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Abstract. Class extensions allow for a modular addition of new behavior to an
existing class hierarchy. However, the reliance on position-dependent parameters in
mainstream programming languages has often a negative impact on the way new
behavior can be specified. This observation has led us to explore the concept of
forms, which are first-class extensible records that, in combination with a small set
of purely asymmetric operators, provide a core language for an extensible, flexible,
and robust software development approach. In this paper, we present a refine-
ment of our recent work on a substitution-free lambda calculus with forms. More
precisely, we develop the λF@-calculus in which names are replaced with shared
forms and parameter passing is modeled using explicit contexts and show, how this
calculus can be used to model open classes, a key mechanism for class extensions.
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ABSTRACT
Class extensions allow for a modular addition of new be-
havior to an existing class hierarchy. However, the reliance
on position-dependent parameters in mainstream program-
ming languages has often a negative impact on the way new
behavior can be specified. This observation has led us to
explore the concept of forms, which are first-class extensi-
ble records that, in combination with a small set of purely
asymmetric operators, provide a core language for an exten-
sible, flexible, and robust software development approach.
In this paper, we present a refinement of our recent work
on a substitution-free lambda calculus with forms. More
precisely, we develop the λF@-calculus in which names are
replaced with shared forms and parameter passing is mod-
eled using explicit contexts and show, how this calculus can
be used to model open classes, a key mechanism for class
extensions.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.1 [Programming Languages]: Formal Def-
initions and Theory; F.3.2 [Semantics of Programming
Languages]: Operational semantics; D.2.13 [Software En-
gineering]: Reusable Software

1. INTRODUCTION
A general engineering principle is to base the development
of new products on accumulated, generally available system
knowledge and experience. By putting emphasis on reuse
and evolution, the component-oriented software technology,
which has become the major approach to develop modern
software systems [33, 39, 44], can be considered a verita-
ble incarnation of this principle. The primary objective
of the component-based software technology is to take el-
ements from a collection of reusable software components
(i.e., take components-off-the-shelf ), apply some required
domain-specific incremental modifications, and build appli-
cations by simply plugging them together.

However, in order to be truly successful, the component-
based software development approach not only needs to pro-
vide abstractions to represent different component models
and composition techniques, but must also incorporate a
systematic method for constructing large software systems
[5, 28]. In particular, we need a canonical set of preferably
language-neutral composition mechanisms that allows for
building applications as compositions of reusable software
components [41]. Moreover, in order to guarantee flexible,
reliable, and verifiable software composition, these mecha-
nisms have to be based on a suitable formal foundation [17,
26, 34, 41]. A precise semantics is essential if we are to
deal with multiple architectural styles and component mod-
els within a common, unifying framework.

The component-based approach has emerged from the ob-
ject-oriented approach that has already shown a positive in-
fluence on software reuse. In fact, most component-oriented
systems are still built using mainstream object-oriented tech-
niques and languages. However, evolution and reuse of com-
ponent-based software do not depend on the object-oriented
programming approach alone [39]. Moreover, when using
object-oriented techniques to specify component composi-
tion, one often faces the extensibility problem that arises
from the fact that mainstream object-oriented languages
only provide limited support for modular addition of new
behavior to existing classes. In particular, the inheritance
relationships in mainstream object-oriented and class-based
systems are not adequate for expressing many useful forms
of incremental modifications [7].

To address the extensibility problem several approaches have
emerged (e.g., CLOS [22], MultiJava [14], and AspectJ [23])
that focus on a particular technique: class extensions. Class
extensions allow for a modular addition of both new classes
and new operations to an existing class hierarchy. Thus,
class extension provide a controllable mechanism to support
unanticipated changes [7].

The key mechanism that enables class extensions is the con-
cept of open classes [13]. An open class is one that can
be extended with new behavior without editing the class
directly. Open classes are of great interest for component-
oriented software development. Software components are
sufficiently self-contained, prefabricated units of indepen-
dent deployment [44] that encapsulate some domain-specific
abstractions. As such, they exist, for example, in binary
form without source code (e.g., ActiveX components [38]).



Thus, in order the build applications, software components,
in general, have to be configured and adapted to meet ac-
tual deployment requirements. Component configuration
and adaptation can, therefore, be considered instances of
unanticipated changes. Support for unanticipated changes
is a prerequisite for reuse. However, the extensions applied
to the components in questions should be confined to the
units that introduces them, should be visible to collaborat-
ing clients, and should provide support to resolve conflicts
due to competing extensions [7].

There is, however, a second aspect that affects our ability
to define flexible, extensible, and reusable abstractions for
software composition. Mainstream program techniques of-
ten hamper the definition of general purpose compositional
abstractions, as they impose a dependence on position and
arity of parameters [18, 42]. For example, in the standard λ-
calculus the functions λ(x, y).x and λ(y, x).y are equiv-
alent, but λ(x, y).x and λ(y, x).x are different, as posi-
tion matters in λ-calculus. Moreover, if we use de Bruijn
indices [19], then names disappear totally, as arguments to
functions are uniquely identified by their positions. Thus,
if we abstract from position and use instead the parame-
ter names as keys functions like λ〈x, y〉.x and λ〈y, x〉.x
become indistinguishable.

This observation has led us to explore the concept of forms
[24, 27, 41]. Forms are first-class extensible records that
define mappings from labels to values, which, in combination
with a small set of purely asymmetric operators, provide
a core language to define extensible, flexible, and robust
software abstractions.

Forms gain their specific value due to two asymmetric oper-
ators: form extension and form restriction. Form extension,
written F · G, allows one to simultaneously add or redefine
a set of services, whereas form restriction, written F\G, can
be seen as a dual operation that denotes a form, which is
restricted to all bindings of F that do not occur in G. Both op-
erators are the main building block in a fundamental concept
for defining adaptable, extensible, and more robust software
abstractions [24, 28, 41].

Programmatically, forms are both compile-time and run-
time entities. As compile-time entities, forms can be used
to denote components, component interfaces, and compo-
nent composition. At run-time, on the other hand, forms
provide uniform and language-neutral access to component
services and support runtime composition on demand. How-
ever, forms are not bound to a particular computational
model. They are an environment-independent framework
that has to be combined with a concrete target system like
the λ-calculus or the π-calculus.

We have been studying a substitution-free variant of the λ-
calculus, called λF , where names are replaced with forms
and parameter passing is modeled using explicit contexts
[25]. Explicit contexts mimic λ-calculus substitutions. How-
ever, unlike λ-calculus in which substitutions are meta-level
operations [2], explicit contexts have a form-based syntac-
tic representation to record named parameter bindings. For
example, the λF-term a[b] denotes an expression a, which
meaning is refined by the context [b]. That is, all occur-

rences of free variables in a are resolved using form b. Thus,
the context [b] expresses the requirements posed by the free
variables of a on the environment [32].

The λF-calculus is a calculus in which parameters are iden-
tified by names rather than positions. Position-independent
parameter specification allows for the development of ex-
tensible, flexible, and reliable component-based application.
The resulting flexibility of a form-based programming model
can also be seen, for example, in XML/HTML forms [48],
where fields are encoded as named (rather than positional)
parameters, in Python [47] and Common Lisp [43], where
functions can be defined to take arguments by keywords,
and in Perl [49] where it is a common technique to pass
a map of name/value pairs as arguments to a function or
method.

We can use the λF-calculus to model open classes in a purely
functional way. However, the purely functional encoding
makes it cumbersome to propagate extensions to collabo-
rating clients. Locally, it is always possible to build the
fixed-point of the extensions and update all collaborating
clients, respectively. Unfortunately, this technique does not
work on a larger scale. In particular, it does not allow for
an approach in which extensions are only propagated to a
subset of clients. To solve this problem, we propose shared
forms. Shared forms denote locations of forms and add,
therefore, an imperative element to the calculus. Clients
that maintain a reference to a shared form can communi-
cate extensions through its value. For example, we can view
the methods of an object as collaborating clients that may
alter the state of its instance. In a purely functional set-
ting, updating the state results in a new instance, that is,
strictly speaking, no collaboration between the methods of
the object at all. However, if we encode the state of an
object as a shared form and provide each method with a
reference to its location, then any state change is visible to
all method instantaneously. The reader should note that we
can also control the visibility of a shared form, if we place it
inside an explicit context. Therefore, the concepts of shared
forms and explicit contexts manifest a feasible mechanism
to support unanticipated changes in class-based systems.

2. A MODEL FOR OPEN CLASSES
Object- and component-oriented abstractions can most eas-
ily be modeled if classes are represented as first-class entities
[28]. It is however important to note that the framework, in
which these abstractions are modeled, does not need to be
class-based. In Simula, for example, classes are represented
as procedures returning a pointer to an activation record
(i.e., an instance of the class).

A strength of the object-oriented paradigm lies in its uniform
representation of access to different kinds of data. However,
whereas mainstream object-oriented programming models
typically only provide a fixed and, in general, position-de-
pendent set of mechanisms for constructing software sys-
tems, forms allow for the definition of an open and therefore
extensible object-oriented development approach [3, 28, 32].
In particular, forms composition, that is, form extension
and form restriction are the key mechanisms for a seamless
integration of various programming abstractions found in
modern object-oriented programming systems.



We begin our study of a form-based model for open classes
by adopting an approach proposed by Cook and Palsberg
[15] and Bracha and Cook [9] in which classes are mod-
eled by means of incremental modifications, generators, and
wrappers. An incremental modification, denoted by ∆, cap-
tures the extensions of both state and behavior defined by a
class. A generator, denoted by G, defines a constructor-like
abstraction that yields an instance of a class with an un-
bound self-reference. In other words, a generator G builds
a prototype instance of a class, which is the behavioral build-
ing block for a class and the primary abstraction to enable
code reuse and class extensions. To close a prototype in-
stance, that is, to establish a correct binding of self, we
need to apply a wrapper, denoted by W , to the prototype
instance of a class. In other words, a wrapper represents the
fixed-point operator for the corresponding generator.

Suppose, we want to define a class Point using the spec-
ification shown in Table 1. This class defines two private
instance variables x and y, both initialized to zero, two pub-
lic functions getX and getY to access the values of x and
y, two public functions setX and setY to update the values
of x and y, and two public methods move and double to
change the values of the x- and y-coordinates of a Point in-
stance. Moreover, we assume that all functions are position-
independent. So, the notation move〈dx, dy〉 means that the
function move takes two keyword-based arguments dx and
dy.

class Point =

var x = 0, y = 0

fun getX〈〉 = x

fun setX〈nx〉 = x ← nx

fun getY〈〉 = y

fun setY〈ny〉 = y ← ny

fun move〈dx, dy〉 = x ← x + dx, y ← y + dy

fun double〈〉 = self.move〈dx=x, dy=y〉
end

Table 1: The class Point.

To express the incremental modification ∆Point defined by
class Point, we adopt the Self approach [45] and represent
∆Point as a set of names slots or traits [40]. However, to
maintain a strict encapsulation of state, we do not blend
state and behavior. Instead, we model state as explicit con-
texts that provide an environment to resolve the occurrences
of private instance variables and the self-reference.

∆Point〈State〉 =


getX return x

setX update x

getY return y

setY update y

move move points

double double points

 [State]

The effect of applying the context [State] to the body of
∆Point is that each slot is provided with an interpretation of

the current state. In other words, we can think of the slots
in ∆Point as collaborating clients and the context [State] as
an abstraction to propagate a current set of class extensions.

The purpose of the generator GPoint is to build Point proto-
type instances. A Point prototype instance is constructed
by combining its constructor arguments with the Point state
template slots and applying the result to ∆Point.

GPoint〈Args〉 = ∆Point〈
(

x 0

y 0

)
⊕ Args 〉

Finally, the wrapper WPoint yields a Point-object by build-
ing the fixed-point for the prototype’s self-reference and
applying it as a context to GPoint.

WPoint = fix self〈 GPoint [self] 〉

To construct a Point-object, where x is set to 3 and y is set
to 5, we write WPoint〈x = 3, y = 5〉.

A specialization of the class Point can be defined in a simi-
lar way by encoding inheritance by means of delegation like
in Self [45]. That is, the original inherited behavior can be
accessed through a designated reference super. Suppose,
we want the y-coordinate of a Point-instance never to ex-
ceed a given upper bound. To specify this property, we can
define the class BoundedPoint as a subclass of Point and
introduce an instance variable bound in BoundedPoint that
represents this upper bound. The specification of the class
BoundedPoint is shown in Table 2.

class BoundedPoint extends Point =

var bound = 0

fun getBound〈〉 = bound

fun move〈dx, dy〉 = if self.getY〈〉 + dy < bound

then super.move〈dx, dy〉
end

Table 2: The class BoundedPoint.

The behavior of the class BoundedPoint is again captured
by our three main abstractions. However, class extension
by means of inheritance requires some extra effort to link
super- and subclasses together. Furthermore, the link pro-
cess should not require that we have to alter the super-
class(es) in any way. The solution to this problem a com-
bination of delegation [45], aggregation [38], and explicit
contexts. First, the generator GBPoint for class BoundedPoint
calls the super-class generator GPoint to create a Point proto-
type instance using a subclass context that provides a self-
reference. Then, this prototype instance is extended with
the result of applying ∆BPoint to a combination of GBPoint’s
constructor arguments, the BoundedPoint state template
slots, and a reference super that points to the Point proto-
type instance. The result is a BoundedPoint prototype in-
stance that provides the inherited behavior, the new (over-
ridden) behavior, and access to original behavior through
super.



The corresponding abstractions for class BoundedPoint are
defined as follows.

∆BPoint〈State〉 =

(
getBound return bound

move move bpoints

)
[State]

GBPoint〈Args〉 =
let
Parent = GPoint〈Args〉

in

Parent ⊕ ∆BPoint〈
(

bound 0

super Parent

)
⊕ Args 〉

WBPoint = fix self〈 GBPoint [self] 〉

To construct a BoundedPoint-object, where the x-field is set
to 3, the y-field is set to 5, and bound is set to 100, we write
WBPoint〈x = 3, y = 5, bound = 100 〉.

The reader should note that the actual meaning of both the
generator and the wrapper can be manipulated through an
explicit context as well. For example, suppose we want to
replace the class Point with a new version ExtendedPoint

in class BoundedPoint. Instead of defining a new set of ab-
stractions for class BoundedPoint, we can evaluate them in
a context than maps GPoint to GExtendedPoint. We write

WBPoint〈x = 3, y = 5, bound = 100 〉 [〈 GPoint = GExtendedPoint 〉]

to create an object for the extended BoundedPoint class.
This approach roughly corresponds to the concept of mixin
application [46]. The class BoundedPoint now represents an
abstract subclass, which is instantiated with the super-class
ExtendedPoint. When using this technique, it is however
important to take special care, as it gives rise to the so-
called fragile base class problem [29].

3. RELATED WORK
Several researchers have proposed foundational approaches
that can serve as a model for open classes. However, stylistic
differences make a rigorous comparison difficult. For exam-
ple, some models represent object-oriented abstractions as
translations from a high-level syntax into λ-calculus, whereas
others map high-level syntax directly into a denotational
model or focus on the object syntax as a primitive calculus
in its own right.

Examples of such foundational models are the recursive-
record encodings of Cardelli [11], Reddy [36], and Cook [16],
existential encodings proposed by Pierce and Turner [35],
Bruce’s model based on existential and recursive types [10],
and the type-theoretic encoding of a calculus of primitive
objects defined by Abadi and Cardelli [1]. Further work in
this area includes a calculus for delegation-based languages
by Fisher and Mitchell [21] and a calculus of classes and
mixins proposed by Bono et al. [8].

To overcome some of the problems related to multiple in-
heritance, the concept of mixins [9, 46] has emerged. Van
Limberghen and Mens [46], for example, give a denotational

semantics of a model in which mixins, mixin composition,
mixin application, and encapsulation are primitive. How-
ever, their approach does not incorporate an explicit notion
of classes, as in the calculus of classes and mixins proposed
by Bono et al. [8].

Lumpe and Schneider [28] have proposed a form-based meta-
level framework for modeling both object- and component-
oriented programming abstractions. This framework defines
a hierarchy of meta-level abstractions to model meta-classes,
classes, and objects. The core of the meta-level framework
is a meta-meta-class model that can be used to instantiate
a specific semantic model (i.e., a specific class-based infras-
tructure). A semantic model, say, for example, of C++,
Java, or Beta, is captured by so-called model generators,
model wrappers, and model composers. Each semantic model
is guaranteed to interoperate with any other semantic model
instantiated within the framework. The framework can,
therefore, be viewed as a meta-object protocol [22] for open
classes, as it provides the means for both to bridge between
different object models and to incorporate reusable software
artifacts.

A full-scale programming language that supports both open
classes and symmetric multiple dispatch is MultiJava [13,
14]. In MultiJava, an open class is a class to which new
methods can be added without editing the class directly.
The new behavior is visible to the package that implements
it and to the packages importing that package. Moreover,
MultiJava allows for modular typechecking of class exten-
sions. But, in order to prevent occurrences of message-not-
understood and message-ambiguous errors, MultiJava im-
poses some requirements that ensure that extended classes
are properly implemented. However, MultiJava still uses
a position-dependent parameter passing mechanism, which
is due to one of MuliJava’s goals, that is, to be backward-
compatible to Java.

Recently, Bergel et al. [7] have proposed classboxes, a dy-
namically typed module system for object-oriented langua-
ges that provides support for controlling the visibility of
both method addition and method replacement. That is, a
classbox defines a scope within which classes, methods, and
variables are defined. A classbox may also import definitions
form other classboxes and extend them without affecting the
originating classbox. In other words, classboxes allow one
to import a class and apply some extensions to it without
breaking the protocol defined between clients of that class
in other classboxes.

4. THE CALCULUS
In this section, we define λF@, a calculus in which names
are replaced with shared forms and parameter passing is
modeled using explicit contexts. Our main goal is to find
a minimal set of language elements that preserves the ex-
pressive power of forms, while retaining the main functional
attributes of forms, which are essential in an approach that
provides visibility control for class extensions.

Parameter passing in the λ-calculus is defined by the β-rule
and substitution, which can be interpreted as an operation
on the equivalence classes of λ-terms [6]. However, sub-
stitution, as used in the classical λ-calculus, is actually a



meta-level concept and not part of the language. By mak-
ing it part of the language, Abadi et al [2] argue that we
can achieve a better correspondence between the language
theory and its implementation. For example, in the classi-
cal λ-calculus we write a{b/x} to denote the term a where
all free occurrences of b have been replaced with x. How-
ever, substitution can be a very expensive term-rewriting
operation, as a term may contain many free occurrences of
a variable in question. To address this issue, we propose a
solution in which substitutions are mimicked by explicit con-
texts [2, 4] that have a form-based syntactic representation.
To resolve occurrences of free variables, we shall use explicit
contexts for both forms and λF@-terms.

Assignment enables the sharing of values between differ-
ent parts of a program. The actual information exchange
takes place through common references to locations contain-
ing values. Unfortunately, if one adds assignment to a lan-
guage, then, in general, software abstractions defined in this
language lack referential transparency, which would it make
hard if not impossible to define an approach that provides
support for visibility control. Therefore, rather than adding
an assignment operator to forms, we introduce the concept
of shared forms. A shared form denotes a location of a form,
which, taken for itself, is immutable.

Consider, for example, two programs A and B. To execute
these programs, we may need to provide two applications
domains DA and DB, which we may derive from some domain
prototype D. Furthermore, the program B may require a spe-
cific event-handling mechanism EB. Now, both DA and DB may
already define a standard mechanism to handle events. This
default handler is defined as a shared form, written @E. To
override DB’s event handler, we can combine its handler @E

with EB using form extension, written (DB → E) · DB. The
subterm (DB → E) extracts the default handler. However,
since it has been specified as a shared form, (DB → E) ac-
tually yields a reference to a fresh location initialized with
E. Combining this location with EB results in an updated
handler in DB. To run the programs A and B, we combine
them with there corresponding application domains, written
(A [DA]) and (B [DB]), respectively. The changes that we
have applied to B’s domain do not affect A’s behavior, that
is, the changes are confined to B’s domain. However, every
client that refers to B’s domain can see this modification.

We presuppose a countable infinite set, L, of labels, and let
l, m, n to range over labels. We also presuppose a countable
infinite set, V, of abstract values, and let a, b, c range over
abstract values. We think of an abstract value as a repre-
sentation of any programming value like integers, objects,
or even classes, and types. However, we do not require any
particular property except that equality and inequality are
defined for elements of V. Furthermore, we use F, G, H to
range over the set of forms, and M, N to range over the set
of λF@-terms. The syntax of the λF@-calculus is given in
Table 3.

Every form is derived from the empty form 〈〉, which denotes
an empty set of services. The services that a form offers are
specified as binding extensions. A binding extension, written
〈 l = s 〉, denotes a form’s capability to allow access to a
service s that is published under the name l. For example,

F, G, H ::= 〈〉 empty form
| X form variable
| @F shared form
| F 〈 l = V 〉 binding extension
| F ·G form extension
| F\G form restriction
| F → l form dereference
| F [G] form context

V ::= E empty value
| a abstract value
| M λF@ − value

M, N ::= F form
| M.l projection
| λ(X) M abstraction
| M N application
| M [F ] λF@ − context

Table 3: Syntax of the λF@-Calculus.

we write F.a to access the service that is bound by label a
in form F.

A shared form @F defines a location of a form initialized with
F. We can use shared forms to organize “cross-cutting” ser-
vices. That is, if two forms G and H both contain a reference
to the location of F, then G and H share F’s services. More-
over, if an operation involving either G or H alters the value
in this location, then this change is visible to the other form
instantaneously.

Form extension and form restriction allow for the manip-
ulation of sets of services. Using form extension, written
F · G, one can simultaneously add or redefine a set of ser-
vices, whereas form restriction, written F\G, denotes a form
that is restricted to all bindings of F that do not occur in
G. Both operators provide a convenient way to define com-
positional styles [3]. Assume, for example, that we want to
compose two forms F and G, but we want to give a spe-
cific service of F bound by label m precedence over a service
bound by the same label m in G. This operation represents a
compositional style that defines a conditional update, which
can be specified using both form extension and form restric-
tion: F · (G\〈〉〈 m = F.m 〉). Depending on the actual bindings
defined by F and G, we can distinguish three different mean-
ings of F · (G\〈〉〈 m = F.m 〉):

• If the label m does occur neither in F nor G, then the
label m does not occur in the composition of F and G.

• If the label m does not occur in F, but in G, then G’s
binding for label m occurs in the composition of F and
G.

• If the label m occurs in F, then F’s binding for label m
occurs in the composition of F and G.

Forms can also occur as values in binding extensions. These
forms are called nested forms and they facilitate the speci-
fication of structured service sets. To extract a nested form



bound by a label l in a form F, we use F→ l. Note, how-
ever, that if the binding involving label l does not actually
map a nested form, then the result of F→ l is 〈〉 – the
empty form. The reason for this is that we want to dis-
tinguish between forms, which denote sets of services, and
plain services.

A form context F[G] defines a refinement of F by using G

as an environment to look up what would otherwise be a
free variable in F. We use form dereference to perform the
lookup operation. That is, a free variable is reinterpreted as
a label. For example, if X is a free variable in F and [G] is a
context, then the meaning of X in F is determined by the re-
sult of evaluating G→ X. In the case that G does not define
a binding for X, the result is 〈〉, which effectively removes
the set of services associated with X in F. This allows for an
approach in which a sender and a receiver can communicate
open form expressions. The receiver of this open form ex-
pression can use its local context to close (i.e., configure) the
received form expression according to a site-specific proto-
col, but may also chose to ignore it (e.g., the configuration
of a Web-browser to run an application associated with a
specific MIME-type).

Forms and projections replace variables in λF@. A form
stands for an explicit namespace [4] or module [20], which
can comprise an arbitrary number of services. The form may
itself contain free variables, which will be resolved by means
of the deployment environment or an evaluation context. In
other words, free variables in a form expression allow for a
computational model with late binding.

With projections we recover variable references of λ-calculus.
We require, however, that the subject of a projection denotes
a form. For example, the meaning of F.l is the value bound
by label l in form F. A projection a.l, where a is not a form
yields E , which means “no value”.

Both abstraction and application correspond to the notions
used in λ-calculus. As in λ-calculus, the X in λ(X) a stands
for the parameter. But unlike λ-calculus, we do not use
substitution to replace free occurrences of this name in the
body of an abstraction. Parameter passing is modeled by
explicit contexts.

A λF@-context is the counterpart of a form-context. A λF@-
context denotes a lookup environment for free variables in
a λF@-term. Moreover, λF@-contexts provide a convenient
mechanism to retain the bindings of free variables in the
body of a function. For example, let λ(X) a be a function
and [F] be a current context. We can then use [F] to build
a closure of λ(X) a. A closure is a package mechanism to
record the bindings of free variables of a function at the time
it was created. That is, the closure of λ(X) a is λ(X) (a[F]).

In form expressions, binding extension has precedence over
form extension, form extension has precedence over a form
restriction, form restriction has precedence over form defer-
ence, which in turn has precedence over form contexts. Fur-
thermore, all form operators are left associative. Similarly,
in λF@-terms, projection has precedence over application,
which in turn has precedence over λF@-contexts. Moreover,
application is left associative. Parenthesis may be used in

λF@-expressions in order to enhance readability or to over-
come the default precedence rules.

There are three forms of binding: λ(X) M , M [F ] and F [G].
Conventionally, we write fv(M) and bv(M) to denote the
set of free variables of M and the set of bound variables of
M , respectively. Additionally, we write fp(M) and bp(M)
to denote the set of free projections of M and the set of
bound projections of M , respectively, which are defined as
follows:

fp(M) = { (X, p) | X ∈fv(M) ∧X.p occurs in M }
bp(M) = { (X, p) | X ∈ bv(M) ∧X.p occurs in M }

These two sets allow for a detailed analysis of a translation
of the λ-calculus into the λF@-calculus, as they actually
capture the λ-calculus’ definitions of free- and bound-names.

To facilitate the specification of λF@-expression, we will use
the following abbreviations:

• We will often omit 〈〉 in a form, and write for example
〈 l = a 〉〈 m = b 〉 instead of 〈〉〈 l = a 〉〈 m = b 〉.

• We will use a more compact record-like notion to spec-
ify forms, and write for example 〈l = a, m = b, n = c〉
instead of 〈〉〈 l = a 〉〈 m = b 〉〈 n = c 〉.

• We will write \() b to specify a function with body b

that takes no arguments.

• We will use “let l1 = v1, ..., ln = vn in e” to spec-
ify a context expression e[〈l1 = v1, ..., ln = vn〉].

5. OPERATIONAL SEMANTICS
We describe the interpretation of λF@-expressions in the
style of natural semantics [31], which provides a reasonably
efficient evaluation model for λF@.

We use the Greek letters σ and γ to denote states and loca-
tions, respectively. A state σ is a set of mappings from loca-
tions to values. We assume that all locations in σ are pair-
wise distinct. A location γ is called fresh, if γ 6∈ dom(σ). We
also have a notion for updating states. We define σ[γ 7→ v]
to be the state σ′ that is as σ except that the value bound
to γ is v.

(σ[γ 7→ v])(γ′) =

{
v if γ′ = γ
σ(γ′) otherwise

In λF@, we distinguish between form values and model val-
ues. Form values are finite mappings from a countable in-
finite set of labels to model values. However, form values
do not contain any projections or form dereferences, as they
have been replaced with their corresponding denoted values,
and shared forms, as they have been replaced with their cor-
responding locations.

The set of model values depends on the concrete underlying
computational model. In λF@, we distinguish between five
different kinds of model values: empty value, abstract value,
form value, closure, and abstract application. Empty value



and abstract value have the same denotation as in forms,
whereas the structure of a form value is as specified above.

A closure λ(X) (M [F ]) denotes an abstraction or function
in head normal form. The context [F ] represents the evalu-
ation environment at the time the abstraction λ(X) M was
evaluated. To force the evaluation of the body of a closure
(i.e., evaluate M [F ]), it has to be applied to a concrete ar-
gument (i.e., a λF@-value).

An abstract application a M represents the fact that its ac-
tual interpretation lies outside the λF@-calculus. The func-
tion a is abstract and its actual meaning is unknown. There-
fore, the target system, in which the abstract application
a M is embedded, is responsible for the proper handling of
this expression. We have chosen this approach, rather than
using ⊥ (i.e., undefined) in this situation, because the mean-
ing of a M is not really undefined, but merely our knowledge
about it is incomplete.

We use F , G, H to range over the set of forms values, and
M, N to range over the set of model values. The set of
λF@-values is defined as shown in Table 4.

F , G, H ::= 〈〉 empty form value
| γ location
| F 〈 l = M 〉 binding extension value
| F ·G form extension value
| F\G form restriction value

M, N ::= E empty value
| a abstract value
| F form value
| λ(X) (M [F ]) closure
| a M abstract application

Table 4: λF@ Values.

The operational semantics of λF@ is given by a transition
system using rules of the form

H `M, σ ⇒M, σ′

indicating that, under an evaluation context H, a term M
in state σ evaluates to a value M and a final state σ′. The
transition system is shown in Table 5.

The meaning of a λF@-term depends on its deployment en-
vironment. A deployment environment, represented by H,
defines a context that may map some of the free variables of
M to deployment-specific values. We require, however, that
H is well-formed. That is, if H is a deployment environment
and σ is an initial state, then

∀ γ ∈ H : γ ∈ dom(σ).

In addition, we assume that H is minimal, that is, it con-
tains only observable binding extensions or locations. We

call such a form value normalized form. We write F (σ) to
denote the normalized form of F under σ. A normalized
form F (σ) is behaviorally equivalent to F under σ, written

F (σ) ≈ σ |= F . Moreover, since a normalized form contains
solely observable binding extensions it is isomorphic to a
classical record, but we still maintain position independency.

F (σ) ::=

{
〈〉 n = 0
〈l1 = v1, l2 = v2, . . . , ln = vn〉 n > 0

with
∀ i, j ∈ {1 . . . n} ∧ i 6= j : li 6= lj ,

∀ i ∈ {1 . . . n} : vi 6= E ∧ vi 6= 〈〉, and

∀ γ ∈ F : σ(γ)(σ) = 〈lk = vk, . . . , lm = vm〉 ∧
1 ≤ k ≤ m ≤ n

Figure 1: Normalized Forms.

The transition system uses two additional, mutually-depen-
dent total functions to resolve projections and form derefer-
ences. Feature access in forms is performed from right-to-left
[27]. However, rather than using classical records as seman-
tic model of forms, we adopt that of interacting systems [30].
Therefore, forms are characterized not by the bindings they
define, but by the bindings that are observable in them. We
say, a binding is not observable if it cannot be distinguished
from E or 〈〉. For example, both 〈〉〈 m = E 〉 and 〈〉 are con-
sidered equivalent. We write F ‖ l to express that label l is
not observable in form value F .

The function [[ M, l ]](σ), called projection evaluation, maps
projections of the form M.l under state σ to a model value
N , and is defined as follows:

[[ 〈〉, l ]](σ)

[[ E , l ]](σ)

[[ a, l ]](σ)

[[ (λ(X) M [F ]), l ]](σ)

[[ a M, l ]](σ)


= E

[[ γ, l ]](σ) = [[ σ(γ), l ]](σ)

[[ (F 〈m = M 〉), l ]](σ) = [[ F , l ]](σ) if m 6= l

[[ (F 〈 l = M 〉), l ]](σ) =

{
M if M 6≡ F

E otherwise

[[ (F · G), l ]](σ) =

{
[[ G, l ]](σ) if G ‖ l

[[ F , l ]](σ) otherwise

[[ (F\G), l ]](σ) =

{
E if G ‖ l

[[ F , l ]](σ) otherwise

To illustrate the effect of projection evaluation, consider the
following examples:

[[ 〈 l = a, m = b 〉, m ]](∅) = b

[[ (〈 l = a, m = b 〉)\(γ), m ]]({γ 7→ 〈 m = c 〉}) = E
[[ 〈 l = a, m = 〈 n = c 〉 〉, m ]](∅) = E
[[ (〈 l = a, m = 〈 n = c 〉 〉) · γ, m ]]({γ 7→ 〈 l = b, m = d 〉}) = d



(F−EMPTY)

H ` 〈〉, σ ⇒ 〈〉, σ

(F−VARE )

H ` [[ H, X ]](σ) = E

H ` X, σ ⇒ 〈〈H, X〉〉(σ), σ

(F−VAR
V

)

H ` [[ H, X ]](σ) = M ; M 6= E

H ` X, σ ⇒M, σ

(F−SHARED)

H ` F, σ ⇒ F , σ′; γ 6= dom(σ′)

H ` @F, σ ⇒ γ, σ′[ γ 7→ F ]

(F−BIND)

H ` F, σ ⇒ F , σ′; H ` V, σ′ ⇒M, σ′′

H ` F 〈 l = V 〉, σ ⇒ F 〈 l = M 〉, σ′′

(F−BINDγ)

H ` F, σ ⇒ γ, σ′; H ` V, σ′ ⇒M, σ′′

H ` F 〈 l = V 〉, σ ⇒ γ, σ′′[ γ 7→ σ′′(γ)〈 l = M 〉 ]

(F−EXT)

H ` F, σ ⇒ F , σ′; H ` G, σ′ ⇒ G, σ′′

H ` F · G, σ ⇒ F · G, σ′′

(F−EXTγ)

H ` F, σ ⇒ γ, σ′; H ` G, σ′ ⇒ G, σ′′

H ` F · G, σ ⇒ γ, σ′′[ γ 7→ σ′′(γ) ·G ]

(F−RES)

H ` F, σ ⇒ F , σ′; H ` G, σ′ ⇒ G, σ′′

H ` F\G, σ ⇒ F\G, σ′′

(F−RESγ)

H ` F, σ ⇒ γ, σ′; H ` G, σ′ ⇒ G, σ′′

H ` F\G, σ ⇒ γ, σ′′[ γ 7→ σ′′(γ)\G ]

(F−DEREF)

H ` F, σ ⇒ F , σ′

H ` F → l, σ ⇒ 〈〈F , l〉〉(σ′), σ′

(F−CXT)

H ` G, σ ⇒ G, σ′; G · H(σ′) ` F, σ′ ⇒ F , σ′′

H ` F [G], σ ⇒ F , σ′′

(V−EMPTY)

H ` E , σ ⇒ E , σ
(V−ABS)

H ` a, σ ⇒ a, σ

(LF−NORM)

H ` F, σ ⇒ F , σ′

H ` F, σ ⇒ F (σ′), σ′

(LF−SEL)

H `M, σ ⇒M, σ′

H `M.l, σ ⇒ [[ M, l ]](σ′), σ′

(LF−CXT)

H ` F, σ ⇒ F , σ′; F · H(σ′) `M, σ′ ⇒M, σ′′

H `M [F ], σ ⇒M, σ′′

(LF−ABS)

H ` λ(X) M, σ ⇒ λ(X) (M [H]), σ

(LF−APPLE )

H `M, σ ⇒ E , σ′

H `M N, σ ⇒ E , σ′

(LF−APPLa)

H `M, σ ⇒ a, σ′; H ` N, σ′ ⇒ N, σ′′

H `M N, σ ⇒ a N, σ′′

(LF−APPL
F

)

H `M, σ ⇒ F , σ′; H · F (σ′) ` N, σ′ ⇒ N, σ′′

H `M N, σ ⇒ N, σ′′

(LF−APPLλ)

H `M, σ ⇒ λ(X) (M ′[G]), σ′; H ` N, σ′ ⇒ N, σ′′; G〈X = N 〉(σ′′) `M ′, σ′′ ⇒M ′, σ′′′

H `M N, σ ⇒M ′, σ′′′

Table 5: Operational semantics of the λF@-Calculus.



In the form 〈 l = a, m = b 〉, label m refers to the abstract
value b. Therefore, [[ 〈 l = a, m = b 〉, m ]](∅) yields b. The sec-
ond example yields E , because 〈 m = c 〉, the value in location
γ, restricts 〈 l = a, m = b 〉 by hiding the binding involving
label m. In the third example, the label m binds a nested
form value. Therefore, the result of the projection evalua-
tion is E . Finally, since the form 〈 l = b, m = d 〉 in location
γ is used as a form extension of 〈 l = a, m = 〈 n = c 〉 〉, the
result in this example is d, which is the actual observable
right-most value bound by label m.

Secondly, the function 〈〈F , l〉〉(σ), called form dereference
evaluation, maps form deferences of the form F → l un-
der state σ to a form value G, and is defined as follows:

〈〈〈〉, l〉〉(σ) = 〈〉

〈〈γ, l〉〉(σ) = 〈〈σ(γ), l〉〉(σ)

〈〈F 〈m = M 〉, l〉〉(σ) = 〈〈F , l〉〉(σ) if m 6= l

〈〈F 〈 l = M 〉, l〉〉(σ) =

{
〈〉 if M 6≡ F

M(σ) otherwise

〈〈F ·G, l〉〉(σ) =

{
〈〈G, l〉〉(σ) if G ‖ l

〈〈F , l〉〉(σ) otherwise

〈〈F\G, l〉〉(σ) =

{
〈〉 if G ‖ l

〈〈F , l〉〉(σ) otherwise

To illustrate the effect of form dereference evaluation, con-
sider the following examples:

〈〈〈 l = a, m = b 〉, m 〉〉(∅) = 〈〉
〈〈(〈 l = a, m = b 〉)\(γ)), m 〉〉({γ 7→ 〈 m = c 〉}) = 〈〉
〈〈〈 l = a, m = 〈 n = c 〉 〉, m 〉〉(∅) = 〈 n = c 〉
〈〈(〈 l = a, m = 〈 n = c 〉 〉) · γ, m 〉〉({γ 7→ 〈 l = b, m = d 〉}) = 〈〉

In the form 〈 l = a, m = b 〉, label m binds the abstract value
b. Therefore, the form derefence evaluation yields 〈〉. The
second example yields 〈〉 also, because 〈 m = c 〉, the value
in location γ, restricts 〈 l = a, m = b 〉 by hiding the binding
involving label m. In the third example, the label m binds a
nested form value 〈 n = c 〉, which is, therefore, the result in
this example. Finally, since the form 〈 l = b, m = d 〉 in loca-
tion γ is used as a form extension of 〈 l = a, m = 〈 n = c 〉 〉,
the result in this example is 〈〉, because, now, m actually
maps the abstract value d and not a nested form.

Finally, the transition rule LF-APPLF, as shown in Table 5,
deserves some additional comments. This rules captures the
situation in which the operator M of an application M N ,
under an evaluation context H, reduces not to a closure,
but to a form value F . In such a case F constitutes a local
refinement of H with scope N . This approach is similar to
way the so-called sandbox expressions are handled in the
Piccola-calculus [3]. When evaluating a sandbox expres-
sion A;B the term left to the semicolon defines a root con-
text or controlled environment for the right-hand side agent.
However, A in A;B may not evaluate to a form. In this case
the agent A;B is stuck and identified with E . In λF@, on the
other hand, an application M N can only reduce to E , if M
reduces to E , which means that the application M N has
“no value” and will simply be discarded without reducing

the argument N .

6. ENCODING CLASS EXTENSIONS
We have illustrated an approach to model open classes and
class extensions in Section 2. In this section we shall use the
λF@-calculus to encode this model in two steps. In the first
step, we will give a purely functional interpretation of the
model. That is, we will not use shared forms. We shall then
use the second step to develop a refinement of our encoding
scheme to illustrate the added benefit of shared forms.

To facilitate the presentation of the encodings, we assume
the existence of form-based binary operators and conditional
expressions. We write x + y to denote the application of the
binary position-independent function + (i.e., addition) to the
arguments x and y. So, the term x + y has to read as an
application + 〈 left = x, right = y 〉 returning the sum of
x and y.

Similarly, we write if b then e1 else e2 to denote the ap-
plication of the ternary position-independent function if to
the arguments b, e1, and e2. The function if first evaluates
b, and, depending on the result, either continues to evaluate
e1 or e2. We can omit the else-part in an application of
if without any consequences. This is due to the fact that
a function in the λF@-calculus is not characterized by the
parameters it declares, but by the parameters it effectively
uses.

In a purely functional model, we need an explicit fixed-point
operator to model both dynamic method lookup and state
update. The operational semantics of the λF@-calculus is
strict. We need, therefore, a strict (or call-by-value) fixed-
point operator. In the λ-calculus, this operator is defined
as

fix = λf.((λx.f (λy.(x x) y)) (λx.f (λy.(x x) y)))

To reuse this definition, we need to embed it into λF@. The
translation of a closed λ-calculus term M into λF@ is defined
by the function [[M ]] specified below:

[[x]] = x.arg
[[λx. M ]] = λ(x) [[M ]]
[[M N ]] = ([[M ]] 〈 arg = [[N ]] 〉)

Here, λ-calculus variables are encoded as projections to ex-
tract the actual value associated with those variables. The
encoding of abstractions maps a position-dependent func-
tion to a position-independent functions, whereas the encod-
ing of application builds a form expression for the λ-term in
argument position. The encoding of fix into λF@ is shown
in Figure 2.

Analyzing the result, we observe that an expression of the
kind 〈 arg = X.arg 〉 is the same as X. We can, therefore,
rewrite h as follows:

h = λ(x) f.arg 〈 arg = (λ(y) (x.arg x) y) 〉

We can now use some more meaningful names and obtain
a strict fixed-point combinator, written FIX, in the λF@-
calculus as shown in Table 6.



FIX = λ(Fun) (h 〈 self = h 〉) [〈 h = λ(Fix) (Fun.f (λ(Args) (Fix.self Fix) Args)) 〉]

Table 6: A Strict Fixed-point Combinator in λF@.

[[fix]] = λ(f) [[g g]]
where g = λx.f (λy.(x x) y)

= λ(f) [[g]] 〈 arg = [[g]] 〉
where g = λx.f (λy.(x x) y)

= λ(f) h 〈 arg = h 〉
where h = λ(x) f.arg 〈 arg = h′ 〉

h′ = (λ(y) (x.arg 〈 arg = x.arg 〉)
〈 arg = y.arg 〉)

Figure 2: Translation of fix.

With the help of the fixed-point operator FIX, we can now
specify a λF@-encoding of the model abstractions discussed
in Section 2. We start with the encoding of class Point as
illustrated in Figure 3.

ClassPoint =

let
PointBehavior =

〈 getX = \() State.x,

setX = \(Args) self State〈 x=Args.nx 〉,
getY = \() State.y,

setY = \(Args) self State〈 y=Args.ny 〉,
move = \(Args) self State〈 x=State.x+Args.dx,

y=State.y+Args.dy 〉,
double = \() (self 〈〉).move 〈 dx=State.x,

dx=State.x 〉 〉

PointState = 〈 x = 0, y = 0 〉

∆Point = \(State) PointBehavior

GPoint = \(Args)
∆Point Args·(PointState\〈 x=Args.x, y=Args.y 〉)

WPoint = FIX 〈 f = \(Self) (GPoint[〈 self=Self 〉]) 〉
in
〈 W = WPoint, G = GPoint 〉

end

Figure 3: Encoding of Class Point.

In a purely functional representation every object is a recur-
sive specification (i.e., a recursive function). To instantiate
a self-reference of an object, that is, to “unroll” the recur-
sive specification, we write self 〈〉. The value associated
with self is an unary function. If applied to 〈〉, then this
function is the identity function, that is, it yields the current
instance. This behavior enables dynamic dispatch of meth-
ods. For example, the expression (self 〈〉).move in the

body of method double yields a function that is bound to
name move in the context denoted by the expression self 〈〉.

On the other hand, if the function associated with self is
applied to a non-empty form, say State〈 x = Args.nx 〉 as
in the method setX, then the evaluation of the application
self State〈 x = Args.nx 〉 yields a new instance, where the
instance variable x has been set to the value of Args.nx in
setX. This behavior corresponds to state update (or assign-
ment).

The incremental modification ∆Point defined by class Point

is captured by the function \(State) PointBehavior. This
function acts in close concert with the generator GPoint.
That is, when creating a new Point-object, the generator
GPoint combines its arguments with the PointState tem-
plate using conditional update. The result, which denotes
the image of the Point-object currently being created, is
then passed to ∆Point, resulting in an extended evaluation
context for PointBehavior, where the label State maps the
state of the associated Point-instance. Moreover, it impor-
tant to note that the protocol between ∆Point and GPoint es-
tablishes a proper encapsulation of an object’s private state,
as the visibility of label State is restricted to the scope of
PointBehavior.

The purpose of WPoint is to bind the self-reference in Point-
objects. The value of the self-reference is actually the
fixed-point of the generator GPoint. That is, the wrapper
WPoint invokes GPoint in a context [〈 self=Self 〉] in which
the name Self is bound to FIX 〈 f = GPoint 〉.

Finally, the expression denoted by ClassPoint is the λF@-
representation of class Point. ClassPoint is actually a form
defining bindings for two labels W and G, respectively. The
binding for label W, which maps WPoint, denotes the con-
structor for class Point. Clients use this binding to acquire
instances of class Point.

The second binding in ClassPoint, that is, label G, denotes
a class extension access point, which is the main ingredient
in an approach that provides support for open classes. In or-
der to extend class Point with new behavior, implementers
use this binding to acquire a Point prototype instance and
place it in new, extended context. Access to the actual class
code is not required, as illustrated in Figure 4, which shows
the λF@-encoding of the class BoundedPoint that is a spe-
cialization of class Point defined using inheritance.

We use a combination of aggregation and delegation to im-
plement the class BoundedPoint. The semantics of inheri-
tance in our encoding of class BoundedPoint is defined in the
generator GBPoint. The construction of BoundedPoint proto-
type instances takes place in four steps. First, we acquire
a Point prototype instance and assign it to label Parent.



ClassBoundedPoint =

let
BPointBehavior =

〈 getBound = \() State.bound,

move =

\(Args)
if ((self <>).getY <>) + dy < State.bound

then (State → super).move Args 〉

BPointState = 〈 bound = 0 〉

∆BPoint = \(State) BPointBehavior

GBPoint =

\(State)
let
Parent = PointClass.G Args

newState = (PointState\〈 bound=Args.bound 〉)
newDelta = ∆BPoint Args·newState〈super=Parent 〉

in
Parent·newDelta

end

WBPoint = FIX 〈 f = \(Self) (GBPoint[〈 self=Self 〉]) 〉
in
〈 W = WBPoint, G = GBPoint 〉

end

Figure 4: Encoding of Class BoundedPoint.

Parent is a self-contained Point-object in which the self-
reference refers to the BoundedPoint-object currently being
constructed.

In the second step, we eliminate the default values defined
in the BPointState template, if GBPoint’s constructor argu-
ments contain new definitions for them.

The third step yields newDelta, which represents a proto-
type instance that contains only the behavior defined in class
BoundedPoint, plus a static, delegation-based link to the
Parent-object in the scope of BPointBehavior.

An actual BoundedPoint prototype instance is created in the
last step. We use form extension to override the inherited
Point-behavior with the new BoundedPoint-behavior. That
is, we extend Parent with newDelta, which yields a form
that contains all bindings of Parent and newDelta, respec-
tively, except Parent’s binding for label move.

The remaining definitions for class BoundedPoint are similar
to the ones used to define class Point.

Both ClassPoint and ClassBoundedPoint represent utiliz-
able solutions in a straightforward, purely functional model
for open classes. However, the need to use an explicit fixed-
point operator limits somewhat our ability to express more
sophisticated collaboration patterns. For example, two meth-
ods m1 and m2 cannot collaborate by means of their corre-
sponding object’s state if one of them attempts to alter it,

because the other method is unable to observe this change.
However, if the state of an object is implemented as a shared
form, say @State, then state changes are visible in all meth-
ods belonging to that object.

In an imperative object model both the self-reference and
the object’s state are represented by shared forms. The
required modifications for class Point and BoundedPoint are
summarized in Figure 5 and 6, respectively.

PointBehavior =

〈 getX = \() State.x,

setX = \(Args) State〈 x=Args.nx 〉,
getY = \() State.y,

setY = \(Args) State〈 y=Args.ny 〉,
move = \(Args) State〈 x = State.x + Args.dx,

y = State.y + Args.dy 〉,
double = \() self.move 〈 dx = State.x,

dx = State.x 〉 〉

GPoint = \(Args)
let
State = @(Args·(PointState\〈 x=Args.x,y=Args.y 〉))

in
∆Point State

end

WPoint = \(Args) let
self = @〈〉

in
self·(GPoint Args〈 self=self 〉)

end

Figure 5: Modifications for Class Point.

Changing the underlying representation of an object’s state
does change the way its information can be accessed inside
method bodies. However, the specification of state change
becomes easier. For example, to assign the instance variable
x in method setX the value of Args.nx, we can write simply
State〈 x = Args.nx 〉. That is, we use that fact the State

actually denotes a location, which value is extended with the
binding 〈 x = Args.nx 〉. To illustrate this further, assume
that the value denoted by Args.nx is 3 and σ(State) = γ,
then under some evaluation context H we have

H ` State〈 x = Args.nx 〉, σ ⇒ γ, σ[γ 7→ σ(γ)〈 x = 3 〉]

Secondly, the value associated with the self-reference is now
readily accessible and denotes the current object instance.
Therefore, to lookup the method move in the body of the
double method, we simply write self.move. We can do so,
because the wrapper for both class Point and BoundedPoint

creates now a location for self. That is, in the beginning
each wrapper introduces a new location containing value 〈〉
and associates it with self. We use 〈〉, because we are only
interested in self’s location at this point. The actual in-
stantiation of it takes place later, namely in the expression



self·(G Args〈 self=self 〉), where G stands for the corre-
sponding class generator.

Applying these modifications to our initial purely functional
model we have now obtained an imperative model in which
methods can truly perform side-effects on the internal state
of objects.

BPointBehavior =

〈 getBound = \() State.bound,

move =

\(Args)
if (self.getY <>) + dy < State.bound

then (State → super).move Args 〉

GBPoint =

\(State)
let
Parent = PointClass.G Args

newState = (PointState\〈 bound=Args.bound 〉)
State = @(Args·newState〈super=Parent 〉)
newDelta = ∆BPoint State

in
Parent·newDelta

end

WBPoint = \(Args) let
self = @〈〉

in
self·(GBPoint Args〈 self=self 〉)

end

Figure 6: Modifications for Class BoundedPoint.

7. CONCLUSION AND FUTURE WORK
We have presented the λF@-calculus, a substitution-free vari-
ant of the λ-calculus that combines three distinguishing con-
cepts: position-independent parameter specification, shared
forms, and explicit contexts. The Integration of these con-
cepts into one unifying framework provides us with a con-
venient tool to model open classes, a key mechanism that
enables class extensions.

We have demonstrated that the λF@-calculus can be used
to define straightforward utilizable solutions for both purely
functional and imperative models for open classes. We have
further used inheritance as an example to illustrate, how
extensions to classes can be specified. It is, however, impor-
tant to note that our approach is not restricted to inheri-
tance. Incremental modifications of classes are defined in-
dependently of the mechanisms used to apply them to those
classes. Moreover, our underlying conceptual framework is
based neither on classes nor objects, but on shared forms
and explicit contexts, which are the key abstractions in an
approach that provides support for the definition of flexible,
extensible, and reusable software abstractions.

We have implemented a proof-of-concept prototype language
based on the λF@-calculus in Java. Even though the calcu-
lus itself is untyped, we use Java’s underlying type system

to perform runtime type checks to guarantee that extended
classes are properly implemented.

Unfortunately, our current prototype does not allow for the
import of existing classes, which is essential if we want to
define a λF@-based software development approach for real-
world applications. In the future we will, therefore, explore
the concept of peer forms [3], which are wrapper-like ab-
stractions that mediate between the language representa-
tion (e.g., the λF@-calculus) and the host representation of
software entities.

A key challenge in future work on the definition of a for-
mal model for open classes based on the λF@-calculus is the
formulation of suitable type system that incorporates both
form extension and form restriction. The form extension op-
erator is similar to asymmetric record concatenation [12, 37,
50]. The specific nature of this operation makes it hard to
find a suitable type assignment. Some type systems [12, 50]
cannot assign a type to this operator at all. In type systems
that incorporate a subsumption rule the form extension op-
erator requires an additional set of constraints that limits
the number of applicable subtypes. Early results [24, 32]
indicate that the definition of a suitable type system will go
beyond “traditional” type theories.
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