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1. A REVIEW OF DENSITY ESTIMATION METHODS 

1.1. Introduction 

Density estimation is possibly the most important topic 

in applied statistics. When we do not know the density, 

f (x), we must infer its characteristics from a sample Xj^, 

before we can make any inferences or predictions. 

Classical density estimation involves initial screening of 

the data, which leads to hypothesizing that the data 

came from a particular parametric family of density curves. 

The process of estimating the parameters of that family 

of densities and hypothesis testing to see if this hypothesis 

is tenable follows. In the absence of a priori information, 

the initial screening of the data is usually done with 

the time honored histogram which leaves a lot to be desired 

as a density estimate. It was in 1951 that Fix and 

Hodges (1951) suggested some improvement in the method of 

producing a histogram, reducing the subjectivity to some 

extent. This soon led to nonparametric estimates of f(x) 

which are continuous and, so to some extent, could bypass 

the usual inference chain of parametric density estimation. 

The estimators suggested fall roughly into the following 

categories: 

(a) kernel (or window) estimators, 

(b) spline estimators, 

(c) series estimators. 
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(d) maximum likelihood, and histogram type estimators. 

We shall examine these nonparametric methods of uni­

variate density estimation in this chapter. Chapter 2 takes 

a closer look at kernel density estimators, nearest neighbor 

estimators in particular, and develops two new estimators. 

Chapter 3 presents simulation results for these estimators 

and compares their performance to some kernel estimators. 

1.2. Kernel Density Estimators 

Fix and Hodges (1951), in a paper on nonparametric 

discrimination, used a "running histogram" as a density 

estimate rather than assume an underlying normal distribution 

or choose the usual histogram. They subjectively chose 

an interval width, h, and then estimated the density at any 

given point as being proportional to the number of observa­

tions falling within an interval of width h centered at 

the point under consideration. This running histogram, 

or naive estimator led Rosenblatt (1956) to define a class 

of univariate estimators, known as kernel, or window, 

estimators, which can be written as 

. n x-X. 
ê (X) = ̂  Z K(-T—^) (1.2.1) 
n nh n 

where are assumed to be independently and 

identically distributed with f ( *), the unknown density and 
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K(-) is the kernel. For the naive estimator 

K(x) = J for |x( _< 1 

= 0 otherwise (1.2.2) 

The larger the value of h, the coaurser the grouping, so 

that as n becomes large, h should become smaller. If, the 

kernel K satisfies the following conditions: 

K is symmetric 

K(u)du = 1 

then Rosenblatt, showed that this class of estimators was 

pointwise and integratedly consistent in quadratic mean pro­

vided h = h^ is chosen suitably. The optimal choice of h^, 

which depends on the unknown density f, leads to the con­

vergence of the MSE, the mean squared error, at the rate of 

0(n Parzen (1962) imposing further constraints on 

K, showed asymptotic unbiasedness, and then listed several 

forms of the kernel which satisfy these constraints. The 

kernels considered include the rectangular, triangular, normal 

(1.2.3) 

K(u) |u| ̂du < oo 
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and cauchy density functions. If 

h •*0 
n 

and 

nh^ (1.2.4) 

he also showed that the MSE converges to zero, and under 

further conditions, showed the asymptotic normality of 

{ê^(x)} for fixed x. Many authors followed Parzen's approach, 

changing the assumptions about f(x), the conditions imposed 

on K(.), and {h^}, and proved consistency properties for 

Amongst them are Nadaraya (1963, 1965), Murthy (1965) , 

Woodroofe (1967), Bhattacharya (1967), Schuster (1969, 1970) 

and Silverman (1978a), Craswell (1965) generalized Parzen's 

results to estimation on a topological group, and BorwanJcer 

(1971) considered strictly stationary processes. 

Other authors found asymptotically optimal forms for K(•), 

the kernel. Bartiett (1963), for example, proposed 

2 
K(u) = ^(1 - ̂ ^) for lui < h 

3h 

= 0 otherwise, (1.2.5) 

which optimizes a larger group of terms in the asymptotic 

expansion of the mean squared error. Watson and Leadbetter 

(1963) used the integrated mean squared error as a criterion 

and arrived at 



*_(t) = , (1.2.6) 
(i + l(n-l)/n]) 

Uf(t) 1^ 

where (P^(t) is the Fourier transform of f ( ' ) ,  assuming <1)^ 

to be square integrable. They demonstrated the optimal form 

for K corresponding to various densities f and showed that 

the integrated mean squared error cannot be better than 

0(l/n). Woodroofe (1968) presented a two-stage procedure to 

estimate f(•) when the kernel K has been specified. After 

two initial guesses for h^, which are used to obtain rough 

estimates for f and the first nonvanishing moment of f, a 

new value h^ for h is computed. This h^ is used to estimate 

f(-) in the usual way. Woodroofe showed that this method 

converged asymptotically in mean squared error- Nadaraya 

(1974) provided a similar two-stage procedure, but was based 

on a different optimality criterion. Whittle (1958) suggested 

a linear estimator of f(x) of the form 

ZW (X.) 
2(x) = ^ (1.2.7) 

where W is a weight function to be optimized and then 

considered a Poissonization of the problem. Consider N to 

be distributed as Poisson (M) and estimate #(x) = Mf(x) by 

ZW (X.).M 
*(x) = —21—1 , (1.2.8) 



6 

using as an optimization criterion 

min EpEg | $  ( x )  -4» fx) | ̂. (1.2.9) 

The suffices in (1.2.9) refer to the prior distribution of 

the pcirameters and the sampling fluctuations, respectively. 

Anderson (1969a,b), after a fairly extensive study, con­

cluded that the actual kernel K(•) used makes little dif­

ference to the optimum value of the integrated mean squared 

error, but that the optimal value of h^ differs for different 

kernels. The normal kernel performs satisfactorily when esti­

mating normal and relatively symmetric densities, but not 

when estimating the negative exponential. Fryer (1977) 

recommended that skew data should be transformed nearer to 

symmetry before using the estimation procedure, and then the 

resulting estimate should be transformed back. Nadaraya 

(1964) and Watson (1964) considered estimating the 

regression curve of Y on X, 

jyf(x,y)dy 

E ( Y I X ) = E m(x) 

Jf (x,y)dy 

= m(x). (1.2.10) 

As an estimator, they used 

n x-X. 

( 1 . 2 . 1 1 )  



with a symmetric K ( • ) and proved some asymptotic results. 

In a later paper, Nadaraya (1965) considered the regression 

problem of Y on X where 

X = Y + Z, Z~N(0,a2), (1.2.12) 

and the density of Y being unknown. Since 

E(Y|X) = (P- + X, (1.2.13) 

he proposed 

2 m(x) = a + X, 

^n(^) (1.2.14) 

(x) = 
f^ (x+h)(x-h) 

'n'"^ 25 

and proved some consistency properties with 

h^ = n 0<9<^. (1.2.15) 

Another group of papers is concerned with estimating 

the hazard function 

= I#R • 

Watson and Leadbetter (1964a,b) used as estimators, 

f (X) 
^ (1.2.17) 

(1-J f^(t)dt) 

0 
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and 

fn(x) 

1-F^(X)' 

(•) being the sample distribution function. Both the 

estimators are asymptotically unbiased under suitable 

conditions. 

Nearest neighbor estimators, which are kernel estimators 

also, are considered in Chapter 2. 

1.3. Spline Estimators 

Boneva, Kendall and Stefanov (1971) used the histogram 

as a starting point for a smoothed estimator of an unknown 

probability density function. Starting with the data in 

the form of a histogram, with the cell width e specified, 

they found a one to one, linear invariant and bi-continuous 

mapping onto a Hilbert space of smooth functions and called 

the resulting form a histospline. The histospline is a 

quadratic spline, i.e., a continuous and continuously dif-

ferentiable function which is a quadratic in each fixed 

interval and square integrable. It is also constrained to 

integrate to the same value as the original histogram over 

every cell, but is not necessarily nonnegative. To apply 

it to raw data, it can be written in the form of a kernel 

estimator and hence enjoys the attributes of that class of 



9 

estimators. Schoenberg (1972) and Lii and Rosenblatt (1975) 

presented similar modifications of the histospline estimator, 

producing a less wiggly and nonnegative estimator, Wahba 

(1975) considered the statistical properties of a slight 

generalization of the histospline for densities with finite 

support. Instead of the second derivatives being assumed 

zero at the end points of the interval, their values can be 

estimated from the data. 

Wahba (1971) considered another approach. A local esti­

mate of f at X can be based on the derivative of an mth 

degree polynomial estimate of F in the neighborhood of x 

obtained by the Lagrangian interpolation formulae. Wahba 

showed that this estimator is pointwise consistent in mean 

squared error at a slightly faster rate than the kernel 

estimators under stated conditions. Van Ryzin (1969) earlier 

had derived a special case of this estimator. 

1.4. Series Estimators 

Let be independently and identically distribu­

ted with the unknown probability density function, f(x), 

xeR. Let r(•} be a known weight function so that the inner 

product 
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(<pfll>) = (p (x)ij;(x)r(x)dx (1.4.1) 

defines a Hilbert space L2(r) and let an orthonormal basis 

- » exist for the N-dimensional subspace E , D# / iC—X / I* 

then 

- (1-4.2) 

is the mean squared approximation to f(x). Cencov {1962a,b) 

considered 

1 ^ 1 r. . ' (1.4.3) ®kN = 5 %Zi*k,N<Xi)r(Xi' 

as a strongly consistent estimator for a^^^ and proposed 

as an estimator for f(x). The choice of and n contribute 

to the closeness of E^^x) to f(x). He proved several theorems 

relating to the degree of approximation and proposed a stopping 

rule for N, the number of terms in the series. The resulting 

estimator is not necessarily always nonnegative. Several 

authors considered the same formulation as Cencov and studied 

the properties of the resulting estimators. Schwartz (1967) 
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considered the case when r(x) = 1, N = N(n) and is the 

kth Hermite function over the real line and proved several 

N 
consistency properties requiring conditions such as — 0 as 

n ->• ®. Blaydon (1967) considered a generalization, estimating 

both F{•) and f(*) by a linear combination of functions using 

the criterion of minimum least squares. Kashyap and Blaydon 

(1968) evaluated aj^^ by a gradient type technique and gave 

an example using the first three Laguerre polynomials over 

[0,4] to estimate the distribution function corresponding to 

an exponential density. Watson (1969) introduced a general 

weight function X in the estimator, 

00 

however, 

^k{N) ̂  for k = 1,2,—,n 

= 0 elsewhere 

is a better form as far as application is concerned. 

Tarter and Kronmal (1967) extend the Cencov model 

to cover both F(-) and f(-), but only with finite support. 

They chose the trigonometric functions icos kirx}, Isin kirx}, 

and icos knx, sin knx) for their $'s, as they require the 

orthogonal series used to estimate F(*), still to be ortho­

gonal when differentiated to yield the estimate for f("). 

They give a stopping rule for the number of terms to be 
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included in the series and suggest that ten should be 

sufficient for all practical purposes. Fellner (1974), in a 

synthesis of the papers by Whittle (1958), Tarter and 

Kronmal (1967) produced a multistep estimating procedure 

which bypassed the usual stopping rule problem by using a 

hypothesis testing technique. Grain (1974) proposed a maximum 

likelihood approach to estimating the coefficients of the 

orthogonal series. Several authors, e.g. Watson (1969), 

Fellner and Tarter (1971), and Tarter and Raman (1971) , noted 

the theoretical equivalence under stated conditions of the 

Fourier estimators and kernel estimators, but in practice, the 

resulting estimators are locally very different, especially 

when n is relatively small. 

Wegman (1969; 1970a,b) employed a maximum likelihood 

approach to obtain a modified histogram estimator for an 

unknown density f with domain (a,b] . His estimators are of 

the form 

1.5. Maximum Likelihood Estimators 

k-1 
f(xlc) = Z c 

j=0 
(1.5.1) 
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where 

I(c a](x) = 1 if xe(c,dj 

= 0 otherwise. 

CJ ^ Of j 0 f 1 f ^ ^ m fk f 

k-1 
Z c. (a. ,-a.) = 1, 
j=0 ^ J ] 

ao = a 

= b 

•— { f C2 # • • • / ) e 

The criterion function to be maximized based on a sample 

of size n, is 

n . 
L(c) = n f (X,/c) , (1.5.2) 

i=l 1 -

subject to the constraint that at least m(n) observations 

must fall into each of the k intervals where 

1 '5T57' 

m(n) -»•<» faster than 0(/log(log n) ) . (1.5.3) 

For k = nm(n), the solution is 
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f  (X)  
2 1 , , 

^ i=0 *j+l"^j 

II o
 

f
l
j
 

a 

^1 = X(lm) (1.5.4) 

^2 = ^(2m) 

^k-l " ̂t(k-l)m} 

and 

^ = b. 

Thus, Wegman used interval widths of the histogram, which 

varied across the data base in a manner inversely proportional 

to the density of the data points in the interval. This 

approach to density estimation, maximizing the likelihood 

function over a certain space, was initially proposed by 

Grenander (1956). He derived the maximum likelihood estimate 

for a nonincreasing density f(•) corresponding to an abso­

lutely continuous distribution function, F{-). It arose from 

the studies of the force of mortality determined from mortality 

tables. He showed the estimate f^(') to be a step function, 

the derivative of the greatest convex minorant of the 

empirical distribution function. Other authors who have used 

similar techniques are Marshall and Proschan (1965), Robertson 

(1967), Weiss and Wolfowitz (1967), Rao (1969) , McGilchrist 

(1975). 

Good (1971) and Good and Gaskins (1971, 1972) considered 

maximizing a score function 
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w = L - *(f), (1.5.5) 

where L is the sample log likelihood function and 0 a non-

negative roughness penalty function. They proved pointwise 

consistency in probability under stated conditions. They 

let 

Y'^dx + 6jY"^dx. (1.5.6) (J)(f) = 4a 

where 

f = 

a ̂  0, 

B  >  0 ,  

a+B > 0, and assumed 

CO 

Y(X) = Z Y^<i>N,(x), (1.5.7) 
m=0 ™ ™ 

Yjjj are real coefficients and ())^(x) are the Hermite poly­

nomials. This leads to a set of simultaneous nonlinear 

equations to be solved iteratively for Y^/Y2/ • • •'Yj^/ where 

^R+1'***' assumed zero. 

1.6. Remarks 

So far, we have discussed various methods of density 

estimation. One method not yet mentioned is a subclass of 

kernel estimators. In kernel density estimators, regardless 

of the point at which the density is to be estimated, the 
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window used is the same for a given sample size. Various 

authors have used the distance to the Jc(n)^^ nearest neighbor 

as the window instead, thus making the choice of the window 

data dependent- Such estimators are referred to in the 

literature as the nearest neighbor estimators. These are the 

estimators of main interest in this thesis and are discussed 

fully in the next chapter. The remainder of the thesis is 

concerned with developing two new nearest neighbor estimators, 

proving their theoretical properties, and comparing their 

performance by a Monte Carlo simulation study. 
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2. THEORETICAL RESULTS 

2.1. Introduction 

Let X^,X2,...,X^ be a random sample, each identically and 

independently distributed as the random variable X, with un­

known density function f(•). In Section 2.2 we review some of 

the available kernel estimators of the function f. For the case 

when the function f is to be estimated at a particular point, 

say X, we propose the nearest neighbors estimator f^(x) of f(x), 

in Section 2.3 and develop consistency results for this esti­

mator. When f is to be estimated over its entire range, we 

propose the spheres of influence estimator, f^X"), in Section 

2.4 and develop its theoretical properties; Section 2.5 is 

devoted to some concluding remarks. 

2.2. Kernel Density Estimators 

A method which is often used to estimate probability 

densities of unknown functional form is the histogram. Let 

X^,X2,...,X^ be a random sample from an unknown absolutely 

continuous probability density with domain of positivity 

[a,b]. If the unknown density has an infinite range, we 

estimate the truncated density on [a,b] only. We assume that 

the sample points all lie in the interval [a,b]. 

Partition [a,b] by a = a^ < a^ < ... < a^ = b. Consider 

an estimator fg of the form 
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fgCx) = for < x < a^+i. 

i = 0,1,...,m-l 

f (b) = c T (2.2.1) 
H m-x 

fjj(x) = 0 for X / [a,b], 

where 

f„(x) > 0 and 
ri — 

f (x)dx = 1. 
a 

Defining to be the number of observations falling in the i^ 

interval, then the histogram estimator, fg(x), is obtained by 

letting 

g. 

=i = n(a.^^-a.) ' ̂ ' 

The intuitive appeal of Bg(x) is clear. As f is assumed to be 

absolutely continuous, if a^^^-a^is small, 

f(x) 'b f(a^) for £ X < a^^^' (2.2.2) 

q; 
and hence — estimates (a-,,-a-)f(x). It can be shown that 

n i+x 1 

among estimators of the form (2.2.1), fg uniguely maximizes 

the likelihood (Tapia and Thompson, 1978, p. 45), 

n 
V = • 

Most of the time, the partition aQ,aj^,... ,a^ is taken to be 

equally spaced, say of length 2h^. If 
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(i) f has continuous derivatives up to order three 

except at the endpoints of [a,b], 

(ii) f is bounded on [a,bl and 

(iii) h^^4, nh^-^ and n-»^, then for xe[a,b], 

MSE(Bg(x)) = E[ (fjj{x)-f (x) )^] -»• 0 as n-»<=, 

i.e., fgCx) is a consistent estimator for f(x), (Tapia and 

Thompson, 1978, pp. 46-48). By a proper choice of h^, which 

depends upon the unknown density f(x), the global measure, 

integrated mean square error. 

IMSE = MSE(fg (x) )dx 

-2/3 
can be made to decrease at the rate of n ' . 

The histogram suffers a number of drawbacks; namely, 

the arbitrariness in choosing the size, number and location 

of the intervals. However, it is a good tool in preliminary 

data analysis. 

Rosenblatt (1956), in a very insightful paper, extended 

the histogram estimator of a probability density. Assuming 

the unknown density f to be continuous, the Rosenblatt esti­

mator is given by 

# of sample points in (x-h^, x+h^) 

= Z5K 
n 

where h is a real valued number constant for each n. B_(x) n n 

can also be written as 
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where 

# of sample points < x 

n 

If h -*-0 and nh as n-»^, then it can be shown that the 
n n 

MSE(f„ (x) )-^0 as n-^. If h can be chosen to minimize the 
n n 

MSE(f^(x)), which then depends upon the unknown density f, the 

estimators are given in Bickel and Rosenblatt (1973), Kim and 

Van Ryzin (1974), Nadaraya (1965), Schuster (1970) , Van Ryzin 

(1969), and Woodroofe (1970). 

Rosenblatt estimator is essentially a histogram which, for 

estimating the density at x, say, has been shifted so that x 

lies at the center of one of the partition intervals. For 

estimating the density at another point, the mesh is shifted 

again so as to make that point, the midpoint of one of the 

mesh intervals. This shifted histogram estimator can also 

be written as 

rate of convergence of MSE(f^(x)) is seen to be of the order of 

Studies of various measures of consistency of density 

f„(x) (2.2.3) 

where 
if |u| < 1 

lu| > 1 
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and {Xj} are the data points. Rosenblatt suggested generalizing 

the above representation to use other functions K(•), the de­

tailed derivation of the kernel estimators, however, is due 

to Parzen (1962). He considered kernels of the form 

[ lK(y) |dy < «, 
J —00 

sup lK(y)Î < 
—oo<y<oo 

lim |yK(y)I = 0, 
y-*-oa 

K(y) > 0 

and 
«00 

K(y)dy = 1. 

If f is assumed to be continuous, then 

to be limiting unbiased and consistent 

conditions that 

h.^0 as n-x» 
n 

and 

nh as n-^«> 
n 

The rate of convergence of the mean squared error at some 

point X or the integrated mean squared error is of the 

-4/5 
order of n ' , the same as the one obtained for the shifted 

histogram, if h^ is chosen to minimize MSE(x) or IMSE, 

respectively. Note that h^ then depends upon the unknown 

f^(x) can be shown 

under the usual 
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density f(•). 

The problem of determining the sequence {h^} to achieve 

best results is not answered in the absence of the knowledge 

about the unknown density f(•). Various authors have tried 

to answer this question in one manner or another, e.g., 

Silverman (1978b), Schuster and Gregory (1978). However, the 

estimate is still not satisfactory. Moreover, if the density 

f is very low in some region and if only one sample point 

falls in that region, then the kernel estimator will have a 

peak at that sample point and be too low over the remainder 

of that region. Similarly, in the region where f is large, 

the sample points are more densely packed together and the 

kernel estimator will tend to spread out the high density 

region. To overcome these drawbacks, kernel density esti­

mators with variable windows were developed. 

Loftsgaarden and Quesenberry (1965) studied an estimator 

^n which is the ratio of the empiric measure and the 

Lebesgue measure of the sphere S^Xx) centered at x and having 

radius R(k,x) equal to the distance from x to the k(n)^^ 

nearest of X2,X2,...,X^. {k(n)} is a sequence of positive 

integers such that 

lim k(n) ® 
n-w 

and 

lim = 0 . 
n-H» 
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In the univariate case, 

_ _ {# of points in (x-R(k,x), x+R(k,x))}/n 
9n 2R(k,x) 

Loftsgaarden and Quesenberry showed that g^ is pointwise 

consistent in probability at continuity points of f. Esti­

mators utilizing the distance to the k(n)^ nearest 

neighbor are denoted in the literature as the nearest neigh­

bor estimators. Wagner (1973) established pointwise 

consistency with probability one under an additional assump­

tion equivalent to 

lim îilEL, H. œ • (2.2.4) 
n-Mo log n 

In fact, Moore and Yackel (1977a,b) point out that g^ is 

pointwise consistent with probability one under the weaker 

condition that 

nS log log(n) 

and show that this condition is the weakest possible. Moore 

and Henrichon (1969) prove uniform consistency with prob­

ability one of g^ in the univariate case under the condition 

that (2.2.4) holds. A general nearest neighbor density 

estimator, Moore and Yackel (1977a), is defined as 
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where is a random sample from a p-variate 

distribution with unknown probability density function f. 

They show that any consistency theorem true for the bandwidth 

estimator using kernel K and also true for the uniform kernel, 

remains true for f^ also. Wagner (1975) studied a similar 

estimator which replaces R(k,x) with a random radius 

independent of x and showed pointwise consistency in prob­

ability at all continuity points of f. Moore and Yackel's 

results allow almost all the results available for the band­

width estimator, i.e., fixed window estimators, to be 

transferred to the nearest neighbor estimators. However, 

they leave the question of the choice of the sequence 

{k(n)} unanswered. Schuster and Gregory (1978) and Breiman, 

Meisel and Purcell (1577) suggest ways of obtaining k(n) 

for practical situations- However, it involves a lot of 

computations. 

Let us examine how Parzen's (bandwidth) kernel esti­

mators and the nearest neighbor estimators tend to estimate 

the unknown density at some point, say x. When the kernel 

used is the uniform kernel, the bandwidth estimator takes an 

interval of fixed length around x, and counts the number of 

sample points falling in it; i.e.. 
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So, the interval is fixed, whereas the random number 

of points falling in it leads to em estimate of f(x). Using 

the uniform kernel, the nearest neighbor estimator is given 

by 

" = k(n) 
^n ^ nii{R(k,x) > 

where y{R(k,x)} is the Lebesgue measure of the sphere of 

radius R(k,x) around x, R(k,x) being the distance from x 

to its k(n)^ nearest neighbor in In this 

case, the randomness is provided by the distance to the 

k(n)^ nearest neighbor of x. Combining these 

two ideas, so as to have a random interval around x and a 

remdom number of points falling in this interval, both 

being determined by the sample, leads us to our estimators: 

(i) the nearest neighbors estimator, which is studied 

in Section 2.3, and 

(ii) the spheres of influence estimator which is studied 

in Section 2.4. 

2.3. Nearest Neighbors Estimator 

Let X^,X2,...,X^ be a random sample of size n from a 

distribution with unknown, continuous and bounded density f. 

It is desired to estimate the density at a point x. Let K 

be a Borel function satisfying: 
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K(y) ̂ 0 for all y 

K{y)dy = 1 L 
sup |K(y)1 < " (2.3.1) 
—oo<y<oo 

lim |yK(y)1 = 0. 

K is called a kernel. Let {k(n)} be a sequence of positive 

integers such that 

k(n) =ln^ ], 0<a*<l 

Define 

h^(x) = Y Z |x-Xj| (2.3.2) 

j ranging over 
k(n) nearest neighbors 
of X 

where Y>0 is a constant. The nearest neighbors estimator of 

f(x) is defined to be 

1 ^ 1 x-X. 

This estimator is similar to the nearest neighbor estimator 

discussed in the previous section except the window defined 

by (2.3.2) considers all neighbors up to and including the 

k(n)^^ nearest neighbor whereas only the k(n)^^ neighbor was 

considered before. The motivation behind varying window 

estimators is that the size of the window at a particular 

point should be proportional to the denseness of the sample 
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around that point. Moreover, the sample points are clustered 

around the point in question, a smaller window would result 

in higher weights being given to those points in the estimate 

reflecting the higher density in the region. The nearest 

neighbor estimators achieve this fay considering the distance to 

the k(n)^ nearest neighbor as the window at a particular 

point. However, a better measure of the denseness of the 

sample would be obtained if all the neighbors up to k(n) 

are utilized. The nearest neighbors estimator achieves this 

by considering the sum of the distances to each of the neighbors 

up to k(n) and taking the window proportional to this quantity. 

To establish consistency results for f^(x), we need the 

following lemmas. 

Lemma 2.3.1; Let K be a Borel function satisfying: 

MCO 

K{y)dy < » 

sup 1 K (y) I < °° 
—oo<y<oo 

and 

lim |yK(y)I =0. 
y-M» 

Let geL^, i.e., j|g(y)|dy < «> and let 

where {h^(x)} is a sequence of positive constants having 

lim h^(x) = 0 
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for each x. 

If X is a point of continuity of g ,  then 

lim g (x) = g(x) 
n-H» 

Proo f: Consider 

K(y)dy. 

IgnCx)-g(x) [ K(y)dyl 
J «->00 

> ,00 

= (9(x-y)-9(x)}dy| 
^ n n 

+ 'L|yi>6 (9(*-Y)-9(%)}H:TST K'B-UFR'DYI 

< sup 1g(x-y)-g(x)I 

n n 

P 
lyll-s 

IK{Z) |dz 

+ I 1̂  • 
ly| >5 

+ |gCx)| Ihj^(x) B^h^Ix))l^y 

ly[>0 

,00 
_< sup |g(x-y)-g(x) 1 |K(z)|dz 

I y I 

+ 5 sup 

l z l >  

I zK(z) 1 Ig (y) I dy 

tçm 

l9(x)| I 1K(Z)|dz 
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As g is continuous at x, one can take Ô small enough so that 

sup |g(x-y)-g(x) I < , 
lyj<6 

!K(Z)Idz 

|K(z)|dz being finite. Therefore, the first term on the 
•CO 

right hand side can be made < Also, because 

lim lyK(y)! = 0, and sup . |zK(z)| gets smaller and 
1 = 1  

smaller as n-^», and h^(x)-^0. Since geL^, the second term 

on the right hand side can be made < -j for large enough n. 

Lastly, since |K(y)|dy < the third term on the right 
J —CO 

hand side can be made smaller than < j for large enough n. 

Hence, for all e>0, there exists M such that for all n^M, 

I (x) -g (x) K(y)dyl < Y Y ~ 

Lemma 2.3.2: Let X^,X2,...,X^ be independent and identically 

distributed as 

1 with probability p 

0 with probability 1-p, 

then 

Xi 
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1 ^ P[^ Z X. > d] ; l>d>p 
* i=l 1 -

e-*X > 

V 

1 " p [ i  Z  X. < d]; 0<d<p , 
* i=l 1 -

where 

X = -d In p - (l-d)ln(l-p) 

+d In d + (l-d)ln(l-d) (2.3.3) 

Proof : Using the methods of Chemoff ( 1952) , Wozencraft and 

Jacobs (1965) have derived the Chemoff bound as 

follows: 

If X^,X2/.../X^ are independently and identically 

distributed with unknown mean y, then 

*" 
1 ^ P[i Z X. < d]; d<y 

V * i=i 1 -

with Xq defined implicitly by 

AX 

E[e° ] 

(2.3.5) 

Therefore, in our case. 

and 

XqX AQ 
E[e " ] = (1-p) + pe " 

E[Xe " J = pe " . 

(2.3.6) 
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So, for 0£d£l, by (2.3.5) and (2.3.6) 

T d = 

(l-p) + pe ® 

giving 

Now, 

^0 = 

An(X-d) -X.d X.X 
E(e " ) =e " E(e " ) 

= e [(l-p)+pe ] 

Substituting in (2.3.4) we get the desired result. 

Note that, from (2.3.3) , 

X = Tp(d) - H(d) 

where 

Tp(a) = -a In p - (l-a)ln(l-p) 

and 

H (a) = -a In a - (l-a)ln(l-a) 

Tp(a) is a linear function of a and H(a) increases from 0 to 

In 2 at a = .5, and decreases to 0 again at a = 1 as shown 

in Figure 2.1. (a) is tangent to the surface at a = p and 
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X is as shown in Figure 2.1. 

T (a) 

T (a) 

0 d p a 

d>p d<p 

Figure 2.1. Function H(a) and 

Notice that X increases as |d-p| increases. 
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liGimnâ 2.3.3; Let X^,X2/.../X^ be a random sample from a con­

tinuous distribution with unknown bounded density function f. 

Let , 
k(n) = [n° ], 0<a'<l, 

h^(x) = Z|x-X^| , (2.3.7) 

2 ranging over k(n) 
nearest neighbors of 
X in (X^,—,X^) 

f (x) > 0, 

h^ — h^(Xj), j — 1,2,...^n, 

and is selected at random from {h^}, j = 1,2,...,n, then 

(a) for 0<a'<i, 

and 

h^->0 in probability 

and h^(x)-»'0 with probability 1; 

(b) n^h^+™ in probability for l-a'<a; 

and n^h^(x)^* with probability 1 

for l-a'<a. 
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Proof: Consider h*(x) = distance from x to the k(n) 
th 

nearest neighbor in (X^,...,X^). 

Then for any positive ô, 

P(n ®h*(x) > 6) = P(h*(x) > 6 ) 
n — n — n 

where ô„ = -^ 
^ n® 

= P(sphere S of radius 6^ around x 

contains at most k(n)-l number of 

points in a sample of size n drawn 

at random) 

k(n)-l . . 
= Z (Î){P(S. (x)))](l-P(S; (X)))" ] 

j=0 n n 

where 

P(Sg (x)) = 
n 

f (x')dx* 

«6 
n 

I f (x')dx' 

(x- 2— # X + 2—) 

— 0(6 ) — 0 (—^) 
^ n* 

(2.3.8) 

Therefore, 

6, 
n 

P(n^h*(x)>6) = P( Z Y. < k(n)-l) 
n - i=l 1 -
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where are independent identically distributed 

random variables with probability p^ = P(Sg (x)) and 
n 

K™' 

•^n ° ° n ^ ̂  l-o'' (2.3.9) 
n 

From (2.3.8) and (2.3.9), for 6<l-a', d^ is less than p^ for 

large enough n and hence appealing to Lemma 2.3.2, it can be 

shown that for x such that P(Sg (x)) > 0, 
n 

P(n^h*(x) > 5) < e"*c all n>M, 
II — — — 

for some positive constant M. Hence, by Borel-Cantelli 

lemma, 

g 
n h*(x)-»-0 with probability 1 as n-^» for 6<l-a'. Now, 

a' being less than 1/2, the condition 6<l-a' can be satisfied 

by B>a' also. 

Therefore, from (2.3.7), we have that 

h (x) < k(n)h*(x) = n°' h* (x) . 
n — n n 

a. ' 
And, as n h*(x) -^0 with probability 1, so does h^(x) . 

Now, 

P(h„>0) = P(h (x)>0) f(x)dx. 

P(h^(x)>0) is bounded by 1; for each x for which 

P(S.(x))>0, it tends to zero with probability 1; and 
Ô 

{x: P(Sg(x))>0} has measure one with respect to f. Therefore, 

the Lebesgue dominated convergence theorem. 
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lim P(h >6) = 0 for each ô>0. 
n-x» 

This implies that h^^O in probability, thus proving (a). 

To prove (b), it suffices to consider only the k (n)^ 

nearest neighbor in the definition of h^(x). Now, consider 

M>0, then 

P(n®h„(x) < M) = P(h„{x) < 
n — n — _a 

n 

n . 
= Z ^)(P(Sr (x)))](l-P(Sa (X) ))*"], 
k(n) ] "^n "^n 

as the event {x; h^(x) ̂  is equivalent to saying that a 

M ^ sphere of radius Ô = — around x should contain at least 
n a 

n 
k(n) points. Therefore, 

P (n*h (x) < M) = P (i E Y. > , 
n - * i=i 1 - n 

{Y\} being independent identically distributed Bemouli variables 

with probability P(Sg (x) ) . Now, 
n 

P(Sg (x)) = j f(x')dx' 

" 

= 0 (^) and 
n 

^ T, hence for l-a*<a<l, 
n n ~ 

the conditions of Lemma 2.3.2 are satisfied and it can be 

shown that 
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P(n*h_(x) < M) < foj- an n>N, 

a positive integer. This implies, by the Borel-Cantelli 

lemma, that n^h^(x)^« with probability one for l-a'<a^l. 

Also, by the Lebesgue dominated convergence theorem, n®h^-^ 

in probability. Note that the restriction a>l-a' in (b) 

will yield a value of a < ^ only if a' is > However, for 

(a) to hold, a' has to be <^. A slight modification will 

do the trick. 

Let k(n) = [n^/^1+1, then k(n) = n^ , for a value of 

1 1/2 
a' > J- Also, as (a) holds true when [n ' ] neighbors are 

considered and when k(n)t^ nearest neighbor is considered 

by itself, it holds true when k(n) nearest neighbors are 

considered too. Hence, we have a value of a' > ̂  for which 

(a) holds. Now, we shall state and prove consistency results 

for the nearest neighbors estimator, f^(x). 

Theorem 2.3.1: Let K be the uniform density on [-1,1] and 

let h^(x) satisfy 

(a) h^(x)-^0 as n tends to » with probability 1, and 

(b) n°'h^(x)-«o as n tends to <= for some 0<a<j, 

then 

(i) at every continuity point of f, f^(x)-»-f(x) with 

probability 1, and 

(ii) if f is uniformly continuous on R, and 

n°' inf h^(x)-»-œ with probability 1 for some 0<a<j, 
X 
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then 

sup |f^(x)-f(x) I -»• 0 with probability 1. 

1 ̂  1 
x-X. 

proof: Consider f„(x) = j S ==<5;^'' 

where 

K(X) = 
Ixl < 1 

0 , X > 1 

Let 

Then 

S = {j||x-Xj| < h^(x)} 

cind 

IF^(X)-F(X)1 = I^ Z L-2H^(X)F (X) I/2H^(X) 
xc S 

i:s ' -

x+h (x) 
n 

f (x')dx' 

x-h^(x) 

x+h^(x) 

f (x ' ) dx ' 

x-h^(x) 

- 2h^(x)f (x) l/2hj^(x) 

^ 1 '1 r 1 
— 2h„ (x) 'n . n ieS 

x+h^ (x) 
f (x • ) dx • 

x-h^(x) 

, fX+h (x) 
+ 5h^I f{x')dx'-2h (x)f(x)l 
2h„(x) Jx_h^(x) * 

(2.3, 

n 
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If f is continuous at x, then the second tenu on the right 

hand side of (2.3.10) converges to zero with probability 1 

if h^(x)-»-G with probability 1. Let 

(x) = ̂  {# of points ^ x}. 

Hence, the first term in (2.3.10) is 

^ 'F„(x+h„(x)) - PL (x-h_(x)) 2h^(x) ' n n^ n n 

- F(x+h^(x)) + F(x-h^(x))l, 

where F is the distribution function associated with f, 

Therefore, it is 

sup IF^(X)-F(X)[ n^sup |F (x)-F(x)| 
< _X _ X 

n*h^(x) (2.3.11) 

Now, n'^sup (F^(X)-F(X)| -+ 0 with probability 1 for 0 < c x < ~ ,  

Keifer and Wolfowitz (1358). Also, by the conditions of the 

theorem, n°'h^(x)->^ with probability 1 for some 0<a<j. There­

fore, both the terms in (2.3.10) converge to zero with 

probability 1 and hence | f^ (x) -f (x) | 0 with probability 1 

for X a continuity point of f. This proves (i). To prove 

(ii), note that from (2.3.10) and (2.3.11), 
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sup |F^(X)-F(X)I 

sup I f(x)-f (x) 1 < sup{——5—73^) } 
X X n 

+ sup| A .  ^  ;  L  f (x')dx'-f (x) I 
X Jx-h^(x) 

sup I(X)-F(X) 1 p(x+h^(X)-F (x-h (X) 

- inf h (x) SUPL 2h^(X) ' 
X ^ X 

(2.3.12) 

If f is uniformly continuous, then the second term in 

(2.3.12) tends to zero with probability 1 as h^(x)-^0 with 

probability 1 for all x. The first term in (2.3.12) tends 

to zero with probability 1 if n°^ inf h (x) +« with probability 

1 1 for some 0<a<j, which then proves (ii). 

Note that by Lemma 2.3.3, a' and a can be chosen so as 

to satisfy the conditions of the theorem. 

Theorem 2.3.2: If the kernel K has bounded variation, and 

h^(x) satisfies: 

(a) h^(x) -*• 0 w.p. 1 for some 0<a<j, and 

(b) n°^ h^ (x) ^ « for some 0<a<^, then 

(i) at every continuity point of f, f^(x)-^f(x) w.p.l 

(ii) if n^' inf h^(x)-»^ w.p. 1 for some 0<a<j, and f 

is uniformly continuous, then 

sup|f^(x)-f(x)| 0 w.p. 1 
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n x-X. 
Proof: |f„(x)-f(x)| = - f(%)| 

= IIÇW |''[H^:AP(Y, 

+ E;;W 

1 

^ IhjjW (2.3.13) 

Integrating by parts we see that the first term is 

- h (x) sup|F^(y)-F(y) 1 , where 

V is the total variation of K. 

a 
Hence it is < —— sup ]F (y)-F(y) ] , 0<a<i 

n%(x) y 

and n°' sup|F^(y)-F(y) | -+ 0 with probability one for 0<a<j. 

Also, if n^h^(x)^ with probability 1, the first term -^0 with 

probability 1. Now, the second terra in (2.3.13) is equal to 
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which -»-0 by Lemma 2.3.1. 

Hence, f^(x)-+-f(x) with probability 1. This proves (i) 

To prove (ii), note that 
3u; 

X 
V sup I(y)-F (y) 

sup 1 (X) -f (X) I < (Y) 

y 

If for some 0<a<^, inf h (y)^ w.p. 1, then the first 
y 

term -»-0 w.p. 1. Also, if f is uniformly continuous, then 

Nadaraya (1965) has shown that the second term ^0 w.p. 1, if 

h^(x)-»-0 w.p. 1. Thus sup|f^(x)-f(x)|^0 w.p. 1. 
X 

Note that a' and a can be chosen according to Lemma 2.3.3 

to satisfy the conditions of the theorem. 

Following the method of Schuster and Gregory (1978) , an 

estimator very similar to the nearest neighbors estimator 

can be defined as follows. 

Divide the sample of size n into two parts randomly of 

size n^ and ng, n^+n2 = n. Let X^,...,X^ and Y^,—,Y^ 

be the two parts of the original sample. 

Define h^(x) = Z|x-Yj| (2.3.14) 

j ranging over 

(n) nearest neighbors 

of X in (Y^,...,Y^ ) 
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and 

hg (x) = Y2 Z| x-Xj I 

j ranging over 

kg(n) nearest neighbors 

of X in (X,, -.. ,X ), 
± n^ 

where 

4 
k, (n) = [n^ 0<a'<l, 

1 
cl ' 

kg (n) = [n^ ], for some 0<a'<l, and y^, y g are some positive 

constants. 

Then _ . .... ... (X) 
^l,n, ^2 ^2,n 

L (X) ^ n n (2.3.15) 

where f. (x) is the nearest neighbors estimator, with h.(x) 
1 1 

as the window and the ith subsample used with it, i = 1,2. 

Then the results of Theorems 2.3.1 and 2.3.2 hold true for f^(x) 

also, since it is a linear combination of two nearest 

neighbors estimators. Moreover, it can be shown now that 

fjj{x) is limiting unbiased and consistent in mean squared 

error. This is established in Theorems 2.3.3 and 2.3.4. 

Theorem 2.3.3: If 

(i) h^ (x) and hgfxJ^O with probability 1 and 

(ii) f is continuous at x, then 

lim E(f (x)) = f(x) with probability 1, where f^^x) 
n-H» 

is defined by (2.3.15). 
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Proof: 
n 

E(fi_„^(x)) . Eti- K(^)) 

1 "l 1 x-X. 

as (x) does not depend upon X^,X2,.../X^ by definition, 

(2.3.14). 

Therefore, 

= |K(y)f (x-hj^ (x)y)dy. (2.3.16) 

By Lemma (2.3.1), (2.3.16) converges to f(x) 

which implies that 

K(y)dy = f (x) , 

E(f, (x) ) = f (x) + 0 (h, (x) ) 
X F J-

and 

E(f_ (x)) = f(x) + 0(h,(x)). 
' 2 

Therefore, ^ V2,n 

E(f (X)) = E( ± ) 
n n 

f (x) with probability 1 
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Theorem 2.3.4: The estimator 2^(x) defined in (2.3.15) is 

consistent if 

(i) h^(x), h^fxy+O with probability 1, 

(ii) n^h^(x), nghgfx)^™ with probability 1, and 

(iii) X is a continuity point of f. 

Proof : Consider ^ 

VarCfi,„^(x)) . Var(^ 

-»• 0 by Lemma (2.3.1). 

Now, 

MSE(f- (x) ) = E[f, (x)-f(x)]^ 
l,n^ l,n^ 

= Var(f, (x) ) + Bias^(f, (x) ) 
X  J-  ' 1  

and by Theorem (2.3.3), 

Bias (f^ (x)) 0 with probability 1 if h, (x)->-0 with 
X ^n^ -L 

probability 1 and thus, 

MSE(f. (x))-»-0 with probability 1 for i = 1,2. And 
' i 

since f (x) is a linear combination of f. (x), 
n ifn^ 

MSE (î^ (x) )-»-0 with probability 1. 
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Note that conditions of Theorems 2.3.3 and 2.3.4 can be 

satisfied by choosing a' and a according to Lemma 2.3.3. 

2.4. Spheres of Influence Estimators 

When the density is to be estimated at several points, 

the computations of windows around each one of them is 

necessary before the nearest neighbors estimator studied in 

Section 2.3 can be used. Instead, if each sample point is 

considered to have a "sphere of influence" in which it 

contributes to the estimation of density, then only these 

spheres of influence of each sample point need be computed 

and used over and over again to estimate the density at any 

point in the range of the unknown density f. The estimator 

discussed in this section uses this concept and takes this 

sphere of influence around each sample point to be proportional 

to the window at that point. 

Let %i'^2'"'"'^n ^ random sample from a distribution 

with unknown density, f. Let K be a Borel function satisfying 

(2.3.1). Let {k(n)} be a sequence of positive integers, such 

that 

k(n) = [n*^ ] , 0<o*<l 

Define 

hjj^ ~ Y ^ I ̂  j 1 / j ~ l,...,n (2.4.1) 

Z  ranges over 
k(n) neighbors of Xj 
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where •y>0 is a constant. 

The spheres of influence estimator is defined as 

1 n 1 •-X. 

Note that 
n f ^ x-X. 

A- K(i—i)dx 

= k .Z^jK(yi)dyi 

= 1 

and g^(') ̂ 0, so that is a density. Consider the 

estimates 

1 ^ 1 x-X. 
f._(x) = a- ^ r j = l,...,n. :,n n n^^ n^^ 

By Wagner's results (1975), fjn(x)' i = 1,2,...,n, is 

a consistent estimator of f(x) in the sense that fj^(x)^ 

f(x) in probability as n-^<» if l-a'<a<l and K is of 

bounded variation. Wagner proved the results for the case 

when only the k(n)^^ nearest neighbor is used in (2.4.1) 

but to extend it to the present situation is similar to 

the methods employed in Section 2.3. 

Therefore, for each e>0, 

P( I f jn(x)-f (x) I _< e) 1 as n-^», j = 1,2, ...,n 

i.e., P(-e < f._(x)-f(x) < e) -»• 1 as n-»^, which implies that 
— ]I1 — 
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n 
P(-ne < Z f. (x)-nf(x) < ne) 

- j=i 

-»-l as n-x» 

and 
n 

-ne < Z f.„(x)-nf(x) < ne (2.4.2) 
- j=i 3n 

for ail n^Nj^, a positive constant, with probability 

arbitrarily close to 1. 

Now 

n 
Z f. (x)-nf(x) 
j=l 

n , n , x-X. 

- (n-l)f(x) 

1 ^ 1 1 
= {g„(x)-f(x)} + (n-l)(i Z TH^ h^K(g-A, 

]=1 k^] ]n ]n 

- f{x)} (2.4.3) 

Now, for each j, 

1 1 x-X. 
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is a consistent estimator of f(x) emd hence their average is 

also consistent. Therefore, the second term in (2.4.3) con­

verges to zero in probability and hence for the e>0 chosen 

before, 

< (n-l)E (2.4.4) 

for all n^N2/ for some N2>0, with probability arbitrarily 

close to 1. Substituting (2.4.4) in (2.4.2), we have 

n 
-ne < 1 f. (x)-nf(x) < ne 

- j=i 

if and only if 

-ne < {g„(x)-f(x)} + (n-1) {i ? ̂  Z ET" K(^. 
]=1 ]n 

-f (x) } _< ne 

Hence, for all n >_ max(N^,N2) , 

-ne + (n-1) e < g (x)-f(x) < ne - (n-l)e 
— n — 

i.e., lg^(x)-f(x)l £ e with probability arbitrarily close to 

1. Therefore, Theorems 2.3.1 and 2.3.2 can be carried over 

to the spheres of influence estimator-
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Theorem 2.4.1: Let K be the uniform density on [-1,1] and 

let (hj^}, j = 1,2,—,n satisfy the following conditions: 

(a) hj^^O in probability, j = l,2,...,n and 

(b) n'^hj^-*^ in probability for some 0<a<j, j = 1, 2 , . .  

then 

(i) at every continuity point of f, g^(x)->-f(x) in 

probability 

(ii) if f is uniformly continuous on R, then 

sup |g^(x)-f(x)| +0 in probability 

Theorem 2.4.2: If the kernel K has bounded variation, and 

{hj^}, j = l,2,...,n, satisfy, 

(a) hj^ -»• 0 in probability, j = l,2,...,n 

and 

(b) n^hj^+™ in probability for some 0<a<j, j = 1, 2 , . .  

Then, 

(i) at every continuity point of f, g^{x)-»-f(x) in 

probability, and 

(ii) if f is uniformly continuous, then 

sup |g^{x)-f(x)| +0 in probability. 
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2.5. Remarks 

The nearest neighbors and spheres of influence estimators 

use the data in determining windows for kernel density esti­

mators in such a way that the windows and the number of 

points falling in them are both random. In various empirical 

studies, we have found that the optimal choice of k(n) lies 

around n^^^ and that k(n) = n^^^ gives the optimal estimate 

for all practical purposes. The choice of the constant 

multiple Y can be determined by a search over a grid of values 

maximizing the likelihood type function 

n 
n f^^x^), where £ (x^) is the estimate based on the 

i=l 
sample with removed. The value of y is usually close to 

unity. In the next chapter, we examine various possibilities 

regarding the choice of Y and suggest a way of fixing Y-

Results of simulation studies using this technique and com­

parison with the fixed window kernel estimator using optimal 

window size are presented in Chapter 3. 
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3. SIMULATION RESULTS 

3.1. Introduction 

In the preceding chapter, we have shown that the nearest 

neighbors and the spheres of influence estimators are 

consistent estimators of the unknown continuous univariate 

density f. However, the parameters a' and y in the defini­

tion of 

k (n) = [n°^ ], 0<a*<l 

and 

h(x) = Y ZIx-Xj1 

j ranging over k(n) 

nearest neighbors of x in 

(X^, X2,... , X^ ) 

are yet to be determined before these estimators can be used 

in practice. It is desirable to have estimators which do 

not involve constants depending upon the unknown density f. 

A one shot approach which provides an estimate on obtaining 

a sample of size n is what we hope to achieve. 

One method of choosing (a*,Y) is to use the method sug­

gested by Shuster and Gregory (1978) for the nearest neighbor 

estimator which utilizes the distance to the k(n)^^ nearest 

neighbor in determining the window at a point. They used a grid 

of values of {A',Y) to maximize 
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n ^ 
n f(X.) (3.1.1) 

i=l 1 

f (X^) is the estimate at based on (n-1) observations 

with X^ deleted. In test runs with various distributions, 

the optimal values of a' and y for the nearest neighbors and 

spheres of influence estimators were found to lie around 

(.5, 1). The use of the optimality criterion (3.1.1) did 

not give any great improvement in mean squared error and 

required a large number of computations to implement. More­

over, fixing the values of 

a* = .5^ 

Y = 1 

provides a quick and easy method of obtaining density esti­

mates. It is interesting to note that for nearest neighbor 

estimator which uses only the k(n)^ nearest neighbor to 

define the window at a point, the optimal value of a' can 

generally be as high as .8. 

In evaluating nearest neighbors and spheres of in­

fluence estimators, the sample has to be sorted in ascending 

order so that the neighbors of a point can be found. The 

computations required to sort and then to find neighbors of a 

point increase rapidly as the sample size increases. This 

may not be much of a drawback since other methods require 

specification of some parameters before an estimate of the 
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density can be obtained. Knowledge about these parameters 

may not be available and in its absence good estimates will 

not be possible. However, for a large enough sample size, 

the naive shifted histogram estimator will yield good esti­

mates and as the computing time required is small, a few 

test runs with different window sizes will be sufficient. 

For small sample sizes, say up to 200, the nearest neighbors 

estimators are superior to the other kernel estimators and 

provide estimates without any information besides the sample. 

In this chapter, we study the mean squared error rates 

and efficiency comparisons of the nearest neighbors and 

spheres of influence estimators by generating samples from 

different distributions. Section 3.2 discusses the distribu­

tion considered and the method of comparison. Section 3.3 

presents the results of the simulation study and Section 3.4 

is devoted to some concluding remarks. 

3.2. Method of Comparison 

To determine the efficiency of the estimators, the kernel 

fixed window estimator (2.2.3) is used as a standard. It is 

defined as 
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where {h^} is a sequence of constants, and K is the kernel 

used- The integrated mean squared error for this estimator is 

— 4 / 5  
of the order of 0(n ^ ) and this convergence is fastest when 

h^ = n"^/^a(K)e(f), (3.2.1) 

and f . 
JK {y)dy 

a(K) = [ i  + 1 

2r( 

and 

y^K(y)dy/r:) ,\2 

S(f) = [ 

Tapia and Thompson(1978). The value r is called the 

characteristic exponent of the kernel K and for the kernels 

used in this simulation, the value of r used was 2. Although 

6(f) is a function of the unknown density, for the purpose 

of comparing efficiencies we can use the fixed window kernel 

estimator with the optimal window given by (3.2.1) as a 

standard technique against which the new estimators are tested. 

Three distributions are considered. The normal distribu­

tion with mean zero and unit variance; equal mixture of normal 

distributions with means -1.5 aoid 1.5 and unit variances; and 

the t-distribution with 5 degrees of freedom. Three kernels 

with characteristic exponent r=2 are used. The uniform kernel 

, the quartic kernel Kg and the normal kernel . The 

values of a(K) used in the definition of the optimal window, 

(3.2.1) are presented in Table 3.1. For each of the 

distributions listed, each of the kernels is used for sample 
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Table 3.1. Values of a(K) 

K a(K) 

K^(y) = I 1.351 

Kg (y) = 11 2.0362 

7764 

sizes of SO and 100. All samples were generated by the 

random number generators of the IMSL programs. Fifty equi­

distant points in the range of (-4, 4) for N(0,1) and tg 

distributions, and in the range of (-5, 5) for the mixture 

of two normal distributions, are selected at which the un­

known density is estimated. The estimates of mean squared 

error at these points are obtained by repeating the esti­

mation procedure a hundred times with a new random sample 

at each repetition. 
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3.3. Results 

For each distribution, kernel and sample size, we present 

(i) the integrated mean squared error, 

(ii) efficiency of nearest neighbors, and spheres of 

influence estimators compared to the optimal fixed 

window kernel estimator, 

(iii) the mean squared errors of the three estimators 

at the fifty points at which the density is 

estimated for a sample size and kernel, and 

(iv) a sample plot of the estimates obtained by the 

three methods for a sample size and kernel. 

These are given in Tables 3.2, 3.3, 3.4 and Figure 3.1 

for the Normal (0,1) distribution. Tables 3.5, 3.6, 3.7, 

and Figure 3.2 for the equal mixture of normal distributions, 

and in Tables 3.8, 3.9, 3.10 and Figure 3.3 for the t-

distribution with five degrees of freedom. 

From the tables, it is seen that the spheres of in­

fluence and nearest neighbors estimators are better than the 

fixed optimal window kernel estimator in most instances. 

The efficiencies of the estimators for the Normal (0,1) 

distribution are between 45 and 105% for the uniform and 

quartic kernels but they are between 113 and 137% for the 

normal kernel. For estimating the bimodal distribution, 

equal mixture of normal distributions, the spheres of in­

fluence and nearest neighbor estimators are superior for the 
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uniform and normal kernels and the fixed optimum window 

kernel estimators is only slightly better for the guartic 

kernel. For estimating the t-distribution, the spheres of 

influence and nearest neighbor estimators are at least as 

good or better than the fixed optimal window kernel esti­

mator. Considering that the fixed window estimator uses the 

optimal window size which is a function of the unknown density 

f, our estimators are preferable and perform better also. 

It is natural to compare these estimators to the 

nearest neighbor estimator which utilizes only the k(n) 

nearest neighbor of a point in determining the window. How­

ever, no efficient algorithm is available to determine the 

values of a' and y. Using the values of a' = .5 and y = 1 

leads to absurd estimates and efficiencies of the order of 

400%-800% for the nearest neighbors estimators. The nearest 

neighbor estimator is sensitive to the choice of a' and the 

optimal value is around .8. Also, for the small sample sizes 

considered, the nearest neighbor estimator is not very superior 

to the fixed optimal window kernel estimator and hence com­

parison of our estimators to the fixed window estimator is 

sufficient for establishing their usefulness and preferability. 

The nearest neighbors estimator is more efficient in the 

region where the density is large compared to the other two 

estimators. The spheres of influence estimator, though 

more efficient than the fixed window estimator, is less 
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efficient than the nearest neighbors estimator in the region 

where the density is away from zero. In sparse areas, the 

fixed window estimator is more efficient than the other two 

and the spheres of influence estimator is more efficient 

than the nearest neighbors estimator. Among the kernels 

considered, the quartic and normal kernel gave better results 

for the fixed window estimator. For estimating the Normal 

(0,1) distribution, the normal kernel gave better results for 

our estimators. However, the uniform kernel performed at 

least as good as the other two considered for estimating the 

mixture of normals and the t-distribution. 

3.4. Conclusions 

The nearest neighbors and spheres of influence estimators 

provide good estimates for small samples from the unknown 

continuous distribution without the need to supply any 

parameters before the estimation procedure can be started. 

These estimators are especially good for densities with long 

drawn out tail areas. As the nearest neighbors estimator 

requires computation of neighbors of the points at which the 

estimates are desired, it can be used when it is desired to 

estimate the density at a few points only. The spheres of 

influence estimator lends itself to the situation when the 

density is to be estimated over the entire range. For large 

samples, the nearest neighbors estimator is preferable as the 
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number of neighbors to consider increases at the rate of 

n*^ only. 

In this thesis, we have presented a one-shot approach 

to univariate density estimation which requires only the 

sample, and its sample size n. Further research to extend 

the results of this thesis to multivariate distributions 

cind finding efficient algorithms to implement them is 

a further area of research. 
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Table 3.2. Integrated mean squared errors. Normal (0,1) 
distribution 

Sample 
size 

Spheres of 
influence 
estimator 

Nearest 
neighbors 
estimator 

Fixed optimal 
window 
estimator 

Uniform kernel, K^{y) = y, |y| £ 1 

50 
100 

.031112 

.021649 
.023278 
.018975 

Quartic kernel, K2 (y) = ^(1-y^)^, |y | <  1  

50 
100 

.041825 

.024769 
.042415 
.029851 
2 

Normal kernel, K_(y) = —i— e~^ 
^  / m  

—oo< y<c 

50 
100 

.018669 

.010370 
.018333 
.012530 

024549 
014468 

.022865 
,013598 

,023916 
014234 

Table 3.3. Efficiency of the estimators. Normal (0,1) 
distribution 

Sample 
size 

Spheres of Nearest Spheres of 
influence vs. neighbors vs. influence vs. 
fixed window fixed window nearest neighbors 

Uniform kernel, K^(y) ='j, {y| £ 1 

50 78.88 105.46 74.8 
100 66.83 76.25 87.65 

Quartic kernel, Kgfy) = ^(1-y^)^, |y| £ 1 

50 54.67 53.9 101.41 
100 54.89 45.55 120.51 

2 
Normal kernel, K,(y) = e ̂  -«<y<» 

50 128.11 130.45 98.2 
100 137.26 113.599 120.83 
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Table 3.4. Mean squared errors, N(0,1) distribution, 
sample size = 100 (normal kernel) 

X-values Spheres of 
influence 

Nearest 
neighbors 

Fixed 
window 

-3.84 0.000103 0.000383 0.000000 

-3.68 0.000125 0.000440 0.000006 

-3.52 0.000152 0.000508 0.000017 

-3.36 0.000184 0.000590 0.000019 

-3.2 0.000220 0.000686 0.000016 

-3.04 0.000260 0.000800 0.000032 

00 00 CM 1 0.000300 0.000933 0.000067 

-2.72 0.000333 0.001088 0.000108 

-2.56 0.000353 0.001266 0.000196 

-2.4 0.000350 0.001469 0.000294 

-2.24 0.000320 0.001689 0.000489 

CO o
 

1 0.000268 0.001872 0.000645 

-1.92 0.000218 0.001964 0.000846 

-1.76 0.000222 0.001889 0.000992 

-1.6 0.000350 0.001614 0.001285 

-1.44 0.000678 0.001043 0.001750 

-1.28 0.001246 0-000614 0.002156 

-1.12 0.002023 0.000451 0.003052 

-.96 0.002884 0.000716 0.003590 

-.8 0.003610 0.001211 0.003641 

-.64 0.003906 0.001829 0.003969 

-.48 0.003651 0.002721 0.003592 

-.32 0.003246 0.003733 0.004197 

-.16 0.003406 0.003851 0.004501 

0.00 0.003852 0.005107 0.005765 

.16 0.003629 0.004581 0.005542 

.32 0.003668 0.004736 0.005324 
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Table 3.4 (Continued) 

Y—TRAIIIOC Spheres of Nearest Fixed 
influence neighbors window 

.48 0.003947 0.004049 0.005552 

.64 0.003640 0-003824 0.005741 

.8 0.003153 0.002416 0.003735 

.96 0.003032 0.001761 0.003175 

1.12 0.002771 0.001098 0.003560 

1.28 0.002252 0.000618 0.003157 

1.44 0.001623 0.000548 0.002933 

1.6 0.001037 0.000590 0.002330 

1.76 0.000592 0.000880 0.002009 

1.92 0.000322 0.001297 0.001553 

2.08 0.000210 0.001616 0.000970 

2.24 0.000205 0.001718 0.000676 

2.4 0.000247 0.001639 0.000472 

2.56 0.000293 0.001488 0.000293 

2.72 0.000320 0.001338 0.000228 

2.88 0.000321 0-001188 0-000209 

3.04 0.000302 0.001038 0-000140 

3.2 0.000270 0-000900 0-000071 

3.36 0.000232 0-000776 0-000037 

3.52 0.000195 0-000669 0-000023 

3.68 0.000161 0-000576 0-000013 

3.84 0.000132 0-000498 0-000007 

4.00 0.000108 0-000432 0-000008 

Integrated MSE 0.010370 0.012530 0-014234 
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NORMAL(0.1 J DISTRIBUTION 

SAMPLE SIZE 100. NORMAL KERNEL 

r\ 

ACTUAL DENSITY 

NEAREST NBS 
FIXED WINDOW 

4.5 2.3 0 . 0  2.3 4.5 

X 

Figure 3.1. Sample plot 
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Table 3.5. Integrated mean squared errors, equal mixture of 
normal (-1.5, 1) and normal (1.5, 1) 

Sample 
size 

Spheres of 
influence 
estimator 

Nearest 
neighbors 
estimator 

Fixed optimal 
window 

estimator 

Uniform kernel^ K^(y) = |y| £ 1 

50 
100 

.014220 

.009538 

15 2 , 2  
Quartic kernel, K2 (y) = jg-d'Y ) 

.013641 

.010888 

|y| < 1 

50 
100 

.017512 

.012142 
.017859 
.013419 

.020892 

.012315 

,019506 
011409 

Normal kernel, K,(y) = e 
-y /2 ^ , —»<y<ce> 

50 
100 

.014586 

.009566 
.012375 
.009471 

.020371 

.011948 

Table 3.6. 

Sample 
size 

Efficiency of the estimators, equal mixture of 
normal (-1.5, 1) and normal (1.5, 1) 

Spheres of 
influence of 
fixed window 

Nearest 
neighbors vs. 
fixed window 

Spheres of 
influence vs. 

nearest neighbors 

Uniform kernel, K^(y) = |y| £ 1 

50 
100 

146.92 
129.12 

153.16 
113.11 

Quartic kernel, Kgfy) = ̂ (1-y^)^, {y| _< 1 

50 
100 

111.39 
93.96 

Normal kernel, (y) = 

109.22 
85.02 

-y^/2 e , -oo<y<oo 

50 
100 

139.66 
124.9 

164.61 
126.15 

95.93 
114.15 

101.98 
110.52 

84.84 
99.01 
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Table 3-7. Mean squared errors, equal mixture of N (-1.5, 1) 
and N (1.5, 1), sample size = 100, uniform kernel 

X-values Spheres of 
influence 

Nearest 
neighbors 

Fixed 
window 

-4.8 0.000075 0.000736 0.000009 

-4.6 0-000099 0-000887 0.000019 

-4.4 0.000128 0.001081 0.000030 

-4.2 0.000149 0.001332 0.000061 

-4.0 0.000175 0.001641 0.000091 

1 U
) 00
 

0.000200 0.002019 0.000178 

-3.6 0.000199 0.002294 0.000227 

-3.4 0.000204 0.002230 0.000363 

-3.2 0.000208 0.001714 0.000518 

-3.0 0.000325 0.000985 0.000802 

00 1 0.000518 0.000438 0.001077 

-2.6 0.000842 0.000159 0.001210 

-2.4 0.001143 0.000190 0.001553 

-2.2 0.001594 0.000481 0.001543 

-2.0 0.001809 0.000894 0.001768 

-1.8 0-002035 0.001289 0.001650 

—1.6 0.001866 0.001455 0.001959 

-1.4 0-001305 0.001645 0.002021 

-1.2 0-002042 0.001504 0.002430 

1 H
 

o
 

0-002013 0.001259 0.002235 

-.8 0-001286 0.000798 0.002334 

—. 6 0-001274 0.000397 0.001765 

-.4 0.001202 0.000424 0.001509 

—. 2 0.001377 0.000851 0.001493 

0.00 0.001397 0.001315 0.001927 

.2 0.001632 0.001771 0.001587 

.4 0.001759 0.001434 0.001503 

.6 0.001656 0.000792 0.002080 
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Table 3.7 (Continued) 

X-values Spheres of Nearest Fixed X-values 
influence neighbors window 

.8 0.001604 0.000402 0.002185 

1.0 0.001527 0.000461 0.001930 

1.2 0.001405 0.000633 0.002408 

1.4 0.001280 0.001114 0.002517 

1.6 0.001375 0.001365 0.002398 

1.8 0.001546 0.001392 0.002511 

2.0 0.001665 0.001235 0.002561 

2.2 0.001954 0.001343 0.002257 

2.4 0.001689 C.000746 0.002060 

2.6 0.001577 0.000437 0.001665 

2.8 0.000998 0.000182 0.001550 

3.0 0.000695 0.000142 0.001053 

3.2 0.000452 0.000399 0.000889 

3.4 0.000325 0.001011 0.000578 

3.6 0.000245 0.001795 0.000368 

w
 

CO
 

0.000219 0.002163 0.000256 

4.0 0.000160 0.002092 0.000164 

4.2 0.000152 0.001805 0.000120 

4.4 0.000123 0.0015C2 0.000103 

4.6 0.000104 0.001227 0.000053 
CO 

0.000084 0.001005 0.000020 

5.0 0.000071 0.000831 0.000005 

Integrated MSE 0.009538 0.010888 0.012315 
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EQUAL MIXTURE OF N(-1.5.i) AND N(5.5.;) 

SAMPLE SIZE 100. UNIFORM KERNEL 

o 
+ 

- ACTUAL DENSITY 
O - SPH. OF INFL. 
A - NEAREST NFS 
+ - FIXED WINDOW 

X 
u_ 

Figure 3.2. Sample plot 
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Table 3.8. Integrated mean squared errors, t-distribution 
with 5 degrees of freedom 

Sample 
size 

Spheres of 
influence vs. 
fixed window 

Nearest 
neighbors vs. 
fixed window 

Spheres of 
influence vs. 

nearest neighbor 

Uniform kernel, K^(y) = j/ IyI £ 1 

50 
100 

.034185 

.025284 
.049596 
.047735 

Quartic kernel, KgCy) = ^(1-y^)^, |y| _< 1 

50 
100 

.034796 

.028953 
.045330 
.041328 

Normal kernel, K, (y) = e ̂  , -™<y<( 
/2¥ 

50 
100 

.051387 

.040059 
.055205 
.051348 

.063060 
,048488 

,060647 
,047370 

,062000 
048118 

Table 3.9. Efficiency of the estimators, t-distribution with 
5 degrees of freedom 

Sample 
size 

Spheres of 
influence vs. 
fixed window 

Nearest Spheres of 
neighbors vs. influence vs. 
fixed window nearest neighbor 

Uniform kernel, (y) = < 1 

50 
100 

184.47 
191.77 

127.15 
101.58 

Quartic kernel, Kgfy) = |y| 1 1 

50 
100 

174.29 
163.61 

133.79 
114.62 

Normal kernel, (y) = 1 

/2¥ 
e-y'/2. —oo<y<c 

50 
100 

120.65 
120.12 

112.31 
93.71 

145.08 
188.79 

130.27 
142.74 

107.43 
128.18 
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Table 3.10. t-distribution with 5 degrees of freedom, 
sample size = 100, guartic kernel 

X-values Spheres of 
influence 

Nearest 
neighbors 

Fixed 
window 

-3.84 0.000253 0.002954 0.000898 

-3.68 0.000302 0.003048 0.000821 

-3.52 0.000358 0.003124 0.000865 

-3.36 0.000421 0.003165 0.001249 

-3.20 0.000487 0.003175 0.001537 

-3.04 0.000554 0.003184 0.002053 

-2.88 0.000615 0.003208 0.002488 

-2.72 0.000668 0.003253 0.002749 

-2.56 0.000709 0.003251 0.002548 

-2.40 0.000759 0.003123 0.002798 

-2.24 0.000845 0.002961 0.002803 

-2.08 0.000958 0.002746 0.002958 

-1.92 0.001065 0.002587 0.003380 

-1.76 0.001187 0.002230 0.003224 

-1.60 0.001350 0.001566 0.002635 

-1.44 0.001451 0.001266 0.003699 

-1.28 0.001452 0.000694 0.003797 

-1.12 0.001606 0.000530 0.002751 

-.96 0.002357 0.001217 0.003397 

-.8 0.003974 0.002849 0.005753 

— .64 0.006049 0.005764 0.008712 

-.48 0.008526 0.009764 0.013865 

— .32 0.011849 0.014002 0.016024 

-.16 0.015612 0.018748 0.019375 

0.00 0.018033 0.022303 0.024908 

.16 0.018971 0.023218 0.027414 

.32 0.018112 0.021805 0.025650 

.48 0.015432 0.018204 0.021371 

.64 0.012319 0.013687 0.018162 
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Table 3.10 (Continued) 

x-vaiiiec: Spheres of Nearest Fixed 
influence neighbors window 

.8 0.008411 

.96 0.005408 

1.12 0.003955 

1.28 0.002524 

1.44 0.001648 

1.6 0.001436 

1.76 0.001431 

1.92 0.001412 

2.08 0.001342 

2.24 0.001222 

2.4 0.001071 

2.56 0.000910 

2.72 0.000750 

2.88 0.000628 

3.04 0.000557 

3.2 0.000503 

3.36 0.000449 

3.52 0.000394 

3.68 0.000341 

3.84 0.000294 

4.00 0.000253 

Integrated MSE 0.028953 

0 .008918 0 .012060 

0 .004907 0 .007650 

0 .002870 0 .005678 

0 .001187 0, .003686 

0 .000630 0, .003553 

0 .000834 0. .003214 

0 .001384 0. .003362 

0 .001840 0. .003095 

0 .002363 0. .002863 

0 .002790 0. .003033 

0 .003195 0. .003504 

0 .003229 0. ,002954 

0, .003285 0. ,002235 

0, .003352 0. 001944 

0. .003390 0. 002117 

0. .003391 0. 002015 

0. ,003337 0. 001538 

0. ,003298 0. 001442 

0. 003256 0. 001100 

0. 003191 0. 001002 

0. 003099 0. 001135 

0. 041328 0. 047370 



T DISTRIBUTION WITH 5 PEGPEES OF FREEDCM 

SAMPLE SIZE ICO. OUAPTIC KERNEL 

Ln 

O 

ACTUAL DENSITY 
3PH- OF INFL. 
NE/REST NPS 
FIXED WINPGW 

o 

o 
T T T 

o 

X 

Figure 3.3. Sample plot 
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