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It is well known that micros tresses are developed in a composite 
subjected to a temperature change due to the mismatch in thermal 
expansion between the fibers and the matrix. The stresses in the 
matrix can be large enough to cause the matrix to yield and deform 
plastically. The nonlinear thermal behavior is evidenced by 
experimentally observed thermal hysteresis in a metal matrix composite 
under thermal cycling [1]. Obviously, the thermal hysteresis plays an 
important role on the dimensional stability of the metal matrix 
composites, especially for graphite fiber reinforced composites. 

Recently, experimental acoustoelastic data show that similar 
hysteresis loops can be observed in wave velocity versus temperature 
plots [2]. The analytical work given in [3] provides the correlation 
between the hysteresis of sonic velocity and the thermal strain 
hysteresis. Consequently, the sonic velocity measurement is likely to 
provide an efficient tool to characterize not only the residual stress 
but also the nonlinear thermal expansion behavior in a composite. 

The goal of this task is to analyze the axial and transverse wave 
velocities in an unidirectional Graphite/Aluminum composite by 
utilizing a composite model of acoustoelasticity which is an extension 
of the simplified model reported in [3]. Parametric studies were 
performed to determine the sensitivity of the constituent properties 
to the composite acoustoelastic response under thermal cycling. 

A COMPOSITE MODEL OF ACOUSTOELASTICITY 

The theory of acoustoelasticity of a homogeneous medium, which 
relates the change in wave speeds to initial stresses, is based on 
superposition of a small dynamic disturbance on a prestressed 
continuum [4-6]. In applying the acoustoelastic theory to a composite 
material, each phase of the composite can be assumed to be governed by 
the equations of acoustoelasticity for homogeneous medium. As 
demonstrated in [3], it is convenient to use the simple form of 
equations of motion based on the first Piola-Kirchhoff stress tensor. 
Together with the constitutive equations for hyperelastic materials, 
which relates the second Piola-Kirchhoff stress to Lagrangian strain, 
it enables one to obtain the relation between the increment of the 
first Piola-Kirchhoff stress, t .. , and the displacement gradient, 

1J 

1357 



~,l' due to a small disturbance. For phase q in the composite, 

t(q) = C (q) u.(q) (1) 
ij ijkl K,l 

where c.~fi can be termed acoustoelastic "stiffnes~" of the phase q 
materiat~ Corresponding to a prestessed state, c .. fi is expressed in 
terms of the second and third order elastic modultJof the phase 
material and the stress and elastic strain in the phase. Next, by 
considering the composite as a homogeneous material, the effective 
acoustoelastic "stiffness" of the composite, Cijkl , has the relation 

t ij - Cijkl ~,l 

where t .. and ~ 1 are the average stress increment and the average 
displac~~ent grad1ent in the composite, respectively. Similar to the 
second order theories, the effective acoustoelastic stiffness of the 
composite, C .. k1 , can be obtained from the acoustoelastic stiffnesses 
of the fiberJ!na matrix phases using an analytical or numerical 
averaging scheme. Note that the acoustoelastic stiffness of a phase 
is a function of the prestressed states in that phase. In general, 
the stress and strain are not constant over each phase although they 
are usually independent along the fiber direction of a unidirectional 
composite. However, approximate results can be obtained using average 
stress and strain values obtained from the averaging scheme to provide 
a constant acoustoelastic stiffness over each phase. 

Because of the unsymmetric nature of the stress tensor, t .. , the 
results of the averaging scheme for the second order theory ca~fiot be 
used directly in such acoustoelastic problems. Nevertheless, for the 
case of a unidirectional composite subjected to free thermal 
expansion, the prestresses and prestrains are purely extensional and 
satisfy the condition ofaxisymmetry. Therefore, instead of using the 
simple averaging method as demonstrated in [3], a more accurate 
averaging scheme, termed the composite cylinders assemblage [7], is 
adopted in the current study. 

Here we assume that X1 is the fiber direction in a unidirectional 
composite or in a plate with bounding surfaces parallel to X3 . 
Utilizing the standard contracted notation, the axisymmetric 
prestressing condition under free thermal expanstoy provtdjs that thj 
prestrjsses and prestrains in the phase q are 0 1 q - O2 q and El q 
= E2 q with the shear stress aud strain components being zero. Then, 
based on the results given in [3], t&yation (1) provides the relation 
~f the normal(syress increments, ti ,versus the normal strain 
1ncrements, €jq , as 

t. (q) = C .. (q) Eo (q) 
1 1J J 

where C (q) = C (q) = 0 (q) + 
11 22 2 

C (q) = C (q) = k (q) and 
12 21 12' 

k (q) C (q) = 0 (q) + 
22 '33 3 

C (q) = C (q) = k (q) 
23 32 23 

k (q) 
33 ' 

(2) 

In a majority of fiber composites, the fibers can be considered 
to be transversely isotropic and the matrix can be treated as an 
isotropic material. For the transversely isotropic fiber, which is 
also assumed to be elastic, there are five independent second order 
moduli, b i , and nine such third order moduli, d i , [8]. The nonzero 
kji can be expressed as 

1358 

k (q) 
22 

k (q) 
33 



i 
k (q) - 22-~4[b +(6d +2d )E(q)+(3d +d )E (q)] 

12 0 2 1 1 2 2 1 4 3 
p 

i b 
k2~q) - 2~~~~;[(b1+ ~)+(6d1+d2+2d4+d9)E~q)+(3d1+d2+2d4+dS+d6)E3(q)] 

p 

Note that. for elastic fibers. E~q) are the differences between total 
and free thermal strains. The stretch ratios ~i and the mass density 
p~ in the prestressed state can be written as 

~. - 1 + E~(q); i - 1.2.3. 
~ ~ 

where E~(q) denote total strains in grestressed state including both 
mechani~a1 and thermal effects and p is the density in the stress 
free state. 

For an isotropic matrix similar expressions hold with (b3 •... bS) 
and (d4 •... d9) equal to zero. Furthermore. we assume that the 
prestrains are not large in both phases. Additionally. it is assumed 
that when the prestressed state in the matrix is plastic. the third 
order effects enter through elastic mechanical prestrains only [6]. 
The five independent moduli of isotropic matrix can be expressed in 
terms of Lame (~. ~) and Murnaghan (l.m.n) constants 

b2 = ~. d1 - (21-2m+n)/6. d2 - (m-n)/2. d3 - n/3 

Note that the normal stress-strain relation of equation (2) 
satisfies the transversely isotropic condition for both the fiber and 
matrix phases. By neglecting the rigid body rotation of the imposed 
small disturbance. the transverse shear becomes symmetric and the 
transverse shear modulus satisfies the transversely isotropic 
condition. while the axial shear stresses remain unsymmetric. 
Therefore. the transversely isotropic condition is not completely 
satisfied. However. this provides no major concern in utilizing the 
composite cylinders assemblage model which requires that the phase 
stiffnesses are at most transversely isotropic since only normal wave 
speeds are of interest in the current study. In addition. the effect 
of the constituent axial shear properties on the composite normal 
properties is expected to be small (note that. in transversely 
isotro~ic case. the composite normal properties are independent of the 
constituent axial shear properties). 

In utilizing the composite cylinders assemblage. it is more 
convenient to obtain the composite compliance. S .. from the fiber 
compliance and the matrix compliance. After obtiining s ... the wave 
velocities of the in-plane extensional waves propagating t~ the X and 
X3 directions. v2 and v3 • respectively. can be computed from the 2 
relations 

Since the acoustoe1astic wave velocities are dependent on the 
stress and strain states in the constituents. it is necessary to 
compute the stresses and strains before the composite acoustoe1astic 
theory can be applied. To accomplish this. the thermal e1astop1astic 
phase average stress model developed in [9] was employed. Briefly. 
given the constituents properties. the composite properties are 
computed by employing the composite cylinders' assemblage model. Then. 
using the definitions of average stress and strain in the composite. 
the phase stress average model computes the average stress and strain 
increments in the fibers and matrix for a given load increment. The 
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incremental composite load can be a temperature change or any of the 
six composite stress components. The computed matrix stresses are 
utilized in a Mises yield condition to determine the onset of 
yielding. Once the matrix has yielded, the matrix plastic strains are 
computed from the associated flow rule. A kinematic hardening rule is 
incorporated in the plasticity theory to account for the translation 
of the yield surface during plastic deformation. For simplicity, only 
linear work-hardening is considered here. During an elastoplastic 
load increment, the matrix elastic and plastic compliances are 
utilized to form an effective matrix compliance. Then, together with 
the fiber elastic compliance, a new composite compliance matrix can be 
computed for the next load increment. If the composite load increment 
causes the matrix to unload, the matrix is assumed to exhibit elastic 
properties and no plastic strains are computed. 

RESULTS 

For the purpose of evaluating the theory, we consider the 
experimental data on wave velocity changes in a unidirectional 
P55/Aluminum composite with 38% volume fraction of fiber due to 
thermal cycling [2]. Properties used for calculation are listed in 
Table 1 for graphite P55 and Aluminum 6061. In Table 1, the only 
available third order elastic modulus, d7 , for P55 is determined from 
[10]. The values of Murnaghan constants for 6061 alloy are taken from 
[11]. Also, shown in Table 1 are the yield strength a and plastic 
modulus EP for the bilinear stress-strain relation of ~06l. 

Table 1. Constituent Properties 

Transversely Isotropic P55 Fiber 

Young's Moduli: Ea = 55.0 Msi, Et = 1.1 Msi 

Shear Modulus: G = 2.16 Msi a 

Poisson's Ratios: v a 
0.41, v t = 0.45 

Thermal Expan. Coeff.: aa = -0.43 x 10-6/oF , at = 7.57 x 10-6/oF 

Third Order Modulus: d7 1185.0 Msi (ref. 10) 

Mass Density: p = 0.071 lbs/in3 

Isotropic 6061 Aluminum Matrix 

Young's Modulus: E 10 Msi 

Poisson's Ratio: v = 0.33 

Thermal Expansion Coefficient: 
-6 

a = 12.7 x 10 /F 

Murnaghan Constants: ~ = -6.82 Msi, m = -49.6 Msi, n = -36.0 Msi (ref. 11) 

Mass Density: p = 0.098 lbs/in3 

Yield Strength: a y 11 ksi; Plastic Modulus: 

Temperature Dependent Properties: 

dE/dT = -1.6 ksi/F, 

dEP/dT = -1.6 ksi/F 
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The results of axial sonic velocities predicted by the vanishing 
fiber diameter model (V-F) employed in [3] and the composite cylinders 
assemblage model (CCA) together with experimental data are compared in 
Figure 1. A 38% fiber volume fraction and 6 ksi matrix residual 
stress were assumed. The temperature independent constituent 
properties in Table 1 were used except that the fiber axial Young's 
modulus was modified to 48:3 Msi. A matrix residual stress of 6 ksi 
in the fiber direction was also assumed. As a result of predicting 
different Young's moduli, the V-F provides a shift of the wave 
velocity curves from that of the CCA. The discrepancy is about 0.4% 
of the initial V-F wave velocity at 7soF However, this is about 10.6% 
of the amplitude of the sonic velocity hysteresis loop. The 
transverse wave velocities were also computed using CCA and V-F. The 
discrepancy is about 38% of the initial velocity of the V-F. This 
mainly is due to the very different values of transverse Young's 
modulus predicted by these two models. It is believed that the CCA 
should provide more accurate result on this aspect. 

Note that the properties used in Figure 1 were so chosen that the 
sonic velocity curve predicted by the CCA could best match the 
experimental results. On the other hand, if a SS Msi fiber Young's 
modulus is chosen, then the best fit of the experimental data can be 
achieved by using 33.2% fiber volume fraction and 7.S ksi axial 
residual stress in the matrix. In both cases, the chosen material 
properties are not unreasonable due to the possible variations in 
properties which may occur during the manufacturing process. 
Therefore, parametric studies were performed to identify the key 
constituent properties which can most significantly influence the 
acoustoelastic response. This should provide valuable guidance for 
further acoustoelastic wave velocity measurement. 
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Fig. 1. Comparison of the Axial Sonic Velocities in a P55/6061 Composite. 
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To study the influence of a specific material property upon 
computed composite wave velocities, simulations were performed by 
varying a single property within a reasonable range while all other 
properties were kept unchanged. The results were compared with the 
baseline prediction of a Gr/606l composite with 35% fiber volume 
fraction, 11 ksi matrix yield strength, 7.5 ksi matrix residual stress 
and the temperature independent properties shown in Table 1. All 
simulations were limited to one thermal cycle in which the temperature 
was changed from 75°F to -75°F, to 205°F and then to 75°F. The 
results of parametric studies demonstrated that the axial wave 
velocities were most strongly affected by the fiber axial modulus, the 
fiber volume fraction and the fiber third order elastic modulus; and 
much less affected by the matrix residual stress, matrix Young's 
modulus and temperature dependent matrix properties. The axial 
modulus and fiber volume fraction control the magnitude of the room 
temperature velocity but have little effect on the shape or size of 
the velocity hysteresis loop. The fiber third order elastic modulus 
controls the size and shape of the hysteresis loop and has a second 
order effect on the magnitude of the room temperature velocity, as 
demonstrated in Figure 2. It shows that, as the fiber third order 
modulus reduces to zero, a small hysteresis is obtained. Based upon 
the composite theory of acoustoelasticity, the change in composite 
sonic velocity is related to the change in.stress state in each of the 
constituents through their individual third order elastic moduli. 
Thus, by eliminating the fiber third order modulus, i.e., d7 - 0, the 
contribution of matrix third order moduli, Murnaghan constants, on the 
composite sonic velocity is demonstrated. This indicates that the 
sensitivity of the sonic velocity of the composite is primarily 
dependent on the third order elastic moduli of the fibers. In Figure 
2, it is also interesting to note that an increase of d7 reduces the 
initial sonic velocity at 75°F. This is because a tens1le matrix 
residual stress results in a compressive fiber residual stress which 
coupled with the fiber third order modulus acts to reduce the 
composite sonic velocity. 
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Fig. 2. Effect of Fiber Third Order Elastic Modulus, d7 , on the Axial 
Sonic Velocity Hysteresis in a P55/6061 Compos1te. 
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The transverse wave velocities were found to be most strongly 
affected by the matrix properties. Specifically, as shown in Figure 
3, if the matrix modulus is allowed to be temperature dependent, the 
composite transverse wave velocity is predicted to increase with 
decreasing temperature. This effect is not predicted if the matrix is 
treated as if it has constant properties with temperature. This is 
because that when temperature dependence is considered, the matrix 
Young's modulus decreases with the increase of temperture and 
increases with decreasing temperature. This significantly shifts the 
slope of the velocity hysteresis loop to a negative value. Figure 3 
also indicates that the temperature dependent matrix Young's modulus 
has a much stronger effect on the transverse sonic velocity than the 
third order elastic moduli. Due to the lack of experimental data, the 
effects of the temperature dependent fiber properties cannot yet be 
determined. 

3.90 
U P55/6061 
Q) 
til v t ~ 33.2\ 

........ 
El 3.89 m 
~ "y • 11 ksi 

:>t "m • 7.5 ksi 
.j..l 3.88 0 

• .-i 
U 
0 
r-l 3.87 Q) 

:> 
u 

• .-i 
~ 3.86 
0 
Ul 

Q) 
3.85 til 

H 
Q) 
:> 
til 

3.84 + TEMP. lNOEP. 
~ 
rtl [] TEMP. PEP. 
H 
E-i 

3.83L-__ _L ____ ~ __ _L ____ ~ __ _L ____ ~ __ ~ 

-100 -50 a 50 100 150 200 250 

Temperature, of 

Fig. 3. Effect of Temperature Dependent Matrix Properties on Transverse 
Wave Velocities in P55/6061 Unidirectional Composites. 

CONCLUSIONS 

In the preceding sections, the composite model of acousto
elasticity has been shown to be capable of predicting the axial and 
transverse sonic velocity hysteresis loops that are caused by 
subjecting the unidirectional composite to thermal cycles. However, 
it is necessary to determine the material properties accurately so 
that the sonic velocity measurement can be utilized as a reliable tool 
to characterize the residual stress and the thermal strain in a 
composite. 
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