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Abstract 
 

Quantum dots (QDs), with their variable luminescent properties, are rapidly transcending traditional 

labeling techniques in biological imaging and hold vast potential for biosensing applications. An 

obstacle in any biosensor development is targeted specificity. Here we report a facile procedure for 

creating QDs targeted to the cell membrane with the goal of cell-surface protease biosensing. This 

procedure generates water-soluble QDs with variable coverage of lipid functional groups. The resulting 

hydrophobicity is quantitatively controlled by the molar ratio of lipids per QD. Appropriate tuning of 

the hydrophobicity ensures solubility in common aqueous cell culture media and while providing 

affinity to the lipid bilayer of cell membranes. The reaction and exchange process was directly evaluated 

by measuring UV-vis absorption spectra associated with dithiocarbamate formation. Cell membrane 

binding was assessed using flow cytometry and total internal reflection fluorescence imaging with live 

cells, and tissue affinity was measured using histochemical staining and fluorescence imaging of frozen 

tissue sections. Increases in cell and tissue binding were found to be regulated by both QD 

hydrophobicity and surface charge, underlying the importance of QD surface properties in the 

optimization of both luminescence and targeting capability. 
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1. Introduction 
 

For over a decade, luminescent quantum dots (QDs) have held potential to revolutionize biological 

imaging applications including biosensing, cell labeling and the clinical practice of pathology.[1-8] 

Despite many reported methods for their preparation, biocompatible QDs have been limited in these 

applications largely due to the shortcomings of surface ligands that confer solubility in water. The 

dispersion of QDs in water can be driven by either electrostatic stabilization through capping exchange 

with small charged ligands[1-6] or steric stabilization through coating with polymers.[7-10] Small ligands 

containing mono or bidentate thiol species have been used extensively to endow QDs with water- 

solubility. Due to relatively weak interactions with the nanocrystal surface, monothiol ligands usually 

cannot provide long-term colloidal stability.[11] Although the stability can be improved by using dithiol 

molecules, the loss of quantum yield and aggregation in biological buffers (acidic conditions and/or 

high salt concentrations) are persistent concerns. Polymer-coated QDs offer exceptional stability, yet 

their bulky size[12, 13] can limit access to confined cellular compartments in vitro or exclude their 

clearance in vivo. Our laboratory has overcome these challenges by developing a facile, reliable method 

for generating soluble, small diameter, highly luminescent QDs using dithiocarbamate (DTC) 

ligands.[14]
 

A compelling application of QDs is their use as biosensors for observing biological processes such as 

enzymatic activity. This creates a need for targeting QDs toward particular tissues, cells, or subcellular 

structures. Membrane-bound protease activity has drawn increasing attention due to its implied role in 

cancer invasion and  metastasis.[15-17] There  is an unfulfilled niche  for a  biosensor that can  detect 

proteolytic activity in cell membranes for the evaluation of metastatic potential at an early stage. The 

optimal protease biosensor for this application exhibits bright luminescence and binds the plasma 

membrane with high affinity. Most current protease biosensors employ cleavage peptides which link 

quenched organic dyes[18-20] or variants of green fluorescence protein (GFP).[21-24] While these methods 
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are popular, quenched organic dyes usually lack targeting ability, and both organic dyes and GFP-based 

biosensors  photobleach  readily  under  continuous  illumination.  Variants  of  GFP  are  often  used  in 
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combination to detect cell surface protease activity through changes in Förster resonance energy transfer 

(FRET). However, this requires genetic expression of GFP, limiting prospects for detection in vivo or 

for use in diagnostic samples. Consequently, QDs are more desirable candidates for biosensing 

applications  due  to  their  broad  absorption spectra,  narrow and  size  tunable  emission  spectra,  and 

superior resistance to chemical/physical degradation. Most QD-based biosensors have used antibodies to 

target specific proteins of interest.[25-28] Although the specificity is very high, the large size (20-50 nm) 

of the conjugated antibody is a frequent concern.[29, 30] Another approach is to attach a relatively small 

lipid to the QD directly to confer binding,[31] however the challenge is to retain aqueous solubility of the 

modified QD. Here we report a procedure for generating QDs which have affinity for the hydrophobic 

lipid-rich cell membrane while retaining aqueous solubility. The membrane localization and 

hydrophilicity can be achieved simultaneously by coating QDs with a lipid-like molecule, 

hexadecylamine (HDA), and hydrophilic ligands based on dithiocarbamate (DTC) chemistry, which was 

reported previously by our group.[14] The flexibility of this chemistry offers a large pool of DTC 

precursor candidates, allowing for flexible tuning of both hydrophobicity and surface charge of the QD. 

In this study, we have developed a series of QDs with hydrophilic ligands of various magnitudes of 

negative charge (lysine-DTC, aminopropanediol-DTC, and cysteine-DTC) and found that the affinity to 

the cell membrane is differentially affected by a combination of QD hydrophobicity and charge. We 

subsequently tested the membrane binding affinity of the three different ligand-conjugated QD pairs 

using flow cytometry and total internal reflection fluorescence (TIRF) imaging on live cell cultures, and 

histochemical staining on fresh-frozen sections of liver tissue. We found consistent binding trends 

between live cells and frozen tissues that indicated that surface charge regulates the degree of enhanced 

binding conferred by the hydrophobic character of the QD. We intend to use these data to develop 

heuristics based on hydrophobicity and surface charge that can guide the design of QD-based biosensors 
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of cell surface protease activity. 

2. Materials and Methods 
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2.1 Materials 
 
Hexadecylamine (HDA, 90%), hexamethyldisilathiane ((TMS)2S), trioctyl phosphine (TOP, 90%), L- 

lysine (≥98%), 3-amino-1,2-propanediol (97%), and diethylzinc (Zn, 52.0 wt%) were purchased from 

Sigma-Aldrich. Cadmium acetylacetonate (Cd(acac)2) and selenium shot (Se, 99.99%) were from Strem 

Chemicals. Trioctyl phosphine oxide (TOPO, 98%) and n-hexylphosphonic acid (HPA) were obtained 

from Alfa Aesar. L-cysteine (≥99%) was purchased from Acros Organics. Chloroform and carbon 

disulfide (CS2) were from Fisher Scientific. Mouse Embryonic Fibroblasts (MEFs) were obtained as 

frozen stock from Rick Horwitz (UVA). Cell media and additives including, Dulbecco’s Modified 

Eagle’s Medium (DMEM), phosphate-buffered saline (PBS), trypsin, GlutaMAX, 

penicillin/streptomycin and fetal bovine serum (FBS) as well as fluorescent reagents such as Alexa 

Fluor 488-phalloidin, DAPI, and DiD were purchased from Invitrogen. Bovine serum albumin (BSA) 

was from Sigma. 

 
 
2.2 CdSe-ZnS Quantum Dot Synthesis 

 
The CdSe-ZnS QDs used in this work were synthesized using the method published previously by our 

group.[14] In a typical procedure, a flask containing TOPO, TOP, and HDA were degased under vacuum 

for three hours at 140 °C before being heated to 340 °C at which cadmium (Cd(acac)2) and selenium 

precursor (1 M TOP:Se) were rapidly injected. The temperature was immediately lowered (<100 °C) 

once the desired size had been reached. After annealing overnight, the excess selenium/cadmium 

precursor was removed by centrifugation, and the CdSe cores were kept in a mixture of toluene, 

butanol, and hexane. To protect the core from oxidation and improve quantum yield, the cores were then 

overcoated with multiple ZnS layers (3-5). During the shell synthesis, CdSe cores were added into the 

degassed ligand mixture (TOPO and HPA) where solvent was removed by a liquid nitrogen solvent trap, 
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followed by the slow addition of Zn and S precursors via a programmable syringe pump (0.4 mL/min). 

The synthesized CdSe-ZnS core-shell QDs were again allowed to anneal overnight at 80 °C and then 

stored in a mixture of solvents (toluene, hexane, and butanol). 
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2.3 Biphasic Ligand Exchange 
 
The ligands used in this study were lysine (Lys), aminopropanediol (AP), and cysteine (Cys); these 

ligands attached to the QD surface via the DTC functional group through biphasic ligand exchange 

process. In short, equimolar amounts of amine precursors and CS2 were mixed with ultrapurified water 

(Milli-Q System, Millipore). Purified CdSe-ZnS QDs (excess hydrophobic ligands had been removed), 

dissolved in chloroform were then added to the solution. The mixture was stirred vigorously for 24 

hours at room temperature or until all hydrophobic QDs had been transferred to upper water phase. 

Excess ligands were removed using an Amicon Ultra-4 50k MWCO centrifugal filter (Millipore) and 

followed by passing through a PD-10 chromatography column (GE Healthcare). 

Hydrophobic HDA ligands where attached to the QD surface using a similar approach. Instead of 

forming DTC in water, HDA-DTC was produced in chloroform by reacting with CS2. This was mixed 

with water-soluble QDs and stirred overnight at room temperature. The amount of HDA-DTC per QD 

was varied by controlling the concentration of HDA and CS2 in the organic phase. 

 
 
2.4 Turbidity, Normalized Aqueous Concentration and Solubility Index 

 
Turbidity index (TI), normalized aqueous concentration (NAC) and solubility index (SI) are defined as 

 

follows. 
 

TI (n) = 

 
A660 (n) − A660 (1: 0) 

A660 (1:10) − A660 (1: 0) 

 
 
 
, (1) 

 
where n is the QD:HDA ratio and A660 is the absorbance at 660nm. 

A585 (n) − A660 (n) 
NAC(n) = 

A585 (1:10) − A660 (1:10) 
. (2) 
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SI (n) = 
NAC(n) 
TI (n) 

 
(3) 
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2.5 Cell Culture 
 
Mouse Embryonic Fibroblasts (MEFs) were used for all live cell experiments. Cultures were maintained 

using DMEM with phenol red + 10% FBS, 2% GlutaMAX, and 1% penicillin/streptomycin. Cells were 

harvested using trypsin. 

 
 
2.6 Flow Cytometry 

 
All flow cytometry experiments used live MEF cells at approximately 500,000 cells per sample. QD 

solutions at 1 μM and/or DiD solutions at 10 μM with appropriate media were incubated with cells for 

30 minutes and then washed twice with appropriate media. The media used for a particular sample was 

determined by Table 1: Lys-, Lys-HDA-, AP-, and AP-HDA-QDs were incubated in DMEM + 1 mg/ml 

BSA + 12 mM HEPES without phenol red and Cys- and Cys-HDA-QDs were incubated in PBS. All 

QDs used in each experiment had the same number of freeze/thaw cycles. The samples were stored on 

ice for up to 5 hours after washing to suppress endocytosis. Flow cytometry experiments were 

conducted at the Iowa State University flow cytometry facility. Mean fluorescence from flow cytometry 

was background-substracted and divided by the background-subtracted mean fluorescence of the same 

QD sample measured using 442 nm excitation wavelength and 605 nm emission wavelength in solution 

in a Fluoromax-4 dual monochromator spectrofluorometer (Horiba Jobin-Yvon) with a 0.1 s integration 

time. 

 
 
2.7 Dynamic Light Scattering 

 
Dynamic light scattering was performed using a Malvern Zetasizer Nano-ZS90. The intensity 

correlation curve was collected at 25 °C at a scattering angle of 90°. 
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2.8 TIRF Live Cell Imaging 
 
All live cell time lapse imaging experiments used MEF cells at concentrations per sample conducive to 

obtaining single cell images, approximately 2 to 5 million cells/ml in a 35 mm dish. Cells were labeled 
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with 1 μM DiD for 10 minutes in DMEM with phenol red + 10% FBS, 2% GlutaMAX, and 1% 

penicillin/streptomycin and then suspended in DMEM lacking phenol red + 10% FBS, 2% GlutaMAX, 

and 1% penicillin/streptomycin, 12 mM HEPES containing Lys-QDs, or Lys-HDA-QDs. 

Concentrations of QDs ranged from 100 nM to 1 μM. Cells with QDs were washed 3× at low speeds in 

the imaging medium described above in order to eliminate unbound and/or aggregated QDs. Samples 

were placed in chamber slides with coverslips coated in either 30 µg/ml collagen or 10 μg/ml 

fibronectin. Cells were then imaged after spreading had occurred. Imaging was conducted on a Nikon 

TiE through-the-objective total internal reflection fluorescence (TIRF) microscope. Images were 

collected through ApoTIRF, 60×, 1.49 NA Nikon objective. The images were collected on an Andor 

iXon888 EMCCD at a frame rate > 3Hz. Consequently, 100 to 1000 frames and time intervals ranging 

from 90 ms to 600 ms were taken. Correlation analysis was performed as described elsewhere.[32] 

Briefly, small regions were selected on the cell and the following equation was used to calculate the 

temporal autocorrelation function, r, as a function of time lag, i, in units of frames: 

( ) 1 X        1   N −i (I j − I j )(I j +1 − I j +1 ) 
r  i  = ∑ ∑ , (4) 

X  i=1  N − i j =1 I j I j +1 

 
where X is the number of pixels in a region of interest, N is the total number of frames, Ij is the image 

 
 

gray value at each pixel in the region of interest at frame j, and  I j is the spatial average image gray 
 
values in the region of interest at frame j. Three sections of the lamellopodia of each cell were selected 

to be analyzed along with the cell body and a cell-free area. The autocorrelation function was 

normalized using the following equation: 

rnorm (i) = r (i) r (1) . (5) 
 
The data was fitted to a model that describes two different populations diffusing at different rates. We 

hypothesize that these populations are QDs diffusing on the surface and vesicle-containing QDs 
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diffusing in the cell. The following equation was used for this two population diffusion model: 
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−1 −1  τ    τ   
rnorm (i) = g1 (0)1+  + g2 (0)1+  + g∞ , (6) 

 τ d1   τ d1  
 

Fits were performed using the lsqcurvefit function in MATLAB. Confidence intervals for 

parameters were calculated at the 95% level using the nlparci function. 

 
 
2.9 Histology 

 
Liver samples were collected from leftover hepatic tissue after a diagnostic post-mortem examination of 

a young dog that died after acute vehicular trauma. Liver samples were snap-frozen in Optimal Cutting 

Temperature (OCT) medium (Tissue-Tek) and were sectioned to 3 µm and mounted on 

aminoalkylsilane-coated coverslips. Samples were incubated for 30 minutes at room temperature with a 

mixture of individual QDs species at 0.5 M, 4',6-diamidino-2-phenylindole (DAPI), and Alexa Fluor 

488-phalloidin (Invitrogen). Samples on coverslips were then washed gently three times with DMEM 

for Lys-QDs, Lys-HDA-QDs, AP-QDs and AP-HDA-QDs and with PBS for Cys-QDs and Cys-HDA- 

QDs, mounted on a glass slide using Vectashield HardSet Mounting Medium for Fluorescence (Vector 

Laboratories), and allowed to dry. Histologic examination was performed by a board-certified veterinary 

pathologist and binding of QDs to multiple cell types was evaluated subjectively using fluorescence 

microscopy. Prior to use in this work, hematoxylin and eosin-stained, frozen and formalin-fixed, 

paraffin-embedded sections of liver tissue were examined with light microscopy to determine adequacy 

of sectioning and processing and revealed that the liver was histologically normal. For image analysis, 

histological sections were imaged through a PlanFluor, 20×, 0.45 NA Nikon objective. Histologic 

images were collected on a Photometrics HQ2 CCD. 
 
 

2.10 Computer aided image analysis for QD-binding intensity 
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Image analysis to determine differential binding between cell membrane and cytoplasm was performed 

on at least 7 images for each slide using Adobe Photoshop CS5. Briefly, images were opened in 

Photoshop and an area of interest (cell border, cytoplasm, or sinusoidal background) was selected using 
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the “magic wand” tool, set to tolerance of 3. The area was expanded using the “similar” function, and 

the mean number of pixels at each intensity level (corresponding to the mean binding intensity) was 

recorded for five different locations on each image. The ratio of sinusoidal cell border to cytoplasmic 

binding was calculated by first subtracting the background binding intensity for each location and using 

the mean of the five locations to represent the data from an individual image. The Mann Whitney and 

ANOVA tests with p = 0.05 were used for statistical analysis. 

3. Results and Discussion 
 

Given our ability to fabricate small, highly luminescent QDs while controlling surface properties, we 

sought to generate mixed-surface QDs having hydrophobic moieties to enhance cell and tissue binding 

ability and hydrophilic moieties to enhance aqueous solubility. Optimizing these properties in 

combination is a critical step towards generating QDs that efficiently bind to cells and tissues. To 

measure the ability of our mixed surface QDs to bind cells and tissues, we first evaluated the stability 

and fluorescence of QDs in vitro, characterized the cell binding using complementary techniques of 

flow cytometry and high-resolution fluorescence microscopy, and measured the tissue binding using 

histologic techniques. 

 
 
3.1 Fabrication and Characterization of Lipid-Modified Quantum Dots. As described previously, 

DTCs are suitable multivalent ligands for attaching amino acids and other primary amine containing 

molecules to CdSe-ZnS QDs, while preserving colloidal stability and desirable optical properties. The 

flexibility of this approach allows for tuning the balance of hydrophobicity and hydrophilicity, which 

impacts the affinity of these QDs for the plasma membrane of cells. Consequently, we sought to modify 

a hydrophobic molecule containing a primary amine using DTC chemistry. This approach was used in 

combination with hydrophilic ligands such as lysine, aminopropanediol, and cysteine to provide 
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aqueous solubility. The particular hydrophilic ligands were selected to allow different magnitudes of 

negative charge. These included lysine (Lys), aminopropanediol (AP), and cysteine (Cys). The alkyl 

amine HDA was selected because of its availability as a stabilizing ligand in the QD fabrication process 

http://dx.doi.org/10.1016/j.colsurfb.2012.01.015


NOTICE: This is the author’s version of a work that was accepted for publication in Colloids and Surfaces B: 
Biointerfaces. Changes resulting from the publishing process, such as peer review, editing, corrections, structural 
formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been 
made to this work since it was submitted for publication. A definitive version was subsequently published in 
Colloids and Surfaces B: Bioinerfaces, 94, 1, (2012): doi: 10.1016/j.colsurfb.2012.01.015. 
 

and its optimal chain length with respect to the chain length of plasma membrane lipids. HDA readily 

reacts with CS2 to form a DTC, resulting in the characteristic absorbance peak at 260 nm and 300 nm 

(Figure 1A). This molecule is hereafter referred to as HDA-DTC. QDs capped first with hydrophilic 

molecules such as Lys can be mixed with an organic phase containing HDA-DTC at different ratios 

(Figure 1B). We designate these QDs as HDA-Lys-QDs. The addition of different amounts of HDA- 

DTC molecules to QDs can detrimentally affect the final QD preparation in two ways. First, if the 

number of HDA-DTC per QD is moderately high, aggregation in the aqueous phase results in a higher 

background absorbance at high wavelengths due to increased light scattering (Figure 1C). This was 

quantified as the turbidity index. Additionally, a high coverage of HDA-DTC on QDs induces insoluble 

aggregates in the aqueous phase, driving particles into the organic phase during the biphasic reaction 

(Figure 1B). This results in a lower measured absorbance in the aqueous phase at short wavelengths due 

to a decreased soluble concentration. This was quantified as the normalized aqueous concentration. 

Useful QD:HDA-DTC ratios would then exhibit a low turbidity index and high normalized aqueous 

concentration, resulting in a high solubility index. Using these metrics, a 1:10 ratio of QD:HDA-DTC 

performed better than ratios of either 1:50 or 1:100 (Figure 1C). 

Given that Lys-QDs accept HDA-DTC as an additional surface ligand, but increased HDA-DTC 

results in aggregation, we wanted to more precisely examine the aggregation state of HDA-DTC 

modified hydrophilic QDs, including those capped with Lys, AP, and Cys (Table 1). We used both 

dynamic light scattering (DLS) and epi-fluorescence microscopy to quantify the size distribution of the 

QDs in different buffers that are relevant to biological studies. These include water, a balanced salt 

solution (phosphate buffered saline, PBS), and a cell medium (Dulbecco’s Modified Eagle’s Medium, 

DMEM), some of which included protein additives commonly used with cells: bovine serum albumin 

(BSA) and fetal bovine serum (FBS). Aqueous buffers affected the aggregation of even the hydrophilic 
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QDs (Lys-QD, AP-QD, and Cys-QD) in non-intuitive ways. For instance, Cys-QDs did not aggregate in 

PBS at all, but aggregated extensively in DMEM, even though the pH and ionic strengths of both 

solutions are approximately the same (Table 1). Additionally, protein additives commonly used in 
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biological applications prevented aggregation of HDA-DTC modified QDs, however, the potential for 

this enhancement with BSA or FBS depended on the hydrophilic ligand. Understanding aggregation of 

these different species of QDs is critical and was used to design experiments for assessing cell and 

tissue binding. 

 
 
3.2 Quantification and Analysis of Cell Binding Ability of Lipid-Modified Quantum Dots. In order 

to examine the affinity of these different hydrophilic ligands, with and without HDA-DTC, towards live 

cells, we turned to flow cytometry studies where mouse fibroblast cells were incubated with various 

species of QDs. Binding of both HDA-Lys-QDs and Lys-QDs were dose dependent, however HDA- 

Lys-QDs were more sensitive to the dose. A concentration of 1 µM led to significant cell binding and 

was used as a constant QD concentration for other flow cytometry experiments. The cell binding 

behavior of HDA-Lys-QDs largely matched the behavior of DiD, a common lipophilic dye used to stain 

cell membranes. While extinction coefficients, quantum yields, and excitation/emission filter 

characteristics were different between the HDA-Lys-QDs and DiD, HDA-Lys-QD binding to the cell 

membrane was on the same order of magnitude as DiD binding (Figure 2A). Interestingly, this dose 

response also depended on the number of freeze-thaw cycles experienced by the QD sample 

(supplementary Figure 1). Consequently, QDs having the same number of freeze-thaw cycles were used 

for analysis. 

The cell binding of six different species of QDs (3 hydrophilic ligands +/- HDA-DTC) was evaluated 

using flow cytometry where the enhancement due to the addition of HDA-DTC was calculated. Because 

the fluorescence of the different species of QDs was slightly different (supplementary Figure 2), the 

flow cytometry fluorescence was normalized to the fluorescence measured using a cuvette fluorometer. 

QDs bearing Cys ligands bound to cells with the highest affinity (~5× greater than the other QD 
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species, Figure 2B), however this binding was actually diminished by the addition of HDA-DTC 

(Figure 2C). QDs bearing Cys ligands contain free sulfhydryl groups that can form disulfide bonds with 

cell surface proteins containing exposed Cys. This reaction might be inhibited to some extent by the 
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addition of lipid on the surface of the QD. Both Lys and AP showed lower overall binding (Figure 2B), 

but statistically significant enhancement of cell binding in response to the addition of the HDA-DTC 

(Figure 2C). All of the hydrophilic ligands resulted in net negatively charged QDs, but the charge order 

was the same based on the charge of the hydrophilic ligand itself. Interestingly, enhancement due to the 

presence of HDA-DTC was linearly proportional to the ζ-potential (Figure 2C). This is noteworthy and 

indicates that QD surface charge not only regulates solubility, but impacts binding affinity as well.[33]
 

 
While we do not know how the enhancement would depend on charge for QDs with a net positive 

charge, generating QDs with charges near zero could increase the enhancement to ~3-fold. 

While examining cells labeled with both DiD and QDs, we found that the addition of a 10-fold higher 

concentration of lipophilic molecule like DiD enhanced the binding of both HDA-AP-QDs and HDA- 

Cys-QDs and to a lesser extent AP-QD and Cys-QDs (Figure 3). However, it decreased the binding of 

both Lys-coated QDs. This suggests that lipid carriers might provide a mechanism by which  to 

introduce these mixed surface QDs, however the nature of the hydrophilic ligand must be considered. 

Given the enhancement of the cell binding ability of HDA-Lys-QD over Lys-QD in buffers without 

lipid additives, we turned to microscopy to analyze the QD binding to and movement within cells. 

Mouse fibroblast cells were incubated with either Lys-QDs or HDA-Lys-QDs, washed, and allowed 

to spread onto fibronectin-coated cover slips. After the cells spread, TIRF images were taken at < 0.3 s 

time intervals. Lys-QD treated cells showed very few mobile QDs (Figure 4A and supplemental 

Video 1). These static particles were most likely QDs that are nonspecifically attached to the glass. In 

contrast, while there was also some nonspecific attachment of HDA-Lys-QDs to the glass, there were 

clear instances of mobile particles on the ventral membrane in HDA-Lys-QD-treated cells (Figure 4A 

and supplemental Video 2). The length scale of motion (~0.5 µm) of small particles over the sampling 

time interval (~0.6 s) yields a diffusion coefficient of ~0.4 µm2/s, which is similar in magnitude to 
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membrane-tethered protein diffusion. Both Lys-QDs and HDA-Lys-QDs were readily internalized, 

accumulating in vesicles docked at the ventral membrane as visible by TIRF. Both vesicle movement, a 
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long timescale event, and individual QD diffusion, a short timescale event, impact the overall movement 

of punctae in images. This movement can be quantified by calculating a temporal autocorrelation value, 

which compares image intensity pixel-by-pixel over different time lags. Slower moving particles result 

in temporal autocorrelation curves that decrease at longer time lags. Temporal autocorrelation functions 

were dramatically different between Lys-QDs and HDA-Lys-QDs in both the cell body and periphery 

(Figure 4B and C). Additionally, a model for the autocorrelation function that incorporates two distinct 

timescales for diffusion from two different populations of vesicles (~100 s) and single QDs (~0.1 s) did 

not fit the Lys-QD data (Figure 4B). Visual inspection of the timelapses of QD movement and 

examination of the temporal autocorrelation functions leads us to believe that adding HDA-DTC to QDs 

containing hydrophilic ligands facilitates QD attachment to and diffusion within the plane of the 

membrane. 

 
 
3.3 Quantification and Analysis of Tissue Binding Ability of Lipid-Modified Quantum Dots. Given 

that HDA-DTC enhances the cell binding of some, but not all, hydrophilic QDs, we tested if similar 

behavior would be observed in animal tissues. We hypothesized that HDA-DTC would enhance the 

localization of QDs to plasma membranes and to lipid-rich cytoplasmic organelles in thin frozen tissue 

sections. Consequently, we prepared 3 µm thick frozen tissue sections from canine liver, incubated these 

samples with QDs, Alexa Fluor 488-labeled phalloidin, and DAPI, and evaluated QD binding 

quantitatively and qualitatively. Tremendous similarity existed between the trends in the QD affinity to 

cells and tissues (compare Figure 2B and Figure 5B), even though cell binding as measured by flow 

cytometry did not show the same level of statistical significance. Furthermore, some species of QDs 

demonstrated enhanced binding to the borders of cells in the hepatic parenchyma using a one sample t 

test (p = 0.05, Figure 5C). QDs bound peripherally along the cytoplasmic actin network near basal 
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cytoplasmic margins of hepatocytes, the location of the cell membrane of hepatocytes, with differences 

in cell border binding among QD constructs. Both Cys- and Lys-coated QDs show enhanced binding 

when  HDA-DTC  is  added,  with  the  addition  of  HDA-DTC  resulting  in  a  statistically  significant 
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difference in cell border binding for Cys-QDs (Figure 5A and C). On the other hand, AP-coated QDs 

bound cells well, but the addition of HDA-DTC reduced the preferential binding to the cell border. The 

subcellular distribution of QDs supports the hypothesis that the QDs with various ligands differentially 

bind to some components of the plasma membrane and cytoplasm. 

Differential binding was not, however, limited to the plasma membrane and cytoplasm. Hepatic cords 

are composed of hepatocytes arranged with stringent apical-basolateral polarization that reflects some of 

the physiologic function of the liver, namely the uptake, processing, metabolism, transport, and 

excretion of many metabolic and toxic molecules, as well as the production of bile. The apical 

membrane of hepatocytes lining bile canaliculi is a site of intense secretory transport involved in the 

production of bile, a secretion of hepatocytes that functions to some extent as a surfactant, emulsifying 

lipids in the digestive tract. None of the QD constructs co-localize with the F-actin-dense microvilli of 

the apical hepatic membrane lining bile canaliculi between hepatocytes (Figure 5A). We theorize that 

differences in QD binding between the apical and basolateral membranes of hepatocytes are due to 

compositional differences in these membrane domains. Additionally, all species of QDs and HDA-QDs 

demonstrated multifocal, variably intense perinuclear binding of the nuclei of some hepatocytes (Figure 

5D). We theorize that the perinuclear capping may be related to the presence of intracytoplasmic 

membrane-rich regions, such as Golgi apparatus and other organelles, or, possibly, to positively charged 

molecules attracted to the negative charge of DNA, or to the negative charge of DNA itself. 

Having observed this spatial inhomogeneity of QD binding among membrane components with 

different functions in hepatocytes, we examined QD-labeling of a variety of cell types forming complex 

architectural structures in the frozen liver sections. The increased affinity of binding by Cys-QDs and 

HDA-Cys-QDs as compared with other species is evident, including HDA-Lys-QD as shown in Fig 6. 

Binding of QD constructs to the epithelial cells lining bile ductules was usually limited to mild, granular 
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fluorescence of the cytoplasm and faint perinuclear (apical) binding, but for some constructs there was 

variability of binding to epithelia, even within sections (Fig 6). Kupffer cells lining hepatic sinusoids 

often demonstrated moderately intense perinuclear binding of all QD constructs and no appearance of 
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differential plasma membrane versus cytoplasmic binding. Small numbers of endothelial cells have mild 

perinuclear binding. Cellular and fibrous components of the portal region demonstrated faint binding of 

HDA-Lys-QD and much stronger binding of Cys-QD, HDA-Cys-QD (Figure 6). The endothelial lining 

of the portal venules bind Cys-QD and HDA-Cys-QDs intensely, with minimal binding of HDA-Lys- 

QD. 

 
 
4. Conclusion 

This work demonstrated a number of important findings with respect to the generation of 

biocompatible QDs. First, we showed that surface ligands on QDs can dramatically affect solubility in 

different aqueous buffers. This is of vital importance in designing a biosensor as many solvents are not 

compatible with cells and tissues. Second, the charge and hydrophobicity of surface ligands covering the 

QD can tune the degree of cell and tissue binding. We expect this phenomenon to regulate other 

targeting approaches using either hydrophobic alpha-helix forming peptides[34]  or specific targeting 

peptides.[35] Finally, QDs lacking specific targeting mechanisms such as antibody-antigen or ligand- 

receptor interactions are able to spatially localize to both subcellular and anatomical structures. Tuning 

surface charge and hydrophobicity is expected to allow development of new tools for histology that can 

complement techniques such as immunohistopathology. Consequently, designing biosensors with 

targeting characteristics does not solely rest with identifying a specific receptor-ligand pair, but rather 

also depends strongly on nonspecific interactions that originate from the nanoparticle and, importantly, 

that can be controlled during their synthesis. Tuning these nonspecific interactions between QDs and 

cells to optimize or reduce cell binding might hold more promise for cell targeting or avoidance than 

previously thought. 
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Figures 
 
 
 

 
 
 
 
 
 

Figure 1. Synthesis of soluble lipid-tethered QDs using partial ligand exchange: A. Left: CS2 reacts 

with HDA at the primary amine to form a DTC-containing hydrophobic molecule. Right: Absorbance 

spectra are shown for products and reactants. B. Images show the two phase system after partial ligand 

exchange with HDA-DTC. The aqueous phase (red) is on top and the organic phase (clear or cloudy) is 

on bottom. Different QD:HDA-DTC ratios are shown. C. Left: Absorbance spectra of HDA-Lys-QDs 

(1:10 QD:HDA-DTC ratio) and Lys-QDs (before partial exchange with HDA-DTC). Turbidity index 

(middle), normalized QD concentration (middle), and solubility index (turbidity index/normalized QD 

concentration, right) was calculated for HDA-Lys-QDs in aqueous solution with different QD:HDA- 
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DTC ratios. 
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Figure 2. Lipid-tethered QDs show differential cell binding: A. Mean background subtracted 

fluorescence from flow cytometry is shown as a function of fluorescent probe dose. Cells were 

incubated for 30 minutes with DiD (a lipid dye), HDA-Lys-QDs, or Lys-QDs at the given 

concentrations (N = 3). B. Normalized fluorescence from flow cytometry after cells were incubated with 

1 µM QD for 30 minutes. Normalized fluorescence was calculated as the mean background subtracted 

fluorescence from flow cytometry is divided by the background subtracted fluorescence of the same 

concentration of QD as measured by a cuvette fluorometer (N > 5). C. Black bars: The fluorescence 

signal from flow cytometry of the HDA-derivative divided by the fluorescence signal from QD before 

HDA exchange (N > 5). Gray dots: The particle charge for Lys (N = 2), AP (N = 1), and Cys (N = 3). 

All error bars represent 95% confidence intervals. 
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Figure 3. DiD enhances the cell binding of lipid-tethered QDs: DiD-mediated binding enhancement 

was measured using flow cytometry. Mean background subtracted fluorescence of cells incubated with 

1 µM QD and 10 µM DiD was divided by the mean background subtracted fluorescence of cells 

incubated with 1 µM QD only. 
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Figure 4. Lipid-tethered QDs show differential mobility in the cell membrane: A. Cells were 

incubated with 0.3-1 µM Lys-QD or HDA-Lys-QD before imaging using TIRF. The whole cell is 

shown on the left and a montage of images take 600 ms apart is shown to the right. The arrow marks a 

mobile QD in the cell membrane. The scale bar is 10 µm. B. TICS was used to construct normalized 

autocorrelation as a function of time lag for particles in the cell body. Left: Average normalized 

autocorrelation for multiple cells over three days for both Lys-QDs (N = 20) and HDA-Lys-QDs (N = 
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14) is shown with error bars representing 95% confidence intervals. Right: Model of 2D diffusion of 

two different populations (red) is shown with the data (black). Characteristic diffusion times are 

presented to the right with 95% confidence intervals included in the brackets. C. TICS was used to 
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construct normalized autocorrelation as a function of time lag for particles in the lamellipodia of cells. 

This was done for three regions in a cell for multiple cells over three days for both Lys-QDs (N = 20) 

and HDA-Lys-QDs (N = 14). Measurements and diffusion times were presented as in B. 
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Figure 5. Lipid-tethered QDs show differential binding to liver tissue: A. Liver tissue frozen 

sections were incubated with 1 µM QD and phalloidin for 30 minutes. Homogeneous fields were 

imaged using low magnification widefield fluorescence microscopy. HDA-derivatives and their 
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corresponding control QD before HDA exchange were scaled the same. Left: QD signal is shown. 

Middle: Phalloidin (F-actin) signal is shown. Right: Overlay of QD signal (green) and F-actin signal 

(red). B. Mean field background subtracted fluorescence was quantified for the different QDs (N > 10 
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fields). This fluorescence was not normalized by intrinsic QD fluorescence as in figure 2. C. Cortical 

cell membrane fluorescence divided by cytosolic fluorescence was quantified for the different QDs (N > 

10). D. Cells prepared as in A Left: HDA-Cys-QD signal is shown. Middle: DAPI signal is shown. 

Right: Overlay of QD signal (green) and DAPI signal (red). All error bars represent 95% confidence 

intervals. Scale bars are 20 µm. 
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Figure 6. QDs localize to distinct regions in liver tissue: Top: Liver tissue section stained with HDA- 

Lys-QD (green), phalloidin (actin) and DAPI (blue) as in Figure 5. Middle: Enlarged regions showing 

epithelium of a collecting bile ductule (left), interstitium of the portal region (middle) and a small bile 

ductule (right). Bottom: Liver tissue section stained with Cys-QD (green, left) or HDA-Cys-QD (green, 

right), phalloidin (actin) and DAPI (blue) as in Figure 5. 
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Tables 
 

Table 1. Aggregation characteristics for different mixed surface QDs: Dynamic light scattering 

(DLS) and epi-fluorescence microscopy (EFM) at low magnification (10×, with a pixel size of 645 nm) 

was used to characterize the aggregation of differently coated QDs in common buffers compatible with 

cells as well as the stock solvent, water. Average size from DLS is reported in nanometers and intensity 

standard deviation fold over background noise from EFM is reported in parentheses. 

 
 
 

 Lys HDA-Lys Cys HDA-Cys AP HDA-AP 

H2O 6.9 7.6 (3.9) 5.6 7.6 16 21 

PBS 5.1 24 (150) 7.8 11 120a
 35 

PBS+FBS n.d. n.d. 6.1 6.4 n.d. n.d. 

PBS+BSA n.d. n.d. 10 15 n.d. n.d. 

DMEM 6.7 22 (65) 220[a] 27 82[a] 900 

DMEM+FBS n.d. n.d. (3.5) n.d. n.d. n.d. n.d. 

DMEM+BSA 4.0 3.9 (4.4) 44 54 a 15 23 
 
 

[a] indicates double peaks in the particle size distributions based on number 

n.d. indicates conditions that were not used 
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Supplementary Figure 1. The number of freeze-thaw cycles affects QD binding to cells: Cell 

binding was measured with flow cytometry as in figure 2 and 3. The background subtracted mean 

fluorescence of cells treated with various doses of HDA-Lys-QD for 30 minutes is shown after 1-3 

freeze-thaw cycles. 
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Supplementary Figure 2. Ligand surface affects QD fluorescence: Fluorescence was measured 

using a cuvette fluorometer the same day flow cytometry was conducted. Mean background substracted 

fluorescence is shown for all six ligand coats (N > 5). Error bars represent 95% confidence intervals. 

 
 
 

Supplementary Video 1. TIRF imaging of Lys-QDs on cells:  Images were taken every 600 ms for 

1 minute. The frame rate is 15 frames per second, resulting in 9× actual speed. This movie corresponds 

to the top row of images in figure 4A. 
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Supplementary Video 1. TIRF imaging of HDA-Lys-QDs on cells: Images were taken every 600 

ms for 1 minute. The frame rate is 15 frames per second, resulting in 9× actual speed. This movie 

corresponds to the bottom row of images in figure 4A. 
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