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Development of resource-friendly quantum algorithms remains highly desirable for noisy intermediate-scale
quantum computing. Based on the variational quantum eigensolver (VQE) with unitary coupled-cluster Ansatz,
we demonstrate that partitioning of the Hilbert space made possible by the point-group symmetry of the
molecular systems greatly reduces the number of variational operators by confining the variational search within
a subspace. In addition, we found that instead of including all subterms for each excitation operator, a single-term
representation suffices to reach required accuracy for various molecules tested, resulting in an additional short-
ening of the quantum circuit by a factor of 4-8. With these strategies, VQE calculations on a noise-free quantum
simulator achieve energies within a few meVs of those obtained with the full unitary coupled-cluster Ansatz
with single and double excitations for the Hy-square, Hy-chain, and He-hexagon molecules, while the number of
CNOT gates, a measure of the quantum-circuit depth, is reduced by a factor of as large as 35. Furthermore, we
introduced an efficient “score” parameter to rank the excitation operators, so that the operators causing larger
energy reduction can be applied first. Using the H, square and H, chain as examples, We demonstrated on noisy
quantum simulators that the first few variational operators can bring the energy within the chemical accuracy,
while additional operators do not improve the energy since the accumulative noise outweighs the gain from the

expansion of the variational Ansatz.
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I. INTRODUCTION

Quantum computers have been projected to be the ulti-
mate solution to classically intractable problems owing to the
exponential expansion of information that can be processed
on quantum bits (qubits) compared with classical bits. How-
ever, to fully realize the advantage of quantum computing,
quantum devices that integrate thousands of qubits or more
with sufficiently long coherent time have to be developed,
which remains a significant challenge as of today. In the
foreseeable future, one still has to work with so-called noisy
intermediate-scale quantum (NISQ) devices [1], and practical
quantum algorithms need to be made aware of this limita-
tion. One group of such algorithms is the variational quantum
eigensolver (VQE) [2], which uses a variational approach to
optimize an objective function on a quantum-classical hybrid
architecture. The preparation of parametrized quantum states
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and measurement of the expectation value of the objective
function are performed on a quantum computer with relatively
shallow circuits, while an optimization algorithm is imple-
mented on a classical computer to find the optimal parameters.

Quantum chemistry has been one of the most active fields
for quantum computing [3], realizing a proposal of solving
quantum chemical problems on a quantum architecture that
Feynman made nearly 30 years ago [4]. There has been
the significant development of using VQE to solve quantum
chemical problems in both theory [5—15] and experiments on
real quantum devices [2,7,10,16-19]. The most commonly
used Ansatz is derived from the unitary coupled-cluster (UCC)
method [11,20,21], which is an extension of the well-known
coupled-cluster theory for describing the correlation effects
in quantum systems [22]. In most applications, only single
and double excitations are included, resulting in UCCSD.
With this truncation, UCCSD in general cannot reach the true
ground-state energy. Another necessary step for implementing
UCCSD is Trotterization [23], i.e., the expansion of ATB
as (e"eB/mY" where e*/" and €®/" can be efficiently imple-
mented on quantum computers using available 1- and 2-qubit
gates [3]. This expansion is exact only in the limit of n — oo
when operators A and B do not commute. Conventionally, only
a single Trotter step (n = 1) was used to represent UCCSD;
more Trotter steps barely improve the Ansatz while signifi-
cantly elongating the quantum circuits [7,17]. A variation of
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UCCSD was also introduced recently, which, by successively
adding operators to the Ansatz one at a time in a carefully
designed adaptive process, can reach the accuracy of the true
ground state with relatively shallow circuits [14]. VQE algo-
rithms with unitary transformations constructed directly in the
qubit space, rather than the fermionic space, have also been
developed to further reduce the circuit depth [15,16,24,25].

Despite the truncation and Trotterization, the implemen-
tation of UCCSD VQE on real devices has still been
limited to small molecules, including H,, HHe™, LiH, and
BeH; [2,7,10,16—-18]. We note that VQE has also been ap-
plied to effective interacting few-site models that emerge
from infinite lattice systems within Gutzwiller embedding
theory [19,26,27]. In this paper, we use the intrinsic symme-
try to further simplify UCCSD to meet NISQ requirements.
The implementation of symmetry in constructing variational
Ansdtze is not a new concept. In fact, the particle-number
symmetry and Z, symmetry have been fully considered in
selecting the excitation operators in UCCSD [11,14]. The
point-group symmetry of a molecule can also prohibit cer-
tain spin-orbital excitations [17,28]. More specifically, the
point-group symmetry can further divide the Hilbert space
preserving quantum numbers associated with the particle-
number and Z, symmetries into several subspaces. Here, we
will introduce an efficient graph clustering technique to iden-
tify these subspaces in the qubit representation. This general
scheme allows us to systematically identify the most relevant
excitation operators for the purpose of constructing a trial state
with an energy close to the ground-state energy. Based on
the Hamiltonian matrix, this method is numerically cheap and
does not require a sophisticated group-theoretical analysis of
the problem. It can be further combined with other strategies
to reduce the gate complexity of the resulting circuit. Below,
we will establish an importance ordering among the different
excitation operators and combine all subterms associated with
a particular operator. The resulting circuits are significantly
shortened, allowing us to efficiently reach chemical accuracy
for molecules Hy and Hg. The calculations were performed
using the toolkit QISKIT developed by IBM [29], with both
noise-free state-vector and noisy QASM simulators.

II. FORMALISM AND RESULTS

The second quantization is applied to construct the Hamil-
tonian of the molecules. Atomic orbitals in the minimal basis
[three primitive Gaussian-type orbitals fitted to a Slater-type
orbital (STO-3G)] [30] are used in the calculations. Relevant
spin-orbitals for constructing the basis of the Hilbert space are
determined according to the Hartree-Fock (HF) calculations.
In the second-quantized formulation, the electronic Hamilto-
nian is expressed as

1 .
H = thqal;gaqg + z Z hpqrsall,ga;)harkasas (1)

pq,0 pqrs,oc i

where h,, and h,,., are one-electron and two-electron inte-
grals, respectively, and o and A denote spins. /,, and A, are
calculated with the PYSCF package [31]. The creation and an-
nihilation operators in Eq. (1) are defined on 2N spin-orbitals
(N is the total number of electrons).

In order to solve the Hamiltonian on a qubit-based quan-
tum computer, it is necessary to transform the Fock state
| fants fam—1, -+, f1) to a qubit state [qom, qom—1, - - -, q1)s
where 2M is the total number of spin-orbitals and f; is the
occupation number of the ith spin-orbital (0 or 1). Accord-
ingly, the fermionic operators in Eq. (1) are transformed to
qubit operators that can be realized in Pauli-gate-based quan-
tum circuits. While our method can work with any encoding
schemes, we choose the parity encoding method [32], in
which the pth qubit stores the parity of the total occupation
number of the first p spin-orbitals: g, = [>_1_, f;] (mod2).
If the spin-orbitals in the Fock state are arranged in such a
way that the first M spin-orbitals describe spin-up states and
the last M spin-orbitals describe spin-down states, then gy,
and gy are equal to the number of spin-up electrons (mod?2)
and the number of electrons (mod?2), respectively. For non-
relativistic molecules, these two numbers will be conserved.
Consequently, the two qubits gy, and gop will only be acted
on by identity or Pauli Z operators, which can then be replaced
by the corresponding eigenvalues, resulting in a Hamiltonian
that only acts on 2M — 2 qubits [3], effectively saving 2 qubits
in quantum computing. It is worth noting that more qubits can
potentially be saved with a newly developed qubit-tapering
algorithm that identifies all Z, symmetries in the Hamiltonian
and tapers off 1 qubit for each Z, symmetry [33]. Later on,
an algorithm for tapering off qubits based on the point-group
symmetry was also established [34].

After the encoding process, an additional algorithm is re-
quired to solve the resulting qubit Hamiltonian. As one of
the most popular methods for this purpose, VQE employs the
Rayleigh-Ritz variational principle
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where Ej is the ground-state energy and 6 are variational
parameters. A quantum circuit with moderate depth is used
to apply a unitary operator U(6) on the initial state |v),
which is chosen to be the HF state in our calculations, cre-
ating a parametrized state | (6)): |¥(8)) = U (6)|¥o). The
expectation value (¢(5)|H |w(§)) is measured on a quantum
computer, while 6 are varied to minimize the Rayleigh-Ritz
quotient [left-hand side of Eq. (2)] on a classical computer.
Unitary coupled cluster (UCC) is a chemistry-inspired Ansatz
that has been widely used in solving quantum chemical prob-
lems [22]. In UCC, U (6) can be written as U (0) = ¢?T~T"),
where T can be any Hermitian excitation operator. However,
only single and double excitations are usually selected, and
UCC in this form is called UCCSD:

T = Zeiaajaa + Zeijalgafa;aaaﬂ, (3)
io ijopB
where the subscripts o8 and ij denote occupied and virtual
spin-orbitals, respectively. Using a single Trotter step, the
UCCSD Ansatz can be expressed as
U(é’) — l_[ eOiL,(afa‘,—a;ai) 1_[ 69,-,-&3(a?a;aﬂaﬁfa;ulaja,-)' (4)
o ijoap

Ey, @

The occupied and virtual spin-orbitals in Eq. (4) are se-
lected in such a way that the net magnetization of the
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molecule is conserved. The total number of excitation oper-
ators in UCCSD for a nonmagnetic system with N electrons
can be calculated as 2(N/2)2 + N/2(N/2 —1) + (N/2)4. This
number increases rapidly with N, making it challenging to
implement the UCCSD Ansatz for even moderate values of
N on NISQ. For instance, there are 26 operators when N = 4,
which already requires over a thousand CNOT gates to prepare
the Ansatz state ¥ (8).

An n-qubit system can span a Hilbert space with a di-
mension of 2". By construction, all the excitation operators
included in UCCSD only act on a subspace preserving the
total number of electrons and the net magnetization. This sub-
space separates into smaller subspaces if there are additional
symmetry elements from the structure of the molecule. The
ground state of the Hamiltonian lies in one of these subspaces.
Once this subspace is identified, one can confine the varia-
tional search within this subspace. That is, starting from an
initial state [1/) in this subspace, one only needs to apply the
excitation operators that keep the Ansarz states |y(8)) in the
same subspace. In this way, the number of excitation operators
in the variational Ansatz can be greatly reduced.

Let us analyze the H, dimer as an example to illustrate
this idea [7]. With 2-qubit reduction applied in the parity
encoding scheme, the fermionic system can be mapped onto
a 2-qubit system, spanning a four-dimensional Hilbert space.
The four basis vectors in this qubit space |00), |01), |10},
and |11) (parity encoding) correspond to the four Fock states
| f24s fiys o1, fiy) = [0110), |0101), [1010), and [1001), re-
spectively. All the four Fock states conserve the total number
of electrons (2) and the net spin (0). At a H-H distance of
0.725 A, the Hamiltonian in Eq. (1) can be represented by the
following 4 x 4 matrix (in units of eV):

106 0 0 018
0 —184 018 0

H=1 06 o138 —023 o | @
018 0 0 —1.06

By inspection, it is easily seen that the four-dimensional
Hilbert space can be separated into two subspaces S; and S5,
spanned by {|00), [11)} and {|01), |10)}, respectively. The
HF state is represented by the qubit state |01) (or the Fock
state |0101)). Starting from |01), one needs to select excitation
operators that flip both qubits so that the Ansatz states remain
in the same subspace. There are two single-excitation oper-
ators and one double-excitation operator in the full UCCSD
for Hj: aial — a}Laz, azag — a§a4 and aialagal — a}La;amz,
which are transformed to spin operators iY;, iYs, %(X2Y1 —
Y»X1), respectively. Here, X and Y are Pauli matrices, and the
subscripts specify which qubit the Pauli matrix acts on. The
two single hopping terms Y; and Y, transfer |01) onto |00) and
|11), respectively, both of which are out of the subspace where
the initial state |01) is located. Therefore the only relevant
operator is the double-excitation term i/2(X,Y; — 12X)).
There is another simplification that can be made. ¥>X; =
X>Y1Z,7Z; using the relation o;0; = §;;1 + i€;j 0, where o1,
07, and o3 stand for X, Y, and Z, respectively, [ is the identity
matrix, and ¢;j; is the parity of the permutation (ijk). Any
state in the subspace spanned by |01) and |10) is an eigenstate
of Z,Z; with an eigenvalue of —1. Thus Z,Z; can be replaced

with —1 when acting on this subspace: X,Y,72,Z, = —X,Y).
Consequently, the two terms in the double-excitation operator
%(XZYI — Y»X;) can be combined into one term iX,Y;, further
reducing the circuit length by half.

We performed VQE calculations on the ground-state en-
ergy of the H, molecule, using the QASM quantum simulator
as implemented in the quantum computing toolkit QISKIT [29].
To simulate real NISQ devices, a noise model is imple-
mented by including depolarizing gate errors for all qubits
participating in the gate. To simulate the effect of cir-
cuit simplification, we implemented two different variational
Ansiitze ¢%/2%11=12X1) 012 o1 and ¢0%Y1 corresponding to
the full UCCSD and its simplified form, respectively. Since
UCCSD is exact for H,, both Ansdtze are expected to give
the exact-diagonalization (ED) results without noise. The
fermionic Hamiltonian in Eq. (1) is mapped onto a sum of
tensor products of Pauli matrices (Pauli strings). The expec-
tation value of each Pauli string was measured separately
by averaging over 1024 shots. The error associated with the
imperfect averaging is also included in the QASM simulator.
The variational parameters are updated classically using the
simultaneous perturbation stochastic approximation (SPSA)
algorithm with 200 maximal iterations. The QASM simulations
were performed ten times independently to obtain an estima-
tion of the error bar. In Fig. 1(a), we plot the dissociation curve
for Hy, calculated by QASM simulations and ED. In Fig. 1(b),
we show the error for the two different Ansdtze. The simplified
Ansatz containing a single term iX,Y); gives smaller error at all
bond lengths. While noticeable fluctuations exist in different
trials as can be seen from the error-bar size, the average values
for the single-term Ansatz give acceptable accuracy, with an
averaged error of 11.7 meV over all measured bond lengths.
For the full UCCSD Ansatz, the error bars are larger, and the
averaged error is increased to 27.1 meV, clearly demonstrating
that the shortened quantum circuit results in a significant noise
reduction.

The first excited state of H, lies in the subspace spanned by
|00) and |11). Thus one can also obtain the energy of the first
excited state by implementing VQE in this subspace [12,13].
We performed QASM simulations to verify this. Here, only a
single term iX,Y; is included in the variational Ansarz, but
we choose |00) as the initial state. In Fig. 2(a), we plot the
first-excitation-state energy as a function of r, obtained from
QASM simulations and ED, while in Fig. 2(b), we show the
simulation error as a function of r. Again, accurate results can
be obtained, with the averaged error being 6.6 meV.

It is a nontrivial task to identify the Hilbert space
separation, especially when the fermionic Hamiltonian is
transformed to a qubit representation. We use the following
algorithm based on graph clustering. A graph is created by
denoting each basis vector of the Hilbert space as a node
and connecting any two nodes i and j with an edge if the
qubit Hamiltonian matrix element H;; is larger than a cutoff
value: |H;;| > €.. Here, €. is set to 10~¢ eV. The problem to
be solved is to separate the total space of connected nodes into
isolated clusters so that any two nodes within the same cluster
can be linked with a continuous path (not necessarily directly
connected with an edge), while such a path does not exist for
any two nodes belonging to different clusters. We provide the
algorithm for solving this clustering problem in pseudocode
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FIG. 1. (a) The ground-state energy of H, as a function of H-H distance, calculated with ED and on a 2-qubit QASM simulator. (b) The
error of QASM results as compared with ED values. The error bar was determined based on ten independent simulations with 1024 shots in
each simulation (the same below). The inset in (b) shows the geometric configuration of a H, dimer.

in the Appendix. Each cluster will then represent a separate
subspace. To ensure that the VQE calculation is confined in
one of these subspaces, we use the following procedure to
select the fermionic excitation operators. Assume the m qubit
basis vectors of the subspace correspond to m Fock states:
[Yo), 1¥1), -« -y [Wm—1)- |¥0) is preselected as the initial state
for VQE calculations. Every other state v; (0 <i < m) is
related to |y) by an excitation operator T;: |v;) = T;|o). The
operators will be selected from all U; = T; — TiJr (so that €Y is
unitary), provided they satisfy the following two conditions:

(i) U; contains only single or double excitation.

(ii)) U; does not transfer any of the basis vectors
[Y0), ..., |¥m—1) out of the subspace.

Each fermionic operator U; can be mapped onto a sum of
tensor products of Pauli matrices [11]. While we have shown
that all the terms in the sum can be exactly grouped into a
single term in the example of Hj, it is not achievable mathe-
matically in general cases. On the other hand, a full treatment
of all the subterms requires a significantly elongated quantum
circuit. For instance, a unitarized double-excitation operator
transforms into eight subterms in qubit representation [11],
which requires a quantum circuit eight times as long as that for
a single term. On a noisy device or simulator where the noise
grows cumulatively with the circuit length, it is likely that the

extra noise associated with the elongated circuit outweighs the
extra accuracy it gains from the extended variational degrees
of freedom. Thus it is helpful to compare the performance
of the variational Ansatz containing all the subterms for each
excitation operator with the one that only contains a single
term.

We performed calculations on the Hy molecule in the
square configuration for a wide range of nearest-neighboring
H-H distance r. The Hamiltonian was constructed based on
spin-orbital basis obtained from restricted HF calculations. To
ensure that the HF calculation converges to states that are
smooth with continuously varying H-H distances, the con-
verged one-particle density matrix at one r was used as the
initial point for the next r. The eight spin-orbitals for Hy were
mapped onto a 6-qubit system with parity encoding and sub-
sequent 2-qubit reduction. The relevant Hilbert space for Hy
with zero net magnetization has a dimension of G) . (‘2‘) = 36.
Using the graph clustering algorithm, this space can be further
separated into four subspaces, with dimensions of 8, 8, 10, and
10, respectively. The same partitioning of the Hilbert space
can also be obtained for the Hamiltonian constructed based
on symmetrized superposition of natural atomic orbitals (i.e.,
without the self-consistent HF calculations), showing that the
partitioning comes from the intrinsic point-group symmetry
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FIG. 2. (a) The first-excited-state energy of H; as a function of H-H distance, calculated with ED and on a 2-qubit QASM simulator. (b) The

error of QASM results as compared with ED values.
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FIG. 3. The ground-state energy of the Hy square as a function
of H-H distance, calculated by VQE in four subspaces on a 6-qubit
state-vector simulator, as well as by ED. The inset gives the geomet-
ric configuration of the Hy square.

of the molecule, which is Dy, in this case. Since our method
depends solely on the Hamiltonian matrix, a thorough group-
theoretical study is not necessary to identify the partitioning
of the Hilbert space. A cutoff energy is often naturally present
in a system, for example, due to a separation of energy scales
or an approximate symmetry. Our approach, relying on ener-
getics, can thus detect an approximate fragmentation of the
Hilbert space beyond exact symmetries.

The qubit-tapering algorithm [33] can potentially remove
more qubits than the parity encoding [33]. The graph cluster-
ing algorithm can also be implemented on the Hamiltonian
after the qubit-tapering process. To demonstrate this, we first
use Jordan-Wigner encoding [35] to transform the fermionic
Hamiltonian into a qubit Hamiltonian, followed by the qubit-
tapering procedure as implemented in QISKIT [29]. Then, we
apply the graph clustering algorithm to partition the resulting
qubit Hamiltonian. For the Hy square, 4 qubits can be tapered,
resulting in a 4-qubit Hamiltonian. The graph clustering al-
gorithm then identifies a ten-dimensional subspace, in which
the ground state with four total electrons and two total spin-
up electrons is located. Only 2 qubits can be removed with
the standard parity encoding; however, graph clustering still
identifies the same ten-dimensional subspace containing the
ground state as previously found in the case when 2 additional
qubits were tapered off. This demonstrates that the additional
Z, symmetries used in qubit tapering are also captured in the
graph clustering algorithm.

Figure 3 shows the VQE calculations in which each
excitation operator was represented by the first term based
on the lexicographical order. For example, among the
eight Pauli strings resulting from the double-excitation
operator a;a:{ala:;: é(Y6X5X4X3X2X1 + X6X5X4Y3X2X1 +
YeXsYiY3Xo Xy — XeXsYa X3 Xo Xy + Y6 Xs Xa Y3 X0V — X6 X5 X4 X5
X0 — Yo XsYi X5X0Y) — X XsY4Y3XoY1), only the first term
iYeX5X4X3X,X, was included in the variational Ansatz. VQE
calculations were performed in all four subspaces separately,
using the noise-free state-vector simulator implemented in
QISKIT [29]. The state-vector simulator uses matrices, rather
than Pauli gates, to represent the qubit operators. Thus it
does not involve any noises associated with gate infidelity
or imperfect averaging. In each subspace, a reasonable

choice of the initial state is the basis state with the lowest
diagonal element of the Hamiltonian matrix. An optimized
energy close to the ground-state energy calculated by ED
can be obtained in the subspace containing |001011) for
all H-H distances, clearly demonstrating that the Ansatz
with single-term representation for excitation operators can
give satisfactory accuracy. We also verified that the final
answer is not sensitive to which term was selected. In the
following, only single-term operators will be considered
unless otherwise noted.

A closer inspection of the ED solution can reveal that there
is an energy-level crossing between two states with different
total angular momentum S = 1 and S = 0. In Fig. 4(a), we
plot the energy of the two states as a function of the H-H
distance. The energy difference AE = E(S =0)—-E(S=1)
is shown in Fig. 4(b). At bond lengths r < r. = 0.8 A, the
S = 1 state has the lowest energy. The level crossing occurs at
r. =0.8 A, where the S = 0 state becomes more stable. In our
VQE calculations, only E is minimized without conserving
the §? quantum numbers. Therefore, due to near-degeneracies
of $=0 and S =1 at low energies, the energy-optimized
VQE wave function is spin contaminated. Since both these
two eigenstates are located in the same subspace in which the
VQE calculations were performed and the third eigenstate in
this subspace with S = 2 is distantly separated from the first
two states in the vicinity of the equilibrium bond length, the
optimized VQE state (blue triangles) is essentially a superpo-
sition of the § = O state and the S = 1 state in this range. In
Fig. 4(c), we show the overlap between the VQE state and the
ED ground state defined as |(Wvqe|WED) 2. Initially, the over-
lap drops as the energy difference between the S = 0 and S =
1 states decreases. The smallest overlap occurs at r = 0.8 A,
which reflects the level crossing when the S =0 and S =1
states become degenerate. Then, the overlap increases as the
S =0 and S =1 states are separated again, and reaches a
maximum at » = 1.4 A, which also coincides with the largest
energy difference between the S = 0 and S = 1 states. The
separation between the two eigenstates shrinks when r further
increases. For large r approaching the atomic limit, the energy
of the § = 2 state decreases and eventually becomes degener-
ate with the first two eigenstates. Consequently, the VQE state
becomes a superposition of the three states when approaching
this limit: The overlap of the VQE optimized state and the § =
0 eigenstate decreases to as low as 0.34 at r = 3.0 A. Since
our variational Ansatz is designed to minimize the energy, it is
acceptable that the optimized VQE state is spin contaminated.
However, if one wants to preserve the spin quantum numbers,
further constraints can be applied in the selection of excitation
operators (7') to enforce [T, 521 =0 [36].

It is also worth noting that the VQE leading to the lowest-
energy solution was performed in a subspace orthogonal to
the restricted HF state |001001), using |001011) as the initial
state. In fact, the qubit state |001011) can be transformed back
to the Fock state |[00110101), in which the spin-up electrons
(the right half) and spin-down electrons (the left half) do
not occupy the same spatial orbitals, while in the restricted
HF state [00110011) (J001001) in qubit representation), each
molecular orbital is doubly occupied by a spin-up electron and
a spin-down electron. Without partitioning the Hilbert space,
the natural choice is to run VQE with the full set of UCCSD
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FIG. 4. (a) Energy of the two lowest-energy eigenstates as a function of » from ED, with § = 0 (solid black line) and S = 1 (dashed red
line). Also shown are VQE energies calculated in a subspace with selected operators using |001011) as |,) and calculated in the full Hilbert
space with full UCCSD operators using the restricted HF state [001001) as |y). The full UCCSD fails to reach a satisfying estimation of the
ground-state energy as the initial state is orthogonal to the ground state. (b) The energy difference between the S = 0 state and the § = 1 state.
(c) The overlap of the optimized state in VQE performed in the subspace with the ground state from ED. Near-degeneracy between states with

different S? quantum numbers leads to the observed small overlap.

operators using the restricted HF state as the initial state. We
showed the results of such calculations on the state-vector
simulator in Fig. 4(a) as black circles, where one can see that
VQE failed to reach a satisfying estimation of the ground-state
energy. This shows that the restricted HF state is not always
a good choice as the initial state in VQE calculations, and the
partitioning of Hilbert space as performed in this paper can
help identify a suitable alternative choice.

The order in which the operators are included in the
Ansatz also matters, since it is preferable to add operators
that create relatively-high-energy reductions first when the
noise is still under control. A related idea of building an
effective variational Ansatz was illustrated in the Adaptive
Derivative-Assembled Pseudo-Trotter Ansatz VQE (ADAPT-
VQE) algorithm [14]. Here, we design the following process
based on the second-order perturbation theory to efficiently
rank the operators. For each U; connecting |¥) to |v;),
we denote the Hamiltonian matrix elements Hyy = €y, H;; =
€, and Hyp; = Hip = €9;. Then, we define a “score” s; =
min(|e;]|, egi /leo — €;|). The operators will be ranked in de-
scending order of s;. In Fig. 5, we show the VQE results by
adding excitation operators to the variational Ansatz, one at a
time according to a lexicographical order as well as decreasing
order of s;. The H-H distance was kept at 1.2 A, which is
the equilibrium distance as seen in Fig. 3. [001011) was set
as the initial state. It can be clearly seen that by adding the
operators with large s; first, one can achieve a faster drop in
the variational energy at the beginning. Since the noise-free
state-vector simulator was used, the two different sequences
eventually lead to the same energy when all operators are
included. The final energy is 0.014 eV above the ED result,
which is well within the chemical accuracy of 1 kcal/mol, or
0.043 eV per molecule. Also shown in Fig. 5 are the VQE
results by including all subterms for each excitation operator,
following the decreasing order of s;. When only one operator

was included, the results with a single term or all subterms
are exactly the same. On the other hand, when additional
operators were added, the VQE energy with all subterms
included is slightly lower than that with only a single term.
This is expected since more variational degrees of freedom
are included with the additional Pauli terms. However, the
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L = -a Decreasing score .
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FIG. 5. Energy of the Hy square at the equilibrium separation
r = 1.2 A as a function of the number of excitation operators, calcu-
lated by VQE on state-vector and QASM simulators. For state-vector
simulations, the operators are added according to the lexicographical
order or according to decreasing order of the score, respectively. For
black circles and red squares, only the first term for each excita-
tion operator is included. The blue diamonds show the state-vector
simulations that include all subterms for each excitation operator for
comparison. The noisy QASM simulation (green triangles) follows the
decreasing order of the score and uses the single-term representation
for the excitation operators. The shaded gray area shows the “chem-
ical accuracy” region.
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FIG. 6. (a) Energy of the H, chain at the equilibrium separation » = 0.88 A as a function of the number of excitation operators, calculated
by VQE on state-vector and QASM simulators. (b) Energy of the Hg hexagon at the equilibrium separation r = 0.99 A as a function of the
number of excitation operators, calculated by VQE on the state-vector simulator. Single-term representation is used for the excitation operators,
and the operators are added according to decreasing order of the score. The shaded areas show the regions with chemical accuracy. The insets
in (a) and (b) show the geometric configurations of the H, chain and Hg hexagon, respectively.

improvement is limited. With all six variational operators
added, the energy difference between all terms and a single
term is only 4.7 meV. Calculations on noisy QASM simulators
are also shown with green triangles in Fig. 5. The error bar was
determined based on ten independent calculations. When four
or fewer excitation operators are included in the variational
Ansatz, results consistent with state-vector simulators can be
achieved on the noisy simulator. However, when the number
of operators exceeds four, the error bar significantly increases,
and no further improvement in the energy can be obtained.

Two other geometric configurations were studied: an
equidistant linear Hy chain and hexagonal H¢. For the Hy
chain, partitioning of the Hilbert space results in two relevant
subspaces with dimensions of 16 and 20, respectively. The
ground state can be approached by performing VQE in the
20-dimensional subspace using the HF state as the starting
point. A total number of 14 excitation operators were selected
and ranked according to the above-described procedure. As
shown in Fig. 6(a), on a state-vector simulator, ten excitation
operators added in decreasing order of the score can reach
the ED ground-state energy within 1 meV. The remaining
four excitation operators essentially have no effect on the
optimized VQE energy. Therefore only the first ten operators
were considered in QASM simulations. Again, ten independent
runs were performed for statistical analysis. Similar to the
case of the Hy square, only the first seven excitation operators
resulted in reduction in the VQE energy, while further addition
of excitation operators did not help because the accumulative
noise became too big. Nevertheless, QASM simulations can
still reach the lowest energy only 10 meV above the ED
result, which is well within the chemical accuracy. For the Hy
chain, one more qubit can be tapered off by the qubit-tapering
algorithm than the parity encoding. Subsequent application
of the graph clustering algorithm identifies a 20-dimensional
subspace for the ground state, which again matches the result
with the parity encoding.

The hexagonal Hg can be mapped onto a 10-qubit system
with parity encoding and subsequent application of 2-qubit
reduction enabled by the Z, symmetry. The relevant subspace
in the qubit system has a dimension of (§) - (%) =400 for

six total electrons and zero net magnetization. This subspace
can be further partitioned into four smaller subspaces with
dimensions of 96, 96, 104, and 104, respectively. Similar to
the Hy-chain case, we identified that the subspace containing
the restricted HF state is where the ground state is located.
Forty-one operators up to double excitation can be selected
in this subspace. In Fig. 6(b), we plot the change in the VQE
energy with successive addition of these excitation operators
following the decreasing order of the score. One can see that
in this case, the score parameter does not fully describe the
“importance” of the operator, since operators 13—16 gener-
ate larger energy reductions than the operators immediately
preceding them. This is not surprising because underlying
perturbation theory can fail when the amplitudes of excita-
tion operators become large. Nevertheless, our scheme still
identifies most operators that cause significant energy drop
with little extra computational cost. In fact, nearly half of the
operators that essentially have no effects on energy reduction
were found and put to the end of the list. Alternatively, the
ADAPT-VQE algorithm [14] uses the iteratively evaluated
gradients of the energy with respect to the operator amplitudes
to rank the operators. Since a separate optimization is required
in each iteration, this treatment, while being more accurate, is
considerably more expensive computationally.

The CNOT gate is an essential component in gate-based
quantum computers, and the number of CNOT gates is a good
indicator of the depth of the quantum circuit. In Fig. 7, we
plot the number of CNOT gates in VQE with three different
variational Ansdtze: single-term representation in subspace,
all-subterm representation in subspace, and the full UCCSD.
For the hexagonal Hg, the full UCCSD circuit contains 9600
CNOT gates, which is out of the working range of the current
NISQ. On the other hand, implementing the Ansatz with the
single-term representation for all operators in the relevant
subspace only requires 260 CNOT gates, a reduction by a factor
of 35. Since no quantum speedup can be gained on a classical
simulator, it is still time-consuming to simulate He on the
noisy QASM simulator, even with the significant simplification
of the circuit: It takes a few hours to prepare the parametrized
variational state and measure its expectation value with 1024
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shots. For this reason, we chose not to include the QASM
calculations on Hg, without hurting the main conclusions.

III. CONCLUSION

We introduce a graph clustering algorithm to partition the
Hilbert space into subspaces that is made possible by the
intrinsic point-group symmetry of the molecular systems. This
step significantly reduces the number of variational operators
since VQE Ansdtze can be confined to act within a particular
subspace. In addition, it helps to obtain excitation energies,
as shown for the case of H,, or identify the correct initial
state, as demonstrated for Hy. Each excitation operator in
UCCSD can be transformed into multiple Pauli terms, re-
quiring a lengthy circuit to represent it. We demonstrate with
various examples that a single-term representation of excita-
tion operators can reach required accuracy, while dramatically
shortening the quantum circuit. VQE calculations on noiseless
state-vector quantum simulators achieve energies within a few
meVs of those obtained with the full UCCSD Ansatz for the
Hy-square, Hy-chain, and Hg-hexagon molecules. A “score”

parameter was introduced at essentially no extra computa-
tional cost, which allows us to rank the excitation operators
so that the operators causing larger energy reduction can be
applied first. Using the Hy square and Hy chain as examples,
we demonstrate on noisy quantum simulators that using only
the first few variational operators identified with this strategy
is effective in reducing the energy to within the chemical
accuracy.
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APPENDIX

The pseudocode for the graph clustering algorithm is given
in this Appendix.

Algorithm 1. Pseudocode for the graph clustering algorithm.

for Node; in Graph
for Node; in Graph
if Distance (Node;, Node;) > € continue
if Node;.cluster == None & Node;.cluster == None
Node;.cluster = Node;.cluster = new cluster
else if Node;.cluster == None
Node;.cluster = Node;.cluster
else if Node, .cluster == None
Node;.cluster = Node;.cluster
else if Node;.cluster != Node;.cluster

Merge(Node; .cluster, Node;.cluster)
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