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CHAPTER ONE 

GENERAL INTRODUCTION 

The maize (Zea mays L.) root system is responsible for plant stability and uptake of water and 

nutrients such as nitrogen (N) in an efficient manner (Lynch, 1995; Aiken and Smucker, 1996). 

The root system interacts with the rhizosphere (Bais et al., 2006; Watt et al., 2006) and is able to 

adapt to changing environmental conditions such as excess water, drought conditions, and low 

nutrient availability (Hawes et al., 1998; McCully, 1988; Drew, 1975).  Maize roots are formed 

during both embryonic and post-embryonic development (Feldman, 1994). There are five main 

types of roots in maize: crown, seminal, primary, lateral, and brace roots (Hochholdinger, 2009). 

The major portion of root biomass of mature plants is derived from postembryonic, shoot-borne 

roots. These postembryonic roots include crown roots and lateral roots, both formed below soil 

surface, and brace roots, formed above the soil surface (Hoppe et al., 1986).  Their function is 

vital to whole plant performance as they are responsible for the majority of water and nutrient 

uptake in maize in later developmental stages. Embryonic roots consist of primary and seminal 

roots. The seminal roots are formed at the scutellar node in the embryo with the number of 

seminal roots largely dependent on the genetic background of the plant. The overall fate of 

embryonic roots is background dependent as in some inbred lines; both the primary and seminal 

roots remain intact in form and function while in other genetic backgrounds these root types 

become obsolete when compared to postembryonic shoot borne roots (Feldman, 1994).  

Two to three week old seedling root systems are made up of primary roots, lateral roots, 

seminal roots, crown roots and root hairs (Zhu et al., 2006; Hochholdinger, 2009). Lateral roots 
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are initiated from the pericycle of other roots and have a strong influence on maize root 

architecture (Esau, 1965, Lynch, 1995). Their function is important to plant performance as they 

are responsible for a crucial part of water and nutrient uptake in maize (McCully and Canny, 

1988).  Lateral roots branch outward from the primary root. Lateral roots increase the surface 

area of the root system and all root types contribute to water and nutrient uptake (W.R. Jordan, 

1983; Lynch, 1995; Liu et al., 2008). Moreover, lateral roots contain root initiation points, 

leading to secondary, tertiary, and higher order root structures, with major influence on the 

overall root architecture of the root stock (Lynch, 1995).  

Genetic control of root development 

Understanding of all genetic factors contributing to root development is incomplete. 

Several genes have been identified that affect root development in maize including Rtcs (rootless 

concerning crown and seminal roots), Rth1 (roothairless 1), Rth3 (roothairless 3), and Rum1 

(rootless with undetectable meristems 1). Rtcs controls crown root and seminal root formation; 

Rtcn and Rtcl are paralogs of Rtcs. Rth1 and Rth3 control root hair elongation and development 

in maize. Rth3 has been shown to affect adult plant performance for grain yield in maize 

(Taramino et al., 2007). Rum1 controls lateral root growth and seminal root growth. A paralog of 

Rum1 is Rul1 (Taramino et al., 2007; Von Behrens et al., 2011). While these genes have been 

validated through mutational analysis, there are still many loci throughout the genome yet to be 

discovered that effect root development. To identify additional loci effecting root development, 

multiple genetic mapping techniques have been developed. Association mapping or linkage 

disequilibrium (LD) mapping is a useful tool for analyzing the genetic diversity of complex traits 

and identification of superior alleles (Yan et al., 2011). Unlike traditional linkage mapping, 

where bi-parental populations are developed, association mapping exploits ancestral 
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recombination in admixed populations to find marker-trait associations based on LD 

(Thornsberry, 2002). Researchers have utilized two strategies when conduction association 

mapping: a candidate gene approach, and a genome-wide approach. Candidate gene association 

mapping focuses on polymorphisms in predetermined genes known to affect traits of interest, 

conversely genome-wide association approaches survey the entire genome for polymorphisms 

associated with complex traits without a priori information of specific regions of the genome that 

affect traits under study (Merkangas, 1996). The advent of more economic sequencing 

technologies allowed genome-wide studies as well as genomic selection studies to become more 

manageable (Metzker, 2010).  The type of polymorphism or difference in loci used in genome 

wide association analysis and found in most abundance within the maize genome are single 

nucleotide polymorphisms (SNPs) (Rafalski, 2002). SNPs are single nucleotide (A, T, C, or G) 

variations within the genome that differ between members of a biological species. In candidate 

gene or genome wide association studies, the relationship between genotypes at a particular locus 

and phenotype are analyzed to detect whether or not a SNP is statistically associated with a 

particular trait. Most likely, if found associated, a SNP is in LD with a QTL or gene that affects 

the trait of interest being studied. 

Importance or root development on plant performance 

Plants can increase nutrient acquisition by developing larger root systems that will allow 

contact with a larger soil volume (Tian et al., 2006). Changes in root architecture may have 

played a large role in adaptation of maize hybrids to today’s planting densities, mirroring above 

ground canopy by narrowing the root branch angles helped for adaptation to higher planting 

densities (Hammer et al., 2009). Root structure and development have been shown to be a key 

component to nitrogen use efficiency (NUE) (Hirel et al., 2007) and drought tolerance (Ribaut et 
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al., 2007).  A typical measure for (genetic) NUE in maize is the percentage of grain yield 

reduction under low N levels compared to high N levels (Presterl et al., 2003). 

There is extensive phenotypic variation for root architecture. However, root traits are not 

routinely directly selected upon by plant breeders for improved nutrient uptake efficiency or 

yield improvement due to the difficulty in measuring root traits and their quantitative mode of 

inheritance (Salvi, 2007). Changes in maize root architecture may strongly affect yield (Hammer 

et al., 2009). Seminal roots play a key role in the acquisition of immobile and mobile nutrients 

such as phosphorus and N and can determine spatial and temporal domains of its environment 

and inter-root competition (Zhu et al., 2006). Studying adult roots using “shovelomics”, a high-

throughput phenotyping technique that measures adult root traits (Trachsel et al., 2010),  is time 

consuming, destructive, and laborious, and limits the number of experiments that can be 

completed in a season (Trachsel et al., 2010). An alternative to adult root phenotyping would be 

to study roots at a seedling stage. The relationship between seminal root biomass in hydroponics 

and root lodging in a field study focusing on root strength and pulling resistance has been 

explored (Landi, 1998; Landi et al., 2001). Correlations found in hydroponic seedling root traits 

compared to adult field traits were r=0.44* for shoot weight and adult plant height, and r=0.22* 

for lateral root length with brace root development In another study, positive but low correlations 

were found between maize seedling and adult root traits, such as number of seminal roots and 

weight of seminal roots to root pulling resistance (r=0.07 and r=0.36*, respectively) (Nass and 

Zuber, 1971). Seedling phenotyping takes less time, is less laborious, and can be repeated many 

times during the year allowing for quicker turnover of results. Studying seedling root systems 

also allows to utilize digital image capture systems with more ease. Using digital imaging 

software to automate phenotypic analysis is an innovative and efficient way of accurately taking 
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measurements of plant physiological traits (Brewer et al., 2006, Chavarria-Krauser et al., 2008, 

Wang et al., 2009). With the development of custom root analysis systems, quantitative studies 

of root architecture are now possible (Le Bot et al., 2009, Zeng et al., 2008). Programs such as of 

RootReader2D and RootReader3D are examples of imaging software programs developed and 

made freely available that can be implemented easily without costly equipment (Clark et al., 

2013). Expanding the number of seedling root traits and improving respective phenotyping 

procedures, may increase the chance of capturing strong relationships between different growth 

stages in maize.  

Utilizing roots for crop improvement 

Combining both phenotypic information and genomic information is the basis for 

Genomic Selection or Prediction (GS and GP). The ability to predict high performing genotypes 

with high accuracy is of major importance in plant breeding. Marker assisted selection (MAS) 

has become a routine procedure in commercial breeding programs because of an increased gain 

per unit time by using MAS when compared to only using phenotypic selection (Eathington et 

al., 2007). GS, a form of MAS, has become a valuable tool in animal breeding, but has yet to be 

widely implemented in public plant breeding programs. Unlike MAS, where only markers 

known to be associated with a given trait are used, GS uses all markers simultaneously in order 

to capture the maximum amount of genetic variation possible to make predictions based on 

genotype alone. Success of genomic selection procedures depends on saturating the genome with 

sufficient markers (SNPs) to accurately capture all marker and haplotype effects for prediction of 

the breeding value of selected genotypes by a three-step process. The first step in conducting 

genomic prediction is the selection of a training population, one that should be a good 

representation of the breeding population for accurate estimation of genetic effects (Heffner, et 
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al., 2009) This population will contain information on the phenotypic traits of interest as well as 

genome-wide distributed markers. The second step is to establish a statistical model to predict 

trait performance in a validation (breeding) population based on estimated marker effects alone. 

These estimated marker effects are determined using the before mentioned prediction model. 

Accuracy of predicting performance in both plants and animals is affected by many factors. 

Examples are the extent of LD within both training and validation populations, genetic 

relationships between the validation and selection population, the genetic architecture of the 

traits being selected upon, the marker density, the training population size and also the 

heritability of the traits being studied (Hayes et al., 2009; Luan et al., 2009; Zhong et al., 2009).  

Finally, the third step is validation of predicted performance for selected genotypes. This 

information can then be combined with previous training data. Genomic prediction is a tool that 

could be utilized to predict and select root architectural traits in order to reduce input into 

resource intensive practices involved in plant root phenotyping.  

Optimum root architecture (ideotype) for all environmental conditions has yet to be 

defined.  Lines with better root architecture in relation to root surface area, greater total root 

length, or various other root traits, might help to improve the ability to take up water and 

nutrients and consequently, to increase plant growth under nutrient deficiency, in particular for N 

(Marschener, 1998). A root ideotype for N and water deficient soils was outlined by Lynch 

(2013) as “steep, cheap, and deep” in accordance to how water and N availability is generally 

greater in deeper soil strata. Conversely, according to resource allocation theory, plants 

expending more energy and resources into below ground biomass may have less resources into 

developing  large above ground biomass, so a tradeoff is connected with increasing root biomass 
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for efficient plant development (Werner, 1981). It is thus critical; to understand what root trait 

characteristics are optimal for efficient growth and plant productions. 

 The overall goal of this work was to explore root trait variation between maize inbred 

lines, identify putative causative loci within already characterized root development genes as 

well as putatively associated loci throughout the genome involved in root development, and 

determine the predictability of root traits within a controlled environment model system based on 

genotypic information alone. The hypothesis of this study is that root traits and root development 

are quantitatively inherited with many loci throughout the genome associated with root 

architecture development. Thus, the first objective (Chapter 2) in this project was to determine 

the impact of known root genes on a range of root phenotypes and identify potential causative 

loci. We did this by evaluating 74 inbred lines for root traits conducting a candidate gene based 

association analysis at the seedling stage with plants grown using a paper roll method (Woll et al 

2005). The second objective (Chapter 3) was to develop a new tool for root trait extraction from 

images to enable more high-throughput root phenotyping for large scale mapping studies. The 

third objective (Chapter 4) was to expand upon objective one and survey for additional genes and 

QTL beyond known root development genes tested in Chapter 2. To do this we conducted a 

genome-wide association analysis based on 22 seedling root traits within an inbred line 

association panel. The final objective (Chapter 5) of this research was to determine whether root 

traits could be subjected to a genomic prediction approach using the genome-wide association 

panel of Chapter 4 as a training population, and predict root trait performance in a larger 

genotyped panel. The goal of this latter approach was to determine whether one could use GP to 

identify two sets of extreme genotypes using a subset of lines from a larger population, as well as 

test the predictability of seedling root architecture for TRL as a model for future studies. 
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Organization of the thesis 

This thesis contains three published research articles (Chapters 2-4) and one manuscript in 

preparation (Chapter 5). The conclusions of all studies are summarized in a final chapter 

(Chapter 6). As each chapter contains its own introduction, the general introduction was kept 

brief. Literature for each individual experiment and procedure is introduced and discussed within 

the respective chapters.  

Author Contributions 

Chapter 2 

BK was first coauthor of study and helped design and carry out all experimental procedures 

including measurements, data analysis, and primary writer of the manuscript.  

AG was first coauthor of study and helped design and carry out all experimental procedures 

including measurements and data analysis. 

JP was coauthor, conducted resequencing of candidate gene Rth3 for candidate gene association 

analysis, analyzed data and made major revisions for publication. 

JRM helped in design of the experiments and line selection. 

FH helped select candidate genes for study and was integral in his expertise in the maize root 

system.  

TL was PI of BK and JP and was involved in design of the experiment and data analysis. TL was 

also involved in writing the manuscript.  

Chapter 3 

JP designed all experiments, carried out phenotypic measurements, data analysis and was 

primary writer of the manuscript.  

NL helped analyze images using ARIA and wrote much of the scripts for the program. 

HSK helped analyze images using ARIA and wrote much of the scripts for the program. 

BG is PI of NL and HSK and was heavily involved in advice for programing as well as 

developing parameters for the program. 
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TL was PI of JP and helped design the experiment as well and discuss results. TL was heavily 

involved in writing the manuscript.  

Chapter 4 

JP helped design the experiment, carried out all phenotypic measurements, data analysis, and 

was the primary writer of the manuscript. 

CG helped in selecting lines to be used within mapping population as well as helped in revising 

written manuscript. 

CR was instrumental in supplying genotypic marker data as well as helping with filtering data 

sets. Also helped with revising the manuscript and gave pointers for GWAS analysis. 

BG was lead architect of developing the image analysis software ARIA. Also gave feedback on 

manuscript.  

TL was PI of JP and helped design the experiment as well as look at data analysis with JP. TL 

was heavily involved with writing the manuscript.   

Chapter 5 

JP designed all experiments, carried out phenotypic measurements, data analysis and was 

primary writer of the manuscript.  

XY helped with data management and filtering of genotypic data as well as advised JP 

throughout study. 

TL was PI of JP and helped design the experiment as well as look at data analysis with JP. TL 

was heavily involved with writing the manuscript. 
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CHAPTER TWO 

ASSOCIATION ANALYSIS OF SINGLE NUCLEOTIDE POLYMORPHISMS IN 

CANDIDATE GENES WITH ROOT TRAITS IN MAIZE (ZEA MAYS L.) SEEDLINGS 

Bharath Kumar†1, Adel H. Abdel-Ghani†2*, Jordon Pace1, Jenaro Reyes-Matamors3, Frank 

Hochholdinger4 and Thomas Lübberstedt1 

Paper published in Plant Science Journal. Abstract, structure, and references are all formatted 

according to journal standards.  

ABSTRACT 

Several genes involved in maize root development have been isolated. Identification of SNPs 

associated with root traits would enable the selection of maize lines with better root architecture 

that might help to improve N uptake, and consequently plant growth particularly under N 

deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize 

inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-

sequencing of candidate root genes Rtcl, Rth3, Rum1, and Rul1 was also carried out in the same 

AS panel lines. All four candidate genes displayed different levels of nucleotide diversity, 

haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out 

between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-

day-old maize seedlings. Association analyses revealed several polymorphisms within the Rtcl, 

Rth3, Rum1, and Rul1 genes associated with seedling root traits. Several nucleotide 

polymorphisms in Rtcl, Rth3, Rum1, and Rul1 were significantly (P<0.05) associated with 

seedling root traits in maize suggesting that all four tested genes are involved in the maize root 
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development. Thus considerable allelic variation present in these root genes can be exploited for 

improving maize root characteristics.  

1. Introduction  

The plant root system serves primarily to anchor plants in the soil, and to take up water and 

minerals. Roots are less visible than aboveground plant parts such as flowers, stems, and leaves. 

Therefore, root characteristics are seldomly considered as selection criteria [1], but they are no 

less important to the plant. The root system is affected by environmental conditions, 

management practices, and to a greater extent genotype dependent. While plants respond to 

limiting soil nutrients and water stress by increasing the amount of root biomass allocated to 

roots, and consequently increasing root to shoot biomass ratio [2-7], the acquisition of soil 

nutrients and available soil moisture by plants is more dependent upon root length and/or root 

surface area than total root biomass [8-9]. Genetic variation for root morphology in maize does 

exist, and has long been proposed for improvement of nutrient and water-use efficiency in maize 

[7, 10-14]. 

Root architecture traits can be determined using different methods including vertical root pulling 

force (RPF) and hydroponic characterization [15-18]. Field methods are frequently technically 

demanding and costly. Due to the difficulty in obtaining reliable root trait data from the field, 

there are very few reports on morphological characterization of maize roots in the field. Using 

paper rolls as a hydroponic method to study root architecture has several advantages in 

comparison with RPF and other field techniques [7, 14, 18-19]. These include: (i) the ease to 

score root traits as compared with vertical RPF, (ii) controlled environmental conditions, thus 

increasing repeatability of measurements, (iii) screening large numbers of lines in small space 

within a short period of time with an easy access to roots, and (iv) precise control of the 
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concentration of mineral nutrients and water soluble compounds. However, the main 

disadvantages are the artificial screening conditions which might not properly represent field 

conditions.  

Maize varieties with high yield potential are expected to have favorable root architecture, which 

can effectively supply water and nutrients, leading to increased grain yield [7, 15-17]. This is 

particularly important in case of limited water or nutrient availability, such as under drought 

conditions. 

The maize root system consists of different root types that are formed during different stages of 

plant development. The root system in maize can be divided into embryonic and post-embryonic 

roots [20]. The embryonic root system is composed of a single primary root and a variable 

number of seminal roots, while post-embryonic roots are shoot-borne roots including crown and 

brace roots. Shoot-borne roots formed at consecutive underground nodes are called crown roots, 

while the respective roots formed at consecutive above-ground nodes of the shoot are called 

brace roots. Lateral roots which emerge from all major root-types also belong to the post-

embryonic root system. Mutants affected in various aspects of root formation have been 

identified in maize including rtcs, rth1, rth3, and rum1 [19, 21-23]. Rtcl (Rtcs-like) is regarded as 

a paralog of Rtcs [22], and Rul1 (Rum1-like) as a paralog of Rum1. That the primary root and its 

lateral roots alone are sufficient to form a fertile mature plant was demonstrated by the 

monogenic recessive mutant rtcs, which forms only a primary root and its lateral roots but no 

seminal or shoot-borne roots [24].  The mutant rum1 is affected in lateral root formation, while 

the mutants rth1 [21] and rth3 [25] display reduced root hair elongation. Rtcs encodes a 244 

amino acid (aa) Lateral Organ Boundaries (LOB) domain protein located on chromosome 1S. 

During evolution, Rtcs was duplicated. The Rtcl gene, which maps on chromosome 9, displays 
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72% aa sequence similarity with Rtcs. The Rtcs and Rtcl gene promoters share auxin responsive 

elements, and they are preferentially expressed in roots [22]. The Rth1 gene encodes a SEC3 

homologue [21]. In yeast (Saccharomyces cerevisiae) and mammals, sec3 is part of the 

exocyst complex, which ropes together exocytotic vesicles prior to their fusion. The Rth3 gene 

belongs to the COBRA-like gene family [25]. Members of this plant-specific 

glycosylphosphatidylinositol anchored protein coding gene family are involved in cell expansion 

and cell wall biosynthesis [26]. The Rum1 gene located on chromosome 3 encodes a polypeptide 

of 269 aa which is a monocot specific AUX/IAA protein [23]. Rul1 is a closely related Aux/IAA 

protein coding gene, and is localized on chromosome 8. Rul1 encodes a polypeptide of 273 aa 

that displays 92% aa identity with Rum1.   

Recombinant inbred lines have been used for mapping quantitative trait loci (QTL) to 10-30 cM 

regions [27-28]. However, QTL mapping is limited by, (i) the expense of generating such lines, 

(ii) their limited diversity, (iii) their separation from established processes in maize breeding, and 

(iv) the low number of informative recombinations [29]. In contrast, association mapping studies 

which are based on linkage disequilibrium (LD) allow identification of actual genes underlying 

these QTLs [30]. The success of gene based association studies depends on the candidate gene(s) 

chosen for a particular phenotypic trait. The first candidate gene-based association mapping 

study in maize associated individual dwarf8 polymorphisms with flowering time [30], which has 

been followed by numerous subsequent studies in maize [31] and other cereal crops [32]. Gene-

based association studies ultimately lead to the identification of quantitative trait polymorphisms 

(QTPs) with causal genetic effects on agronomic traits, which can be converted into functional 

markers [33]. Breeding for a vigorous root system in maize may involve identification of 

superior alleles of candidate genes that affect nutrient and water use efficiency.  Respective 
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candidate gene-based studies enabled identification of alleles affecting various relevant 

quantitative agronomic traits in maize [30, 34-38]. 

So far, no information is available on the genetic diversity of genes affecting root development in 

maize. Therefore, the objectives of this study were to: (i) examine the nucleotide and haplotype 

diversity for Rtcl, Rth3, Rum1, and Rul1 in a panel of 74 maize inbreds, (ii) estimate phenotypic 

means for root traits of lines included in the individual haplotypes, and (iii) to identify 

polymorphisms in candidate genes associated with root development. 

2. Materials and methods 

2.1. Plant materials 

Allele re-sequencing of candidate root genes was carried out in 44 expired PVP lines, and 30 

public inbred lines such as Nested Association Mapping (NAM) founder lines, 2009 released 

Germplasm Enhancement of Maize (GEM) lines and lines used in a maize diversity study 

(Appendix 1). The rationale for using expired PVP lines is to capture substantial genetic 

variation present in current elite germplasm. Other public inbred lines were chosen to enable 

detection of the majority of SNP and INDEL polymorphisms in the candidate genes studied, as a 

prerequisite to develop multiplexed SNP assays to be used for screening large numbers of 

genotypes at low costs in large-scale association studies. Seed was obtained from different seed 

resource centers such as North Central Regional Plant Introduction Station in Ames, IA 

(NCRPIS), and Maize Genetics Cooperation (Champaign, IL). All maize lines were selfed at the 

Agronomy farm, Iowa State University in summer 2009 to produce seed of equal origin and 

quality for this study. 
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2.2. Experimental design and phenotyping 

Seedling root characteristics in maize lines were studied using a paper roll test described by Woll 

et al. [19]. Seeds were first surface sterilized with Clorox® solution (6% sodium hypochlorite) 

for 15 minutes. After surface sterilization, seeds were washed three times with sterile water. 

Surface sterilized  seeds were then placed on a brown germination paper (Anchor Paper, St. Paul, 

MN) pre-moisturized with fungicide solution Captan® (2.5g/l), and afterwards rolled up 

vertically. Rolled germination papers were kept in 2 l glass beakers containing autoclaved 

deionised water. Experiments were carried out in growth chambers under a photoperiod of 16/8 h 

at 25/22 °C (light/darkness) with photosynthetically active radiation of 200 µmol photons m-2 s-1. 

The relative humidity in growth chambers was maintained at 65%, and lines were grown in a 

randomized complete block design with two replications. Each paper roll containing three 

seedlings was considered an experimental unit. 74 maize lines with different genetic background 

and origins were evaluated at three growth stages independently (6, 10, and 14 days after 

sowing). Each experiment was repeated twice. At the end of each growth stage (6, 10, and 14 

days), root characteristics were evaluated. Seedlings were separated into root system and shoots 

at the crown root region. The root system was further separated into primary root, seminal, and 

crown roots, and respective root lengths were recorded. To measure lateral roots, the primary 

root was scanned, and the image was analyzed using WinRhizo Pro 2009 software (Regent 

Instruments, QC, Quebec, Canada). Total root length (TRL) was estimated by summing the 

lengths of primary root, crown, seminal, and lateral roots for each seedling. Roots were dried at 

70 °C to a constant weight, and root dry weight (RDW) was recorded subsequently. 
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 2.3. DNA extraction, amplification, and sequencing 

Four candidate genes were chosen based on their role in root development to identify SNPs for 

association study analyses. SNPs from these candidate genes were tested for possible 

associations with TRL and RDW. Candidate genes chosen for our association study were: Rtcs, 

Rtcn, Rtcl, Rth3, Rum1, and Rul1. Gene specific primers were designed to amplify the entire 

sequence of Rtcl, and parts of Rth3, Rum1, and Rul1 genes using the software program Primer 

3.0 (http://frodo.wi.mit.edu/primer3/) (Table 3). In case of Rtcs and Rtcn, even after several 

attempts, amplicons from all 74 lines were not obtained. This might be due to the extensive 

nucleotide diversity at these candidate genes which prevents the binding of designed primers. 

Polymerase chain reaction (PCR) was performed using the designed primers for each gene 

separately in 50 μl volumes under the following conditions: 50 ng template DNA, 250 nM of 

each primer, 250 nM dNTPs, 2 U Taq polymerase and 250 μM MgCl2. Reactions were 

performed for each primer pair using the following PCR program in a thermocycler (MJ 

research, California): an initial 94 °C denaturation step for 2 min followed by 35 cycles of 94 °C 

for 30 sec (denaturation step), 57.5 °C for 30 sec (annealing step), and 72 °C for 90 sec 

(elongation step). The final extension step was followed by 72 °C incubation for 10 min. 

Amplified DNA fragments were resolved by gel electrophoresis (Biorad, California) using 1% 

agarose gels in Tris-EDTA (TE) buffer. Agarose gels were stained with 0.5 μg of ethidium 

bromide per ml. The running time was 90 min at 120 mV. Finally, gels were visualized and 

photographed by a UV illuminator system (Alphainnotech, California). For each gel, the first 

lane was specified for a 100 bp DNA ladder (Promega, Wisconsin), the second lane and the third 

lane were specified for positive and negative controls. Amplified fragments of Rth3, Rum1, and 

Rul1 genes were obtained for all 74 inbred lines in the AS panel, whereas for the Rtcl gene, 
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amplicons were obtained from 69 lines. For sequencing, 10 μl of the amplified fragments were 

first purified by using 2 units of shrimp alkaline phosphatase and 2 units of exonuclease I at 37 

°C for 1 h, followed by 72 °C for 15 min to deactivate the enzymes. Amplified gene products 

were then labeled for sequencing using the ABI Prism® BigDye® Terminator v3.1 cycle 

sequencing kit (Applied Biosystems, California). Labeling reactions were performed in 10 μl 

reaction volume containing 1 μl of PCR product, 1 μl  of BigDye Terminators, 0.26 μl of 50 mM 

original PCR primers (either forward or reverse), 1.75 μl of 5× sequencing buffer and 5.99 μl 

deionized distilled water. The thermocycler cycle sequencing reaction was performed using the 

following cycling parameters: 96 °C for 2 min, 25 cycles of 96 °C for 30 sec, 50 °C for 1 min, 

and 60 °C for 4 min, finally cooled to 4 °C. Precipitated DNA was purified with 70% ethanol 

and dried thoroughly before re-suspending in ABI Hi-Dye formamide for sequencing on a 

sequencer (Applied Biosystems 3730 DNA Analyzer with a 96-capillary array). Sequencing was 

performed for each amplified fragment using forward and reverse primers separately with two 

replicates. Based on primers designed, expected sizes of PCR products were obtained for all 

tested genes. Sequences were aligned using Sequencher program 4.1 (Gene Codes Corporation, 

Michigan). In order to maximize read lengths and to obtain a sequencing quality >98%, two 

replicates of forward and reverse reads for each amplified fragment were aligned to get 

consensus sequences of amplified gene fragments from AS panel lines. 

2.4. Phenotypic data analyses 

The following linear mixed model was used to estimate variance components: yijk= µ+ Ei + Bj(i) 

+ Gk +EGik + BGj(i)k, where yijk represents the observation from the ijkth experimental unit, µ is 

the overall mean, Ei is the effect of ith independent experiment, Bj(i) is the effect of jth block 

nested in ith experiment, Gk is the effect of kth line, EGik is the interaction effect of the ith 
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experiment with kth genotype, BGj(i)k is the interaction effect of jth block nested in ith experiment 

with kth genotype.  Heritability (h2) on an entry mean basis was estimated as the ratio of 

genotypic to phenotypic variance according to Hallauer and Miranda [39]. Furthermore, 

experiment was considered as a fixed factor, whereas blocks and genotypes were regarded as 

random factors. Best linear unbiased estimates (BLUEs) were determined for maize lines for 

each trait. SAS 9.1 (SAS Institute, 1996) software packages were used for all calculations. 

2.5. Analysis of sequence data 

Respective gene sequences amplified from the association panel lines were analyzed using the 

software package DnaSp [40]. Haplotype diversity among candidate genes was analyzed based 

on the SNPs in the amplified fragment sequences from AS panel lines. Levels of nucleotide 

diversity in different parts of amplified fragments of the gene were estimated as π, the average 

number of nucleotide differences per site between two sequences [41]. A different estimator of 

nucleotide diversity θ, the neutral mutation parameter was calculated based on number of 

segregating sites [42] with a common expected value θ = 4N�μ, where Ne equals the effective 

population size and μ the mutation rate per generation and site. Haplotype diversity (Hd) was 

estimated as the probability that two randomly chosen haplotypes from a given population were 

different [43]. Neutrality of mutations was checked using Tajima’s D statistics [44, 45]. These 

statistics are based on the different comparisons of θ =4�	
, where Ne equals the effective 

population size and 
 the mutation rate [42]. Tajima’s D statistics results from the comparison of 

θ based on number of pair-wise differences and the number of segregating sites between 

sequences in the sample.  

 

 



25 

 

 

2.6. Population structure and association analysis 

All 74 lines in the AS panel were genotyped with 101 SNP markers distributed evenly across 10 

maize chromosomes [46] to assess and control the effect of population structure. The software 

package Structure 2.0 [47] was used to estimate population structure (Q) within the AS panel 

using SNP data. In Structure 2.0, a burn-in length of 50.000 followed by 50.000 iterations for 

each of the clusters (K) varying from 1 to 20 (each K was run 20 times) were used to produce a 

Q matrix estimating membership coefficients for each line in each subpopulation. The 

Admixture model was applied with independent allele frequencies. An ad hoc (ΔK) statistic [48] 

based on the second order rate change of P (X|K) was used to identify the most probable value of 

K. 

Loiselle kinship coefficients between lines (a K matrix) were estimated by the TASSEL program 

[49] based on the 101 SNP markers. Both Q matrix and a K matrix were used in the association 

analysis to control the spurious associations due to population structure and relatedness, 

respectively [50]. Association analysis between SNPs and root traits was carried out using a 

mixed linear model (MLM) implemented in the program TASSEL 2.10 software [49]. The MLM 

accounts for overall population structure (Q) and for finer scale relative kinship (K). The 

statistical model used in mixed linear model (Q+K) can be described in Henderson’s notation 

[51] as: y= Xβ+Zu+e, where y is the vector of observations; β is an unknown vector containing 

fixed effects including genetic marker and population structure (Q); u is an unknown vector of 

random additive genetic effects from multiple background QTL for individuals or lines; X and Z 

are the known design matrices; and e is the unobserved vector of random residuals. 

TRL and RDW were measured in 6 (sTRL, sRDW), 10 (tTRL, tRDW), and 14 (fTRL, fRDW) 

day old seedlings, and used as root traits in our association study. False discovery rate was set at 
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0.05 [52] to control for multiple testing of SNP markers. Motifs in the Rtcl, Rth3, Rum1, and 

Rul1 genes were searched using a PLACE (Plant cis-acting regulatory DNA elements) database 

[53] to determine, if any of the significantly associated SNPs might alter motif sequences in the 

candidate genes. 

3. Results 

3.1. Phenotypic variation  

Complete statistical analysis of root traits measured in this study has been reported elsewhere 

[14]. In their principal component analysis, total root length (TRL) and root dry weight (RDW) 

explained most of the phenotypic variation. Moreover, both TRL and RDW were significantly 

and positively correlated with all other root-related traits. We, therefore, focused on TRL and 

RDW for association mapping in this study.  

Frequency distribution of TRL and RDW measured in 6, 10, and 14-day-old seedling of 74 AS 

panel maize inbred lines are presented in supplementary figures 1 and 2. TRL ranged from 8.1-

72.6 cm, 39.2-216.3 cm and 78.6-362.0 cm in 6, 10, and 14-day-old seedlings, respectively. 

RDW varied from 5.5-29.8 mg, 10.1-49 mg, and 14.9-82.0 mg in 6, 10, and 14-day-old 

seedlings, respectively. Both TRL and RDW had the highest co-efficient of variation (CV) in 6-

day-old seedlings.  

3.2. Sequence alignment and haplotypes  

The Rtcl sequence alignment of 69 maize lines spanned 828 bp with no alignment gaps, such as 

indel polymorphisms. The 828 bp amplified fragment included two exons, i.e., exon 1 (420 bp), 

and exon 2 (279 bp), respectively, separated by an intron (129 bp). In exons 1 and 2, 16 and 22 

SNPs were identified, respectively, whereas 7 SNPs were identified in the intron region. Out of 

the 38 SNPs in the exon regions, 32 altered the amino-acid sequences; the other 8 were 
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synonymous mutations (Table 1). In case of Rth3, 714 bp of the open reading frame (ORF) 

region of the gene was amplified from all 74 lines in the AS panel. Sequence alignment of Rth3 

amplicons resulted in the identification of 15 SNPs with no indel polymorphisms. Out of 15 

SNPs, 12 were synonymous mutations, and only 3 SNPs altered the amino-acid sequence (Table 

2). Intron 4 and exon 5 were partially amplified for Rum1: 225 out of 461 bp in intron 4 and 207 

out of 315 bp in exon 5. Sequence alignment of Rum1 amplicons from all 74 lines in the AS 

panel resulted in the identification of 12 SNPs. Out of 12 SNPs, 9 SNPs were from intron 4 and 

remaining 3 SNPs were from exon 5 region. Out of 3 SNPs identified in the exon region of Rum1 

gene, two were synonymous mutations and the remaining one SNP altered the amino acid 

sequence (Table 3). For Rul1, intron 5 and exon 6 were partially amplified from all 74 lines of 

the AS panel. Sequence alignment of 411 bp from Rul1 consisting of 84 bp of intron 5 and 327 

bp of exon 6 resulted in the identification of six SNPs, including five in exon 6. Four of those 

exon SNPs altered the amino-acid sequence (Table 4).  

The number of haplotypes for the four genes ranged from 7 for Rul1, 9 for Rth3, 16 for Rtcl, to 

22 for Rum1 (Tables 1-4). The range of haplotype means for TRL and RDW traits measured in 6, 

10 and 14-day-old seedlings was larger for Rum1 gene compared to other three genes (Table 1-

4). 

3.3. Nucleotide diversity in four genes  

Nucleotide diversity (π) was determined for Rtcl, Rth3, Rum1, and Rul1 coding and non-coding 

regions using the SNPs identified in respective amplicons from AS panel lines (Table 5). 

Overall, nucleotide diversity was π=0.021 in the entire region of Rtcl. Within Rtcl, nucleotide 

diversity was almost the same in both intron (π=0.022) and exon (π=0.021) regions. In Rth3 

which lacks an intron region, nucleotide diversity was higher for synonymous (π=0.026) than for 
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non-synonymous mutations (π=0.0002). For the Rum1, nucleotide diversity was higher in the 

non-coding region (π=0.017) than in the coding region (π=0.005), and for Rul1, there was not 

much difference in the nucleotide diversity between non-coding (π=0.007) and coding region 

(π=0.004). When the entire amplified region was considered, nucleotide diversity was lower in 

Rum1 (π=0.011), Rth3 (π=0.007), and Rul1 (π=0.005) compared to Rtcl (π=0.021). The 

nucleotide diversity based on θ, the neutral mutation parameter, was also calculated for all four 

amplicons in a sliding window of 100 bp using a step size of 10 bp (Fig. 1). Based on θ, within 

Rtcl, average nucleotide diversity was same in both intron and exon region. In case of the Rum1 

gene, nucleotide diversity seems to be higher in the intron region compared to the exon, but it 

was the same in both the exon and the intron region in the amplified region of the Rul1 gene. 

Haplotype diversity (Hd) ranged from 0.873 in Rtcl to 0.624 in Rul1.    

Tajima’s D was positive and significant when considering the entire Rtcl region as well as both 

coding and non-coding regions. Conversely, in case of Rth3, Rum1 and Rul1, Tajima’s D was 

non-significant in all regions except in the Rul1 non-coding region (Table 5). Complete analysis 

of LD decay in AS panel lines across Rtcl, Rth3, Rum1 and Rul1 genes has been reported 

elsewhere [54]. LD between all pairs of polymorphic sites from the sequenced region of the Rtcl, 

Rum1, and Rul1 genes decayed very rapidly (r2 < 0.2), whereas LD persisted (r2 > 0.25) over the 

length of the sequenced region in the Rth3 gene.       

3.4. Population structure and marker-trait associations  

Based on the ad-hoc statistic values in Structure 2.0, lines in the AS panel were grouped into two 

sub-populations (K=2), which agrees with their pedigree and breeding history [54]. 

3.4.1. Rtcl 
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21 SNPs were significantly (P=0.05) associated with sTRL, and 16 SNPs were associated with 

sRDW (Table 6), with 14 SNPs associated with both sTRL and sRDW. Five of those SNPs were 

located in exon 1, four in the intron, and five in exon 2. Four SNPs in exon 1 and four in exon 2 

caused non-synonymous changes in the protein sequence (Table 6), while the remaining two 

SNPs in the exon regions caused synonymous changes. In case of tTRL and tRDW, five and two 

SNPs were associated, respectively. SNPs at the sites 413, 473, 531, 547, and 554 were 

significantly associated with both sTRL and tTRL. Similarly, SNPs at sites 320 and 374 were 

significantly associated with both sRDW and tRDW. Out of these SNPs, SNPs at sites 320, 374, 

413, and 554 caused non-synonymous changes in the amino-acid sequence. For fourteen-day-old 

maize seedlings, SNPs at sites 510 and 554 were associated with fTRL only. Moreover, the SNP 

at site 510 was associated with both sTRL and fTRL, whereas the SNP at 530 was associated 

with sTRL, tTRL and fTRL. 

Using B73 as reference sequence, seven SNPs (290, 317, 320, 468, 510, 597, and 799) were 

significantly associated either with TRL and RDW traits affected putative functional sequence 

motifs in the Rtcl gene. These motifs are the signatures of the binding sites of several regulatory 

proteins (Supp. Table 1). Moreover, non-synonymous SNPs at 290, 317, and 320 affected the 

LOB domain amino acids in the RTCL gene (data not shown).      

3.4.2. Rth3 

13 polymorphisms in the Rth3 exon region were associated with sTRL, whereas the SNP at 621 

was the only polymorphism associated with sRDW (Table 7). Of these associated SNPs, a 

synonymous polymorphism at the site 621 was associated with both sTRL and sRDW. In case of 

fTRL and fRDW, seven and eight SNPs were associated, respectively. The synonymous SNPs at 

sites 180, 234, 438, 465, 492, 519, and 600 were significantly associated with both fTRL and 
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fRDW. Moreover, these SNPs were also associated with sTRL. No SNP in Rth3 was associated 

with tTRL. Four SNPs (389, 399, 436 and 600) significantly associated with TRL and RDW 

affected the binding sites for regulatory factors in the Rth3 (Supp. Table 1). Since these SNPs 

were synonymous, they did not affect the COBRA domain in the Rth3 gene.  

3.4.3. Rum1 

One and two SNPs in Rth3 were associated with sTRL and sRDW, respectively. The SNP at site 

303 in the intron 4 region was associated with both sTRL and sRDW. In case of tTRL and 

tRDW, the SNPs at sites 63 and 251 were associated with both traits. Moreover, these SNPs 

were also associated with fTRL and fRDW. SNPs at sites 118 and 302 were associated with 

sTRL and sRDW and also with fTRL and fRDW. The SNP at site 118 in the exon 5 region 

causes a non-synonymous change in the amino-acid sequence and also affects a binding site 

transcription factors in the Rum1 gene (Supp. Table 1).                   

3.4.4. Rul1 

SNPs at sites 311, 336, and 389 in the exon 6 region of Rul1 were significantly associated with 

tRDW. The SNPs at sites 336 and 389 caused non-synonymous changes in the amino-acid 

sequence. A synonymous SNP at site 7 in the intron 5 region of Rul1 was associated with sRDW. 

No SNP from the amplified Rul1 gene region was associated with either fTRL or fRDW.        

4. Discussion 

4.1. High levels of phenotypic, nucleotide, and haplotype diversity 

We observed substantial quantitative variation for root traits TRL and RDW in 6, 10, and 14-

day-old seedlings indicating a considerable amount of morphological differences among 74 

maize inbred lines in the AS panel (Supp. Figs. 1 and 2). We identified maize lines with both 
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under and well–developed root systems, which are attractive for identifying genomic regions 

controlling root traits [14].                

In the present study, 2386 bp across four candidate genes involved in root development were 

amplified from the AS panel lines, resulting in 78 SNPs, and an average SNP frequency of 1 

SNP/31bp (Table 5). Substantial differences in nucleotide diversity were observed between the 

four candidate genes (Table 5). Nucleotide diversity was highest in the RTCL gene (π=0.021), 

and lowest in Rth3 (π=0.007) and Rul1 (π=0.005) gene. The nucleotide diversity observed in the 

candidate genes is comparable to previous studies in maize inbreds for Sclce2 (π=0.0112; Li et 

al., 2011), 4CL2 (π=0.0102; [55]), COMT (π=0.008; [56]) and PAL (π=0.004; [35]). In other 

studies involving maize landraces, nucleotide diversities ranged from π = 0.001 – 0.0133 with an 

average value of π=0.004, and a SNP frequency of one SNP per 62 bp. When coding and non-

coding regions were compared in candidate genes used in these studies, nucleotide diversity 

varied across the genes. In case of Rtcl and Rul1, both intron and exon regions had the same 

nucleotide diversity, whereas nucleotide diversity was higher in the intron region of Rum1 gene. 

This distribution of nucleotide diversity across intron and exon regions has also been found in 

other studies [55, 57]. All four candidate gene Rtcl, Rth3, Rum1, and Rul1 showed positive 

Tajima’s D values (Table 5). This indicates balancing selection with an excess of alleles with 

intermediate frequencies and a scarcity of rare alleles. Considerable haplotype diversity was 

found for Rtcl, Rth3, Rum1, and Rul1 (Table 5).   

4.2. Polymorphisms associated with root traits 

Several studies have shown the quantitative and qualitative importance of root traits in taking up 

nitrogen (N) from N-depleted soils [58-60]. Identification of the genetic regions associated with 

root traits would help not only to develop maize lines with a favorable root system, but also to 
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understand the relationship between plant growth, plant productivity and root architecture. In our 

previous study, we identified significant positive correlations between seed root traits such as 

SRL and RDW with grain yield under two N levels [7]. Here, we used association mapping to 

dissect the role of SNPs in Rtcl, Rth3, Rum1, and Rul1 for maize root development.  

Taramino et al. [22] isolated the first root gene in maize (Rtcs) involved in seminal and crown 

root formation by map-based cloning. Rtcl, a paralog of Rtcs was used in our association 

mapping study. The role of Rtcl in maize needs yet to be determined. In our association study, 

Rtcl was found to be associated with root development in 6, 10, and 14-day-old seedlings (Table 

6). Several synonymous and non-synonymous SNPs in the Rtcl gene region were significantly 

associated with TRL and RDW. This suggests a potential role of Rtcl gene in maize root 

development. This likely role of the Rtcl gene in maize root development might be due to the 

sequence similarity it shares with its paralogous Rtcs gene, which has been demonstrated to be 

involved in root development. The paralogous Rtcl gene shares 72% sequence similarity at the 

protein level with Rtcs gene, contains a LOB protein domain, which was found in genes involved 

in root development [61], and both Rtcs and Rtcl gene promoters share auxin responsive 

elements that are preferentially expressed in roots [22]. It has also been shown that maize 

mutants with impaired LOB domain have reduced crown and seminal roots [62-64].  

SNPs in Rth3 were significantly associated with TRL and RDW in 6 and 14–day-old seedlings. 

Even though root hair elongation was not measured in this association study, our study suggests 

that Rth3 affects other root characteristics in maize. Our findings are consistent with findings of 

Hochholdinger et al. [25], showing significant yield losses of the rth3 mutant in replicated field 

trials. Rth3 belongs to COBRA – like gene family specifically involved in cell expansion and cell 

wall biosynthesis [25-26]. The rth3 mutant has been shown to affect root hair elongation and 
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grain yield [25]. By this association mapping study we found that Rth3 affects both TRL and 

RDW in maize seedlings. The significant association between SNPs in the Rth3 gene with root 

length and biomass might be due to the role of root hairs in water and nutrient uptake. Previous 

studies have shown that plants lacking efficient uptake of water and nutrient have poor root 

characteristics [59, 65]. 

Von Behrens et al. [23] isolated the Rum1 gene that is auxin/indole acetic acid (IAA) inducible 

and encodes protein containing four conserved domains, and a bipartite nuclear localization 

sequence. The protein encoded by Rum1 is involved in the formation of embryonic seminal root 

and post-embryonic lateral roots. Rul1 is regarded as paralog of the Rum1 gene, since it shares 

92% sequence identity at the amino acid level and is located in a duplicated region of the maize 

genome. The role of Rul1 gene in maize root formation is still unknown. In our association 

mapping study, Rum1 was associated with TRL and RDW in 6, 10, and 14-day-old seedlings, 

thus confirming the role of Rum1 in maize root development. Moreover, SNPs in the Rul1 gene 

were associated with RDW in 10 and 14-day-old seedlings. This suggests a role of Rul1 in root 

development, which has so far only been shown to be a paralog of Rum1 [23]. 

4.3. Molecular physiological basis of SNP– trait associations 

 Previous studies have shown the potential role of Rth3 and Rum1 genes in maize root 

development. Any impaired expression of these genes leads to defective root development. From 

our gene based association study, we not only confirmed the role of Rth3 and Rum1 genes in 

maize root development, but we also found that the two paralogous genes Rtcl and Rul1 are 

involved in the maize root formation. Thus, it is conceivable that polymorphisms in Rtcl, Rth3, 

Rum1, and Rul1 affect maize root formation. 
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In the Rtcl gene, 13 non-synonymous and 4 synonymous SNPs were associated with TRL and 

RDW. Out of these associated SNPs, seven affected putative functional sequence motifs, mostly 

transcription factor binding sites. Moreover, out of these seven SNPs, three SNPs at sites 290, 

317, and 320 also affected the LOB domain in the Rtcl gene. These SNPs seem to be critical not 

only for the formation of a proper LOB domain, which is required for root formation, but also for 

regulation of the Rtcl gene by affecting transcription factor binding sites. Similar results wherein 

the SNPs associated with traits affect transcription factor binding sites in the gene have been 

reported elsewhere [36, 43]. In our previous association mapping study involving SNPs from the 

Rtcl gene and seedling root traits measured under contrasting nitrogen levels, these three SNPs 

were consistently associated with seedling root traits. The SNP at site 317 in Rtcl gene was 

associated with both RDW and TRL under high and low N conditions, whereas the SNP at site 

320 was associated with RDW under both N conditions. In case of the SNP at site 290, 

associations were observed with RDW and TRL under high N. These consistent associations 

suggest the potential role of these SNPs in the Rtcl gene in maize root development. LD is very 

low between SNPs at sites 290-320 (r2 = 0.0255) and 317-320 (r2 = 0.0903), whereas it was 

moderate between 290-317 (r2 = 0.2827). Low to moderate LD between these significant SNPs 

suggests that these individual SNPs are putative causative polymorphisms, and can be of 

potential use in deriving markers to select root traits. For the Rth3 gene, 13 polymorphisms were 

found to be significantly associated with TRL and RDW. Of these 13 SNPs, four SNPs (site 393, 

399, 438, and 600) in the exon region significantly affected the binding sites for regulatory 

factors in Rth3, but none of these SNPs affected the COBRA domain within the gene, as they 

were synonymous mutations. When the LD was estimated between these four SNPs, low LD was 

detected between SNPs at the sites 393-438 (r2 =0.0445), 393-600 (r2 =0.0323), 399-438 
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(r2=0.0445) and 399-600 (r2 =0.0323). However, there was a high LD between sites at positions 

393-399 and 438-600. This suggests, that individual SNPs at 393 (or 399), 438 (or 600) are 

putative causative polymorphisms, and can potentially be used to derive markers to select root 

traits. In our previous association mapping study involving SNPs in the Rth3 gene and grain 

yield, the SNP at site 600 was associated with grain yield under high N suggesting that this SNP 

might potentially be used along with other SNPs to select for grain yield. In case of the Rth3 

gene, full-length re-sequencing of this candidate gene would greatly increase the number of 

unlinked polymorphisms to be tested for associations due to the extent of LD over a long 

distance. 

In our previous association mapping study, non-synonymous SNPs in Rum1 and Rul1 gene (site 

118 in Rum1, 336 and 389 in Rul1) were associated with seedling root traits under HN and LN 

conditions. In the present study, these SNPs were also associated with TRL and RDW. A non-

synonymous SNP at site 118 in Rum1 gene associated with RDW in 6 and 10-day old seedling 

also affected the putative functional sequence motifs which are the signatures of the transcription 

factor binding sites in the gene. LD is high between the sites 336-389 in Rul1 gene, so these 

polymorphisms are putatively causative with the root trait. Taken together, the SNP at site 118 in 

the Rum1 gene, and either SNP at sites 336 and 389 in the Rul1 gene can potentially be applied 

in breeding programs to improve root traits.  

In the present study, genes and their paralogues have been tested for association with roots traits. 

From our results, it seems that Rtcl, Rth3, Rum1, and Rul1 can be considered as candidate genes 

to develop functional markers for root traits especially the significant SNPs in these genes with 

large effect on the trait (Supp. Table 2).  
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 Functional markers are DNA markers derived from polymorphic sites within genes, causally 

involved in phenotypic trait variation [33]. All associations found in the current study are 

candidates as LD expands beyond the sequenced region, and could affect gene expression 

through regulatory elements outside the coding region such as the promoter. The confirmation of 

associated polymorphisms within candidate genes must be done in separate association mapping 

populations or through targeted mutation studies. Future studies will include adequate diversity 

and more lines to increase the statistical power to detect marker trait associations.  
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Table 1 Rtcl haplotypes formed by 45 single nucleotide polymorphisms and average phenotypic values of lines included in the individual haplotypes. 
 
SNP position 

Exon 1 Intron 1 Exon 2 

                                              

 3 9 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 8 
 3 4 0 3 9 9 9 0 1 2 2 3 5 7 7 1 6 7 8 1 3 4 4 5 7 9 0 0 1 3 4 9 9 0 0 0 1 1 2 3 3 5 6 9 2 

   4 2 0 6 8 7 7 0 4 2 7 3 4 3 8 3 1 0 1 3 7 4 6 7 1 7 6 2 8 4 5 3 4 8 1 6 0 6 7 9 1 9 4 

 s a s a a a a a a a s a s a a a        s a a a a a a a a a a a a a a a a a a s a a 
Haplotypes 

Hap_1 G C C C T A A T C C G C A G G C A A G A G A T C C G G N C G A G G C G A A C T A T C T T A 

Hap_2 G C C C T A A T C C C C A G A C C G A T G A T C C G G N C G A G G C G A A C A C T C T G A 
Hap_3 G C C C T A A T T C C A A G A C A A G A G A T C C G A N T G T G T C G T A A A N A C C G C 

Hap_4 A G A C T A A T C T G A A G G C A A G A G A T C C G G N C G A G G C G A A C T A T C T T A 

Hap_5 A G C C A G T T T C T C T A N A T G G T C G G T C T G N C A A G G G G A A C A C T C T A C 
Hap_6 G C C C A G T T T C T C T A N A T G G A G A T C C G G N C G A G G C G A A C A C T C T G A 

Hap_7 G C C C T A A T C C C C A G A C A A A T G A T T C G G N C G G G G C G A A C A N A G T T C 

Hap_8 G C C A T A A T T C C C T A N C A A A T G A T T C G G N C G G G G C G A A C A N A G T T C 
Hap_9 G C C C T A A T C C C C A G A C N A A T G A T T C G G N C G G G G C G A A C A N A G T T C 

Hap_10 G C A C T A A T C T G A A G G C A A G T G A T C C G G N C G G A G N A T T C A N A C T T C 

Hap_11 G C C C T A A T C T G A G G G C A A G T G A T C C G G N C G G A G N A T T C A N A C T T C 
Hap_12 G C A A T A A A C C C C A G G A T G G T G A G T T G G G C G A A G N A T T C A N A C T T C 

Hap_13 G C C C T A A T T C C A A G A C A A G A G A T C C G A C T G T G T C G T A A A N A C C G C 

Hap_14 G C C C T A A T T C C A A G A C A A G A G A T C C G A N T G T G T C G T A N A N A C C G C 
Hap_15 A G C C A G T T T C T C T A N A T G G T G G G T C T G N C A A G G G G A A C A C T C T A C 

Hap_16 G G C C T A A T T C C A A G A C A A G T G G G T C T G N C A A G G G G A A C A C T C T A C 

 
Haplotypes sTRL tTRL fTRL sRDW tRDW fRDW 
Hap_1 32.4 135.9 219.3 12.40 29.93 47.88 

Hap_2 43.4 121.6 207.9 14.61 30.00 47.79 

Hap_3 36.7 131.2 216.8 15.92 33.16 51.59 

Hap_4 33.7 134.7 247.6 13.23 27.54 51.99 

Hap_5 47.4 155.7 246.0 16.43 33.97 52.80 

Hap_6 41.2 160.0 195.3 12.78 32.89 37.70 

Hap_7 34.8 145.5 236.1 12.09 29.88 47.17 

Hap_8 45.0 127.9 256.2 13.31 32.35 54.25 

Hap_9 29.2 109.8 231.5 9.77 24.37 52.20 

Hap_10 21.8 117.5 201.3 6.46 16.11 26.77 

Hap_11 27.2 156.9 268.4 9.37 26.84 45.50 

Hap_12 48.4 153.1 250.9 14.45 31.81 52.49 

Hap_13 38.8 158.4 251.9 16.17 35.07 56.27 

Hap_14 43.0 153.6 235.4 17.12 38.07 60.56 

Hap_15 50.6 119.9 210.6 19.31 34.45 60.00 

Hap_16 43.2 147.4 205.7 14.56 32.47 45.32 

       

Maximum 50.6 160.0 268.4 19.31 38.07 60.56 

Minimum 21.8 109.8 195.3 6.46 16.11 26.77 

Range 28.8 50.2 73.1 12.85 21.96 33.79 

       

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sTRL = Total root length at 6th day; tTRL = Total root length at 10th day; fTRL = 
Total root length at 14th day; sRDW = Root dry weight at 6th day; tRDW = Root dry weight at 10th day; fRDW = Root dry weight at 14th day.    
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Table 2  
Rth3 haplotypes formed by 15 single nucleotide polymorphisms and average phenotypic values of lines included in 

the individual haplotypes. 
 

SNP Position 

 Exon        

 5 1 4 1 2 3 3 3 4 4 4 4 5 6 6       

 9 6 7 8 3 5 9 9 1 3 6 9 1 0 2       
  3 9 0 4 1 3 9 7 8 5 2 9 0 1       

 a a a s s s s s s s s s s s s       

                      
Haplotypes                sTRL tTRL fTRL sRDW tRDW fRDW 

Hap_1 C G G C G G G C G C A G G T G 39.9 128.8 215.6 14.74 34.13 50.32 

Hap_2 C A G C G G G G A C A G G T G 42.7 144.9 235.6 15.96 32.69 52.23 
Hap_3 N N G C G G G G A C A G G T G 40.9 134.8 278.9 16.51 36.29 62.89 

Hap_4 C G T T G G G C G A A T A C A 34.1 130.2 204.0 11.26 28.21 42.32 

Hap_5 C G G C T A A C A C A G G T A 32.1 143.8 250.4 11.88 29.38 52.05 
Hap_6 C G G C G G G G A C A G G T G 35.9 141.3 224.9 12.89 29.67 48.22 

Hap_7 T G G C G G G G A C A G G T G 45.7 150.5 230.0 16.69 33.23 50.20 

Hap_8 N G G C G G G G A C A G G T G 20.1 149.1 194.2 12.41 29.99 40.60 
Hap_9 C A G C G G G G A C G G G T G 46.3 143.7 247.0 14.64 33.01 58.76 

                      

                                                                                                                            Maximum 46.3 150.5 278.9 16.69 36.29 62.89 
                                                                                                                            Minimum 20.1 128.8 194.2 11.26 28.21 40.60 

                                                                                                                            Range 26.2 21.7 84.7 5.43 8.08 22.29 

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sTRL = Total root length 

at 6th day; tTRL = Total root length at 10th day; fTRL = Total root length at 14th day; sRDW = Root dry weight at 6th day; tRDW = Root dry 
weight at 10th day; fRDW = Root dry weight at 14th day. 
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Table 3  

Rum1 haplotypes formed by 12 single nucleotide polymorphisms and average phenotypic values of lines included in 

the individual haplotypes. 

  
SNP position  

 Exon 5 Intron 4       

 6 7 1 2 2 2 2 3 3 3 4 4       
 3 8 1 3 5 6 7 0 5 8 0 0       

   8 6 1 4 6 2 8 1 5 7       

 s s a                
                   

Haplotypes             sTRL tTRL fTRL sRDW tRDW fRDW 

Hap_1 T C G A A C T T G T C A 35.3 121.3 199.1 11.47 25.44 40.89 
Hap_2 C C G A T A A G G T T G 44.8 150.0 240.8 15.81 33.85 53.11 

Hap_3 C C C A T C T T C C C A 42.4 155.7 251.2 15.91 36.02 58.57 

Hap_4 N C G N T A T N G N N N 31.1 119.6 170.0 16.98 33.15 48.05 
Hap_5 N C N A T A A G G N N N 68.0 159.7 242.5 28.11 41.79 56.38 

Hap_6 N C C A T A T T G N N N 32.1 140.6 297.3 18.22 36.90 69.42 

Hap_7 N C C A T N N N G N N N 34.2 140.5 226.2 14.11 31.62 47.4 
Hap_8 C C C A T N N T C C C A 28.1 158.6 251.3 15.89 34.71 52.7 

Hap_9 C C C A T C T T C N N N 29.0 102.2 194.5 16.08 35.65 49.19 

Hap_10 N C G A T A A A G N N N 20.8 80.4 113.6 6.71 17.54 21.92 
Hap_11 N T G N T N T N G N N N 29.2 152.7 245.7 10.65 29.20 43.48 

Hap_12 C C C A T N T T C N N N 38.2 123.9 200.6 21.24 39.82 61.69 

Hap_13 T C G A A C T T G N N N 35.1 131.1 198.2 13.29 29.50 43.87 
Hap_14 N C G A T A A N G N N N 36.4 147.0 252.1 10.45 26.40 47.35 

Hap_15 C C G A A C T T G T C A 41.2 160.0 195.3 12.78 32.89 37.7 

Hap_16 C C G G T C T T G T C A 41.1 145.5 249.2 15.21 35.20 57.61 
Hap_17 T T G G T C T T G T T G 38.0 147.1 235.0 13.40 30.68 50.37 

Hap_18 C C G A T A A T G T T G 20.3 107.1 238.4 7.71 23.34 38.11 

Hap_19 T T G A A C T T G T C A 24.2 129.0 178.8 11.29 34.85 42.44 
Hap_20 N C G A A C T T G N N N 45.1 132.7 246.1 15.01 26.55 59.29 

Hap_21 N C C A T N T N C N N N 30.5 122.1 266.9 10.77 21.87 50.39 

Hap_22 C C G G T C T T G T T G 52.0 156.8 221.1 16.95 31.19 49.09 
                   

                                                                                                    Maximum 68 160 297.3 28.11 41.79 69.42 

                                                                                                    Minimum 20.3 80.4 113.6 6.71 17.54 21.92 
                                                                                                    Range 47.7 79.6 183.7 21.4 24.25 47.5 

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sTRL = Total root length 

at 6th day; tTRL = Total root length at 10th day; fTRL = Total root length at 14th day; sRDW = Root dry weight at 6th day; tRDW = Root dry 
weight at 10th day; fRDW = Root dry weight at 14th day.    
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Table 4 

Rul1 haplotypes formed by 6 single nucleotide polymorphisms and average phenotypic values of lines included in 

the individual haplotypes. 

 
SNP position  

 Exon 6 Intron5  

 2 7 1 2 2 4       
 2 5 0 2 4 0       

   1 6 4 4       

 a s a a a        
             

Haplotypes       sTRL tTRL fTRL sRDW tRDW fRDW 

Hap_1 A C G C C T 39.7 140.1 228.5 13.71 30.67 49.62 
Hap_2 A C G C C G 37.4 114.2 159.7 12.84 24.76 34.48 

Hap_3 A C G A T A 40.1 146.7 239.5 15.49 34.03 54.09 

Hap_4 G T A C C G 38.7 132.1 207.1 15.40 28.81 42.36 
Hap_5 A C G C T G 41.2 152.8 222.3 14.00 34.05 47.66 

Hap_6 N C G A T A 27.2 156.9 268.4 9.37 26.84 45.5 

Hap_7 G T A C C T 30.5 122.1 266.9 10.77 21.87 50.39 
             

                                              Maximum 41.2 156.9 268.4 15.49 34.05 54.09 

                                            Minimum 27.2 114.2 159.7 9.37 21.87 34.48 
                                      Range 14.0 42.7 108.7 6.12 12.18 19.61 

s = synonymous substitution: a = non-synonymous substitution resulting in amino acid change; N = missing nucleotide; sTRL = Total root length 

at 6th day; tTRL = Total root length at 10th day; fTRL = Total root length at 14th day; sRDW = Root dry weight at 6th day; tRDW = Root dry 
weight at 10th day; fRDW = Root dry weight at 14th day.    
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Table 5 

Summary of alignment length, number of genotypes per alignment, polymorphisms and nucleotide diversity in the Rtcl, Rth3, Rum1 and Rul1 genes in maize.  

 
 

Entire region Non-coding region Coding region 

No. of 

Haplotypes 

Hd 

   All sites Synonymous Non-synonymous   

        
Rtcl (n=69) 830bp     16 0.873 

No. of segregating sites 45 7 38 6 32   

π 0.021 0.022 0.021 0.017 0.017   
Tajima’s D 2.691** 2.232* 2.569* 2.593* 2.278*   

        

Rth3 (n=74) 713bp     9 0.786 
No. of segregating sites 15 0 15 12 3   

π 0.007 n.a 0.007 0.026 0.0002   

Tajima’s D 1.298NS n.a 1.298NS 1.500NS (-)0.605NS   
        

Rum1 (n=74) 432bp     22 0.855 

No. of segregating sites 12 9 3 2 1   
π 0.011 0.017 0.005 0 0   

Tajima’s D 0.960NS 1.033NS 0.306NS n.a n.a   

        
Rul1 (n=74) 411bp     7 0.624 

No. of segregating sites 6 1 5 1 4   

π 0.005 0.007 0.004 0.003 0.005   
Tajima’s D 1.766NS 2.305* 1.073NS (-)0.322NS 1.465NS   

Numbers of lines are shown in the parenthesis. ns = not significant;*p<0.05; **p<0.01.  
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Table 6 

Polymorphic sites of Rtcl gene associated with the root traits (Total root length, Root dry weight) at different growth 

stages identified by MLM analysis. 
 

Site SNP Amino acid change E/I  Days of measurement 

     Six Ten Fourteen 

        
290 T→A Leu-His E1  TRL:RDW - - 

296 A→G Asp-Gly E1  TRL:RDW - - 

298 A→T Ser-Cys E1  TRL:RDW - - 
317 C→T Pro-Leu E1  TRL:RDW - - 

320 T→C Val-Ala E1  RDW RDW - 

324 G/C/T Syn E1  TRL:RDW - - 
357 G/A/T Syn E1  TRL - - 

373 G→A Asp-Asn E1  TRL - - 

374 A→G Asp-Gly E1  RDW RDW - 
413 C→A Thr-Lys E1  TRL TRL - 

468 A→T - I1  TRL:RDW - - 

473 A→G - I1  TRL:RDW TRL - 
510 T→A - I1  TRL - TRL 

531 G→C - I1  TRL TRL - 

543 G→A - I1  TRL:RDW - - 
547 T→G - I1  TRL:RDW TRL - 

554 C→T Ala-Val E2  TRL TRL TRL 

597 G→T Syn E2  TRL:RDW - - 
632 A→G Glu-Gly E2  TRL:RDW - - 

703 C→G Arg-Gly E2  TRL:RDW - - 

720 A→T Syn E2  TRL - - 
736 C→A His-Asn E2  TRL:RDW - - 

799 T→G Trp-Gly E2  TRL:RDW - - 

 TRL=Total Root Length; RDW = Root Dry Weight  

 

 

 

 

Table 7 

Polymorphic sites of Rth3 gene associated with the root traits (Total root length, Root dry weight) at different 

growth stages identified by MLM analysis. 

 
Site SNP Amino acid change E/I  Days of measurement 

     Six Ten Fourteen 

        

163 G→A Ala-Thr E  TRL - RDW 

180 G→T Syn E  TRL - TRL; RDW 
234 C→T Syn E  TRL - TRL; RDW 

351 G→T Syn E  TRL -  

393 G→A Syn E  TRL -  
399 G→A Syn E  TRL -  

417 G→C Syn E  TRL -  

438 A→G Syn E  TRL - TRL; RDW 
465 C→A Syn E  TRL - TRL; RDW 

492 G→T Syn E  TRL - TRL; RDW 

519 G→A Syn E  TRL - TRL; RDW 
600 T→C Syn E  TRL - TRL; RDW 

621 G→A Syn E  TRL;RDW -  

TRL=Total Root Length; RDW = Root Dry Weight 
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Table 8 

Polymorphic sites of Rum1 gene associated with the root traits (Total root length, Root dry weight) at different 

growth stages identified by MLM analysis. 

 
Site SNP Amino acid change E/I  Days of measurement 

     Six Ten Fourteen 

        

63 C→T Val-Ala E5  - TRL;RDW TRL;RDW 
118 G→C Val-Leu E5  RDW - RDW 

251 T→A - I4  - TRL;RDW TRL;RDW 

302 T→G - I4  TRL;RDW - TRL;RDW 
358 G→C - I4  - - RDW 

381 T→C - I4  - - RDW 

TRL=Total Root Length; RDW = Root Dry Weight 

 

 

 

Table 9 

Polymorphic sites of Rul1 gene associated with the root traits (Total root length, Root dry weight) at different 

growth stages identified by MLM analysis. 

 
Site SNP Amino acid change E/I  Days of measurement 

     Six Ten Fourteen 

        

7 T→A→G - I5  - - RDW 

311 G→A Syn E6  - RDW - 
336 C→T Thr-Ile E6  - RDW - 

389 A→G Ser-Gly E6  - RDW - 

RDW = Root Dry Weight 
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Fig. 1. Nucleotide diversity values (x-axis) in sliding windows (size = 10, length = 100) at the Rtcl, Rth3, Rum1 and 

Rul1 gene locus for all lines. Nucleotide diversity was calculated based on the θ, neutral mutation parameter derived 

from the total number of segregating sites. 1-420bp: Rtcl Exon 1; 421-549bp: Rtcl Intron; 550-830bp: Rtcl Exon 2; 

831-1543bp: Rth3 Exon; 1544-1750bp: Rum1 Exon 5; 1751-1975bp: Rum1 Intron 4; 1976-2302bp: Rul1 Exon 6; 

2303-2386bp: Rul1 Intron 5. 
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Suppl. Fig 1. Distribution of trait total root length in maize inbred lines, values in x-axis represents mid-point of 
class-interval. 
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I29 MO17 

HP301 

Supl Figure 3. A) Total Root Length, estimated by summing the lengths of primary root, crown, seminal, and lateral roots for each seedling. B) Crown 

Root Number, estimated by counting the number of crown roots on each seedling. C) Seminal roots, measured by counting each root and calculated length 

by measuring each with a ruler and adding lengths for total seminal root length. D) Lateral Roots, measured by analyzing the canned images using 

WinRhizo software. E) Primary Root Length, measured manually using a ruler. F) Root photos show trait variation regarding length and amount of lateral 

roots, which make up a major portion of the total root length of the seedlings. These images exemplify the vast amount of variation between the lines 

studied within this association mapping population.  
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CHAPTER THREE 

 

ANALYSIS OF MAIZE (ZEA MAYS L.) SEEDLING ROOTS WITH THE HIGH-

THROUGHPUT IMAGE ANALYSIS TOOL ARIA (AUTOMATIC ROOT IMAGE 

ANALYSIS).  

 

Jordon Pace, Nigel Lee, Hsiang Sing Naik, Baskar Ganapathysubramanian, Thomas Lübberstedt 

 

 

Paper published in PLoS ONE journal. Abstract, structure, and references are formatted 

according to the journal standards.  

Abstract:  

The maize root system is crucial for plant establishment as well as water and nutrient uptake. 

There is substantial genetic and phenotypic variation for root architecture, which gives 

opportunity for selection. Root traits, however, have not been used as selection criterion mainly 

due to the difficulty in measuring them, as well as their quantitative mode of inheritance. 

Seedling root traits offer an opportunity to study multiple individuals and to enable repeated 

measurements per year as compared to adult root phenotyping. We developed a new software 

framework to capture various traits from a single image of seedling roots. This framework is 

based on the mathematical notion of converting images of roots into an equivalent graph. This 

allows automated querying of multiple traits simply as graph operations. This framework is 

furthermore extendable to 3D tomography image data. In order to evaluate this tool, a subset of 

the 384 inbred lines from the Ames panel, for which extensive genotype by sequencing data are 

available, was investigated. A genome wide association study was applied to this panel for two 

traits, Total Root Length and Total Surface Area, captured from seedling root images from 

WinRhizo Pro 9.0 and the current framework (called ARIA) for comparison using 135,311 single 

nucleotide polymorphism markers. The trait Total Root Length was found to have significant 
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SNPs in similar regions of the genome when analyzed by both programs. This high-throughput 

trait capture software system allows for large phenotyping experiments and can help to establish 

relationships between developmental stages between seedling and adult traits in the future. 

  

Introduction: 

The maize (Zea mays L.) root is designed to provide anchorage as well as to secure uptake of 

water and nutrients, including nitrogen (N), in an efficient manner [1,2]. Maize roots are formed 

partly during embryonic and partly during post-embryonic development [3]. There are five main 

types of roots in maize: crown, seminal, primary, lateral, and brace roots [4]. The major portion 

of root biomass of mature plants is derived from postembryonic, shoot-borne roots. These 

postembryonic roots include crown roots, formed below soil surface, and brace roots, formed 

above soil surface [5].  Their function is important to plant performance as they are responsible 

for the majority of water and nutrient uptake in maize [5]. 

Two to three week old seedling root systems are made up of primary roots, lateral roots, seminal 

roots, and root hairs [4,6]. Lateral roots branch outward from the primary root. These root types 

are called the axial roots and determine root architecture. Lateral roots increase the surface area 

of the root system and all root types contribute to water and nutrient uptake [2,7,8]. Moreover, 

lateral roots contain root initiation points, leading to secondary, tertiary, and higher order root 

structures, with major influence on the overall root architecture of the root stock [2].  

There is extensive genetic variation in root architecture. However, root traits have not been 

considered by plant breeders to select for improved nutrient uptake efficiency or yield 

improvement due to the difficulty in measuring root traits and their quantitative mode of 

inheritance [9]. Studying adult roots using maize “shovelomics”, a high-throughput phenotyping 
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technique that measures adult root traits,  is time consuming and laborious. This method of 

phenotyping is also destructive because roots are dug out of the ground. This limits the number 

of experiments that can be completed in a season [10]. Changes in maize root architecture may 

strongly affect yield [11]. Seminal roots play a key role in the acquisition of immobile and 

mobile nutrients such as phosphorus and nitrogen respectively and can determine spatial and 

temporal domains of its environment and inter-root competition [6]. The relationship between 

seminal root biomass in hydroponics and root lodging in a field study focusing on root strength 

and pulling resistance has been explored. Respective correlations were low, but statistically 

significant. Correlations found in hydroponic seedling root traits compared to adult field traits 

were r=0.44* for shoot weight and adult plant height, and r=0.22* for lateral root length with 

brace root development [12,13].  

Seedling phenotyping takes less time, is less laborious, and can be repeated many times during 

the year allowing for quicker turnover of results. Positive but low correlations were found 

between maize seedling and adult root traits, such as number of seminal roots and weight of 

seminal roots to root pulling resistance (r=0.07 and r=0.36*, respectively)  [14]. Expanding the 

number of seedling root traits and improving respective phenotyping procedures, may increase 

the chance of capturing strong relationships between different growth stages in maize.   

Using digital imaging software to automate phenotypic analysis is an innovative and efficient 

way of accurately taking measurements of plant physiological traits [15-19]. Roots have been 

difficult to phenotype in a high throughput manner due to a lack of simple access and their 

highly plastic nature. With the development of custom root analysis systems, quantitative studies 

of root systems are now possible [20,21]. There are several software frameworks that extract root 

morphology traits in two-dimensions in various hierarchies of automation. This ranges from 
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manual root labeling like DART (Le Bot and Serra, 2009), to semi-automated software like 

WinRhizo (Pro, 2004), a commercial root analysis tool, and EzRhizo [22], a freely available 

software, all the way to full integrated imaging-analysis platforms like SmartRoot [23] for small 

root systems and recent platforms,   allowing for automated measurements as well as invoking a 

ranking system for root traits [17]. 

These software frameworks have substantially enhanced the research community’s ability to 

efficiently analyze and accumulate massive amounts of data. They also pioneered the utilization 

of graphical user interface (GUI) that enables ease of use. However, most of these software 

frameworks are either expensive, not expandable to increased (or decreased) dimensions, or 

cannot be fine-tuned to a specific setup. We developed an open-source, modular, easy-to-use and 

efficient root system architecture characterization software called ARIA (Automatic Root Image 

Analysis). This is based on a mathematically rigorous approach of converting root images into 

graphs. We show how extracting a variety of traits becomes a simple process of utilizing various 

graph algorithms. There are several major advantages to such a graph based approach to 

extracting root system traits: (a) graph based methods are well-studied and have very fast and 

efficient algorithms (for example, used in Google, Facebook, most GPS devices etc.) that enable 

fast, real time data analysis, (b) graph based methods are easily scalable (having almost linear 

computational complexity) and, hence, can be easily extended to larger problem sizes without 

compromising on time (with direct implication to large 3D tomography datasets), and (c) a 

graph-based approach is generic. That is, by making trivial modifications to the definitions of 

parameters like edges, weights, and labels, a huge variety of traits can be accessed. This makes a 

graph based framework trivially extendable. Furthermore, graphs are dimension independent, 

and hence this framework is trivially extendable to 3D root image analysis.  
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In this study, the utility of ARIA has been tested by phenotyping 384 maize inbred lines using 

scanned images of seedling roots. These data were then applied to a genome wide association 

study (GWAS) to detect marker-trait associations. Measurements of the trait Total Root Length 

were analyzed for a comparative GWAS study, as this is the only trait shared between the current 

platform WinRhizo Pro 9.0 and ARIA. The objective of this study is to show that our new and 

freely accessible root phenotyping software ARIA is a fast and accurate platform for automated 

phenotyping, with the potential of adding additional features when compared to the established 

software WhinRizo Pro 9.0. For both programs, significant marker trait associations were found 

using a general linear model. Also, phenotypic measurements with both programs were 

compared using a 74 maize inbred line panel [24] to further validate utility of ARIA. The results 

of this study show that ARIA is an accurate and dependable tool for completing large 

phenotyping experiments, needed for many quantitative genetic studies. Its flexibility makes 

ARIA a very useful tool to breeders and biologists studying root architecture. 

Results 

Root traits captured by ARIA 

Using ARIA, 27 different root traits were extracted from each scanned image of seedling roots 

(Table 1). Some traits are more suitable for 3D root scan image analysis such as Depth, Width, 

and the Width/Depth ratio. All simple statistics as well as heritability estimates for all root traits 

are found in Table S2. This program is free software and can be accessed using the following 

link: http://www3.me.iastate.edu/bglab/pages/software.html ARIA captures more traits than 

existing programs such as WinRhizo Pro 9.0, which lists eight different traits that can be 

obtained from a single root scanned image when buying a standard package. ARIA is fully 

automated with the ability to capture up to three separate seedling roots from a single image, and 
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to conduct all analyses with limited user interference. Each image was a high resolution scan 

(around 4400x6200 pixels) of three seedling roots placed side-by-side (Figure 1). Within each 

image the bounding boxes were automatically identified for each root. Each of the three roots is 

then individually analyzed and its 27 traits extracted. Data is then exported into an Excel file. 

This process takes approximately 20 seconds on a standard desktop (2.8 GHz machine). We used 

a total of 1059 images, each containing up to three roots per image. ARIA ran autonomously and 

extracted traits within 12 hours, allowing for fast turnaround of phenotypic data. Thus, trait 

capture is very fast and efficient when analyzing multiple roots of large experiments. 

Seedling Trait Correlations 

Pearson correlations were calculated using SAS 9.3 for all 27 seedling root traits compared to 

one another. Correlations between traits (Table S1) ranged from very close (r = 0.998) between 

traits such as secondary root length and PRL to no significant correlations (r = -0.061) for TRL 

and BSH. BSH did not correlate closely with other root traits with the highest r2 value of 0.166. 

Similarly, SRL did not show close correlations with other seedling root traits, with its closest 

correlation of 0.5 with TSA. Conversely, it was found that seedling root trait DEP had close 

correlations with various other root traits, especially with PRL (r=0.95). A principle component 

analysis (PCA) was conducted to visualize trait relationships. The first two components explain 

45.9% of the variation (with PCA 1 explaining 35.5%). Based on the first two principle 

components (Figure 2), there are four trait clusters. These clusters are comprised of (1) CMT, 

WDR, CPT, (2) MNR, and MED, (3) SEL, TRL, NWA, and (4) SCS, WID, PER, CVA, and 

TSA. All of these traits had close correlations within clusters while traits outside of clusters were 

not closely correlated (Table S1).  
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Validation of Measurements 

In order to validate measurements made by ARIA with those obtained by WinRhizo Pro 9.0 

(Regent Instruments, Quebec, Canada), the same images of hydroponically grown maize 

seedling roots were analyzed by both programs and data compared. Total Root Length was found 

to be closely correlated with r=0.97 (P=0.0001) when analyzing data within the Ames Panel. For 

the ASI panel, total root length was correlated between the two programs at r=0.92 (P=0.0001), 

and root surface area was closely correlated at r=0.90 (P=0.0001). Broad sense heritabilities (H2) 

were calculated for both association mapping populations (Table 2). Heritability estimates were 

generally higher for measurements extracted using ARIA at H2=0.42 compared to H2 = 0.41 for 

total root length measured in the Ames Panel, as well as root surface area in the ASI panel with 

H2=0.54  using ARIA compared to H2=0.50 using Whin Rhizo Pro 9.0. 

Genome Wide Association Study using ARIA vs WinRhizo  

A GWAS experiment was conducted in order to show the utility of this new program and its 

ability to analyze many root images in a high-throughput manner compared to WinRhizo, the 

current platform used. Further GWAS analyses will be documented in a future publication. TRL 

was extracted from a single scan of three roots from each inbred line. This process was repeated 

three times, once for each replication. Analysis of TRL measured with both ARIA and WinRhizo 

combined with genotypic information on 135,311 single nucleotide polymorphism markers 

across the entire genome identified  significant associations at p<5.3 x 10-7. Markers found to be 

significant  were located on chromosomes 1, 2, and 4 for ARIA (Figure 3) while WinRhizo 

analysis resulted in additional SNPs on chromosomes 3, 5, 6, and 8 (Figure 4). Both programs 

identified significant markers in similar regions of the genome specifically on chromosome 2 and 

chromosome 4. Moreover, significant SNPs on Chromosome 4 were identical for both programs.  
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Discussion  

Quality of ARIA trait estimates, limitations and prospects 

ARIA is a reliable program that results in accurate measurements comparable to established 

programs such as WinRhizo Pro 9.0. The close correlation and higher heritability estimates of 

TRL and TSA are encouraging for using ARIA to obtain accurate measurements in future 

quantitative studies. A limitation for using ARIA in the current study was that only three roots 

were analyzed at a time. ARIA can be extended to allow a larger number of roots to be analyzed 

within a single image, depending on the scanning or image capture device. Since ARIA can 

automatically crop pictures for the user, keeping roots separate is important for accurate 

measurements, as crossed over roots could cause uneven cropping or erroneous paths. When 

comparing the amount of time needed to extract root measurements with ARIA and extracting 

measurements with WinRhizo, ARIA simplifies the process and cuts the time taken 

measurements to less than half the amount of time needed for WhinRhizo. This is in part due to 

the automatic cropping system as well as exporting measurement values into an Excel 

spreadsheet all at once within 20 seconds per seedling root. In WhinRhizo, each root has to be 

cropped manually; data are extracted into a .txt file, which needs to be edited for data analysis. 

Exporting data directly into a user friendly format ARIA by-passes all of these intermediate steps. 

The current version of ARIA is automated for roots exhibiting a distinguishable primary root. 

However, ARIA should work equally well with multiple equal order roots with minor changes 

due to the graph based formulation: ARIA finds all lengths of roots as distances from kernel to  

root tips and subsequently picks the single longest root (this can be modified to account for 

multiple equal order roots, for example in rice). A potential limitation is when a secondary root 

curl ends exactly at the primary root. This creates circular loops in the graph that impair further 



64 

 

 

analysis. However, none of the 3000 images analyzed exhibited this issue. A way to resolve this 

minor issue is to consider a quasi-temporal approach to ‘growing’ the graph vertex-by-vertex 

that will distinguish these overlaps (work in progress).  

The graph based formulation makes this framework easily extendable to multiple purposes 

[25,26]. This same framework of trait extraction has been applied in other disciplines including 

chemistry [25] and materials science [26]. Examples of extensions include 3D phenotyping 

where magnetic resonance imaging (MRI), X-ray or optical tomography data can be curated and 

traits extracted.  Furthermore, ARIA can work with a variety of data formats including 

photographs, scanned images, microscopy images as well as X-ray based reconstructions.  

Significance of ARIA 

While current root analysis programs are available to make measurements of root traits, none 

currently offers the flexibility and functionality as ARIA. When comparing WinRhizo 9.0 to 

ARIA, the larger numbers of traits that can be captured, ability to capture 3D image 

measurements, and shorter time spent to extract trait measurements from images, are key 

advantages of. ARIA, automatically crops root images, after a mouse click defines the starting 

point for measurements. Furthermore, ARIA has the ability to mark a batch of images enabling 

batch analysis. In ARIA, measurements are exported into an Excel spreadsheet, while WinRhizo 

gives a text file that must be converted. ARIA’s ability to do this automatically makes this 

program high-throughput and decreases chances of human error. Another key advantage to this 

program is the fact that measurement capabilities can easily be added, as additional key 

architectural attributes of roots are determined.  

Using ARIA, mapping studies for root traits can be implemented on a larger scale due to the 

reduced time needed for phenotyping. This software system aids plant scientists by relieving the 
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phenotyping bottleneck for quantitative traits such as root architectural traits by adding to 

existing technologies in phenomics [27]. Not only is this program fast, its ability to analyze both 

2D and 3D images also offers a unique opportunity to look at the same traits, with the same 

analysis program, but from two different perspectives. Previous programs such as RootReader2D 

[28] and RootReader3D [29] offer extensive trait collection, but are hindered by the fact that 

each program is restricted to analyze at either 2D or 3D. ARIA in comparison is able to not only 

analyze 2D flat plane images such as those presented here, but also 3D images of roots. To show 

this feature, a simple 3D image of a root was analyzed using ARIA (Figure 5). Here, we 

demonstrate that skeletonization and outlining of the primary root can be completed as in 2D. 

The actual measurements of select traits have also been included in pixels (Figure 5). Based on 

multiple points of view of the same root system, ARIA extracts 27 root traits in a single root 

analysis. Figure 6 shows how the mathematical foundation (graph based analysis) coupled with 

the open-source framework can be trivially extended to other trait extraction.  

A similar program described by Pascuzzi [17] was used to analyze rice varieties within a gel 

medium. This program has the ability to capture many of the same traits as ARIA. The major 

advantage of ARIA is that it can directly analyze those same gel medium images in both 2D and 

3D formats. This adds to the flexibility of this free access program. Existing phenotyping 

systems can utilize this analysis tool without changing their growth procedures, whereas the 

other program is not as dimensionally flexible. No changes need to be made in the GUI or 

procedures to analyze images. This allows for an expanded number of environmental conditions, 

whether controlled by humans or nature, in which root architecture could be studied and for 

connections between how root develop in a hydroponic environment compared to soil or other 

growth medium.   
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Exploring Roots as a model for selection 

Large scale mapping studies such as quantitative trait locus (QTL) mapping and GWAS require 

large mapping populations that must be phenotyped in an accurate manner. Genomic selection 

(GS) [30] is a method in which a training population is used to collect phenotype information 

and coupled with extensive genetic information. Then, a model is developed to make predictions 

for the performance of traits of interest, solely based on genetic information. This requires 

massive amounts of phenotypic information that are highly accurate, especially for plastic traits 

such as root architecture [31]. Currently, root architecture is not used for selection, because of 

the resources needed for extensive phenotyping and the quantitative mode of inheritance of root 

traits [9]. New phenotyping software such as ARIA may facilitate to include root architecture in 

selection schemes. Comparative GWAS for TRL obtained with both WinRhizo Pro 9.0 and ARIA 

identified similar or identical regions of the genome associated with this trait. Associations found 

in only one program may be due to low power of detecting a polymorphism with small genetic 

effect. 

The major goal was to develop an easy to use image software analysis tool for measuring root 

traits from simple scans or photographs. A free to use software platform with ability to 

investigate both 2D and 3D root architectural characteristics for plants has been developed to 

facilitate measuring multiple root traits in a high-throughput, accurate manner. We compared this 

new program to existing programs. ARIA showed close correlations to traits measured with 

established software, supporting accurate measurements. The 27 root traits measured give an 

example for the utility of this program and offer an extensive amount of traits to be studied for 

large scale phenotypic analysis of roots or mapping studies looking at the genetic control of root 

architecture. Future studies using this program include root characterization for particular maize 
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or other plant species of interest as well as phenotyping for quantitative trait studies such as 

GWAS, QTL mapping, and GS.  

Materials and Methods 

ARIA (Automatic Root Image Analysis)  

ARIA is custom software written in the programming framework, MATLAB (Natick, 

Massachusetts, United States). ARIA has a user friendly GUI interface to enable easy and rapid 

data extraction. The operational concept of the software is to convert the root image (after 

standard image pre-processing) into a graph. The software framework can read in most standard 

image formats. Each image is loaded (Figure 1), and after a sequence of pre-processing steps, 

converted into a graph. A graph is a mathematical construct consisting of a set of vertices that are 

connected by a set of edges. This is done by labeling each pixel of the root image into a vertex, 

and linking nearest neighbor pixels with edges. The key steps of the software are: 

a) Thresholding: The background is first identified (using morphological operations in Matlab) 

and renormalized to black. This effectively eliminates most of the background signal. Then the 

image threshold is calculated using Otsu’s method. The grey scale image is converted into a 

black and white image. This is done by comparing the intensity of each pixel with a threshold 

value. The pixel is marked as black (or white), if it’s grey scale value is smaller (or larger) than 

the threshold (Figure 7). 

b) Connected components: Since the root is one large connected system, everything else that is 

not connected to the root can be removed from the image. This idea is encoded in the graph 

concept of connected components, which enumerates all the distinct connected components in 

the image. The largest connected component is the root, all the other connect components are 
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noise or other foreign artifacts. Note that if the image resolves finer root hairs (which our 

imaging process does not do) these will still be part of the largest connected component.  

c) Skeletonization: A ‘wire-frame’ skeleton of the binary image is constructed by thinning (or 

eroding). Skeletonization is a fundamental tool with many applications in image processing and 

visualization. Here, skeletonization is essential to identify and distinguish between the primary 

and secondary roots (Figure 7).  

d) Primary and secondary root identification: The primary root is identified as the graph path 

that has the longest path length (Figure 8). This is accomplished by Dijkstra’s algorithm to 

estimate shortest paths between two points of the graph [32]. Dijkstra’s algorithm is used to 

compute the shortest paths from each free end of the root to every other free end. The longest 

“shortest path” is identified as the primary root.  Secondary roots are identified easily by 

subtracting the primary root from the original image and enumerating the remaining distinct 

connected components.  

e) Graph querying and post processing: The graph is queried to construct several traits starting 

from simple traits like total root length, to more complex measures like bushiness. All data are 

exported into an Excel sheet for ease of analysis and use. This will allow one to place a series of 

images for analysis at a time and export it to Excel. The data are also displayed on the GUI. All 

traits are analyzed automatically and can be viewed when clicking display results (Figure 9).  

Plant materials 

The first association mapping population or “Ames panel” is comprised of 384 inbred lines 

obtained from the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in 

Ames, Iowa. All lines used in this study are a subset of a larger collection of lines called the 

Ames panel [33], consisting of 2815 maize inbred lines conserved at USDA-ARS NCRPIS. The 
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384 lines were selected based on maturity in view of future field trials in central Iowa. The 

second panel of 74 maize inbred lines called “ASI panel” includes ex-PVPs (Plant Variety 

Protection) and Germplasm enhancement of Maize (GEM) inbred lines [24].  

Root phenotyping 

Cigar Roll Growth Conditions 

A paper roll assay described by [24] was used for germination and growth of maize seedlings. 

Seedlings were grown in 2 L glass beakers filled with 1.4 L of sterilized water. Seedlings were 

placed in a growth chamber for 14 days at 16/8 hrs light/darkness (25/22 ⁰C). Light intensity was 

200 µmol photons m-2s-1, and a relative humidity maintained at 65%. Each paper roll with four 

seedlings was considered as experimental unit. After 14 days seedlings were removed from the 

growth chamber and phenotypic traits measured. If not all traits were measured the same day, 

plants were preserved in 30% ethanol to prevent aging of roots. 

Image Acquisition 

Seedling roots were imaged using a high resolution scanner. Three separate seedling roots were 

imaged at a time using an EPSON Expression 10000 XL scanner system (Copyright © 2000-

2014 Epson America, Inc).  

Phenotype Data Analysis 

Experimental Design 

Ames panel lines were grown in three experiments starting June 12, 2012, July 3, 2012, and 

October 5, 2012. Each experiment was grown in the same growth chamber and at the same 

growing conditions, as described above. Lines were grown in a completely randomized design 

(CRD) and trait data were collected per experimental unit: three seedlings out of four within each 

seed roll were sampled, to eliminate possible outliers within lines, and means taken. The ASI 
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panel of 74 maize inbred lines were grown under the same conditions and replicated twice under 

one experiment.  Analysis of variance of root traits was performed, the additive model for 

analysis of variance was:  

yij = µ+ Ri+ Gj+ Eij 

where yij represents the observation from the ijth experimental unit, µ is the overall mean, Ri is 

the ith experiment and Gj is the jth genotype. The interaction between the fixed effects Gj and the 

random effect experiment is confounded with the error Eij. The statistics software package SAS 

9.3 (Copyright © 2014 SAS Institute Inc.) was used to obtain ANOVA tables, expected mean 

squares, and least square means for association analyses. Function PROC GLM was 

implemented and type 3 sums of squares were used to account for missing data. Genotypic (σg
2), 

and phenotypic (σp
2) variances as well as broad sense heritability (H2) were all calculated on an 

entry mean basis. Heritability on an experimental unit basis was calculated as follows: 
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Function PROC GLM was implemented. Pearson correlations were calculated using the SAS 

function CORR to determine the relationships between seedling traits. 

Marker Data 

Genotyping-by-sequencing (GBS) [34] was used to genotype the association mapping population 

with 681,257 single nucleotide polymorphism (SNP) markers across the maize genome. 

Imputation as described by [33] was employed. In an effort to reduce the number of non-

informative markers, all monomorphic SNP markers and those with more than 20% missing data 

were omitted. SNP markers with a minor allele frequency less than 5% were removed, leaving 
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135,311 SNP markers spread across all 10 chromosomes of the maize genome to calculate 

population structure, kinship, and to perform GWAS. 

Association analyses 

  Population structure was estimated from a reduced number of unimputed SNPs (1,665 SNP 

markers) using program Structure 2.3.4 [35]. Parameter settings for estimating membership of 

coefficients of coancestry for lines are a burn-in length of 50,000 with 50,000 iterations for each 

cluster (K) from 1-15, with each K being run five times. We applied an admixture model with 

independent allele frequencies. To pick the most probable K value, we used an ad hoc (ΔK) 

statistic based on the ordering rate of change of P(X|K) [36]. Software program TASSEL 4.0 

[37] was used to calculate LD as well as Loiselle kinship coefficients between lines based on 

135,311 SNP markers. Population structure (Q matrix) was used in association analyses to 

decrease the amount of type 1 errors [38]. TASSEL 4.0 was used to conduct genome wide 

association analyses (GWAS) using a General Linear Model (GLM) and population structure as 

a fixed factor with model y = Xβ + U, where y are the values measured, X is the marker value, β 

is a matrix of parameters to be estimated, and U uses the Q values as fixed factors. To account 

for multiple testing during GWAS, statistical package simpleM was implemented in R 3.0 [39]. 

Based on a α level of P=0.05, the multiple testing threshold level was set to 5.3x10-7 with the 

equation  α/n , where n equals the effective number of independent tests. Only the Ames panel 

was analyzed, as genomic marker data were not available for the ASI panel.  
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Table I. Traits captured by ARIA 

Trait Name Symbol Trait Description 

Total Root Length  TRL Cumulative length of all the roots in centimeters 

Primary Root Length  PRL Length of the Primary root in centimeters 

Secondary Root 

Length  

SEL Cumulative length of all secondary roots in centimeters 

Center of Mass  COM  Center of gravity of the root. 

Center of Point  COP Absolute center of the root regardless of root length. 

Center of Mass (Top)  CMT Center of gravity of the top 1/3 of the root (Top). 

Center of Mass (Mid)  CMM Center of gravity of the middle 1/3 root (Middle). 

Center of Mass 

(Bottom)  

CMB Center of gravity of the bottom 1/3 root (Bottom). 

Center of Point (Top) CPT Absolute center of the root regardless of root length (Top). 

Center of Point (Mid) CPM Absolute center of the root regardless of root length (Middle). 

Center of Point 

(Bottom) 

CPB Absolute center of the root regardless of root length (Bottom). 

Maximum Number of 

Roots  

MNR The 84th percentile value of the sum of every row. 

Perimeter PER Total number of network pixels connected to a background pixel. 

Depth  DEP The maximum vertical distance reached by the root system. 

Width  WID The maximum horizontal width of the whole RSA. 

Width/Depth ratio  WDR The ratio of the maximum width to depth. 

Median MED The median number of roots at all Y-location. 

Total Number of 

Roots  

TNR Total number of roots. 

Convex Area  CVA The area of the convex hull that encloses the entire root image 

Network Area NWA The number of pixels that are connected in the skeletonized image 

Solidity  SOL The fraction equal to the network area divided by the convex area 

Bushiness  BSH The ratio of the maximum to the median number of roots. 

Length Distribution  LED The ratio of TRL in the upper one-third of the root to the TRL. 

Diameter  DIA Diameter of the primary root. 

Volume  VOL Volume of the primary root 

Surface Area  SUA Surface area of the primary root. 

SRL SRL Total root length divided by root system volume 
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Table II. Comparison of repeatability estimates for both WhinRhizo Pro 9.0  and ARIA 

 

Analyzing tool Trait Heritability (H2) 

 

WinRhizo Pro 2009 Total Root Length (Ames Panel) .41 

 

ARIA Total Root Length (Ames Panel) .42 

 

WinRhizo Pro 2009 Total Root Length (ASI Panel) .42 

 

ARIA Total Root Length (ASI Panel) .42 

 

WinRhizo Pro 2009  Root Surface area (ASI Panel) .50 

 

ARIA 

 

Root Surface area (ASI Panel) .54 
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Supplementary Table S1. Trait correlations between all 28 traits extracted using ARIA. Non-significant correlations denoted with ‘*’ 

TRL SUA PRL SEL COM COP CMT CMM CMB CPT CPM CPB MNR PER DEP WID WDR MED MRN CVA NWA SOL LED DIA VOL SCS SRL BSH 

1.000 0.873 0.696 0.981 0.205 -

0.022* 

-0.09 0.277 -0.171 -0.06 0.114 -0.242 0.397 0.733 0.684 0.655 -0.03* 0.891 0.884 0.818 0.983 .087** -0.24 0.244 0.379 0.662 -0.364 -

0.061* 

 1.000 0.768 0.872 0.170 -0.10 -0.121 0.254 -.149 -0.070 0.101 -0.216 0.434 0.743 0.733 0.658 -0.103 0.760 0.745 0.820 0.885 -

0.059* 

-.232 0.393 0.465 0.799 0.500 -0.065 

  1.000 0.670 0.017* -0.308. -0.229 0.268 -0.206 -0.16 0.092 -0.248 0.635 0.821 0.954 0.671 -0.174 0.459 0.427 0.864 0.712 0.321 -0.085 0.154 0.396 0.859 -0.285 -

0.099* 

   1.000 0.219 0.006* -0.082 0.276 -0.145 -

0.057* 

0.116 -0.219 0.373 0.721 0.659 0.654 -0.075 0.925 0.919 0.811 0.998 0.042 -

0.236* 

0.255 0.387 0.681 -0.389 0.065* 

    1.000 0.368 0.275 0.229 -

0.043* 

0.097 0.118 -0.127 0.149 0.198 -

0.036* 

0.120 0.046* 0.298 0.264 0.151 0.208 0.153 -0.499 0.258 0.121 0.121 -0.248 0.026* 

     1.000 0.282 0.178 -

0.011* 

0.262 0.330 -

0.021* 

-0.13 -0.162 -0.363 -0.096 0.146 0.158 0.166 -0.153 -

0.019* 

0.364 -0.345 0.275 -

0.007* 

-0.137 -0.249 -

0.032* 

      1.000 -

0.027* 

0.010* 0.550 0.023 0.006* -

0.058* 

-0.077 -0.243 -0.124 -

0.012* 

-0.021 0.028* -0.16 -0.096 0.068* -0.138 0.098 -0.075 -0.144 0.074* -

0.019* 

       1.000 -0.268 0.017 0.752 -0.278 0.271 0.306 0.269 0.235 0.017* 0.262 0.278 0.287 0.282 0.051* -0.154 0.176 0.135 0.259 -0.283 0.009* 

        1.000 -

0.002* 

-0.214 0.904 -0.305 -0.255 -0.213 -0.155 -0.105 -0.113 -0.139 -0.183 -0.153 -0.096 0.115 -0.125 -

0.053* 

-0.179 0.187 -0.166 

         1.000 0.047* -0.007 0.114 -

0.022* 

-0.169 -0.113 -

0.036* 

-

0.013* 

0.044* -0.136 -0.066 0.041* -0.093 0.098 -

0.057* 

-0.094 -0.104 -

0.058* 

          1.000 -0.222 0.141 0.126 0.104 0.091 0.051* 0.134 0.169 0.108 0.116 0.112 -0.08 0.119 0.005* 0.077* -0.227 0.003* 

           1.000 -0.356 -0.304 -0.245 -0.196 -0.094 -0.185 -0.204 -0.244 -0.226 -0.101 0.163 -0.123 -

0.066* 

-0.204 0.196 -0.202 

            1.000 0.698 0.604 0.374 -0.125 0.215 0.252 0.521 0.401 -0.19 -0.168 0.213 0.288 0.579 -0.289 -.044* 

             1.000 0.785 0.695 -0.118 0.574 0.575 0.849 0.746 -0.210 -0.183 0.241 0.390 0.760 -0.369 -0.076 

              1.000 0.582 -0.214 0.428 0.403 0.811 0.698 -0.317 -
0.018* 

0.049* 0.311 0.771 -0.199 -0.110 

               1.000 -

0.001* 

0.564 0.564 0.880 0.669 -0.29 -

0.050* 

0.313 0.406 0.687 -0.370 -0.080 

                1.000 -

0.039* 

-

0.031* 

-

0.079* 

-0.021 0.755 -

0.043* 

0.044* -

0.016* 

-0.104 -0.072 0.038* 

                 1.000 0.936 0.656 0.911 0.193 -0.326 0.278 0.302 0.486 -0.392 -

0.066* 

                  1.000 0.632 0.902 0.210 -0.210 0.309 0.291 0.462 -0.426 -

0.058* 

                   1.000 0.632 -0.245 -0.147 0.278 0.451 0.821 -0.385 -0.079 

                    1.000 0.045* -0.236 0.251 0.386 0.678 -0.388 -

0.065* 

                     1.000 -0.211 0.075 -0.09 -0.226 -0.122 0.072 

                      1.000 -0.364 -0.233 -0.229 0.300 -
0.004* 

                       1.000 0.450 0.587 -0.808 0.104 

                        1.000 0.499 -0.407 -.005* 

                         1.000 -0.594 -

0.068* 

                          1.000 -

0.032* 

                           1.000 
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Figure 1:  Image 

of a 14 day root 

Figure 2. PCA plot of all ARIA traits Pearson correlations, clusters of 

traits have been marked showing traits are closest related.  
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Figure 3. Manhattan plot displaying all 10 maize chromosomes, showing SNP markers significantly 

associated with trait Total Root Length measured with ARIA. Significant SNPs are located on 

chromosomes 1, 2, and 4. 

Figure 4. Manhattan plot displaying all 10 maize chromosomes, showing SNP markers 

significantly associated with trait Total Root Length measured with WinRhizo, significant SNPs 

are consistent with ARIA with additional SNPs on chromosomes 3, 5, 6, and 8.  
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Figure 6. Analysis of a diseased maple leaf, ARIA’s flexible framework will allow 

multiple uses of the program beyond root phenotyping. While we have not fully explored 

this capability, ARIA will likely also be useful to extract above ground traits such as leaf 

vein structure, and disease quantification. 

Figure 7: Thresholding and 

skelotinization stages 
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Figure 8: Automated identification of primary and 

secondary roots 

Figure 9:  Screen capture of the ARIA framework. The picture on the right is the root image. The plot on the top 

left is automated identification of primary and secondary roots. The graph on the bottom left represents detailed 

analysis of root architecture, specifically a histogram of secondary roots across each 10% of the primary root.  
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CHAPTER FOUR 

GENOME-WIDE ASSOCIATION ANALYISIS OF SEEDLING ROOT 

DEVELOPMENT IN MAIZE (ZEA MAYS L) 

Jordon Pace, Candice Gardner, Baskar Ganapathysubramanian, Thomas Lübberstedt 

 

Paper published in BMC Genomics Journal. Abstract, structure, and references are formatted 

according to the journal standards.  

Abstract 

Background: Plants rely on the root system for anchorage to the ground and the acquisition and 

absorption of nutrients critical to sustaining productivity. A genome wide association analysis 

enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred 

lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism 

markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits 

were phenotyped. 

Results: Utilizing both a general linear model and mixed linear model, a GWAS study was 

conducted identifying 268 marker trait associations (p ≤ 5.3x10-7). Analysis of significant SNP 

markers for multiple traits showed that several were located within gene models with some SNP 

markers localized within regions with previously identified root quantitative trait loci. Gene 

model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This 

predicted gene is expressed in roots and shoots.  

Conclusion: This study identifies putatively associated SNP markers associated with root traits 

at the seedling stage. Some SNPs were located within or near (< 1 kb) gene models. These gene 

models identify possible candidate genes involved in root development at the seedling stage. 
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These and respective linked or functional markers could be targets for breeders for marker 

assisted selection of seedling root traits.  

Background 

In an effort to increase crop production, farmers and producers apply millions of tons of 

fertilizers such as Nitrogen (N) each year. In 2010, demand for N fertilizer was 103.9 million 

tons and is expected to steadily increase to 111 million tons by 2014 worldwide [1]. Only around 

33% of the N applied is taken up by cereal crops such as maize [2],[3], while the remaining N is 

lost due to a combination of factors including leaching, de-nitrification, and surface runoff from 

the soil. These issues affect the environment and input costs negatively [2],[4]. 

The root system is essential for plant species to absorb and acquire mineral nutrients such as N. 

Plant species such as maize (Zea mays L.) have two general mechanisms to increase nutrient 

acquisition: 1) develop a larger root system that allows plants to come into contact with a larger 

soil volume, and 2) increase the trans-membrane nutrient-uptake rate. Increased root size allows 

plants to increase available nutrient uptake based on demand within a limited time frame [5]. 

Root architecture and development has been shown to be a key component in nitrogen use 

efficiency (NUE) [6], and drought tolerance [7]. Understanding root development and the 

molecular mechanisms that influence root architecture is thus important for increasing yield 

potential and yield stability under varying environmental conditions and soil profiles [8]. 

Maize has five main types of roots: crown, seminal, primary, lateral, and brace roots [9]. The 

primary and seminal roots make up the embryonic root system and their fate is largely 

determined by genetic background [9]. The major portion of adult root biomass is derived from 

postembryonic shoot-borne roots, crown roots which are formed below the soil surface and brace 
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roots which are formed above the soil surface [10]. Lateral roots are initiated from the pericycle 

of other roots and have a strong influence on maize root architecture [11]. Their function is 

important to plant performance as they are responsible for a crucial part of water and nutrient 

uptake, such as N in maize. It has been shown that N rich soil environments enhance root growth 

and dry weight [12]. Root size has been shown to be a key component in the uptake of 

phosphorus, calcium, in addition to N [12],[13]. Increasing root size and, therefore, root surface 

area might be a strategy plants use to increase absorption efficiency, when nutrients such as N 

are limiting [14]. Thus genomic regions affecting root development and growth could affect 

NUE, water use efficiency, and nutrient use efficiency as roots with increased root length and 

surface area may perform better in nutrient deficient environments. Several genes have been 

described that affect the development of the root system in maize including Rtcs (rootless, 

concerning crown and seminal roots), Rth1 (roothairless1), Rth3 (roothairless 3), and Rum1 

(rootless with undetectable meristems1). Rtcs controls crown root and seminal root formation; 

Rtcn and Rtcl are thought to be paralogs of Rtcs. Rth1 and Rth3 control root hair elongation with 

Rth3 being shown to affect grain yield in maize [15],[16]. While these genes have been 

identified, there are many loci effecting root growth and development that remain unknown. 

A useful method for analyzing the genetic diversity of complex traits and identification of 

superior alleles is association mapping or linkage disequilibrium (LD) mapping [17]. Unlike 

traditional linkage mapping, where bi-parental populations are developed, association mapping 

uses ancestral recombination in natural populations to find marker-phenotype associations based 

on LD [18]. Association mapping allows evaluation of a large number of alleles in diverse 

populations [19], and offers additional advantages compared to traditional linkage mapping, 

including high mapping resolution and reduction in time to develop a mapping population [20]. 
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There are two main association mapping strategies. The candidate gene approach focuses on 

polymorphisms in specific genes controlling traits of interest, while genome-wide association 

approaches survey the entire genome for polymorphisms associated with complex traits [21]. A 

candidate gene association analysis approach was employed using genes Rtcl, Rth3, Rum1, and 

Rul1[22]. Several polymorphisms within all four candidate genes were associated with seedling 

root traits. Many of these significant polymorphisms affected putative functional sequence motifs 

including transcription factor binding sites and major domains. Another study [23] used 73 elite 

Chinese maize lines to investigate sequence variation and haplotype diversity for the root 

development gene Rtcs. They too found extensive variation between lines at the gene sequence 

level. The advent of more economic sequencing technologies facilitates genome-wide studies. 

Using markers covering the entire genome increases the chance of identifying additional regions 

of the genome associated with seedling root traits, and establishing relevance of above 

mentioned candidate genes to other genes affecting root development. In this study, a panel of 

384 inbred lines derived from the Ames panel [24] was used to conduct a genome-wide 

association study (GWAS) to investigate root architecture at the seedling stage. Our hypothesis is 

that root architecture is of quantitative inheritance and that there are multiple factors throughout 

the genome that contribute to root development. The objectives of this study were to i) study 

phenotypic variation of 22 root architecture traits within a maize association panel, ii) identify 

SNP markers throughout the genome associated with root architecture traits, and iii) investigate 

locations of associated SNP markers for possible candidate genes or functional markers having 

an effect on root development. 
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Results 

Analysis of Phenotypes of 384 Ames Panel Inbred Lines 

Almost all root traits captured followed a normal distribution with a slight left skew. Trait 

descriptions are found in Table 1 and Additional file 1: Figure S1. Most traits had considerable 

variation within the current mapping population. The standard deviation for traits such as Total 

Root Length (TRL) and Secondary Root Length (SEL) varied the most with values of 98.07 and 

92.8 respectively. All trait maximum, minimum, and standard deviations are listed in Table 2. A 

few lines’ phenotypes were consistently placed in the tails of the distribution for multiple traits. 

Line PHT77 had the highest values for TRL, SEL, Surface Area (SUA), and Network Area 

(NWA). These traits are all highly and significantly (P < 0.0001) correlated with one another 

(Table 2) with r = 0.90. NWA is also highly correlated with root Median (MED) and Total 

Number of Roots (TNR), yet PHT77 doesn’t have the highest values for these traits. This can be 

due to many reasons, one being that much of PHT77’s root length comes from the individual 

length of its secondary roots; this also increases root Surface Area (SUA) and NWA. This also 

lowers PHT77’s TNR and MED as there are fewer number of secondary roots present for this 

maize line. A243 showed the lowest values for root Perimeter (PER), TNR, MED, and 

Maximum Number of Roots (MNR). Interestingly, these traits were significantly (P < 0.0001) 

but not always, closely correlated, ranging from r = 0.27 to 0.95. Heritability (H2) estimates for 

all traits were low to moderate and ranged from 0.12 to 0.49 (Table 2). Due to the low 

heritability estimates of some traits, and in accordance with other similar studies analyzing root 

traits [19], a cutoff of H2 ≥ 0.30 was made, and most traits with H2 < 0.30 were excluded from 

further analysis. 
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Pearson correlations were calculated comparing the same traits (TRL and total plant biomass) 

(TBP) measured in a previous association panel [25] that used the same measuring techniques as 

in this study by comparing lines that were the same between both mapping populations. This was 

done to determine, if growing conditions were consistent and if ARIA calculated measurements 

were consistent with result obtained from image analysis software WhinRHIZO Pro 9.0. Both 

traits were significantly correlated (p = 0.05) between both methods with values of r = 0.85 for 

TRL and r = 0.75 for TPB (data not shown). 

Correlation coefficients were calculated for the 22 traits listed in Table 3. The two traits with the 

closest correlation were TRL and SEL (r = 0.98), indicating that much of the root system is made 

up of lateral and seminal root length, not the primary root at the 14 day old seedling stage. 

Correlations were lower between TRL and Primary Root Length (PRL) (r = 0.72) and between 

PRL and SEL (r = 0.68). Correlations for 1000 kernel seed weight (KRW) were also calculated 

to determine whether kernel size had a major effect on seedling root size, which was collected 

prior to growing plants in the growth chamber. None of the seedling traits collected showed a 

strong (r = 0.33) correlation with kernel weight (data not shown). 

Linkage Disequilibrium Decay in Ames Panel Subset 

A random subset of markers spanning across all 10 chromosomes (see Methods) was used to 

calculate LD decay. The rate of LD decay was similar across chromosomes with an average 

distance of reaching the LD threshold (r2=0.2) within approximately 10 kb throughout the 

genome. Chromosome 8 showed the slowest decay with an r2 value of 0.2 reached at 

approximately 15 kb (Figure 1). These results are comparable to [24], indicating that LD decayed 

within 1-10 kb.  
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Population Structure  

In order to define the number of subpopulations within the 384 line Ames panel subset, the ad 

hoc statistic (ΔK) was calculated. Based on the ad hoc statistic values in Structure 2.3.4 the 

mapping population was sorted into two subpopulation (K=2). One subpopulation comprised of 

319 lines or 83% of the total 384 lines used for GWAS (Figure 2). This larger subpopulation is 

composed of mostly non-stiff stalk inbred lines with some tropical, popcorn, and mixed lines.  

The other subpopulation includes mostly genotypes from the stiff-stalk heterotic group. B73 is 

found within this subpopulation whereas Mo17 is found in the larger subpopulation.   

Genome-Wide Association Studies  

Four SNP markers were found to be significantly associated with two root traits using MLM. 

The threshold to account for multiple testing was determined by simpleM at P = 5.36 × 10-7. 

Specifically, one significant marker-trait association was found for Bushiness (BSH) located on 

chromosome 2 (Figure 3), and three significant SNP marker trait associations for Standard Root 

Length (SRL) were located on chromosome 3 (Figure 4). Based on heritability estimates both 

traits were found below the threshold to be examined in depth. Due to the stringency of MLM, 

and the fact that significant markers found for both traits are located in regions of the genome 

consistent with significant markers for other root traits using GLM, it was decided that these 

significant SNPs be used for further examination. All three significant markers for SRL were 

found within gene models. Marker S4_49565840 was found within gene model 

GRMZM2G327349, expression analysis based on B73 showed very little to no expression within 

roots. The two other markers (S4_49619564 and S4_49619525) significantly associated with 

SRL were found within gene model GRMZM2G32186. This gene model did show expression 
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both at germination and at V1 stage of maize development in the primary root with absolute 

expression levels of 7385.82 and 5539.36 respectively (Table 4). The one significant marker for 

BSH on chromosome 2 was found within gene model GRMZM2G322186 and showed very little 

to no expression in the roots throughout early development. No other traits were found to have 

significant marker trait associations using the Q + K MLM model.  

Using the GLM model, an additional 287 significant markers were found using the same 

threshold of P=5.36 x 10-7 for root traits above the heritability threshold of H2≥ 0.30. Clustering 

of significant SNPs using GLM was analyzed. SNPs associated with root traits clustered on 

chromosomes 2, 3, 4, and 8 (B73 reference genome 2). Chromosome 2 also contained the SNP 

marker with the highest significance. Most significant markers on chromosome 2 were located in 

bins 2.00–2.02 and 2.07-2.08. Clusters on chromosome 3 were located within bins 3.01 and 3.06-

3.09 while clusters on chromosome 4 were within bin 4.05. On chromosomes 2 and 8, four 

markers in total were significantly associated with multiple traits. Chromosome 2 had 3 markers; 

marker S2_20263530 was significant for PRL, PER, Diameter (DIA), Depth (DEP), Shoot Dry 

Weight (SDW), TBP, and SUA. Marker S2_202178253 on chromosome 2 is associated with 

traits SUA, SDW, SL, and TPB. The third and final marker on chromosome 2 was marker 

S2_20252886; this marker is associated with both SUA and TBP. These three significant 

markers are found within gene models GRMZM2G002879, GRMZM2G154864, and 

GRMZM2G087254. The final marker is S8_146152722 and was associated with both PER and 

DEP. This marker on chromosome 8 is located in gene model GRMZM2G070837. On 

chromosome 4, 13 markers were found significantly associated with multiple traits. All 13 

markers on chromosome 4 are located within 250 kb. Nine of these markers are located within 

the same gene model, GRMZM2G153722. Of the remaining four markers on chromosome 4, 
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two are located in the same gene model GRMZMZG427409; one is located in another gene 

model GRMZM2G053511 while the remaining marker is located in an intergenic region. Four of 

the previously listed gene models have hypothetical protein products. An earlier expression 

analysis [26] revealed that most of the predicted gene models described above had moderate to 

low expression levels in the primary root system at growth stage V1 in B73. Absolute expression 

levels measured in B73 for respective gene models are listed in Table 3. When looking at SNPs 

close to previously reported genes with an impact on root development (Rtcs, Rtcl, Rul1, Rum1, 

and Rth1), one significant SNP marker at position 205,392,941 on chromosome 3 is located a 

little more than 3 Mbs from Rum1. No other significant markers were located in or near 

previously reported root development genes. A list of all significant marker trait associations is 

found in Additional file 2: Table S1. Manhattan plots for all marker trait associations using GLM 

are found in Additional file 3: Figure S2. 

Discussion 

Root traits are difficult and laborious to measure at the adult stage in a field setting. In the 

current study, measurements of seedling root architectural traits in our association mapping 

population were used as a first step for later comparison with adult plant traits. One of the traits 

studied, RDW, has been shown to be positively correlated with key adult plant traits such as 

yield at both HN and LN conditions [25], suggesting that seedling root traits may be useful to 

predict adult root characteristics. One concern with studying seedling roots is that seed size 

might be confounded with overall seedling vigor including expression of root traits. However, all 

seedling root traits had low correlations (r-values <0.33) with kernel weight. 
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Root architecture is a key plant characteristic but highly variable among maize genotypes. Table 

1 demonstrates this wide range of variation for most traits studied herein. For TRL, a 9- to10-

fold difference was found within the current mapping population, specifically three lines (Va38, 

NO. 1201 INBRED, and INBRED 309) that were all recorded as having the lowest TRL average 

measurements and the three lines with the longest average root length (PHT77, Mo1W, and 

PHK29). This range exceeded the 3- to 4-fold differences in a separate, albeit smaller (72 lines) 

association panel [25]. This large range for average length of roots illustrates the extensive 

amount of phenotypic variation found for roots. This range in trait values among inbred lines can 

be compared to other studies of diverse maize panels [27], where there was a 3- and 2-fold 

difference for plant height and days to anthesis, respectively. In conclusion, there is substantial 

unexploited variation for root traits. 

Heritability values ranged from 0.12 to 0.49. Previous studies have shown similar ranges of 

heritabilies for root traits at various stages of growth, both under controlled environmental 

(growth chamber, greenhouse) and field conditions [19],[28]. Root growth is highly plastic and 

of quantitative nature. By keeping all conditions equal, some root traits were more repeatable 

than others. Biomass traits (TPB, RDW, SDW, and Shoot Length (SHL)) as well as TNR had 

mid-range heritabilities close to 0.5. Other traits that deal with total length of roots or a particular 

part of the root (TRL and SEL) also had heritabilities greater than 0.4. This may be due to the 

software ARIA’s ability to accurately measure length based traits. Some traits with low 

heritabilities in our study of 2D traits may be better suited for three dimensional images such as 

BSH, DEP, Length Distribution (LED), and Width/Depth ratio (WDR). PRL showed a low 

heritability estimate (H2=0.281). This could be due to limitations in ARIA’s ability to identify 

the primary root accurately each time, or is a product of PRL sensitivity to micro environmental 
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conditions. We included PRL in the present study, as this trait has been shown to be important in 

water and nutrient acquisition [11]. 

Population Structure and Linkage Disequilibrium 

Population structure analysis using the software package Structure 2.3.4 [29] revealed two 

subpopulations. The two identified populations fit the two major heterotic groups within 

temperate U.S. maize germplasm: stiff stalk (with B73) and non-stiff stalk (including Mo17). 

The larger subpopulation contained over 82% of the lines in the association panel, this 

subpopulation was made up of non-stiff stalk inbred and few mixed heterotic group lines. These 

results are consistent with results from a principle component analysis (PCoA) of the entire 

Ames Panel consisting of over 2800 lines [24]. In that study, most lines derived from the U.S. 

grouped in two distinct groups, stiff stalk and non-stiff stalk.   

Average LD decay (r2 threshold = 0.2) across the whole genome was close to 10 kb.  These 

results agree with a LD decay of 10 kb across ExPVP, stiff stalk, and non-stiff stalk lines within 

the entire 2,815 inbred lines within Ames Panel [24]. Romay et al 2013, used the same GBS 

marker data set in order to analyze the entire Ames Panel diversity. The subset of inbred lines 

from the Ames panel used in this study lacks diversity from tropical lines that are available 

within the complete Ames panel.  If more exotic maize germplasm is included as in other 

association mapping populations, the rate of decay is usually more rapid  (around 300 bp-1 kb) 

with added diversity [24, 30].   

Association Analysis 

There have been several large scale genome-wide association studies which have been used to 

identify candidate genes and putative functional markers that affect complex traits [19, 31-33]. In 
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the current study, four SNPs were significantly associated with root traits BSH, and SRL using 

the Q+K MLM. When fitting just population structure using GLM, 287 SNPs were significantly 

associated with root traits. Among those, 17 were significantly associated with multiple root 

traits. Three of these 17 SNPs were located in similar positions on chromosome 2. SNP 

S2_202635930 was significantly associated with seven traits, PRL, PER, DIA, DEP, SDW, TPB, 

and SUA. All seven traits are closely and significantly correlated with one another (r>0.5).  This 

trend continued for all traits sharing significant SNPs: all were significantly correlated with one 

another (Table 3). Other SNPs associated with multiple traits were located on chromosomes 4 

and 8. Three root QTL studies [28, 34, 35] identified a QTL on chromosome 4 within bin 4.05-

4.07. In this region, 13 of the shared, significantly associated SNPs were located. These results 

provide evidence that relevant candidate genes affecting root growth and development are likely 

located on chromosome 4.   

The only two traits (SRL and BSH) for which significant SNPs were detected using MLM had 

low heritability estimates. Since associations were found fitting both the Q and K matrix, the risk 

of type I error is low.  BSH and SRL are components of other traits (Table 1).  Thus, significant 

polymorphisms for BSH and SRL might act pleiotropic and affect traits with higher heritability. 

For a few traits, no significantly associated markers were detected (Width (WID), Convex Area 

(CVA), SEL, and Center of Point (COP)). The number of detected associations was not related to 

heritability. TPB had the highest heritability estimate with H2 = 0.491 and 17 significant SNPs 

were detected for this trait, while only two SNPs were detected for TNR with comparably high 

heritability (0.49). Conversely, 135 SNPs markers were significantly associated with Diameter 

(DIA) (H2=0.33). Different reasons may account for this discrepancy, such as (i) tight linkage of 

multiple associated SNPs for a low heritability trait, (ii) absence of detectable SNPs in genome 
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regions impacting high heritability traits, and (iii) unknown trait architecture, i.e., number of 

genes and distribution of gene effects with impact on traits of interest.  

GLM is less stringent than MLM. This explains the large discrepancy between vastly different 

numbers of significant associations detected by the two methods of calculation. As noted in other 

studies [36], MLM can over fit a model and create type II errors. Thus, using both methods in 

conjunction is preferable. We made an effort to reduce type I error using GLM by fitting the Q 

matrix, and by applying correction for multiple testing. Even though only few significant 

polymorphisms were identified using MLM, those were co-located in clusters of significantly 

associated polymorphisms identified by using GLM. 

Candidate Genes for seedling root traits 

For the MLM analysis, gene model GRMZM26322186 contained two of the significant markers 

for seedling root trait SRL. This candidate gene is expressed throughout seedling development 

[26]. It should be noted that these expression information is based on B73, and variation in 

transcriptome profiles between multiple inbred lines has been reported [37]. The gene model 

codes for three putative protein products within maize Zea CEFD homolog1, TPA: isopenicillin 

N epimerase isoform 2 and isoform 1. No confirmed function of these proteins has been 

determined.  

The most noticeable candidate gene identified within this study is GRMZM2G153722. Its gene 

model is located on chromosome 4 and contained 12 of the 13 significant markers found for two 

traits, DIA and SUA. Haplotype analysis for this gene was examined with two haplotypes being 

identified within this region of the genome. One haplotype was found significant for both DIA 

and SUA at p-values of 5.22 x 10-9 and 2.66 x 10-8 respectively.  This strengthens our findings at 
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the individual SNP level. Throughout seedling development this gene model showed expression 

is detectable in both roots and shoots [26]. The candidate gene is predicted to code for a putative 

protein 1-phospatidylinositol-4-phosphate 5-kinase. A BLAST search identified homologues in 

two species, Sorghum bicolor and Setaria italica (foxtail millet), with greater than 85% sequence 

identity. Both species have hypothetical protein products with currently unknown function. A 

homologue in Arabidopsis thaliana [38] plays an important role in root tip growth. If the function 

of the respective maize gene is similar, this candidate gene could be a vital player in regulating 

root development.  

Gene models GRMZM2G154864 and GRMZM2G322186 contained significant SNPs for 

multiple traits. BLAST results for GRMZM2G154864 cDNA identified both Sorghum bicolor, 

bamboo, and Setaria italica with greater than 85% sequence identity, as was previously noted for 

GARMZM2G153722. Results from a BLAST of GRMZM2G322186 cDNA revealed 100% 

identity with maize gene cef1, which codes for an aspartate aminotransferase (AAT) superfamily 

(fold type I) gene of pyridoxal phosphate (PLP)-dependent enzymes. No phenotypes have been 

linked to this putative gene and protein product. Expression of these genes was detected at V1 

stage in the primary root in B73 [26]. These genes could play an active role in root development, 

especially at seedling growth stage.  

Wild type alleles of root development genes Rtcl, Rth3, Rum1, and Rul1 were studied with regard 

to their impact on seedling root trait expression using a candidate gene-based association 

mapping approach [39]. SNPs within these genes among the 72 inbred lines used as a mapping 

population were found to be associated with both root traits RDW and TRL. In our study, Rum1 

was putatively detected by a linked significant SNP. No SNPs within the remaining genic 

regions were significantly associated in this study.  We used a candidate gene-based association 
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mapping approach for those same four candidate genes in our population to determine, whether 

any SNP in these regions would show significance due to a less stringent multiple testing 

threshold. Nevertheless, we did not find significant SNPs within these root development genes. 

Most lines used for the previous association panel [39] were different from those in our panel, 

which would affect the significance of SNPs within those specific genes. In the previous study, 

Sanger sequencing was used, which resulted in almost complete information of polymorphic 

sites within above mentioned candidate genes, giving much finer resolution within these specific 

genic regions. The same polymorphisms were likely not included within the current imputed 

GBS data due to different alleles being found in the different populations [37]. These differences 

in allele frequencies could lead to more or fewer loci being polymorphic within these genic 

regions. For example in the previous study for root gene Rtcl, 45 polymorphisms were detected. 

In our population only five SNPs were present within this region. Due to these discrepancies in 

allelic frequencies between populations, it can be expected that results can be inconsistent 

between association studies in different panels [24].  

Conclusions 

The putative SNPs identified within the current study might aid in selecting lines with these 

particular phenotypic root characteristics. Respective SNPs can be used to breed for specific root 

types under various environmental conditions, thus enabling use of maize root architecture 

information as part of a selection strategy. The idea of an ideal root architecture or root ideotype 

has been presented [40-43]. Ideotypes such as “steep, deep, and cheap” roots [40], or deeper 

roots with vigorous lateral root growth, may increase nitrogen uptake efficiency under low N 

conditions [42]. Other root traits that might play a pivotal role in increasing nutrient uptake 

efficiency include seminal root length and number, lateral root length and number, and root 
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distribution.  Due to the extensive resource requirements needed to study adult plant roots, being 

able to connect seedling root traits to adult plant traits would be beneficial. Understanding 

consistent relationships between seedling and adult root architectural traits would enable 

selection at the seedling level, and is addressed in ongoing research. 

Methods 

Plant materials 

The association mapping panel consists of 384 inbred lines obtained from the USDA-ARS North 

Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa (Supplementary Table 2). 

These 384 lines are a subset of the “Ames panel” [24], a collection of 2,815 maize inbred lines 

conserved at the USDA-ARS NCRPIS. The 384 lines were selected on the basis of maturity in 

view of future evaluations in central Iowa, genetic diversity, and geographic origin, with 

preference for dry climates that might require vigorous root development. Thirteen lines from a 

previous experiment [25] were duplicated in our association panel including B73, Mo17, and 

PHZ51. 

Root Phenotyping 

Paper Roll Experiments 

A paper roll growth method was employed as described by [22]. Briefly, seed was sterilized 

using Clorox® solution (6% sodium hypochlorite) for 15 minutes. After soaking, seed was twice 

rinsed in autoclaved water. Brown germination roll paper (Anchor Paper, St. Paul, MN, USA) 

was pre-moisturized with fungicide solution Captan® (2.5g/l) before being vertically rolled, with 

four kernels per genotype and growth paper roll. Germination paper rolls were placed in two liter 
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glass beakers containing 1.4 liters of autoclaved deionized water, at a photoperiod of 16/8 hrs 

(light/darkness) and 25/22 ⁰C. Light intensity was 200 µmol photons m-2s-1, and a relative 

humidity maintained at approx. 65%. Each paper roll with four seedlings was considered an 

experimental unit. After 14 days, seedlings were removed from the growth chamber and all root 

traits were measured. If not measured the same day, plants were preserved in 30% ethanol to 

prevent aging of roots.  

Manually evaluated traits were root dry weight (RDW), shoot dry weight (SDW), shoot length 

(SHL), and total plant biomass (TPB). SHL was measured manually using a ruler measuring 

from the base of the shoot to the tip of the primary leaf. After root and shoot measurements were 

conducted, roots and shoots were collected separately and dried for 48 hrs at 55⁰C, to determine 

RDW, SDW, and TPB. In addition, 22 traits (Table 1 and Supplementary Figure 1) were 

determined using ARIA (Automatic Root Image Analyzer) high-throughput phenotyping 

software [44]. For this purpose, roots of each genotype were placed on a scanner to produce high 

resolution images. 

Phenotypic Data Analysis 

Experimental design 

Our association panel was grown in a completely random design (CRD) in three independent 

replications completed June 13, 2012, July 3, 2012, and October 5, 2012. Each experiment was 

grown in the same growth chamber under the same growing conditions. All trait data for 

phenotypic analysis were collected on a plot basis (plot is equal to our experimental unit: three 

seedlings out of four within each seed roll were sampled, to eliminate possible outliers within 

lines, and means were taken). The additive model for analysis of variance was:  
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yij = µ+ Ri+ Gj+ Eij. 

Where yij represents the observation from the ijth plot, µ is the overall mean, Ri is the experiment 

and Gj is the genotype. The interaction between the fixed effect Gj and the random effect 

experiment is confounded with the error (E(ij)). The statistical software package SAS 9.3 was 

used to obtain ANOVA table, expected mean squares, and least square means for association 

analyses. Function PROC GLM was implemented and type 3 sums of squares were used to 

account for missing data. Genotypic (�
�), and phenotypic (�

�) variances as well as broad sense 

heritability (H2) (due to the fact that we cannot partition out additive variance alone)  were all 

calculated on an entry mean basis. Heritability was calculated as follows: 
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MSG and MSE stand for mean square of genotype and mean square error, respectively. Rep is 

the number of independent replications (3). Least square means across all three replications were 

calculated using SAS 9.3 to adjust means. Phenotypic correlations were calculated using the SAS 

function PROC CORR to determine the relationship between seedling traits. 

Marker data  

Genotyping-by-sequencing (GBS) [45], was used to genotype all inbred lines with 681,257 

markers distributed across the entire maize genome. GBS uses the restriction enzyme ApeKI and 

is run on an Illumina platform. The current data set was obtained using 96 sample multiplexes 

per Illumina flow cell. A total of 681,257 bilallelic SNP markers were distributed across all 10 

chromosomes of the maize genome, imputation was used to reduce the number of missing data 
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points. The imputation algorithm uses a nearest neighbor approach based on 64 base SNP 

windows across the entire maize sequence database allowing for 5% mismatches [24]. Biallelic 

markers with a minor allele frequency below 10% were removed from the marker data set. All 

monomorphic SNP markers and those with more than 20% missing data were omitted. Finally, 

135,311 SNP markers distributed across all 10 chromosomes of the maize genome with a slight 

bias towards telomeric regions remained to calculate population structure, kinship, and to 

perform GWAS. 

Population Structure, Linkage Disequilibrium, and Association Analysis 

Population structure (Q matrix) was estimated from a reduced random number of unimputed 

SNPs (1,665 SNP markers) using Structure 2.3.4 software [29]. The parameter settings for 

estimating membership coefficients for lines in each subpopulation were a burn-in length of 

50,000 followed by 50,000 iterations for each of the clusters (K) from 1-15, with each K being 

run five times. An admixture model was applied with independent allele frequencies. In order to 

pick the most probable K value for analysis, a method [46] calculating an ad hoc (ΔK) statistic 

based on the ordering rate of change of P(X|K) was employed.  

The software program TASSEL 4.0 [47] was used to calculate LD and to conduct GWAS using a 

General Linear Model (GLM) using population structure as a fixed factor with an equation of y = 

Xβ + U, where y equals the values measured, X is the marker value, β is a matrix of parameters 

to be estimated, and U uses the Q values as fixed cofactors to account for errors and false 

positives caused by population substructure. LD decay, or the distance in base pairs that loci 

could be expected to be in LD, was calculated by plotting r2 onto genetic distance in measured in 

base pairs using an r2 value of 0.2 as a cutoff. All markers with less than 35% missing data and a 
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minor allele frequency greater than 0.05% were used to calculate LD decay. Once r2 values were 

calculated, this data was summarized using R 3.0 statistical software for each of the 10 maize 

chromosomes individually as well as combining all chromosomes to test a genome wide LD 

decay. Software SpAGeDi [48] was used to calculate the Loiselle kinship coefficients between 

lines (K matrix). 

 A mixed linear model (MLM) was also used for association studies utilizing the program 

GAPIT (Genome Association and Prediction Integrated Tool-R package) [49]. Statistical model 

for MLM was y = Xβ + Zu + e. Terms X, and Z are incidence matrices of 1s and 0s, X relates β 

to term y and Z relates u to y. The term y is a vector of the phenotypic values. Term β is an 

unknown fixed effect that represents marker effects and population structure (Q), u is a vector of 

size n (n representing the number of individuals, 384 for this population) for random polygenetic 

effects having a distribution with mean of zero and covariance matrix of G = 2Kσ2G. Where K is 

the kinship matrix, used to determine correlations between different individuals and determine 

whether they are independent, as our assumption is that all individuals are independent from one 

another.  Both Q and K matrices were fit in the MLM to control spurious associations due to 

population structure and relatedness, respectively [50]  

To account for multiple testing during GWAS, the statistical program simpleM was implemented 

using R program 3.0 [51]. Based on an α level of 0.05, the multiple testing threshold level was 

set at 5.3x10-7. This threshold is based on an effective number of independent tests of n, 

Meff_G. To obtain Meff_G for SNP data, a correlation matrix for all markers needs to be 

constructed and corresponding eigenvalues for each SNP locus calculated. A composite LD 

(CLD) correlation is calculated directly from SNP genotypes [49]. Once this SNP matrix is 

created, the effective number of independent tests is calculated and this number is used in a 
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similar way as the Bonferroni correction method. Here, the alpha level threshold (α = 0.05) is 

divided by Meff_G (α/( Meff_G)). Markers above the suggested threshold for MLM were 

considered as significantly trait-associated SNP markers and candidates for causative 

polymorphisms.   
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Table 1. Trait designations and descriptions collected manually and by ARIA   

Trait Name Symbol Trait Description 

Total Root Length  TRL Cumulative length of all the roots in centimeters 

Primary Root Length  PRL Length of the Primary root in centimeters 

Secondary Root 

Length  

SEL Cumulative length of all secondary roots in centimeters 

Center of Point  COP Absolute center of the root regardless of root length. 

Maximum Number of 

Roots  

MNR The 84th percentile value of the sum of every row 

Perimeter PER Total number of network pixels connected to a background pixel 

Depth  DEP The maximum vertical distance reached by the root system 

Width  WID The maximum horizontal width of the whole RSA 

Width/Depth ratio  WDR The ratio of the maximum width to depth 

Median MED The median number of roots at all Y-location 

Total Number of 

Roots  

TNR Total number of roots 

Convex Area  CVA The area of the convex hull that encloses the entire root image 

Network Area NWA The number of pixels that are connected in the skeletonized image 

Bushiness  BSH The ratio of the maximum to the median number of roots. 

Length Distribution  LED The ratio of TRL in the upper one-third of the root to the TRL 

Diameter  DIA Diameter of the primary root 

Surface Area  SUA Surface area of the entire root system 

Standard Root Length 

Shoot Length 

Shoot Dry weight 

Root Dry Weight 

Total Plant Biomass 

SRL 

SHL 

SDW 

RDW 

TPB 

Total root length divided by root volume 

Total Length of the shoot to the longest leaf tip in cm 

Total dry weight of only the plant shoot 

Total dry weight of only the plant roots 

Root dry weight and Shoot dry weight added together 
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Table 2. Trait statistics collected for all 22 traits. Line marks  heritability cutoff for traits 

analyzed further 

Trait Mean Std. Dev Minimum Maximum H2 

TPB 0.107 g 0.036 0.016 g 0.253 g 0.491 

WID 5.23 1.64 0.81 10.5 0.489 

TNR 11.05 4.94 1 26.67 0.486 

RDW 0.058 g 0.021 .005 g 0.145 g 0.479 

SDW 0.049g 0.019 .005 g 0.124g 0.474 

MED 5.12 2.61 1 16 0.449 

COP 0.43 0.07 0.18 0.74 0.441 

SHL 15.77 cm 4.42 2.55 cm 30.6 cm 0.431 

SUA 10.22 cm2 4.32 1.16 cm2 25.04 cm2 0.424 

TRL 190.05 cm 98.07 16.39 cm 536.33 cm 0.423 

SEL 149.32 cm 92.8 0.16 cm 490.59 cm 0.419 

NWA 1.09 0.61 0.03 3.26 0.39 

MNR 80.8 33.94 4 196 0.385 

DIA 0.12 0.03 0.05 0.35 0.333 

PER 143.38 cm 54.06 9.77 cm 307.07 cm 0.305 

CVA 87.79 43.36 1.24 218.9 0.303 

PRL 28.45 cm 8.35 4.09 cm 47.06 cm 0.281 

WDR 0.25 0.42 0.08 13.01 0.268 

DEP 24.17 6.54 3.56 34.88 0.257 

SRL 0.59 0.4 0.05 2.54 0.209 

LED 0.76 0.31 0.02 3.13 0.186 

BSH 2.4 0.807 1 10 0.119 

TPB = Total Plant Biomass, WID = Width, TNR = Total number of roots, RDW = Root Dry Weight, SDW= 

Shoot Dry Weight, MED = Median, COP = Center of Point, SHL= Shoot Length, SUA = Surface Area, TRL= 

Total Root Length, SEL= Secondary Root Length, NWA = Network Area, MNR= Maximum Root Number, 

DIA = Diameter, PER = Perimeter, CVA = Convex Root Area, PRL = Primary Root Length, WDR = Width 

Depth Ratio, DEP = Depth, SRL = Standard Root Length, LED = Length Distribution, BSH = Bushiness  
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Table 3. Pearson  (r) correlations between all 22 traits collected 
TRL SUA PRL SEL COP MNR PER DEP WID WDR MED TNR CVA NWA LED DIA SRL BSH SDW RDW TPB SHL 

1 0.898 0.716 0.983 0.117 0.391 0.776 0.718 0.632 -0.098 0.921 0.908 0.801 0.980 -0.262 0.346 -0.397 -0.224 0.647 0.635 0.708 0.701 

 1 0.823 0.889 0.010 0.460 0.822 0.797 0.705 -0.166 0.804 0.781 0.856 0.900 -0.263 0.506 -0.526 -0.247 0.750 0.673 0.788 0.691 

  1 0.682 -0.155 0.636 0.867 0.966 0.683 -0.241 0.548 0.507 0.868 0.728 -0.178 0.323 -0.410 -0.228 0.537 0.564 0.546 0.617 

   1 0.135 0.352 0.756 0.682 0.632 -0.131 0.949 0.932 0.791 0.993 -0.254 0.332 -0.378 -0.259 0.635 0.618 0.695 0.682 

    1 -0.005 -0.006 -0.195 -0.026 0.109 0.216 0.220 -0.035 0.097 -0.374 0.262 -0.213 -0.007 0.042 0.049 0.070 0.062 

     1 0.711 0.614 0.357 -0.174 0.273 0.316 0.496 0.394 -0.236 0.351 -0.416 0.003 0.384 0.304 0.325 0.388 

      1 0.837 0.731 -0.182 0.652 0.653 0.871 0.784 -0.240 0.408 -0.465 0.003 0.565 0.582 0.583 0.619 

       1 0.609 -0.282 0.539 0.509 0.825 0.729 -0.127 0.230 -0.366 -0.159 0.520 0.551 0.522 0.608 

        1 -0.004 0.572 0.568 0.866 0.641 -0.067 0.401 -0.360 -0.220 0.487 0.459 0.486 0.510 

         1 -0.106 -0.071 -0.124 -0.143 0.016 0.000 -0.002 -0.104 -0.084 -0.169 -0.125 -0.145 

          1 0.945 0.667 0.932 -0.291 0.319 -0.386 0.253 0.605 0.592 0.634 0.651 

           1 0.638 0.921 -0.188 0.349 -0.396 -0.329 0.598 0.578 0.616 0.638 

            1 0.822 -0.198 0.390 -0.410 -0.231 0.574 0.540 0.618 0.608 

             1 -0.255 0.324 -0.379 -0.256 0.628 0.639 0.700 0.694 

              1 -0.411 0.326 0.417 -0.178 -0.288 -0.249 -0.298 

               1 -0.656 -0.003 0.400 0.364 0.415 0.304 

                1 -0.011 -0.454 -0.387 -0.422 -0.360 

                 1 -0.163 -0.173 -0.214 -0.186 

                  1 0.548 0.851 0.769 

                   1 0.859 0.409 

                    1 0.654 

                     1 

TPB = Total Plant Biomass, WID = Width, TNR = Total number of roots, RDW = Root Dry Weight, SDW= Shoot Dry Weight,  MED = Median, COP = Center of Point,  SHL= 

Shoot Length, SUA = Surface Area, TRL= Total Root Length,  SEL= Secondary Root Length,  NWA = Network Area,  MNR= Maximum Root Number,  DIA = Diameter,  PER = 

Perimeter,  CVA = Convex Root Area, PRL = Primary Root Length, WDR = Width Depth Ratio,  DEP = Depth,  SRL = Standard Root Length,  LED = Length Distribution,  BSH = 

Bushiness 
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Table 4. Gene model absolute expression values found in B73 genome. 

Gene Model Absolute expression value in primary root at V1  

GRMZM2G153722 7456.31 

GRMZM2G053511 66.76 

GRMZM2G002879 1216.56 

GRMZM2G154864 4826.04 

GRMZM2G070837 53.19 

GRMZM2G095969 70.27 

GRMZM2G322186 4784.54 
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Supplementary Table 1. List of all significant marker trait associations determined by 

GWAS using MLM and GLM 
GWAS 

Method 

Trait SNP Chromosome Position P.value Allelic effect 

MLM SRL S3_49565840 3 49565840 3.21E-09 -0.15559836 

MLM SRL S3_49619564 3 49619564 2.46E-08 0.140166308 

MLM SRL S3_49619525 3 49619525 2.46E-08 -0.140166308 

MLM BSH S2_234437741 2 234437741 1.75E-07 -0.208725017 

GLM MRN S4_62787846 4 62787846 2.04E-07 NA 

GLM MED S8_74681862 8 74681862 1.61E-07 NA 

GLM NWA S2_21818271 2 21818271 4.46E-07 NA 

GLM NWA S4_62787846 4 62787846 4.86E-07 NA 

GLM PER S2_202635930 2 202635930 2.01E-09 NA 

GLM PER S2_202176704 2 202176704 2.44E-08 NA 

GLM PER S8_146152722 8 146152722 5.02E-08 NA 

GLM PER S3_187226846 3 187226846 2.04E-07 NA 

GLM PER S5_213079932 5 213079932 2.63E-07 NA 

GLM PER S5_188609024 5 188609024 4.74E-07 NA 

GLM PER S2_21818271 2 21818271 4.84E-07 NA 

GLM RDW S2_201899235 2 201899235 2.67E-08 NA 

GLM RDW S2_210962971 2 210962971 2.89E-08 NA 

GLM RDW S9_116263697 9 116263697 5.31E-08 NA 

GLM RDW S9_124316950 9 124316950 6.12E-08 NA 

GLM RDW S9_139174871 9 139174871 1.18E-07 NA 

GLM RDW S2_210978763 2 210978763 1.20E-07 NA 

GLM RDW S2_202176704 2 202176704 1.33E-07 NA 

GLM RDW S9_5455309 9 5455309 1.40E-07 NA 

GLM RDW S2_201965660 2 201965660 1.61E-07 NA 

GLM RDW S9_130090472 9 130090472 1.92E-07 NA 

GLM RDW S3_20534762 3 20534762 2.21E-07 NA 

GLM RDW S2_202641741 2 202641741 2.43E-07 NA 

GLM RDW S5_199978118 5 199978118 2.90E-07 NA 

GLM RDW S4_18676302 4 18676302 3.22E-07 NA 

GLM RDW S8_155440143 8 155440143 3.87E-07 NA 

GLM RDW S7_159921873 7 159921873 4.06E-07 NA 

GLM RDW S7_159921877 7 159921877 4.06E-07 NA 

GLM RDW S2_210978535 2 210978535 4.20E-07 NA 

GLM RDW S6_146218985 6 146218985 4.64E-07 NA 

GLM RDW S9_124031518 9 124031518 4.74E-07 NA 

GLM RDW S2_41497406 2 41497406 4.79E-07 NA 

GLM RDW S9_122595736 9 122595736 4.84E-07 NA 

GLM RDW S9_122595739 9 122595739 4.84E-07 NA 
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Supplementary Table 1 continued 

GLM RDW S9_122595744 9 122595744 4.84E-07 NA 

GLM RDW S2_212541278 2 212541278 5.08E-07 NA 

GLM SDW S2_202178253 2 202178253 5.84E-10 NA 

GLM SDW S8_79284127 8 79284127 2.55E-09 NA 

GLM SDW S1_255084426 1 255084426 1.56E-08 NA 

GLM SDW S3_167473718 3 167473718 7.54E-08 NA 

GLM SDW S3_167362874 3 167362874 1.06E-07 NA 

GLM SDW S1_198479489 1 198479489 1.13E-07 NA 

GLM SDW S3_223090866 3 223090866 1.37E-07 NA 

GLM SDW S6_129436495 6 129436495 1.59E-07 NA 

GLM SDW S2_202635930 2 202635930 1.84E-07 NA 

GLM SDW S2_204294242 2 204294242 3.40E-07 NA 

GLM SDW S6_152308251 6 152308251 4.27E-07 NA 

GLM SDW S9_103173310 9 103173310 4.57E-07 NA 

GLM SDW S2_55894837 2 55894837 5.33E-07 NA 

GLM SHL S2_55894837 2 55894837 2.51E-09 NA 

GLM SHL S2_55878267 2 55878267 4.94E-09 NA 

GLM SHL S2_55875101 2 55875101 9.86E-09 NA 

GLM SHL S2_55878363 2 55878363 2.68E-08 NA 

GLM SHL S2_55893351 2 55893351 3.24E-08 NA 

GLM SHL S2_55893619 2 55893619 3.60E-08 NA 

GLM SHL S2_55893782 2 55893782 9.42E-08 NA 

GLM SHL S2_202178253 2 202178253 1.05E-07 NA 

GLM SHL S1_12977206 1 12977206 1.33E-07 NA 

GLM SHL S8_19120665 8 19120665 1.92E-07 NA 

GLM SHL S8_18894046 8 18894046 1.97E-07 NA 

GLM SHL S5_19842373 5 19842373 2.23E-07 NA 

GLM SHL S9_128457179 9 128457179 3.36E-07 NA 

GLM SHL S2_55875076 2 55875076 3.39E-07 NA 

GLM SHL S5_174591302 5 174591302 4.22E-07 NA 

GLM TNR S4_62787846 4 62787846 2.04E-07 NA 

GLM TRL S4_62787846 4 62787846 3.67E-07 NA 

GLM PRL S2_202635930 2 2.03E+08 3.73E-09 NA 

GLM PRL S8_146152722 8 1.46E+08 3.77E-08 NA 

GLM PRL S1_34401500 1 34401500 1.09E-07 NA 

GLM PRL S6_7125119 6 7125119 1.17E-07 NA 

GLM PRL S2_202176704 2 2.02E+08 1.33E-07 NA 

GLM PRL S3_187226846 3 1.87E+08 2.05E-07 NA 

GLM PRL S10_144957882 10 1.45E+08 2.42E-07 NA 

GLM PRL S6_146218985 6 1.46E+08 3.19E-07 NA 
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Supplementary Table 1 continued 

GLM PRL S2_21818271 2 21818271 3.98E-07 NA 

GLM PRL S2_202174949 2 2.02E+08 4.04E-07 NA 

GLM PRL S2_21802146 2 21802146 5.03E-07 NA 

GLM SUA S2_202635930 2 202635930 9.74E-10 NA 

GLM SUA S3_190009541 3 190009541 6.12E-09 NA 

GLM SUA S3_190009572 3 190009572 6.12E-09 NA 

GLM SUA S2_21818271 2 21818271 8.42E-09 NA 

GLM SUA S4_62787846 4 62787846 9.74E-09 NA 

GLM SUA S2_202176704 2 202176704 1.31E-08 NA 

GLM SUA S4_62568928 4 62568928 1.43E-08 NA 

GLM SUA S6_146218985 6 146218985 1.97E-08 NA 

GLM SUA S4_62573171 4 62573171 2.54E-08 NA 

GLM SUA S4_62572919 4 62572919 2.66E-08 NA 

GLM SUA S4_62412291 4 62412291 2.86E-08 NA 

GLM SUA S4_62565527 4 62565527 3.18E-08 NA 

GLM SUA S4_62565569 4 62565569 3.18E-08 NA 

GLM SUA S2_202635915 2 202635915 3.37E-08 NA 

GLM SUA S4_62695364 4 62695364 4.29E-08 NA 

GLM SUA S2_202528876 2 202528876 4.87E-08 NA 

GLM SUA S3_20534762 3 20534762 5.28E-08 NA 

GLM SUA S4_62573079 4 62573079 5.28E-08 NA 

GLM SUA S5_204385180 5 204385180 6.12E-08 NA 

GLM SUA S4_62573001 4 62573001 7.17E-08 NA 

GLM SUA S4_62353254 4 62353254 7.32E-08 NA 

GLM SUA S4_62353279 4 62353279 7.32E-08 NA 

GLM SUA S2_202178253 2 202178253 8.73E-08 NA 

GLM SUA S2_202639340 2 202639340 9.41E-08 NA 

GLM SUA S2_202528862 2 202528862 1.00E-07 NA 

GLM SUA S3_187226846 3 187226846 1.01E-07 NA 

GLM SUA S4_62694610 4 62694610 1.03E-07 NA 

GLM SUA S2_212744456 2 212744456 1.07E-07 NA 

GLM SUA S5_204522546 5 204522546 1.07E-07 NA 

GLM SUA S4_62567488 4 62567488 1.17E-07 NA 

GLM SUA S3_187450966 3 187450966 1.35E-07 NA 

GLM SUA S2_212541278 2 212541278 1.42E-07 NA 

GLM SUA S4_217095284 4 217095284 1.49E-07 NA 

GLM SUA S2_13299683 2 13299683 1.50E-07 NA 

GLM SUA S2_21802146 2 21802146 1.50E-07 NA 

GLM SUA S4_62572909 4 62572909 1.60E-07 NA 

GLM SUA S1_200409094 1 200409094 1.67E-07 NA 
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Supplementary Table 1 continued 

GLM SUA S4_62787629 4 62787629 1.68E-07 NA 

GLM SUA S3_184267045 3 184267045 2.12E-07 NA 

GLM SUA S4_62787622 4 62787622 2.22E-07 NA 

GLM SUA S4_62573373 4 62573373 2.40E-07 NA 

GLM SUA S4_62573339 4 62573339 2.59E-07 NA 

GLM SUA S10_33221023 10 33221023 2.64E-07 NA 

GLM SUA S4_62788968 4 62788968 2.77E-07 NA 

GLM SUA S4_62564497 4 62564497 2.87E-07 NA 

GLM SUA S4_56970265 4 56970265 3.15E-07 NA 

GLM SUA S3_184267357 3 184267357 3.33E-07 NA 

GLM SUA S4_63206226 4 63206226 3.40E-07 NA 

GLM SUA S6_86049082 6 86049082 3.41E-07 NA 

GLM SUA S4_62573340 4 62573340 3.51E-07 NA 

GLM SUA S4_62573370 4 62573370 3.51E-07 NA 

GLM SUA S1_200409145 1 200409145 3.99E-07 NA 

GLM SUA S1_208781061 1 208781061 4.23E-07 NA 

GLM SUA S4_142206837 4 142206837 4.44E-07 NA 

GLM SUA S3_2154241 3 2154241 4.51E-07 NA 

GLM SUA S3_190063251 3 190063251 4.67E-07 NA 

GLM SUA S2_10375886 2 10375886 4.68E-07 NA 

GLM SUA S2_27546469 2 27546469 4.90E-07 NA 

GLM TPB S2_226586217 2 226586217 8.68E-09 NA 

GLM TPB S2_202178253 2 202178253 1.43E-08 NA 

GLM TPB S2_202528862 2 202528862 1.53E-08 NA 

GLM TPB S1_255084426 1 255084426 2.99E-08 NA 

GLM TPB S2_202635930 2 202635930 3.78E-08 NA 

GLM TPB S1_179184476 1 179184476 5.03E-08 NA 

GLM TPB S2_202176704 2 202176704 7.23E-08 NA 

GLM TPB S6_129436495 6 129436495 9.51E-08 NA 

GLM TPB S2_202641741 2 202641741 1.92E-07 NA 

GLM TPB S9_139174871 9 139174871 2.11E-07 NA 

GLM TPB S9_112489129 9 112489129 2.14E-07 NA 

GLM TPB S2_204294242 2 204294242 2.37E-07 NA 

GLM TPB S2_202739518 2 202739518 3.16E-07 NA 

GLM TPB S9_130090472 9 130090472 3.52E-07 NA 

GLM TPB S9_105339007 9 105339007 3.83E-07 NA 

GLM TPB S9_105339008 9 105339008 3.83E-07 NA 

GLM TPB S2_201965660 2 201965660 4.01E-07 NA 

GLM DIA S2_7040758 2 7040758 5.34E-11 NA 

GLM DIA S2_6850421 2 6850421 1.44E-10 NA 
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Supplementary Table 1 continued 

GLM DIA S2_6850420 2 6850420 2.19E-10 NA 

GLM DIA S2_6172579 2 6172579 3.79E-10 NA 

GLM DIA S3_2076703 3 2076703 4.83E-10 NA 

GLM DIA S2_6994422 2 6994422 2.43E-09 NA 

GLM DIA S2_13349810 2 13349810 2.63E-09 NA 

GLM DIA S4_62568928 4 62568928 3.31E-09 NA 

GLM DIA S4_62565527 4 62565527 3.55E-09 NA 

GLM DIA S4_62565569 4 62565569 3.55E-09 NA 

GLM DIA S2_6720877 2 6720877 3.62E-09 NA 

GLM DIA S2_6720881 2 6720881 3.62E-09 NA 

GLM DIA S2_6720882 2 6720882 3.62E-09 NA 

GLM DIA S7_119838612 7 119838612 3.92E-09 NA 

GLM DIA S7_119838613 7 119838613 3.92E-09 NA 

GLM DIA S2_6333501 2 6333501 5.21E-09 NA 

GLM DIA S4_62572919 4 62572919 5.21E-09 NA 

GLM DIA S4_62573171 4 62573171 5.65E-09 NA 

GLM DIA S2_3105910 2 3105910 6.06E-09 NA 

GLM DIA S2_11361054 2 11361054 6.39E-09 NA 

GLM DIA S2_4876527 2 4876527 6.80E-09 NA 

GLM DIA S4_62787846 4 62787846 6.87E-09 NA 

GLM DIA S2_12253075 2 12253075 7.56E-09 NA 

GLM DIA S4_62573079 4 62573079 7.78E-09 NA 

GLM DIA S2_10375886 2 10375886 1.19E-08 NA 

GLM DIA S2_5836126 2 5836126 1.26E-08 NA 

GLM DIA S2_5836127 2 5836127 1.26E-08 NA 

GLM DIA S2_5836129 2 5836129 1.26E-08 NA 

GLM DIA S2_5836131 2 5836131 1.26E-08 NA 

GLM DIA S2_3106026 2 3106026 1.31E-08 NA 

GLM DIA S2_3106027 2 3106027 1.31E-08 NA 

GLM DIA S2_2811155 2 2811155 1.44E-08 NA 

GLM DIA S4_62353254 4 62353254 1.48E-08 NA 

GLM DIA S4_62353279 4 62353279 1.48E-08 NA 

GLM DIA S4_62567488 4 62567488 1.50E-08 NA 

GLM DIA S2_6460559 2 6460559 1.55E-08 NA 

GLM DIA S2_2285818 2 2285818 1.67E-08 NA 

GLM DIA S2_1267098 2 1267098 2.02E-08 NA 

GLM DIA S4_62412291 4 62412291 2.14E-08 NA 

GLM DIA S2_6471845 2 6471845 2.15E-08 NA 

GLM DIA S4_62572909 4 62572909 2.62E-08 NA 

GLM DIA S2_1654161 2 1654161 2.75E-08 NA 
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Supplementary Table 1 continued 

GLM DIA S2_1267306 2 1267306 2.93E-08 NA 

GLM DIA S2_6177436 2 6177436 3.29E-08 NA 

GLM DIA S2_2540702 2 2540702 3.61E-08 NA 

GLM DIA S2_6466394 2 6466394 3.77E-08 NA 

GLM DIA S2_3181711 2 3181711 4.01E-08 NA 

GLM DIA S2_3181719 2 3181719 4.01E-08 NA 

GLM DIA S4_62694610 4 62694610 4.16E-08 NA 

GLM DIA S2_2593357 2 2593357 4.46E-08 NA 

GLM DIA S4_62573339 4 62573339 4.49E-08 NA 

GLM DIA S2_4990216 2 4990216 4.55E-08 NA 

GLM DIA S2_6983715 2 6983715 5.77E-08 NA 

GLM DIA S4_62412381 4 62412381 6.02E-08 NA 

GLM DIA S2_4343433 2 4343433 6.76E-08 NA 

GLM DIA S2_9315360 2 9315360 6.92E-08 NA 

GLM DIA S4_62412374 4 62412374 7.10E-08 NA 

GLM DIA S2_7040865 2 7040865 7.15E-08 NA 

GLM DIA S2_7040867 2 7040867 7.15E-08 NA 

GLM DIA S2_3106182 2 3106182 7.56E-08 NA 

GLM DIA S2_6458690 2 6458690 7.60E-08 NA 

GLM DIA S2_6471718 2 6471718 7.91E-08 NA 

GLM DIA S2_6720880 2 6720880 8.10E-08 NA 

GLM DIA S4_62564497 4 62564497 8.24E-08 NA 

GLM DIA S2_6773738 2 6773738 8.52E-08 NA 

GLM DIA S2_6355263 2 6355263 8.73E-08 NA 

GLM DIA S2_7733390 2 7733390 9.20E-08 NA 

GLM DIA S2_212525890 2 212525890 1.01E-07 NA 

GLM DIA S3_205235096 3 205235096 1.01E-07 NA 

GLM DIA S5_204385180 5 204385180 1.06E-07 NA 

GLM DIA S2_3106513 2 3106513 1.11E-07 NA 

GLM DIA S2_3106516 2 3106516 1.11E-07 NA 

GLM DIA S4_62573340 4 62573340 1.11E-07 NA 

GLM DIA S4_62573370 4 62573370 1.11E-07 NA 

GLM DIA S6_144123661 6 144123661 1.15E-07 NA 

GLM DIA S2_7190543 2 7190543 1.18E-07 NA 

GLM DIA S10_37942464 10 37942464 1.19E-07 NA 

GLM DIA S3_205392941 3 205392941 1.24E-07 NA 

GLM DIA S2_1463303 2 1463303 1.25E-07 NA 

GLM DIA S3_2118557 3 2118557 1.25E-07 NA 

GLM DIA S1_32601179 1 32601179 1.28E-07 NA 

GLM DIA S8_16444572 8 16444572 1.32E-07 NA 
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Supplementary Table 1 continued 

GLM DIA S2_202635930 2 202635930 1.51E-07 NA 

GLM DIA S8_16444445 8 16444445 1.56E-07 NA 

GLM DIA S8_16444587 8 16444587 1.57E-07 NA 

GLM DIA S5_204522546 5 204522546 1.58E-07 NA 

GLM DIA S3_136165588 3 136165588 1.62E-07 NA 

GLM DIA S4_62412329 4 62412329 1.63E-07 NA 

GLM DIA S10_4693744 10 4693744 1.70E-07 NA 

GLM DIA S6_160037464 6 160037464 1.78E-07 NA 

GLM DIA S3_219856818 3 219856818 1.79E-07 NA 

GLM DIA S3_2071609 3 2071609 2.08E-07 NA 

GLM DIA S4_62573001 4 62573001 2.09E-07 NA 

GLM DIA S2_49707173 2 49707173 2.11E-07 NA 

GLM DIA S2_7733127 2 7733127 2.16E-07 NA 

GLM DIA S2_7733148 2 7733148 2.16E-07 NA 

GLM DIA S2_3097857 2 3097857 2.29E-07 NA 

GLM DIA S7_122076997 7 122076997 2.44E-07 NA 

GLM DIA S1_100825248 1 100825248 2.56E-07 NA 

GLM DIA S2_2628047 2 2628047 2.63E-07 NA 

GLM DIA S2_202639340 2 202639340 2.72E-07 NA 

GLM DIA S2_6994128 2 6994128 2.76E-07 NA 

GLM DIA S7_122077001 7 122077001 2.77E-07 NA 

GLM DIA S3_202051330 3 202051330 2.88E-07 NA 

GLM DIA S2_4876525 2 4876525 2.88E-07 NA 

GLM DIA S2_9011328 2 9011328 2.92E-07 NA 

GLM DIA S2_13349544 2 13349544 2.95E-07 NA 

GLM DIA S7_11476601 7 11476601 2.99E-07 NA 

GLM DIA S4_62412368 4 62412368 3.15E-07 NA 

GLM DIA S3_20534762 3 20534762 3.16E-07 NA 

GLM DIA S2_3866630 2 3866630 3.21E-07 NA 

GLM DIA S2_3866645 2 3866645 3.21E-07 NA 

GLM DIA S3_184237812 3 184237812 3.22E-07 NA 

GLM DIA S3_2067782 3 2067782 3.37E-07 NA 

GLM DIA S2_202635915 2 202635915 3.42E-07 NA 

GLM DIA S2_3773762 2 3773762 3.42E-07 NA 

GLM DIA S4_62695364 4 62695364 3.47E-07 NA 

GLM DIA S2_6177736 2 6177736 3.48E-07 NA 

GLM DIA S2_7743653 2 7743653 3.50E-07 NA 

GLM DIA S8_17059625 8 17059625 3.79E-07 NA 

GLM DIA S2_13299683 2 13299683 3.93E-07 NA 

GLM DIA S2_9119197 2 9119197 4.03E-07 NA 
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Supplementary Table 1 continued 

GLM DIA S2_3104647 2 3104647 4.09E-07 NA 

GLM DIA S1_193164284 1 193164284 4.11E-07 NA 

GLM DIA S2_202528876 2 202528876 4.27E-07 NA 

GLM DIA S3_2767231 3 2767231 4.34E-07 NA 

GLM DIA S4_121563375 4 121563375 4.38E-07 NA 

GLM DIA S8_37808019 8 37808019 4.46E-07 NA 

GLM DIA S2_12011959 2 12011959 4.68E-07 NA 

GLM DIA S1_281950731 1 281950731 4.68E-07 NA 

GLM DIA S1_253308208 1 253308208 4.79E-07 NA 

GLM DIA S6_139619665 6 139619665 5.04E-07 NA 

GLM DIA S2_3795762 2 3795762 5.14E-07 NA 

GLM DIA S2_4891051 2 4891051 5.19E-07 NA 

GLM DIA S8_17059371 8 17059371 5.23E-07 NA 
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Supplementary Table 2. All lines included in 384 Ames Panel Association mapping population.  

IVP IVNO Genotype name TAXON COUNTRY STATE 

Ames 2332 Bei 10 = North 10 Zea mays subsp. mays China   

Ames 2336 52220 Zea mays subsp. mays China   

Ames 2523 38-11R  PARENT HB 19  INB Zea mays subsp. mays Portugal   

Ames 14115 Va35C Zea mays subsp. mays United States Virginia 

Ames 14116 Va36A Zea mays subsp. mays United States Virginia 

Ames 19000 VaW6 Zea mays subsp. mays United States Virginia 

Ames 19008 Va24 Zea mays subsp. mays United States Virginia 

Ames 19010 Va37 Zea mays subsp. mays United States Virginia 

Ames 19011 Va38 Zea mays subsp. mays United States Virginia 

Ames 19012 Va39 Zea mays subsp. mays United States Virginia 

Ames 19013 Va46 Zea mays subsp. mays United States Virginia 

Ames 19016 Va59 Zea mays subsp. mays United States Virginia 

Ames 19019 Va91 Zea mays subsp. mays United States Virginia 

Ames 19293 Wf9 Zea mays subsp. mays United States Indiana 

Ames 19308 A634 Zea mays subsp. mays United States Minnesota 

Ames 19313 C123 Zea mays subsp. mays United States Connecticut 

Ames 19318 H107 Zea mays subsp. mays United States Indiana 

Ames 19319 H95 Zea mays subsp. mays United States Indiana 

Ames 19326 R168 Zea mays subsp. mays United States Illinois 

Ames 19327 Tx303 Zea mays subsp. mays United States Texas 

Ames 19328 Va22 Zea mays subsp. mays United States Virginia 

Ames 20119 Mo40 Zea mays subsp. mays United States Missouri 

Ames 20137 H25W Zea mays subsp. mays United States Indiana 

Ames 22016 C15 Zea mays subsp. mays United States Connecticut 

Ames 22017 C18 Zea mays subsp. mays United States Connecticut 

Ames 23410 A265 Zea mays subsp. mays United States Minnesota 

Ames 23413 A286 Zea mays subsp. mays United States Minnesota 

Ames 23435 A427 Zea mays subsp. mays United States Minnesota 

Ames 23456 A617 Zea mays subsp. mays United States Minnesota 

Ames 23466 A630 Zea mays subsp. mays United States Minnesota 

Ames 23471 A633 Zea mays subsp. mays United States Minnesota 

Ames 23474 A636 Zea mays subsp. mays United States Minnesota 

Ames 23475 A637 Zea mays subsp. mays United States Minnesota 

Ames 23478 A643 Zea mays subsp. mays United States Minnesota 

Ames 23479 A644 Zea mays subsp. mays United States Minnesota 

Ames 23480 A645 Zea mays subsp. mays United States Minnesota 

Ames 24705 MS4 Zea mays subsp. mays United States Michigan 

Ames 24711 MS68 Zea mays subsp. mays United States Michigan 

Ames 24713 MS72 Zea mays subsp. mays United States Michigan 
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Ames 24716 MS76 Zea mays subsp. mays United States Michigan 

Ames 24718 MS78 Zea mays subsp. mays United States Michigan 

Ames 24720 MS80 Zea mays subsp. mays United States Michigan 

Ames 24723 MS91 Zea mays subsp. mays United States Michigan 

Ames 24727 MS106 Zea mays subsp. mays United States Michigan 

Ames 24730 MS132 Zea mays subsp. mays United States Michigan 

Ames 24732 MS141 Zea mays subsp. mays United States Michigan 

Ames 24735 MS198 Zea mays subsp. mays United States Michigan 

Ames 24747 MS222 Zea mays subsp. mays United States Michigan 

Ames 24748 MS223 Zea mays subsp. mays United States Michigan 

Ames 24749 MS224 Zea mays subsp. mays United States Michigan 

Ames 24751 MS226 Zea mays subsp. mays United States Michigan 

Ames 24989 Va99 Zea mays subsp. mays United States Virginia 

Ames 25372 Pa91HT1 Zea mays subsp. mays United States Pennsylvania 

Ames 26021 P8 Zea mays subsp. mays United States Indiana 

Ames 26120 CI 20 Zea mays subsp. mays United States Missouri 

Ames 26743 WX38-11 Zea mays subsp. mays United States Iowa 

Ames 26774 H14 Zea mays subsp. mays United States Indiana 

Ames 26775 H19 Zea mays subsp. mays United States Indiana 

Ames 26776 H22w Zea mays subsp. mays United States Indiana 

Ames 26777 H23w Zea mays subsp. mays United States Indiana 

Ames 26778 H26w Zea mays subsp. mays United States Indiana 

Ames 26779 H27w Zea mays subsp. mays United States Indiana 

Ames 26781 H29w Zea mays subsp. mays United States Indiana 

Ames 26783 H41 Zea mays subsp. mays United States Indiana 

Ames 26788 H50 Zea mays subsp. mays United States Indiana 

Ames 26790 H52 Zea mays subsp. mays United States Indiana 

Ames 26791 H55 Zea mays subsp. mays United States Indiana 

Ames 26792 H59 Zea mays subsp. mays United States Indiana 

Ames 26795 H88 Zea mays subsp. mays United States Indiana 

Ames 26909 Mo41 Zea mays subsp. mays United States Missouri 

Ames 27017 CH705-8 Zea mays subsp. mays Canada Ontario 

Ames 27018 CH711-10 Zea mays subsp. mays Canada Ontario 

Ames 27019 CH732-12 Zea mays subsp. mays Canada Ontario 

Ames 27020 CH741-6 Zea mays subsp. mays Canada Ontario 

Ames 27069 CH701-30 Zea mays subsp. mays Canada Ontario 

Ames 27122 K148 Zea mays subsp. mays United States Kansas 

Ames 27124 Ki11 Zea mays subsp. mays Thailand   

Ames 27125 Ki21 Zea mays subsp. mays Thailand   

Ames 27136 Mo.G Zea mays subsp. mays United States N. Carolina 
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Ames 27140 NC260 Zea mays subsp. mays United States N. Carolina 

Ames 27149 NC306 Zea mays subsp. mays United States N. Carolina 

Ames 27150 NC308 Zea mays subsp. mays United States N. Carolina 

Ames 27188 SA24 Zea mays subsp. mays United States N. Carolina 

Ames 27193 Va85 Zea mays subsp. mays United States Virginia 

Ames 27444 Il731a Zea mays subsp. mays United States Illinois 

Ames 27445 Il767b Zea mays subsp. mays United States Illinois 

Ames 28186 P39 Goodman-Buckler Zea mays subsp. mays United States Indiana 

Ames 28360 Mo401 Zea mays subsp. mays United States Missouri 

Ames 28361 Mo402 Zea mays subsp. mays United States Missouri 

Ames 28366 N7A Goodman-Buckler Zea mays subsp. mays United States Nebraska 

Ames 28930 Mo30W Zea mays subsp. mays United States Missouri 

Ames 28935 Mo37 Zea mays subsp. mays United States Missouri 

Ames 28937 Mo39 Zea mays subsp. mays United States Missouri 

NSL 22630 K150 Zea mays subsp. mays United States Kansas 

NSL 22635 K41 Zea mays subsp. mays United States Kansas 

NSL 28966 Oh40B Zea mays subsp. mays United States Ohio 

NSL 28968 OH84 Zea mays subsp. mays United States Ohio 

NSL 29317 R221 Zea mays subsp. mays United States Illinois 

NSL 30053 W22 Zea mays subsp. mays United States Wisconsin 

NSL 30060 W23 Zea mays subsp. mays United States Wisconsin 

NSL 30064 W24 Zea mays subsp. mays United States Wisconsin 

NSL 30071 W32 Zea mays subsp. mays United States Wisconsin 

NSL 30835 SD10 Zea mays subsp. mays United States South Dakota 

NSL 30863 L Zea mays subsp. mays United States Illinois 

NSL 30868 R30 Zea mays subsp. mays United States Illinois 

NSL 30880 R105 Zea mays subsp. mays United States Illinois 

NSL 30903 90 Zea mays subsp. mays United States Illinois 

NSL 30905 5120B Zea mays subsp. mays United States Illinois 

NSL 32734 ND408 Zea mays subsp. mays United States North Dakota 

NSL 32736 ND480 Zea mays subsp. mays United States North Dakota 

NSL 65865 B10 Zea mays subsp. mays United States Iowa 

NSL 67792 Mo307ae Zea mays subsp. mays United States Missouri 

NSL 75976 IA DS 61 Zea mays subsp. mays United States Iowa 

NSL 81598 A657 Zea mays subsp. mays United States Minnesota 

NSL 197104 H116 Zea mays subsp. mays United States Indiana 

NSL 437893 AusTRCF 305819 Zea mays subsp. mays Australia Queensland 

NSL 437896 AusTRCF 305822 Zea mays subsp. mays Australia Queensland 

NSL 437907 AusTRCF 305833 Zea mays subsp. mays Australia Queensland 

NSL 437909 AusTRCF 305835 Zea mays subsp. mays Australia Queensland 
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NSL 437910 AusTRCF 305836 Zea mays subsp. mays Australia Queensland 

NSL 437913 AusTRCF 305839 Zea mays subsp. mays Australia Queensland 

NSL 437923 AusTRCF 305849 Zea mays subsp. mays Australia Queensland 

NSL 437925 AusTRCF 306065 Zea mays subsp. mays Australia Queensland 

NSL 437930 AusTRCF 306235 Zea mays subsp. mays Australia Queensland 

NSL 437931 AusTRCF 306236 Zea mays subsp. mays Australia New S. 

Wales 

NSL 437932 AusTRCF 306237 Zea mays subsp. mays Australia New S. 

Wales 

NSL 437934 AusTRCF 306239 Zea mays subsp. mays Australia New S. 

Wales 

NSL 437935 AusTRCF 306240 Zea mays subsp. mays Australia New S. 

Wales 

NSL 437936 AusTRCF 306241 Zea mays subsp. mays Australia New S. 

Wales 

NSL 437939 AusTRCF 306244 Zea mays subsp. mays Australia Queensland 

NSL 437943 AusTRCF 306254 Zea mays subsp. mays Australia Queensland 

NSL 437946 AusTRCF 306257 Zea mays subsp. mays Australia Queensland 

NSL 437950 AusTRCF 306261 Zea mays subsp. mays Australia Queensland 

NSL 437952 AusTRCF 306264 Zea mays subsp. mays Australia Queensland 

NSL 437959 AusTRCF 306273 Zea mays subsp. mays Australia Queensland 

NSL 437960 AusTRCF 306274 Zea mays subsp. mays Australia New S. 

Wales 

NSL 437962 AusTRCF 306276 Zea mays subsp. mays Australia Queensland 

NSL 437964 AusTRCF 306278 Zea mays subsp. mays Australia Queensland 

NSL 437966 AusTRCF 306280 Zea mays subsp. mays Australia Queensland 

NSL 437967 AusTRCF 306281 Zea mays subsp. mays Australia Queensland 

NSL 437968 AusTRCF 306282 Zea mays subsp. mays Australia Queensland 

NSL 437971 AusTRCF 306285 Zea mays subsp. mays Australia Queensland 

NSL 437973 AusTRCF 306287 Zea mays subsp. mays Australia Queensland 

NSL 437976 AusTRCF 306290 Zea mays subsp. mays Australia Queensland 

NSL 437979 AusTRCF 306293 Zea mays subsp. mays Australia Queensland 

NSL 437982 AusTRCF 306296 Zea mays subsp. mays Australia Queensland 

NSL 437989 AusTRCF 306303 Zea mays subsp. mays Australia Queensland 

NSL 437990 AusTRCF 306304 Zea mays subsp. mays Australia Queensland 

NSL 437992 AusTRCF 306306 Zea mays subsp. mays Australia Queensland 

NSL 437993 AusTRCF 306307 Zea mays subsp. mays Australia Queensland 

NSL 437994 AusTRCF 306308 Zea mays subsp. mays Australia Queensland 

NSL 437995 AusTRCF 306309 Zea mays subsp. mays Australia Queensland 

NSL 437996 AusTRCF 306310 Zea mays subsp. mays Australia Queensland 

NSL 438007 AusTRCF 306321 Zea mays subsp. mays Australia Queensland 

NSL 438009 AusTRCF 306323 Zea mays subsp. mays Australia Queensland 
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NSL 438010 AusTRCF 306324 Zea mays subsp. mays Australia Queensland 

NSL 438019 AusTRCF 306333 Zea mays subsp. mays Australia Queensland 

NSL 438021 AusTRCF 306335 Zea mays subsp. mays Australia Queensland 

NSL 438022 AusTRCF 306336 Zea mays subsp. mays Australia Queensland 

NSL 438023 AusTRCF 306337 Zea mays subsp. mays Australia Queensland 

NSL 438029 AusTRCF 306343 Zea mays subsp. mays Australia Queensland 

NSL 438030 AusTRCF 306344 Zea mays subsp. mays Australia Queensland 

NSL 438031 AusTRCF 306345 Zea mays subsp. mays Australia Queensland 

NSL 438033 AusTRCF 306347 Zea mays subsp. mays Australia Queensland 

NSL 438034 AusTRCF 306348 Zea mays subsp. mays Australia Queensland 

NSL 438036 AusTRCF 306350 Zea mays subsp. mays Australia Queensland 

NSL 438038 AusTRCF 306352 Zea mays subsp. mays Australia Queensland 

PI 186182 INBRED 378 Zea mays subsp. mays Uruguay   

PI 186185 INBRED 605 Zea mays subsp. mays Uruguay   

PI 186190 INBRED 624 Zea mays subsp. mays Uruguay   

PI 186192 INBRED 45 Zea mays subsp. mays Australia   

PI 186193 INBRED A-243-1 Zea mays subsp. mays South Africa   

PI 186199 INBRED 141 Zea mays subsp. mays Australia   

PI 186215 INBRED 2-687 Zea mays subsp. mays Argentina   

PI 186216 INBRED 1-1265 Zea mays subsp. mays Argentina   

PI 186217 INBRED 19-86 Zea mays subsp. mays Argentina   

PI 186218 INBRED 34-1141 Zea mays subsp. mays Argentina   

PI 186220 INBRED 34-1196 Zea mays subsp. mays Argentina   

PI 186226 INBRED 305 Zea mays subsp. mays Uruguay   

PI 186227 INBRED 309 Zea mays subsp. mays Uruguay   

PI 186229 INBRED 321 Zea mays subsp. mays Uruguay   

PI 186230 INBRED 334 Zea mays subsp. mays Uruguay   

PI 198888 4F-35 BK Zea mays subsp. mays Argentina   

PI 198890 4F-203 AM 6 Zea mays subsp. mays Argentina   

PI 198892 4F-234 BX 4 Zea mays subsp. mays Argentina   

PI 198895 4F-285 TX 15 Zea mays subsp. mays Argentina   

PI 198897 4F-306 108 Zea mays subsp. mays Argentina   

PI 198902 4F-345 CN 12 Zea mays subsp. mays Argentina   

PI 200179 NY 3 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 200182 NY 159 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 200184 NY 166 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 200185 NY 188 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 200187 NY 318 (Nevey Yaar) Zea mays subsp. mays Israel   

PI 200188 NY 364 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 200193 NY 643 (Neveh Yaar) Zea mays subsp. mays Israel   
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PI 200194 NY 971 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 200196 NY 1000 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 221734 A14 INBRED 

(POTCHEFSTROOM 

PEARL) 

Zea mays subsp. mays South Africa Transvaal 

PI 221735 A15-1 INBRED 

(POTCHEFSTROOM 

PEARL) 

Zea mays subsp. mays South Africa Transvaal 

PI 221736 A16-3-2 INBRED 

(POTCHEFSTROOM 

PEARL) 

Zea mays subsp. mays South Africa Transvaal 

PI 221747 E205-1-1-1 INBRED (S5 

SYN. ANVELD) 

Zea mays subsp. mays South Africa Transvaal 

PI 221773 A415-1-3 INBRED Zea mays subsp. mays South Africa Transvaal 

PI 221775 A436-1 INBRED Zea mays subsp. mays South Africa Transvaal 

PI 221789 E683-1-2-1(S5) INBRED Zea mays subsp. mays South Africa Transvaal 

PI 221790 E684-1-1-1(S5) INBRED Zea mays subsp. mays South Africa Transvaal 

PI 221804 A242-2(S10) INBRED 

(PERUVIAN) 

Zea mays subsp. mays South Africa Transvaal 

PI 221805 A243-1-2(S10) INBRED 

(PERUVIAN) 

Zea mays subsp. mays South Africa Transvaal 

PI 221806 A256-1(S10) INBRED 

(PERUVIAN) 

Zea mays subsp. mays South Africa Transvaal 

PI 221811 A302-1-2(S10) INBRED 

(SERVENTINA) 

Zea mays subsp. mays South Africa Transvaal 

PI 221813 A325-1(S10) INBRED 

(HOTNOT) 

Zea mays subsp. mays South Africa Transvaal 

PI 221820 C410-1(F11) INBRED 

(HOTNOT CROSSES) 

Zea mays subsp. mays South Africa Transvaal 

PI 257514 FV181 Zea mays subsp. mays France  

PI 257517 FC46 Zea mays subsp. mays France  

PI 267171 T8445 INBRED Zea mays subsp. mays Former Soviet 

Union 

  

PI 303925 NO. 1004 INBRED Zea mays subsp. mays Spain   

PI 303926 NO. 1019 INBRED Zea mays subsp. mays Spain   

PI 303928 NO. 1032 INBRED Zea mays subsp. mays Spain   

PI 303929 NO. 1037 INBRED Zea mays subsp. mays Spain   

PI 303930 NO. 1049 INBRED Zea mays subsp. mays Spain   

PI 303932 NO. 1068 INBRED Zea mays subsp. mays Spain   

PI 303933 NO. 1070 INBRED Zea mays subsp. mays Spain   

PI 303936 NO. 1174 INBRED Zea mays subsp. mays Spain   

PI 303940 NO. 1201 INBRED Zea mays subsp. mays Spain   

PI 303943 TN 53-1-2 Zea mays subsp. mays Taiwan   

PI 340812 NY 121 (Neveh Yaar) Zea mays subsp. mays Israel   
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PI 340813 NY 123 (Neveh Yaar) Zea mays subsp. mays Israel   

PI 340817 G3 T5 Zea mays subsp. mays Romania   

PI 340821 G22 T122 Zea mays subsp. mays Romania   

PI 340823 G14 T133 Zea mays subsp. mays Romania   

PI 340824 G15 T134 Zea mays subsp. mays Romania   

PI 340827 T141 Zea mays subsp. mays Romania   

PI 340875 IA DS 43-W Zea mays subsp. mays United States Iowa 

PI 391660 CHI-41 Zea mays subsp. mays China Shaanxi 

PI 405705 CHAN 11 INBRED Zea mays subsp. mays China   

PI 405711 BAI TOU SHUANG IN.(JI 

095 

Zea mays subsp. mays China   

PI 406106 A14NW Zea mays subsp. mays South Africa  

PI 406107 A57N Zea mays subsp. mays South Africa  

PI 406108 A98NW Zea mays subsp. mays South Africa  

PI 406110 A178N Zea mays subsp. mays South Africa  

PI 406123 A579N Zea mays subsp. mays South Africa  

PI 406124 A622N Zea mays subsp. mays South Africa  

PI 406125 A641N Zea mays subsp. mays South Africa  

PI 406127 A664N Zea mays subsp. mays South Africa  

PI 415088 4581 INBRED Zea mays subsp. mays Hungary   

PI 506411 M6411 Zea mays subsp. mays United States Oklahoma 

PI 506412 M6415 Zea mays subsp. mays United States Oklahoma 

PI 506413 M6421 Zea mays subsp. mays United States Oklahoma 

PI 508277 SD42 Zea mays subsp. mays United States South Dakota 

PI 511309 NC252 Zea mays subsp. mays United States North 

Carolina 

PI 511310 NC254 Zea mays subsp. mays United States North 

Carolina 

PI 511311 NC256 Zea mays subsp. mays United States North 

Carolina 

PI 517973 Pa879 Zea mays subsp. mays United States Pennsylvania 

PI 517974 Pa880 Zea mays subsp. mays United States Pennsylvania 

PI 524970 SD46 Zea mays subsp. mays United States South Dakota 

PI 531081 Pa356 Zea mays subsp. mays United States Pennsylvania 

PI 531082 Pa376 Zea mays subsp. mays United States Pennsylvania 

PI 531085 NC262 Zea mays subsp. mays United States N. Carolina 

PI 537097 LH195 Zea mays subsp. mays United States   

PI 537099 LH205 Zea mays subsp. mays United States   

PI 538010 LH206 Zea mays subsp. mays United States   

PI 538011 LH220Ht Zea mays subsp. mays United States   

PI 538229 SD53 Zea mays subsp. mays United States South Dakota 
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PI 538242 SD106 Zea mays subsp. mays United States South Dakota 

PI 538244 SD108 Zea mays subsp. mays United States South Dakota 

PI 539924 LH202 Zea mays subsp. mays United States   

PI 542716 NP87 Zea mays subsp. mays United States Nebraska 

PI 542777 HP72-11 Zea mays subsp. mays United States Indiana 

PI 542955 Va4 Zea mays subsp. mays United States Virginia 

PI 542956 Va5 Zea mays subsp. mays United States Virginia 

PI 547088 LH208 Zea mays subsp. mays United States   

PI 550442 Mo20W Zea mays subsp. mays United States Missouri 

PI 550469 B46 Zea mays subsp. mays United States Iowa 

PI 550473 B73 Zea mays subsp. mays United States Iowa 

PI 550496 H102 Zea mays subsp. mays United States Indiana 

PI 550497 H103 Zea mays subsp. mays United States Indiana 

PI 550527 H111 Zea mays subsp. mays United States Indiana 

PI 550555 NC250 Zea mays subsp. mays United States N. Carolina 

PI 550558 DE811 Zea mays subsp. mays United States Delaware 

PI 550903 89199 Zea mays subsp. mays Cameroon   

PI 558520 Mo1W Zea mays subsp. mays United States Missouri 

PI 558521 Mo2RF Zea mays subsp. mays United States Missouri 

PI 558532 Mo17 Zea mays subsp. mays United States Missouri 

PI 559380 ICI 193 Zea mays subsp. mays United States   

PI 559381 ICI 441 Zea mays subsp. mays United States   

PI 559382 ICI 740 Zea mays subsp. mays United States   

PI 559383 ICI 893 Zea mays subsp. mays United States   

PI 559918 NQ508 Zea mays subsp. mays United States Illinois 

PI 561694 NYRD4058 Zea mays subsp. mays United States New York 

PI 568158 N199 Zea mays subsp. mays United States Nebraska 

PI 572413 Oh599 Zea mays subsp. mays United States Ohio 

PI 583352 Mo47 Zea mays subsp. mays United States Missouri 

PI 583846 H126W Zea mays subsp. mays United States Indiana 

PI 587126 C13 Zea mays subsp. mays United States Connecticut 

PI 587127 H105W Zea mays subsp. mays United States Indiana 

PI 587128 H84 Zea mays subsp. mays United States Indiana 

PI 587131 HP301 Zea mays subsp. mays United States Indiana 

PI 587138 A554 Zea mays subsp. mays United States Minnesota 

PI 587140 A632 Zea mays subsp. mays United States Minnesota 

PI 587150 Va35 Zea mays subsp. mays United States Virginia 

PI 592735 R230 Zea mays subsp. mays United States Illinois 

PI 593009 Hi27 Zea mays subsp. mays United States Hawaii 

PI 593015 Hi34 Zea mays subsp. mays United States Hawaii 
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PI 594050 N501 Zea mays subsp. mays United States Nebraska 

PI 594051 N502 Zea mays subsp. mays United States Nebraska 

PI 594058 N509 Zea mays subsp. mays United States Nebraska 

PI 594059 N510 Zea mays subsp. mays United States Nebraska 

PI 594060 N511 Zea mays subsp. mays United States Nebraska 

PI 594061 N512 Zea mays subsp. mays United States Nebraska 

PI 594063 N514 Zea mays subsp. mays United States Nebraska 

PI 594064 N515 Zea mays subsp. mays United States Nebraska 

PI 594065 N516 Zea mays subsp. mays United States Nebraska 

PI 594066 N517 Zea mays subsp. mays United States Nebraska 

PI 594067 N518 Zea mays subsp. mays United States Nebraska 

PI 594070 N521 Zea mays subsp. mays United States Nebraska 

PI 594071 N523 Zea mays subsp. mays United States Nebraska 

PI 594072 N524 Zea mays subsp. mays United States Nebraska 

PI 594073 N525 Zea mays subsp. mays United States Nebraska 

PI 594074 N526 Zea mays subsp. mays United States Nebraska 

PI 594075 N528 Zea mays subsp. mays United States Nebraska 

PI 594076 N529 Zea mays subsp. mays United States Nebraska 

PI 594077 N530 Zea mays subsp. mays United States Nebraska 

PI 594078 N532 Zea mays subsp. mays United States Nebraska 

PI 594079 N533 Zea mays subsp. mays United States Nebraska 

PI 594080 N534 Zea mays subsp. mays United States Nebraska 

PI 594081 N535 Zea mays subsp. mays United States Nebraska 

PI 594084 N538 Zea mays subsp. mays United States Nebraska 

PI 594087 N541 Zea mays subsp. mays United States Nebraska 

PI 594088 N542 Zea mays subsp. mays United States Nebraska 

PI 594089 N543 Zea mays subsp. mays United States Nebraska 

PI 594090 N544 Zea mays subsp. mays United States Nebraska 

PI 595366 N209 Zea mays subsp. mays United States Nebraska 

PI 595541 CML 247 Zea mays subsp. mays Mexico Federal Dis. 

PI 596354 N211 Zea mays subsp. mays United States Nebraska 

PI 596355 N216 Zea mays subsp. mays United States Nebraska 

PI 596357 N218 Zea mays subsp. mays United States Nebraska 

PI 597578 N546 Zea mays subsp. mays United States Nebraska 

PI 600755 LP1 CMS HT Zea mays subsp. mays United States   

PI 600772 FR19 Zea mays subsp. mays United States Illinois 

PI 600944 LH39 Zea mays subsp. mays United States Iowa 

PI 600957 LH74 Zea mays subsp. mays United States Iowa 

PI 600958 FAPW Zea mays subsp. mays United States   

PI 601008 PHG35 Zea mays subsp. mays United States Iowa 
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PI 601009 B47 Zea mays subsp. mays United States Iowa 

PI 601037 G80 Zea mays subsp. mays United States Iowa 

PI 601079 LH123HT Zea mays subsp. mays United States Iowa 

PI 601210 78004 Zea mays subsp. mays United States   

PI 601301 78002A Zea mays subsp. mays United States   

PI 601319 PHG72 Zea mays subsp. mays United States Iowa 

PI 601320 PHG84 Zea mays subsp. mays United States Iowa 

PI 601322 PHZ51 Zea mays subsp. mays United States Iowa 

PI 601403 LH156 Zea mays subsp. mays United States   

PI 601438 78371A Zea mays subsp. mays United States   

PI 601441 PB80 Zea mays subsp. mays United States   

PI 601466 LH59 Zea mays subsp. mays United States   

PI 601468 PHK29 Zea mays subsp. mays United States Iowa 

PI 601489 740 Zea mays subsp. mays United States Minnesota 

PI 601493 LH149 Zea mays subsp. mays United States   

PI 601494 LH65 Zea mays subsp. mays United States   

PI 601499 PHT77 Zea mays subsp. mays United States Iowa 

PI 601500 PHV63 Zea mays subsp. mays United States Iowa 

PI 601501 PHW65 Zea mays subsp. mays United States Iowa 

PI 601561 6M502 Zea mays subsp. mays United States   

PI 601574 PHT60 Zea mays subsp. mays United States Iowa 

PI 601610 H8431 Zea mays subsp. mays United States Minnesota 

PI 601684 WIL900 Zea mays subsp. mays United States   

PI 601685 WIL901 Zea mays subsp. mays United States   

PI 601686 WIL903 Zea mays subsp. mays United States   

PI 601725 J8606 Zea mays subsp. mays United States Minnesota 

PI 601726 L 127 Zea mays subsp. mays United States   

PI 601728 L 139 Zea mays subsp. mays United States   

PI 601729 W8555 Zea mays subsp. mays United States Minnesota 

PI 601777 PHK35 Zea mays subsp. mays United States Iowa 

PI 601778 PHM10 Zea mays subsp. mays United States Iowa 

PI 601782 PHN73 Zea mays subsp. mays United States Iowa 

PI 601784 PHP55 Zea mays subsp. mays United States Iowa 

PI 638550 N552 Zea mays subsp. mays United States Nebraska 

PI 601788 PHT22 Zea mays subsp. mays United States Iowa 

PI 601789 PHV37 Zea mays subsp. mays United States Iowa 

PI 604606 N527 Zea mays subsp. mays United States Nebraska 

PI 606329 DE1 Zea mays subsp. mays United States Delaware 

PI 606768 SD40 Zea mays subsp. mays United States South Dakota 

PI 606769 SD41 Zea mays subsp. mays United States South Dakota 
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Supplementary Table 2 continued 

PI 607512 N7A Zea mays subsp. mays United States Nebraska 

PI 633840 Tx714 Zea mays subsp. mays United States Texas 
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Figure 1. Linkage disequilibrium decay measuring r2 over base pairs across all 10 maize chromosomes.  

 

 

  

 

  

Figure 2. Population structure estimates based on 1665 SNPs distributed across the maize 

genome. The area of 2 different colors (Red and Green) illustrates the proportion of each 

subpopulation based on these SNPs markers. 
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Figure 4. Manhattan plot of GWAS using MLM. Marker trait associations with SRL 

are shown across the entire genome. Peaks are found on chromosome 3 only using a 

threshold of p<5.23 x 10-7 

Figure 3. Manhattan plot showing associations between individual polymorphisms 

through the entire maize genome for BSH. MLM was used fitting both Q and K matrix. 

Only one marker on chromosome 2 was found to be significant at  p<5.23 x 10-7 
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Supplementary Figure 1. Illustrations of the parameters measured by ARIA for seedling root traits 

extracted for GWAS.  
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Supplementary Figure 2. Genome-wide Manhattan plots of significant loci using GLM. 



137 

 

 

 

   

Supplementary Figure 2 continued. Genome-wide Manhattan plots of significant loci using GLM. 
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CHAPTER FIVE 

GENOMIC PREDICTION OF SEEDLIGN ROOT LENGTH IN MAIZE 

(ZEA MAYS L.) 

Jordon Pace1*, Xiaoqing Yu1, and Thomas Lübberstedt1 

 

Paper is in preparation for submission to the Plant Journal. Abstract, structure, and references are 

all formatted according to journal standards.  

Summary: 

Genotypes with extreme phenotypes are valuable for studying “difficult” quantitative traits. 

Genomic prediction (GP) might allow identifying such extremes, by phenotyping a training 

population of limited size and predicting genotypes with extreme phenotypes in large sequences 

germplasm collections. We tested this approach employing seedling root traits in maize and the 

extensively genotyped Ames Panel. A training population made up of 384 inbred lines from the 

Ames Panel was phenotyped by extracting root traits from images using the software program 

ARIA. A Ridge Regression BLUP (RR-BLUP) strategy was used to train a GP model. Genomic 

Estimated Breeding Values (GEBVs) for the trait Total Root Length (TRL) were predicted for 

2,431 inbred lines, which had previously been genotyped by sequencing. Selections were made 

for TRL 100 extreme lines each with predicted longest or shortest TRL were validated for TRL 

and other root traits. The two predicted extreme groups with regard to TRL were significantly 

different (p=0.0001). The difference of predicted means for TRL between groups was 145.1 cm, 

and 118.7 cm for observed means, which were significantly different (p=0.001). The accuracy of 

predicting the rank 1-200 of the validation population based on TRL, longest to shortest was 

determined using a Spearman correlation to be ρ=0.55. Taken together, our results support that 
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GP may be a useful approach to identify the most informative genotypes in sequenced 

germplasm collections to facilitate experiments for quantitative inherited traits.   

 Introduction 

The ability to predict superior genotypes with high accuracy is of key importance in plant 

breeding. Marker assisted selection (MAS) has become a routine procedure in commercial 

breeding programs because of an increased gain per unit time when compared to phenotypic 

selection (Eathington et al. 2007). Genomic Prediction (GP), a form of MAS, has become a 

valuable tool in animal breeding and recently been shown to be reliable in crop breeding as well 

(Sallam et al. 2014). GP is not only a promising approach for breeding purposes, but also for 

basic research. GP enables to identify extreme genotypes for traits that are difficult to measure 

for large numbers of individuals. In this way the most informative genotypes for mapping or 

expression studies can be identified in large sequenced genotype collections, which increasingly 

become available for crop species. The Ames Panel in maize (Romay et al. 2013) for example, 

consists of 2815 inbred lines with genotyping by sequencing (GBS) based single nucleotide 

polymorphism (SNP) data readily available. Other collections of genetic resources in maize 

include the nested association mapping population (NAM) (Yu et al. 2008), the maize 

association mapping panel (http://www.panzea.org) (Yu et al. 2006), and the IBM population 

(Lee et al. 2002) (MaizeDB, http://www.agron.missouri.edu/), all three with readily available 

genotypic and phenotypic data.  

When performing quantitative trait locus (QTL) or association mapping, selecting parents 

or individuals used for the mapping population is critically important. Use of lines with extreme 

phenotypes will ensure that the population is segregating for QTL controlling a trait of interest 
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(Mackay and Powell 2007). Identifying extreme genotypes is the basis of bulked segregant 

analysis (BSA), originally used to identify markers for disease resistance genes in crops in which 

genotypes with contrasting phenotypes are pooled in separate groups to identify markers 

associated with those traits (Michelmore et al. 1991). Using GP, subsets of large diversity panels 

can be used to collect phenotype data and train a prediction model for traits of interest while 

exploiting markers covering the genome at high density. GP could then be performed on the 

complete panel to identify genotypes with likely extreme phenotypes. This strategy would 

decrease the amount of resources needed for often laborious and costly phenotyping as only the 

training population requires intense phenotyping prior to validation (Meuwissen et al. 2001). 

This would facilitate studying “difficult” traits with the genetically most informative genotypes.         

There are numerous GP approaches, notably Bayesian and mixed model procedures. No 

single method is superior in all circumstances (Bernardo and Yu 2007, Lorenzana and Bernardo 

2009, Heslot et al. 2012). Ridge regression best linear unbiased prediction (RR-BLUP) 

(Meuwissen et al. 2001) has been shown to be a reliable model in providing good prediction 

accuracy for a range of quantitative traits in crop species (Heslot et al. 2012). The mixed model 

used by RR-BLUP shrinks all marker effects equally with the same variance for a trait. This is in 

accordance with the infinitesimal model of quantitative genetics and explains why RR-BLUP 

performs well for complex trait predictions (Clark et al. 2011). Computationally, RR-BLUP is 

less demanding than Bayes A, B, and Cπ, making it one of the more approachable and suggested 

methods of genomic prediction (Heslot et al. 2012).  GP is conducted through a three-step 

process. First, a training panel of a representative sample of individual lines is developed in order 

to obtain estimates for marker effects. Second, this marker information can be used to determine 

genomic estimated breeding values (GEBVs) for any genotype with available marker 
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information. Finally, genotypes are selected based on GEBVs in a breeding population 

(Meuwissen 2001). When performing any form of GP, the selection of the training panel is of 

key importance as it should be a good representation of the breeding population (Heffner et al. 

2009). For populations that are many generations apart, or quite different in composition, an 

increased number of genotypes are needed to increase prediction accuracy (Rutkoski 2010). 

Another challenge with GP is accuracy of phenotyping. High accuracy concerning phenotype 

measurements in the training panel is critical for prediction of GEBVs based solely on genomic 

information. Prediction accuracies are affected by the amount of linkage disequilibrium (LD) 

within the training population as compared to the validation population, genetic relationships 

between the validation and training population, the genetic architecture and heritability of target 

traits, marker density, and training population size (Hayes et al. 2009, Luan et al. 2009, Zhong et 

al. 2009).  

Difficult to measure quantitative traits that would benefit from the use of GP in maize or 

any crop species are root architectural traits. The maize root system is an integral part of plant 

growth and productivity (Lynch, 1995, Aiken and Smucker 1996). Root architecture plays a 

major role in plant nitrogen use efficiency (NUE) as well as drought tolerance (Ribaut et al. 

2007). The large variability in root architecture is an unexploited opportunity to select for 

beneficial root architectural traits that increases crop production in nutrient and moisture 

deficient environments (Lynch et al. 2014).  Root traits have not been used for selection as they 

show generally low heritability, and there are no accurate, fast measurements, allowing high-

throughput field measurements comparable to determining grain yield using high-throughput 

harvesting equipment such as combines (Malamy 2005, Tuberosa 2012).  One method to 

alleviate some of these issues is through the development of software that can extract multiple 
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root traits from a single image (Pace et al. 2014) enabling a more high-throughput approach to 

root architecture characterization. Another currently available trait collection method involves 

collection of mature root systems in field trials using both mobile reproducible image acquisition 

and later algorithm based trait extraction (Bucksch et al. 2014). 

     Recent studies have shown that phenotyping roots at a seedling stage in hydroponic 

conditions could help to alleviate some of the time and resources required for large scale root 

studies (Kumar et al. 2014, Pace et al. 2015, and Pace et al. 2014). Genomic prediction for root 

traits at the seedling stage has not yet been tested in order to identify extreme genotypes or to 

determine prediction accuracy. The objectives of this study were to 1) determine accuracy of 

genomic prediction based on three simple root traits; 2) determine genomic prediction’s ability to 

accurately rank genotypes for root traits and identify genotypes with extreme root lengths; 3) 

determine the effects of combining the training population and validation population on cross-

validation accuracy estimates; and 4) validate a previous GWAS study within a larger population 

for root traits collected by ARIA.  

Results 

Training population cross-validation 

Phenotypic measurements of the trait TRL, along with genotypic information encompassing 

186,849 markers across the maize genome of the 384 line training population were used along 

with RR-BLUP to train the prediction model. Ridge Regression BLUP (RR-BLUP) was chosen 

because it is less computationally intensive and it resulted in high accuracies in predicting 

quantitative traits with multiple small effect QTL such as TRL (Heslot et al. 2012).  In order to 

determine, if TRL was a suitable trait for GP, cross-validation was completed with a random 
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60/40 training/validation population split within the 384 inbred line population. Average 

accuracy was calculated after running RR-BLUP with 500 iterations. Within each iteration, 

randomly selected lines were used as training or validation population, respectively accuracies 

ranged from r=0.10-0.56 with an average accuracy of r=0.42 (Figure 1). Two additional root 

length based traits were used for cross validation, Primary Root Length (PRL) and Secondary 

Root Length (SEL). SEL is closely correlated with TRL (r=0.98), while PRL showed a lower 

correlation (r=0.70) (Pace et al. 2015). Using the same strategy as for TRL, iterating cross-

validations 500 times for PRL gave similar accuracy ranges as for TRL, ranging from r=0.10-

0.58, with an average accuracy of r=0.44 (Figure 1). For SEL one cross-validation run gave a 

similar accuracy of r=0.45. When running RR-BLUP with 500 iterations, the range and standard 

deviation of accuracies decreased to r=0.30-0.56, with an average accuracy of r=0.43 (Figure 1). 

All three root length based traits had similar ranges and average accuracy estimates from cross-

validation within the training population. These accuracy values gave confidence that TRL was 

suitable in giving sufficiently accurate predictions.  

Group and ranking prediction accuracy 

The same marker set was used to predict root length traits in the validation population. The 

validation population consisted of the remaining 2,431 maize inbred lines of the Ames Panel 

(Romay et al. 2013). Based on estimated marker effects, GEBVs of TRL on all 2,431 remaining 

inbred lines were predicted. Selections for empirical validation were made by selecting the 100 

genotypes with the highest TRL estimates and the 100 genotypes with the lowest TRL estimates. 

These 200 genotypes were tested in replicated experiments under the same growing conditions as 

the training population. These selections were based on TRL alone and were not the predicted 

extremes for PRL and SEL. 
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To determine whether GP accurately predicted which inbred lines had long or short root 

systems, a group effect was added to the linear model in order to analyze the difference in means 

for each group. Lsmeans were calculated for each subset with predicted long (LONG) or short 

root systems (SHORT). LONG had an observed TRL Lsmean of 295.1 cm, larger than the 

predicted average GEBV for LONG of 246.1 cm. SHORT, had an observed TRL Lsmean of 

176.4 cm (Table 1), also larger than the predicted GEBV for TRL at 100.8 cm. The observed 

difference for average TRL between LONG and SHORT was 118.7 cm while the predicted 

difference of averages was 145.3 cm. To determine, if the difference between the LONG and 

SHORT groups were accurately captured by GP, pairwise comparisons between LONG and 

SHORT were made for both the predicted and observed values. Individuals were ranked longest 

to shortest within each group, the difference between corresponding ranks 1-100 (Highest ranked 

predicted genotype TRL in LONG subtracted by the highest predicted genotype in SHORT), 

were calculated for both groups. The Lsmean of those differences between groups was than 

calculated for both predicted and observed values. Group differences (predicted difference 

Lsmean = 144.7 and observed difference Lsmean = 120.2) were found significantly different (p 

= 0.001). This significant difference between extreme group differences between the groups we 

observed vs. predictions indicates that although GP could accurately identify extreme genotypes, 

the predicted difference between the two groups was not equal to the difference observed. This 

difference between group means for the predicted mean GEBVs and observed Lsmeans is likely 

due to the overall underestimation of TRL seen throughout the validation population and can be 

attributed to the low accuracy within each group (LONG: r=0.12, SHORT: r=0.10). These 

observed group values Lsmeans for TRL were found to be significantly different (p=0.0001). 

Furthermore, the ranking of each genotype’s predicted and observed TRL values were compared 
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to determine our ability of accurately predicting the rank of selected genotypes by root length. 

The Spearman ranking correlation between predicted and observed ranks for the 200 genotypes 

was ρ=0.55 and significant at p=0.0001 (Figure 2). Ranking accuracy within each 100 line 

validation group was much lower for TRL ρ=0.10 for LONG and below ρ=0.05 for SHORT. For 

comparison, PRL and SEL were also predicted upon within the same 200 line validation 

population. The spearman ranking correlation for SEL was very similar to TRL at ρ=0.54 while 

PRL was lower at ρ=0.38 (Table 2). The same trend of lower accuracies within each group was 

observed for both PRL and SEL with PRL having the highest within group accuracy within the 

LONG group at ρ=0.29. 

Genomic prediction 

Predicted TRL GEBVs for the validation population ranged from a minimum of 72.6 cm to a 

maximum length of 286.7 cm. Observed TRL Lsmean values for the validation population had a 

much wider range from 37.1 cm minimum to a maximum observed of 532.3 cm. Taken as a 

whole, the Pearson correlation between predicted TRL of the validation population and observed 

TRL for the validation population showed an accuracy of r=0.59 (Figure 3). To determine within 

group accuracies, Pearson correlations were calculated within each of the two subgroups. 

Accuracies were much lower with r=0.12 and r=0.10 for LONG and SHORT, respectively.  

To test the effect of adding the validation population on the accuracy of genomic 

prediction for TRL, the observed Lsmeans for the 200 lines selected for the validation population 

were added to those of the original training population to create a population consisting of 584 

inbred lines. As before, a 60/40 training /validation population cross-validation test was 

performed with 500 iterations. The range of accuracies was much narrower than within the 
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original 384 training population. Accuracy estimates ranged from r=0.40 to r=0.60 with an 

average accuracy at r=0.54, reducing the amount of standard error. For the two other length 

based traits, PRL and SEL, accuracies decreased compared to the 384 line population to r=0.31 

for PRL and r=0.32 for SEL (Table 3 and Figure 1).  

Accuracies across subpopulations 

The original 384 line training population was split into two subpopulations based on 

STRUCTURE 2.3.4 analysis from previous work (Pace et al. 2015). The two subpopulations 

varied in size, the larger subpopulation consists of 319 and the smaller subpopulation of 65 lines. 

The larger subpopulation contains mainly non-stiff stalk and mixed group lines, the smaller 

subpopulation consists of mostly stiff-stalk lines. When using the large subpopulation as a 

training population, the prediction accuracy for TRL was r=0.45. In contrast, when using the 

small subpopulation as a training population, accuracies were lower at r=0.29. When completing 

60/40 cross validations within each sub population, the large subpopulation average accuracy 

was r=0.31 while the small subpopulation cross validation mean accuracy was r=0.39. When 

using STRUCTURE 2.3.4 for the 584 line population three subpopulations were identified, Q1, 

Q2, and Q3 (Figure 4), comprising of 83, 390, and 103 lines, respectively, with 8 lines highly 

mixed between all three subpopulations. Using Q2 as training population to predict performance 

of Q3, a prediction accuracy of r=0.37 was obtained. With Q3 as training set, a lower prediction 

accuracy of r=0.21 was estimated when Q2 was the validation population. Prediction accuracy 

estimates involving Q1 either as training or validation population was negative with both Q2 and 

Q3.  
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GWAS validation 

GWAS validation of a previous study (Pace et al. 2015) was completed using the new 584 

population for all traits. A mixed linear model (MLM) and general linear model (GLM) GWAS 

were performed for all 22 corresponding root traits in the previous study. No markers were found 

significant for TRL, SEL, or PRL using MLM, but the marker with the lowest P-value for both 

TRL and SEL was the same (S5_175865830). All three traits showed significant marker 

associations using GLM, TRL with 5, SEL with 8, and PRL with 129 significant markers. All 

three displayed more significant markers using GLM than compared to the previous study (Pace 

et al. 2015) where TRL had one significant marker, SEL had zero significant markers, and PRL 

had 11 significant markers. For SEL and TRL, marker S5_17865830 was significant and found 

in an intergenic region (B73 RefGen_V2). Marker S3_223308733 was significant for TRL, SEL, 

and PRL at the significance cutoff of p=5.3 x 10-7. This marker was found within gene model 

GRMZM2G336017, which codes for a hypothetical protein with no known function or 

expression data currently.  

Discussion 

The purpose of this study was to determine whether GP enables identification of extreme 

genotypes using a subset of lines from a larger sequenced population, using maize seedling TRL 

as model trait. Genetic resource collections with readily available genotype data are available for 

maize; other important crops with available genetic resources include sorghum, soybean, barley, 

rice and wheat (Liang et al. 2007, Morris et al. 2012, Munoz-Amatriain et al. 2014. Spindel et al. 

2015, and B. Diers, personal communication). Decreasing costs in genotyping will stimulate 

development of additional sequenced genetic resources in the near future. Thus, a similar GP 
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strategy as presented herein will be applicable to an increasing number of species with respective 

resource collections. Without the need of genotyping, GP would expedite studies of quantitative 

traits. GP reduces phenotyping efforts and identifies the most informative genotypes. Smaller 

subsets of lines, perhaps core collections of gene banks, could be characterized in detail for traits 

of interest to train prediction models and predict extreme genotypes within large genetic resource 

collections. Those selected individuals are more likely to carry rare alleles that affect traits of 

interest, which, due to low allele frequencies, would otherwise be underrepresented in random 

inbred line panels typically used for GWAS studies.  

Identifying extreme genotypes 

We evaluated, whether GP would capture significant difference between the LONG and SHORT 

groups selected solely based on predictions of GEBV for TRL within a large validation 

population (2431 inbred lines). The two groups LONG and SHORT, were significantly different 

for TRL (p=0.0001). Thus, GP successfully predicted length of seedling roots with satisfactory 

accuracy (�(),(=0.59 and ��,̂�= 0.91) when using a training population of modest size (384 inbred 

lines).  It should be noted, however, that a total of 24 LONG inbred lines had a shorter observed 

TRL than SHORT lines. Also, neither the longest predicted nor the shortest predicted line were 

actually the lines with longest or shortest TRL within their respective groups. However, both 

were assigned correctly to LONG and SHORT, respectively. Predicted GEBVs for TRL were 

underestimated when compared to observed values of TRL for both groups. To evaluate this, we 

regressed phenotypes (y) onto GEBVs (+)) (,(() =0.82). This analysis showed that for every unit 

change of our observations we only had 82% of that change explained by our predictions 

resulting in the underestimated TRL predictions compared to observations. The LONG group’s 
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observed average was 49.1 cm longer than predicted. For the SHORT group the observed 

average TRL was 75.5 cm longer than predicted. This difference and ultimately underestimation 

of TRL using RR-BLUP is likely due to the even shrinkage effect on all markers throughout the 

genome (Endelman 2011). Overall, the ability of GP to capture differences between two extreme 

groups for a moderately heritable trait is encouraging even though ranking was not perfectly 

predicted. This approach will still reduce overall phenotyping efforts and offers a solution to 

effectively identify informative individuals for mapping and other studies.  

For plant breeding, the ability to predict ranking of lines is important to save resources 

for further evaluation. Spearman rank correlations of predicted and observed values for TRL 

were significant with moderate high accuracy of ρ=0.55 and adjusted prediction accuracy of 

ρ=0.84 (Table 3). Within each group the ranking accuracy was 0.1 for LONG and even lower for 

SHORT. This within grouping ranking should be considered when determining the number of 

individuals selected for each extreme group as the ranking within groups will likely differ from 

predictions (Daetwyler et al. 2013).  

Traits PRL and SEL were evaluated for ranking accuracy. SEL showed a similar ranking 

accuracy (ρ=0.54) as TRL, while that of PRL was lower (ρ=0.38) (Table 2).  Again within group 

ranking accuracies were much lower for both SEL and PRL for both LONG and SHORT (ρ=0.04 

and 0.15, respectively). Accuracies of the validation population may be inflated due to the fact 

that these lines were not selected at random but based on predicted extremes for long and short 

roots.   
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Comparison of accuracies 

RR-BLUP was shown to be a suitable method for predicting root architectural traits as it 

pertains to the length of roots in a controlled environmental setting.  Accuracies based purely on 

predicted estimates of TRL correlated to observed measurements (�(),() ranged from r=0.21-0.54. 

When looking at the adjusted accuracy (��,̂�) the ranges were higher at r=0.33-0.83. The higher 

accuracies for TRL follow the trend described in previous prediction studies showing that an 

increase in population size generally increases prediction accuracies, in particular because more 

individuals are used for training the prediction model (Asoro et al. 2011, Zhong et al. 2009). By 

selecting the predicted extremes, one would expect that adding these groups to the initial training 

population would increase the correlation between predicted and observed phenotypes.  

As selections were based solely on TRL, extreme lines for TRL are not necessarily 

extreme for PRL and SEL. When performing cross-validation for SEL and PRL, both followed 

the exact opposite trend when adding lines to the total population. In the initial 384 line 

population, accuracies were r=0.43 and r=0.44 for SEL and PRL, respectively. After adding the 

additional 200 lines from the validation population, cross-validation accuracies decreased to 0.32 

and r=0.31, respectively (Table 3). This decrease is likely due to the fact that the genotypes were 

selected based on TRL alone, these genotypes are likely not all extremes for PRL and SEL. 

While accuracies decreased for SEL and PRL after adding the validation population, the standard 

deviation of the 500 estimates of accuracy for each cross-validation decreased for all three root 

traits (Table 3). These results show that increasing the number of individuals within the training 

population can reduce error and give more precise accuracy estimates. 
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We conducted a comparison of accuracies based on different population and 

subpopulation compositions of training and validation populations. In general, prediction 

accuracies were reduced across subpopulations compared to using random sets of lines for cross-

validation. In case of the 384 line population, one subpopulation is composed mainly of non-stiff 

stalk (NSS) and mixed lines while the second smaller subpopulation is composed of mostly lines 

from the stiff stalk (SS) heterotic group. A decrease in prediction accuracy using the NSS 

subpopulation to train the model as compared to using the SS subpopulation is confounded by a 

decrease in relatedness between the training and validation population, and also the large 

difference in number of individuals used to train the prediction model. These two confounding 

factors are explained by (i) poor predictions between heterotic groups due to limited relatedness 

between populations and (ii) population size. One subpopulation consists of 319 lines and the 

other of only 65 lines. This large discrepancy is an example of how the number of individuals 

used to train and predict affects prediction accuracy. For the 584 line population, the 

subpopulation stratification added a third subpopulation. Two subpopulations, Q2 and Q3 

(Figure 4), contained similar lines as the original 384 line population with many SS and NSS 

stalk lines within both. The third subpopulation, Q1 (Figure 4), is quite different with many lines 

with no heterotic group designations found within (Romay et al. 2013) as well as the Germplasm 

Resources Information Network (GRIN). Predictions made using Q2 or Q3 on Q1 gave negative 

correlations with poor accuracy. Many of the lines within Q1 do not share pedigree information 

with lines from the other subgroups and, therefore, represent an example of how relationships 

between the training and validation populations can affect prediction accuracies, including 

negative effects. Asoro et al. (2011) also found decreased prediction accuracies in oats, when 

training and validation populations were not related. As the relatedness between training and 
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validation population decreases, increasing the size of the training population can sometimes 

offset a reduction in accuracy (Rutkoski 2010).   

  GWAS validation 

The genomic prediction method RR-BLUP uses the infinitesimal model of quantitative 

genetics and assumes normally distributed effects across the whole genome (Meuwissen 2001).  

Studies in animal breeding have shown that using GP models such as Baysian models or G-

BLUP also reduce the risk of identifying false positives when trying to detect QTL (Zeng et al. 

2012). GP likely increased the power to detect rare alleles affecting traits of interest. As 

genotypes that exhibit extreme phenotypes in both directions with rare alleles are likely hard to 

detect using GWAS based on randomly selected genotypes. Using this GP strategy, one could 

directly move into mapping studies such as BSA, which can be used for both qualitative and 

quantitative traits (Liu et al. 2012 and Venuprasad et al. 2009). One could also select a portion of 

the individuals found within each extreme group that could be crossed and used to develop a bi-

parental population for linkage mapping, or directly use these extreme genotypes for association 

mapping. Ultimately, GWAS has not identified many reliable SNPs and those identified still 

must be validated before used for developing improved germplasm through processes such as 

MAS, marker assisted recurrent selection (MARS), or F2 enrichment [Reference]. In contrast, GP 

has given moderate to high prediction accuracies and ranking accuracies for TRL, SEL, and PRL 

when all markers are considered simultaneously. This shows that for purposes of germplasm 

development, GP is more useful for complex traits when compared to GWAS. While ignoring 

underlying genetic and molecular mechanisms, GP is still able to capture much more of the 

variation than GWAS and therefore a quicker and more reliable tool for breeding purposes. 
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There have been several studies on genetic control of root architecture under various 

growing conditions (Hund et al. 2011). Many of these studies found few or no overlapping QTL 

for root development traits. Discrepancies are likely caused by population parameters such as 

linkage disequilibrium, allele frequencies found between mapping populations and heritability of 

the traits studied (Yu et al. 2006). As mapping studies using different mapping populations 

studying complex traits such as root architecture do not often find many overlapping significant 

loci or candidate genes (Bernardo, 2008), new strategies are needed to help identify causative 

rare alleles. Another obstacle in validating highly quantitative traits is a lack of statistical power 

to detect low effect QTL associated with traits of interest. This problem has also been shown in a 

lack of continuity between multiple root QTL and association studies reported (Hund et al. 2009, 

Kumar et al. 2014, Pace et al. 2015, Pace et al. 2014). A validation experiment for the same 

traits under the same growing conditions did not find many consistent loci (Pace et al. 2015). 

This is consistent with earlier reports on “missing heritability” in GWAS studies (Maher 2008), 

i.e. most of the detected loci explain very little of the heritability for a given trait and we are not 

able to detect rare variants. Including extremes identified using GP can enrich the population 

with rare alleles that effect traits of interest at a frequency more easily detectable than with a 

random admixed population.  

The 584 line GWAS population created using GP within this study is likely more relevant 

not only due to an increase in size, but also because of enrichment for alleles impacting root trait 

TRL. Even though no true validations were made, there was an increase in the number of 

significant markers identified for TRL, SEL, and PRL compared to Pace et al. (2015). 

Furthermore a common marker S5_17865830 was found to have the lowest p-value within MLM 

and it was significant under GLM for TRL and SEL. Marker S3_223308733 was found 
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significant for TRL, SEL, and PRL. This marker in particular is found within or close by (<10 

kb) three gene models with possible function in root development at the seedling stage. Gene 

model GRMZM2G336017 codes for a hypothetical protein and there are currently no expression 

data found within the maize expression atlas (Sekhon et al. 2011). There are two other gene 

models for which marker S3_223308733 is in LD. Gene model GRMZM2G034943 is found 

upstream of the marker at location 223,308,255 with a second gene model GRMZM2G035134 

located downstream of the marker at location 223,309,446 according to B73 RefGen_v3. Both 

gene models have the GO term primary root and moderate expression identified by Sekhon et al. 

(2011). These two genes may offer good candidates as being involved in the development of the 

primary root especially as a significant association was found for trait PRL. The identification of 

possible root development candidate genes and overall increase in number of markers found 

significant using GLM for all three traits supports that power to detect putative QTL for root 

traits was increased when compared to the previous study (Pace et al. 2015) employing a smaller 

population size for GWAS.         

Experimental Procedures 

Plant materials 

Our study is based on 584 inbred lines from the Ames Panel (Romay et al. 2013) 

acquired from the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in 

Ames, Iowa. The training population is a subset of 384 lines, which have been used in a Genome 

Wide Association Study (GWAS) previously (Pace et al. 2015). The remaining 200 inbred lines 

were selected from the remaining about 2400 lines in the Ames Panel based on predictions 
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calculated using RR-BLUP for total root length (TRL): 100 lines each with the predicted longest 

and shortest root lengths were selected as validation panel.   

Root phenotyping 

The 200 line validation population was grown under the same growing conditions and for 

the same duration of time as the training population (Pace et al. 2015). Briefly, seeds were 

sterilized with Clorox solution (6% sodium hypochlorite) for 15 minutes, and washed twice 

thereafter using autoclaved water. Germination paper (Anchor Paper, St. Paul, MN, USA) was 

moistened using a fungicide solution Captan (2.5g/l) before four seeds per paper roll were 

vertically rolled. All seed rolls were placed into two liter glass beakers containing 1.4 liters of 

autoclaved deionized water. Growing condition settings within the growth chambers were the 

same as the previous GWAS study. After 14 days of growth, seedlings were removed from the 

growth chamber and roots were scanned for root trait measurement extraction. If not measured 

the same day, plants were preserved in 30% ethanol to prevent and further growth or aging. TRL 

was extracted from all images using the image analysis software ARIA (Automatic Root Image 

Analyzer), a high-throughput software system that can extract up to 27 root traits currently (Pace 

et al. 2014). Above ground plant material was removed from the root system prior to image 

capture using a high resolution scanner EPSON Expression 10000 XL. 

Phenotypic data analysis 

 Training population phenotypic analysis has been reported in Pace et al. (2015). 

Validation experiments were carried out in a completely random design (CRD) in three 

experiments in the months of June and July 2014. The starting dates for experiments were June 

4th, June 24th, and June 29th. All experiments were grown in the same growth chamber. All traits 
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data for phenotypic analysis was collected on a “plot” basis with each seed roll representing a 

plot. Each plot or experimental unit consisted of three seedlings being sampled, measured, and 

means calculated. Lsmeans of root traits analyzed were calculated based on the following linear 

model: 

yijk = µ + Ei + R(i)j + Gk + e(i)jk 

Where yijk represents the observation from the ijth plot, µ is the overall populations mean, Ei is the 

ith experiment and is considered random, R(i)j is the jth replication nested within the ith experiment 

and is also a random effect, and Gk is the kth line and is a fixed effect. All interactions with the 

random effect were confounded within the error e(i)jk. The statistical software package SAS 9.3 

(SAS Institute, Cary NC) was used to obtain the analysis of variance (ANOVA) table and least 

square means. Function PROC MIXED was implemented with type 3 sums of squares. To test 

whether the Long group of 100 lines and Small group of 100 lines were significantly different, a 

grouping term was added to the additive model as follows: 

yijkl = µ + Ei + R(i)j + Grpk + G(k)l + eijkl 

Where genotype is now nested within the group effect and therefore considered a random effect 

and Grp is considered a fixed effect. SAS function PROC MIXED was used to calculate 

expected means squared, group Lsmeans, and determine if the grouping effect was significant.  

  Genotypic data 

 Genotyping by sequencing (GBS) (Elshire et al. 2011) data is publicly available for the 

Ames Panel (Romay et al. 2013) and was used for genomic prediction in this study. A total of 

681,257 markers distributed across the entire maize genome were available. To clean the 
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imputed data set, monomorphic markers, all markers with minor allele frequency < 5%, and all 

markers that had > 20% missing data were filtered out and were not used to train the model. A 

final set of 186,849 markers across the maize genome were used to train and predict performance 

in regards to total root length of the training and validation populations. Marker data used for 

GWAS were based on the entire set of 584 inbred lines and the same GBS data set and filters 

mentioned previously (Pace et al. 2015). In total, 135,311 markers distributed across all 10 

chromosomes in the maize genome were used for GWAS.  

Genome wide association study validation 

 GWAS methods used in the present study have been reported previously by Pace et al. 

(2015). The association mapping population used for validation combined both the training and 

validation population totaling 584 inbred lines. Population structure (Q matrix) was estimated 

from a reduced number of 1023 random markers across the maize genome. The software 

program Structure 2.3.4 (Pritchard 2000) was used with parameter settings of a burn in length of 

500,000 followed by 500,000 iterations for each of the clusters (K) from 1-15. Each K was run 

five times. An admixture model was applied with independent allele frequencies. This model 

allows for the possibility that lines may have mixed ancestry in more than one sub-population 

(K). The most probable value for K was selected using an ad hoc method as explained in 

(Evanno et al. 2005), which is based on the ordering rate of change of P(X|K). The program 

called SPAGeDi (Hardy and Vekemans 2002) was used to calculate the Loiselle kinship matrix 

coefficients between lines (K matrix). Both Q and K matrix were fit to a mixed linear model 

(MLM) utilizing the program GAPIT (Genome Association and Prediction Integrated Tool- R 

package) (Lipka et al. 2012). All model parameters for GWAS are found in Pace et al. 2015. A 

General Linear Model (GLM) was also used fitting just the Q matrix to mirror the methods used 
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previously. Program TASSEL 4.0 was used to implement the GLM procedure. To account for 

multiple testing, the same stringent level as Pace et al. (2015) was applied in order to call 

significant loci p<5.3 x 10-7 based on an α level of 0.05. 

Ridge regression BLUP 

 To perform genomic prediction within the current experiment, RR-BLUP (Wittaker et al. 

2000 and Endelman 2011) was used. All genomic prediction procedures performed herein were 

executed using the software program R v. 3.0.2 (R Development Core Team 2013). The 

developed R functions are freely available online within the rrBLUP package (Endelman 2011). 

The mixed model (Henderson 1984) used for the RR-BLUP procedure is defined as follows: 

Y = Xβ + Wu + e 

Where Y represents an N x 1 vector of phenotypic Lsmeans where N represents the number of 

individuals in the training population, X is an identity matrix and β is the overall average of the 

training population. W represents an N x Nm marker matrix where Nm represents the number of 

markers used for GP. The u represents an Nm x 1 marker effect vector with e representing the N 

x 1 vector of residuals. For RR-BLUP we assume that marker effects are normally distributed u 

~ N (0,σ2
u) with equal marker variance  (σ2

u) across the whole genome. Based on this we assume 

all markers have common variance (Meuwissen et al., 2001) and shrinkage for marker effects are 

equal for all markers in order to reduce estimation error. Accuracy of predictions for cross-

validation and for GP between the 384 line training population and 200 line validation 

population is based upon Pearson correlation (r) between predicted GEBVs and observed 

Lsmeans (�(),(). The adjusted prediction accuracy was estimated by taking Pearson correlation 

(�(),() between predicted GEBVs and observed Lsmeans and dividing that by the square root of 
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broad sense heritability (H2) �(�,̂�) =  
$-.,-

√01.   Heritability estimates were obtained as described in 

Pace et al. 2015. The training population heritability was used as this was a randomly selected 

population, the validation was selected for and therefore not a good estimate of heritability for a 

trait. Prediction accuracies are reported as the Pearson correlation between predicted and 

observed root lengths to avoid added error from the heritability calculation that could inflate 

actual predictability. Adjusted prediction accuracies are used for comparisons to unadjusted 

prediction accuracies.  
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Table 1. Predicted vs observed TRL means of selected extreme genotypes 

Group Source of data Lsmeans St. Error 

Short Group Predicted  100.92 cm - 

Short Group Observed 176.44 cm 9.14 

Long group Predicted 246.06 cm - 

Long group Observed 295.11 cm 9.10 

Table 2. Average ranking accuracy and adjusted ranking  accuracy for three root traits TRL, SEL, 

PRL 

Population size Trait  Avg ranking Accuracy 34.,4 Avg Adjusted Accuracy 35.,5 

200 TRL r=0.55 r=0.84 

200 SEL r=0.54 r=0.83 

200 PRL r=0.38 r=0.72 

TRL= Total Root Length, SEL=Secondary Root Length, PRL=Primary Root Length 

Table 3. Average prediction accuracy and adjusted accuracy for three root traits TRL, SEL, PRL 

Population size Training 

population size 

Trait  Avg Phenotypic 

Accuracy 64.,4 

Avg Adjusted 

Accuracy 65.,5 

St. Deviation 

384 234 TRL r=0.42 r=0.65 0.056 

384 234 SEL r=0.43 r=0.67 0.055 

384 234 PRL r=0.44 r=0.84 0.051 

584 350 TRL r=0.54 r=0.84 0.035 

584 350 SEL r=0.32 r=0.49 0.049 

584 350 PRL r=0.31 r=0.58 0.047 

TRL= Total Root Length, SEL=Secondary Root Length, PRL=Primary Root Length 
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Figure 1. Average 60/40 cross-validation accuracy for 384 and 584 line populations, 

error bars represent st. dev of accuracy estimates for all 500 iterations of RR-BLUP 

Figure 2. Ranking accuracy for TRL for 200 line validation population with ranks ranging 

from 1-200, one being the longest roots and 200 being the shortest roots.  



169 

 

 

 

  

Figure 3. Validation of predictions made based on TRL within the validation population. 

Overall prediction accuracy was estimated at r=0.594. 

Figure 4. Population stratification identified using STRUCTURE 2.3.4 the 584 line population 

after adding in the validation population. Q1, Q2, and Q3 represent their respective 

subpopulations. 
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CHAPTER SIX 

GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

The goal of this project was to explore root trait variation and to better understand the genetic 

architecture controlling root development within maize. This was accomplished by analyzing 

seedling root architecture traits within two separate association analysis inbred line panels, and 

using the Ames panel population to complete a genomic prediction study. Loci found 

significantly associated with seedling root traits were identified at the gene level within a 

candidate gene association study within a 74 line association study (AS) panel as well as a 

GWAS within a larger 384 line association mapping population. These loci represent putative 

candidates for future study and validation. A new expandable tool called ARIA allowing high-

throughput root trait imaging was developed to facilitate studies herein as well as future studies 

done to better understand root architecture. Genomic prediction (GP) was tested for root 

architecture traits in order to determine whether extreme genotypes for a moderately heritable 

trait can be predicted with sufficient accuracy. Within the candidate gene association mapping 

study, candidate genes Rtcl, Rth3, Rum1, and Rul were re-sequenced within 74 diverse inbred 

lines. Root traits were extracted from 6, 10, and 14 day old seedlings and marker-trait 

associations were calculated. A total of 51 SNP trait associations were identified.  These 

significant SNPs within root development genes form the basis for putative functional markers 

for breeding purposes. For GWAS, a subset of 384 inbred lines of the Ames panel was grown for 

14 days, with root traits extracted using the software program ARIA. Marker trait- associations 

were calculated using both MLM and GLM, identifying 4 and 287 marker trait associations, 

respectively, for each model used. Within the loci identified by GLM, 17 were associated with 

multiple root traits. Putatively associated SNPs located within or near gene models with regard to 
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the B73 reference genome represent the best candidates for genes having an effect on root 

development in maize. Gene model GRMZM2G153722 on chromosome 4 contained 12 

significant markers for root trait DIA. This model represents the best candidate for a root gene as 

it has homology for a root tip development gene in Arabidopsis.  

The GWAS panel was used as a training population for GP based on TRL. A RR-BLUP 

prediction model was implemented to calculate marker effects and predicted BLUPs based on 

genotypic information in the validation population. A validation population of 200 inbred lines 

from the Ames diversity collection was selected based on predicted extreme genotypes with 

regard to the longest and shortest predicted root lengths. This study showed that GP was able to 

differentiate two groups with statistically different TRL with even larger observed than predicted 

difference for the TRL means. Genotype ranks were also predicted with moderate accuracy with 

Spearman correlation of ρ=0.55.  

Because the studies described herein were performed at the seedling stage and within a 

controlled environment, they are only a first step towards a better understanding of the genetic 

control and predictability of root traits in maize. Future studies need to address how 

environments affect GWAS as well as GP of maize root traits. For practical purposes, it has been 

noted that breeders do not currently use root architectural traits directly as a selection criterion. 

With the use of GS and GP technologies, a reduction in resources required to collect phenotypic 

data may make use of root traits for selection more realistic.  It also needs to be better 

understood, how environmental variation affects prediction accuracies more generally. 

Moreover, what is the contribution of roots to grain yield? Can specific root architectural traits 

be correlated to yield, and will root traits be more important in nutrient deficient environments? 

There are still many questions to be answered before roots are a common selectable component 
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to breeding programs in maize and other crop species. Studies answering all of these questions 

are ongoing but preliminary results do show promise with newer technologies in genotyping and 

phenotyping becoming increasingly readily available.  
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