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CHAPTER ONE

GENERAL INTRODUCTION

The maize (Zea mays L.) root system is responsible for plant stability and uptake of water and
nutrients such as nitrogen (N) in an efficient manner (Lynch, 1995; Aiken and Smucker, 1996).
The root system interacts with the rhizosphere (Bais et al., 2006; Watt et al., 2006) and is able to
adapt to changing environmental conditions such as excess water, drought conditions, and low
nutrient availability (Hawes et al., 1998; McCully, 1988; Drew, 1975). Maize roots are formed
during both embryonic and post-embryonic development (Feldman, 1994). There are five main
types of roots in maize: crown, seminal, primary, lateral, and brace roots (Hochholdinger, 2009).
The major portion of root biomass of mature plants is derived from postembryonic, shoot-borne
roots. These postembryonic roots include crown roots and lateral roots, both formed below soil
surface, and brace roots, formed above the soil surface (Hoppe et al., 1986). Their function is
vital to whole plant performance as they are responsible for the majority of water and nutrient
uptake in maize in later developmental stages. Embryonic roots consist of primary and seminal
roots. The seminal roots are formed at the scutellar node in the embryo with the number of
seminal roots largely dependent on the genetic background of the plant. The overall fate of
embryonic roots is background dependent as in some inbred lines; both the primary and seminal
roots remain intact in form and function while in other genetic backgrounds these root types

become obsolete when compared to postembryonic shoot borne roots (Feldman, 1994).

Two to three week old seedling root systems are made up of primary roots, lateral roots,

seminal roots, crown roots and root hairs (Zhu et al., 2006; Hochholdinger, 2009). Lateral roots



are initiated from the pericycle of other roots and have a strong influence on maize root
architecture (Esau, 1965, Lynch, 1995). Their function is important to plant performance as they
are responsible for a crucial part of water and nutrient uptake in maize (McCully and Canny,
1988). Lateral roots branch outward from the primary root. Lateral roots increase the surface
area of the root system and all root types contribute to water and nutrient uptake (W.R. Jordan,
1983; Lynch, 1995; Liu et al., 2008). Moreover, lateral roots contain root initiation points,
leading to secondary, tertiary, and higher order root structures, with major influence on the

overall root architecture of the root stock (Lynch, 1995).

Genetic control of root development

Understanding of all genetic factors contributing to root development is incomplete.
Several genes have been identified that affect root development in maize including Rics (rootless
concerning crown and seminal roots), Rthl (roothairless 1), Rth3 (roothairless 3), and Rum 1
(rootless with undetectable meristems 1). Rtcs controls crown root and seminal root formation;
Rtcn and Ricl are paralogs of Rtcs. Rthl and Rth3 control root hair elongation and development
in maize. Rth3 has been shown to affect adult plant performance for grain yield in maize
(Taramino et al., 2007). Rum1 controls lateral root growth and seminal root growth. A paralog of
Ruml is Rull (Taramino et al., 2007; Von Behrens et al., 2011). While these genes have been
validated through mutational analysis, there are still many loci throughout the genome yet to be
discovered that effect root development. To identify additional loci effecting root development,
multiple genetic mapping techniques have been developed. Association mapping or linkage
disequilibrium (LD) mapping is a useful tool for analyzing the genetic diversity of complex traits
and identification of superior alleles (Yan et al., 2011). Unlike traditional linkage mapping,

where bi-parental populations are developed, association mapping exploits ancestral



recombination in admixed populations to find marker-trait associations based on LD
(Thornsberry, 2002). Researchers have utilized two strategies when conduction association
mapping: a candidate gene approach, and a genome-wide approach. Candidate gene association
mapping focuses on polymorphisms in predetermined genes known to affect traits of interest,
conversely genome-wide association approaches survey the entire genome for polymorphisms
associated with complex traits without a priori information of specific regions of the genome that
affect traits under study (Merkangas, 1996). The advent of more economic sequencing
technologies allowed genome-wide studies as well as genomic selection studies to become more
manageable (Metzker, 2010). The type of polymorphism or difference in loci used in genome
wide association analysis and found in most abundance within the maize genome are single
nucleotide polymorphisms (SNPs) (Rafalski, 2002). SNPs are single nucleotide (A, T, C, or G)
variations within the genome that differ between members of a biological species. In candidate
gene or genome wide association studies, the relationship between genotypes at a particular locus
and phenotype are analyzed to detect whether or not a SNP is statistically associated with a
particular trait. Most likely, if found associated, a SNP is in LD with a QTL or gene that affects

the trait of interest being studied.

Importance or root development on plant performance

Plants can increase nutrient acquisition by developing larger root systems that will allow
contact with a larger soil volume (Tian et al., 2006). Changes in root architecture may have
played a large role in adaptation of maize hybrids to today’s planting densities, mirroring above
ground canopy by narrowing the root branch angles helped for adaptation to higher planting
densities (Hammer et al., 2009). Root structure and development have been shown to be a key

component to nitrogen use efficiency (NUE) (Hirel et al., 2007) and drought tolerance (Ribaut et



al., 2007). A typical measure for (genetic) NUE in maize is the percentage of grain yield

reduction under low N levels compared to high N levels (Presterl et al., 2003).

There is extensive phenotypic variation for root architecture. However, root traits are not
routinely directly selected upon by plant breeders for improved nutrient uptake efficiency or
yield improvement due to the difficulty in measuring root traits and their quantitative mode of
inheritance (Salvi, 2007). Changes in maize root architecture may strongly affect yield (Hammer
et al., 2009). Seminal roots play a key role in the acquisition of immobile and mobile nutrients
such as phosphorus and N and can determine spatial and temporal domains of its environment
and inter-root competition (Zhu et al., 2006). Studying adult roots using “shovelomics”, a high-
throughput phenotyping technique that measures adult root traits (Trachsel et al., 2010), is time
consuming, destructive, and laborious, and limits the number of experiments that can be
completed in a season (Trachsel et al., 2010). An alternative to adult root phenotyping would be
to study roots at a seedling stage. The relationship between seminal root biomass in hydroponics
and root lodging in a field study focusing on root strength and pulling resistance has been
explored (Landi, 1998; Landi et al., 2001). Correlations found in hydroponic seedling root traits
compared to adult field traits were r=0.44* for shoot weight and adult plant height, and r=0.22*
for lateral root length with brace root development In another study, positive but low correlations
were found between maize seedling and adult root traits, such as number of seminal roots and
weight of seminal roots to root pulling resistance (r=0.07 and r=0.36*, respectively) (Nass and
Zuber, 1971). Seedling phenotyping takes less time, is less laborious, and can be repeated many
times during the year allowing for quicker turnover of results. Studying seedling root systems
also allows to utilize digital image capture systems with more ease. Using digital imaging

software to automate phenotypic analysis is an innovative and efficient way of accurately taking



measurements of plant physiological traits (Brewer et al., 2006, Chavarria-Krauser et al., 2008,
Wang et al., 2009). With the development of custom root analysis systems, quantitative studies
of root architecture are now possible (Le Bot et al., 2009, Zeng et al., 2008). Programs such as of
RootReader2D and RootReader3D are examples of imaging software programs developed and
made freely available that can be implemented easily without costly equipment (Clark et al.,
2013). Expanding the number of seedling root traits and improving respective phenotyping
procedures, may increase the chance of capturing strong relationships between different growth

stages in maize.

Utilizing roots for crop improvement

Combining both phenotypic information and genomic information is the basis for
Genomic Selection or Prediction (GS and GP). The ability to predict high performing genotypes
with high accuracy is of major importance in plant breeding. Marker assisted selection (MAS)
has become a routine procedure in commercial breeding programs because of an increased gain
per unit time by using MAS when compared to only using phenotypic selection (Eathington et
al., 2007). GS, a form of MAS, has become a valuable tool in animal breeding, but has yet to be
widely implemented in public plant breeding programs. Unlike MAS, where only markers
known to be associated with a given trait are used, GS uses all markers simultaneously in order
to capture the maximum amount of genetic variation possible to make predictions based on
genotype alone. Success of genomic selection procedures depends on saturating the genome with
sufficient markers (SNPs) to accurately capture all marker and haplotype effects for prediction of
the breeding value of selected genotypes by a three-step process. The first step in conducting
genomic prediction is the selection of a training population, one that should be a good

representation of the breeding population for accurate estimation of genetic effects (Heffner, et



al., 2009) This population will contain information on the phenotypic traits of interest as well as
genome-wide distributed markers. The second step is to establish a statistical model to predict
trait performance in a validation (breeding) population based on estimated marker effects alone.
These estimated marker effects are determined using the before mentioned prediction model.
Accuracy of predicting performance in both plants and animals is affected by many factors.
Examples are the extent of LD within both training and validation populations, genetic
relationships between the validation and selection population, the genetic architecture of the
traits being selected upon, the marker density, the training population size and also the
heritability of the traits being studied (Hayes et al., 2009; Luan et al., 2009; Zhong et al., 2009).
Finally, the third step is validation of predicted performance for selected genotypes. This
information can then be combined with previous training data. Genomic prediction is a tool that
could be utilized to predict and select root architectural traits in order to reduce input into

resource intensive practices involved in plant root phenotyping.

Optimum root architecture (ideotype) for all environmental conditions has yet to be
defined. Lines with better root architecture in relation to root surface area, greater total root
length, or various other root traits, might help to improve the ability to take up water and
nutrients and consequently, to increase plant growth under nutrient deficiency, in particular for N
(Marschener, 1998). A root ideotype for N and water deficient soils was outlined by Lynch
(2013) as “steep, cheap, and deep” in accordance to how water and N availability is generally
greater in deeper soil strata. Conversely, according to resource allocation theory, plants
expending more energy and resources into below ground biomass may have less resources into

developing large above ground biomass, so a tradeoff is connected with increasing root biomass



for efficient plant development (Werner, 1981). It is thus critical; to understand what root trait

characteristics are optimal for efficient growth and plant productions.

The overall goal of this work was to explore root trait variation between maize inbred
lines, identify putative causative loci within already characterized root development genes as
well as putatively associated loci throughout the genome involved in root development, and
determine the predictability of root traits within a controlled environment model system based on
genotypic information alone. The hypothesis of this study is that root traits and root development
are quantitatively inherited with many loci throughout the genome associated with root
architecture development. Thus, the first objective (Chapter 2) in this project was to determine
the impact of known root genes on a range of root phenotypes and identify potential causative
loci. We did this by evaluating 74 inbred lines for root traits conducting a candidate gene based
association analysis at the seedling stage with plants grown using a paper roll method (Woll et al
2005). The second objective (Chapter 3) was to develop a new tool for root trait extraction from
images to enable more high-throughput root phenotyping for large scale mapping studies. The
third objective (Chapter 4) was to expand upon objective one and survey for additional genes and
QTL beyond known root development genes tested in Chapter 2. To do this we conducted a
genome-wide association analysis based on 22 seedling root traits within an inbred line
association panel. The final objective (Chapter 5) of this research was to determine whether root
traits could be subjected to a genomic prediction approach using the genome-wide association
panel of Chapter 4 as a training population, and predict root trait performance in a larger
genotyped panel. The goal of this latter approach was to determine whether one could use GP to
identify two sets of extreme genotypes using a subset of lines from a larger population, as well as

test the predictability of seedling root architecture for TRL as a model for future studies.



Organization of the thesis

This thesis contains three published research articles (Chapters 2-4) and one manuscript in
preparation (Chapter 5). The conclusions of all studies are summarized in a final chapter
(Chapter 6). As each chapter contains its own introduction, the general introduction was kept
brief. Literature for each individual experiment and procedure is introduced and discussed within

the respective chapters.
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CHAPTER TWO

ASSOCIATION ANALYSIS OF SINGLE NUCLEOTIDE POLYMORPHISMS IN
CANDIDATE GENES WITH ROOT TRAITS IN MAIZE (ZEA MAYS L.) SEEDLINGS
Bharath Kumar'!, Adel H. Abdel-Ghani™*, Jordon Pace', Jenaro Reyes-Matamors®, Frank
Hochholdinger* and Thomas Liibberstedt!

Paper published in Plant Science Journal. Abstract, structure, and references are all formatted
according to journal standards.

ABSTRACT

Several genes involved in maize root development have been isolated. Identification of SNPs
associated with root traits would enable the selection of maize lines with better root architecture
that might help to improve N uptake, and consequently plant growth particularly under N
deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize
inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-
sequencing of candidate root genes Rtcl, Rth3, Rumi, and Rull was also carried out in the same
AS panel lines. All four candidate genes displayed different levels of nucleotide diversity,
haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out
between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-
day-old maize seedlings. Association analyses revealed several polymorphisms within the Rzcl,
Rth3, Ruml, and Rull genes associated with seedling root traits. Several nucleotide
polymorphisms in Rtcl, Rth3, Ruml, and Rull were significantly (P<0.05) associated with

seedling root traits in maize suggesting that all four tested genes are involved in the maize root



17

development. Thus considerable allelic variation present in these root genes can be exploited for
improving maize root characteristics.

1. Introduction

The plant root system serves primarily to anchor plants in the soil, and to take up water and
minerals. Roots are less visible than aboveground plant parts such as flowers, stems, and leaves.
Therefore, root characteristics are seldomly considered as selection criteria [1], but they are no
less important to the plant. The root system is affected by environmental conditions,
management practices, and to a greater extent genotype dependent. While plants respond to
limiting soil nutrients and water stress by increasing the amount of root biomass allocated to
roots, and consequently increasing root to shoot biomass ratio [2-7], the acquisition of soil
nutrients and available soil moisture by plants is more dependent upon root length and/or root
surface area than total root biomass [8-9]. Genetic variation for root morphology in maize does
exist, and has long been proposed for improvement of nutrient and water-use efficiency in maize
[7, 10-14].

Root architecture traits can be determined using different methods including vertical root pulling
force (RPF) and hydroponic characterization [15-18]. Field methods are frequently technically
demanding and costly. Due to the difficulty in obtaining reliable root trait data from the field,
there are very few reports on morphological characterization of maize roots in the field. Using
paper rolls as a hydroponic method to study root architecture has several advantages in
comparison with RPF and other field techniques [7, 14, 18-19]. These include: (i) the ease to
score root traits as compared with vertical RPF, (ii) controlled environmental conditions, thus
increasing repeatability of measurements, (iii) screening large numbers of lines in small space

within a short period of time with an easy access to roots, and (iv) precise control of the
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concentration of mineral nutrients and water soluble compounds. However, the main
disadvantages are the artificial screening conditions which might not properly represent field
conditions.

Maize varieties with high yield potential are expected to have favorable root architecture, which
can effectively supply water and nutrients, leading to increased grain yield [7, 15-17]. This is
particularly important in case of limited water or nutrient availability, such as under drought
conditions.

The maize root system consists of different root types that are formed during different stages of
plant development. The root system in maize can be divided into embryonic and post-embryonic
roots [20]. The embryonic root system is composed of a single primary root and a variable
number of seminal roots, while post-embryonic roots are shoot-borne roots including crown and
brace roots. Shoot-borne roots formed at consecutive underground nodes are called crown roots,
while the respective roots formed at consecutive above-ground nodes of the shoot are called
brace roots. Lateral roots which emerge from all major root-types also belong to the post-
embryonic root system. Mutants affected in various aspects of root formation have been
identified in maize including rtcs, rthl, rth3, and ruml [19, 21-23]. Rtcl (Rtcs-like) is regarded as
a paralog of Rtcs [22], and Rull (Ruml-like) as a paralog of Ruml. That the primary root and its
lateral roots alone are sufficient to form a fertile mature plant was demonstrated by the
monogenic recessive mutant rfcs, which forms only a primary root and its lateral roots but no
seminal or shoot-borne roots [24]. The mutant ruml is affected in lateral root formation, while
the mutants r¢hl [21] and rth3 [25] display reduced root hair elongation. Rtcs encodes a 244
amino acid (aa) Lateral Organ Boundaries (LOB) domain protein located on chromosome 1S.

During evolution, Rtcs was duplicated. The Rtc/ gene, which maps on chromosome 9, displays
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72% aa sequence similarity with Rtcs. The Rtcs and Rtcl gene promoters share auxin responsive
elements, and they are preferentially expressed in roots [22]. The Rthl gene encodes a SEC3
homologue [21]. In yeast (Saccharomyces cerevisiae) and mammals, sec3 is part of the
exocyst complex, which ropes together exocytotic vesicles prior to their fusion. The Rth3 gene
belongs to the COBRA-like gene family [25]. Members of this plant-specific
glycosylphosphatidylinositol anchored protein coding gene family are involved in cell expansion
and cell wall biosynthesis [26]. The Rum gene located on chromosome 3 encodes a polypeptide
of 269 aa which is a monocot specific AUX/TAA protein [23]. Rull is a closely related Aux/IAA
protein coding gene, and is localized on chromosome 8. Rul/l encodes a polypeptide of 273 aa
that displays 92% aa identity with Rum 1.

Recombinant inbred lines have been used for mapping quantitative trait loci (QTL) to 10-30 cM
regions [27-28]. However, QTL mapping is limited by, (i) the expense of generating such lines,
(i1) their limited diversity, (iii) their separation from established processes in maize breeding, and
(iv) the low number of informative recombinations [29]. In contrast, association mapping studies
which are based on linkage disequilibrium (LD) allow identification of actual genes underlying
these QTLs [30]. The success of gene based association studies depends on the candidate gene(s)
chosen for a particular phenotypic trait. The first candidate gene-based association mapping
study in maize associated individual dwarf8 polymorphisms with flowering time [30], which has
been followed by numerous subsequent studies in maize [31] and other cereal crops [32]. Gene-
based association studies ultimately lead to the identification of quantitative trait polymorphisms
(QTPs) with causal genetic effects on agronomic traits, which can be converted into functional
markers [33]. Breeding for a vigorous root system in maize may involve identification of

superior alleles of candidate genes that affect nutrient and water use efficiency. Respective
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candidate gene-based studies enabled identification of alleles affecting various relevant
quantitative agronomic traits in maize [30, 34-38].

So far, no information is available on the genetic diversity of genes affecting root development in
maize. Therefore, the objectives of this study were to: (i) examine the nucleotide and haplotype
diversity for Rtcl, Rth3, Ruml, and Rull in a panel of 74 maize inbreds, (ii) estimate phenotypic
means for root traits of lines included in the individual haplotypes, and (iii) to identify
polymorphisms in candidate genes associated with root development.

2. Materials and methods

2.1. Plant materials

Allele re-sequencing of candidate root genes was carried out in 44 expired PVP lines, and 30
public inbred lines such as Nested Association Mapping (NAM) founder lines, 2009 released
Germplasm Enhancement of Maize (GEM) lines and lines used in a maize diversity study
(Appendix 1). The rationale for using expired PVP lines is to capture substantial genetic
variation present in current elite germplasm. Other public inbred lines were chosen to enable
detection of the majority of SNP and INDEL polymorphisms in the candidate genes studied, as a
prerequisite to develop multiplexed SNP assays to be used for screening large numbers of
genotypes at low costs in large-scale association studies. Seed was obtained from different seed
resource centers such as North Central Regional Plant Introduction Station in Ames, A
(NCRPIS), and Maize Genetics Cooperation (Champaign, IL). All maize lines were selfed at the
Agronomy farm, Iowa State University in summer 2009 to produce seed of equal origin and

quality for this study.
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2.2. Experimental design and phenotyping

Seedling root characteristics in maize lines were studied using a paper roll test described by Woll
et al. [19]. Seeds were first surface sterilized with Clorox® solution (6% sodium hypochlorite)
for 15 minutes. After surface sterilization, seeds were washed three times with sterile water.
Surface sterilized seeds were then placed on a brown germination paper (Anchor Paper, St. Paul,
MN) pre-moisturized with fungicide solution Captan® (2.5g/1), and afterwards rolled up
vertically. Rolled germination papers were kept in 2 | glass beakers containing autoclaved
deionised water. Experiments were carried out in growth chambers under a photoperiod of 16/8 h
at 25/22 °C (light/darkness) with photosynthetically active radiation of 200 pmol photons m= s™'.
The relative humidity in growth chambers was maintained at 65%, and lines were grown in a
randomized complete block design with two replications. Each paper roll containing three
seedlings was considered an experimental unit. 74 maize lines with different genetic background
and origins were evaluated at three growth stages independently (6, 10, and 14 days after
sowing). Each experiment was repeated twice. At the end of each growth stage (6, 10, and 14
days), root characteristics were evaluated. Seedlings were separated into root system and shoots
at the crown root region. The root system was further separated into primary root, seminal, and
crown roots, and respective root lengths were recorded. To measure lateral roots, the primary
root was scanned, and the image was analyzed using WinRhizo Pro 2009 software (Regent
Instruments, QC, Quebec, Canada). Total root length (TRL) was estimated by summing the
lengths of primary root, crown, seminal, and lateral roots for each seedling. Roots were dried at

70 °C to a constant weight, and root dry weight (RDW) was recorded subsequently.



22

2.3. DNA extraction, amplification, and sequencing

Four candidate genes were chosen based on their role in root development to identify SNPs for
association study analyses. SNPs from these candidate genes were tested for possible
associations with TRL and RDW. Candidate genes chosen for our association study were: Rfcs,
Rtcn, Rtcl, Rth3, Ruml, and Rull. Gene specific primers were designed to amplify the entire
sequence of Rtcl, and parts of Rth3, Ruml, and Rull genes using the software program Primer

3.0 (http://frodo.wi.mit.edu/primer3/) (Table 3). In case of Rtcs and Rtcn, even after several

attempts, amplicons from all 74 lines were not obtained. This might be due to the extensive
nucleotide diversity at these candidate genes which prevents the binding of designed primers.
Polymerase chain reaction (PCR) was performed using the designed primers for each gene
separately in 50 ul volumes under the following conditions: 50 ng template DNA, 250 nM of
each primer, 250 nM dNTPs, 2 U Taq polymerase and 250 uM MgCl.. Reactions were
performed for each primer pair using the following PCR program in a thermocycler (MJ
research, California): an initial 94 °C denaturation step for 2 min followed by 35 cycles of 94 °C
for 30 sec (denaturation step), 57.5 °C for 30 sec (annealing step), and 72 °C for 90 sec
(elongation step). The final extension step was followed by 72 °C incubation for 10 min.
Amplified DNA fragments were resolved by gel electrophoresis (Biorad, California) using 1%
agarose gels in Tris-EDTA (TE) buffer. Agarose gels were stained with 0.5 pg of ethidium
bromide per ml. The running time was 90 min at 120 mV. Finally, gels were visualized and
photographed by a UV illuminator system (Alphainnotech, California). For each gel, the first
lane was specified for a 100 bp DNA ladder (Promega, Wisconsin), the second lane and the third
lane were specified for positive and negative controls. Amplified fragments of Rth3, Ruml, and

Rull genes were obtained for all 74 inbred lines in the AS panel, whereas for the Rtc/ gene,
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amplicons were obtained from 69 lines. For sequencing, 10 pl of the amplified fragments were
first purified by using 2 units of shrimp alkaline phosphatase and 2 units of exonuclease I at 37
°C for 1 h, followed by 72 °C for 15 min to deactivate the enzymes. Amplified gene products
were then labeled for sequencing using the ABI Prism® BigDye® Terminator v3.1 cycle
sequencing kit (Applied Biosystems, California). Labeling reactions were performed in 10 pl
reaction volume containing 1 pl of PCR product, 1 pl of BigDye Terminators, 0.26 pl of 50 mM
original PCR primers (either forward or reverse), 1.75 pl of 5x sequencing buffer and 5.99 pl
deionized distilled water. The thermocycler cycle sequencing reaction was performed using the
following cycling parameters: 96 °C for 2 min, 25 cycles of 96 °C for 30 sec, 50 °C for 1 min,
and 60 °C for 4 min, finally cooled to 4 °C. Precipitated DNA was purified with 70% ethanol
and dried thoroughly before re-suspending in ABI Hi-Dye formamide for sequencing on a
sequencer (Applied Biosystems 3730 DNA Analyzer with a 96-capillary array). Sequencing was
performed for each amplified fragment using forward and reverse primers separately with two
replicates. Based on primers designed, expected sizes of PCR products were obtained for all
tested genes. Sequences were aligned using Sequencher program 4.1 (Gene Codes Corporation,
Michigan). In order to maximize read lengths and to obtain a sequencing quality >98%, two
replicates of forward and reverse reads for each amplified fragment were aligned to get
consensus sequences of amplified gene fragments from AS panel lines.

2.4. Phenotypic data analyses

The following linear mixed model was used to estimate variance components: y;x= u+ E; + Bjs)
+ Gr +EGi + BGjpk, where ;i represents the observation from the ijk” experimental unit, u is

the overall mean, E; is the effect of i’ independent experiment, Bj; is the effect of j block

h h

nested in i” experiment, Gy is the effect of k" line, EGy is the interaction effect of the i
p
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experiment with k" genotype, BGja is the interaction effect of j block nested in i experiment
with k" genotype. Heritability (4°) on an entry mean basis was estimated as the ratio of
genotypic to phenotypic variance according to Hallauer and Miranda [39]. Furthermore,
experiment was considered as a fixed factor, whereas blocks and genotypes were regarded as
random factors. Best linear unbiased estimates (BLUEs) were determined for maize lines for
each trait. SAS 9.1 (SAS Institute, 1996) software packages were used for all calculations.

2.5. Analysis of sequence data

Respective gene sequences amplified from the association panel lines were analyzed using the
software package DnaSp [40]. Haplotype diversity among candidate genes was analyzed based
on the SNPs in the amplified fragment sequences from AS panel lines. Levels of nucleotide
diversity in different parts of amplified fragments of the gene were estimated as m, the average
number of nucleotide differences per site between two sequences [41]. A different estimator of
nucleotide diversity 0, the neutral mutation parameter was calculated based on number of
segregating sites [42] with a common expected value 06 = 4N, where Ne equals the effective
population size and p the mutation rate per generation and site. Haplotype diversity (Hd) was
estimated as the probability that two randomly chosen haplotypes from a given population were
different [43]. Neutrality of mutations was checked using Tajima’s D statistics [44, 45]. These
statistics are based on the different comparisons of 6 =4N,u, where N. equals the effective
population size and u the mutation rate [42]. Tajima’s D statistics results from the comparison of
0 based on number of pair-wise differences and the number of segregating sites between

sequences in the sample.
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2.6. Population structure and association analysis

All 74 lines in the AS panel were genotyped with 101 SNP markers distributed evenly across 10
maize chromosomes [46] to assess and control the effect of population structure. The software
package Structure 2.0 [47] was used to estimate population structure (Q) within the AS panel
using SNP data. In Structure 2.0, a burn-in length of 50.000 followed by 50.000 iterations for
each of the clusters (K) varying from 1 to 20 (each K was run 20 times) were used to produce a
Q matrix estimating membership coefficients for each line in each subpopulation. The
Admixture model was applied with independent allele frequencies. An ad hoc (AK) statistic [48]
based on the second order rate change of P (X|K) was used to identify the most probable value of
K.

Loiselle kinship coefficients between lines (a K matrix) were estimated by the TASSEL program
[49] based on the 101 SNP markers. Both Q matrix and a K matrix were used in the association
analysis to control the spurious associations due to population structure and relatedness,
respectively [50]. Association analysis between SNPs and root traits was carried out using a
mixed linear model (MLM) implemented in the program TASSEL 2.10 software [49]. The MLM
accounts for overall population structure (Q) and for finer scale relative kinship (K). The
statistical model used in mixed linear model (Q+K) can be described in Henderson’s notation
[51] as: y= XB+Zute, where y is the vector of observations;  is an unknown vector containing
fixed effects including genetic marker and population structure (Q); u is an unknown vector of
random additive genetic effects from multiple background QTL for individuals or lines; X and Z
are the known design matrices; and e is the unobserved vector of random residuals.

TRL and RDW were measured in 6 (sTRL, sSRDW), 10 (tTRL, tRDW), and 14 (fTRL, fRDW)

day old seedlings, and used as root traits in our association study. False discovery rate was set at
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0.05 [52] to control for multiple testing of SNP markers. Motifs in the Rtcl, Rth3, Ruml, and
Rull genes were searched using a PLACE (Plant cis-acting regulatory DNA elements) database
[53] to determine, if any of the significantly associated SNPs might alter motif sequences in the
candidate genes.

3. Results

3.1. Phenotypic variation

Complete statistical analysis of root traits measured in this study has been reported elsewhere
[14]. In their principal component analysis, total root length (TRL) and root dry weight (RDW)
explained most of the phenotypic variation. Moreover, both TRL and RDW were significantly
and positively correlated with all other root-related traits. We, therefore, focused on TRL and
RDW for association mapping in this study.

Frequency distribution of TRL and RDW measured in 6, 10, and 14-day-old seedling of 74 AS
panel maize inbred lines are presented in supplementary figures 1 and 2. TRL ranged from 8.1-
72.6 cm, 39.2-216.3 cm and 78.6-362.0 cm in 6, 10, and 14-day-old seedlings, respectively.
RDW varied from 5.5-29.8 mg, 10.1-49 mg, and 14.9-82.0 mg in 6, 10, and 14-day-old
seedlings, respectively. Both TRL and RDW had the highest co-efficient of variation (CV) in 6-
day-old seedlings.

3.2. Sequence alignment and haplotypes

The Rtcl sequence alignment of 69 maize lines spanned 828 bp with no alignment gaps, such as
indel polymorphisms. The 828 bp amplified fragment included two exons, i.e., exon 1 (420 bp),
and exon 2 (279 bp), respectively, separated by an intron (129 bp). In exons 1 and 2, 16 and 22
SNPs were identified, respectively, whereas 7 SNPs were identified in the intron region. Out of

the 38 SNPs in the exon regions, 32 altered the amino-acid sequences; the other 8 were
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synonymous mutations (Table 1). In case of Rth3, 714 bp of the open reading frame (ORF)
region of the gene was amplified from all 74 lines in the AS panel. Sequence alignment of Rth3
amplicons resulted in the identification of 15 SNPs with no indel polymorphisms. Out of 15
SNPs, 12 were synonymous mutations, and only 3 SNPs altered the amino-acid sequence (Table
2). Intron 4 and exon 5 were partially amplified for Ruml: 225 out of 461 bp in intron 4 and 207
out of 315 bp in exon 5. Sequence alignment of Ruml amplicons from all 74 lines in the AS
panel resulted in the identification of 12 SNPs. Out of 12 SNPs, 9 SNPs were from intron 4 and
remaining 3 SNPs were from exon 5 region. Out of 3 SNPs identified in the exon region of Ruml
gene, two were synonymous mutations and the remaining one SNP altered the amino acid
sequence (Table 3). For Rull, intron 5 and exon 6 were partially amplified from all 74 lines of
the AS panel. Sequence alignment of 411 bp from Rul/l consisting of 84 bp of intron 5 and 327
bp of exon 6 resulted in the identification of six SNPs, including five in exon 6. Four of those
exon SNPs altered the amino-acid sequence (Table 4).

The number of haplotypes for the four genes ranged from 7 for Rull, 9 for Rth3, 16 for Rtcl, to
22 for Ruml (Tables 1-4). The range of haplotype means for TRL and RDW traits measured in 6,
10 and 14-day-old seedlings was larger for Ruml gene compared to other three genes (Table 1-
4).

3.3. Nucleotide diversity in four genes

Nucleotide diversity (n) was determined for Rtcl, Rth3, Ruml, and Rull coding and non-coding
regions using the SNPs identified in respective amplicons from AS panel lines (Table 5).
Overall, nucleotide diversity was n=0.021 in the entire region of Rtcl. Within Ritcl, nucleotide
diversity was almost the same in both intron (7=0.022) and exon (n=0.021) regions. In Rth3

which lacks an intron region, nucleotide diversity was higher for synonymous (1=0.026) than for
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non-synonymous mutations (1=0.0002). For the Ruml, nucleotide diversity was higher in the
non-coding region (1=0.017) than in the coding region (1=0.005), and for Rull, there was not
much difference in the nucleotide diversity between non-coding (1=0.007) and coding region
(m=0.004). When the entire amplified region was considered, nucleotide diversity was lower in
Ruml (n=0.011), Rth3 (n=0.007), and Rull (n=0.005) compared to Rtc! (n=0.021). The
nucleotide diversity based on 60, the neutral mutation parameter, was also calculated for all four
amplicons in a sliding window of 100 bp using a step size of 10 bp (Fig. 1). Based on 6, within
Rtcl, average nucleotide diversity was same in both intron and exon region. In case of the Rum/
gene, nucleotide diversity seems to be higher in the intron region compared to the exon, but it
was the same in both the exon and the intron region in the amplified region of the Rul/l gene.
Haplotype diversity (Hd) ranged from 0.873 in Rtc/ to 0.624 in Rull.

Tajima’s D was positive and significant when considering the entire Rtc/ region as well as both
coding and non-coding regions. Conversely, in case of Rth3, Ruml and Rull, Tajima’s D was
non-significant in all regions except in the Ru/l non-coding region (Table 5). Complete analysis
of LD decay in AS panel lines across Rfcl, Rth3, Ruml and Rull genes has been reported
elsewhere [54]. LD between all pairs of polymorphic sites from the sequenced region of the Rzcl,
Ruml, and Rull genes decayed very rapidly (> < 0.2), whereas LD persisted (1> > 0.25) over the
length of the sequenced region in the Rth3 gene.

3.4. Population structure and marker-trait associations

Based on the ad-hoc statistic values in Structure 2.0, lines in the AS panel were grouped into two
sub-populations (K=2), which agrees with their pedigree and breeding history [54].

3.4.1. Rtcl
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21 SNPs were significantly (P=0.05) associated with sTRL, and 16 SNPs were associated with
sRDW (Table 6), with 14 SNPs associated with both sSTRL and sSRDW. Five of those SNPs were
located in exon 1, four in the intron, and five in exon 2. Four SNPs in exon 1 and four in exon 2
caused non-synonymous changes in the protein sequence (Table 6), while the remaining two
SNPs in the exon regions caused synonymous changes. In case of tTRL and tRDW, five and two
SNPs were associated, respectively. SNPs at the sites 413, 473, 531, 547, and 554 were
significantly associated with both sTRL and tTRL. Similarly, SNPs at sites 320 and 374 were
significantly associated with both sSRDW and tRDW. Out of these SNPs, SNPs at sites 320, 374,
413, and 554 caused non-synonymous changes in the amino-acid sequence. For fourteen-day-old
maize seedlings, SNPs at sites 510 and 554 were associated with fTRL only. Moreover, the SNP
at site 510 was associated with both STRL and fTRL, whereas the SNP at 530 was associated
with sTRL, tTRL and fTRL.

Using B73 as reference sequence, seven SNPs (290, 317, 320, 468, 510, 597, and 799) were
significantly associated either with TRL and RDW traits affected putative functional sequence
motifs in the Rtc/ gene. These motifs are the signatures of the binding sites of several regulatory
proteins (Supp. Table 1). Moreover, non-synonymous SNPs at 290, 317, and 320 affected the
LOB domain amino acids in the RTCL gene (data not shown).

3.4.2. Rth3

13 polymorphisms in the Rth3 exon region were associated with sTRL, whereas the SNP at 621
was the only polymorphism associated with sSRDW (Table 7). Of these associated SNPs, a
synonymous polymorphism at the site 621 was associated with both sTRL and sSRDW. In case of
fTRL and fRDW, seven and eight SNPs were associated, respectively. The synonymous SNPs at

sites 180, 234, 438, 465, 492, 519, and 600 were significantly associated with both fTRL and
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fRDW. Moreover, these SNPs were also associated with STRL. No SNP in Rth3 was associated
with tTRL. Four SNPs (389, 399, 436 and 600) significantly associated with TRL and RDW
affected the binding sites for regulatory factors in the R¢h3 (Supp. Table 1). Since these SNPs
were synonymous, they did not affect the COBRA domain in the Rth3 gene.

3.4.3. Ruml

One and two SNPs in Rth3 were associated with sSTRL and sSRDW, respectively. The SNP at site
303 in the intron 4 region was associated with both sTRL and sSRDW. In case of tTRL and
tRDW, the SNPs at sites 63 and 251 were associated with both traits. Moreover, these SNPs
were also associated with fTRL and fRDW. SNPs at sites 118 and 302 were associated with
sTRL and sRDW and also with fTRL and fRDW. The SNP at site 118 in the exon 5 region
causes a non-synonymous change in the amino-acid sequence and also affects a binding site
transcription factors in the Rum/ gene (Supp. Table 1).

3.4.4. Rull

SNPs at sites 311, 336, and 389 in the exon 6 region of Rul/l were significantly associated with
tRDW. The SNPs at sites 336 and 389 caused non-synonymous changes in the amino-acid
sequence. A synonymous SNP at site 7 in the intron 5 region of Rull was associated with SRDW.
No SNP from the amplified Ru/l gene region was associated with either fTRL or fRDW.

4. Discussion

4.1. High levels of phenotypic, nucleotide, and haplotype diversity

We observed substantial quantitative variation for root traits TRL and RDW in 6, 10, and 14-
day-old seedlings indicating a considerable amount of morphological differences among 74

maize inbred lines in the AS panel (Supp. Figs. 1 and 2). We identified maize lines with both
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under and well-developed root systems, which are attractive for identifying genomic regions
controlling root traits [14].

In the present study, 2386 bp across four candidate genes involved in root development were
amplified from the AS panel lines, resulting in 78 SNPs, and an average SNP frequency of 1
SNP/31bp (Table 5). Substantial differences in nucleotide diversity were observed between the
four candidate genes (Table 5). Nucleotide diversity was highest in the RTCL gene (n=0.021),
and lowest in Rth3 (1=0.007) and Rull (n=0.005) gene. The nucleotide diversity observed in the
candidate genes is comparable to previous studies in maize inbreds for Sclce? (n=0.0112; Li et
al., 2011), 4CL2 (n=0.0102; [55]), COMT (n=0.008; [56]) and PAL (n=0.004; [35]). In other
studies involving maize landraces, nucleotide diversities ranged from = = 0.001 — 0.0133 with an
average value of 1=0.004, and a SNP frequency of one SNP per 62 bp. When coding and non-
coding regions were compared in candidate genes used in these studies, nucleotide diversity
varied across the genes. In case of Rtc/ and Rull, both intron and exon regions had the same
nucleotide diversity, whereas nucleotide diversity was higher in the intron region of Ruml gene.
This distribution of nucleotide diversity across intron and exon regions has also been found in
other studies [55, 57]. All four candidate gene Rtcl, Rth3, Ruml, and Rull showed positive
Tajima’s D values (Table 5). This indicates balancing selection with an excess of alleles with
intermediate frequencies and a scarcity of rare alleles. Considerable haplotype diversity was
found for Rtcl, Rth3, Rumli, and Rull (Table 5).

4.2. Polymorphisms associated with root traits

Several studies have shown the quantitative and qualitative importance of root traits in taking up
nitrogen (N) from N-depleted soils [58-60]. Identification of the genetic regions associated with

root traits would help not only to develop maize lines with a favorable root system, but also to
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understand the relationship between plant growth, plant productivity and root architecture. In our
previous study, we identified significant positive correlations between seed root traits such as
SRL and RDW with grain yield under two N levels [7]. Here, we used association mapping to
dissect the role of SNPs in Rtcl, Rth3, Ruml, and Rull for maize root development.

Taramino et al. [22] isolated the first root gene in maize (Rtcs) involved in seminal and crown
root formation by map-based cloning. Rtcl, a paralog of Rtcs was used in our association
mapping study. The role of Rtcl in maize needs yet to be determined. In our association study,
Rtcl was found to be associated with root development in 6, 10, and 14-day-old seedlings (Table
6). Several synonymous and non-synonymous SNPs in the Rtcl gene region were significantly
associated with TRL and RDW. This suggests a potential role of Rtc/ gene in maize root
development. This likely role of the Rtcl gene in maize root development might be due to the
sequence similarity it shares with its paralogous Rfcs gene, which has been demonstrated to be
involved in root development. The paralogous Rtcl/ gene shares 72% sequence similarity at the
protein level with Rfcs gene, contains a LOB protein domain, which was found in genes involved
in root development [61], and both Rtcs and Rtcl gene promoters share auxin responsive
elements that are preferentially expressed in roots [22]. It has also been shown that maize
mutants with impaired LOB domain have reduced crown and seminal roots [62-64].

SNPs in Rth3 were significantly associated with TRL and RDW in 6 and 14—day-old seedlings.
Even though root hair elongation was not measured in this association study, our study suggests
that Rth3 affects other root characteristics in maize. Our findings are consistent with findings of
Hochholdinger et al. [25], showing significant yield losses of the 7t43 mutant in replicated field
trials. Rth3 belongs to COBRA — like gene family specifically involved in cell expansion and cell

wall biosynthesis [25-26]. The r¢h3 mutant has been shown to affect root hair elongation and
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grain yield [25]. By this association mapping study we found that Rth3 affects both TRL and
RDW in maize seedlings. The significant association between SNPs in the Rth3 gene with root
length and biomass might be due to the role of root hairs in water and nutrient uptake. Previous
studies have shown that plants lacking efficient uptake of water and nutrient have poor root
characteristics [59, 65].

Von Behrens et al. [23] isolated the Ruml gene that is auxin/indole acetic acid (IAA) inducible
and encodes protein containing four conserved domains, and a bipartite nuclear localization
sequence. The protein encoded by Rum! is involved in the formation of embryonic seminal root
and post-embryonic lateral roots. Rull is regarded as paralog of the Ruml gene, since it shares
92% sequence identity at the amino acid level and is located in a duplicated region of the maize
genome. The role of Ru/l gene in maize root formation is still unknown. In our association
mapping study, Ruml was associated with TRL and RDW in 6, 10, and 14-day-old seedlings,
thus confirming the role of Rum/ in maize root development. Moreover, SNPs in the Rull gene
were associated with RDW in 10 and 14-day-old seedlings. This suggests a role of Ru/l in root
development, which has so far only been shown to be a paralog of Rum1 [23].

4.3. Molecular physiological basis of SNP— trait associations

Previous studies have shown the potential role of Rth3 and Ruml genes in maize root
development. Any impaired expression of these genes leads to defective root development. From
our gene based association study, we not only confirmed the role of Rth3 and Ruml genes in
maize root development, but we also found that the two paralogous genes Rtc/ and Rull are
involved in the maize root formation. Thus, it is conceivable that polymorphisms in Rtc/, Rth3,

Ruml, and Rull affect maize root formation.
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In the Rtcl gene, 13 non-synonymous and 4 synonymous SNPs were associated with TRL and
RDW. Out of these associated SNPs, seven affected putative functional sequence motifs, mostly
transcription factor binding sites. Moreover, out of these seven SNPs, three SNPs at sites 290,
317, and 320 also affected the LOB domain in the Rfcl/ gene. These SNPs seem to be critical not
only for the formation of a proper LOB domain, which is required for root formation, but also for
regulation of the Rtc/ gene by affecting transcription factor binding sites. Similar results wherein
the SNPs associated with traits affect transcription factor binding sites in the gene have been
reported elsewhere [36, 43]. In our previous association mapping study involving SNPs from the
Rtcl gene and seedling root traits measured under contrasting nitrogen levels, these three SNPs
were consistently associated with seedling root traits. The SNP at site 317 in Rfcl gene was
associated with both RDW and TRL under high and low N conditions, whereas the SNP at site
320 was associated with RDW under both N conditions. In case of the SNP at site 290,
associations were observed with RDW and TRL under high N. These consistent associations
suggest the potential role of these SNPs in the Rfc/ gene in maize root development. LD is very
low between SNPs at sites 290-320 (1> = 0.0255) and 317-320 (r*> = 0.0903), whereas it was
moderate between 290-317 (12 = 0.2827). Low to moderate LD between these significant SNPs
suggests that these individual SNPs are putative causative polymorphisms, and can be of
potential use in deriving markers to select root traits. For the Rth3 gene, 13 polymorphisms were
found to be significantly associated with TRL and RDW. Of these 13 SNPs, four SNPs (site 393,
399, 438, and 600) in the exon region significantly affected the binding sites for regulatory
factors in Rth3, but none of these SNPs affected the COBRA domain within the gene, as they
were synonymous mutations. When the LD was estimated between these four SNPs, low LD was

detected between SNPs at the sites 393-438 (2 =0.0445), 393-600 (r*> =0.0323), 399-438
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(12=0.0445) and 399-600 (1> =0.0323). However, there was a high LD between sites at positions
393-399 and 438-600. This suggests, that individual SNPs at 393 (or 399), 438 (or 600) are
putative causative polymorphisms, and can potentially be used to derive markers to select root
traits. In our previous association mapping study involving SNPs in the Rth3 gene and grain
yield, the SNP at site 600 was associated with grain yield under high N suggesting that this SNP
might potentially be used along with other SNPs to select for grain yield. In case of the Rth3
gene, full-length re-sequencing of this candidate gene would greatly increase the number of
unlinked polymorphisms to be tested for associations due to the extent of LD over a long
distance.

In our previous association mapping study, non-synonymous SNPs in Rum/ and Rull gene (site
118 in Rumli, 336 and 389 in Rull) were associated with seedling root traits under HN and LN
conditions. In the present study, these SNPs were also associated with TRL and RDW. A non-
synonymous SNP at site 118 in Rum/ gene associated with RDW in 6 and 10-day old seedling
also affected the putative functional sequence motifs which are the signatures of the transcription
factor binding sites in the gene. LD is high between the sites 336-389 in Ru/l gene, so these
polymorphisms are putatively causative with the root trait. Taken together, the SNP at site 118 in
the Ruml gene, and either SNP at sites 336 and 389 in the Rull gene can potentially be applied
in breeding programs to improve root traits.

In the present study, genes and their paralogues have been tested for association with roots traits.
From our results, it seems that Rtc/, Rth3, Ruml, and Rull can be considered as candidate genes
to develop functional markers for root traits especially the significant SNPs in these genes with

large effect on the trait (Supp. Table 2).
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Functional markers are DNA markers derived from polymorphic sites within genes, causally
involved in phenotypic trait variation [33]. All associations found in the current study are
candidates as LD expands beyond the sequenced region, and could affect gene expression
through regulatory elements outside the coding region such as the promoter. The confirmation of
associated polymorphisms within candidate genes must be done in separate association mapping
populations or through targeted mutation studies. Future studies will include adequate diversity
and more lines to increase the statistical power to detect marker trait associations.
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Table 1 Rtc/ haplotypes formed by 45 single nucleotide polymorphisms and average phenotypic values of lines included in the individual haplotypes.

SNP position
Exon 1 Intron 1 Exon 2
39 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 55 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 8
34 0 3 999 0 12 2 3 s 7 716 7 8 1 3 4 4 5 7 9 0 01 3 4 990 00 1 1 2 3 3 5 6 9 2
4 2 0 6 8 7.7 0 4 2 7 3 4 3 8 3 1 0 1 3 7 4 6 7 1 7 6 2 8 4 5 3 4 8 1 6 0 6 7 9 1 9 4
s a s a a a a a a a s a s a a a s a a a a a a a a a a a a a a a a a a s a a
Haplotypes
Hpl G C C C T A AT CCGZCAGGT CAAGAGATT CT CGGNT CGAGGCGAACTATTC CTT A
Hap_ 2 G ¢cCcC CTAATTCCCCAGACCGAT GATT CT CGAGNZT CGAGGC CGAACACTOCTGA
Hap 3 G ¢cC CT AATTT CCAAGACAAGAGATT CT CGANTU GT GTT CGTAAANATCTCGC
Hap 4 A GA CTAATT CTGAAGG GT CAAGAGATT CCGGNT CGAGGT CGAACTATT CTT A
Hap_ 5 A  GCCAGTTTT CTT GCTANAT G GTT CG G GTT CTGNZGCAAGG GGG GAACACTT CT AC
Hap_6 G cccAGTTTT CTT CTANAT GG GAGATT CT CG GG GNZT CGAGGTC CGAACACTCTGA
Hap 7 G ¢CC CT AATT CT CT CZCAGACAAAT GATTT CGGNZ ECGGGGGCGAACANAGTTC
Hap_8 G ¢CCATAATTT CCOCTANTZGCAAATGATTT CG G GNZGCGGUGGGTCGAACANAGTTC
Hap 9 G ¢cCcC CTAATT CTCCTCAGACNAATGATTT CG G GNZ GCGGGGGTCGAACANAGTTC
Hpl0 G C A C T A ATCTGAAGGTC CAAGT GATT CT CG G GNZT CGGAGNATTTZ CANATCTTC
Hapll G CC C T A A TCTGAGG G GTC CAAGTGATT CT CG G GNT CGGAGNATTT CANATCTTC
Hapl2 G C A AT A A A CCCCAGGATGGTGAGTT GGGTCGAAGNATTT CANATCTTC
Hapl3 G C C C T A A TTCCAAGACAAGAGATT CCGACT GT GTT CGTAAANATCTCGC
Hpl4 G CC C T A A TTCCAAGACAAGAGATT CCGANT GT GTT CGTANANATCTCGC
Hapl5 A GC C A GTTTCTCTANATGSGTGGGTT CTGNZC CAAGGG GG GAACACTTCT AC
Hapl6 G G C C T A A TT CCAAGACAAGTGGGTCTGNTZ CAAGGGGAACACTCTATC
Haplotypes sTRL  tTRL fTRL sRDW  tRDW fRDW
Hap_1 324 135.9 219.3 12.40 29.93 47.88
Hap 2 434 121.6 207.9 14.61 30.00 47.79
Hap_3 36.7 131.2 216.8 15.92 33.16 51.59
Hap 4 33.7 134.7 247.6 13.23 27.54 51.99
Hap_5 47.4 155.7 246.0 16.43 33.97 52.80
Hap_6 41.2 160.0 195.3 12.78 32.89 37.70
Hap 7 34.8 145.5 236.1 12.09 29.88 47.17
Hap_8 45.0 127.9 256.2 13.31 32.35 54.25
Hap 9 29.2 109.8 231.5 9.77 24.37 52.20
Hap_10 21.8 117.5 201.3 6.46 16.11 26.77
Hap 11 27.2 156.9 268.4 9.37 26.84 45.50
Hap_12 48.4 153.1 250.9 14.45 31.81 52.49
Hap_ 13 38.8 158.4 251.9 16.17 35.07 56.27
Hap_14 43.0 153.6 235.4 17.12 38.07 60.56
Hap_15 50.6 119.9 210.6 19.31 34.45 60.00
Hap_16 43.2 147.4 205.7 14.56 32.47 45.32
Maximum 50.6 160.0 268.4 19.31 38.07 60.56
Minimum 21.8 109.8 195.3 6.46 16.11 26.77
Range 28.8 50.2 73.1 12.85 21.96 33.79

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sSTRL = Total root length at 6" day; tTRL = Total root length at 10® day; fTRL =
Total root length at 14" day; SRDW = Root dry weight at 6" day; tRDW = Root dry weight at 10* day; fRDW = Root dry weight at 14" day.
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Rth3 haplotypes formed by 15 single nucleotide polymorphisms and average phenotypic values of lines included in

the individual haplotypes.

SNP Position
Exon

s 1 4 1 2 3 3 3 4 4 4 4 5 6 6

9 6 7 8 3 5 9 9 1 3 6 9 1 0 2

39 0 4 1 3 9 7 8 5 2 9 0 1

a a a s s s s s S s s s S S 8
Haplotypes sTRL tTRL fTRL sRDW tRDW {RDW
Hap_1 c G G ¢ G GG C G C A G G T G 399 1288 2156 1474 3413 50.32
Hap 2 C A G C G G G G A C A G G T G 427 1449 12356 1596 3269 5223
Hap 3 N NG C G G G G A C A G G T G 409 1348 2789 1651 36.29 62.89
Hap_4 cC G T T G G G C G A A T A C A 341 130.2 2040 11.26 28.21 42.32
Hap 5 cC G G C T A A C A C A G G T A 321 143.8 2504 11.88 2938  52.05
Hap 6 cC G G C G G G G A C A G G T G 359 1413 2249 1289 2967 4822
Hap_7 T G G ¢ G GG G A C A G G T G 457 1505 2300 16.69 33.23 50.20
Hap 8 N G G C G G G G A C A G G T G 201 149.1 1942 1241 29.99  40.60
Hap 9 C A G C G G G G A C G G G T G 463 1437 2470 1464 3301 58.76
Maximum 46.3 1505 2789  16.69 36.29  62.89
Minimum 20.1 128.8 1942 11.26 2821 40.60
Range 26.2 21.7 84.7 5.43 8.08 22.29

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sSTRL = Total root length
at 6 day; tTRL = Total root length at 10" day; fTRL = Total root length at 14" day; SRDW = Root dry weight at 6 day; tRDW = Root dry

weight at 10" day; fRDW = Root dry weight at 14" day.
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Table 3
Rum 1 haplotypes formed by 12 single nucleotide polymorphisms and average phenotypic values of lines included in
the individual haplotypes.

SNP position
Exon 5 Intron 4
6 7 1 2 2 2 2 3 3 3 4 4
3 8 1 3 5 6 7 0 5 8 0 0
8 6 1 4 6 2 8 1 5 7
s s a
Haplotypes sTRL tTRL fTRL sRDW tRDW {RDW
Hap_1 T ¢ G A A C T T G T C A 353 1213 199.1 11.47 2544  40.89
Hap_2 cC C G A T A A G G T T G 448 150.0 240.8 15.81 3385  53.11
Hap 3 c ¢ ¢C AT C T T C C C A 44 155.7 2512 15091 36.02  58.57
Hap_4 N ¢ G NT A T N G N N N 311 119.6 170.0 16.98 33.15  48.05
Hap_5 N C N A T A A G G N N N 680 159.7 2425 28.11 41.79  56.38
Hap 6 N ¢ ¢C AT A T T G N N N 321 140.6 2973 1822 3690  69.42
Hap_7 N C ¢C A T N N N G N N N 342 140.5 2262 14.11 31.62 474
Hap_8 c ¢ C AT NN T C C C A 281 158.6 2513 1589 34.71 52.7
Hap 9 c ¢ ¢C A T C T T C€C N N N 290 1022 1945 16.08 3565 49.19
Hap_10 N C G A T A A A G N N N 208 80.4 1136  6.71 17.54  21.92
Hap 11 N T G N T N T N G N N N 292 152.7 2457 10.65 2920 4348
Hap 12 c ¢ C AT N T T C N N N 382 1239 2006 21.24 39.82  61.69
Hap_13 T €C G A A C T T G N N N 351 131.1 1982 13.29 29.50  43.87
Hap_14 N C G A T A A N G N N N 364 147.0 252.1 10.45 2640  47.35
Hap_ 15 c ¢ G A A CT T G T C A 412 160.0 1953 12.78 3289 377
Hap_16 c ¢ G G T C T T G T C A 411 1455 2492 1521 3520  57.61
Hap_17 T T G G T ¢ T T G T T G 380 147.1 2350 13.40 30.68  50.37
Hap 18 cC ¢ G AT A AT G T T G 203 107.1 2384 7.71 2334  38.11
Hap_19 T T G A A C T T G T C A 242 129.0 178.8 11.29 3485 4244
Hap_20 N ¢C G A A CT T G N N N 451 132.7  246.1 15.01 26.55  59.29
Hap 21 N ¢ ¢C A T N T N C N N N 305 122.1 2669 10.77 21.87  50.39
Hap_ 22 c ¢ G G T C T T G T T G 520 156.8 221.1 16.95 31.19  49.09
Maximum 68 160 2973  28.11 41.79  69.42
Minimum  20.3 80.4 1136  6.71 17.54  21.92
Range 47.7 79.6 183.7 214 2425 475

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sSTRL = Total root length
at 6 day; tTRL = Total root length at 10" day; fTRL = Total root length at 14" day; SRDW = Root dry weight at 6 day; tRDW = Root dry
weight at 10" day; fRDW = Root dry weight at 14" day.
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Table 4
Rull haplotypes formed by 6 single nucleotide polymorphisms and average phenotypic values of lines included in
the individual haplotypes.

SNP position
Exon 6 Intron5
2 7 1 2 2 4
2 5 0 2 4 0
1 6 4 4

a s a a a
Haplotypes sTRL tTRL fTRL sRDW tRDW {RDW
Hap_1 A C G C C T 397 140.1 2285 13.71 30.67  49.62
Hap_2 A C G C C G 1374 1142 159.7 12.84 2476 34.48
Hap 3 A C G A T A 401 146.7 2395 1549 3403  54.09
Hap_4 G T A C C G 387 132.1  207.1 1540 28.81 4236
Hap_5 A C G C T G 412 152.8 2223 14.00 3405  47.66
Hap 6 N C G A T A 272 1569 2684 937 2684 455
Hap_7 G T A C C T 305 122.1 2669 10.77 21.87  50.39

Maximum 41.2 1569 2684 1549 34.05  54.09
Minimum 27.2 1142 159.7 9.37 21.87  34.48
Range 14.0 42.7 108.7  6.12 12.18 19.61

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sSTRL = Total root length
at 6 day; tTRL = Total root length at 10" day; fTRL = Total root length at 14" day; SRDW = Root dry weight at 6 day; tRDW = Root dry
weight at 10" day; fRDW = Root dry weight at 14" day.



Table 5
Summary of alignment length, number of genotypes per alignment, polymorphisms and nucleotide diversity in the Rzcl, Rth3, Ruml and Rull genes in maize.

No. of Hd
Entire region  Non-coding region Coding region Haplotypes
All sites Synonymous  Non-synonymous
Rtcl (n=69) 830bp 16 0.873
No. of segregating sites 45 7 38 6 32
T 0.021 0.022 0.021 0.017 0.017
Tajima’s D 2.691%* 2.232% 2.569* 2.593* 2.278*
Rth3 (n=74) 713bp 9 0.786
No. of segregating sites 15 0 15 12 3
m 0.007 n.a 0.007 0.026 0.0002
Tajima’s D 1.298NS n.a 1.298NS 1.500NS (-)0.605NS
Ruml (n=74) 432bp 22 0.855
No. of segregating sites 12 9 3 2 1
T 0.011 0.017 0.005 0 0
Tajima’s D 0.960N8 1.033%8 0.306N n.a n.a
Rull (n=74) 411bp 7 0.624
No. of segregating sites 6 1 5 1 4
T 0.005 0.007 0.004 0.003 0.005
Tajima’s D 1.766™8 2.305* 1.073™8 (-)0.322N8 1.465™

Numbers of lines are shown in the parenthesis. ns = not significant; *p<0.05; **p<0.01.

6V



50

Table 6
Polymorphic sites of Rzcl gene associated with the root traits (Total root length, Root dry weight) at different growth
stages identified by MLM analysis.

Site SNP Amino acid change E/ Days of measurement
Six Ten Fourteen

290 T—A Leu-His El TRL:RDW - -
296 A—G Asp-Gly El TRL:RDW - -
298 A>T Ser-Cys El TRL:RDW - -
317 C-T Pro-Leu El TRL:RDW - -
320 T—C Val-Ala El RDW RDW -
324 G/C/T Syn El TRL:RDW - -
357 G/A/T Syn El TRL - -
373 G—A Asp-Asn El TRL - -
374 A—-G Asp-Gly El RDW RDW -
413 C—A Thr-Lys El TRL TRL -
468 A—T - 11 TRL:RDW - -
473 A—-G - 11 TRL:RDW TRL -
510 T—A - 1 TRL - TRL
531 G—C - 11 TRL TRL -
543 G—A - 11 TRL:RDW - -
547 T-G - 11 TRL:RDW TRL -
554 C—-T Ala-Val E2 TRL TRL TRL
597 G-T Syn E2 TRL:RDW - -
632 A—G Glu-Gly E2 TRL:RDW - -
703 C—G Arg-Gly E2 TRL:RDW - -
720 A-T Syn E2 TRL - -
736 C—A His-Asn E2 TRL:RDW - -
799 T—G Trp-Gly E2 TRL:RDW - -

TRL=Total Root Length; RDW = Root Dry Weight

Table 7
Polymorphic sites of Rth3 gene associated with the root traits (Total root length, Root dry weight) at different
growth stages identified by MLM analysis.

Site SNP Amino acid change  E/I Days of measurement

Six Ten Fourteen
163 G—A Ala-Thr E TRL - RDW
180 G-T Syn E TRL - TRL; RDW
234 C-T Syn E TRL - TRL; RDW
351 G—T Syn E TRL -
393 G—A Syn E TRL -
399 G—A Syn E TRL -
417 G—C Syn E TRL -
438 A—-G Syn E TRL - TRL; RDW
465 C—A Syn E TRL - TRL; RDW
492 G—T Syn E TRL - TRL; RDW
519 G—A Syn E TRL - TRL; RDW
600 T—-C Syn E TRL - TRL; RDW
621 G—A Syn E TRL;RDW -

TRL=Total Root Length; RDW = Root Dry Weight
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Table 8
Polymorphic sites of Rum ! gene associated with the root traits (Total root length, Root dry weight) at different
growth stages identified by MLM analysis.

Site SNP Amino acid change  E/I Days of measurement
Six Ten Fourteen

63 C-oT Val-Ala ES - TRL;RDW TRL;RDW
118 G—C Val-Leu ES RDW - RDW
251 T—A - 14 - TRL;RDW TRL;RDW
302 T-G - 14 TRL;RDW - TRL;RDW
358 G—-C - 14 - - RDW
381 T—C - 14 - - RDW

TRL=Total Root Length; RDW = Root Dry Weight

Table 9
Polymorphic sites of Ru/l gene associated with the root traits (Total root length, Root dry weight) at different
growth stages identified by MLM analysis.

Site SNP Amino acid change EN Days of measurement

Six Ten Fourteen
7 T-A-G - 15 - - RDW
311 G—A Syn E6 - RDW -
336 C—T Thr-Ile E6 - RDW -
389 A—G Ser-Gly E6 - RDW -

RDW = Root Dry Weight
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Fig. 1. Nucleotide diversity values (x-axis) in sliding windows (size = 10, length = 100) at the Rtcl, Rth3, Ruml and
Rull gene locus for all lines. Nucleotide diversity was calculated based on the 0, neutral mutation parameter derived
from the total number of segregating sites. 1-420bp: Rtcl Exon 1; 421-549bp: Rtcl Intron; 550-830bp: Rtcl Exon 2;
831-1543bp: Rth3 Exon; 1544-1750bp: Ruml1 Exon 5; 1751-1975bp: Rum1 Intron 4; 1976-2302bp: Rull Exon 6;
2303-2386bp: Rull Intron 5.
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B73

HP301 PHZ51

Supl Figure 3. A) Total Root Length, estimated by summing the lengths of primary root, crown, seminal, and lateral roots for each seedling. B) Crown
Root Number, estimated by counting the number of crown roots on each seedling. C) Seminal roots, measured by counting each root and calculated length
by measuring each with a ruler and adding lengths for total seminal root length. D) Lateral Roots, measured by analyzing the canned images using
WinRhizo software. E) Primary Root Length, measured manually using a ruler. F) Root photos show trait variation regarding length and amount of lateral
roots, which make up a major portion of the total root length of the seedlings. These images exemplify the vast amount of variation between the lines
studied within this association mapping population.
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CHAPTER THREE
ANALYSIS OF MAIZE (ZEA MAYS L.) SEEDLING ROOTS WITH THE HIGH-
THROUGHPUT IMAGE ANALYSIS TOOL ARIA (AUTOMATIC ROOT IMAGE
ANALYSIS).

Jordon Pace, Nigel Lee, Hsiang Sing Naik, Baskar Ganapathysubramanian, Thomas Liibberstedt

Paper published in PLoS ONE journal. Abstract, structure, and references are formatted
according to the journal standards.

Abstract:

The maize root system is crucial for plant establishment as well as water and nutrient uptake.
There is substantial genetic and phenotypic variation for root architecture, which gives
opportunity for selection. Root traits, however, have not been used as selection criterion mainly
due to the difficulty in measuring them, as well as their quantitative mode of inheritance.
Seedling root traits offer an opportunity to study multiple individuals and to enable repeated
measurements per year as compared to adult root phenotyping. We developed a new software
framework to capture various traits from a single image of seedling roots. This framework is
based on the mathematical notion of converting images of roots into an equivalent graph. This
allows automated querying of multiple traits simply as graph operations. This framework is
furthermore extendable to 3D tomography image data. In order to evaluate this tool, a subset of
the 384 inbred lines from the Ames panel, for which extensive genotype by sequencing data are
available, was investigated. A genome wide association study was applied to this panel for two
traits, Total Root Length and Total Surface Area, captured from seedling root images from
WinRhizo Pro 9.0 and the current framework (called 4RIA4) for comparison using 135,311 single

nucleotide polymorphism markers. The trait Total Root Length was found to have significant
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SNPs in similar regions of the genome when analyzed by both programs. This high-throughput
trait capture software system allows for large phenotyping experiments and can help to establish

relationships between developmental stages between seedling and adult traits in the future.

Introduction:

The maize (Zea mays L.) root is designed to provide anchorage as well as to secure uptake of
water and nutrients, including nitrogen (N), in an efficient manner [1,2]. Maize roots are formed
partly during embryonic and partly during post-embryonic development [3]. There are five main
types of roots in maize: crown, seminal, primary, lateral, and brace roots [4]. The major portion
of root biomass of mature plants is derived from postembryonic, shoot-borne roots. These
postembryonic roots include crown roots, formed below soil surface, and brace roots, formed
above soil surface [5]. Their function is important to plant performance as they are responsible
for the majority of water and nutrient uptake in maize [5].

Two to three week old seedling root systems are made up of primary roots, lateral roots, seminal
roots, and root hairs [4,6]. Lateral roots branch outward from the primary root. These root types
are called the axial roots and determine root architecture. Lateral roots increase the surface area
of the root system and all root types contribute to water and nutrient uptake [2,7,8]. Moreover,
lateral roots contain root initiation points, leading to secondary, tertiary, and higher order root
structures, with major influence on the overall root architecture of the root stock [2].

There is extensive genetic variation in root architecture. However, root traits have not been
considered by plant breeders to select for improved nutrient uptake efficiency or yield
improvement due to the difficulty in measuring root traits and their quantitative mode of

inheritance [9]. Studying adult roots using maize “shovelomics”, a high-throughput phenotyping
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technique that measures adult root traits, is time consuming and laborious. This method of
phenotyping is also destructive because roots are dug out of the ground. This limits the number
of experiments that can be completed in a season [10]. Changes in maize root architecture may
strongly affect yield [11]. Seminal roots play a key role in the acquisition of immobile and
mobile nutrients such as phosphorus and nitrogen respectively and can determine spatial and
temporal domains of its environment and inter-root competition [6]. The relationship between
seminal root biomass in hydroponics and root lodging in a field study focusing on root strength
and pulling resistance has been explored. Respective correlations were low, but statistically
significant. Correlations found in hydroponic seedling root traits compared to adult field traits
were 1=0.44* for shoot weight and adult plant height, and r=0.22* for lateral root length with
brace root development [12,13].

Seedling phenotyping takes less time, is less laborious, and can be repeated many times during
the year allowing for quicker turnover of results. Positive but low correlations were found
between maize seedling and adult root traits, such as number of seminal roots and weight of
seminal roots to root pulling resistance (r=0.07 and r=0.36*, respectively) [14]. Expanding the
number of seedling root traits and improving respective phenotyping procedures, may increase
the chance of capturing strong relationships between different growth stages in maize.

Using digital imaging software to automate phenotypic analysis is an innovative and efficient
way of accurately taking measurements of plant physiological traits [ 15-19]. Roots have been
difficult to phenotype in a high throughput manner due to a lack of simple access and their
highly plastic nature. With the development of custom root analysis systems, quantitative studies
of root systems are now possible [20,21]. There are several software frameworks that extract root

morphology traits in two-dimensions in various hierarchies of automation. This ranges from
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manual root labeling like DART (Le Bot and Serra, 2009), to semi-automated software like
WinRhizo (Pro, 2004), a commercial root analysis tool, and EzRhizo [22], a freely available
software, all the way to full integrated imaging-analysis platforms like SmartRoot [23] for small
root systems and recent platforms, allowing for automated measurements as well as invoking a
ranking system for root traits [17].

These software frameworks have substantially enhanced the research community’s ability to
efficiently analyze and accumulate massive amounts of data. They also pioneered the utilization
of graphical user interface (GUI) that enables ease of use. However, most of these software
frameworks are either expensive, not expandable to increased (or decreased) dimensions, or
cannot be fine-tuned to a specific setup. We developed an open-source, modular, easy-to-use and
efficient root system architecture characterization software called ARI4 (Automatic Root Image
Analysis). This is based on a mathematically rigorous approach of converting root images into
graphs. We show how extracting a variety of traits becomes a simple process of utilizing various
graph algorithms. There are several major advantages to such a graph based approach to
extracting root system traits: (a) graph based methods are well-studied and have very fast and
efficient algorithms (for example, used in Google, Facebook, most GPS devices etc.) that enable
fast, real time data analysis, (b) graph based methods are easily scalable (having almost linear
computational complexity) and, hence, can be easily extended to larger problem sizes without
compromising on time (with direct implication to large 3D tomography datasets), and (c) a
graph-based approach is generic. That is, by making trivial modifications to the definitions of
parameters like edges, weights, and labels, a huge variety of traits can be accessed. This makes a
graph based framework trivially extendable. Furthermore, graphs are dimension independent,

and hence this framework is trivially extendable to 3D root image analysis.
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In this study, the utility of ARIA has been tested by phenotyping 384 maize inbred lines using
scanned images of seedling roots. These data were then applied to a genome wide association
study (GWAS) to detect marker-trait associations. Measurements of the trait Total Root Length
were analyzed for a comparative GWAS study, as this is the only trait shared between the current
platform WinRhizo Pro 9.0 and ARIA. The objective of this study is to show that our new and
freely accessible root phenotyping software 4RIA is a fast and accurate platform for automated
phenotyping, with the potential of adding additional features when compared to the established
software WhinRizo Pro 9.0. For both programs, significant marker trait associations were found
using a general linear model. Also, phenotypic measurements with both programs were
compared using a 74 maize inbred line panel [24] to further validate utility of ARIA. The results
of this study show that ARIA is an accurate and dependable tool for completing large
phenotyping experiments, needed for many quantitative genetic studies. Its flexibility makes
ARIA a very useful tool to breeders and biologists studying root architecture.

Results

Root traits captured by ARIA

Using ARIA, 27 different root traits were extracted from each scanned image of seedling roots
(Table 1). Some traits are more suitable for 3D root scan image analysis such as Depth, Width,
and the Width/Depth ratio. All simple statistics as well as heritability estimates for all root traits
are found in Table S2. This program is free software and can be accessed using the following
link: http://www3.me.iastate.edu/bglab/pages/software.html ARIA captures more traits than
existing programs such as WinRhizo Pro 9.0, which lists eight different traits that can be
obtained from a single root scanned image when buying a standard package. ARIA is fully

automated with the ability to capture up to three separate seedling roots from a single image, and
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to conduct all analyses with limited user interference. Each image was a high resolution scan
(around 4400x6200 pixels) of three seedling roots placed side-by-side (Figure 1). Within each
image the bounding boxes were automatically identified for each root. Each of the three roots is
then individually analyzed and its 27 traits extracted. Data is then exported into an Excel file.
This process takes approximately 20 seconds on a standard desktop (2.8 GHz machine). We used
a total of 1059 images, each containing up to three roots per image. ARIA4 ran autonomously and
extracted traits within 12 hours, allowing for fast turnaround of phenotypic data. Thus, trait
capture is very fast and efficient when analyzing multiple roots of large experiments.

Seedling Trait Correlations

Pearson correlations were calculated using SAS 9.3 for all 27 seedling root traits compared to
one another. Correlations between traits (Table S1) ranged from very close (r = 0.998) between
traits such as secondary root length and PRL to no significant correlations (r = -0.061) for TRL
and BSH. BSH did not correlate closely with other root traits with the highest r2 value of 0.166.
Similarly, SRL did not show close correlations with other seedling root traits, with its closest
correlation of 0.5 with TSA. Conversely, it was found that seedling root trait DEP had close
correlations with various other root traits, especially with PRL (r=0.95). A principle component
analysis (PCA) was conducted to visualize trait relationships. The first two components explain
45.9% of the variation (with PCA 1 explaining 35.5%). Based on the first two principle
components (Figure 2), there are four trait clusters. These clusters are comprised of (1) CMT,
WDR, CPT, (2) MNR, and MED, (3) SEL, TRL, NWA, and (4) SCS, WID, PER, CVA, and
TSA. All of these traits had close correlations within clusters while traits outside of clusters were

not closely correlated (Table S1).
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Validation of Measurements

In order to validate measurements made by ARIA with those obtained by WinRhizo Pro 9.0
(Regent Instruments, Quebec, Canada), the same images of hydroponically grown maize
seedling roots were analyzed by both programs and data compared. Total Root Length was found
to be closely correlated with r=0.97 (P=0.0001) when analyzing data within the Ames Panel. For
the ASI panel, total root length was correlated between the two programs at r=0.92 (P=0.0001),
and root surface area was closely correlated at r=0.90 (P=0.0001). Broad sense heritabilities (H?)
were calculated for both association mapping populations (Table 2). Heritability estimates were
generally higher for measurements extracted using ARIA at H>=0.42 compared to H2 = 0.41 for
total root length measured in the Ames Panel, as well as root surface area in the ASI panel with
H2=0.54 using ARIA compared to H?>=0.50 using Whin Rhizo Pro 9.0.

Genome Wide Association Study using ARI4 vs WinRhizo

A GWAS experiment was conducted in order to show the utility of this new program and its
ability to analyze many root images in a high-throughput manner compared to WinRhizo, the
current platform used. Further GWAS analyses will be documented in a future publication. TRL
was extracted from a single scan of three roots from each inbred line. This process was repeated
three times, once for each replication. Analysis of TRL measured with both ARIA and WinRhizo
combined with genotypic information on 135,311 single nucleotide polymorphism markers
across the entire genome identified significant associations at p<5.3 x 10-7. Markers found to be
significant were located on chromosomes 1, 2, and 4 for ARIA (Figure 3) while WinRhizo
analysis resulted in additional SNPs on chromosomes 3, 5, 6, and 8 (Figure 4). Both programs
identified significant markers in similar regions of the genome specifically on chromosome 2 and

chromosome 4. Moreover, significant SNPs on Chromosome 4 were identical for both programs.
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Discussion

Quality of ARIA trait estimates, limitations and prospects

ARIA is a reliable program that results in accurate measurements comparable to established
programs such as WinRhizo Pro 9.0. The close correlation and higher heritability estimates of
TRL and TSA are encouraging for using AR/A to obtain accurate measurements in future
quantitative studies. A limitation for using AR/A in the current study was that only three roots
were analyzed at a time. ARIA can be extended to allow a larger number of roots to be analyzed
within a single image, depending on the scanning or image capture device. Since ARIA4 can
automatically crop pictures for the user, keeping roots separate is important for accurate
measurements, as crossed over roots could cause uneven cropping or erroneous paths. When
comparing the amount of time needed to extract root measurements with 4AR/4 and extracting
measurements with WinRhizo, ARIA simplifies the process and cuts the time taken
measurements to less than half the amount of time needed for WhinRhizo. This is in part due to
the automatic cropping system as well as exporting measurement values into an Excel
spreadsheet all at once within 20 seconds per seedling root. In WhinRhizo, each root has to be
cropped manually; data are extracted into a .txt file, which needs to be edited for data analysis.
Exporting data directly into a user friendly format ARI/A by-passes all of these intermediate steps.
The current version of ARIA is automated for roots exhibiting a distinguishable primary root.
However, ARIA should work equally well with multiple equal order roots with minor changes
due to the graph based formulation: AR/A finds all lengths of roots as distances from kernel to
root tips and subsequently picks the single longest root (this can be modified to account for
multiple equal order roots, for example in rice). A potential limitation is when a secondary root

curl ends exactly at the primary root. This creates circular loops in the graph that impair further
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analysis. However, none of the 3000 images analyzed exhibited this issue. A way to resolve this
minor issue is to consider a quasi-temporal approach to ‘growing’ the graph vertex-by-vertex
that will distinguish these overlaps (work in progress).

The graph based formulation makes this framework easily extendable to multiple purposes
[25,26]. This same framework of trait extraction has been applied in other disciplines including
chemistry [25] and materials science [26]. Examples of extensions include 3D phenotyping
where magnetic resonance imaging (MRI), X-ray or optical tomography data can be curated and
traits extracted. Furthermore, ARIA can work with a variety of data formats including
photographs, scanned images, microscopy images as well as X-ray based reconstructions.
Significance of ARIA

While current root analysis programs are available to make measurements of root traits, none
currently offers the flexibility and functionality as ARIA. When comparing WinRhizo 9.0 to
ARIA, the larger numbers of traits that can be captured, ability to capture 3D image
measurements, and shorter time spent to extract trait measurements from images, are key
advantages of. ARIA, automatically crops root images, after a mouse click defines the starting
point for measurements. Furthermore, ARIA4 has the ability to mark a batch of images enabling
batch analysis. In ARIA, measurements are exported into an Excel spreadsheet, while WinRhizo
gives a text file that must be converted. ARIA’s ability to do this automatically makes this
program high-throughput and decreases chances of human error. Another key advantage to this
program is the fact that measurement capabilities can easily be added, as additional key
architectural attributes of roots are determined.

Using ARIA, mapping studies for root traits can be implemented on a larger scale due to the

reduced time needed for phenotyping. This software system aids plant scientists by relieving the
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phenotyping bottleneck for quantitative traits such as root architectural traits by adding to
existing technologies in phenomics [27]. Not only is this program fast, its ability to analyze both
2D and 3D images also offers a unique opportunity to look at the same traits, with the same
analysis program, but from two different perspectives. Previous programs such as RootReader2D
[28] and RootReader3D [29] offer extensive trait collection, but are hindered by the fact that
each program is restricted to analyze at either 2D or 3D. ARIA4 in comparison is able to not only
analyze 2D flat plane images such as those presented here, but also 3D images of roots. To show
this feature, a simple 3D image of a root was analyzed using ARIA (Figure 5). Here, we
demonstrate that skeletonization and outlining of the primary root can be completed as in 2D.
The actual measurements of select traits have also been included in pixels (Figure 5). Based on
multiple points of view of the same root system, ARIA4 extracts 27 root traits in a single root
analysis. Figure 6 shows how the mathematical foundation (graph based analysis) coupled with
the open-source framework can be trivially extended to other trait extraction.

A similar program described by Pascuzzi [17] was used to analyze rice varieties within a gel
medium. This program has the ability to capture many of the same traits as ARI4. The major
advantage of ARIA is that it can directly analyze those same gel medium images in both 2D and
3D formats. This adds to the flexibility of this free access program. Existing phenotyping
systems can utilize this analysis tool without changing their growth procedures, whereas the
other program is not as dimensionally flexible. No changes need to be made in the GUI or
procedures to analyze images. This allows for an expanded number of environmental conditions,
whether controlled by humans or nature, in which root architecture could be studied and for
connections between how root develop in a hydroponic environment compared to soil or other

growth medium.
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Exploring Roots as a model for selection

Large scale mapping studies such as quantitative trait locus (QTL) mapping and GWAS require
large mapping populations that must be phenotyped in an accurate manner. Genomic selection
(GS) [30] is a method in which a training population is used to collect phenotype information
and coupled with extensive genetic information. Then, a model is developed to make predictions
for the performance of traits of interest, solely based on genetic information. This requires
massive amounts of phenotypic information that are highly accurate, especially for plastic traits
such as root architecture [31]. Currently, root architecture is not used for selection, because of
the resources needed for extensive phenotyping and the quantitative mode of inheritance of root
traits [9]. New phenotyping software such as AR/A may facilitate to include root architecture in
selection schemes. Comparative GWAS for TRL obtained with both WinRhizo Pro 9.0 and ARI/A
identified similar or identical regions of the genome associated with this trait. Associations found
in only one program may be due to low power of detecting a polymorphism with small genetic
effect.

The major goal was to develop an easy to use image software analysis tool for measuring root
traits from simple scans or photographs. A free to use software platform with ability to
investigate both 2D and 3D root architectural characteristics for plants has been developed to
facilitate measuring multiple root traits in a high-throughput, accurate manner. We compared this
new program to existing programs. ARIA showed close correlations to traits measured with
established software, supporting accurate measurements. The 27 root traits measured give an
example for the utility of this program and offer an extensive amount of traits to be studied for
large scale phenotypic analysis of roots or mapping studies looking at the genetic control of root

architecture. Future studies using this program include root characterization for particular maize
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or other plant species of interest as well as phenotyping for quantitative trait studies such as
GWAS, QTL mapping, and GS.

Materials and Methods

ARIA (Automatic Root Image Analysis)

ARIA is custom software written in the programming framework, MATLAB (Natick,
Massachusetts, United States). ARIA has a user friendly GUI interface to enable easy and rapid
data extraction. The operational concept of the software is to convert the root image (after
standard image pre-processing) into a graph. The software framework can read in most standard
image formats. Each image is loaded (Figure 1), and after a sequence of pre-processing steps,
converted into a graph. A graph is a mathematical construct consisting of a set of vertices that are
connected by a set of edges. This is done by labeling each pixel of the root image into a vertex,
and linking nearest neighbor pixels with edges. The key steps of the software are:

a) Thresholding: The background is first identified (using morphological operations in Matlab)
and renormalized to black. This effectively eliminates most of the background signal. Then the
image threshold is calculated using Otsu’s method. The grey scale image is converted into a
black and white image. This is done by comparing the intensity of each pixel with a threshold
value. The pixel is marked as black (or white), if it’s grey scale value is smaller (or larger) than
the threshold (Figure 7).

b) Connected components: Since the root is one large connected system, everything else that is
not connected to the root can be removed from the image. This idea is encoded in the graph
concept of connected components, which enumerates all the distinct connected components in

the image. The largest connected component is the root, all the other connect components are
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noise or other foreign artifacts. Note that if the image resolves finer root hairs (which our
imaging process does not do) these will still be part of the largest connected component.

c) Skeletonization: A ‘wire-frame’ skeleton of the binary image is constructed by thinning (or
eroding). Skeletonization is a fundamental tool with many applications in image processing and
visualization. Here, skeletonization is essential to identify and distinguish between the primary
and secondary roots (Figure 7).

d) Primary and secondary root identification: The primary root is identified as the graph path
that has the longest path length (Figure 8). This is accomplished by Dijkstra’s algorithm to
estimate shortest paths between two points of the graph [32]. Dijkstra’s algorithm is used to
compute the shortest paths from each free end of the root to every other free end. The longest
“shortest path” is identified as the primary root. Secondary roots are identified easily by
subtracting the primary root from the original image and enumerating the remaining distinct
connected components.

e) Graph querying and post processing: The graph is queried to construct several traits starting
from simple traits like total root length, to more complex measures like bushiness. All data are
exported into an Excel sheet for ease of analysis and use. This will allow one to place a series of
images for analysis at a time and export it to Excel. The data are also displayed on the GUI. All
traits are analyzed automatically and can be viewed when clicking display results (Figure 9).
Plant materials

The first association mapping population or “Ames panel” is comprised of 384 inbred lines
obtained from the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in
Ames, lowa. All lines used in this study are a subset of a larger collection of lines called the

Ames panel [33], consisting of 2815 maize inbred lines conserved at USDA-ARS NCRPIS. The
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384 lines were selected based on maturity in view of future field trials in central lowa. The
second panel of 74 maize inbred lines called “ASI panel” includes ex-PVPs (Plant Variety
Protection) and Germplasm enhancement of Maize (GEM) inbred lines [24].

Root phenotyping

Cigar Roll Growth Conditions

A paper roll assay described by [24] was used for germination and growth of maize seedlings.
Seedlings were grown in 2 L glass beakers filled with 1.4 L of sterilized water. Seedlings were
placed in a growth chamber for 14 days at 16/8 hrs light/darkness (25/22 °C). Light intensity was
200 pmol photons m-2s-1, and a relative humidity maintained at 65%. Each paper roll with four
seedlings was considered as experimental unit. After 14 days seedlings were removed from the
growth chamber and phenotypic traits measured. If not all traits were measured the same day,
plants were preserved in 30% ethanol to prevent aging of roots.

Image Acquisition

Seedling roots were imaged using a high resolution scanner. Three separate seedling roots were
imaged at a time using an EPSON Expression 10000 XL scanner system (Copyright © 2000-
2014 Epson America, Inc).

Phenotype Data Analysis

Experimental Design

Ames panel lines were grown in three experiments starting June 12, 2012, July 3, 2012, and
October 5, 2012. Each experiment was grown in the same growth chamber and at the same
growing conditions, as described above. Lines were grown in a completely randomized design
(CRD) and trait data were collected per experimental unit: three seedlings out of four within each

seed roll were sampled, to eliminate possible outliers within lines, and means taken. The ASI
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panel of 74 maize inbred lines were grown under the same conditions and replicated twice under
one experiment. Analysis of variance of root traits was performed, the additive model for
analysis of variance was:

yij = u+ Ri+ G+ Ej
where yij represents the observation from the ijth experimental unit, p is the overall mean, R; is
the ith experiment and G; is the jth genotype. The interaction between the fixed effects Gj and the
random effect experiment is confounded with the error E;j. The statistics software package SAS
9.3 (Copyright © 2014 SAS Institute Inc.) was used to obtain ANOVA tables, expected mean
squares, and least square means for association analyses. Function PROC GLM was
implemented and type 3 sums of squares were used to account for missing data. Genotypic (c,>),
and phenotypic (c,?) variances as well as broad sense heritability (H?) were all calculated on an

entry mean basis. Heritability on an experimental unit basis was calculated as follows:

MSG—MSE)
2 B B (
s =U—(§, o :(MSG MSEJ’ 2 :(MSG MSEJ+MSE’ = rep #
(o) rep # rep # (MSG —MSE)+MSE
rep #

Function PROC GLM was implemented. Pearson correlations were calculated using the SAS
function CORR to determine the relationships between seedling traits.

Marker Data

Genotyping-by-sequencing (GBS) [34] was used to genotype the association mapping population
with 681,257 single nucleotide polymorphism (SNP) markers across the maize genome.
Imputation as described by [33] was employed. In an effort to reduce the number of non-
informative markers, all monomorphic SNP markers and those with more than 20% missing data

were omitted. SNP markers with a minor allele frequency less than 5% were removed, leaving
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135,311 SNP markers spread across all 10 chromosomes of the maize genome to calculate
population structure, kinship, and to perform GWAS.
Association analyses

Population structure was estimated from a reduced number of unimputed SNPs (1,665 SNP
markers) using program Structure 2.3.4 [35]. Parameter settings for estimating membership of
coefficients of coancestry for lines are a burn-in length of 50,000 with 50,000 iterations for each
cluster (K) from 1-15, with each K being run five times. We applied an admixture model with
independent allele frequencies. To pick the most probable K value, we used an ad hoc (AK)
statistic based on the ordering rate of change of P(X|K) [36]. Software program TASSEL 4.0
[37] was used to calculate LD as well as Loiselle kinship coefficients between lines based on
135,311 SNP markers. Population structure (Q matrix) was used in association analyses to
decrease the amount of type 1 errors [38]. TASSEL 4.0 was used to conduct genome wide
association analyses (GWAS) using a General Linear Model (GLM) and population structure as
a fixed factor with model y = X + U, where y are the values measured, X is the marker value, 3
is a matrix of parameters to be estimated, and U uses the Q values as fixed factors. To account
for multiple testing during GWAS, statistical package simpleM was implemented in R 3.0 [39].
Based on a a level of P=0.05, the multiple testing threshold level was set to 5.3x10-7 with the
equation a/n , where n equals the effective number of independent tests. Only the Ames panel
was analyzed, as genomic marker data were not available for the ASI panel.
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Table 1. Traits captured by ARIA

Trait Name

Total Root Length
Primary Root Length
Secondary Root
Length

Center of Mass
Center of Point
Center of Mass (Top)
Center of Mass (Mid)
Center of Mass
(Bottom)

Center of Point (Top)
Center of Point (Mid)
Center of Point
(Bottom)

Maximum Number of
Roots

Perimeter

Depth

Width

Width/Depth ratio
Median

Total Number of
Roots

Convex Area
Network Area
Solidity

Bushiness

Length Distribution
Diameter

Volume

Surface Area

SRL

Symbol
TRL
PRL
SEL

CcOM
cop
CMT
CMM
CMB

CPT
CPM
CPB

MNR

PER
DEP
WID
WDR
MED
TNR

CVA
NWA
SOL
BSH
LED
DIA
VOL
SUA
SRL

Trait Description

Cumulative length of all the roots in centimeters
Length of the Primary root in centimeters

Cumulative length of all secondary roots in centimeters

Center of gravity of the root.

Absolute center of the root regardless of root length.
Center of gravity of the top 1/3 of the root (Top).
Center of gravity of the middle 1/3 root (Middle).
Center of gravity of the bottom 1/3 root (Bottom).

Absolute center of the root regardless of root length (Top).
Absolute center of the root regardless of root length (Middle).
Absolute center of the root regardless of root length (Bottom).

The 84th percentile value of the sum of every row.

Total number of network pixels connected to a background pixel.
The maximum vertical distance reached by the root system.

The maximum horizontal width of the whole RSA.

The ratio of the maximum width to depth.

The median number of roots at all Y-location.

Total number of roots.

The area of the convex hull that encloses the entire root image
The number of pixels that are connected in the skeletonized image
The fraction equal to the network area divided by the convex area
The ratio of the maximum to the median number of roots.

The ratio of TRL in the upper one-third of the root to the TRL.
Diameter of the primary root.

Volume of the primary root

Surface area of the primary root.

Total root length divided by root system volume
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Table I1. Comparison of repeatability estimates for both WhinRhizo Pro 9.0 and ARIA

Analyzing tool Trait Heritability (H?)
WinRhizo Pro 2009 Total Root Length (Ames Panel) 41
ARIA Total Root Length (Ames Panel) 42
WinRhizo Pro 2009 Total Root Length (ASI Panel) 42
ARIA Total Root Length (ASI Panel) 42
WinRhizo Pro 2009 Root Surface area (ASI Panel) .50

ARIA Root Surface area (ASI Panel) .54




Supplementary Table S1. Trait correlations between all 28 traits extracted using ARIA. Non-significant correlations denoted with “*’

TRL SUA PRL
1.000 0.873 0.696
1.000 0.768

1.000

SEL

0.981

0.872

0.670

1.000

COM

0.205

0.170

0.017*

0.219

1.000

cor
0.0-22*

-0.10
-0.308.
0.006*

0.368

1.000

CMT

-0.09

-0.121

-0.229

-0.082

0.275

0.282

1.000

CMM
0.277
0.254
0.268
0.276
0.229
0.178

0.027*
1.000

CMB

-0.171
-.149

-0.206

-0.145

0.043*

0.011*
0.010*

-0.268
1.000

CPT
-0.06
-0.070
-0.16
040-57*
0.097

0.262

CPM

0.114

0.101

0.092

0.116

0.118

0.330

0.023

0.752

-0.214

0.047*

1.000

CPB
-0.242
-0.216
-0.248
-0.219
-0.127
0.0-21*
0.006*
-0.278

0.904
-0.007
-0.222

1.000

MNR
0.397
0.434
0.635
0.373
0.149
-0.13
0.0-58*
0.271
-0.305
0.114
0.141
-0.356

1.000

PER

0.733

0.743

0.821

0.721

0.198

-0.162

-0.077

0.306

-0.255

0.022*

0.126

-0.304

0.698

1.000

DEP
0.684
0.733
0.954
0.659
040;6*
-0.363
-0.243
0.269
-0.213
-0.169
0.104
-0.245
0.604
0.785
1.000

WID

0.655

0.658

0.671

0.654

0.120

-0.096

-0.124

0.235

-0.155

-0.113

0.091

-0.196

0.374

0.695

0.582

1.000

WDR
-0.03%
-0.103
-0.174
-0.075
0.046*
0.146
0.0-12*
0.017*
-0.105
0.036*
0.051*
-0.094
-0.125
-0.118
-0.214

0.001*
1.000

MED
0.891
0.760
0.459
0.925
0.298
0.158
-0.021
0.262
-0.113
0.013*
0.134
-0.185
0.215
0.574
0.428
0.564

0.039*
1.000

MRN
0.884
0.745
0.427
0.919
0.264
0.166
0.028*
0.278
-0.139
0.044%
0.169
-0.204
0.252
0.575
0.403
0.564
0.0-31*
0.936

1.000

CVA
0.818
0.820
0.864
0.811
0.151
-0.153
-0.16
0.287
-0.183
-0.136
0.108
-0.244
0.521
0.849
0.811
0.880
0.0-79*
0.656
0.632

1.000

NWA
0.983
0.885
0.712
0.998
0.208
0.0-19*
-0.096
0.282
-0.153
-0.066
0.116
-0.226
0.401
0.746
0.698
0.669
-0.021
0.911
0.902
0.632

1.000

SOL
087%%
040-59*
0.321
0.042
0.153
0.364
0.068*
0.051*
-0.096
0.041*
0.112
-0.101

-0.19
-0.210
-0.317

-0.29
0.755
0.193
0.210
-0.245
0.045*

1.000

LED
-0.24
-232
-0.085
042;6*
-0.499
-0.345
-0.138
-0.154
0.115
-0.093
-0.08
0.163
-0.168

-0.183

0.018*
0.050*

0.043*
-0.326

-0.210
-0.147
-0.236
-0.211

1.000

DIA

0.244

0.393

0.154

0.255

0.258

0.275

0.098

0.176

-0.125

0.098

0.119

-0.123

0.213

0.241

0.049*

0.313

0.044*

0.278

0.309

0.278

0.251

0.075

-0.364

1.000

VOL

0.379

0.465

0.396

0.387

0.121
0.0-07*
-0.075

0.135

0.0-53*
0.057*
0.005*
040-66*
0.288
0.390
0.311
0.406
040-16*
0.302
0.291
0.451
0.386
-0.09
-0.233
0.450

1.000

SCSs

0.662

0.799

0.859

0.681

0.121

-0.137

-0.144

0.259

-0.179

-0.094

0.077*

-0.204

0.579

0.760

0.771

0.687

-0.104

0.486

0.462

0.821

0.678

-0.226

-0.229

0.587

0.499

1.000

SRL

-0.364

0.500

-0.285

-0.389

-0.248

-0.249

0.074*

-0.283

0.187

-0.104

-0.227

0.196

-0.289

-0.369

-0.199

-0.370

-0.072

-0.392

-0.426

-0.385

-0.388

-0.122

0.300

-0.808

-0.407

-0.594

1.000

BSH

0.061*
-0.065

0.099*
0.065*

0.026*

0.032*

0.019*
0.009*

-0.166
0.058*
0.003%
-0.202
-.044%
-0.076
-0.110
-0.080

0.038*

0.066*
0.058*
-0.079

0.065*
0.072

0.004*
0.104

-.005*

0.068*

0.032*
1.000

8L
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Figure 1: Image
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Figure 2. PCA plot of all ARIA traits Pearson correlations, clusters of
traits have been marked showing traits are closest related.
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Figure 4. Manhattan plot displaying all 10 maize chromosomes, showing SNP markers
significantly associated with trait Total Root Length measured with WinRhizo, significant SNPs
are consistent with ARIA4 with additional SNPs on chromosomes 3, 5, 6, and 8.
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Figure 3. Manhattan plot displaying all 10 maize chromosomes, showing SNP markers significantly
associated with trait Total Root Length measured with ARIA. Significant SNPs are located on
chromosomes 1, 2, and 4.
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Healthy Area in pixel = 194979

Diseased Area in pixel = 11487

Ratio of Diseased:Healthy = 0.06

Figure 6. Analysis of a diseased maple leaf, ARIA’s flexible framework will allow
multiple uses of the program beyond root phenotyping. While we have not fully explored
this capability, 4RIA4 will likely also be useful to extract above ground traits such as leaf
vein structure, and disease quantification.

Figure 7: Thresholding and
skelotinization stages
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Figure 9: Screen capture of the AR/A framework. The picture on the right is the root image. The plot on the top
left is automated identification of primary and secondary roots. The graph on the bottom left represents detailed
analysis of root architecture, specifically a histogram of secondary roots across each 10% of the primary root.
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CHAPTER FOUR

GENOME-WIDE ASSOCIATION ANALYISIS OF SEEDLING ROOT
DEVELOPMENT IN MAIZE (ZEA MAYS L)

Jordon Pace, Candice Gardner, Baskar Ganapathysubramanian, Thomas Liibberstedt

Paper published in BMC Genomics Journal. Abstract, structure, and references are formatted
according to the journal standards.

Abstract

Background: Plants rely on the root system for anchorage to the ground and the acquisition and
absorption of nutrients critical to sustaining productivity. A genome wide association analysis
enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred
lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism
markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits

were phenotyped.

Results: Utilizing both a general linear model and mixed linear model, a GWAS study was
conducted identifying 268 marker trait associations (p < 5.3x10”7). Analysis of significant SNP
markers for multiple traits showed that several were located within gene models with some SNP
markers localized within regions with previously identified root quantitative trait loci. Gene
model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This

predicted gene is expressed in roots and shoots.

Conclusion: This study identifies putatively associated SNP markers associated with root traits
at the seedling stage. Some SNPs were located within or near (< 1 kb) gene models. These gene

models identify possible candidate genes involved in root development at the seedling stage.
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These and respective linked or functional markers could be targets for breeders for marker

assisted selection of seedling root traits.

Background

In an effort to increase crop production, farmers and producers apply millions of tons of
fertilizers such as Nitrogen (N) each year. In 2010, demand for N fertilizer was 103.9 million
tons and is expected to steadily increase to 111 million tons by 2014 worldwide [1]. Only around
33% of the N applied is taken up by cereal crops such as maize [2],[3], while the remaining N is
lost due to a combination of factors including leaching, de-nitrification, and surface runoff from

the soil. These issues affect the environment and input costs negatively [2],[4].

The root system is essential for plant species to absorb and acquire mineral nutrients such as N.
Plant species such as maize (Zea mays L.) have two general mechanisms to increase nutrient
acquisition: 1) develop a larger root system that allows plants to come into contact with a larger
soil volume, and 2) increase the trans-membrane nutrient-uptake rate. Increased root size allows
plants to increase available nutrient uptake based on demand within a limited time frame [5].
Root architecture and development has been shown to be a key component in nitrogen use
efficiency (NUE) [6], and drought tolerance [7]. Understanding root development and the
molecular mechanisms that influence root architecture is thus important for increasing yield

potential and yield stability under varying environmental conditions and soil profiles [8].

Maize has five main types of roots: crown, seminal, primary, lateral, and brace roots [9]. The
primary and seminal roots make up the embryonic root system and their fate is largely
determined by genetic background [9]. The major portion of adult root biomass is derived from

postembryonic shoot-borne roots, crown roots which are formed below the soil surface and brace
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roots which are formed above the soil surface [10]. Lateral roots are initiated from the pericycle
of other roots and have a strong influence on maize root architecture [11]. Their function is
important to plant performance as they are responsible for a crucial part of water and nutrient
uptake, such as N in maize. It has been shown that N rich soil environments enhance root growth
and dry weight [12]. Root size has been shown to be a key component in the uptake of
phosphorus, calcium, in addition to N [12],[13]. Increasing root size and, therefore, root surface
area might be a strategy plants use to increase absorption efficiency, when nutrients such as N
are limiting [14]. Thus genomic regions affecting root development and growth could affect
NUE, water use efficiency, and nutrient use efficiency as roots with increased root length and
surface area may perform better in nutrient deficient environments. Several genes have been
described that affect the development of the root system in maize including Rtcs (rootless,
concerning crown and seminal roots), Rthl (roothairlessl), Rth3 (roothairless 3), and Ruml
(rootless with undetectable meristems1). Rtcs controls crown root and seminal root formation;
Rten and Rtel are thought to be paralogs of Rtcs. Rth1 and Rth3 control root hair elongation with
Rth3 being shown to affect grain yield in maize [15],[16]. While these genes have been

identified, there are many loci effecting root growth and development that remain unknown.

A useful method for analyzing the genetic diversity of complex traits and identification of
superior alleles is association mapping or linkage disequilibrium (LD) mapping [17]. Unlike
traditional linkage mapping, where bi-parental populations are developed, association mapping
uses ancestral recombination in natural populations to find marker-phenotype associations based
on LD [18]. Association mapping allows evaluation of a large number of alleles in diverse
populations [19], and offers additional advantages compared to traditional linkage mapping,

including high mapping resolution and reduction in time to develop a mapping population [20].
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There are two main association mapping strategies. The candidate gene approach focuses on
polymorphisms in specific genes controlling traits of interest, while genome-wide association
approaches survey the entire genome for polymorphisms associated with complex traits [21]. A
candidate gene association analysis approach was employed using genes Rtcl, Rth3, Ruml, and
Rul1[22]. Several polymorphisms within all four candidate genes were associated with seedling
root traits. Many of these significant polymorphisms affected putative functional sequence motifs
including transcription factor binding sites and major domains. Another study [23] used 73 elite
Chinese maize lines to investigate sequence variation and haplotype diversity for the root
development gene Rtcs. They too found extensive variation between lines at the gene sequence
level. The advent of more economic sequencing technologies facilitates genome-wide studies.
Using markers covering the entire genome increases the chance of identifying additional regions
of the genome associated with seedling root traits, and establishing relevance of above
mentioned candidate genes to other genes affecting root development. In this study, a panel of
384 inbred lines derived from the Ames panel [24] was used to conduct a genome-wide
association study (GWAS) to investigate root architecture at the seedling stage. Our hypothesis is
that root architecture is of quantitative inheritance and that there are multiple factors throughout
the genome that contribute to root development. The objectives of this study were to i) study
phenotypic variation of 22 root architecture traits within a maize association panel, ii) identify
SNP markers throughout the genome associated with root architecture traits, and iii) investigate
locations of associated SNP markers for possible candidate genes or functional markers having

an effect on root development.
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Results
Analysis of Phenotypes of 384 Ames Panel Inbred Lines

Almost all root traits captured followed a normal distribution with a slight left skew. Trait
descriptions are found in Table 1 and Additional file 1: Figure S1. Most traits had considerable
variation within the current mapping population. The standard deviation for traits such as Total
Root Length (TRL) and Secondary Root Length (SEL) varied the most with values of 98.07 and
92.8 respectively. All trait maximum, minimum, and standard deviations are listed in Table 2. A
few lines’ phenotypes were consistently placed in the tails of the distribution for multiple traits.
Line PHT77 had the highest values for TRL, SEL, Surface Area (SUA), and Network Area
(NWA). These traits are all highly and significantly (P <0.0001) correlated with one another
(Table 2) with r=0.90. NWA is also highly correlated with root Median (MED) and Total
Number of Roots (TNR), yet PHT77 doesn’t have the highest values for these traits. This can be
due to many reasons, one being that much of PHT77’s root length comes from the individual
length of its secondary roots; this also increases root Surface Area (SUA) and NWA. This also
lowers PHT77’s TNR and MED as there are fewer number of secondary roots present for this
maize line. A243 showed the lowest values for root Perimeter (PER), TNR, MED, and
Maximum Number of Roots (MNR). Interestingly, these traits were significantly (P <0.0001)
but not always, closely correlated, ranging from r=0.27 to 0.95. Heritability (H2) estimates for
all traits were low to moderate and ranged from 0.12 to 0.49 (Table 2). Due to the low
heritability estimates of some traits, and in accordance with other similar studies analyzing root
traits [19], a cutoff of H2>0.30 was made, and most traits with H2 <0.30 were excluded from

further analysis.
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Pearson correlations were calculated comparing the same traits (TRL and total plant biomass)
(TBP) measured in a previous association panel [25] that used the same measuring techniques as
in this study by comparing lines that were the same between both mapping populations. This was
done to determine, if growing conditions were consistent and if ARIA calculated measurements
were consistent with result obtained from image analysis software WhinRHIZO Pro 9.0. Both
traits were significantly correlated (p =0.05) between both methods with values of r=0.85 for

TRL and r=0.75 for TPB (data not shown).

Correlation coefficients were calculated for the 22 traits listed in Table 3. The two traits with the
closest correlation were TRL and SEL (r=0.98), indicating that much of the root system is made
up of lateral and seminal root length, not the primary root at the 14 day old seedling stage.
Correlations were lower between TRL and Primary Root Length (PRL) (r=0.72) and between
PRL and SEL (r=0.68). Correlations for 1000 kernel seed weight (KRW) were also calculated
to determine whether kernel size had a major effect on seedling root size, which was collected
prior to growing plants in the growth chamber. None of the seedling traits collected showed a

strong (r = 0.33) correlation with kernel weight (data not shown).
Linkage Disequilibrium Decay in Ames Panel Subset

A random subset of markers spanning across all 10 chromosomes (see Methods) was used to
calculate LD decay. The rate of LD decay was similar across chromosomes with an average
distance of reaching the LD threshold (r>=0.2) within approximately 10 kb throughout the
genome. Chromosome 8 showed the slowest decay with an r* value of 0.2 reached at
approximately 15 kb (Figure 1). These results are comparable to [24], indicating that LD decayed

within 1-10 kb.
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Population Structure

In order to define the number of subpopulations within the 384 line Ames panel subset, the ad
hoc statistic (AK) was calculated. Based on the ad hoc statistic values in Structure 2.3.4 the
mapping population was sorted into two subpopulation (K=2). One subpopulation comprised of
319 lines or 83% of the total 384 lines used for GWAS (Figure 2). This larger subpopulation is
composed of mostly non-stiff stalk inbred lines with some tropical, popcorn, and mixed lines.
The other subpopulation includes mostly genotypes from the stiff-stalk heterotic group. B73 is

found within this subpopulation whereas Mo17 is found in the larger subpopulation.

Genome-Wide Association Studies

Four SNP markers were found to be significantly associated with two root traits using MLM.
The threshold to account for multiple testing was determined by simpleM at P =5.36 x 107
Specifically, one significant marker-trait association was found for Bushiness (BSH) located on
chromosome 2 (Figure 3), and three significant SNP marker trait associations for Standard Root
Length (SRL) were located on chromosome 3 (Figure 4). Based on heritability estimates both
traits were found below the threshold to be examined in depth. Due to the stringency of MLM,
and the fact that significant markers found for both traits are located in regions of the genome
consistent with significant markers for other root traits using GLM, it was decided that these
significant SNPs be used for further examination. All three significant markers for SRL were
found within gene models. Marker S4 49565840 was found within gene model
GRMZM2G327349, expression analysis based on B73 showed very little to no expression within
roots. The two other markers (S4 49619564 and S4 49619525) significantly associated with

SRL were found within gene model GRMZM2G32186. This gene model did show expression
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both at germination and at V1 stage of maize development in the primary root with absolute
expression levels of 7385.82 and 5539.36 respectively (Table 4). The one significant marker for
BSH on chromosome 2 was found within gene model GRMZM2G322186 and showed very little
to no expression in the roots throughout early development. No other traits were found to have

significant marker trait associations using the Q + K MLM model.

Using the GLM model, an additional 287 significant markers were found using the same
threshold of P=5.36 x 1077 for root traits above the heritability threshold of H>> 0.30. Clustering
of significant SNPs using GLM was analyzed. SNPs associated with root traits clustered on
chromosomes 2, 3, 4, and 8 (B73 reference genome 2). Chromosome 2 also contained the SNP
marker with the highest significance. Most significant markers on chromosome 2 were located in
bins 2.00-2.02 and 2.07-2.08. Clusters on chromosome 3 were located within bins 3.01 and 3.06-
3.09 while clusters on chromosome 4 were within bin 4.05. On chromosomes 2 and 8, four
markers in total were significantly associated with multiple traits. Chromosome 2 had 3 markers;
marker S2 20263530 was significant for PRL, PER, Diameter (DIA), Depth (DEP), Shoot Dry
Weight (SDW), TBP, and SUA. Marker S2 202178253 on chromosome 2 is associated with
traits SUA, SDW, SL, and TPB. The third and final marker on chromosome 2 was marker

S2 20252886, this marker is associated with both SUA and TBP. These three significant
markers are found within gene models GRMZM2G002879, GRMZM2G154864, and
GRMZM2G087254. The final marker is S8 146152722 and was associated with both PER and
DEP. This marker on chromosome 8 is located in gene model GRMZM2G070837. On
chromosome 4, 13 markers were found significantly associated with multiple traits. All 13
markers on chromosome 4 are located within 250 kb. Nine of these markers are located within

the same gene model, GRMZM2G153722. Of the remaining four markers on chromosome 4,
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two are located in the same gene model GRMZMZG427409; one is located in another gene
model GRMZM2G053511 while the remaining marker is located in an intergenic region. Four of
the previously listed gene models have hypothetical protein products. An earlier expression
analysis [26] revealed that most of the predicted gene models described above had moderate to
low expression levels in the primary root system at growth stage V1 in B73. Absolute expression
levels measured in B73 for respective gene models are listed in Table 3. When looking at SNPs
close to previously reported genes with an impact on root development (Rtcs, Rtcl, Rull, Ruml,
and Rthl), one significant SNP marker at position 205,392,941 on chromosome 3 is located a
little more than 3 Mbs from Rum1. No other significant markers were located in or near
previously reported root development genes. A list of all significant marker trait associations is
found in Additional file 2: Table S1. Manhattan plots for all marker trait associations using GLM

are found in Additional file 3: Figure S2.

Discussion

Root traits are difficult and laborious to measure at the adult stage in a field setting. In the
current study, measurements of seedling root architectural traits in our association mapping
population were used as a first step for later comparison with adult plant traits. One of the traits
studied, RDW, has been shown to be positively correlated with key adult plant traits such as
yield at both HN and LN conditions [25], suggesting that seedling root traits may be useful to
predict adult root characteristics. One concern with studying seedling roots is that seed size
might be confounded with overall seedling vigor including expression of root traits. However, all

seedling root traits had low correlations (r-values <0.33) with kernel weight.
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Root architecture is a key plant characteristic but highly variable among maize genotypes. Table
1 demonstrates this wide range of variation for most traits studied herein. For TRL, a 9- to10-
fold difference was found within the current mapping population, specifically three lines (Va38,
NO. 1201 INBRED, and INBRED 309) that were all recorded as having the lowest TRL average
measurements and the three lines with the longest average root length (PHT77, Mo1W, and
PHK?29). This range exceeded the 3- to 4-fold differences in a separate, albeit smaller (72 lines)
association panel [25]. This large range for average length of roots illustrates the extensive
amount of phenotypic variation found for roots. This range in trait values among inbred lines can
be compared to other studies of diverse maize panels [27], where there was a 3- and 2-fold
difference for plant height and days to anthesis, respectively. In conclusion, there is substantial

unexploited variation for root traits.

Heritability values ranged from 0.12 to 0.49. Previous studies have shown similar ranges of
heritabilies for root traits at various stages of growth, both under controlled environmental
(growth chamber, greenhouse) and field conditions [19],[28]. Root growth is highly plastic and
of quantitative nature. By keeping all conditions equal, some root traits were more repeatable
than others. Biomass traits (TPB, RDW, SDW, and Shoot Length (SHL)) as well as TNR had
mid-range heritabilities close to 0.5. Other traits that deal with total length of roots or a particular
part of the root (TRL and SEL) also had heritabilities greater than 0.4. This may be due to the
software ARIA’s ability to accurately measure length based traits. Some traits with low
heritabilities in our study of 2D traits may be better suited for three dimensional images such as
BSH, DEP, Length Distribution (LED), and Width/Depth ratio (WDR). PRL showed a low
heritability estimate (H?>=0.281). This could be due to limitations in ARIA’s ability to identify

the primary root accurately each time, or is a product of PRL sensitivity to micro environmental
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conditions. We included PRL in the present study, as this trait has been shown to be important in

water and nutrient acquisition [11].
Population Structure and Linkage Disequilibrium

Population structure analysis using the software package Structure 2.3.4 [29] revealed two
subpopulations. The two identified populations fit the two major heterotic groups within
temperate U.S. maize germplasm: stiff stalk (with B73) and non-stiff stalk (including Mo17).
The larger subpopulation contained over 82% of the lines in the association panel, this
subpopulation was made up of non-stiff stalk inbred and few mixed heterotic group lines. These
results are consistent with results from a principle component analysis (PCoA) of the entire
Ames Panel consisting of over 2800 lines [24]. In that study, most lines derived from the U.S.

grouped in two distinct groups, stiff stalk and non-stiff stalk.

Average LD decay (r* threshold = 0.2) across the whole genome was close to 10 kb. These
results agree with a LD decay of 10 kb across ExPVP, stiff stalk, and non-stiff stalk lines within
the entire 2,815 inbred lines within Ames Panel [24]. Romay et al 2013, used the same GBS
marker data set in order to analyze the entire Ames Panel diversity. The subset of inbred lines
from the Ames panel used in this study lacks diversity from tropical lines that are available
within the complete Ames panel. If more exotic maize germplasm is included as in other
association mapping populations, the rate of decay is usually more rapid (around 300 bp-1 kb)

with added diversity [24, 30].
Association Analysis

There have been several large scale genome-wide association studies which have been used to

identify candidate genes and putative functional markers that affect complex traits [19, 31-33]. In
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the current study, four SNPs were significantly associated with root traits BSH, and SRL using
the Q+K MLM. When fitting just population structure using GLM, 287 SNPs were significantly
associated with root traits. Among those, 17 were significantly associated with multiple root
traits. Three of these 17 SNPs were located in similar positions on chromosome 2. SNP

S2 202635930 was significantly associated with seven traits, PRL, PER, DIA, DEP, SDW, TPB,
and SUA. All seven traits are closely and significantly correlated with one another (r>0.5). This
trend continued for all traits sharing significant SNPs: all were significantly correlated with one
another (Table 3). Other SNPs associated with multiple traits were located on chromosomes 4
and 8. Three root QTL studies [28, 34, 35] identified a QTL on chromosome 4 within bin 4.05-
4.07. In this region, 13 of the shared, significantly associated SNPs were located. These results
provide evidence that relevant candidate genes affecting root growth and development are likely

located on chromosome 4.

The only two traits (SRL and BSH) for which significant SNPs were detected using MLM had
low heritability estimates. Since associations were found fitting both the Q and K matrix, the risk
of type I error is low. BSH and SRL are components of other traits (Table 1). Thus, significant
polymorphisms for BSH and SRL might act pleiotropic and affect traits with higher heritability.
For a few traits, no significantly associated markers were detected (Width (WID), Convex Area
(CVA), SEL, and Center of Point (COP)). The number of detected associations was not related to
heritability. TPB had the highest heritability estimate with H?=0.491 and 17 significant SNPs
were detected for this trait, while only two SNPs were detected for TNR with comparably high
heritability (0.49). Conversely, 135 SNPs markers were significantly associated with Diameter
(DIA) (H?=0.33). Different reasons may account for this discrepancy, such as (i) tight linkage of

multiple associated SNPs for a low heritability trait, (i1) absence of detectable SNPs in genome
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regions impacting high heritability traits, and (iii) unknown trait architecture, i.e., number of

genes and distribution of gene effects with impact on traits of interest.

GLM is less stringent than MLM. This explains the large discrepancy between vastly different
numbers of significant associations detected by the two methods of calculation. As noted in other
studies [36], MLM can over fit a model and create type II errors. Thus, using both methods in
conjunction is preferable. We made an effort to reduce type I error using GLM by fitting the Q
matrix, and by applying correction for multiple testing. Even though only few significant
polymorphisms were identified using MLM, those were co-located in clusters of significantly

associated polymorphisms identified by using GLM.

Candidate Genes for seedling root traits

For the MLM analysis, gene model GRMZM?26322186 contained two of the significant markers
for seedling root trait SRL. This candidate gene is expressed throughout seedling development
[26]. It should be noted that these expression information is based on B73, and variation in
transcriptome profiles between multiple inbred lines has been reported [37]. The gene model
codes for three putative protein products within maize Zea CEFD homologl, TPA: isopenicillin
N epimerase isoform 2 and isoform 1. No confirmed function of these proteins has been

determined.

The most noticeable candidate gene identified within this study is GRMZM2G153722. Its gene
model is located on chromosome 4 and contained 12 of the 13 significant markers found for two
traits, DIA and SUA. Haplotype analysis for this gene was examined with two haplotypes being
identified within this region of the genome. One haplotype was found significant for both DIA

and SUA at p-values of 5.22 x 10 and 2.66 x 1078 respectively. This strengthens our findings at
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the individual SNP level. Throughout seedling development this gene model showed expression
is detectable in both roots and shoots [26]. The candidate gene is predicted to code for a putative
protein 1-phospatidylinositol-4-phosphate 5-kinase. A BLAST search identified homologues in
two species, Sorghum bicolor and Setaria italica (foxtail millet), with greater than 85% sequence
identity. Both species have hypothetical protein products with currently unknown function. A
homologue in Arabidopsis thaliana [38] plays an important role in root tip growth. If the function
of the respective maize gene is similar, this candidate gene could be a vital player in regulating

root development.

Gene models GRMZM2G154864 and GRMZM2G322186 contained significant SNPs for
multiple traits. BLAST results for GRMZM2G154864 ¢cDNA identified both Sorghum bicolor,
bamboo, and Setaria italica with greater than 85% sequence identity, as was previously noted for
GARMZM2G153722. Results from a BLAST of GRMZM2G322186 cDNA revealed 100%
identity with maize gene cefl, which codes for an aspartate aminotransferase (AAT) superfamily
(fold type I) gene of pyridoxal phosphate (PLP)-dependent enzymes. No phenotypes have been
linked to this putative gene and protein product. Expression of these genes was detected at V1
stage in the primary root in B73 [26]. These genes could play an active role in root development,

especially at seedling growth stage.

Wild type alleles of root development genes Rtc/, Rth3, Ruml, and Rull were studied with regard
to their impact on seedling root trait expression using a candidate gene-based association
mapping approach [39]. SNPs within these genes among the 72 inbred lines used as a mapping
population were found to be associated with both root traits RDW and TRL. In our study, Rum
was putatively detected by a linked significant SNP. No SNPs within the remaining genic

regions were significantly associated in this study. We used a candidate gene-based association
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mapping approach for those same four candidate genes in our population to determine, whether
any SNP in these regions would show significance due to a less stringent multiple testing
threshold. Nevertheless, we did not find significant SNPs within these root development genes.
Most lines used for the previous association panel [39] were different from those in our panel,
which would affect the significance of SNPs within those specific genes. In the previous study,
Sanger sequencing was used, which resulted in almost complete information of polymorphic
sites within above mentioned candidate genes, giving much finer resolution within these specific
genic regions. The same polymorphisms were likely not included within the current imputed
GBS data due to different alleles being found in the different populations [37]. These differences
in allele frequencies could lead to more or fewer loci being polymorphic within these genic
regions. For example in the previous study for root gene Rtcl, 45 polymorphisms were detected.
In our population only five SNPs were present within this region. Due to these discrepancies in
allelic frequencies between populations, it can be expected that results can be inconsistent

between association studies in different panels [24].

Conclusions

The putative SNPs identified within the current study might aid in selecting lines with these
particular phenotypic root characteristics. Respective SNPs can be used to breed for specific root
types under various environmental conditions, thus enabling use of maize root architecture
information as part of a selection strategy. The idea of an ideal root architecture or root ideotype
has been presented [40-43]. Ideotypes such as “steep, deep, and cheap” roots [40], or deeper
roots with vigorous lateral root growth, may increase nitrogen uptake efficiency under low N
conditions [42]. Other root traits that might play a pivotal role in increasing nutrient uptake

efficiency include seminal root length and number, lateral root length and number, and root
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distribution. Due to the extensive resource requirements needed to study adult plant roots, being
able to connect seedling root traits to adult plant traits would be beneficial. Understanding
consistent relationships between seedling and adult root architectural traits would enable

selection at the seedling level, and is addressed in ongoing research.

Methods

Plant materials

The association mapping panel consists of 384 inbred lines obtained from the USDA-ARS North
Central Regional Plant Introduction Station (NCRPIS) in Ames, lowa (Supplementary Table 2).
These 384 lines are a subset of the “Ames panel” [24], a collection of 2,815 maize inbred lines
conserved at the USDA-ARS NCRPIS. The 384 lines were selected on the basis of maturity in
view of future evaluations in central lowa, genetic diversity, and geographic origin, with
preference for dry climates that might require vigorous root development. Thirteen lines from a
previous experiment [25] were duplicated in our association panel including B73, Mo17, and

PHZS51.

Root Phenotyping

Paper Roll Experiments

A paper roll growth method was employed as described by [22]. Briefly, seed was sterilized
using Clorox® solution (6% sodium hypochlorite) for 15 minutes. After soaking, seed was twice
rinsed in autoclaved water. Brown germination roll paper (Anchor Paper, St. Paul, MN, USA)
was pre-moisturized with fungicide solution Captan® (2.5g/1) before being vertically rolled, with

four kernels per genotype and growth paper roll. Germination paper rolls were placed in two liter
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glass beakers containing 1.4 liters of autoclaved deionized water, at a photoperiod of 16/8 hrs
(light/darkness) and 25/22 °C. Light intensity was 200 pmol photons m-2s-1, and a relative
humidity maintained at approx. 65%. Each paper roll with four seedlings was considered an
experimental unit. After 14 days, seedlings were removed from the growth chamber and all root
traits were measured. If not measured the same day, plants were preserved in 30% ethanol to

prevent aging of roots.

Manually evaluated traits were root dry weight (RDW), shoot dry weight (SDW), shoot length
(SHL), and total plant biomass (TPB). SHL was measured manually using a ruler measuring
from the base of the shoot to the tip of the primary leaf. After root and shoot measurements were
conducted, roots and shoots were collected separately and dried for 48 hrs at 55°C, to determine
RDW, SDW, and TPB. In addition, 22 traits (Table 1 and Supplementary Figure 1) were
determined using ARIA (Automatic Root Image Analyzer) high-throughput phenotyping
software [44]. For this purpose, roots of each genotype were placed on a scanner to produce high

resolution images.

Phenotypic Data Analysis

Experimental design

Our association panel was grown in a completely random design (CRD) in three independent
replications completed June 13, 2012, July 3, 2012, and October 5, 2012. Each experiment was
grown in the same growth chamber under the same growing conditions. All trait data for
phenotypic analysis were collected on a plot basis (plot is equal to our experimental unit: three
seedlings out of four within each seed roll were sampled, to eliminate possible outliers within

lines, and means were taken). The additive model for analysis of variance was:
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Where y; represents the observation from the ij” plot, u is the overall mean, R; is the experiment
and G is the genotype. The interaction between the fixed effect G; and the random effect
experiment is confounded with the error (£;). The statistical software package SAS 9.3 was
used to obtain ANOVA table, expected mean squares, and least square means for association
analyses. Function PROC GLM was implemented and type 3 sums of squares were used to
account for missing data. Genotypic (aj), and phenotypic (aﬁ) variances as well as broad sense
heritability (H?) (due to the fact that we cannot partition out additive variance alone) were all

calculated on an entry mean basis. Heritability was calculated as follows:

MSG — MSE
oo O o _ MSG-MSE ., MSG=MSE oo ., e )
=2 0 = ———) op=" " ) = —
op rep rep (MSGrepMSE) + MSE

MSG and MSE stand for mean square of genotype and mean square error, respectively. Rep is
the number of independent replications (3). Least square means across all three replications were
calculated using SAS 9.3 to adjust means. Phenotypic correlations were calculated using the SAS

function PROC CORR to determine the relationship between seedling traits.

Marker data

Genotyping-by-sequencing (GBS) [45], was used to genotype all inbred lines with 681,257
markers distributed across the entire maize genome. GBS uses the restriction enzyme ApeKI and
is run on an [llumina platform. The current data set was obtained using 96 sample multiplexes
per Illumina flow cell. A total of 681,257 bilallelic SNP markers were distributed across all 10

chromosomes of the maize genome, imputation was used to reduce the number of missing data
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points. The imputation algorithm uses a nearest neighbor approach based on 64 base SNP
windows across the entire maize sequence database allowing for 5% mismatches [24]. Biallelic
markers with a minor allele frequency below 10% were removed from the marker data set. All
monomorphic SNP markers and those with more than 20% missing data were omitted. Finally,
135,311 SNP markers distributed across all 10 chromosomes of the maize genome with a slight
bias towards telomeric regions remained to calculate population structure, kinship, and to

perform GWAS.
Population Structure, Linkage Disequilibrium, and Association Analysis

Population structure (Q matrix) was estimated from a reduced random number of unimputed
SNPs (1,665 SNP markers) using Structure 2.3.4 software [29]. The parameter settings for
estimating membership coefficients for lines in each subpopulation were a burn-in length of
50,000 followed by 50,000 iterations for each of the clusters (K) from 1-15, with each K being
run five times. An admixture model was applied with independent allele frequencies. In order to
pick the most probable K value for analysis, a method [46] calculating an ad hoc (AK) statistic

based on the ordering rate of change of P(X|K) was employed.

The software program TASSEL 4.0 [47] was used to calculate LD and to conduct GWAS using a
General Linear Model (GLM) using population structure as a fixed factor with an equation of y =
XB + U, where y equals the values measured, X is the marker value, B is a matrix of parameters
to be estimated, and U uses the Q values as fixed cofactors to account for errors and false
positives caused by population substructure. LD decay, or the distance in base pairs that loci
could be expected to be in LD, was calculated by plotting 1* onto genetic distance in measured in

base pairs using an 12 value of 0.2 as a cutoff. All markers with less than 35% missing data and a
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minor allele frequency greater than 0.05% were used to calculate LD decay. Once r* values were
calculated, this data was summarized using R 3.0 statistical software for each of the 10 maize
chromosomes individually as well as combining all chromosomes to test a genome wide LD
decay. Software SpAGeDi [48] was used to calculate the Loiselle kinship coefficients between

lines (K matrix).

A mixed linear model (MLM) was also used for association studies utilizing the program
GAPIT (Genome Association and Prediction Integrated Tool-R package) [49]. Statistical model
for MLM was y = X + Zu + e. Terms X, and Z are incidence matrices of 1s and 0s, X relates
to term y and Z relates u to y. The term y is a vector of the phenotypic values. Term f is an
unknown fixed effect that represents marker effects and population structure (Q), u is a vector of
size n (n representing the number of individuals, 384 for this population) for random polygenetic
effects having a distribution with mean of zero and covariance matrix of G = 2Ko?G. Where K is
the kinship matrix, used to determine correlations between different individuals and determine
whether they are independent, as our assumption is that all individuals are independent from one
another. Both Q and K matrices were fit in the MLM to control spurious associations due to

population structure and relatedness, respectively [50]

To account for multiple testing during GWAS, the statistical program simpleM was implemented
using R program 3.0 [51]. Based on an a level of 0.05, the multiple testing threshold level was
set at 5.3x10-7. This threshold is based on an effective number of independent tests of n,
Meff G. To obtain Meff G for SNP data, a correlation matrix for all markers needs to be
constructed and corresponding eigenvalues for each SNP locus calculated. A composite LD
(CLD) correlation is calculated directly from SNP genotypes [49]. Once this SNP matrix is

created, the effective number of independent tests is calculated and this number is used in a
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similar way as the Bonferroni correction method. Here, the alpha level threshold (o = 0.05) is

divided by Meff G (o/( Meff G)). Markers above the suggested threshold for MLM were

considered as significantly trait-associated SNP markers and candidates for causative

polymorphisms.
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Table 1. Trait designations and descriptions collected manually and by ARIA

Trait Name

Total Root Length
Primary Root Length
Secondary Root
Length

Center of Point
Maximum Number of
Roots

Perimeter

Depth

Width

Width/Depth ratio
Median

Total Number of
Roots

Convex Area
Network Area
Bushiness

Length Distribution
Diameter

Surface Area
Standard Root Length
Shoot Length

Shoot Dry weight
Root Dry Weight
Total Plant Biomass

Symbol
TRL
PRL
SEL

COopP
MNR

PER
DEP
WID
WDR
MED
TNR

CVA
NWA
BSH
LED
DIA
SUA
SRL
SHL
SDW
RDW
TPB

Trait Description

Cumulative length of all the roots in centimeters
Length of the Primary root in centimeters

Cumulative length of all secondary roots in centimeters

Absolute center of the root regardless of root length.
The 84th percentile value of the sum of every row

Total number of network pixels connected to a background pixel
The maximum vertical distance reached by the root system

The maximum horizontal width of the whole RSA

The ratio of the maximum width to depth

The median number of roots at all Y-location

Total number of roots

The area of the convex hull that encloses the entire root image
The number of pixels that are connected in the skeletonized image
The ratio of the maximum to the median number of roots.

The ratio of TRL in the upper one-third of the root to the TRL
Diameter of the primary root

Surface area of the entire root system

Total root length divided by root volume

Total Length of the shoot to the longest leaf tip in cm

Total dry weight of only the plant shoot

Total dry weight of only the plant roots

Root dry weight and Shoot dry weight added together
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Table 2. Trait statistics collected for all 22 traits. Line marks heritability cutoff for traits
analyzed further

Trait Mean Std. Dev Minimum Maximum H?
TPB 0.107 g 0.036 0.016 g 0.253 g 0.491
WID 5.23 1.64 0.81 10.5 0.489
TNR 11.05 4.94 1 26.67 0.486
RDW 0.058 g 0.021 .005 ¢ 0.145 ¢ 0.479
SDW 0.049¢ 0.019 .005 g 0.124¢ 0.474
MED 5.12 2.61 1 16 0.449
cor 0.43 0.07 0.18 0.74 0.441
SHL 15.77 cm 4.42 2.55cm 30.6 cm 0.431
SUA 10.22 cm? 432 1.16 cm? 25.04 cm? 0.424
TRL 190.05 cm 98.07 16.39 cm 536.33 cm 0.423
SEL 149.32 cm 92.8 0.16 cm 490.59 cm 0.419
NWA 1.09 0.61 0.03 3.26 0.39
MNR 80.8 33.94 4 196 0.385
DIA 0.12 0.03 0.05 0.35 0.333
PER 143.38 cm 54.06 9.77 cm 307.07 cm 0.305
CVA 87.79 43.36 1.24 218.9 0.303
PRL 28.45 cm 8.35 4.09 cm 47.06 cm 0.281
WDR 0.25 0.42 0.08 13.01 0.268
DEP 24.17 6.54 3.56 34.88 0.257
SRL 0.59 0.4 0.05 2.54 0.209
LED 0.76 0.31 0.02 3.13 0.186
BSH 2.4 0.807 1 10 0.119

TPB = Total Plant Biomass, WID = Width, TNR = Total number of roots, RDW = Root Dry Weight, SDW=
Shoot Dry Weight, MED = Median, COP = Center of Point, SHL= Shoot Length, SUA = Surface Area, TRL=
Total Root Length, SEL= Secondary Root Length, NWA = Network Area, MNR= Maximum Root Number,
DIA = Diameter, PER = Perimeter, CVA = Convex Root Area, PRL = Primary Root Length, WDR = Width
Depth Ratio, DEP = Depth, SRL = Standard Root Length, LED = Length Distribution, BSH = Bushiness




Table 3. Pearson (r) correlations between all 22 traits collected

TRL SUA  PRL  SEL
1 0.898 0.716  0.983
1 0.823 0.889
1 0.682
1

Ccop
0.117
0.010
-0.155
0.135

1

MNR
0.391
0.460
0.636
0.352

-0.005

1

PER
0.776
0.822
0.867
0.756
-0.006
0.711
1

DEP
0.718
0.797
0.966
0.682
-0.195
0.614
0.837
1

WwID
0.632
0.705
0.683
0.632
-0.026
0.357

0.731
0.609

1

WDR
-0.098
-0.166
-0.241
-0.131
0.109
-0.174
-0.182
-0.282
-0.004
1

MED
0.921
0.804
0.548
0.949
0.216
0.273
0.652
0.539
0.572

-0.106

1

TNR
0.908

0.781
0.507
0.932
0.220
0316
0.653
0.509
0.568

-0.071
0.945

1

CVA  NWA
0.801 0.980
0.856  0.900
0.868 0.728
0.791 0.993
-0.035 0.097
0496  0.394
0.871 0.784
0.825 0.729
0.866  0.641
-0.124  -0.143
0.667  0.932
0.638 0.921
1 0.822

LED
-0.262
-0.263
-0.178
-0.254
-0.374
-0.236
-0.240
-0.127
-0.067

0.016
-0.291
-0.188
-0.198
-0.255

1

DIA
0.346
0.506
0.323
0.332
0.262
0.351
0.408
0.230
0.401
0.000
0.319
0.349
0.390
0.324
-0.411
1

SRL
-0.397
-0.526
-0.410
-0.378
-0.213
-0.416
-0.465
-0.366
-0.360
-0.002
-0.386
-0.396
-0.410
-0.379

0.326
-0.656

1

BSH
-0.224
-0.247
-0.228
-0.259
-0.007

0.003

0.003
-0.159
-0.220
-0.104

0.253
-0.329
-0.231
-0.256

0.417
-0.003
-0.011

1

SDW
0.647
0.750
0.537
0.635
0.042
0.384
0.565
0.520
0.487

-0.084
0.605
0.598
0.574
0.628

-0.178
0.400

-0.454

-0.163

1

RDW
0.635
0.673
0.564
0.618
0.049
0.304
0.582
0.551
0.459

-0.169
0.592
0.578
0.540
0.639

-0.288
0.364

-0.387

-0.173
0.548

1

TPB
0.708
0.788
0.546
0.695
0.070
0.325
0.583
0.522
0.486
-0.125
0.634
0.616
0.618
0.700
-0.249
0.415
-0.422
-0.214
0.851
0.859
1

SHL
0.701
0.691
0.617
0.682
0.062
0.388
0.619
0.608
0.510
-0.145
0.651
0.638
0.608
0.694
-0.298
0.304
-0.360
-0.186
0.769
0.409
0.654
1

TPB = Total Plant Biomass, WID = Width, TNR = Total number of roots, RDW = Root Dry Weight, SDW= Shoot Dry Weight, MED = Median, COP = Center of Point, SHL=

Shoot Length, SUA = Surface Area, TRL= Total Root Length, SEL= Secondary Root Length, NWA = Network Area, MNR= Maximum Root Number, DIA = Diameter, PER =
Perimeter, CVA = Convex Root Area, PRL = Primary Root Length, WDR = Width Depth Ratio, DEP = Depth, SRL = Standard Root Length, LED = Length Distribution, BSH =

Bushiness

[y
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Table 4. Gene model absolute expression values found in B73 genome.

Gene Model Absolute expression value in primary root at V1
GRMZM2G153722 7456.31

GRMZM2G053511 66.76

GRMZM2G002879 1216.56

GRMZM2G154864 4826.04

GRMZM2G070837 53.19

GRMZM2G095969 70.27

GRMZM2G322186 4784.54
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Supplementary Table 1. List of all significant marker trait associations determined by

GWAS using MLM and GLM
GWAS Trait SNP Chromosome Position P.value | Allelic effect
Method

MLM SRL S3 49565840 3 49565840 | 3.21E-09 | -0.15559836
MLM SRL S3 49619564 3 49619564 | 2.46E-08 | 0.140166308
MLM SRL S3 49619525 3 49619525 | 2.46E-08 | -0.140166308
MLM BSH S2 234437741 2 234437741 | 1.75E-07 | -0.208725017
GLM MRN S4 62787846 4 62787846 | 2.04E-07 NA
GLM MED S8 74681862 8 74681862 | 1.61E-07 NA
GLM NWA S2 21818271 2 21818271 | 4.46E-07 NA
GLM NWA S4 62787846 4 62787846 | 4.86E-07 NA
GLM PER S2 202635930 2 202635930 | 2.01E-09 NA
GLM PER S2 202176704 2 202176704 | 2.44E-08 NA
GLM PER S8 146152722 8 146152722 | 5.02E-08 NA
GLM PER S3 187226846 3 187226846 | 2.04E-07 NA
GLM PER S5 213079932 5 213079932 | 2.63E-07 NA
GLM PER S5 188609024 5 188609024 | 4.74E-07 NA
GLM PER S2 21818271 2 21818271 | 4.84E-07 NA
GLM RDW S2 201899235 2 201899235 | 2.67E-08 NA
GLM RDW S2 210962971 2 210962971 | 2.89E-08 NA
GLM RDW S9 116263697 9 116263697 | 5.31E-08 NA
GLM RDW S9 124316950 9 124316950 | 6.12E-08 NA
GLM RDW S9 139174871 9 139174871 | 1.18E-07 NA
GLM RDW S2 210978763 2 210978763 | 1.20E-07 NA
GLM RDW S2 202176704 2 202176704 | 1.33E-07 NA
GLM RDW S9 5455309 9 5455309 | 1.40E-07 NA
GLM RDW S2 201965660 2 201965660 | 1.61E-07 NA
GLM RDW S9 130090472 9 130090472 | 1.92E-07 NA
GLM RDW S3 20534762 3 20534762 | 2.21E-07 NA
GLM RDW S2 202641741 2 202641741 | 2.43E-07 NA
GLM RDW S5 199978118 5 199978118 | 2.90E-07 NA
GLM RDW S4 18676302 4 18676302 | 3.22E-07 NA
GLM RDW S8 155440143 8 155440143 | 3.87E-07 NA
GLM RDW S7 159921873 7 159921873 | 4.06E-07 NA
GLM RDW S7 159921877 7 159921877 | 4.06E-07 NA
GLM RDW S2 210978535 2 210978535 | 4.20E-07 NA
GLM RDW S6 146218985 6 146218985 | 4.64E-07 NA
GLM RDW S9 124031518 9 124031518 | 4.74E-07 NA
GLM RDW S2 41497406 2 41497406 | 4.79E-07 NA
GLM RDW S9 122595736 9 122595736 | 4.84E-07 NA
GLM RDW S9 122595739 9 122595739 | 4.84E-07 NA
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Supplementary Table 1 continued

GLM RDW | S9_122595744 9 122595744 | 4.84E-07 NA
GLM RDW | S2_212541278 2 212541278 | 5.08E-07 NA
GLM SDW | S2_202178253 2 202178253 | 5.84E-10 NA
GLM SDW | S8_79284127 8 79284127 | 2.55E-09 NA
GLM SDW | SI_255084426 1 255084426 | 1.56E-08 NA
GLM SDW | S3_167473718 3 167473718 | 7.54E-08 NA
GLM SDW | S3_167362874 3 167362874 | 1.06E-07 NA
GLM SDW | SI_198479489 1 198479489 | 1.13E-07 NA
GLM SDW | S3_223090866 3 223090866 | 1.37E-07 NA
GLM SDW | S6_129436495 6 129436495 | 1.59E-07 NA
GLM SDW | S2_202635930 2 202635930 | 1.84E-07 NA
GLM SDW | S2_204294242 2 204294242 | 3.40E-07 NA
GLM SDW | S6_152308251 6 152308251 | 4.27E-07 NA
GLM SDW | S9_103173310 9 103173310 | 4.57E-07 NA
GLM SDW | S2_55894837 2 55894837 | 5.33E-07 NA
GLM SHL | S2_55894837 2 55894837 | 2.51E-09 NA
GLM SHL | S2_55878267 2 55878267 | 4.94E-09 NA
GLM SHL | S2_55875101 2 55875101 | 9.86E-09 NA
GLM SHL | S2_55878363 2 55878363 | 2.68E-08 NA
GLM SHL | S2_55893351 2 55893351 | 3.24E-08 NA
GLM SHL | S2.55893619 2 55893619 | 3.60E-08 NA
GLM SHL | S2_55893782 2 55893782 | 9.42E-08 NA
GLM SHL | S2_202178253 2 202178253 | 1.05E-07 NA
GLM SHL | SI_12977206 1 12977206 | 1.33E-07 NA
GLM SHL | S8_19120665 8 19120665 | 1.92E-07 NA
GLM SHL | S8_18894046 8 18894046 | 1.97E-07 NA
GLM SHL | S5_19842373 5 19842373 | 2.23E-07 NA
GLM SHL | S9_128457179 9 128457179 | 3.36E-07 NA
GLM SHL | S2_55875076 2 55875076 | 3.39E-07 NA
GLM SHL | S5_174591302 5 174591302 | 4.22E-07 NA
GLM TNR | S4_62787846 4 62787846 | 2.04E-07 NA
GLM TRL | S4_62787846 4 62787846 | 3.67E-07 NA
GLM PRL | 52 202635930 2 2.03E+08 | 3.73E-09 NA
GLM PRL | s8 146152722 8 1.46E+08 | 3.77E-08 NA
GLM PRL | 51 34401500 1 34401500 | 1.09E-07 NA
GLM PRL | 56 7125119 6 7125119 | 1.17E-07 NA
GLM PRL | 52 202176704 2 2.02E+08 | 1.33E-07 NA
GLM PRL | 53 187226846 3 1.87E+08 | 2.05E-07 NA
GLM PRL | 510_144957882 10 1.45E+08 | 2.42E-07 NA
GLM PRL | 56 146218985 6 1.46E+08 | 3.19E-07 NA
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Supplementary Table 1 continued

GLM PRL | 52 21818271 2 21818271 | 3.98E-07 NA
GLM PRL | 52 202174949 2 2.02E+08 | 4.04E-07 NA
GLM PRL | 52 21802146 2 21802146 | 5.03E-07 NA
GLM SUA | S2_202635930 2 202635930 | 9.74E-10 NA
GLM SUA | S3_190009541 3 190009541 | 6.12E-09 NA
GLM SUA | S3_190009572 3 190009572 | 6.12E-09 NA
GLM SUA | S2.21818271 2 21818271 | 8.42E-09 NA
GLM SUA | S4_62787846 4 62787846 | 9.74E-09 NA
GLM SUA | S2_202176704 2 202176704 | 1.31E-08 NA
GLM SUA | S4_62568928 4 62568928 | 1.43E-08 NA
GLM SUA | S6_146218985 6 146218985 | 1.97E-08 NA
GLM SUA | S4_62573171 4 62573171 | 2.54E-08 NA
GLM SUA | S4_62572919 4 62572919 | 2.66E-08 NA
GLM SUA | S4_62412291 4 62412291 | 2.86E-08 NA
GLM SUA | S4_62565527 4 62565527 | 3.18E-08 NA
GLM SUA | S4_62565569 4 62565569 | 3.18E-08 NA
GLM SUA | S2_202635915 2 202635915 | 3.37E-08 NA
GLM SUA | S4_62695364 4 62695364 | 4.29E-08 NA
GLM SUA | S2_202528876 2 202528876 | 4.87E-08 NA
GLM SUA | S3_20534762 3 20534762 | 5.28E-08 NA
GLM SUA | S4_62573079 4 62573079 | 5.28E-08 NA
GLM SUA | S5_204385180 5 204385180 | 6.12E-08 NA
GLM SUA | S4_62573001 4 62573001 | 7.17E-08 NA
GLM SUA | S4_62353254 4 62353254 | 7.32E-08 NA
GLM SUA | S4_62353279 4 62353279 | 7.32E-08 NA
GLM SUA | S2.202178253 2 202178253 | 8.73E-08 NA
GLM SUA | S2_202639340 2 202639340 | 9.41E-08 NA
GLM SUA | S2_202528862 2 202528862 | 1.00E-07 NA
GLM SUA | S3_187226846 3 187226846 | 1.01E-07 NA
GLM SUA | S4_62694610 4 62694610 | 1.03E-07 NA
GLM SUA | S2_212744456 2 212744456 | 1.07E-07 NA
GLM SUA | S5_204522546 5 204522546 | 1.07E-07 NA
GLM SUA | S4_62567488 4 62567488 | 1.17E-07 NA
GLM SUA | S3_187450966 3 187450966 | 1.35E-07 NA
GLM SUA | S2_212541278 2 212541278 | 1.42E07 NA
GLM SUA | S4_217095284 4 217095284 | 1.49E-07 NA
GLM SUA | S2_13299683 2 13299683 | 1.50E-07 NA
GLM SUA | S2.21802146 2 21802146 | 1.50E-07 NA
GLM SUA | S4_62572909 4 62572909 | 1.60E-07 NA
GLM SUA | S1_200409094 1 200409094 | 1.67E-07 NA
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GLM SUA S4_62787629 4 62787629 | 1.68E-07 NA
GLM SUA S3_184267045 3 184267045 | 2.12E-07 NA
GLM SUA S4_ 62787622 4 62787622 | 2.22E-07 NA
GLM SUA S4 62573373 4 62573373 | 2.40E-07 NA
GLM SUA S4 62573339 4 62573339 | 2.59E-07 NA
GLM SUA S10_33221023 10 33221023 | 2.64E-07 NA
GLM SUA S4 62788968 4 62788968 | 2.77E-07 NA
GLM SUA S4_ 62564497 4 62564497 | 2.87E-07 NA
GLM SUA S4 56970265 4 56970265 | 3.15E-07 NA
GLM SUA S3 184267357 3 184267357 | 3.33E-07 NA
GLM SUA S4_63206226 4 63206226 | 3.40E-07 NA
GLM SUA S6_86049082 6 86049082 | 3.41E-07 NA
GLM SUA S4_62573340 4 62573340 | 3.51E-07 NA
GLM SUA S4 62573370 4 62573370 | 3.51E-07 NA
GLM SUA S1_200409145 1 200409145 | 3.99E-07 NA
GLM SUA S1_ 208781061 1 208781061 | 4.23E-07 NA
GLM SUA S4 142206837 4 142206837 | 4.44E-07 NA
GLM SUA S3 2154241 3 2154241 | 4.51E-07 NA
GLM SUA S3 190063251 3 190063251 | 4.67E-07 NA
GLM SUA S2_10375886 2 10375886 | 4.68E-07 NA
GLM SUA S2 27546469 2 27546469 | 4.90E-07 NA
GLM TPB S2 226586217 2 226586217 | 8.68E-09 NA
GLM TPB S2_202178253 2 202178253 | 1.43E-08 NA
GLM TPB S2 202528862 2 202528862 | 1.53E-08 NA
GLM TPB S1_255084426 1 255084426 | 2.99E-08 NA
GLM TPB S2 202635930 2 202635930 | 3.78E-08 NA
GLM TPB S1_179184476 1 179184476 | 5.03E-08 NA
GLM TPB S2_202176704 2 202176704 | 7.23E-08 NA
GLM TPB S6_129436495 6 129436495 | 9.51E-08 NA
GLM TPB S2_202641741 2 202641741 | 1.92E-07 NA
GLM TPB S9 139174871 9 139174871 | 2.11E-07 NA
GLM TPB S9 112489129 9 112489129 | 2.14E-07 NA
GLM TPB S2 204294242 2 204294242 | 2.37E-07 NA
GLM TPB S2 202739518 2 202739518 | 3.16E-07 NA
GLM TPB S9 130090472 9 130090472 | 3.52E-07 NA
GLM TPB S9 105339007 9 105339007 | 3.83E-07 NA
GLM TPB S9 105339008 9 105339008 | 3.83E-07 NA
GLM TPB S2 201965660 2 201965660 | 4.01E-07 NA
GLM DIA S2_7040758 2 7040758 | 5.34E-11 NA
GLM DIA S2_6850421 2 6850421 | 1.44E-10 NA
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GLM DIA S2_6850420 2 6850420 | 2.19E-10 NA
GLM DIA S2 6172579 2 6172579 | 3.79E-10 NA
GLM DIA S3_2076703 3 2076703 | 4.83E-10 NA
GLM DIA S2_6994422 2 6994422 | 2.43E-09 NA
GLM DIA S2 13349810 2 13349810 | 2.63E-09 NA
GLM DIA S4 62568928 4 62568928 | 3.31E-09 NA
GLM DIA S4 62565527 4 62565527 | 3.55E-09 NA
GLM DIA S4 62565569 4 62565569 | 3.55E-09 NA
GLM DIA S2 6720877 2 6720877 | 3.62E-09 NA
GLM DIA S2 6720881 2 6720881 | 3.62E-09 NA
GLM DIA S2_6720882 2 6720882 | 3.62E-09 NA
GLM DIA S7 119838612 7 119838612 | 3.92E-09 NA
GLM DIA S7_119838613 7 119838613 | 3.92E-09 NA
GLM DIA S2 6333501 2 6333501 | 5.21E-09 NA
GLM DIA S4_62572919 4 62572919 | 5.21E-09 NA
GLM DIA S4 62573171 4 62573171 | 5.65E-09 NA
GLM DIA S2 3105910 2 3105910 | 6.06E-09 NA
GLM DIA S2 11361054 2 11361054 | 6.39E-09 NA
GLM DIA S2 4876527 2 4876527 | 6.80E-09 NA
GLM DIA S4_62787846 4 62787846 | 6.87E-09 NA
GLM DIA S2 12253075 2 12253075 | 7.56E-09 NA
GLM DIA S4 62573079 4 62573079 | 7.78E-09 NA
GLM DIA S2_10375886 2 10375886 | 1.19E-08 NA
GLM DIA S2 5836126 2 5836126 | 1.26E-08 NA
GLM DIA S2_5836127 2 5836127 | 1.26E-08 NA
GLM DIA S2 5836129 2 5836129 | 1.26E-08 NA
GLM DIA S2_5836131 2 5836131 | 1.26E-08 NA
GLM DIA S2_3106026 2 3106026 | 1.31E-08 NA
GLM DIA S2 3106027 2 3106027 | 1.31E-08 NA
GLM DIA S2_2811155 2 2811155 | 1.44E-08 NA
GLM DIA S4 62353254 4 62353254 | 1.48E-08 NA
GLM DIA S4_62353279 4 62353279 | 1.48E-08 NA
GLM DIA S4 62567488 4 62567488 | 1.50E-08 NA
GLM DIA S2_6460559 2 6460559 | 1.55E-08 NA
GLM DIA S2_2285818 2 2285818 | 1.67E-08 NA
GLM DIA S2 1267098 2 1267098 | 2.02E-08 NA
GLM DIA S4 62412291 4 62412291 | 2.14E-08 NA
GLM DIA S2 6471845 2 6471845 | 2.15E-08 NA
GLM DIA S4_ 62572909 4 62572909 | 2.62E-08 NA
GLM DIA S2_1654161 2 1654161 | 2.75E-08 NA
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GLM DIA S2_1267306 2 1267306 | 2.93E-08 NA
GLM DIA S2 6177436 2 6177436 | 3.29E-08 NA
GLM DIA S2_2540702 2 2540702 | 3.61E-08 NA
GLM DIA S2_6466394 2 6466394 | 3.77E-08 NA
GLM DIA S2 3181711 2 3181711 | 4.01E-08 NA
GLM DIA S2 3181719 2 3181719 | 4.01E-08 NA
GLM DIA S4 62694610 4 62694610 | 4.16E-08 NA
GLM DIA S2_2593357 2 2593357 | 4.46E-08 NA
GLM DIA S4 62573339 4 62573339 | 4.49E-08 NA
GLM DIA S2 4990216 2 4990216 | 4.55E-08 NA
GLM DIA S2_6983715 2 6983715 | 5.77E-08 NA
GLM DIA S4 62412381 4 62412381 | 6.02E-08 NA
GLM DIA S2_4343433 2 4343433 | 6.76E-08 NA
GLM DIA S2 9315360 2 9315360 | 6.92E-08 NA
GLM DIA S4 62412374 4 62412374 | 7.10E-08 NA
GLM DIA S2_7040865 2 7040865 | 7.15E-08 NA
GLM DIA S2 7040867 2 7040867 | 7.15E-08 NA
GLM DIA S2_3106182 2 3106182 | 7.56E-08 NA
GLM DIA S2_6458690 2 6458690 | 7.60E-08 NA
GLM DIA S2_6471718 2 6471718 | 7.91E-08 NA
GLM DIA S2_ 6720880 2 6720880 | 8.10E-08 NA
GLM DIA S4 62564497 4 62564497 | 8.24E-08 NA
GLM DIA S2_6773738 2 6773738 | 8.52E-08 NA
GLM DIA S2_ 6355263 2 6355263 | 8.73E-08 NA
GLM DIA S2_7733390 2 7733390 | 9.20E-08 NA
GLM DIA S2 212525890 2 212525890 | 1.01E-07 NA
GLM DIA S3_205235096 3 205235096 | 1.01E-07 NA
GLM DIA S5_204385180 5 204385180 | 1.06E-07 NA
GLM DIA S2 3106513 2 3106513 | 1.11E-07 NA
GLM DIA S2_3106516 2 3106516 | 1.11E-07 NA
GLM DIA S4 62573340 4 62573340 | 1.11E-07 NA
GLM DIA S4_62573370 4 62573370 | 1.11E-07 NA
GLM DIA S6 144123661 6 144123661 | 1.15E-07 NA
GLM DIA S2 7190543 2 7190543 | 1.18E-07 NA
GLM DIA S10_37942464 10 37942464 | 1.19E-07 NA
GLM DIA S3_205392941 3 205392941 | 1.24E-07 NA
GLM DIA S2_1463303 2 1463303 | 1.25E-07 NA
GLM DIA S3 2118557 3 2118557 | 1.25E-07 NA
GLM DIA S1_32601179 1 32601179 | 1.28E-07 NA
GLM DIA S8 16444572 8 16444572 | 1.32E-07 NA
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GLM DIA 52202635930 2 202635930 | 1.51E-07 NA
GLM DIA S8 16444445 8 16444445 | 1.56E-07 NA
GLM DIA S8 16444587 8 16444587 | 1.57E-07 NA
GLM DIA S5_204522546 5 204522546 | 1.58E-07 NA
GLM DIA S3 136165588 3 136165588 | 1.62E-07 NA
GLM DIA S4 62412329 4 62412329 | 1.63E-07 NA
GLM DIA S10_4693744 10 4693744 | 1.70E-07 NA
GLM DIA S6_160037464 6 160037464 | 1.78E-07 NA
GLM DIA S3 219856818 3 219856818 | 1.79E-07 NA
GLM DIA S3_2071609 3 2071609 | 2.08E-07 NA
GLM DIA S4_62573001 4 62573001 | 2.09E-07 NA
GLM DIA S2 49707173 2 49707173 | 2.11E-07 NA
GLM DIA S2_7733127 2 7733127 | 2.16E-07 NA
GLM DIA S2 7733148 2 7733148 | 2.16E-07 NA
GLM DIA S2_3097857 2 3097857 | 2.29E-07 NA
GLM DIA S7_122076997 7 122076997 | 2.44E-07 NA
GLM DIA S1 100825248 1 100825248 | 2.56E-07 NA
GLM DIA S2_2628047 2 2628047 | 2.63E-07 NA
GLM DIA S2 202639340 2 202639340 | 2.72E-07 NA
GLM DIA S2_6994128 2 6994128 | 2.76E-07 NA
GLM DIA S7_122077001 7 122077001 | 2.77E-07 NA
GLM DIA S3_202051330 3 202051330 | 2.88E-07 NA
GLM DIA S2_4876525 2 4876525 | 2.88E-07 NA
GLM DIA S2 9011328 2 9011328 | 2.92E-07 NA
GLM DIA S2_13349544 2 13349544 | 2.95E-07 NA
GLM DIA S7 11476601 7 11476601 | 2.99E-07 NA
GLM DIA S4 62412368 4 62412368 | 3.15E-07 NA
GLM DIA S3_20534762 3 20534762 | 3.16E-07 NA
GLM DIA S2 3866630 2 3866630 | 3.21E-07 NA
GLM DIA S2_3866645 2 3866645 | 3.21E-07 NA
GLM DIA S3 184237812 3 184237812 | 3.22E-07 NA
GLM DIA S3_2067782 3 2067782 | 3.37E-07 NA
GLM DIA S2 202635915 2 202635915 | 3.42E-07 NA
GLM DIA S2 3773762 2 3773762 | 3.42E-07 NA
GLM DIA S4_ 62695364 4 62695364 | 3.47E-07 NA
GLM DIA S2 6177736 2 6177736 | 3.48E-07 NA
GLM DIA S2_7743653 2 7743653 | 3.50E-07 NA
GLM DIA S8 17059625 8 17059625 | 3.79E-07 NA
GLM DIA S2_13299683 2 13299683 | 3.93E-07 NA
GLM DIA S2_9119197 2 9119197 | 4.03E-07 NA
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GLM DIA S2_3104647 2 3104647 | 4.09E-07 NA
GLM DIA S1 193164284 1 193164284 | 4.11E-07 NA
GLM DIA S2_202528876 2 202528876 | 4.27E-07 NA
GLM DIA S3_2767231 3 2767231 | 4.34E-07 NA
GLM DIA S4 121563375 4 121563375 | 4.38E-07 NA
GLM DIA S8 37808019 8 37808019 | 4.46E-07 NA
GLM DIA S2 12011959 2 12011959 | 4.68E-07 NA
GLM DIA S1_281950731 1 281950731 | 4.68E-07 NA
GLM DIA S1 253308208 1 253308208 | 4.79E-07 NA
GLM DIA S6_139619665 6 139619665 | 5.04E-07 NA
GLM DIA S2_3795762 2 3795762 | 5.14E-07 NA
GLM DIA S2 4891051 2 4891051 | 5.19E-07 NA
GLM DIA S8 17059371 8 17059371 | 5.23E-07 NA
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Supplementary Table 2. All lines included in 384 Ames Panel Association mapping population.

IvP IVNO Genotype name TAXON COUNTRY STATE
Ames | 2332 Bei 10 = North 10 Zea mays subsp. mays China

Ames | 2336 52220 Zea mays subsp. mays China

Ames | 2523 38-11R PARENT HB 19 INB | Zea mays subsp. mays Portugal

Ames | 14115 Va35C Zea mays subsp. mays United States Virginia
Ames | 14116 Va36A Zea mays subsp. mays United States Virginia
Ames | 19000 VaWeé Zea mays subsp. mays United States Virginia
Ames | 19008 Va24 Zea mays subsp. mays United States Virginia
Ames | 19010 Va37 Zea mays subsp. mays United States Virginia
Ames | 19011 Va38 Zea mays subsp. mays United States Virginia
Ames | 19012 Va39 Zea mays subsp. mays United States Virginia
Ames | 19013 Vad6 Zea mays subsp. mays United States Virginia
Ames | 19016 Va59 Zea mays subsp. mays United States Virginia
Ames | 19019 Vadl Zea mays subsp. mays United States Virginia
Ames | 19293 W19 Zea mays subsp. mays United States Indiana
Ames | 19308 A634 Zea mays subsp. mays United States Minnesota
Ames | 19313 C123 Zea mays subsp. mays United States Connecticut
Ames | 19318 H107 Zea mays subsp. mays United States Indiana
Ames | 19319 H95 Zea mays subsp. mays United States Indiana
Ames | 19326 R168 Zea mays subsp. mays United States Illinois
Ames | 19327 Tx303 Zea mays subsp. mays United States Texas
Ames | 19328 Va22 Zea mays subsp. mays United States Virginia
Ames | 20119 Mo40 Zea mays subsp. mays United States Missouri
Ames | 20137 H25W Zea mays subsp. mays United States Indiana
Ames | 22016 C15 Zea mays subsp. mays United States Connecticut
Ames | 22017 C18 Zea mays subsp. mays United States Connecticut
Ames | 23410 A265 Zea mays subsp. mays United States Minnesota
Ames | 23413 A286 Zea mays subsp. mays United States Minnesota
Ames | 23435 A427 Zea mays subsp. mays United States Minnesota
Ames | 23456 A617 Zea mays subsp. mays United States Minnesota
Ames | 23466 A630 Zea mays subsp. mays United States Minnesota
Ames | 23471 A633 Zea mays subsp. mays United States Minnesota
Ames | 23474 A636 Zea mays subsp. mays United States Minnesota
Ames | 23475 A637 Zea mays subsp. mays United States Minnesota
Ames | 23478 A643 Zea mays subsp. mays United States Minnesota
Ames | 23479 A644 Zea mays subsp. mays United States Minnesota
Ames | 23480 A645 Zea mays subsp. mays United States Minnesota
Ames | 24705 MS4 Zea mays subsp. mays United States Michigan
Ames | 24711 MS68 Zea mays subsp. mays United States Michigan
Ames | 24713 MS72 Zea mays subsp. mays United States Michigan
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Ames | 24716 MS76 Zea mays subsp. mays United States Michigan
Ames | 24718 MS78 Zea mays subsp. mays United States Michigan
Ames | 24720 MS80 Zea mays subsp. mays United States Michigan
Ames | 24723 MS91 Zea mays subsp. mays United States Michigan
Ames | 24727 MS106 Zea mays subsp. mays United States Michigan
Ames | 24730 MS132 Zea mays subsp. mays United States Michigan
Ames | 24732 MS141 Zea mays subsp. mays United States Michigan
Ames | 24735 MS198 Zea mays subsp. mays United States Michigan
Ames | 24747 MS222 Zea mays subsp. mays United States Michigan
Ames | 24748 MS223 Zea mays subsp. mays United States Michigan
Ames | 24749 MS224 Zea mays subsp. mays United States Michigan
Ames | 24751 MS226 Zea mays subsp. mays United States Michigan
Ames | 24989 Va99 Zea mays subsp. mays United States Virginia
Ames | 25372 Pa91HT1 Zea mays subsp. mays United States Pennsylvania
Ames | 26021 P8 Zea mays subsp. mays United States Indiana
Ames | 26120 CI120 Zea mays subsp. mays United States Missouri
Ames | 26743 WX38-11 Zea mays subsp. mays United States Iowa
Ames | 26774 H14 Zea mays subsp. mays United States Indiana
Ames | 26775 H19 Zea mays subsp. mays United States Indiana
Ames | 26776 H22w Zea mays subsp. mays United States Indiana
Ames | 26777 H23w Zea mays subsp. mays United States Indiana
Ames | 26778 H26w Zea mays subsp. mays United States Indiana
Ames | 26779 H27w Zea mays subsp. mays United States Indiana
Ames | 26781 H29w Zea mays subsp. mays United States Indiana
Ames | 26783 H41 Zea mays subsp. mays United States Indiana
Ames | 26788 H50 Zea mays subsp. mays United States Indiana
Ames | 26790 H52 Zea mays subsp. mays United States Indiana
Ames | 26791 H55 Zea mays subsp. mays United States Indiana
Ames | 26792 H59 Zea mays subsp. mays United States Indiana
Ames | 26795 HS88 Zea mays subsp. mays United States Indiana
Ames | 26909 Mo41 Zea mays subsp. mays United States Missouri
Ames | 27017 CH705-8 Zea mays subsp. mays Canada Ontario
Ames | 27018 CH711-10 Zea mays subsp. mays Canada Ontario
Ames | 27019 CH732-12 Zea mays subsp. mays Canada Ontario
Ames | 27020 CH741-6 Zea mays subsp. mays Canada Ontario
Ames | 27069 CH701-30 Zea mays subsp. mays Canada Ontario
Ames | 27122 K148 Zea mays subsp. mays United States Kansas
Ames | 27124 Kill Zea mays subsp. mays Thailand

Ames | 27125 Ki21 Zea mays subsp. mays Thailand

Ames | 27136 Mo.G Zea mays subsp. mays United States N. Carolina
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Ames | 27140 NC260 Zea mays subsp. mays United States N. Carolina
Ames | 27149 NC306 Zea mays subsp. mays United States N. Carolina
Ames | 27150 NC308 Zea mays subsp. mays United States N. Carolina
Ames | 27188 SA24 Zea mays subsp. mays United States N. Carolina
Ames | 27193 Va85 Zea mays subsp. mays United States Virginia
Ames | 27444 N1731a Zea mays subsp. mays United States Illinois
Ames | 27445 11767b Zea mays subsp. mays United States [llinois
Ames | 28186 P39 Goodman-Buckler Zea mays subsp. mays United States Indiana
Ames | 28360 Mo401 Zea mays subsp. mays United States Missouri
Ames | 28361 Mo402 Zea mays subsp. mays United States Missouri
Ames | 28366 N7A Goodman-Buckler Zea mays subsp. mays United States Nebraska
Ames | 28930 Mo30W Zea mays subsp. mays United States Missouri
Ames | 28935 Mo37 Zea mays subsp. mays United States Missouri
Ames | 28937 Mo39 Zea mays subsp. mays United States Missouri
NSL | 22630 K150 Zea mays subsp. mays United States Kansas
NSL 22635 K41 Zea mays subsp. mays United States Kansas
NSL | 28966 Oh40B Zea mays subsp. mays United States Ohio

NSL | 28968 OHg4 Zea mays subsp. mays United States Ohio

NSL 29317 R221 Zea mays subsp. mays United States linois
NSL | 30053 W22 Zea mays subsp. mays United States Wisconsin
NSL 30060 W23 Zea mays subsp. mays United States Wisconsin
NSL 30064 W24 Zea mays subsp. mays United States Wisconsin
NSL | 30071 W32 Zea mays subsp. mays United States Wisconsin
NSL 30835 SD10 Zea mays subsp. mays United States South Dakota
NSL 30863 L Zea mays subsp. mays United States Illinois
NSL 30868 R30 Zea mays subsp. mays United States [linois
NSL 30880 R105 Zea mays subsp. mays United States Illinois
NSL 30903 90 Zea mays subsp. mays United States Illinois
NSL 30905 5120B Zea mays subsp. mays United States [linois
NSL 32734 ND408 Zea mays subsp. mays United States North Dakota
NSL 32736 ND480 Zea mays subsp. mays United States North Dakota
NSL 65865 B10 Zea mays subsp. mays United States Iowa

NSL 67792 Mo307ae Zea mays subsp. mays United States Missouri
NSL 75976 IA DS 61 Zea mays subsp. mays United States Iowa

NSL 81598 A657 Zea mays subsp. mays United States Minnesota
NSL 197104 H116 Zea mays subsp. mays United States Indiana
NSL | 437893 AusTRCF 305819 Zea mays subsp. mays Australia Queensland
NSL 437896 AusTRCF 305822 Zea mays subsp. mays Australia Queensland
NSL | 437907 AusTRCF 305833 Zea mays subsp. mays Australia Queensland
NSL | 437909 AusTRCF 305835 Zea mays subsp. mays Australia Queensland
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NSL | 437910 AusTRCF 305836 Zea mays subsp. mays Australia Queensland
NSL 437913 AusTRCF 305839 Zea mays subsp. mays Australia Queensland
NSL 437923 AusTRCF 305849 Zea mays subsp. mays Australia Queensland
NSL | 437925 AusTRCF 306065 Zea mays subsp. mays Australia Queensland
NSL 437930 AusTRCF 306235 Zea mays subsp. mays Australia Queensland
NSL | 437931 AusTRCF 306236 Zea mays subsp. mays Australia New S.
Wales
NSL 437932 AusTRCF 306237 Zea mays subsp. mays Australia New S.
Wales
NSL | 437934 AusTRCF 306239 Zea mays subsp. mays Australia New S.
Wales
NSL 437935 AusTRCF 306240 Zea mays subsp. mays Australia New S.
Wales
NSL 437936 AusTRCF 306241 Zea mays subsp. mays Australia New S.
Wales
NSL 437939 AusTRCF 306244 Zea mays subsp. mays Australia Queensland
NSL 437943 AusTRCF 306254 Zea mays subsp. mays Australia Queensland
NSL 437946 AusTRCF 306257 Zea mays subsp. mays Australia Queensland
NSL | 437950 AusTRCF 306261 Zea mays subsp. mays Australia Queensland
NSL 437952 AusTRCF 306264 Zea mays subsp. mays Australia Queensland
NSL 437959 AusTRCF 306273 Zea mays subsp. mays Australia Queensland
NSL | 437960 AusTRCF 306274 Zea mays subsp. mays Australia New S.
Wales
NSL 437962 AusTRCF 306276 Zea mays subsp. mays Australia Queensland
NSL 437964 AusTRCF 306278 Zea mays subsp. mays Australia Queensland
NSL 437966 AusTRCF 306280 Zea mays subsp. mays Australia Queensland
NSL | 437967 AusTRCF 306281 Zea mays subsp. mays Australia Queensland
NSL 437968 AusTRCF 306282 Zea mays subsp. mays Australia Queensland
NSL 437971 AusTRCF 306285 Zea mays subsp. mays Australia Queensland
NSL 437973 AusTRCF 306287 Zea mays subsp. mays Australia Queensland
NSL 437976 AusTRCF 306290 Zea mays subsp. mays Australia Queensland
NSL | 437979 AusTRCF 306293 Zea mays subsp. mays Australia Queensland
NSL 437982 AusTRCF 306296 Zea mays subsp. mays Australia Queensland
NSL | 437989 AusTRCF 306303 Zea mays subsp. mays Australia Queensland
NSL | 437990 AusTRCF 306304 Zea mays subsp. mays Australia Queensland
NSL 437992 AusTRCF 306306 Zea mays subsp. mays Australia Queensland
NSL | 437993 AusTRCF 306307 Zea mays subsp. mays Australia Queensland
NSL 437994 AusTRCF 306308 Zea mays subsp. mays Australia Queensland
NSL | 437995 AusTRCF 306309 Zea mays subsp. mays Australia Queensland
NSL 437996 AusTRCF 306310 Zea mays subsp. mays Australia Queensland
NSL 438007 AusTRCF 306321 Zea mays subsp. mays Australia Queensland
NSL | 438009 AusTRCF 306323 Zea mays subsp. mays Australia Queensland
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NSL | 438010 AusTRCF 306324 Zea mays subsp. mays Australia Queensland
NSL 438019 AusTRCF 306333 Zea mays subsp. mays Australia Queensland
NSL 438021 AusTRCF 306335 Zea mays subsp. mays Australia Queensland
NSL 438022 AusTRCF 306336 Zea mays subsp. mays Australia Queensland
NSL 438023 AusTRCF 306337 Zea mays subsp. mays Australia Queensland
NSL | 438029 AusTRCF 306343 Zea mays subsp. mays Australia Queensland
NSL 438030 AusTRCF 306344 Zea mays subsp. mays Australia Queensland
NSL | 438031 AusTRCF 306345 Zea mays subsp. mays Australia Queensland
NSL 438033 AusTRCF 306347 Zea mays subsp. mays Australia Queensland
NSL 438034 AusTRCF 306348 Zea mays subsp. mays Australia Queensland
NSL | 438036 AusTRCF 306350 Zea mays subsp. mays Australia Queensland
NSL 438038 AusTRCF 306352 Zea mays subsp. mays Australia Queensland
PI 186182 INBRED 378 Zea mays subsp. mays Uruguay

PI 186185 INBRED 605 Zea mays subsp. mays Uruguay

PI 186190 INBRED 624 Zea mays subsp. mays Uruguay

PI 186192 INBRED 45 Zea mays subsp. mays Australia

PI 186193 INBRED A-243-1 Zea mays subsp. mays South Africa

PI 186199 INBRED 141 Zea mays subsp. mays Australia

PI 186215 INBRED 2-687 Zea mays subsp. mays Argentina

PI 186216 INBRED 1-1265 Zea mays subsp. mays Argentina

PI 186217 INBRED 19-86 Zea mays subsp. mays Argentina

PI 186218 INBRED 34-1141 Zea mays subsp. mays Argentina

PI 186220 INBRED 34-1196 Zea mays subsp. mays Argentina

PI 186226 INBRED 305 Zea mays subsp. mays Uruguay

PI 186227 INBRED 309 Zea mays subsp. mays Uruguay

PI 186229 INBRED 321 Zea mays subsp. mays Uruguay

PI 186230 INBRED 334 Zea mays subsp. mays Uruguay

PI 198888 4F-35 BK Zea mays subsp. mays Argentina

PI 198890 4F-203 AM 6 Zea mays subsp. mays Argentina

PI 198892 4F-234 BX 4 Zea mays subsp. mays Argentina

PI 198895 4F-285TX 15 Zea mays subsp. mays Argentina

PI 198897 4F-306 108 Zea mays subsp. mays Argentina

PI 198902 4F-345 CN 12 Zea mays subsp. mays Argentina

PI 200179 NY 3 (Neveh Yaar) Zea mays subsp. mays Israel

PI 200182 NY 159 (Neveh Yaar) Zea mays subsp. mays Israel

PI 200184 NY 166 (Neveh Yaar) Zea mays subsp. mays Israel

PI 200185 NY 188 (Neveh Yaar) Zea mays subsp. mays Israel

PI 200187 NY 318 (Nevey Yaar) Zea mays subsp. mays Israel

PI 200188 NY 364 (Neveh Yaar) Zea mays subsp. mays Israel

PI 200193 NY 643 (Neveh Yaar) Zea mays subsp. mays Israel
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PI 200194 NY 971 (Neveh Yaar) Zea mays subsp. mays Israel

PI 200196 NY 1000 (Neveh Yaar) Zea mays subsp. mays Israel

PI 221734 A14 INBRED Zea mays subsp. mays South Africa Transvaal
(POTCHEFSTROOM
PEARL)

PI 221735 A15-1 INBRED Zea mays subsp. mays South Africa Transvaal
(POTCHEFSTROOM
PEARL)

PI 221736 A16-3-2 INBRED Zea mays subsp. mays South Africa Transvaal
(POTCHEFSTROOM
PEARL)

PI 221747 E205-1-1-1 INBRED (S5 Zea mays subsp. mays South Africa Transvaal
SYN. ANVELD)

PI 221773 A415-1-3 INBRED Zea mays subsp. mays South Africa Transvaal

PI 221775 A436-1 INBRED Zea mays subsp. mays South Africa Transvaal

PI 221789 E683-1-2-1(S5) INBRED Zea mays subsp. mays South Africa Transvaal

PI 221790 E684-1-1-1(S5) INBRED Zea mays subsp. mays South Africa Transvaal

PI 221804 A242-2(S10) INBRED Zea mays subsp. mays South Africa Transvaal
(PERUVIAN)

PI 221805 A243-1-2(S10) INBRED Zea mays subsp. mays South Africa Transvaal
(PERUVIAN)

PI 221806 A256-1(S10) INBRED Zea mays subsp. mays South Africa Transvaal
(PERUVIAN)

PI 221811 A302-1-2(S10) INBRED Zea mays subsp. mays South Africa Transvaal
(SERVENTINA)

PI 221813 A325-1(S10) INBRED Zea mays subsp. mays South Africa Transvaal
(HOTNOT)

PI 221820 C410-1(F11) INBRED Zea mays subsp. mays South Africa Transvaal
(HOTNOT CROSSES)

PI 257514 FV18l1 Zea mays subsp. mays France

PI 257517 FC46 Zea mays subsp. mays France

PI 267171 T8445 INBRED Zea mays subsp. mays Former Soviet

Union

PI 303925 NO. 1004 INBRED Zea mays subsp. mays Spain

PI 303926 NO. 1019 INBRED Zea mays subsp. mays Spain

PI 303928 NO. 1032 INBRED Zea mays subsp. mays Spain

PI 303929 NO. 1037 INBRED Zea mays subsp. mays Spain

PI 303930 NO. 1049 INBRED Zea mays subsp. mays Spain

PI 303932 NO. 1068 INBRED Zea mays subsp. mays Spain

PI 303933 NO. 1070 INBRED Zea mays subsp. mays Spain

PI 303936 NO. 1174 INBRED Zea mays subsp. mays Spain

PI 303940 NO. 1201 INBRED Zea mays subsp. mays Spain

PI 303943 TN 53-1-2 Zea mays subsp. mays Taiwan

PI 340812 NY 121 (Neveh Yaar) Zea mays subsp. mays Israel
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PI 340813 NY 123 (Neveh Yaar) Zea mays subsp. mays Israel

PI 340817 G3T5 Zea mays subsp. mays Romania

PI 340821 G22T122 Zea mays subsp. mays Romania

PI 340823 G14 T133 Zea mays subsp. mays Romania

PI 340824 GI5TI134 Zea mays subsp. mays Romania

PI 340827 T141 Zea mays subsp. mays Romania

PI 340875 IA DS 43-W Zea mays subsp. mays United States Iowa

PI 391660 CHI-41 Zea mays subsp. mays China Shaanxi

PI 405705 CHAN 11 INBRED Zea mays subsp. mays China

PI 405711 BAI TOU SHUANG IN.(JI Zea mays subsp. mays China

095

PI 406106 A14NW Zea mays subsp. mays South Africa

PI 406107 AS5TN Zea mays subsp. mays South Africa

PI 406108 AISNW Zea mays subsp. mays South Africa

PI 406110 A178N Zea mays subsp. mays South Africa

PI 406123 A579N Zea mays subsp. mays South Africa

PI 406124 A622N Zea mays subsp. mays South Africa

PI 406125 A641N Zea mays subsp. mays South Africa

PI 406127 A664N Zea mays subsp. mays South Africa

PI 415088 4581 INBRED Zea mays subsp. mays Hungary

PI 506411 Mo6411 Zea mays subsp. mays United States Oklahoma

PI 506412 M6415 Zea mays subsp. mays United States Oklahoma

PI 506413 Mo6421 Zea mays subsp. mays United States Oklahoma

PI 508277 SD42 Zea mays subsp. mays United States South Dakota

PI 511309 NC252 Zea mays subsp. mays United States North
Carolina

PI 511310 NC254 Zea mays subsp. mays United States North
Carolina

PI 511311 NC256 Zea mays subsp. mays United States North
Carolina

PI 517973 Pa879 Zea mays subsp. mays United States Pennsylvania

PI 517974 Pa880 Zea mays subsp. mays United States Pennsylvania

PI 524970 SD46 Zea mays subsp. mays United States South Dakota

PI 531081 Pa356 Zea mays subsp. mays United States Pennsylvania

PI 531082 Pa376 Zea mays subsp. mays United States Pennsylvania

PI 531085 NC262 Zea mays subsp. mays United States N. Carolina

PI 537097 LH195 Zea mays subsp. mays United States

PI 537099 LH205 Zea mays subsp. mays United States

PI 538010 LH206 Zea mays subsp. mays United States

PI 538011 LH220Ht Zea mays subsp. mays United States

PI 538229 SD53 Zea mays subsp. mays United States South Dakota
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PI 538242 SD106 Zea mays subsp. mays United States South Dakota
PI 538244 SD108 Zea mays subsp. mays United States South Dakota
PI 539924 LH202 Zea mays subsp. mays United States

PI 542716 NP87 Zea mays subsp. mays United States Nebraska
PI 542777 HP72-11 Zea mays subsp. mays United States Indiana

PI 542955 Va4 Zea mays subsp. mays United States Virginia

PI 542956 Va5 Zea mays subsp. mays United States Virginia

PI 547088 LH208 Zea mays subsp. mays United States

PI 550442 Mo20W Zea mays subsp. mays United States Missouri
PI 550469 B46 Zea mays subsp. mays United States Iowa

PI 550473 B73 Zea mays subsp. mays United States Iowa

PI 550496 H102 Zea mays subsp. mays United States Indiana

PI 550497 H103 Zea mays subsp. mays United States Indiana

PI 550527 H111 Zea mays subsp. mays United States Indiana

PI 550555 NC250 Zea mays subsp. mays United States N. Carolina
PI 550558 DES8I11 Zea mays subsp. mays United States Delaware
PI 550903 89199 Zea mays subsp. mays Cameroon

PI 558520 MolW Zea mays subsp. mays United States Missouri
PI 558521 Mo2RF Zea mays subsp. mays United States Missouri
PI 558532 Mol7 Zea mays subsp. mays United States Missouri
PI 559380 ICI193 Zea mays subsp. mays United States

PI 559381 ICI 441 Zea mays subsp. mays United States

PI 559382 IC1 740 Zea mays subsp. mays United States

PI 559383 ICI1 893 Zea mays subsp. mays United States

PI 559918 NQ508 Zea mays subsp. mays United States Illinois

PI 561694 NYRD4058 Zea mays subsp. mays United States New York
PI 568158 N199 Zea mays subsp. mays United States Nebraska
PI 572413 Oh599 Zea mays subsp. mays United States Ohio

PI 583352 Mo47 Zea mays subsp. mays United States Missouri
PI 583846 HI126W Zea mays subsp. mays United States Indiana

PI 587126 C13 Zea mays subsp. mays United States Connecticut
PI 587127 H105W Zea mays subsp. mays United States Indiana

PI 587128 H84 Zea mays subsp. mays United States Indiana

PI 587131 HP301 Zea mays subsp. mays United States Indiana

PI 587138 AS554 Zea mays subsp. mays United States Minnesota
PI 587140 A632 Zea mays subsp. mays United States Minnesota
PI 587150 Va35s Zea mays subsp. mays United States Virginia

PI 592735 R230 Zea mays subsp. mays United States linois

PI 593009 Hi27 Zea mays subsp. mays United States Hawaii

PI 593015 Hi34 Zea mays subsp. mays United States Hawaii
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PI 594050 N501 Zea mays subsp. mays United States Nebraska
PI 594051 N502 Zea mays subsp. mays United States Nebraska
PI 594058 N509 Zea mays subsp. mays United States Nebraska
PI 594059 N510 Zea mays subsp. mays United States Nebraska
PI 594060 N511 Zea mays subsp. mays United States Nebraska
PI 594061 N512 Zea mays subsp. mays United States Nebraska
PI 594063 N514 Zea mays subsp. mays United States Nebraska
PI 594064 N515 Zea mays subsp. mays United States Nebraska
PI 594065 N516 Zea mays subsp. mays United States Nebraska
PI 594066 N517 Zea mays subsp. mays United States Nebraska
PI 594067 N518 Zea mays subsp. mays United States Nebraska
PI 594070 N521 Zea mays subsp. mays United States Nebraska
PI 594071 N523 Zea mays subsp. mays United States Nebraska
PI 594072 N524 Zea mays subsp. mays United States Nebraska
PI 594073 NS525 Zea mays subsp. mays United States Nebraska
PI 594074 N526 Zea mays subsp. mays United States Nebraska
PI 594075 N528 Zea mays subsp. mays United States Nebraska
PI 594076 N529 Zea mays subsp. mays United States Nebraska
PI 594077 N530 Zea mays subsp. mays United States Nebraska
PI 594078 N532 Zea mays subsp. mays United States Nebraska
PI 594079 N533 Zea mays subsp. mays United States Nebraska
PI 594080 N534 Zea mays subsp. mays United States Nebraska
PI 594081 NS535 Zea mays subsp. mays United States Nebraska
PI 594084 N538 Zea mays subsp. mays United States Nebraska
PI 594087 N541 Zea mays subsp. mays United States Nebraska
PI 594088 N542 Zea mays subsp. mays United States Nebraska
PI 594089 N543 Zea mays subsp. mays United States Nebraska
PI 594090 N544 Zea mays subsp. mays United States Nebraska
PI 595366 N209 Zea mays subsp. mays United States Nebraska
PI 595541 CML 247 Zea mays subsp. mays Mexico Federal Dis.
PI 596354 N211 Zea mays subsp. mays United States Nebraska
PI 596355 N216 Zea mays subsp. mays United States Nebraska
PI 596357 N218 Zea mays subsp. mays United States Nebraska
PI 597578 N546 Zea mays subsp. mays United States Nebraska
PI 600755 LP1 CMS HT Zea mays subsp. mays United States

PI 600772 FR19 Zea mays subsp. mays United States linois
PI 600944 LH39 Zea mays subsp. mays United States Iowa

PI 600957 LH74 Zea mays subsp. mays United States Iowa

PI 600958 FAPW Zea mays subsp. mays United States

PI 601008 PHG35 Zea mays subsp. mays United States Iowa
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PI 601009 B47 Zea mays subsp. mays United States Iowa

PI 601037 G80 Zea mays subsp. mays United States Iowa

PI 601079 LH123HT Zea mays subsp. mays United States Iowa

PI 601210 78004 Zea mays subsp. mays United States

PI 601301 78002A Zea mays subsp. mays United States

PI 601319 PHG72 Zea mays subsp. mays United States Iowa

PI 601320 PHG84 Zea mays subsp. mays United States Iowa

PI 601322 PHZ51 Zea mays subsp. mays United States Iowa

PI 601403 LHI156 Zea mays subsp. mays United States

PI 601438 78371A Zea mays subsp. mays United States

PI 601441 PB80 Zea mays subsp. mays United States

PI 601466 LH59 Zea mays subsp. mays United States

PI 601468 PHK?29 Zea mays subsp. mays United States Iowa

PI 601489 740 Zea mays subsp. mays United States Minnesota
PI 601493 LH149 Zea mays subsp. mays United States

PI 601494 LH65 Zea mays subsp. mays United States

PI 601499 PHT77 Zea mays subsp. mays United States Iowa

PI 601500 PHV63 Zea mays subsp. mays United States Iowa

PI 601501 PHW65 Zea mays subsp. mays United States Iowa

PI 601561 6M502 Zea mays subsp. mays United States

PI 601574 PHT60 Zea mays subsp. mays United States Iowa

PI 601610 H8431 Zea mays subsp. mays United States Minnesota
PI 601684 WIL900 Zea mays subsp. mays United States

PI 601685 WIL901 Zea mays subsp. mays United States

PI 601686 WIL903 Zea mays subsp. mays United States

PI 601725 J8606 Zea mays subsp. mays United States Minnesota
PI 601726 L 127 Zea mays subsp. mays United States

PI 601728 L 139 Zea mays subsp. mays United States

PI 601729 W8555 Zea mays subsp. mays United States Minnesota
PI 601777 PHK35 Zea mays subsp. mays United States Iowa

PI 601778 PHM10 Zea mays subsp. mays United States Iowa

PI 601782 PHN73 Zea mays subsp. mays United States Iowa

PI 601784 PHP55 Zea mays subsp. mays United States Iowa

PI 638550 N552 Zea mays subsp. mays United States Nebraska
PI 601788 PHT22 Zea mays subsp. mays United States Iowa

PI 601789 PHV37 Zea mays subsp. mays United States Iowa

PI 604606 N527 Zea mays subsp. mays United States Nebraska
PI 606329 DEI Zea mays subsp. mays United States Delaware
PI 606768 SD40 Zea mays subsp. mays United States South Dakota
PI 606769 SD41 Zea mays subsp. mays United States South Dakota
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PI

607512

N7A

Zea mays subsp. mays

United States

Nebraska

PI

633840

Tx714

Zea mays subsp. mays

United States

Texas
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Figure 1. Linkage disequilibrium decay measuring 1> over base pairs across all 10 maize chromosomes.

Figure 2. Population structure estimates based on 1665 SNPs distributed across the maize
genome. The area of 2 different colors (Red and Green) illustrates the proportion of each
subpopulation based on these SNPs markers.
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Bushiness

Chromosome

Figure 3. Manhattan plot showing associations between individual polymorphisms
through the entire maize genome for BSH. MLM was used fitting both Q and K matrix.
Only one marker on chromosome 2 was found to be significant at p<5.23 x 107
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Figure 4. Manhattan plot of GWAS using MLM. Marker trait associations with SRL

are shown across the entire genome. Peaks are found on chromosome 3 only using a
threshold of p<5.23 x 107



135

100+

20mH

o -
mDD E‘EI WE‘IEI 150 ZEID 250 \' o
Convex Area Network Area
—\ » g \
F’l‘ Find number of F“\
! secondary roots £ Find number of
\\ at every height \\ secondary roots
(number of \ at every height Maximum
roots in each of ‘| (number of Number of
i : i
2 ~ the boxes) roots in each of B _ Roots
a — the boxes) ‘
Find the 84% Median
percentile value Find the median
number of roots
ot ) -
o e/l : -
Maximum Number of Roots : Bushiness
\_ N
Upper \ .
L \ Find number of
one-third
secondary roots
\‘1 _ . Total Root at every height.
' 1 Length \
L‘ Find the mean
/ \ location of this
4‘/ 1
7 Lower distribution
two-third
Total
Root
\ - Length
7 i \ -
. .. TRL )z
Length distribution, ﬁ Perimeter Center of Point

Supplementary Figure 1. [llustrations of the parameters measured by ARIA for seedling root traits

extracted for GWAS.




136

Perimeter
L]
ol
L]
L]
©
—_
2
=]
S < o
o o
o -
T T T T T T T T T T
1 2 3 4 5 6 T 8 9 10
Chromosome
Median
» 4
L]
i
—
2 -
il
o 4
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Chromosome
Total Surface Area
o
*
gl
L]
-
Py w - Lol ’
o 9,
- R -
=] L ) 4 ¥
o]
< =
o )
o
T T T T T T T T T T
1 2 3 4 5 8 7 8 9 10
Chromasome
Diameter

logo{p)

Chromasome

Supplementary Figure 2. Genome-wide Manhattan plots of significant loci using GLM.
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CHAPTER FIVE

GENOMIC PREDICTION OF SEEDLIGN ROOT LENGTH IN MAIZE
(ZEA MAYS L.)

Jordon Pace!”, Xiaoging Yu!, and Thomas Liibberstedt!

Paper is in preparation for submission to the Plant Journal. Abstract, structure, and references are
all formatted according to journal standards.

Summary:

Genotypes with extreme phenotypes are valuable for studying “difficult” quantitative traits.
Genomic prediction (GP) might allow identifying such extremes, by phenotyping a training
population of limited size and predicting genotypes with extreme phenotypes in large sequences
germplasm collections. We tested this approach employing seedling root traits in maize and the
extensively genotyped Ames Panel. A training population made up of 384 inbred lines from the
Ames Panel was phenotyped by extracting root traits from images using the software program
ARIA. A Ridge Regression BLUP (RR-BLUP) strategy was used to train a GP model. Genomic
Estimated Breeding Values (GEBVs) for the trait Total Root Length (TRL) were predicted for
2,431 inbred lines, which had previously been genotyped by sequencing. Selections were made
for TRL 100 extreme lines each with predicted longest or shortest TRL were validated for TRL
and other root traits. The two predicted extreme groups with regard to TRL were significantly
different (p=0.0001). The difference of predicted means for TRL between groups was 145.1 cm,
and 118.7 cm for observed means, which were significantly different (p=0.001). The accuracy of
predicting the rank 1-200 of the validation population based on TRL, longest to shortest was

determined using a Spearman correlation to be p=0.55. Taken together, our results support that
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GP may be a useful approach to identify the most informative genotypes in sequenced

germplasm collections to facilitate experiments for quantitative inherited traits.

Introduction

The ability to predict superior genotypes with high accuracy is of key importance in plant
breeding. Marker assisted selection (MAS) has become a routine procedure in commercial
breeding programs because of an increased gain per unit time when compared to phenotypic
selection (Eathington et al. 2007). Genomic Prediction (GP), a form of MAS, has become a
valuable tool in animal breeding and recently been shown to be reliable in crop breeding as well
(Sallam et al. 2014). GP is not only a promising approach for breeding purposes, but also for
basic research. GP enables to identify extreme genotypes for traits that are difficult to measure
for large numbers of individuals. In this way the most informative genotypes for mapping or
expression studies can be identified in large sequenced genotype collections, which increasingly
become available for crop species. The Ames Panel in maize (Romay et al. 2013) for example,
consists of 2815 inbred lines with genotyping by sequencing (GBS) based single nucleotide
polymorphism (SNP) data readily available. Other collections of genetic resources in maize
include the nested association mapping population (NAM) (Yu et al. 2008), the maize

association mapping panel (http://www.panzea.org) (Yu et al. 2006), and the IBM population
(Lee et al. 2002) (MaizeDB, http://www.agron.missouri.edu/), all three with readily available
genotypic and phenotypic data.

When performing quantitative trait locus (QTL) or association mapping, selecting parents

or individuals used for the mapping population is critically important. Use of lines with extreme

phenotypes will ensure that the population is segregating for QTL controlling a trait of interest
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(Mackay and Powell 2007). Identifying extreme genotypes is the basis of bulked segregant
analysis (BSA), originally used to identify markers for disease resistance genes in crops in which
genotypes with contrasting phenotypes are pooled in separate groups to identify markers
associated with those traits (Michelmore et al. 1991). Using GP, subsets of large diversity panels
can be used to collect phenotype data and train a prediction model for traits of interest while
exploiting markers covering the genome at high density. GP could then be performed on the
complete panel to identify genotypes with likely extreme phenotypes. This strategy would
decrease the amount of resources needed for often laborious and costly phenotyping as only the
training population requires intense phenotyping prior to validation (Meuwissen ef al. 2001).

This would facilitate studying “difficult” traits with the genetically most informative genotypes.

There are numerous GP approaches, notably Bayesian and mixed model procedures. No
single method is superior in all circumstances (Bernardo and Yu 2007, Lorenzana and Bernardo
2009, Heslot ef al. 2012). Ridge regression best linear unbiased prediction (RR-BLUP)
(Meuwissen et al. 2001) has been shown to be a reliable model in providing good prediction
accuracy for a range of quantitative traits in crop species (Heslot et al. 2012). The mixed model
used by RR-BLUP shrinks all marker effects equally with the same variance for a trait. This is in
accordance with the infinitesimal model of quantitative genetics and explains why RR-BLUP
performs well for complex trait predictions (Clark ez al. 2011). Computationally, RR-BLUP is
less demanding than Bayes A, B, and Cr, making it one of the more approachable and suggested
methods of genomic prediction (Heslot ez al. 2012). GP is conducted through a three-step
process. First, a training panel of a representative sample of individual lines is developed in order
to obtain estimates for marker effects. Second, this marker information can be used to determine

genomic estimated breeding values (GEBVs) for any genotype with available marker
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information. Finally, genotypes are selected based on GEBVs in a breeding population
(Meuwissen 2001). When performing any form of GP, the selection of the training panel is of
key importance as it should be a good representation of the breeding population (Heffner ef al.
2009). For populations that are many generations apart, or quite different in composition, an
increased number of genotypes are needed to increase prediction accuracy (Rutkoski 2010).
Another challenge with GP is accuracy of phenotyping. High accuracy concerning phenotype
measurements in the training panel is critical for prediction of GEBVs based solely on genomic
information. Prediction accuracies are affected by the amount of linkage disequilibrium (LD)
within the training population as compared to the validation population, genetic relationships
between the validation and training population, the genetic architecture and heritability of target
traits, marker density, and training population size (Hayes et al. 2009, Luan et al. 2009, Zhong et

al. 2009).

Difficult to measure quantitative traits that would benefit from the use of GP in maize or
any crop species are root architectural traits. The maize root system is an integral part of plant
growth and productivity (Lynch, 1995, Aiken and Smucker 1996). Root architecture plays a
major role in plant nitrogen use efficiency (NUE) as well as drought tolerance (Ribaut et al.
2007). The large variability in root architecture is an unexploited opportunity to select for
beneficial root architectural traits that increases crop production in nutrient and moisture
deficient environments (Lynch et al. 2014). Root traits have not been used for selection as they
show generally low heritability, and there are no accurate, fast measurements, allowing high-
throughput field measurements comparable to determining grain yield using high-throughput
harvesting equipment such as combines (Malamy 2005, Tuberosa 2012). One method to

alleviate some of these issues is through the development of software that can extract multiple
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root traits from a single image (Pace et al. 2014) enabling a more high-throughput approach to
root architecture characterization. Another currently available trait collection method involves
collection of mature root systems in field trials using both mobile reproducible image acquisition

and later algorithm based trait extraction (Bucksch et al. 2014).

Recent studies have shown that phenotyping roots at a seedling stage in hydroponic
conditions could help to alleviate some of the time and resources required for large scale root
studies (Kumar et al. 2014, Pace et al. 2015, and Pace et al. 2014). Genomic prediction for root
traits at the seedling stage has not yet been tested in order to identify extreme genotypes or to
determine prediction accuracy. The objectives of this study were to 1) determine accuracy of
genomic prediction based on three simple root traits; 2) determine genomic prediction’s ability to
accurately rank genotypes for root traits and identify genotypes with extreme root lengths; 3)
determine the effects of combining the training population and validation population on cross-
validation accuracy estimates; and 4) validate a previous GWAS study within a larger population

for root traits collected by ARIA.

Results

Training population cross-validation

Phenotypic measurements of the trait TRL, along with genotypic information encompassing
186,849 markers across the maize genome of the 384 line training population were used along
with RR-BLUP to train the prediction model. Ridge Regression BLUP (RR-BLUP) was chosen
because it is less computationally intensive and it resulted in high accuracies in predicting
quantitative traits with multiple small effect QTL such as TRL (Heslot et a/l. 2012). In order to

determine, if TRL was a suitable trait for GP, cross-validation was completed with a random
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60/40 training/validation population split within the 384 inbred line population. Average
accuracy was calculated after running RR-BLUP with 500 iterations. Within each iteration,
randomly selected lines were used as training or validation population, respectively accuracies
ranged from r=0.10-0.56 with an average accuracy of 1=0.42 (Figure 1). Two additional root
length based traits were used for cross validation, Primary Root Length (PRL) and Secondary
Root Length (SEL). SEL is closely correlated with TRL (r=0.98), while PRL showed a lower
correlation (r=0.70) (Pace et al. 2015). Using the same strategy as for TRL, iterating cross-
validations 500 times for PRL gave similar accuracy ranges as for TRL, ranging from r=0.10-
0.58, with an average accuracy of r=0.44 (Figure 1). For SEL one cross-validation run gave a
similar accuracy of r=0.45. When running RR-BLUP with 500 iterations, the range and standard
deviation of accuracies decreased to r=0.30-0.56, with an average accuracy of r=0.43 (Figure 1).
All three root length based traits had similar ranges and average accuracy estimates from cross-
validation within the training population. These accuracy values gave confidence that TRL was

suitable in giving sufficiently accurate predictions.

Group and ranking prediction accuracy

The same marker set was used to predict root length traits in the validation population. The
validation population consisted of the remaining 2,431 maize inbred lines of the Ames Panel
(Romay et al. 2013). Based on estimated marker effects, GEBVs of TRL on all 2,431 remaining
inbred lines were predicted. Selections for empirical validation were made by selecting the 100
genotypes with the highest TRL estimates and the 100 genotypes with the lowest TRL estimates.
These 200 genotypes were tested in replicated experiments under the same growing conditions as
the training population. These selections were based on TRL alone and were not the predicted

extremes for PRL and SEL.
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To determine whether GP accurately predicted which inbred lines had long or short root
systems, a group effect was added to the linear model in order to analyze the difference in means
for each group. Lsmeans were calculated for each subset with predicted long (LONG) or short
root systems (SHORT). LONG had an observed TRL Lsmean of 295.1 c¢m, larger than the
predicted average GEBV for LONG of 246.1 cm. SHORT, had an observed TRL Lsmean of
176.4 cm (Table 1), also larger than the predicted GEBV for TRL at 100.8 cm. The observed
difference for average TRL between LONG and SHORT was 118.7 cm while the predicted
difference of averages was 145.3 cm. To determine, if the difference between the LONG and
SHORT groups were accurately captured by GP, pairwise comparisons between LONG and
SHORT were made for both the predicted and observed values. Individuals were ranked longest
to shortest within each group, the difference between corresponding ranks 1-100 (Highest ranked
predicted genotype TRL in LONG subtracted by the highest predicted genotype in SHORT),
were calculated for both groups. The Lsmean of those differences between groups was than
calculated for both predicted and observed values. Group differences (predicted difference
Lsmean = 144.7 and observed difference Lsmean = 120.2) were found significantly different (p
=0.001). This significant difference between extreme group differences between the groups we
observed vs. predictions indicates that although GP could accurately identify extreme genotypes,
the predicted difference between the two groups was not equal to the difference observed. This
difference between group means for the predicted mean GEBVs and observed Lsmeans is likely
due to the overall underestimation of TRL seen throughout the validation population and can be
attributed to the low accuracy within each group (LONG: r=0.12, SHORT: r=0.10). These
observed group values Lsmeans for TRL were found to be significantly different (p=0.0001).

Furthermore, the ranking of each genotype’s predicted and observed TRL values were compared
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to determine our ability of accurately predicting the rank of selected genotypes by root length.
The Spearman ranking correlation between predicted and observed ranks for the 200 genotypes
was p=0.55 and significant at p=0.0001 (Figure 2). Ranking accuracy within each 100 line
validation group was much lower for TRL p=0.10 for LONG and below p=0.05 for SHORT. For
comparison, PRL and SEL were also predicted upon within the same 200 line validation
population. The spearman ranking correlation for SEL was very similar to TRL at p=0.54 while
PRL was lower at p=0.38 (Table 2). The same trend of lower accuracies within each group was
observed for both PRL and SEL with PRL having the highest within group accuracy within the

LONG group at p=0.29.

Genomic prediction

Predicted TRL GEBVs for the validation population ranged from a minimum of 72.6 cm to a
maximum length of 286.7 cm. Observed TRL Lsmean values for the validation population had a
much wider range from 37.1 cm minimum to a maximum observed of 532.3 cm. Taken as a
whole, the Pearson correlation between predicted TRL of the validation population and observed
TRL for the validation population showed an accuracy of r=0.59 (Figure 3). To determine within
group accuracies, Pearson correlations were calculated within each of the two subgroups.

Accuracies were much lower with r=0.12 and r=0.10 for LONG and SHORT, respectively.

To test the effect of adding the validation population on the accuracy of genomic
prediction for TRL, the observed Lsmeans for the 200 lines selected for the validation population
were added to those of the original training population to create a population consisting of 584
inbred lines. As before, a 60/40 training /validation population cross-validation test was

performed with 500 iterations. The range of accuracies was much narrower than within the
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original 384 training population. Accuracy estimates ranged from r=0.40 to r=0.60 with an
average accuracy at r=0.54, reducing the amount of standard error. For the two other length
based traits, PRL and SEL, accuracies decreased compared to the 384 line population to r=0.31

for PRL and r=0.32 for SEL (Table 3 and Figure 1).

Accuracies across subpopulations

The original 384 line training population was split into two subpopulations based on
STRUCTURE 2.3.4 analysis from previous work (Pace et al. 2015). The two subpopulations
varied in size, the larger subpopulation consists of 319 and the smaller subpopulation of 65 lines.
The larger subpopulation contains mainly non-stiff stalk and mixed group lines, the smaller
subpopulation consists of mostly stiff-stalk lines. When using the large subpopulation as a
training population, the prediction accuracy for TRL was r=0.45. In contrast, when using the
small subpopulation as a training population, accuracies were lower at r=0.29. When completing
60/40 cross validations within each sub population, the large subpopulation average accuracy
was 1=0.31 while the small subpopulation cross validation mean accuracy was r=0.39. When
using STRUCTURE 2.3.4 for the 584 line population three subpopulations were identified, Q1,
Q2, and Q3 (Figure 4), comprising of 83, 390, and 103 lines, respectively, with 8 lines highly
mixed between all three subpopulations. Using Q2 as training population to predict performance
of Q3, a prediction accuracy of r=0.37 was obtained. With Q3 as training set, a lower prediction
accuracy of r=0.21 was estimated when Q2 was the validation population. Prediction accuracy

estimates involving Q1 either as training or validation population was negative with both Q2 and

Q3.
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GWAS validation

GWAS validation of a previous study (Pace et al. 2015) was completed using the new 584
population for all traits. A mixed linear model (MLM) and general linear model (GLM) GWAS
were performed for all 22 corresponding root traits in the previous study. No markers were found
significant for TRL, SEL, or PRL using MLM, but the marker with the lowest P-value for both
TRL and SEL was the same (S5 _175865830). All three traits showed significant marker
associations using GLM, TRL with 5, SEL with 8, and PRL with 129 significant markers. All
three displayed more significant markers using GLM than compared to the previous study (Pace
et al. 2015) where TRL had one significant marker, SEL had zero significant markers, and PRL
had 11 significant markers. For SEL and TRL, marker S5 17865830 was significant and found
in an intergenic region (B73 RefGen V2). Marker S3 223308733 was significant for TRL, SEL,
and PRL at the significance cutoff of p=5.3 x 10”. This marker was found within gene model
GRMZM2G336017, which codes for a hypothetical protein with no known function or

expression data currently.
Discussion

The purpose of this study was to determine whether GP enables identification of extreme
genotypes using a subset of lines from a larger sequenced population, using maize seedling TRL
as model trait. Genetic resource collections with readily available genotype data are available for
maize; other important crops with available genetic resources include sorghum, soybean, barley,
rice and wheat (Liang et al. 2007, Morris et al. 2012, Munoz-Amatriain et al. 2014. Spindel et al.
2015, and B. Diers, personal communication). Decreasing costs in genotyping will stimulate

development of additional sequenced genetic resources in the near future. Thus, a similar GP
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strategy as presented herein will be applicable to an increasing number of species with respective
resource collections. Without the need of genotyping, GP would expedite studies of quantitative
traits. GP reduces phenotyping efforts and identifies the most informative genotypes. Smaller
subsets of lines, perhaps core collections of gene banks, could be characterized in detail for traits
of interest to train prediction models and predict extreme genotypes within large genetic resource
collections. Those selected individuals are more likely to carry rare alleles that affect traits of
interest, which, due to low allele frequencies, would otherwise be underrepresented in random

inbred line panels typically used for GWAS studies.
Identifying extreme genotypes

We evaluated, whether GP would capture significant difference between the LONG and SHORT
groups selected solely based on predictions of GEBV for TRL within a large validation
population (2431 inbred lines). The two groups LONG and SHORT, were significantly different
for TRL (p=0.0001). Thus, GP successfully predicted length of seedling roots with satisfactory
accuracy (1y,,=0.59 and ;= 0.91) when using a training population of modest size (384 inbred
lines). It should be noted, however, that a total of 24 LONG inbred lines had a shorter observed
TRL than SHORT lines. Also, neither the longest predicted nor the shortest predicted line were
actually the lines with longest or shortest TRL within their respective groups. However, both
were assigned correctly to LONG and SHORT, respectively. Predicted GEBVs for TRL were
underestimated when compared to observed values of TRL for both groups. To evaluate this, we
regressed phenotypes (y) onto GEBVs (9) (f8,5=0.82). This analysis showed that for every unit
change of our observations we only had 82% of that change explained by our predictions

resulting in the underestimated TRL predictions compared to observations. The LONG group’s
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observed average was 49.1 cm longer than predicted. For the SHORT group the observed
average TRL was 75.5 cm longer than predicted. This difference and ultimately underestimation
of TRL using RR-BLUP is likely due to the even shrinkage effect on all markers throughout the
genome (Endelman 2011). Overall, the ability of GP to capture differences between two extreme
groups for a moderately heritable trait is encouraging even though ranking was not perfectly
predicted. This approach will still reduce overall phenotyping efforts and offers a solution to

effectively identify informative individuals for mapping and other studies.

For plant breeding, the ability to predict ranking of lines is important to save resources
for further evaluation. Spearman rank correlations of predicted and observed values for TRL
were significant with moderate high accuracy of p=0.55 and adjusted prediction accuracy of
p=0.84 (Table 3). Within each group the ranking accuracy was 0.1 for LONG and even lower for
SHORT. This within grouping ranking should be considered when determining the number of
individuals selected for each extreme group as the ranking within groups will likely differ from

predictions (Daetwyler et al. 2013).

Traits PRL and SEL were evaluated for ranking accuracy. SEL showed a similar ranking
accuracy (p=0.54) as TRL, while that of PRL was lower (p=0.38) (Table 2). Again within group
ranking accuracies were much lower for both SEL and PRL for both LONG and SHORT (p=0.04
and 0.15, respectively). Accuracies of the validation population may be inflated due to the fact
that these lines were not selected at random but based on predicted extremes for long and short

roots.
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Comparison of accuracies

RR-BLUP was shown to be a suitable method for predicting root architectural traits as it
pertains to the length of roots in a controlled environmental setting. Accuracies based purely on
predicted estimates of TRL correlated to observed measurements (ry,,) ranged from r=0.21-0.54.
When looking at the adjusted accuracy (74:4) the ranges were higher at r=0.33-0.83. The higher
accuracies for TRL follow the trend described in previous prediction studies showing that an
increase in population size generally increases prediction accuracies, in particular because more
individuals are used for training the prediction model (Asoro et al. 2011, Zhong et al. 2009). By
selecting the predicted extremes, one would expect that adding these groups to the initial training

population would increase the correlation between predicted and observed phenotypes.

As selections were based solely on TRL, extreme lines for TRL are not necessarily
extreme for PRL and SEL. When performing cross-validation for SEL and PRL, both followed
the exact opposite trend when adding lines to the total population. In the initial 384 line
population, accuracies were r=0.43 and r=0.44 for SEL and PRL, respectively. After adding the
additional 200 lines from the validation population, cross-validation accuracies decreased to 0.32
and r=0.31, respectively (Table 3). This decrease is likely due to the fact that the genotypes were
selected based on TRL alone, these genotypes are likely not all extremes for PRL and SEL.
While accuracies decreased for SEL and PRL after adding the validation population, the standard
deviation of the 500 estimates of accuracy for each cross-validation decreased for all three root
traits (Table 3). These results show that increasing the number of individuals within the training

population can reduce error and give more precise accuracy estimates.
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We conducted a comparison of accuracies based on different population and
subpopulation compositions of training and validation populations. In general, prediction
accuracies were reduced across subpopulations compared to using random sets of lines for cross-
validation. In case of the 384 line population, one subpopulation is composed mainly of non-stiff
stalk (NSS) and mixed lines while the second smaller subpopulation is composed of mostly lines
from the stiff stalk (SS) heterotic group. A decrease in prediction accuracy using the NSS
subpopulation to train the model as compared to using the SS subpopulation is confounded by a
decrease in relatedness between the training and validation population, and also the large
difference in number of individuals used to train the prediction model. These two confounding
factors are explained by (i) poor predictions between heterotic groups due to limited relatedness
between populations and (ii) population size. One subpopulation consists of 319 lines and the
other of only 65 lines. This large discrepancy is an example of how the number of individuals
used to train and predict affects prediction accuracy. For the 584 line population, the
subpopulation stratification added a third subpopulation. Two subpopulations, Q2 and Q3
(Figure 4), contained similar lines as the original 384 line population with many SS and NSS
stalk lines within both. The third subpopulation, Q1 (Figure 4), is quite different with many lines
with no heterotic group designations found within (Romay ef al. 2013) as well as the Germplasm
Resources Information Network (GRIN). Predictions made using Q2 or Q3 on Q1 gave negative
correlations with poor accuracy. Many of the lines within Q1 do not share pedigree information
with lines from the other subgroups and, therefore, represent an example of how relationships
between the training and validation populations can affect prediction accuracies, including
negative effects. Asoro ef al. (2011) also found decreased prediction accuracies in oats, when

training and validation populations were not related. As the relatedness between training and
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validation population decreases, increasing the size of the training population can sometimes

offset a reduction in accuracy (Rutkoski 2010).

GWAS validation

The genomic prediction method RR-BLUP uses the infinitesimal model of quantitative
genetics and assumes normally distributed effects across the whole genome (Meuwissen 2001).
Studies in animal breeding have shown that using GP models such as Baysian models or G-
BLUP also reduce the risk of identifying false positives when trying to detect QTL (Zeng et al.
2012). GP likely increased the power to detect rare alleles affecting traits of interest. As
genotypes that exhibit extreme phenotypes in both directions with rare alleles are likely hard to
detect using GWAS based on randomly selected genotypes. Using this GP strategy, one could
directly move into mapping studies such as BSA, which can be used for both qualitative and
quantitative traits (Liu ef al. 2012 and Venuprasad et al. 2009). One could also select a portion of
the individuals found within each extreme group that could be crossed and used to develop a bi-
parental population for linkage mapping, or directly use these extreme genotypes for association
mapping. Ultimately, GWAS has not identified many reliable SNPs and those identified still
must be validated before used for developing improved germplasm through processes such as
MAS, marker assisted recurrent selection (MARS), or F> enrichment [Reference]. In contrast, GP
has given moderate to high prediction accuracies and ranking accuracies for TRL, SEL, and PRL
when all markers are considered simultaneously. This shows that for purposes of germplasm
development, GP is more useful for complex traits when compared to GWAS. While ignoring
underlying genetic and molecular mechanisms, GP is still able to capture much more of the

variation than GWAS and therefore a quicker and more reliable tool for breeding purposes.
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There have been several studies on genetic control of root architecture under various
growing conditions (Hund et al. 2011). Many of these studies found few or no overlapping QTL
for root development traits. Discrepancies are likely caused by population parameters such as
linkage disequilibrium, allele frequencies found between mapping populations and heritability of
the traits studied (Yu et al. 2006). As mapping studies using different mapping populations
studying complex traits such as root architecture do not often find many overlapping significant
loci or candidate genes (Bernardo, 2008), new strategies are needed to help identify causative
rare alleles. Another obstacle in validating highly quantitative traits is a lack of statistical power
to detect low effect QTL associated with traits of interest. This problem has also been shown in a
lack of continuity between multiple root QTL and association studies reported (Hund ef al. 2009,
Kumar et al. 2014, Pace et al. 2015, Pace et al. 2014). A validation experiment for the same
traits under the same growing conditions did not find many consistent loci (Pace et al. 2015).
This is consistent with earlier reports on “missing heritability” in GWAS studies (Maher 2008),
i.e. most of the detected loci explain very little of the heritability for a given trait and we are not
able to detect rare variants. Including extremes identified using GP can enrich the population
with rare alleles that effect traits of interest at a frequency more easily detectable than with a

random admixed population.

The 584 line GWAS population created using GP within this study is likely more relevant
not only due to an increase in size, but also because of enrichment for alleles impacting root trait
TRL. Even though no true validations were made, there was an increase in the number of
significant markers identified for TRL, SEL, and PRL compared to Pace ef al. (2015).
Furthermore a common marker S5 17865830 was found to have the lowest p-value within MLM

and it was significant under GLM for TRL and SEL. Marker S3 223308733 was found
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significant for TRL, SEL, and PRL. This marker in particular is found within or close by (<10
kb) three gene models with possible function in root development at the seedling stage. Gene
model GRMZM2G336017 codes for a hypothetical protein and there are currently no expression
data found within the maize expression atlas (Sekhon et al. 2011). There are two other gene
models for which marker S3 223308733 is in LD. Gene model GRMZM?2G034943 is found
upstream of the marker at location 223,308,255 with a second gene model GRMZM2G035134
located downstream of the marker at location 223,309,446 according to B73 RefGen_v3. Both
gene models have the GO term primary root and moderate expression identified by Sekhon et al.
(2011). These two genes may offer good candidates as being involved in the development of the
primary root especially as a significant association was found for trait PRL. The identification of
possible root development candidate genes and overall increase in number of markers found
significant using GLM for all three traits supports that power to detect putative QTL for root
traits was increased when compared to the previous study (Pace et al. 2015) employing a smaller

population size for GWAS.

Experimental Procedures

Plant materials

Our study is based on 584 inbred lines from the Ames Panel (Romay ez al. 2013)
acquired from the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in
Ames, lowa. The training population is a subset of 384 lines, which have been used in a Genome
Wide Association Study (GWAS) previously (Pace et al. 2015). The remaining 200 inbred lines

were selected from the remaining about 2400 lines in the Ames Panel based on predictions
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calculated using RR-BLUP for total root length (TRL): 100 lines each with the predicted longest

and shortest root lengths were selected as validation panel.
Root phenotyping

The 200 line validation population was grown under the same growing conditions and for
the same duration of time as the training population (Pace ef al. 2015). Briefly, seeds were
sterilized with Clorox solution (6% sodium hypochlorite) for 15 minutes, and washed twice
thereafter using autoclaved water. Germination paper (Anchor Paper, St. Paul, MN, USA) was
moistened using a fungicide solution Captan (2.5g/1) before four seeds per paper roll were
vertically rolled. All seed rolls were placed into two liter glass beakers containing 1.4 liters of
autoclaved deionized water. Growing condition settings within the growth chambers were the
same as the previous GWAS study. After 14 days of growth, seedlings were removed from the
growth chamber and roots were scanned for root trait measurement extraction. If not measured
the same day, plants were preserved in 30% ethanol to prevent and further growth or aging. TRL
was extracted from all images using the image analysis software ARIA (Automatic Root Image
Analyzer), a high-throughput software system that can extract up to 27 root traits currently (Pace
et al. 2014). Above ground plant material was removed from the root system prior to image

capture using a high resolution scanner EPSON Expression 10000 XL.
Phenotypic data analysis

Training population phenotypic analysis has been reported in Pace et al. (2015).
Validation experiments were carried out in a completely random design (CRD) in three
experiments in the months of June and July 2014. The starting dates for experiments were June

4™ June 24" and June 29", All experiments were grown in the same growth chamber. All traits
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data for phenotypic analysis was collected on a “plot” basis with each seed roll representing a
plot. Each plot or experimental unit consisted of three seedlings being sampled, measured, and
means calculated. Lsmeans of root traits analyzed were calculated based on the following linear

model:
Vi = Ei + Rej + Gie+ e

Where y;jx represents the observation from the ij” plot, u is the overall populations mean, E; is the
i experiment and is considered random, Ry, is the j™ replication nested within the i experiment
and is also a random effect, and Gy is the k' line and is a fixed effect. All interactions with the
random effect were confounded within the error eg)x. The statistical software package SAS 9.3
(SAS Institute, Cary NC) was used to obtain the analysis of variance (ANOVA) table and least
square means. Function PROC MIXED was implemented with type 3 sums of squares. To test
whether the Long group of 100 lines and Small group of 100 lines were significantly different, a

grouping term was added to the additive model as follows:
Vi = 1 + Ei + Rayj + Grpr + Gagr + eiju

Where genotype is now nested within the group effect and therefore considered a random effect
and Grp is considered a fixed effect. SAS function PROC MIXED was used to calculate

expected means squared, group Lsmeans, and determine if the grouping effect was significant.
Genotypic data

Genotyping by sequencing (GBS) (Elshire e al. 2011) data is publicly available for the
Ames Panel (Romay et al. 2013) and was used for genomic prediction in this study. A total of

681,257 markers distributed across the entire maize genome were available. To clean the
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imputed data set, monomorphic markers, all markers with minor allele frequency < 5%, and all
markers that had > 20% missing data were filtered out and were not used to train the model. A
final set of 186,849 markers across the maize genome were used to train and predict performance
in regards to total root length of the training and validation populations. Marker data used for
GWAS were based on the entire set of 584 inbred lines and the same GBS data set and filters
mentioned previously (Pace et al. 2015). In total, 135,311 markers distributed across all 10

chromosomes in the maize genome were used for GWAS.

Genome wide association study validation

GWAS methods used in the present study have been reported previously by Pace ef al.
(2015). The association mapping population used for validation combined both the training and
validation population totaling 584 inbred lines. Population structure (Q matrix) was estimated
from a reduced number of 1023 random markers across the maize genome. The software
program Structure 2.3.4 (Pritchard 2000) was used with parameter settings of a burn in length of
500,000 followed by 500,000 iterations for each of the clusters (K) from 1-15. Each K was run
five times. An admixture model was applied with independent allele frequencies. This model
allows for the possibility that lines may have mixed ancestry in more than one sub-population
(K). The most probable value for K was selected using an ad hoc method as explained in
(Evanno et al. 2005), which is based on the ordering rate of change of P(X|K). The program
called SPAGeDi (Hardy and Vekemans 2002) was used to calculate the Loiselle kinship matrix
coefficients between lines (K matrix). Both Q and K matrix were fit to a mixed linear model
(MLM) utilizing the program GAPIT (Genome Association and Prediction Integrated Tool- R
package) (Lipka ef al. 2012). All model parameters for GWAS are found in Pace et al. 2015. A

General Linear Model (GLM) was also used fitting just the Q matrix to mirror the methods used
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previously. Program TASSEL 4.0 was used to implement the GLM procedure. To account for
multiple testing, the same stringent level as Pace ef al. (2015) was applied in order to call

significant loci p<5.3 x 10”7 based on an a level of 0.05.
Ridge regression BLUP

To perform genomic prediction within the current experiment, RR-BLUP (Wittaker et al.
2000 and Endelman 2011) was used. All genomic prediction procedures performed herein were
executed using the software program R v. 3.0.2 (R Development Core Team 2013). The
developed R functions are freely available online within the rrBLUP package (Endelman 2011).

The mixed model (Henderson 1984) used for the RR-BLUP procedure is defined as follows:
Y=Xp+Wu+e

Where Y represents an N x 1 vector of phenotypic Lsmeans where N represents the number of
individuals in the training population, X is an identity matrix and B is the overall average of the
training population. W represents an N x Nm marker matrix where Nm represents the number of
markers used for GP. The u represents an Nm x 1 marker effect vector with e representing the N
x 1 vector of residuals. For RR-BLUP we assume that marker effects are normally distributed u
~N (0,6%,) with equal marker variance (c%,) across the whole genome. Based on this we assume
all markers have common variance (Meuwissen et al., 2001) and shrinkage for marker effects are
equal for all markers in order to reduce estimation error. Accuracy of predictions for cross-
validation and for GP between the 384 line training population and 200 line validation
population is based upon Pearson correlation (r) between predicted GEBVs and observed

Lsmeans (7, ). The adjusted prediction accuracy was estimated by taking Pearson correlation

(r5,,) between predicted GEBVs and observed Lsmeans and dividing that by the square root of
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broad sense heritability (H?) T(gg) = % Heritability estimates were obtained as described in

Pace et al. 2015. The training population heritability was used as this was a randomly selected
population, the validation was selected for and therefore not a good estimate of heritability for a
trait. Prediction accuracies are reported as the Pearson correlation between predicted and
observed root lengths to avoid added error from the heritability calculation that could inflate
actual predictability. Adjusted prediction accuracies are used for comparisons to unadjusted

prediction accuracies.
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Table 1. Predicted vs observed TRL means of selected extreme genotypes

Group Source of data Lsmeans St. Error
Short Group Predicted 100.92 cm -

Short Group Observed 176.44 cm 9.14
Long group Predicted 246.06 cm -

Long group Observed 295.11 cm 9.10

Table 2. Average ranking accuracy and adjusted ranking accuracy for three root traits TRL, SEL,
PRL

Population size Trait Avg ranking Accuracy pj,, Avg Adjusted Accuracy py 4
200 TRL r=0.55 r=0.84
200 SEL =0.54 r=0.83
200 PRL r=0.38 =0.72

TRL= Total Root Length, SEL=Secondary Root Length, PRL=Primary Root Length

Table 3. Average prediction accuracy and adjusted accuracy for three root traits TRL, SEL, PRL

Population size Training Trait Avg Phenotypic  Avg Adjusted St. Deviation
population size Accuracy 1y, Accuracy 1y 4
384 234 TRL =0.42 r=0.65 0.056
384 234 SEL r=0.43 =0.67 0.055
384 234 PRL =0.44 =0.84 0.051
584 350 TRL r=0.54 =0.84 0.035
584 350 SEL r=0.32 =0.49 0.049
584 350 PRL =0.31 r=0.58 0.047

TRL= Total Root Length, SEL=Secondary Root Length, PRL=Primary Root Length
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Figure 1. Average 60/40 cross-validation accuracy for 384 and 584 line populations,
error bars represent st. dev of accuracy estimates for all 500 iterations of RR-BLUP
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Figure 2. Ranking accuracy for TRL for 200 line validation population with ranks ranging
from 1-200, one being the longest roots and 200 being the shortest roots.



Predicted TRL

169

Predicted vs Observed TRL of Validation Population
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Figure 3. Validation of predictions made based on TRL within the validation population.
Overall prediction accuracy was estimated at r=0.594.

Figure 4. Population stratification identified using STRUCTURE 2.3.4 the 584 line population
after adding in the validation population. Q1, Q2, and Q3 represent their respective
subpopulations.
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CHAPTER SIX
GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES

The goal of this project was to explore root trait variation and to better understand the genetic
architecture controlling root development within maize. This was accomplished by analyzing
seedling root architecture traits within two separate association analysis inbred line panels, and
using the Ames panel population to complete a genomic prediction study. Loci found
significantly associated with seedling root traits were identified at the gene level within a
candidate gene association study within a 74 line association study (AS) panel as well as a
GWAS within a larger 384 line association mapping population. These loci represent putative
candidates for future study and validation. A new expandable tool called ARI/A allowing high-
throughput root trait imaging was developed to facilitate studies herein as well as future studies
done to better understand root architecture. Genomic prediction (GP) was tested for root
architecture traits in order to determine whether extreme genotypes for a moderately heritable
trait can be predicted with sufficient accuracy. Within the candidate gene association mapping
study, candidate genes Rfcl, Rth3, Ruml, and Rul were re-sequenced within 74 diverse inbred
lines. Root traits were extracted from 6, 10, and 14 day old seedlings and marker-trait
associations were calculated. A total of 51 SNP trait associations were identified. These
significant SNPs within root development genes form the basis for putative functional markers
for breeding purposes. For GWAS, a subset of 384 inbred lines of the Ames panel was grown for
14 days, with root traits extracted using the software program ARIA. Marker trait- associations
were calculated using both MLM and GLM, identifying 4 and 287 marker trait associations,
respectively, for each model used. Within the loci identified by GLM, 17 were associated with

multiple root traits. Putatively associated SNPs located within or near gene models with regard to
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the B73 reference genome represent the best candidates for genes having an effect on root
development in maize. Gene model GRMZM2G153722 on chromosome 4 contained 12
significant markers for root trait DIA. This model represents the best candidate for a root gene as

it has homology for a root tip development gene in Arabidopsis.

The GWAS panel was used as a training population for GP based on TRL. A RR-BLUP
prediction model was implemented to calculate marker effects and predicted BLUPs based on
genotypic information in the validation population. A validation population of 200 inbred lines
from the Ames diversity collection was selected based on predicted extreme genotypes with
regard to the longest and shortest predicted root lengths. This study showed that GP was able to
differentiate two groups with statistically different TRL with even larger observed than predicted
difference for the TRL means. Genotype ranks were also predicted with moderate accuracy with

Spearman correlation of p=0.55.

Because the studies described herein were performed at the seedling stage and within a
controlled environment, they are only a first step towards a better understanding of the genetic
control and predictability of root traits in maize. Future studies need to address how
environments affect GWAS as well as GP of maize root traits. For practical purposes, it has been
noted that breeders do not currently use root architectural traits directly as a selection criterion.
With the use of GS and GP technologies, a reduction in resources required to collect phenotypic
data may make use of root traits for selection more realistic. It also needs to be better
understood, how environmental variation affects prediction accuracies more generally.
Moreover, what is the contribution of roots to grain yield? Can specific root architectural traits
be correlated to yield, and will root traits be more important in nutrient deficient environments?

There are still many questions to be answered before roots are a common selectable component
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to breeding programs in maize and other crop species. Studies answering all of these questions
are ongoing but preliminary results do show promise with newer technologies in genotyping and

phenotyping becoming increasingly readily available.
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