm 6.1 Reduce a CESRBDD.

1: procedure Reduce(CESRBDD 〈κ?,c?,p?〉)
2: return ReduceEdge(n, 〈κ?,c?,p?〉)

3: procedure ReduceEdge(Level n, Edge 〈κ,c,p〉)
4: 〈κ′,c′,p′〉 ← ReduceNode(p);

5: if c = 1 then 〈κ′,c′,p′〉 ← ComplementEdge(〈κ′,c′,p′〉);
6: 〈κ′,c′,p′〉 ← MergeEdge(n, κ, l(p), 〈κ′,c′,p′〉);
7: return 〈κ′,c′,p′〉;

• If p is a complement node (i.e. c = 1), ReduceEdge complements 〈κ′,c′,p′〉 (the edge

representing p) using procedure ComplementEdge.

• If κ 6= κ′, an intermediate node may need to be created since we cannot have different

reduction rules on the same edge. Procedure MergeEdge checks for compatibility between

κ and κ′ and merges them into a single edge if possible. Otherwise, it creates a node at level

l(p) + 1 representing the reduction rule κ, and returns an edge with reduction rule κ. Merge

also checks if merged edge violates any of the restrictions R12–R16, and if so converts the

edge into an equivalent edge that does not violate these restrictions (see Definition 6.3)
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Algorithm 6.2 Reduce a CESRBDD node.

1: procedure ReduceNode(Node p)

2: if p = Ω then return 〈S,0,Ω〉;
3: if Cache contains “Reduce, p, 〈κ′,c′,p′〉” then return 〈κ′,c′,p′〉;
4: p′ ← empty node at l(p);

5: c′ ← 0;

6: for all i ∈ {0, 1} do p′[i]← ReduceEdge(l(p), p[i]);

7: if p′ is not a normalized node then

8: c′ ← 1;

9: for all i ∈ {0, 1} do p′[i]← ComplementEdge(p′[i]);

10: if p′ is a redundant node then

11: e′ ← p′[0]; e′.r ← X;

12: else if p′ is a low-zero node then

13: e′ ← p′[1]; e′.r ← L0;

14: else if p′ is a high-zero node then

15: e′ ← p′[0]; e′.r ← H0;

16: else if p′ is a high-one node then

17: e′ ← p′[0]; e′.r ← H1;

18: else if p′ is a low-zero-swap node then

19: e′ ← p′[1]; e′.r ← L̃0;

20: else if p′ is a low-one-swap node then

21: e′ ← p′[1]; e′.r ← L̃1;

22: else if p′ is a high-zero-swap node then

23: e′ ← p′[0]; e′.r ← H̃0;

24: else if p′ is a high-one-swap node then

25: e′ ← p′[0]; e′.r ← H̃1;

26: else if p′ is a duplicate of q then

27: e′ ← 〈S,0,q〉;
28: else

29: e′ ← 〈S,0,p′〉;
30: if c′ = 1 then e′ ← ComplementEdge(e′);

31: Save “Reduce, p, e′” in Cache;

32: return e′;
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Algorithm 6.3 Merge a CESRBDD edge with an incoming rule.

1: procedure MergeEdge(Level n̂, Rule κ, Level n, Edge e)

2: if n̂ = n ∨ κ = S ∨ κ = e.r then

3: e′ ← e;

4: else if e.r = S then

5: e′ ← e;

6: e′.r ← κ;

7: else • κ 6= S ∧ κ 6= κ′ ∧ κ′ 6= S

8: e′ ← BuildPattern(n+ 1, κ, e);

9: e′.r ← κ;

10: if e′ violates restriction R12 then

11: e′ ← 〈X,0,Ω〉;
12: if e′ violates restriction R13 then

13: e′ ← 〈X,1,Ω〉;
14: if e′ violates restrictions R14 or R15 then

15: Convert e′ to non-swap edge;

16: if e′ violates restriction R16 then

17: Convert e′ to equivalent Lt edge;

18: if e′ is not a long edge then e′.r ← S;

19: return e′;
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Algorithm 6.4 Build CESRBDD node at given level and according to given pattern.

1: procedure BuildPattern(Level n, Pattern κ̂, CESRBDD 〈κ,c,p〉)
2: /* Require: κ̂ 6= S ∧ κ̂ 6= κ */

3: p′ ← new node at n;

4: if κ̂ = X then

5: p′[0]← 〈κ,c,p〉; p′[1]← 〈κ,c,p〉;
6: else if κ̂ = L0 then

7: p′[0]← 〈X,0,Ω〉; p′[1]← 〈κ,c,p〉;
8: else if κ̂ = L1 then

9: p′[0]← 〈X,1,Ω〉; p′[1]← 〈κ,c,p〉;
10: else if κ̂ = H0 then

11: p′[0]← 〈κ,c,p〉; p′[1]← 〈X,0,Ω〉;
12: else if κ̂ = H1 then

13: p′[0]← 〈κ,c,p〉; p′[1]← 〈X,1,Ω〉;
14: else if κ̂ = L̃0 then

15: p′[0]← 〈X,c,p〉; p′[1]← 〈κ,c,p〉;
16: else if κ̂ = L̃1 then

17: p′[0]← 〈X,c,p〉; p′[1]← 〈κ,c,p〉;
18: else if κ̂ = H̃0 then

19: p′[0]← 〈κ,c,p〉; p′[1]← 〈X,c,p〉;
20: else • κ̂ = H̃1

21: p′[0]← 〈κ,c,p〉; p′[1]← 〈X,c,p〉;
22: c′ ← 0

23: if p′ is a not a normalized node then

24: c′ ← 1

25: for all i ∈ {0, 1} do p′[i]← ComplementEdge(p′[i]);

26: if p′ is a duplicate of q then p′ ← q;

27: return 〈S,c′,p′〉;

Algorithm 6.5 Complement a CESRBDD edge.

1: procedure ComplementEdge(Edge 〈κ,c,p〉)
2: if κ = L0 then κ′ ← L1;

3: else if κ = L1 then κ′ ← L0;

4: else if κ = H0 then κ′ ← H1;

5: else if κ = H1 then κ′ ← H0;

6: else if κ = L̃0 then κ′ ← L̃1;

7: else if κ = L̃1 then κ′ ← L̃0;

8: else if κ = H̃0 then κ′ ← H̃1;

9: else if κ = H̃1 then κ′ ← H̃0;

10: else κ′ ← κ;

11: return 〈κ′,¬c,p〉
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The procedure ReduceNode reduces a node p as follows:

1. Reduce each child edge of p.

2. If p is not normalized, complement its edges.

3. If p satisfies one of reduction rules κ′, create an edge labelled 〈κ′,ci,pi〉 where ci and pi

corresponded to the ith child of p, and is determined by the reduction rule κ′.

4. If p is not reducible and if it duplicates an existing node q, use q instead of p in the steps

that follow.

5. If p is not reducible, create an edge labelled 〈S,0,p〉.

6. If p’s edges were complemented in Step 2, complement the edge representing p (edge e′ in

ReduceNode) before returning it.

The procedure MergeEdge combines compatible edge rules. If the rules are not compatible it

builds an intermediate node using procedure BuildPattern at one level above the start of edge

e (i.e. level n+ 1) using the pattern dictated by the incoming reduction rule κ. MergeEdge also

ensures that any returned edge does not violate restrictions R12–R16 as follows:

• It first replaces edges 〈H0,0,Ω〉, 〈L0,0,Ω〉, 〈H̃0,0,Ω〉, and 〈L̃0,0,Ω〉 with 〈X,0,Ω〉, to satisfy

restriction R12.

• Next, it replaces edges 〈H1,1,Ω〉, 〈L1,1,Ω〉, 〈H̃1,1,Ω〉, and 〈L̃1,1,Ω〉 with 〈X,1,Ω〉, to satisfy

restriction R13.

• Next it satisfies restriction R14 by: replacing 〈H̃0,1,Ω〉 with 〈H1,0,Ω〉, replacing 〈H̃1,0,Ω〉 with

〈H0,1,Ω〉, replacing 〈L̃0,1,Ω〉 with 〈L1,0,Ω〉, and replacing 〈L̃1,0,Ω〉 with 〈L0,1,Ω〉.

• Next, it satisfies restriction R15 by replacing swap edges that skip only one level (i.e. they

originate from a node at level n and end at a node at level n− 2) with equivalent non-swap

edges: replacing 〈H̃0,c,p〉 with 〈L0,c,p〉, replacing 〈H̃1,c,p〉 with 〈L1,c,p〉, replacing 〈L̃0,c,p〉 with

〈H0,c,p〉, and replacing 〈L̃1,c,p〉 with 〈H1,c,p〉.
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• Next it satisfies restriction R16 by: replacing 〈H0,1,Ω〉 edges that originate from a level 2

node, with 〈L1,0,Ω〉; and replacing 〈H1,0,Ω〉 edges that originate from a level 2 node, with

〈L0,1,Ω〉.

• Finally, it checks if the edge produced thus far is a long edge, and if it is not, sets its reduction

rule to S.

In the above discussion, note that any edge that is replaced by the algorithm encodes the same

function as its replacement, giving us the following lemma.

Lemma 6.3.1

In Algorithm 6.1, each edge replacement preserves the function encoded by the CESRBDD.

It remains to show that the algorithm always terminates and produces a reduced CESRBDD.

Lemma 6.3.2

Algorithm 6.1 terminates in O(|Nodes(p∗)|) steps.

Proof: The algorithm performs a depth-first traversal of the nodes that are reachable from edge

〈κ∗,c∗,p∗〉. The use of a compute cache guarantees that each node in Nodes(p∗) is reduced at

most once. Furthermore, each call to ReduceEdge may eliminate a node via ReduceNode and

may create a node via MergeEdge. Any node created by MergeEdge is, by construction, not

reducible. Therefore, the algorithm terminates in time linear to the number of edges in the graph

rooted by p∗, which is O(|Nodes(p∗)|). �
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Theorem 6.3.1

Algorithm 6.1 converts any CESRBDD to an equivalent reduced CESRBDD in O(|Nodes(p∗)|)

steps.

Proof: Lemma 6.3.1 establishes that Algorithm 6.1 terminates in O(|Nodes(p∗)|) steps. In a

CESRBDD, the reduction rules for any node q are independent of the incoming edge(s) to q,

and once q[0] and q[1] are reduced, reducing q does not change the reducibility of q[0].p and

q[1].p. Further, any node created via MergeEdge is, by construction, not reducible. MergeEdge

also converts any edge 〈κ,c,q〉 that violates restrictions R12–R16 into an equivalent compliant

edge 〈κ′,c′,q′〉 with q = q′. Therefore, once ReduceEdge has been called on every edge in the

CESRBDD, every node and edge complies with the restrictions in Definition 6.3, producing a

reduced CESRBDD. Lemma 6.3.1 establishes that Algorithm 6.1 produces an equivalent (in terms

of encoded function) CESRBDD. �

We note here that, similar to ESRBDDs, and unlike most other decision diagrams (including

BDDs, ZDDs, CBDDs, CZDDs, and TDDs), a reduced CESRBDD is not necessarily a minimum

size CESRBDD encoding of a function, even for a fixed variable order, as elimination of some node

q during the reduction could trigger the creation of eight new nodes. An example of this is shown in

Figure 6.9, where redundant node q is eliminated. Edges 〈S,c,q〉 and 〈X,c,q〉 can be simply redirected

as 〈X,c,p〉, but the edges 〈κi,c,q〉, where κi ∈ {L0, H0, L1, H1, H̃0, L̃0, H̃1, L̃1}, require the creation of a

new per edge, qκi .

xi

xj

xk

xl s

q

p

X L0 · · ·
H̃1

S

X X

−→ Algorithm 6.1 −→

qL0 · · · qH̃1s′

p

X

L0 H̃1

X X X

Figure 6.9 A worst-case example for CESRBDDs where elimination of node q creates 8
nodes.
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6.4 Canonicity of CESRBDDs

We are now ready to discuss the canonicity of reduced CESRBDDs, i.e., to show that a function

has a unique encoding as a reduced CESRBDD. In the following, we say that functions Fn〈κ,c,p〉 and

Fn〈κ′,c′,p′〉 are equivalent, written Fn〈κ,c,p〉 ≡ F
n
〈κ′,c′,p′〉, if Fn〈κ,c,p〉(x1, . . . , xn) = Fn〈κ′,c′,p′〉(x1, . . . , xn) for

all possible inputs (x1, . . . , xn) ∈ Bn.

Theorem 6.4.1

In a reduced CESRBDD, for any n ∈ N, for any two edges e = 〈κ,c,p〉, e′ = 〈κ′,c′,p′〉 with l(p) ≤ n,

l(p′) ≤ n, if Fne ≡ Fne′ then (1) p = p′, (2) c = c′, and (3) if l(p) < n then κ = κ′.

Proof: The proof is by induction on n. For the base case, we use n = 0 and from the definition of

F we have F 0
e ≡ F 0

e′ → (p = p′ = Ω ∧ c = c′).

Now, suppose the theorem holds for n = m ≥ 0, and we will prove it holds for n = m+1. Regardless

of 〈κ,c,p〉, we have

Fn〈κ,c,p〉(x1:n) = (xn)?f1(x1:n−1):f0(x1:n−1)

for some functions f0 and f1. Similarly, we have

Fn〈κ′,c′,p′〉(x1:n) = (xn)?f ′1(x1:n−1):f
′
0(x1:n−1).

It follows that Fn〈κ,c,p〉 ≡ F
n
〈κ′,c′,p′〉 if and only if f0 ≡ f ′0 and f1 ≡ f ′1.

First, suppose l(p) = n and l(p′) = n. From the definition of F , it follows that Fn−1p[0] ≡ Fn−1p′[0]

and Fn−1p[1] ≡ Fn−1p′[1] . By inductive hypothesis, p[0].p = p′[0].p, p[0].c = p′[0].c, p[1].p = p′[1].p,

and p[1].c = p′[1].c. If l(p[0].p) < n − 1, then by inductive hypothesis, p[0] = p′[0]; otherwise,

l(p[0].p) = n − 1 and we must have p[0].r = S and p′[0].r = S, thus either (p[0] = p′[0] ∧ c = c′)

or (p[0] = ¬p′[0] ∧ c = ¬c′). By a similar argument, it follows that either p[1] = p′[1] ∧ c = c′ or

p[1] = ¬p′[1] ∧ c = ¬c′. We therefore have two cases:

• p = p′ and c = c′. In which case, either p and p′ are the same node and the theorem holds,

or p and p′ are duplicates which is impossible because of restriction R2.
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• p = ¬p′ and c = ¬c′. In which case either p or p′ is not a normalized node which is impossible

because of restriction R1.

Next, suppose l(p) < n and l(p′) < n. If κ = κ′, then in all cases for F we conclude that

Fn−1〈κ,c,p〉 ≡ Fn−1〈κ′,c′,p′〉 and by inductive hypothesis we have that p = p′ and c = c′, so the theorem

holds. We now show that κ 6= κ′ is impossible, by contradiction. Consider the possible cases for

κ 6= κ′:

1. κ = X:

(a) κ′ ∈ {L0, H0}: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈κ′,c′,p′〉 and that

Fn−1〈κ,c,p〉 ≡ 0. Therefore, Fn−1〈κ,c,p〉 ≡ 0, and Fn−1〈κ′,c′,p′〉 ≡ 0. By the inductive hypothesis,

we have that p = Ω and c = 0, and p′ = Ω and c′ = 0. But, according to restrictions

R12 if p′ = Ω and c′ = 0 then κ′ /∈ {L0, H0, L̃0, H̃0}. contradicting our assumption that

κ′ ∈ {L0, H0}.

(b) κ′ ∈ {L1, H1}: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈κ′,c′,p′〉 and that

Fn−1〈κ,c,p〉 ≡ 1. Therefore, Fn−1〈κ,c,p〉 ≡ 1, and Fn−1〈κ′,c′,p′〉 ≡ 1. By the inductive hypothesis,

we have that p = Ω and c = 1, and p′ = Ω and c′ = 1. But, according to restrictions

R13 if p′ = Ω and c′ = 1 then κ′ /∈ {L1, H1, L̃1, H̃1}. contradicting our assumption that

κ′ ∈ {L1, H1}.

(c) κ′ ∈ {L̃t, H̃t}: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈κ′,c′,p′〉 and that

Fn−1〈κ,c,p〉 ≡ Fn−1〈X,c′,p′〉. If l(p) > l(p′), when the function reaches a level n′ such that

n′ = l(p), from the definition of X and the above conclusion, Fn
′

p[0] ≡ Fn
′

p[1] ≡ Fn
′

〈X,c′,p′〉,

violating restriction restriction R3. If l(p) ≤ l(p′), when the function reaches a level n′

such that n′ = l(p), Fn
′

〈κ,c,p〉 ≡ Fn
′

〈S,c′,p′〉 and Fn
′

〈κ,c,p〉 ≡ t. Therefore, Fn
′

〈S,c′,p′〉 ≡ t, p′ = Ω

and c′ = t. But, according to restriction R14, if p′ = Ω and c′ = t then κ′ /∈ {L̃t, H̃t}.

contradicting our assumption that κ′ ∈ {L̃t, H̃t}.

2. κ = Lt and κ′ = L¬t:

From the definition of F we conclude that t ≡ ¬t, a contradiction.
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3. κ = Ht and κ′ = H¬t:

Analogous to case κ = Lt and κ′ = L¬t.

4. κ = L̃t and κ′ = L̃¬t:

From the definition of F we conclude that Fn−1〈X,c,p〉 ≡ Fn−1〈X,c′,p′〉 and that Fn−1〈κ,c,p〉 ≡ Fn−1〈κ′,c′,p′〉. If

l(p) ≥ l(p′), when the function reaches a level n′ such that n′ = l(p), from the definition of

L̃t and the above conclusion, Fn
′

p[0] ≡ F
n−1
〈X,c′,p′〉, and t ≡ Fn′〈κ′,c′,p′〉. But, according to restriction

R14, if p′ = Ω and c′ = t then κ′ /∈ {L̃t, H̃t}, contradicting our assumption that κ′ = L̃¬t. The

case l(p) ≤ l(p′) is symmetric.

5. κ = H̃t and κ′ = H̃¬t:

Analogous to the case κ = L̃t and κ′ = L̃¬t.

6. κ = Lt and κ′ = L̃t:

From the definition of F we conclude that t ≡ Fn−1〈X,c′,p′〉 and that Fn−1〈κ,c,p〉 ≡ Fn−1〈κ′,c′,p′〉. By the

inductive hypothesis, p′ = Ω and c′ = t. But, according to restriction R14, if p′ = Ω and

c′ = t then κ′ /∈ {L̃t, H̃t}. contradicting our assumption that κ′ = L̃t.

7. κ = Ht and κ′ = H̃t:

Analogous to the case κ = Lt and κ′ = L̃t.

8. κ = L0:

(a) κ′ = H0: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ 0 and that Fn−1〈κ′,c′,p′〉 ≡ 0.

By the inductive hypothesis, we have that p = Ω and c = 0, and p′ = Ω and c′ = 0.

But, according to restrictions R12 if p′ = Ω and c′ = 0 then κ′ /∈ {L0, H0, L̃0, H̃0}.

contradicting our assumption that κ′ = H0.

(b) κ′ = H1: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ 1, and that Fn−1〈κ′,c′,p′〉 ≡ 0.

By the inductive hypothesis, we have that p = Ω and c = 1, and p′ = Ω and c′ = 0.

From the definition of F , this function is satisfied only when n = 2, since F 2
〈L0,1,Ω〉 ≡
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F 2
〈H1,0,Ω〉. But, according to restriction R16, when n = 2, κ′ /∈ {H0, H1}. contradicting

our assumption that κ′ = H1.

(c) κ′ = H̃0: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈X,c′,p′〉 and that 0 ≡

Fn−1〈κ′,c′,p′〉. By the inductive hypothesis, we have p′ = Ω and c′ = 0. But, according

to restrictions R12 if p′ = Ω and c′ = 0 then κ′ /∈ {L0, H0, L̃0, H̃0}. contradicting our

assumption that κ′ = H̃0.

(d) κ′ = H̃1: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈X,c′,p′〉 and that 1 ≡

Fn−1〈κ′,c′,p′〉. By the inductive hypothesis, we have p′ = Ω and c′ = 1. But, according

to restrictions R13 if p′ = Ω and c′ = 1 then κ′ /∈ {L1, H1, L̃1, H̃1}. contradicting our

assumption that κ′ = H̃1.

9. κ = L1:

Analogous to κ = L0.

10. κ = H0:

(a) κ′ = L̃0: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈X,c′,p′〉, and that

Fn−1〈κ′,c′,p′〉 ≡ 0. If l(p) > l(p′), when the function reaches a level n′ such that n′ = l(p),

from the definition of H0 and the above conclusions, Fn
′

〈S,c,p〉 ≡ F
n−1
〈X,c′,p′〉, and Fn

′

〈κ′,c′,p′〉 ≡ 0.

This is impossible since it violates the restriction R14. If l(p) ≥ l(p′), when the function

reaches a level n′ such that n′ = l(p′), from the definition of L̃0 and the above conclu-

sions, Fn
′

〈κ,c,p〉 ≡ Fn−1〈S,c′,p′〉, and that 0 ≡ 0. From the definition of F , these conditions

are satisfied when l(p) = l(p′) and n − l(p) ≤ 2. But, according to restriction R15, if

n− l(p) ≤ 2 then κ /∈ {H̃0, H̃1, L̃0, L̃1} contradicting our assumption that κ′ = L̃0.

(b) κ′ = L̃1: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ Fn−1〈X,c′,p′〉, and that

Fn−1〈κ′,c′,p′〉 ≡ 1. By the inductive hypothesis, we have p′ = Ω and c′ = 1. But, ac-

cording to restriction R13 if p′ = Ω and c′ = 1 then κ′ /∈ {L1, H1, L̃1, H̃1}. contradicting

our assumption that κ′ = L̃1.
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11. κ = H1:

Analogous to κ = H0.

12. κ = L̃0:

(a) κ′ = H̃0: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ F
n−1
〈X,c′,p′〉 and that Fn−1〈κ′,c′,p′〉 ≡

Fn−1〈X,c,p〉. By the inductive hypothesis, we have p = p′ and c = c′. From the definition of F

and X, and the above conclusions, it follows that p = p′ = Ω and c = c′. But, according

to restriction R14, if p′ = Ω then κ /∈ {L̃0, L̃1, H̃0, H̃1}. contradicting our assumption that

κ′ = L̃1.

(b) κ′ = H̃1: From the definition of F we conclude that Fn−1〈κ,c,p〉 ≡ F
n−1
〈X,c′,p′〉 and that Fn−1〈κ′,c′,p′〉 ≡

Fn−1〈X,c,p〉. By the inductive hypothesis, we have p = p′ and c = c′. From the definition of F

and X, and the above conclusions, it follows that p = p′ = Ω and c = c′. But, according

to restriction R14, if p′ = Ω then κ /∈ {L̃0, L̃1, H̃0, H̃1}. contradicting our assumption that

κ′ = L̃1.

13. κ = L̃1:

Analogous to κ = L̃0.

14. Remaining cases are either symmetric or analogous to those discussed.

Finally, suppose l(p) = n and l(p′) < n (the case l(p) < n and l(p′) = n is symmetric). We show

that this is impossible, by contradiction. Consider the possible cases for κ′:

1. κ′ = X: From the definition of F , we must have Fn−1p[0] ≡ Fn−1〈κ′,c′,p′〉 and Fn−1p[1] ≡ Fn−1〈κ′,c′,p′〉.

By the inductive hypothesis, we conclude that p[0].p = p[1].p = p′ and p[0].c = p[1].c. If

l(p′) = n − 1, then we have p[0] = p[1] = 〈S,c,p′〉; otherwise, we have l(p′) < n − 1 and by

inductive hypothesis, p[0] = p[1] = 〈κ′,c′,p′〉 = 〈X,c′,p′〉. Either way, node p is redundant, and

from R3 we have a contradiction.

2. κ′ = Lt: From the definition of F , we must have Fn−1p[0] ≡ t and Fn−1p[1] ≡ Fn−1〈κ′,c′,p′〉. By the

inductive hypothesis, we conclude that p[0].p = Ω, p[0].c = t, p[1].p = p′ and p[1].c = c′. If
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l(p′) = n− 1, then we have p[1] = 〈S,c′,p′〉; otherwise, we have l(p′) < n− 1 and by inductive

hypothesis, p[1] = 〈κ′,c′,p′〉 = 〈Lt,c
′,p′〉. Either way, node p is low-t, and from R4 and R5 we

have a contradiction.

3. κ′ = Ht: From the definition of F , we must have Fn−1p[0] ≡ Fn−1〈κ′,c′,p′〉 and Fn−1p[1] ≡ t. By the

inductive hypothesis, we conclude that p[0].p = p′, p[0].c = c′, p[1].p = Ω and p[1].c = t. If we

have l(p) = 1, from R16 we have a contradiction. If l(p′) = n−1, then we have p[0] = 〈S,c′,p′〉;

otherwise, we have l(p′) < n − 1 and by inductive hypothesis, p[0] = 〈κ′,c′,p′〉 = 〈Ht,c
′,p′〉.

Either way, node p is high-t, and from R6 and R7 we have a contradiction.

4. κ′ = L̃t: From the definition of F , we must have Fn−1p[0] ≡ Fn−1〈X,c′,p′〉 and Fn−1p[1] ≡ Fn−1〈κ′,c′,p′〉. By

the inductive hypothesis, we conclude that p[0].p = p[1].p = p′, and p[0].c = p[1].c = c′. If

we have l(p)− l(p′) < 2, from R15 we have a contradiction. If we have p′ = Ω, from R14 we

have a contradiction. Since we have l(p′) < n− 1, by inductive hypothesis, p[1] = 〈κ′,c′,p′〉 =

〈L̃t,c
′,p′〉. Therefore, node p is low-swap-t, and from R8 and R9 we have a contradiction.

5. κ′ = H̃t: From the definition of F , we must have Fn−1p[0] ≡ Fn−1〈κ′,c′,p′〉, and Fn−1p[1] ≡ Fn−1〈X,c′,p′〉. By

the inductive hypothesis, we conclude that p[0].p = p[1].p = p′, and p[0].c = p[1].c = c′. If

we have l(p)− l(p′) < 2, from R15 we have a contradiction. If we have p′ = Ω, from R14 we

have a contradiction. Since we have l(p′) < n− 1, by inductive hypothesis, p[0] = 〈κ′,c′,p′〉 =

〈H̃t,c
′,p′〉. Therefore, node p is high-swap-t, and from R10 and R11 we have a contradiction.

�

The canonicity result establishes that, regardless of how a reduced CESRBDD is constructed

for a given function, the resulting reduced CESRBDD is guaranteed to be unique (assuming the

variable order is fixed). From now on, unless otherwise specified, we assume that all CESRBDDs

are reduced.
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6.5 Comparing CESRBDDs to other types of decision diagrams

Chapter 4 compared the sizes of ESRBDDs to BDDs, ZDDs, CBDDs, CZDDs, and TBDDs.

We extend this comparison to CESRBDDs. The process of converting these decision diagrams to

CESRBDDs remains the same as shown in Section 4.3.3, since any ESRBDD is also a CESRBDD.

But the CESRBDD thus constructed may need to be reduced by applying Algorithm 6.1. For

example, to convert a BDD to a CESRBDD, we can annotate long edges in the BDD with X and

short edges with S, to obtain an unreduced CESRBDD, before applying the reduction algorithm.

We now show that the reduction will not increase the CESRBDD size, and thus the resulting

CESRBDD cannot be larger than the original BDD.

Lemma 6.5.1

Suppose we have an unreduced CESRBDD where, for every node q, there exists a rule κ ∈

{X, L0, H0, L1, H1, H̃0, L̃0, H̃1, L̃1}. such that every edge to q is either 〈S,c,q〉 or 〈κ,c,q〉. Then reducing

the CESRBDD will not increase the number of nodes.

Proof: Algorithm 6.1 always reduces child nodes before reducing the parent. When reducing a node

q, all incoming edges to q will be labeled either with S or with κ. Normalizing q by complementing

its edges does not create any new nodes. Any incoming edge 〈S,c,q〉 will not cause any node to be

created, since reduction will only eliminate a node. Any incoming edge 〈κ,c,q〉 edges will cause at

most one node to be created, if κ is not compatible with κ′ (see MergeEdge), where κ′ is the

label of the reduced edge representing q. But then node q is eliminated. Thus, the overall number

of nodes cannot increase. �
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CESR

BDD

CBDD

ZDD

CZDD

TBDD

ESR

An edge from A to B with weight n says,
“Converting from A to B could increase the
size of the representation by a factor of n”.

1

1

2

2

3

3/2

8L/9

8L/9

7L/9

7L/9

7L/9

2L/3

Figure 6.10 CESRBDD size comparison.

Lemma 6.5 applies to any decision diagram that has two kinds of edges, short edges indicating S,

and long edges representing a single type of reduction. For instance, in BDDs a long edge represents

X, and in ZDDs a long edge represents H0.

The worst-case for converting BDDs, ZDDs, CBDDs, CZDDs, and TBDDs to CESRBDDs is

no different from that ESRBDDs. The conversion from ESRBDDs to CESRBDDs can produce a

larger CESRBDD, similar to how an ESRBDD could be larger than a ESRBDD−L0. The worst-

case ratio for the size of an ESRBDD representing a ESRBDD−L0 is 3/2, as shown in Section 4.3.3,

and is based on the observation that for an ESRBDD−L0 node q with outgoing X and H0 edges to

a low-zero node, the ESRBDD reduction will eliminate the low-zero node and create one node for

each outgoing edge of q. This is also the worst-case scenario for a ESRBDD node being converted to

a CESRBDD. Therefore, we get a worst-case ratio of 3/2 for the size of a CESRBDD representing

an ESRBDD.

The worst-case for converting CESRBDDs to BDDs, ZDDs, CBDDs, CZDDs, and TBDDs

changes due to CESRBDDs having more edge labels than ESRBDDs.
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Consider the set of 8 ESRBDD edges 〈κi,c,q〉 where q is a node at level 2 and κi ∈ {L0, H0, L1, H1, H̃0, L̃0, H̃1, L̃1}.

A CESRBDD can be constructed using a node at level L, with 2 children at level L − 1, and 4

grand children at level L− 2, such that the 8 outgoing edges from the grandchildren correspond to

the 8 distinct 〈κi,c,q〉. This CESRBDD has 9 nodes (counting the terminal). Because, BDDs can

only exploit X edges, this will produce a BDD with at least 8(L− 5) + 9 = 8L− 31 nodes, giving a

worst-case ratio of 8L/9. The ZDD worst-case is similar, using X instead of H0 in set of labels for

κi. For, CZDDs, CBDDs and TBDDs, i.e. decision diagram that can exploit both X and H0 edges,

we can construct CESRBDDs with 7 distinct edge labels that will correspond to a CBDD, CZDD

or TBDD with at least 7(L − 5) + 9 = 7L − 26 nodes, giving a worst-case ratio of 7L/9. Finally,

ESRBDDs can exploit X, L0 and H0 edges, and we can construct a CESRBDD with 6 distinct edge

labels that will correspond to an ESRBDD with at least 6(L − 5) + 9 = 6L − 21 nodes giving a

worst-case ratio of 2L/3.

6.6 Conclusions

In this chapter, we have extended the notion of ESRBDDs to include edge complementation

and analogues to L0 and H0 edges: L1, H1, H̃0, L̃0, H̃1 and L̃1. We have provided the definition for

CESRBDDs and reduced CESRBDDs, a depth-first reduction algorithm, and proved that reduced

CESRBDDs are canonical. We have also provided a theoretical comparison between CESRBDDs

and existing decision diagrams (including ESRBDDs), and highlighted the potential for producing

smaller representations.
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CHAPTER 7. BINARY DECISION DIAGRAMS WITH NODE SPECIFIED

REDUCTIONS

In Chapter 4, we defined ESRBDDs to eliminate duplicate, redundant, low-zero and high-zero

nodes; proved that they were canonical and gave experimental evidence for their compactness. In

Chapter 5, we proved that the Apply operation over ESRBDDs has a time-complexity at most that

of BDDs and ZDDs. In Chapter 6, we defined a canonical extension of ESRBDDs that included

complemented edges in addition to the reductions X, L0, H0, L1, H1, H̃0, L̃0, H̃1, L̃1. In this chapter,

we look at the complexity of the Apply operation for CESRBDDs, and define an extension for

ESRBDDs designed to improve the time-complexity for Apply over ESRBDDs.

The rest of this chapter is organized as follows. We discuss the time-complexity of Apply-ESR

and Apply-CESR in Section 7.1, and highlight the patterns in these computations that lead to a

factor of L in the time-complexity. In Section 7.2, we define NSRBDDs and reduced NSRBDDs. In

Section 7.3, we discuss the time-complexity for the Apply operation over NSRBDDs, and Section 7.4

concludes.

7.1 Introduction

From Theorem 5.2.1, the time-complexity of Apply-ESR, is O(|ESR(A)|.|ESR(B)|.L). In

addition, from Theorem 5.2.1, we have

ΨESR,⊕ ≤ Min


2.ΨBDD,⊕

2.ΨZDD,⊕

Let us consider the Apply operation over long edges in CESRBDDs. The additional reduction

rules in CESRBDDs improve the size of the representation with respect to ESRBDDs by (at

most) a factor of 2L/3. From our analysis of Apply-ESR, and with respect to Apply-BDD, it

is straightforward to design an Apply algorithm for Apply-CESR that skips the same levels as
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Apply-ESR, and that requires (in the worst-case) as many recursive calls as Apply-ESR, i.e.

ΨCESR,⊕ ≤ ΨESR,⊕

There are operations wherein some of the sub-cases can benefit from the presence of additional

reduction rules in CESRBDDs. For example, for the OR operation:

1. 〈X,0,p0〉 ∨ 〈L1,0,p1〉 = 〈L1,c,p〉, where c and p are computed from the result of 〈p0 ∨ p1〉. In an

ESRBDD on the other hand, this operation would take up to n − n′ additional steps where

n is the level at which the call to Apply-ESR originated, and n′ is Max(l(p0), l(p1)).

The case 〈X,0,p0〉 ∨ 〈H1,0,p1〉 also benefits similarly and reduces the the number of recursive

calls by a factor of n− n′, which in the worst-case is L.

2. 〈L1,0,p0〉 ∨ 〈H1,0,p1〉 = 1 can be computed in constant-time in a CESRBDD, and (in the

worst-case) will take an additional L steps in an ESRBDD.

In the next section, we describe the patterns that may arise during the computation of 〈κ0,c0,p0〉⊕

〈κ1,c1,p1〉. For the sake of convenience, from here on we assume that there are two terminals 0 and

1, there are no complement edges, and edges are represented as 〈κ,p〉, i.e. the convention used for

ESRBDDs.

We define the following generic patterns:

Low-Pattern, L〈p0,p1〉 A low-pattern to nodes p0 and p1 mimics a L0 edge to node p1 with node

p0 taking the place of terminal 0. The low-pattern is defined over levels xn to l(p1), with

l(p1) ≥ l(p0).

High-Pattern, H〈p0,p1〉 A high-pattern to nodes p0 and p1 mimics a H0 edge to node p0 with node

p1 taking the place of terminal 0. The high-pattern is defined over levels xn to l(p0), with

l(p0) ≥ l(p1).

We will define these patterns formally in short order.

The following is the list of patterns that arise for 〈κ0,p0〉⊕〈κ1,p1〉 where κ0, κ1 ∈ {X, L0, H0, L1, H1}.

xn is the level at which the call to Apply is made, and xm = Max(l(p0), l(p1)).
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1. 〈X,p0〉 ⊕ 〈Lt,p1〉:

A low-pattern is produced by this computation as shown in Figure 7.1 that spans levels xn

to xm. Between levels xn and xm + 1 no computations are needed, i.e. these levels can be

skipped by the corresponding Apply operation. At level xm, two recursive calls to Apply

are needed, to compute the following:

(a) 〈κ′0,p′0〉 = 〈X,p0〉 ⊕ 〈X,t〉, and

(b) 〈κ′1,p′1〉 = 〈κ0,p0〉 ⊕ 〈κ1,p1〉, where κ0 is S if l(p0) ≥ l(p1), and X otherwise; and, κ1 is S

if l(p0) ≤ l(p1), and Lt otherwise.

x1

x2

x3

x4

p

X

q

L0
v

p ∪ qp

Figure 7.1 〈X,p0〉 ∪ 〈L0,p1〉.

2. 〈X,p0〉 ⊕ 〈Ht,p1〉:

A high-pattern is produced by this computation as shown in Figure 7.2 that spans levels xn

to xm. Between levels xn and xm + 1 no computations are needed, i.e. these levels can be

skipped by the corresponding Apply operation. At level xm, two recursive calls to Apply

are needed, to compute the following:

(a) 〈κ′0,p′0〉 = 〈κ0,p0〉 ⊕ 〈κ1,p1〉, where κ0 is S if l(p0) ≥ l(p1), and X otherwise; and, κ1 is S

if l(p0) ≤ l(p1), and Ht otherwise, and

(b) 〈κ′1,p′1〉 = 〈X,p0〉 ⊕ 〈X,t〉.

3. 〈Lt,p0〉 ⊕ 〈X,p1〉:
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x1

x2

x3

x4

p

X

q

H0
v

p ∪ q p

Figure 7.2 〈X,p0〉 ∪ 〈H0,p1〉.

A low-pattern is produced by this computation as shown in Figure 7.3 that spans levels xn

to xm. Between levels xn and xm + 1 no computations are needed, i.e. these levels can be

skipped by the corresponding Apply operation. At level xm, two recursive calls to Apply

are needed, to compute the following:

(a) 〈κ′0,p′0〉 = 〈X,t〉 ⊕ 〈X,p1〉, and

(b) 〈κ′1,p′1〉 = 〈κ0,p0〉 ⊕ 〈κ1,p1〉, where κ0 is S if l(p0) ≥ l(p1), and Lt otherwise; and, κ1 is S

if l(p0) ≤ l(p1), and X otherwise.

x1

x2

x3

x4

p

L0

q

X v

p ∪ qq

Figure 7.3 〈L0,p1〉 ∪ 〈X,p0〉.

4. 〈Ht,p0〉 ⊕ 〈X,p1〉:

A high-pattern is produced by this computation as shown in Figure 7.4 that spans levels xn

to xm. Between levels xn and xm + 1 no computations are needed, i.e. these levels can be

skipped by the corresponding Apply operation. At level xm, two recursive calls to Apply

are needed, to compute the following:
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(a) 〈κ′1,p′1〉 = 〈κ0,p0〉 ⊕ 〈κ1,p1〉, where κ0 is S if l(p0) ≥ l(p1), and Ht otherwise; and, κ1 is S

if l(p0) ≤ l(p1), and X otherwise, and

(b) 〈κ′0,p′0〉 = 〈X,t〉 ⊕ 〈X,p1〉.

x1

x2

x3

x4

p

H0

q

X v

p ∪ q q

Figure 7.4 〈H0,p1〉 ∪ 〈X,p0〉.

5. 〈Lt0 ,p0〉 ⊕ 〈Ht1 ,p1〉:

x1

x2

x3

x4

p

H̃0

q

L̃0
v

q p ∪ q p

Figure 7.5 〈H̃0,p1〉 ∪ 〈L̃0,p0〉.

A combination of a low-pattern and a high-pattern are produced in this computation as

shown in Figure 7.5 that spans levels xn−1 to xm. At level xn two recursive calls to Apply

are needed, to compute the following:

(a) 〈κ′0,p′0〉 = 〈X,t0〉 ⊕ 〈Ht1 ,p1〉 produces a high-pattern, and

(b) 〈κ′1,p′1〉 = 〈Lt0 ,p0〉 ⊕ 〈X,t1〉 produces a low-pattern.

In general, the above instances induce a factor of L steps in Apply-ESR and Apply-CESR

since their long edges can only represent low- or high-patterns in which at least one of the nodes is
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a terminal. Therefore, the time-complexity for ESRBDDs and CESRBDDs remains

O(|ESR(A)|.|ESR(B)|.L), and

O(|CESR(A)|.|CESR(B)|.L)

respectively. To eliminate the factor of L, the Apply algorithm must:

1. Skip levels that are skipped by long edges, i.e. for any operation ⊕ and long edges 〈κ0,p0〉,

〈κ1,p1〉, if Apply can compute 〈κ0,p0〉 ⊕ 〈κ1,p1〉 at level xm = Max(l(p0), l(p1)) in β steps,

then it must be able to compute 〈κ0,p0〉 ⊕ 〈κ1,p1〉 at any level xn s.t. L ≥ xn > xm, in k × β

steps, where k is a constant.

2. Represent the low- and high-pattern result in constant-time.

7.2 Definition of NSRBDDs

Definition 7.2.1

An L-level (ordered) node-specified reduction binary decision diagram (NSRBDD) is a directed

acyclic graph where the two terminal nodes 0 and 1 are at level 0, l(0) = l(1) = 0, while each

nonterminal node p belongs to a level l(p) ∈ {1, ..., L} and a reduction pattern in p.r ∈ {S, L, H}

and has two outgoing edges, p[0] and p[1], pointing to nodes at lower levels. For i ∈ {0, 1}, if

l(p[i]) = l(p) − 1, we say that p[i] is a short edge. If instead l(p[i]) < l(p) − 1, the only other

possibility, we say that p[i] is a long edge, since it “skips over” one or more levels. �

Long edges in NSRBDDs correspond to X edges. Reduction patterns L and H correspond to the

low- and high-patterns discussed in the Section 7.1. We define a function m(p) for an NSRBDD

node p as

m(p) =


1 + Max(l(p[0]), l(p[1])) l(p) > 0, p.r ∈ {L, H}

l(p) otherwise.

To make definition of NSRBDDs more precise, we recursively define the boolean function Fnp :

Bn → B encoded by an NSRBDD node p with respect to a level n ∈ {0, ..., L}, subject to n ≥ m(p),
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as

Fnp (x1:n) =



if l(p) = 0, p

if n > l(p) > 0, F
l(p)
p (x1:l(p))

if n > 0 ∧ n = m(p), Fn−1p[xn]
(x1:n−1)

if l(p) ≥ n > m(p) ∧ p.r = L, xn ? Fn−1p (x1:n−1) : Fn−1p[0] (x1:n−1)

if l(p) ≥ n > m(p) ∧ p.r = H, xn ? Fn−1p[1] (x1:n−1) : Fn−1p (x1:n−1)

Before we formally define a reduced NSRBDD, we need some terminology. We say that a node

p is:

duplicate if there exists a node q such that, l(p) = l(q), p.r = q.r, p[0] = q[0], and p[1] = q[1].

redundant if p[0] = p[1].

quasi-node if p a nonterminal node with both children at level l(p)− 1.

low-pattern if p[0] 6= p[1], and at least one of the following statements is true:

1. p.r 6= L, l(p) > l(p[0]) + 1, l(p) = l(p[1]) + 1.

That is, the edge to p[0] is long, and the edge to p[1] is short.

2. p.r = p[1].r = L, p[0] = p[1][0].

That is, p[1] is a low-pattern node that can be merged with p.

3. p.r = L, p[1] is a quasi-node, and p[0] = p[1][0].

That is, p[1] is a quasi-node that can be merged with p.

high-pattern if p[1] 6= p[0], and at least one of the following statements is true:

1. p.r 6= H, l(p) = l(p[0]) + 1, l(p) > l(p[1]) + 1.

That is, the edge to p[0] is short, and the edge to p[1] is long.

2. p.r = p[0].r = H, p[1] = p[0][1].

That is, p[0] is a high-pattern node that can be merged with p.
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3. p.r = H, p[0] is a quasi-node, and p[1] = p[0][1].

That is, p[0] is a quasi-node that can be merged with p.

Definition 7.2.2

An NSRBDD is reduced if the following restrictions hold:

R1. There are no duplicate nodes.

R2. There are no redundant nodes.

R3. There are no high-pattern nodes.

R4. There are no low-pattern nodes.

We do not give a proof for its canonicity here, but point out that the reduction rules have been

constructed with the same strategy as those for ESRBDDs and CESRBDDs:

• If pattern Pa matching reduction rule Ra and pattern Pb matching reduction rules Rb occur

adjacent to each other (along a path in the graph) with Pa occurring immediately prior to

Pb, we define the reduced form as that which is produced when pattern Pa is eliminated first

followed by the elimination of pattern Pb (if it still exists). For example, see Figure 5.1.

• If the set of node patterns Pa and Pb that match the reduction rules Ra and Rb respectively,

are not disjoint, we define a restriction that disallows any pattern in Pa∩Pb to be represented

using Rb, and add a production rule for Rb in terms of Ra specifically for building patterns that

match Rb and build on patterns in Pa ∩ Pb. For example, since level 1 nodes in CESRBDDs

can be represented using Lt and Ht edges, we restricted Ht from representing level 1 nodes in

reduced CESRBDDs, and added rules for Ht edges based on Lt edges that would allow long

edges labelled Ht that end in a terminal node. See Section 6.3.

We note that NSRBDDs can be seen as a generalization of CBDDs since “chained” CBDD

nodes represent a chain of ZDD nodes, i.e. chained nodes in CBDDs corresponds to low-pattern

nodes q in NSRBDDs with q[0] = 0.
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7.3 Time-complexity for Apply operations on NSRBDDs

In this section, we revisit the cases in Section 7.1 that produce a factor of L in the time-

complexity of Apply for ESRBDDs and CESRBDDs. To recall, these are the list of patterns that

arise for 〈κ0,p0〉 ⊕ 〈κ1,p1〉 where κ0, κ1 ∈ {X, L0, H0, L1, H1}. xn is the level at which the call to

Apply-NSR is made, and xm = Max(l(p0), l(p1)). For the sake of clarity, we initially assume

xm = l(p0) = l(p1).

To maintain our convention with ESRBDDs, we represent long edges in NSRBDDs as 〈X,q〉 for

some NSRBDD node q; blank-pattern nodes as S〈p,q〉, low-pattern nodes as L〈p,q〉, and high-pattern

nodes as H〈p,q〉. Note that this representation is only complete where a “starting” level xn for is

provided.

1. xn, 〈X,p0〉 ⊕ 〈X,p1〉:

This produces a long edge 〈X,r〉, where r is computed with a single recursive call to Apply-

NSR: r0 = p0 ⊕ p1.
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2. xn, L〈p0,p1〉 ⊕ L〈p2,p3〉:

x1

x2

x3

x4

p1p0 p3p2 p1 ⊕ p3p0 ⊕ p2

Figure 7.6 L〈p0,p1〉 ⊕ L〈p2,p3〉.

This produces a low-pattern L〈r0,r1〉 (see Figure 7.6) that can be computed with two recursive

calls to Apply-NSR:

(a) r0 = p0 ⊕ p2, and

(b) r1 = p1 ⊕ p3.

Once these two recursions have completed, the result can be built in constant-time, i.e.

independent of xn − xm.

3. xn, H〈p0,p1〉 ⊕ H〈p2,p3〉:

x1

x2

x3

x4

p0 p1 p2 p3 p0 ⊕ p2 p1 ⊕ p3

Figure 7.7 H〈p0,p1〉 ⊕ H〈p2,p3〉.

This produces a high-pattern H〈r0,r1〉 (see Figure 7.7) that can be computed with two recursive

calls to Apply-NSR:

(a) r0 = p0 ⊕ p2, and
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(b) r1 = p1 ⊕ p3.

Once these two recursions have completed, the result can be built in constant-time, i.e.

independent of xn − xm.

4. xn, 〈X,p0〉 ⊕ L〈p1,p2〉:

x1

x2

x3

x4

p0

X

p2p1 p0 ⊕ p2p0 ⊕ p1

Figure 7.8 Xp0 ⊕ L〈p1,p2〉.

This produces a low-pattern L〈r0,r1〉 (see Figure 7.8) that can be computed with two recursive

calls to Apply-NSR:

(a) r0 = p0 ⊕ p1, and

(b) r1 = p0 ⊕ p2.

Once these two recursions have completed, the result can be built in constant-time, i.e.

independent of xn − xm.

5. xn, 〈X,p0〉 ⊕ H〈p1,p2〉:

This produces a high-pattern H〈r0,r1〉 (see Figure 7.9) that can be computed with two recursive

calls to Apply-NSR:

(a) r0 = p0 ⊕ p1, and

(b) r1 = p0 ⊕ p2.

Once these two recursions have completed, the result can be built in constant-time, i.e.

independent of xn − xm.
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x1

x2

x3

x4

p0

X

p1 p2 p0 ⊕ p1 p0 ⊕ p2

Figure 7.9 〈X,p0〉 ⊕ H〈p1,p2〉.

6. xn, L〈p0,p1〉 ⊕ 〈X,p2〉:

x1

x2

x3

x4

p1p0 p2

X

p1 ⊕ p2p0 ⊕ p2

Figure 7.10 L〈p1,p2〉 ⊕ Xp0.

This produces a low-pattern L〈r0,r1〉 (see Figure 7.10) that can be computed with two recursive

calls to Apply-NSR:

(a) r0 = p0 ⊕ p2, and

(b) r1 = p1 ⊕ p2.

Once these two recursions have completed, the result can be built in constant-time, i.e.

independent of xn − xm.

7. xn, H〈p0,p1〉 ⊕ 〈X,p2〉:

This produces a high-pattern H〈r0,r1〉 (see Figure 7.11) that can be computed with two recursive

calls to Apply-NSR:

(a) r0 = p0 ⊕ p2, and
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x1

x2

x3

x4

p0 p1 p2

X

p0 ⊕ p2 p1 ⊕ p2

Figure 7.11 H〈p1,p2〉 ⊕ 〈X,p0〉.

(b) r1 = p1 ⊕ p2.

Once these two recursions have completed, the result can be built in constant-time, i.e.

independent of xn − xm.

8. xn, H〈p0,p1〉 ⊕ L〈p2,p3〉:

x1

x2

x3

x4

p0 p1 p3p2

v

p0 ⊕ p1 p1 ⊕ p2 p1 ⊕ p3

Figure 7.12 H〈p0,p1〉 ⊕ L〈p2,p3〉.

This produces a high-pattern H〈r0,r1〉 (see Figure 7.12) and a low-pattern L〈s0,s1〉 that spans

levels xn−1 to xm, and can be computed with recursive calls to Apply-NSR:

(a) r0 = p0 ⊕ p2,

(b) r1 = s0 = p1 ⊕ p2, and

(c) s1 = p1 ⊕ p3.

Once these three recursions have completed, the high-pattern and low-pattern nodes at level

xn−1 can be built in constant-time, i.e. independent of xn−1 − xm. Finally, a node v is
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constructed at level xn with v[0] = H〈r0,r1〉, and v[1] = L〈s0,s1〉. Note that the high-pattern

becomes the low-edge of v and the low-pattern becomes the high-edge of v.

9. xn, L〈p0,p1〉 ⊕ H〈p2,p3〉:

x1

x2

x3

x4

p1p0 p2 p3

v

p0 ⊕ p2 p0 ⊕ p3 p1 ⊕ p3

Figure 7.13 L〈p0,p1〉 ⊕ H〈p2,p3〉.

This produces a high-pattern H〈r0,r1〉 (see Figure 7.13) and a low-pattern L〈s0,s1〉 that spans

levels xn−1 to xm, and can be computed with recursive calls to Apply-NSR:

(a) r0 = p0 ⊕ p2,

(b) r1 = s0 = p0 ⊕ p3, and

(c) s1 = p1 ⊕ p3.

Once these three recursions have completed, the high-pattern and low-pattern nodes at level

xn−1 can be built in constant-time, i.e. independent of xn−1 − xm. Finally, a node v is

constructed at level xn with v[0] = H〈r0,r1〉, and v[1] = L〈s0,s1〉. Note that, in this case as well,

the high-pattern becomes the low-edge of v and the low-pattern becomes the high-edge of v.

We point out that it may not be possible to construct the pattern-nodes directly from the result

of Apply-NSR. As was the case with ESRBDDs and CESRBDDs, only compatible edges can be

“merged”. ESRBDDs and CESRBDDs created an additional node for every pair of incompatible

edges that needed merging. In NSRBDDs, the result of an Apply-NSR can either be a short edge

or a long edge to some node q. Short edges pose no problems, but long edges can. For example,

the low-pattern node L〈p0,p1〉 requires l(p1) ≥ l(p0). If a low-pattern node must be built to span
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levels xn to xm for nodes p0 and p1, and if l(p1) < xm, a solution is to build a blank-pattern node

v = S〈p0,p1〉 at level xm+1 and then build the low-pattern to span levels xn to xm+1 using v instead

of p1. As was the case with ESRBDDs and CESRBDDs, this is a constant-time procedure and is

performed (at most) once per pair of operand edges to Apply.

From the above, we see that, in the general case, Apply for NSRBDDs can compute the

result for operands that span levels xn to xm by computing the result at level xm in time β, and

constructing the result at level xn in time k × β, where k is independent of xn, xm or L, i.e. a

constant. Therefore, the time-complexity for Apply over NSRBDDs is O(|NSR(A)|.|NSR(B)|).

7.4 Conclusions

We have described another extension of ESRBDDs for the sole purpose of removing the fac-

tor of L in the time-complexity of Apply-ESR. We have described the cases in which the factor

of L appears and shown that NSRBDDs are able to handle each of these cases without incur-

ring the factor of L cost, thereby making the case that NSRBDDs have a time-complexity of

O(|NSR(A)|.|NSR(B)|).

Our future work will focus on building a formal proof for NSRBDD canonicity, an algorithm

that details the utilization of the short-circuit computations that are necessary for arriving at the

above time-complexity, and integrating the rest of the rules from CESRBDDs into NSRBDDs.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Explicit State Space Generation

In Chapter 2, we have shown how explicit generation algorithms can benefit from the use decision

diagrams as data structures to store the set of reachable states, the list of reachable states to explore,

and the reachability graph. We have also presented small modifications to existing tradition explicit

generation algorithms to make the generation process more efficient. Our experimental results show

that decision diagrams can greatly reduce the peak memory requirements of traditional explicit

generation algorithms. There is very obvious tradeoff between BST based implementation and the

MDD based implementation, with the BST implementation being up to 20 times faster but using

up to 1000 times as much memory as the MDD implementation. Models for which traditional

explicit implementations run low on available memory could be prime candidates for the MDD

based method.

Deadlock Detection in Petri Nets

In Chapter 3, we have presented novel symbolic algorithms for the detection of deadlocks in

Petri Nets, and have given empirical evidence of their effectiveness in relation to existing symbolic

algorithms. We have also presented symbolic algorithms for the detection of deadlocks in poten-

tially unbounded Petri Nets. Of the algorithms we presented, Interrupted Saturation outperformed

all existing symbolic deadlock detection algorithms for Petri Nets. Interrupted Saturation with

Chaining was the best among the symbolic algorithms for deadlock detection in potentially un-

bounded Petri Nets. It also demonstrated the effectiveness of a novel technique that combined the

depth-first Saturation algorithm with the breadth-first Chaining algorithm to avoid the pitfalls of

exploring a potentially infinite reachable state space.
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Extensions to Decision Diagrams

In Chapter 4, we defined a new type of decision diagram, ESRBDD, that are a simple yet

efficient, generalization of previous attempts at combining reduction rules. Unlike previous efforts,

ESRBDDs are not biased towards any particular reduction rules and therefore eliminate the need

for the user to prioritize the reduction rules. We demonstrated their effectiveness by comparing

them empirically against BDDs, ZDDs, CBDDs, CZDDs and TBDDs over many different model

types.

In Chapter 5, we defined a depth-first saturation algorithm for reducing a node, and provided

an Apply algorithm for ESRBDDs. Having shown that, for any binary function, ESRBDDs are at

least as compact as the smaller of the two representations (BDDs and ZDDs), we also proved that

for Apply operations over such functions, ESRBDDs are at least as fast as the faster of the two

representations.

In Chapter 6, we defined CESRBDDs to extend ESRBDDs with edge complementation and six

additional reductions rules that are based on the ZDD reduction rule. We then provided a a depth-

first reduction algorithm for CESRBDDs, proved that reduced CESRBDDs are canonical, and

demonstrated the potential compactness of CESRBDDs through a theoretical comparison between

CESRBDDs and BDDs, ZDDs, CBDDs, CZDDs, TBDDs and ESRBDDs.

In Chapter 7, we defined NSRBDDs to extend BDDs with pattern-nodes representing a superset

of the rules of ESRBDDs, and showed that Apply operations for NSRBDDs, in the general case,

improve upon the time-complexity of Apply for ESRBDDs by a factor of L, where L is the number

of variables in the decision diagram.

Future Work

Explicit State Space Generation

We have made the case for the use of decision diagrams in explicit state space generation. It

would be useful to study the impact of this work on algorithms that exploit model symmetry.
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Deadlock Detection in Petri Nets

The symbolic deadlock detection techniques for Petri Nets that we have described were designed

to complement structural analysis techniques. It would, therefore, be useful to integrate these

symbolic techniques into tools that perform structural analysis on Petri Nets. Further, structural

analysis of a Petri net may reveal information helpful to the symbolic analysis. A closer look is

also needed at understanding the effectiveness of invariant analysis on Interrupted Saturation with

Chaining.

Extensions to Decision Diagrams

Many areas of work remain: an empirical analysis of CESRBDDs would complement the theo-

retical analysis we have provided; a formal proof for NSDBDDs canonicity; a formal proof for the

time-complexity of Apply over NSRBDDs; an empirical analysis of Apply operations over ESRB-

DDs, CESRBDDs and NSRBDDs; extending NSRBDDs with the reduction rules in CESRBDDs

and analyzing the trade-offs if any; and building a software library for ESRBDDs and their exten-

sions.
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diagrams. In Horváth, A. and Wolter, K., editors, Computer Performance Engineering, volume
8721 of Lecture Notes in Computer Science, pages 240–254. Springer International Publishing.

Babar, J. and Miner, A. S. (2010). Meddly: Multi-terminal and Edge-valued Decision Diagram
LibrarY. In Proc. QEST, pages 195–196. IEEE Comp. Soc. Press.

Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P. (2003). Model checking algorithms for
continuous-time Markov chains. IEEE Trans. Softw. Eng., 29(6):524–541.

Bollig, B. and Wegener, I. (1996). Improving the variable ordering of obdds is np-complete. IEEE
Transactions on Computers, 45(9):993–1002.

Brace, K. S., Rudell, R. L., and Bryant, R. E. (1990). Efficient implementation of a BDD package.
In Proc. 27th ACM/IEEE Design Automation Conference, pages 40–45. ACM Press.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comp., 35(8):677–691.

Bryant, R. E. (2018). Chain reduction for binary and zero-suppressed decision diagrams. In Beyer,
D. and Huisman, M., editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 81–98, Cham. Springer International Publishing.



145

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. (1992). Symbolic model
checking: 1020 states and beyond. Information and Computation, 98:142–170.

Chiola, G. (1989). Compiling techniques for the analysis of stochastic Petri nets. In Proc. 4th Int.
Conf. on Modelling Techniques and Tools for Performance Evaluation, pages 13–27.

Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S. (1993). Stochastic well-formed colored
nets and symmetric modeling applications . IEEE Trans. Comp., 42(11):1343–1360.

Chiola, G., Franceschinis, G., Gaeta, R., and Ribaudo, M. (1995). GreatSPN 1.7: Graphical Editor
and Analyzer for Timed and Stochastic Petri Nets. Perf. Eval., 24(1-2):47–68.

Chung, M.-Y., Ciardo, G., and Yu, A. J. (2006). A fine-grained fullness-guided chaining heuristic
for symbolic reachability analysis. In 4th International Symposium on Automated Technology for
Verification and Analysis (ATVA), pages 51—66.
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APPENDIX. ESRBDD UNION AND INTERSECTION

The Apply algorithm described in Chapter 5 and Algorithm 5.8 is applicable to any binary

boolean operation. In this appendix, we describe two specializations of this algorithm, namely, the

union and intersection of ESRBDDs.

ESRBDD Union

The time-complexity of ESRBDD Union is the same as that of the generic Apply as described

in Algorithm 5.8, i.e.

O(|ESR(A)|.|ESR(B)|.L).

Figure A.1 illustrates the result of the Union operation over long-edges in ESRBDDs. As shown

in this figure, the result of combining edges 〈X,p〉 and 〈κ,q〉 where κ ∈ {L0, H0}, needs upto n − n′

additional nodes, where, n is the level of node q′ representing 〈κ,q〉 in a BDD or 〈X,p〉 in a ZDD

(variable x4 in the figure), and n′ is the level for the higher of two nodes, p and q (variable x1 in the

figure). In the worst-case, n− n′ is L leading to a time-complexity of O(|ESR(A)|.|ESR(B)|.L) for

ESRBDD Union. We note that the Union of BDDs and ZDDS, for the BDD and ZDD representation

of these edges respectively, would require as many nodes in the result (as shown in Section 4.3.3).
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Algorithm A.1 shows the specialization of Algorithm 5.8 based on the patterns in Figure A.1.

In particular,

• BuildHighLow(n, 〈κ0,p0〉, 〈κ1,p1〉) builds the union of edges where κ0 = L0 and κ1 = H0

and vice-versa. We note that p0 ∪ p1 is not computed since it is not a part of the final result.

• BuildHigh(n, 〈κ0,p0〉, 〈κ1,p1〉) builds the union of edges where κ0 = X and κ1 = H0 and

vice-versa.

• BuildLow(n, 〈κ0,p0〉, 〈κ1,p1〉) builds the union of edges where κ0 = X and κ1 = L0 and

vice-versa.

ESRBDD Intersection

The Intersection of ESRBDDs as defined in Chapter 4 has a time-complexity of

O(|ESR(A)|.|ESR(B)|)

which is better that of the generic Apply as described in Algorithm 5.8.

Figure A.2 illustrates the result of the Intersection operation over long-edges in ESRBDDs.

As shown in this figure, none of the combination long-edges in ESRBDDs requires the additional

n − n′ nodes that are required in some cases for ESRBDD Union. Therefore the factor of L

in ESRBDD Apply is reduced to a factor of 1 in the time-complexity of ESRBDD Intersection:

O(|ESR(A)|.|ESR(B)|). Note that the Intersection of BDDs and ZDDS, for the BDD and ZDD

representation of these edges respectively, would require as many nodes in the result.

Algorithm A.5 shows the specialization of Algorithm 5.8 based on the patterns in Figure A.2.

Unlike the union of ESRBDDs described in Algorithm A.1, the intersection of ESRBDDs Algorithm

A.5 does not require the use of BuildHighLow, BuildLow, and BuildHigh, since these patterns

do not arise in the intersection of ESRBDDs.
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Algorithm A.1 Union of ESRBDDs.

1: procedure Union(Level n̂, ESRBDD 〈κ0,p0〉, ESRBDD 〈κ1,p1〉)
2: if n̂ = 0 then

3: return 〈S,p0 ∨ p1〉
4: if 〈κ0,p0〉 = 〈X,1〉 ∨ 〈κ1,p1〉 = 〈X,1〉 then

5: return 〈X,1〉
6: if 〈κ0,p0〉 = 〈κ1,p1〉 ∨ 〈κ1,p1〉 = 〈X,0〉 then

7: return 〈κ0,p0〉
8: if 〈κ0,p0〉 = 〈X,0〉 then

9: return 〈κ1,p1〉
10: if κ0 = H0 ∧ κ1 = L0 then

11: return BuildHighLow(n̂, 〈κ0,p0〉, 〈κ1,p1〉)
12: if κ0 = L0 ∧ κ1 = H0 then

13: return BuildHighLow(n̂, 〈κ1,p1〉, 〈κ0,p0〉)
14: if “∨, n̂, 〈κ0,p0〉, 〈κ1,p1〉, e” ∈ CT then

15: return 〈κ,p〉
16: n← Max(l(κ0), l(κ1))

17: p← new node at level n

18: p[0]← Union(n− 1, Edge(n,〈κ0,p0〉,0), Edge(n,〈κ1,p1〉,0))

19: p[1]← Union(n− 1, Edge(n,〈κ0,p0〉,1), Edge(n,〈κ1,p1〉,1))

20: if n̂ = n then • At least one incoming edge is short

21: 〈κ,p〉 ← ReduceEdge(n̂,〈S,p〉)
22: else if κ0 = κ1 then

23: 〈κ,p〉 ← ReduceEdge(n̂,〈κ0,p〉)
24: else • for i, j ∈ {0, 1}, i 6= j,∃i κi = X ∧ κj ∈ {L0, H0}
25: if κ0 = X then

26: eX ← 〈κ0,p0〉
27: else

28: eX ← 〈κ1,p1〉
29: if κ0 = L0 ∨ κ1 = L0 then

30: 〈κ,p〉 ← BuildLow(n̂,n,eX,〈S,p〉)
31: else

32: 〈κ,p〉 ← BuildHigh(n̂,n,〈S,p〉,eX)
33: CT← CT ∪ “∨, n̂, 〈κ0,p0〉, 〈κ1,p1〉, e”
34: return 〈κ,p〉
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Algorithm A.2 Build an ESRBDD for the High-Low pattern.

1: procedure BuildHighLow(Level n, Edge 〈κ0,p0〉, Edge 〈κ1,p1〉)
2: p← new node at level n

3: p[0]← 〈H0,p0〉
4: p[1]← 〈L0,p1〉
5: return ReduceEdge(n, 〈S,p〉)

Algorithm A.3 Build an ESRBDD for the High pattern.

1: procedure BuildHigh(Level n̂, Level n, Edge 〈κ0,p0〉, Edge 〈κ1,p1〉)
2: if n̂ = n then return 〈κ0,p0〉
3: p← new node at level n̂

4: p[0]← BuildHigh(n̂− 1,n,〈κ0,p0〉,〈κ1,p1〉)
5: p[1]← 〈κ1,p1〉
6: return ReduceEdge(n̂, 〈S,p〉)

Algorithm A.4 Build an ESRBDD for the Low pattern.

1: procedure BuildLow(Level n̂, Level n, Edge 〈κ0,p0〉, Edge 〈κ1,p1〉)
2: if n̂ = n then return 〈κ1,p1〉
3: p← new node at level n̂

4: p[0]← 〈κ0,p0〉
5: p[1]← BuildLow(n̂− 1,n,〈κ0,p0〉,〈κ1,p1〉)
6: return ReduceEdge(n̂, 〈S,p〉)
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Figure A.2 Intersection of long-edges in ESRBDDs.
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Algorithm A.5 Intersection of long-edges in ESRBDDs.

1: procedure Intersect(Level n̂, ESRBDD 〈κ0,p0〉, ESRBDD 〈κ1,p1〉)
2: if n̂ = 0 then

3: return 〈S,p0 ∧ p1〉
4: if 〈κ0,p0〉 = 〈κ1,p1〉 ∨ 〈κ1,p1〉 = 〈X,1〉 then

5: return 〈κ0,p0〉
6: if 〈κ0,p0〉 = 〈X,1〉 then

7: return 〈κ1,p1〉
8: if 〈κ0,p0〉 = 〈X,0〉 ∨ 〈κ1,p1〉 = 〈X,0〉 then

9: return 〈X,0〉
10: if (κ0 = L0 ∧ κ1 = H0) ∨ (κ0 = H0 ∧ κ1 = L0) then

11: return 〈X,0〉
12: if “∧, n̂, 〈κ0,p0〉, 〈κ1,p1〉, e” ∈ CT then

13: return 〈κ,p〉
14: n← Max(l(κ0), l(κ1))

15: p← new node at level n

16: p[0]← Intersect(n− 1, Edge(n,〈κ0,p0〉,0), Edge(n,〈κ1,p1〉,0))

17: p[1]← Intersect(n− 1, Edge(n,〈κ0,p0〉,1), Edge(n,〈κ1,p1〉,1))

18: if n̂ = n then

19: κ← S

20: else if κ0 = κ1 then

21: κ← κ0
22: else if κ0 = L0 ∨ κ1 = L0 then

23: κ← L0

24: else • κ0 = H0 ∨ κ1 = H0

25: κ← H0

26: 〈κ,p〉 ← ReduceEdge(n̂,〈κ,0〉p)
27: CT← CT ∪ “∧, n̂, 〈κ0,p0〉, 〈κ1,p1〉, e”
28: return 〈κ,p〉
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