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Abstract. This article proposes a calibration scheme for Bayesian test-
ing that coordinates analytically-derived statistical performance consid-

erations with expert opinion. In other words, the scheme is effective and 
meaningful for incorporating objective elements into subjective Bayesian 

inference. It explores a novel role for default priors as anchors for calibration 
rather than substitutes for prior knowledge. Ideas ae developed for use with 

multiplicity adjustments in multiple-model contexts, and to address the issue of 
prior sensitivity of Bayes factors. Along the way, the performance properties of 

an existing multiplicity adjustment related to the Poisson distribution are 
clarified theoretically. Connections of the overall calibration scheme to the 

Schwarz criterion are also explored. The proposed framework is examined and 
illustrated on a number of existing data sets related to problems in clinical 

trials, forensic pattern matching, and log-linear models methodology.

1 Introduction

This article examines the uses and impact of calibrating prior model proba-
bilities in Bayesian testing (a.k.a. model choice) problems. The context em-
phasizes the value of expert opinion in statistical analysis, while at the same
time stresses the importance of analytically-derived statistical properties.
In conventional terms, what is proposed is a framework for fully coherent,
subjective Bayesian testing that is equipped with interpretational guidance
for incorporating objective elements into inference.

The examination makes central use of “default priors,” a concept that Ba-
yarri et al. (2012), succinctly characterizes as priors that “are not subjective
priors, and are chosen conventionally based on the models being consid-
ered.” They are traditionally aligned with the goals of objective Bayes infer-
ence, but this article breaks from that traditional context and motivation by
proposing a use for default priors in the calibration of modeling and evidence
assessment, rather than as a convenient substitute for prior information.

Keywords and phrases. hypothesis testing, model choice, Bayes factors, default priors,
multiplicity, variable selection, Schwarz criterion
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Inspiration for this inquiry is from two primary directions, multiplicity ad-
justments and prior sensitivity of Bayes factors, although the framework’s
potential impact is much broader. These two methodological contexts are
currently and actively discussed in the literature, and while they are ex-
plored in this article primarily for demonstrating how the proposed calibra-
tion framework may be applied and interpreted, the resulting discussion also
offers novel insights that advance each context’s development.

Multiplicity adjustments are treated within the special case of variable se-
lection: Suppose there are p independent variables, each to be categorized as
a “selected” or “omitted.” It is shown in Section 3, below, that a setting on
ratios of prior model odds that induces asymptotic consistency under very
weak assumptions is

P [Ms]/P [Mt] ∝ # omitted variables in Ms (1)

whenever the model Ms has exactly one more omitted variable than Mt.
Such a prior is most closely related to the truncated Poisson priors stud-
ied in Womack et al. (2015), which is shown there to yield asymptotic
consistency. It is a substantial modification of the beta-binomial prior, a
more conventional discrete prior used in variable selection. For the latter,
see, e.g., Scott and Berger (2010), Wilson et al. (2010), and Castillo et al.
(2015). The present examination contributes slightly to this line of inquiry
by re-characterizing the assumptions for asymptotic consistency in terms of
“ultra-high” dimensionality and rates of diminishing signal strength.

Inquiry into variable selection connects to the article’s main objectives as
follows. The proposed framework offers intellectual machinery for interpret-
ing (1) as a calibration of the equal-weight setting, for which the prior odds
between any two models is one. It is in this way that our ideas depart from
the usual mode of reporting the results of an analysis that involves a de-
fault prior: they reflect a preference for assessing evidence relative to expert
opinion–prior odds of one, say–rather than to (1), the detached prescription
of a default. In other words, our ideas aim to retain the voice of the expert
in assessing evidence, even when analytical considerations suggest incorpo-
rating into a statistical procedure elements such as asymptotic consistency
that push against that voice.

As for prior sensitivity of Bayes factors, this article offers a novel interpre-
tation of a technique for avoiding oversensitivity by jointly specifying the
discrete and continuous portions of the prior. The technique is introduced in
Robert (1993), and further developed in Spitzner (2011) and Dellaportas et
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al. (2012). It is notable for offering a resolution to a certain “paradox” of in-
ference that is commonly attributed to Lindley (1957), Bartlett (1957), and
Jeffreys (1961). In this article, this joint-specification technique is presented
as a calibration of prior probabilities.

The prior sensitivity issue is also valuable for motivating key insights of
the proposed framework. Consider a very simple version of the Gaussian
means problem, in which the target of inference is the mean, θ, of a random
sample, Y = (Y1, . . . , Yn). Assume a Gaussian model for data-generation,
Yi|θ ∼ G(θ, 1), and suppose the the “null” model M0 constrains the mean to
θ = 0, while the “alternative” model M1 has θ ∼ G(0, τ2). The Bayes factor
for M0 vs M1 is

BF01(Y ) = (1 + τ2n)1/2 exp{−1
2wnZ

2}, (2)

where Z = n1/2Ȳ , where Ȳ = n−1
∑n
i=1 Yi, and wn = τ2n/(1 + τ2n). This

follows from the general formula BF01(Y ) = π0(Y )/π1(Y ), having writ-
ten πs(Y ) for the marginal density of Y under model Ms. Recall that the
Bayes factor is conventionally interpreted to quantify “weight of evidence,”
by which larger values of BF01(Y ) indicate stronger evidence for M0, and
smaller values indicate stronger evidence for M1. (See, Kass and Raftery,
1995, for additional discussion of Bayes factors.)

A troublesome property of (2) is its unboundedness across the range of pos-
sible values of the prior scale parameter, τ , for BF01(Y ) increases without
bound as τ grows large. The implication is that as the expert may consider
larger values of τ , beyond some hazy threshold the data’s influence on weight
of evidence becomes drastically overshadowed by the that of the prior. Upon
being confronted with this property, Jeffreys (1961, p. 251), expressed reas-
surance by writing that “. . . the mere fact that it has been suggested that
[the parameter] is zero corresponds to some presumption that it is fairly
small.” In other words, he suggests that unboundedness does not matter
because the expert would naturally restrict themselves to a range of values
for τ within which the Bayes factor behaves sensibly.

This article takes a different viewpoint, which is not of reassurance, but of
concern that unboundedness discourages the participation of experts into
inquiry: one imagines an unfortunate scene in which the expert, perhaps
recruited into a study on promises of coherency in Bayesian inquiry, and
accustomed to Bayesian estimation wherein statistical summaries converge
to meaningful limit points as τ →∞, becomes bewildered and discouraged
at the inflexibility of what supposedly counts as meaningful prior knowledge
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in Bayesian testing. The framework developed in this article is an effort to
avoid this scene; it contributes to a broad goal for the development of data-
analysis methodology of encouraging our experts to engage in inquiry and
contribute their voice with full freedom of expression.

The article’s ambitions are achieved in the following way. Default priors are
removed to a peripheral role in testing, such that their only purpose is to
identify an “anchor point” in the data space. The expert’s prior is then cal-
ibrated against that point, combined with the observed data in the usual
way, and converted into a calibrated Bayes factor. Some initial efforts in
this direction are made in Spitzner (2011), whose ideas are built upon here
and augmented with practical ideas for implementation. Theoretical evalu-
ation and numerical demonstration of the resulting procedures explore its
effectiveness at clarifying and interpreting evidence in multiple testing con-
texts, the generality of the approach in Gaussian and regular non-Gaussian
models, the ease at which it allows formulations that depend on nuisance
parameters, and its connections and non-connections to Schwarz’s (1978)
model-choice criterion.

The article’s main ideas are developed in Section 2 in the context of null-vs-
alternative model-comparison, M0 vs M1, in which each model is formulated
from Gaussian distributions. Section 3 explores the formulation for multiple
testing. Section 4 extends the formulation to regular non-Gaussian contexts.
Demonstrations on existing data are presented in Section 5, and conclusions
are made in Section 6. Proofs of the article’s major mathematical assertions
are placed in the appendix.

2 Main elements of the proposed framework

The main concepts and techniques of the proposed calibration framework
are initially described in the context of a comparison between null and al-
ternative models, M0 vs M1. In this setup, there is a parameter under test,
θ, or “target” parameter, which is among the parameters of M1 but not
among those of M0, where it has been constrained to a null value. Possibly,
there is also a “nuisance” parameter φ, which is common to both models.
Any nuisance parameter is treated as a quantity to be conditioned upon
during analysis formulation, and integrated across when calculating analy-
sis results. Accordingly, a prominent concept in the calibration framework
is a conditional version of the Bayes factor,

BF01(Y |φ) =
P [M0|Y ,φ]/P [M1|Y ,φ]

ρ01(φ)
=
π0(Y |φ)

π1(Y |φ)
, (3)
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in which ρ01(φ) = P [M0|φ]/P [M1|φ] is conditional prior odds, and πs(Y |φ)
is a marginal density for the data under model Ms, conditional on φ. Tech-
niques for integrating (3) across models are illustrated in the application
examples of Section 5.

2.1 Calibration to a default anchor in the data space

The proposed calibration framework is most readily formulated under the
assumption that π1(θ|φ), the conditional prior for θ given φ, is embedded
within a parametric family indexed by the prior parameter τ , whose value
is specified from expert knowledge. Though many of the concepts proposed
in this article are meaningful generally, the present framework is developed
only for the case in which τ is a scale parameter. Such narrowing of focus
is motivated by insights into this case put forward in Robert (1993), which
call for the prior odds of M0 to M1 to reflect a contrast between the models
in terms of high-probability regions of the target parameter: whereas the
constraint placed on θ under M0 fixes those regions, any high-probability
region associated with π1(θ|φ) covers a wider range of values of θ as the scale
parameter increases. When this type of contrast is absent, calibration may
be unnecessary, such as in conventional one-sided testing, or in scenarios
where θ is on a weak measurement scale. See also the discussion of the
“device of imaginary results” in Section 2.3, below, which offers a concept
that is generally applicable to determine whether calibration is called for,
and how it may be achieved.

The initial conceptual step toward calibration is for the analyst to choose a
default prior concept and use it to identify a particular value, τ = τ̃ , to serve
as the parameter’s default setting. There is typically a variety of options to
choose from, and we presume the analyst will choose their favorite. For
example, in the Gaussian means problem that gives rise to (2), the “unit-
information” default prior concept (see, Kass and Wasserman, 1995) would
lead that analyst to select the value τ̃ = 1; the “intrinsic” default prior
concept (see, Berger and Pericchi, 1996) would lead that analyst to select
the value τ̃ =

√
2. Should the Gaussian prior, θ ∼ G(0, τ2), be replaced with

a Cauchy prior, θ ∼ Cauchy(0, τ), then Jeffreys (1961) recommended default
setting of τ̃ = 1 would apply. It is not among this article’s objectives to argue
which default setting is “best.” Instead, we assume the analyst has developed
their own intuition as to a default prior concept that makes the most sense
to them. As a starting point to the literature on default prior concepts,
which is quite large, see e.g., Jeffreys (1961), Zellner (1986), O’Hagan(1995),
Kass and Wasserman (1995), Berger and Pericchi (1996), Ibrahim and Chen
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(2000), Pérez and Berger (2002), Berger and Pericchi (2004), Liang et al.
(2008), Casella et al. (2009), Bayarri et al. (2012), Moreno and Pericchi
(2014), Fouskakis et al. (2017), and references therein.

Once a default value τ̃ is identified, the next step is to use that value to
locate an “anchor point” in the data space, against which prior probabilities
and evidence are to be calibrated. This is defined as a point, Y = Ỹ , such
that

BF01(Ỹ |φ) = 1 at τ = τ̃ . (4)

Note that φ is omitted in the notation for τ̃ and Ỹ , despite that both
quantities are defined conditionally on that parameter. Non-uniqueness of
Ỹ is expected, but an easy remedy, described below in Sections 2.2 and
4.1, is available to accommodate this issue. Once a suitable Ỹ is found, the
default value, τ̃ , may be discarded.

The anchor point, Ỹ , is then used to formulate a calibrated Bayes factor.
This is defined as

NDC01(Y |φ) =
P [M0|Y ,φ]/P [M1|Y ,φ]

ρ̃01(φ)
=
BF01(Y |φ)

BF01(Ỹ |φ)
, (5)

where ρ̃01(φ) = P [M0|Ỹ ,φ]/P [M1|Ỹ ,φ], and all quantities other than Ỹ
are calculated at the expert’s setting for τ . The label at the left in (5) is
shorthand for “neutral-data comparison,” a concept developed in Spitzner
(2011) that interprets Ỹ as “neutral” (imaginary) data. This interpretation
is also suggested in criterion (4), for when the Bayes factor is one no evidence
is exhibited more in support of one model than the other.

Observe from the middle expressions of (5) and (3) that a calibrated Bayes
factor is a revision of the usual Bayes factor from a comparison of posterior
to prior odds to a comparison of posterior odds on observed to neutral data.
The rightmost expression in (5) is explicit in stating how the Bayes factor
is calibrated relative to the anchor point. Section 2.3, below, offers a brief
summary of the “neutral data” concepts developed in Spitzner (2011) that
justify substituting (5) for (3) in evidence assessment.

The calibrated Bayes factor gives rise to a calibration of prior model proba-
bilities in the following way. Combine the middle expressions of (5) and (3)
to observe the relationships

P [M0|Y ,φ]/P [M1|Y ,φ] = ρ01(φ)BF01(Y |φ) = ρ̃01(φ)NDC01(Y |φ). (6)
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Subsequently, the rightmost expressions in (5) and (6) combine to imply

ρ01(φ) = ρ̃01(φ)/BF01(Ỹ |φ), (7)

which articulates the desired calibration.

The following is a summary of the steps of the approach just described.
The assumption that π1(θ|φ) is embedded in a scale family alludes to a set
of pre-calibration steps: Step A, identify target and nuisance parameters;
Step B, identify the scale parameter; and, Step C, if not obvious, derive
a suitable mathematical framework for working with the model condition-
ally. These steps are aspects of model elicitation, and might be carried out
in any analysis to gain insight into the inferential or computational frame-
work. Subsequent to these steps in the proposed scheme are the following
calibration steps: Step D, choose a default prior concept and set τ to a
default value, τ̃ ; Step E, find an “anchor point” Ỹ by solving equation
(4); Step F, discard τ̃ and use Ỹ to calculate the quantity BF01(Ỹ |φ), the
divisor in formula (5) for calibrating the Bayes factor, and in formula (7)
for calibrating prior odds. These steps are referred to in later examples and
discussion.

2.2 Example: The Gaussian means problem

The following examination of a multivariate version of the Gaussian means
problem illustrates the concepts laid out above, and offers an approach to
handling the non-uniqueness problem when the anchor point, Ỹ , is deter-
mined by the criterion (4).

Suppose a sample of n independent ν-dimensional measurements, Y =
(Y 1, . . . ,Y n), is observed. The data are generated from Gaussian distri-
butions, Y i|Σ ∼ G(θ,Σ), such that the mean parameter is restricted to
θ = 0 under model M0, but left unrestricted under M1. The covariance
matrix is treated as a nuisance parameter, φ = Σ. Suppose further that the
prior distribution under M1 is such that θ|Σ ∼ G(0, τ2Σ1/2∆Σ1/2), where
∆ is a symmetric, positive-definite matrix, which has been standardized so
that its largest eigenvalue is one. It follows that the conditional Bayes factor
for the model-comparison M0 vs. M1 is

BF01(Y |Σ) = (τ2n)ν/2|∆|1/2|W |−1/2 exp{−1
2Z

TWZ}, (8)

having written Z = n1/2Σ−1/2Ȳ , where Ȳ = n−1
∑n
i=1 Y i, and W = {I +

∆−1/(τ2n)}−1. This completes the pre-calibration Steps A, B, and C of
Section 2.1.
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Now suppose a default value τ̃ is identified from the analyst’s favorite default
prior concept, and the equation of criterion (4) is solved. The solutions are
succinctly written in terms of the neutral-data analogue Z̃ to Z in (8),
which substitutes Ỹ for Y in defining that quantity. Each solution has Z̃ =√
c̃W̃

−1/2
u, where W̃ = {I + ∆−1/(τ̃2n)}−1, c̃ = log{(τ̃2n)ν |∆||W̃ |−1},

and u is any unit-length ν-dimensional vector, ‖u‖ = 1. It follows that

BF01(Ỹ |Σ) =
{

(τ2n)ν |∆||W |−1
}1/2/

(9)

{
(τ̃2n)ν |∆||W̃ |−1

}1
2u

T W̃
−1/2

WW̃
−1/2

u
.

This completes the calibration Steps D, E, and F of Section 2.1. Our at-
tention now turns to the issue of non-uniqueness of Ỹ .

The calibrated Bayes factor (5) is

NDC01(Y |Σ) = (10){
(τ̃2n)ν |∆||W̃ |−1

}1
2u

T W̃
−1/2

WW̃
−1/2

u
exp{−1

2Z
TWZ},

Upon noting that W → I as τ →∞, it is clear from (10) that NDC(Y |Σ)
converges to a meaningful value for evidence assessment even when τ is set
to a very large value,

NDC01(Y |Σ) ≈ (11){
(τ̃2n)ν |∆||W̃ |−1

}1
2u

T W̃
−1
u

exp
{
−1

2‖Z‖
2
}

as τ →∞,

That is, the calibrated Bayes factor is bounded and therefore avoids over-
sensitivity to prior scale, as desired.

Nevertheless, the statistic (10) is generally unsuitable for implementation,
due to the non-uniqueness of Ỹ , which varies with respect to u. (An excep-

tion is the case ∆ = I, for which uTW̃
−1/2

WW̃
−1/2

u = {1+1/(τ̃2n)}/{1+
1/(τ2n)} does not vary.) Non-uniqueness may be handled in a satisfying
way by appealing to large-sample properties: observe that both W → I and

W̃ → I as n → ∞, so that uTW̃
−1/2

WW̃
−1/2

u → 1, hence BF01(Ỹ |Σ)
has a unique limiting value,

BF ∗ = (τ/τ̃)ν . (12)

Substituting (12) in place of (9), the calibrated Bayes factor is (5) is

NDC01(Y |Σ) = (τ˜2n)ν/2|∆|1/2|W |−1/2 exp{−1
2Z

TWZ}, (13) 
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which, as with (11), avoids oversensitivity to prior scale, and is the ultimate
form that is proposed for evidence assessment in problems of this sort. Ar-
guments in Section 4, which develops the calibration framework for regular
non-Gaussian models, motivate the use of a limiting value, an analogue to
(12), as a convenient general means of resolving the non-uniqueness issue.

Note that the proposal is for large-sample analysis to be applied narrowly,
only for the purpose of calibration. Still, given that it is used at all, one
might argue for more a extensive use by which (10) is replaced with its
approximation

NDC01(Y |Σ) ≈ (τ̃2n)ν/2|∆|1/2 exp
{
−1

2‖Z‖
2
}

as n→∞. (14)

This is not as desirable as (13), due to its excessive suppression of the ex-
pert’s prior; e.g., note the complete absence of the expert’s scale parameter
τ . It might, however, be regarded as a variation of the Bayes factor im-
plied by Schwarz (1978) model-choice criterion, a connection that will be
examined more carefully in Section 4.2.

In addition to inspiring a resolution to the non-uniqueness issue, the Gaus-
sian means problem is also helpful for exploring the potential impact of
non-uniqueness. For this purpose, let us focus on the formula (11) for the
limiting value of the calibrated Bayes factor when τ is set to a very large
value, and consider its range of values as the vector u varies. That range

is determined from the eigenvalues of the matrix W̃
−1

, which, according

to elementary matrix theory, bound the quadratic expression, uTW̃
−1
u,

appearing in the exponent of the formula’s initial factor. Since ∆, which

determines W̃
−1

, is standardized so that its largest eigenvalue is one, the
bounds are found to be

1 + 1/(τ̃2n) ≤ uTW̃−1
u ≤ 1 + δ−11 /(τ̃2n),

where δ1 denotes the smallest eigenvalue of ∆. It is clear from these bounds
that when ∆ is strongly ill-conditioned, hence δ1 is very small, the calibrated
Bayes factor varies widely across the solutions to criterion (4). In other
words, potential impact of non-uniqueness could be quite severe.

As indicated, judicious application of large-sample asymptotics resolves this
issue. However, should the reader not find that resolution compelling, a sen-
sible second option would be to report the calibrated Bayes factor’s range
of possible values. As an attempt at a third option, it could be tempt-
ing to try to identify a preference for some particular value of u over all
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others, but it is difficult to imagine any concept that would make such a
preference meaningful. One seemingly convenient choice would be to pre-
fer u = Y /‖Y ‖, thus aligning the anchor point to the observed data; yet,
this would amount to a double-use of data, and would take us away from
the subjective Bayesian framework for which the proposed methodology is
intended. Ultimately, either of these alternative options would be challeng-
ing to implement in problems substantially more complex than the present
Gaussian testing scenario, and neither are pursued here.

2.3 Interpretations and implications

The calibration concepts thus far described have a number of practical and
interpretational implications. To set up the discussion of these aspects, it is
helpful to first lay out the key arguments in Spitzner (2011) that motivate
using the calibrated Bayes factor for assessing evidence.

The neutral-data concepts developed in Spitzner (2011) stem from a cus-
tomized application of Good’s (1950) “device of imaginary results,” which
uses “imaginary data” to check a candidate prior: Suppose the expert and
analyst are in the process of eliciting a prior, and their attention is focused
on the prior probabilities assigned to M0 and M1. As a check of some par-
ticular choice, the analyst imagines data, Ỹ , that would be characterized as
“neutral,” perhaps through a criterion like (4). Good’s conceptual device is
to apply the posterior calculation to Ỹ , and reflect upon whether the result
produced is sensible. Upon doing so the analyst might expect to observe
P [M0|φ] = P [M0|Ỹ ,φ], due to the neutrality of Ỹ . Nevertheless, the scale
properties of a Bayes factor such as (2) or (8) would prevent this from hap-
pening, for BF01(Ỹ |φ)→∞ as τ →∞ implies P [M0|Ỹ ,φ]→ 1, regardless
of P [M0|φ]. (To see this, use the first equation in formula 6.) In other words,
if τ is large, unless P [M0|φ] falls in an extreme range, the check fails.

The calibrated Bayes factor (5) is a resolution to this issue. To argue this
point, Spitzner (2011) highlights the form of the Bayes factor (3) as a com-
parison of posterior to prior odds, and interprets the inequality P [M0|φ] 6=
P [M0|Ỹ ,φ] as creating ambiguity over the choice of a baseline in weighing
evidence. Whereas the Bayes factor (3) chooses prior odds, ρ01(φ), as its
baseline, the calibrated Bayes factor (5) makes the other choice, the quan-
tity ρ̃01(φ). In this way, the calibrated Bayes factor (5) is valid for assessing
evidence.

Other implications of this argument are as follows. First, the association of
ρ̃01(φ) with the calibrated Bayes factor parallels that of ρ01(φ) with the
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usual Bayes factor, a parallel that is captured in the expressions of formula
(6). What this means for practice is that the expert’s opinion of odds is
just as meaningfully assigned to ρ̃01(φ) as ρ01(φ). If the assignment is to
ρ̃01(φ) then (7) yields a meaningful calibration of ρ01(φ). Such thinking
admits the synthesis of subjective and objective elements alluded to at the
start of Section 1. Moreover, if ρ̃01(φ) = 1, then evidence is reported as a
ratio of posterior model probabilities, to which the calibrated Bayes factor
reduces, whose interpretation avoids certain criticisms of Bayes factors that
are explored in Lavine and Schervish (1999).

Second, the rightmost expression in (6) is useful for computation when work-
ing with a very diffuse prior, since, in that case, ρ01(φ) is near zero and
therefore difficult to manage, whereas ρ̃01(φ) is of a convenient size.

Third, the calibration formula (7) offers a precise conceptual mechanism
for realizing Robert’s (1993) proposal to jointly specify the discrete and
continuous portions of the prior. Observe that the formula (7) implies that
assigning a “large” value to τ induces a “small” value for ρ01(φ), relative to
ρ̃01(φ), assuming the type of scaling behavior observed in (2) and (8). This is
consistent with Robert’s (1993) suggestion to choose P [M0|φ] in such a way
that its ratio with the shrinking prior probability of some fixed “reasonable
range” of values for θ (i.e., a compact subset in θ-space) is asymptotically
constant as τ grows large. The proposed use of default priors makes this
prescription precise.

3 Calibration in multiple testing

In the multiple-testing context there are multiple models Ms across s ∈ S,
where S is a finite or countable index-set. For example, in variable selec-
tion with p variables, as in Section 1, the set S indexes the 2p sub-models
identified with the possible ways of selecting and omitting variables from
consideration. Given some s ∈ S, the model Ms is defined from a subset
As ⊂ {1, . . . , p}, according to which the variables indexed by i ∈ As are
“omitted” in Ms and those with i /∈ As are “selected.” For another exam-
ple, a null-vs-alternative model-comparison falls trivially into the multiple-
testing framework by setting S = {0, 1}.
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3.1 Extending “null” vs “alternative” comparisons to multiple
testing

In variable selection, a model-comparison, Ms vs Mt, such that |As−At| = 1
is “elementary” in the sense that it is a test of a single variable, the one that
is simultaneously omitted in Ms and selected in Mt. The calibration concepts
developed in Section 2 readily extend to this case in an obvious way: previous
formulas are updated to

NDCst(Y |φ) =
P [Ms|Y ,φ]/P [Mt|Y ,φ]

ρ̃st(φ)
=
BFst(Y |φ)

BFst(Ỹ |φ)
(15)

for the calibrated Bayes factor, updating (5), to

P [Ms|Y ,φ]/P [Mt|Y ,φ] = ρst(φ)BFst(Y |φ) = ρ̃st(φ)NDC01(Y |φ) (16)

for posterior odds, updating (6), and to

ρst(φ) = ρ̃st(φ)/BFst(Ỹ |φ), (17)

for the calibrated prior probability, updating (7), having written ρst(φ) =
P [Ms|φ]/P [Mt|φ] and ρ̃st(φ) = P [Ms|Ỹ ,φ]/P [Mt|Ỹ ,φ]. In these formulas,
the anchor point Ỹ and nuisance parameter, φ, may be specific to the model-
comparison Ms vs Mt.

Evidence assessment of a general (i.e., possibly non-elementary) model-
comparison Ms vs Mt is pieced together from that of relevant elementary
model-comparisons in the following way. Set j1 = |As∩Act | and j2 = |Acs∩At|,
and find a path s = u0, . . ., uj1 , uj1+1, . . ., uj1+j2 = t ∈ S, so that, for
1 ≤ r ≤ j1, the former model in Mur−1 vs Mur has exactly one more vari-
able omitted, and, for j1 + 1 ≤ r ≤ j1 + j2, the former model in Mur−1 vs
Mur has exactly one more variable selected. At least one such path always
exists. Applying (16), the ratio of posterior model probabilities is

P [Ms|Y ,φ]

P [Mt|Y ,φ]
=


j1∏
i=1

P [Mur−1 |Y ,φ]

P [Mur |Y ,φ]




j1+j2∏
r=j1+1

P [Mur−1 |Y ,φ]

P [Mur |Y ,φ]


=


j1∏
r=1

ρ̃ur−1ur(φ)NDCur−1ur(Y |φ)


×


j1+j2∏
r=j1+1

ρ̃ur−1ur(φ)
1

NDCurur−1(Y |φ)

 .
From this, the calibrated Bayes factor, NDCst(Y |φ), is calculated from the
middle expression in (15).
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3.2 Multiplicity adjustment

In variable selection, and other multiple-model contexts, a common argu-
ment put forward is that evidence assessment of a model-comparison Ms vs
Mt, say, for s, t ∈ S, should take into account the presence of all models
under consideration, not just those directly involved in the comparison. In
other words, evidence for Ms vs Mt would be assessed differently if S = {s, t}
than if s and t are just two index-values among the 2p index-values in S as-
sociated with variable selection in p variables. In the latter case, it is said
that a “multiplicity adjustment” is applied to account for the presence of
models other than those indexed by s and t.

A widely discussed approach to multiplicity adjustment in variable selection
is to model the number of omitted variables through a binomial process.
See, e.g., Berry and Hochberg (1999), Scott and Berger (2010), Wilson et al.
(2010), and Castillo et al. (2015). Denote by ks the number of variables that
are omitted (i.e., ks = |As|), and by νs the number that are selected (i.e.,
νs = p− ks). The beta-binomial prior is typically formulated hierarchically
according to ks|ξ ∼ binomial(p, ξ) and ξ ∼ beta(α, β), according to which a
ratio of prior model probabilities, where Ms has one more variable omitted
than Mt, becomes P [Ms]/P [Mt] = (β + ks − 1)(α + νs). The effect of this
setting is to weight the omission of a variable when both Ms and Mt have
many variables omitted, and weight the selection of a variable when both
Ms and Mt have many variables selected. The setting (1), on the other
hand, reflects that the mathematics for asymptotic consistency prescribe
that only the omission of variables are to be weighted. These approaches
are compared in Section 5.1 in a demonstration on example data. Decision-
theoretic approaches to multiple-model testing are also available; see, e.g.,
Müller, Parmigiani, and Rice (2007).

3.3 Asymptotic consistency in Gaussian variable selection

The present exploration of multiple-testing concepts focuses on the fol-
lowing simple, broadly applicable version of variable selection: each “vari-
able” is identified with one of p independent sets of sample measurements,
Y 1, . . . ,Y p; the i’th set is Y i = (Yi1, . . . , Yin) for independent Yij , which is
associated with a parameter, θi. Underlying the setup is a fixed collection of
“null” parameter values, θ0 = (θ0i : i = 1, . . . , p). Should, under model Ms,
the i’th variable be selected, its associated parameter, θi, is left “free.” The
free parameters are collected into θs = (θi : i /∈ As), which forms the target
parameter of model Ms. Should the i’th variable be omitted, its associated
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parameter is set to its null value, θi = θ0i . Denote by νs the number of free
parameters and by ks the number of parameters set to null values.

Suppose now that, under model Ms, the data are generated according to
Yij |θs ∼ G(θi, 1) for i /∈ As and Yij ∼ G(θ0i , 1) for i ∈ As. The prior has
θi ∼ G(θ0i , τ

2) for i /∈ As, where τ is a scale parameter to be specified by the
expert. Note, in this case, the absence of any nuisance parameter.

Having adopted model-specific prior distributions as stated, the setting (1)
for prior model odds is achieved through the proposed calibration scheme
at the values τ̃ = ks and ρ̃st = 1. Under these settings, use of the limiting
value (12) within the calibration formula (17) gives rise to (1) in the form
P [Ms]/P [Mt] = ks/τ .

The following result establishes the desirability of this setting.

Theorem 1. Suppose the data are generated from Ms; i.e., Ms is the “true”
model. Suppose the prior model probabilities are such that if u, v ∈ S satisfy
|Au −Av| = 1 then P [Mu]/P [Mv] = ku/τ . Treat the number of variables as
a function of n; i.e., p = pn, and suppose there is a lower bound ξn such that
ξn ≤ |θi| for all i /∈ As. Suppose further there are constants a > 0 and b > 0
such that a < 1− b and the following two conditions hold:

(i) log pn = O(na), and
(ii) there is a c > 0 such that ξn ≥ cn−b.

These conditions imply asymptotic consistency in the sense that

lim inf P [Ms|Y ] > 0 as n→∞.

The conditions in Theorem 1 articulate the notion of “faint signals” (ξn ≥
cn−b) in “ultra-high dimensional” space (log pn = O(na)), and are very
weak for establishing asymptotic consistency. An early reference to such
conditions is Fan and Lv (2008), where they are used to evaluate a screening
procedure known as “sure independence screening.” Theorem 1 positions the
Bayesian solution, using (1), among the few statistical procedures that are
able to achieve asymptotic consistency under these conditions. For further
discussion of this property and related procedures, see e.g., Fan and Lv
(2010) and Narissety and He (2014).

4 Calibration in non-Gaussian contexts

In a non-Gaussian context, calibration is readily formulated and practi-
cal to implement for models that arise from an exponential or other ex-
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pansive parametric family. Suppose the testing problem is defined from a
collection of models indexed by s ∈ S, and consider a particular model-
comparison Ms vs Mt, for s, t ∈ S, which is nested in the sense that a
parameter, θ, is present in Mt but set to a null value, θ0, in Ms. A nui-
sance parameter, φ, i.e., a parameter that is common to both models, may
also be present. Because Ms and Mt are nested, a common log-likelihood
function, ln(θ,φ;Y ) is relevant to both models, which give rise to distinct
marginal data-densities according to πs(Y |φ) = ln(θ0,φ;Y ) for model Ms

and πt(Y |φ) =
∫

exp{ln(θ,φ;Y )}πt(θ|φ)dθ for model Mt, where πt(θ|φ) is
the associated conditional prior.

An additional requirement is the presence of a “sample size” parameter, n,
which may not strictly represent “the number of objects sampled,” but is
part of the framework in order to facilitate asymptotic analysis. Indeed, the
example analyses of Section 5, below, illustrate the capacity of the proposed
calibration framework to operate meaningfully even when sample size is
ambiguously defined.

4.1 Finding an anchor point

The model-comparison Ms vs Mt is assumed to be suitably regular in the
sense that Laplace’s method provides an approximation to the conditional
Bayes factor, analogous to (3), given by

BFst(Y |φ) =
πs(Y |φ)

πt(Y |φ)
≈ |În(θ̂|φ)|1/2

(2π)ν/2πt(θ̂|φ)
e−

1
2
‖Z(θ̂|φ)‖2 , (18)

as n→∞, where ν is the dimension of θ,

‖Z(θ̂|φ)‖2 = 2ln(θ̂,φ;Y )− 2ln(θ0,φ;Y ),

θ̂ solves ∇ln(θ̂,φ;Y ) = 0, and În(θ|φ) = −∇2ln(θ,φ;Y ), writing ∇ and
∇2 to denote the gradient and Hessian operators with respect to θ. For
instance, the Laplace approximation (18) holds when ln(θ,φ;Y )+log π(θ|φ)
is concave in θ, at least locally near its maximum value; see Tierney and
Kadane (1986) for alternative conditions.

Within this framework, the following simple approximation result offers a
straightforward implementation of the proposed calibration scheme.

Theorem 2. Suppose the approximation (18) holds, the conditional prior on
θ given φ is from a scale family, πt(θ|φ) = τ−νπ∗(θ/τ |φ), where π∗(θ/τ |φ)
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is finite and nonzero at θ = θ0, and |În(θ|φ)| → ∞ as n → ∞, for any θ.
Suppose further there is an anchor point Ỹ that satisfies

BFst(Ỹ |φ) = 1 at τ = τ̃ , (19)

where τ̃ is a “default” value of the scale parameter. It follows that the Bayes
factor calculated at the anchor point has

BFst(Ỹ |φ) ≈ (τ/τ̃)ν as n→∞. (20)

The property deduced in Theorem 2 parallels and extends the behavior ob-
served in the Gaussian means problem of Section 2.2, by confirming that the
convergence of the Bayes factor to (12), when evaluated at the anchor point,
is a general property. As we have seen, this type of result is important for
resolving the potential conceptual complication that arises when a solution
to (19) is not unique, for it indicates that any two distinct anchor-point
solutions would yield nearly the same calibration. Even when the solution
to (19) is unique, the target value (12) may still be important practically
for simplifying how calibration would be implemented, for if (19) is hard to
solve, and the analyst is willing to accept an approximate calibration, then
they may simply work with the calibrated Bayes factor given by

NDCst(Y |φ) = BFst(Y |φ)/BF ∗ = (τ̃ /τ)νBFst(Y |φ), (21)

where BF ∗ is the limit point to BFst(Ỹ |φ) identified in (12) and (20).

4.2 Connections to the Schwarz criterion

Kass and Wasserman (1995) put forward a description of the Schwarz cri-
terion as an approximation to the Bayes factor that is formulated from a
unit-information prior. An interesting connection to the calibrated Bayes
factor formula (21) is drawn as follows.

Suppose that În(θ̂|φ) ≈ In(θ|φ) as n → ∞, for an asymptotic conditional
Fisher information matrix In(θ|φ). Suppose further that it is possible to sen-
sibly formulate a full-rank analogue I0(θ|φ) to In(θ|φ) that is to represent
the case where n is set to its “minimum” value. For example, this quan-
tity might be units in the average rate of growth, I0(θ|φ) ≈ n−1In(θ|φ),
or it might be devised by substituting into In(θ|φ) the minimal sample-
size information thought necessary to begin to understand the phenomenon
under study. For further insight, consider that when Y = (Y 1, . . . ,Y n)
is an independent and identically distributed sample, Fisher information is
In(θ|φ) = nI0(θ|φ), which identifies the quantity I0(θ|φ) explicitly.
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Assuming a sensible I0(θ|φ) is available, a scaled unit-information prior
takes the form

π(θ|φ) = (2πτ2)−ν/2|I0(θ0,φ)|1/2h(θ|φ), (22)

where τ2 > 0 is the scale parameter, and

h(θ|φ) = f

(
1

2τ2
(θ − θ0)T I0(θ0,φ)(θ − θ0)

)
, (23)

for some function f , which moght be chosen so that (22) is, e.g., a Gaussian
prior, from f(x) = e−x, or Cauchy prior, from f(x) =

√
2/π(1 + 2x)−1.

Within this family, the unit-information prior is defined at the setting τ =
τ̃ = 1, at which the “amount of information in the prior on [the parameter]
is equal to the amount of information about [the parameter] contained in
one observation,” according to Kass and Wasserman’s (1995, p. 929) char-
acterization.

Adopting the prior (22), set τ̃ = 1 and apply (18) within (21) to produce an
approximation to the calibrated Bayes factor (15), given by

NDCst(Y |φ) ≈ |În(θ̂,φ)|1/2

|I0(θ0,φ)|1/2
e−

1
2
‖Z(φ)‖2

h(θ̂|φ)
. (24)

This is the analogue to (14) in the Gaussian means example of Section 2.2.
Kass and Wasserman (1995) derive a similar approximation to the usual
Bayes factor, from the setting τ2 = 1 in (22), and explore its asymptotic
properties when θ̂ = θ0 + O(n−1/2). This asymptotic condition on θ̂ im-
plies h(θ̂|φ) ≈ f(0), and the subsequent approximation NDCst(Y |φ) ≈
expSst(Y |φ) as n→∞, having defined the modified Schwarz criterion

Sst(Y |φ) = −1

2
‖Z(φ)‖2 + log

|În(θ̂,φ)|1/2

|I0(θ0,φ)|1/2
− log f(0). (25)

In the case where φ is absent and In(θ) = nI0(θ), the formula (25) exactly
matches Kass and Wasserman’s (1995) modified Schwarz criterion, in which
f(0) adjusts for a non-Gaussian prior.

In the present development of calibration concepts, asymptotic behavior
as τ → ∞ is more central than asymptotic behavior as n → ∞. By this
perspective, it is interesting to observe that h(θ|φ)→ f(0) as τ →∞, hence
(24) shows that, when n is large and τ is very large, the calibrated Bayes
factor NDCst(Y |φ) is very nearly the exponentiated Schwarz criterion in
(25). This property is explored in the examples of the next section.
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5 Demonstrations on example data

In this section, the proposed calibration framework is demonstrated in sev-
eral example data-analyses. Special attention is paid to the impact of multi-
plicity adjustment, sensitivity to prior scale, and connections to the Schwarz
criterion.

To interpret the results, calibrated and uncalibrated Bayes factors are trans-
formed to twice their logarithm value, so that they may be compared against
the scale proposed in Kass and Raftery (1995). For example, in a compar-
ison of Ms vs Mt, larger magnitudes of 2 logBFst or 2 logNDCst indicate
stronger evidence for Ms (if positive) or Mt (if negative). The strength of
evidence is categorized into “positive,” “strong,” and “very strong” above
the thresholds 3, 6, and 10.

Calculations are implemented using various Markov Chain Monte Carlo
(MCMC) techniques for posterior simulation, described in Robert and Casella
(1999). In every set of data-analysis results presented below, the number of
iterations is at least one million, yielding a very high level of simulation
accuracy.

5.1 Adverse events in a vaccine trial

In this first demonstration, the multiplicity properties of the calibrated set-
ting (1) for variable selection are explored in the analysis of adverse-event
data examined in Berry and Berry (2004). Also highlighted is the calibra-
tion approach laid out in Section 4.1 for non-Gaussian contexts. In order
to compare with Berry and Berry’s (2004) original analysis, the reanalysis
developed here incorporates as much as possible the features of the origi-
nal, including its elaborate hierarchical prior. In doing so, the demonstration
highlights the flexibility of the proposed approach for use with complex prior
formulations. To assist the reader, references are made to the pre-calibration
and calibration steps listed at the end of Section 2.1. Some readers may wish
to first go through Sections 5.2 and 5.3, which demonstrate the proposed
concepts in simpler contexts.

The data of this example are an array of incidence-count totals from a
vaccine trial that involved control and treatment groups of n1 = 132 and
n2 = 148 subjects. The counts are of forty pre-defined “adverse event” (AE)
occurrences (e.g., a rash or nausea), which are uniquely grouped into eight
body systems. Corresponding notation identifies pairs of triple-subscripted
data, Y jk = (Y1jk, Y2jk), where k indexes AE-type k ∈ Kj within body
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system j ∈ J , and the order of pairing reflects “control” vs “treatment”
conditions. Raw relative frequencies, p̂ijk = Yijk/ni, and AE-type groupings
into body systems are listed below in Table 1.

The data-analysis objective is to “flag” any AE-types whose occurrence-rates
are greater under the vaccine treatment. Each Yijk ∼ binomial (ni, pijk),
independently across i = 1, 2 and (j, k) ∈ Ω = {(j, k) : j ∈ J, k ∈ Kj}.
A model Ms is characterized by three subsets: As,0, which collects index-
pairs (j, k) such that p1jk = p2jk; As,1, which collects the (j, k) such that
p1jk > p2jk; and, As,2, which collects the (j, k) such that p1jk < p2jk. The
AE-types associated with the subset As,2 are those to be flagged.

Define φjk = 1
2(η1jk + η2jk) and θjk = 1

2(η1jk − η2jk), having set ηijk =
log{pijk/(1 − pijk)}, and collect these quantities into the parameters φ =
(φjk : (j, k) ∈ Ω) and θs = (θjk : (j, k) /∈ As,0), which record ν0 nuisance
and νs,1 “free” target parameters of model Ms, respectively. The likelihood
function of model Ms factors into components,

L(θ,φ;Y ) =
∏

(j,k)∈As,0

L(0, φjk;Y jk)×
∏

(j,k)/∈As,0

L(θjk, φjk;Y jk) (26)

where each component is from an exponential family,

L(θjk, φjk;Y jk) = Cζ(Y jk) exp {(Y1jk − Y2jk)θjk
+(Y1jk + Y2jk)φjk − ζ(θjk, φjk)} ,

where Cζ(Y jk) =
( n1

Y1jk

)( n2

Y2jk

)
and

ζ(θjk, φjk) = n1 log
(
1 + eφjk+θjk

)
+ n2 log

(
1 + eφjk−θjk

)
.

This completes the pre-calibration Step A of identifying target and nuisance
parameters.

The prior is formulated hierarchically in such a way that makes use of the
arrangement of AE-types within body systems. It is described in Berry and
Berry (2004) as a “three-stage” prior, but it readily collapses to the fol-
lowing two-stage form: Each φjk|τ20A, τ20B ∼ G

(
0, τ20A + τ20B + τ2

)
and, in-

dependently, each θjk|τ21A,j , τ21B ∼ G
(
0, τ21A,j + τ21B + τ2

)
, for hierarchical

parameters τ2, τ2H , τ20A, τ20B, τ21A,j for j ∈ J , τ21B. Among the hierarchical

parameters, τ2 and τ2H are fixed constants to be specified explicitly, while
τ20A, τ20B, τ21A,j , and τ21B are modeled independently such that τ2H/τ

2
0A ∼ χκ,

τ2H/τ
2
0B ∼ χκ, τ2H/τ

2
1A,j ∼ χκ, and τ2H/τ

2
1B ∼ χκ for an additional prior pa-

rameter κ. Berry and Berry set τ2 = 10, τ2H = 2, and κ = 6; these and other
settings are examined in the analysis below.
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Berry and Berry incorporate a multiplicity adjustment using a variation
of the beta-binomial formulation discussed in Section 3.2. The analysis ex-
plored here proceeds differently by calibrating the analysis to avoid sen-
sitivity to the prior scale parameter and to incorporate the multiplicity
adjustment specified in (1). The prior parameter τ is most influential to
scale, and so will be treated as a prior scale parameter in this setup. To
accommodate the remaining prior parameters, the framework developed in
previous sections is extended slightly to exploit the hierarchical aspect to
the prior by applying the calibration techniques conditionally given φ and
τ = (τ20A, τ

2
0B, τ

2
1A,j , τ

2
1B : j ∈ J), in effect treating both of these quanti-

ties as nuisance parameters, even though τ associated with the prior. This
means, e.g., that expert opinion would be articulated through ρst(φ, τ ) =
P [Ms|φ, τ ] / P [Mt|φ, τ ] in an uncalibrated analysis, and through ρ̃st(φ, τ )
= P [Ms|Ỹ , φ, τ ] / P [Mt|Ỹ ,φ, τ ] in a calibrated analysis. Note the con-
venience of additionally conditioning on τ , both for conceptual formulation
and calculation, due to the availability of a closed form for π(φ|τ ), and the
absence of one for π(φ). This completes the pre-calibration Steps B and
C of identifying the scale parameter, and deriving a suitable mathematical
framework for working with the model conditionally, which is achieved here
by treating τ as a special type of nuisance parameter.

It is readily checked that the likelihood function and prior satisfy the con-
ditions of Section 4.1. Referring to the terms of Theorem 2, define “sample
size” as n = n1 + n2, and observe that the likelihood function implies

În(θ|φ) = n

{
eφjk

1 + eφjk

(
1− eφjk

1 + eφjk

)}
, (27)

which increases without bound as n grows. Hence, the conclusion of Theorem
2 holds, and the target value (12) is valid for calibration. In the absence of
well-studied default settings for priors of this form, the default prior concept
applied here is an appeal to simplicity, setting τ̃ = 1 or τ̃ = ks depending
on whether the multiplicity adjustment (1) is incorporated in the calibra-
tion. Given that the hierarchical parameters in τ are negligible when τ is
large, the setting τ̃ = 1 roughly incorporates the intuition underlying a
unit-information prior.

This completes the calibration Step D of setting τ̃ from a selected default-
prior concept. To be clear, two separate calibrations are examined in this
demonstration, one derived from the “unit-information” concept, for which
τ̃ = 1, and the other that adopts the default setting implied in Theorem
1, for which τ̃ = ks, to induce a multiplicity adjustment. The appeal to
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Figure 1 Evidence assessments of an adverse event on Berry and Berry’s (2004) data
for τ between 1 and 100, plotted on a standard scale of evidence. The left panel plots
transformed Bayes factors, the middle panel plots transformed calibrated Bayes factors
that are unadjusted for multiplicity, and the right panel plots transformed calibrated
Bayes factors that are adjusted for multiplicity. Assessments are reported only of the four
AE-types indexed by (j, k) = (3, 4), (8, 3), (10, 4), and (10, 6).

Theorem 2 completes the calibration Steps E and F. By that theorem, the
corresponding values of BFst(Ỹ |φ, τ ) are directly ascertained as the limiting
values τ/τ̃ identified in formula (20), having implicitly solved for the anchor
point Ỹ .

Calculations are made using the reversible-jump MCMC algorithm, within
a Gibbs structure to integrate across parameters. The algorithm is im-
plemented by making reversible jumps on individual θjk at fixed values
of the remaining parameters. Proposed jumps from (θ0s,jk, φs,jk) in model
Ms to (θt,jk, φt,jk) in model Mt are defined through the invertible trans-
formation φt,jk = 1

4φs,jk{4 + a(u)} and θt,jk = 1
4φs,jk{4 − a(u)}, where

a(u) = 1/u − 1/(1 − u) and u ∼ Beta(2, 2). Acceptance probabilities are
calculated using the formula (7) for calibrated prior odds, extended slightly
to ρst(φ, τ ) = ρ̃st(φ, τ )/BFst(Ỹ |φ, τ ) so as to additionally to condition
upon τ .

Results of the analysis, in a variety of configurations, are indicated in Figure
1 and Table 1. Data analysis is carried out repeatedly across twenty values of
the scale parameter τ in the range 1 ≤ τ ≤ 100, which forms the horizontal
axis in each panel of Figure 1, all while holding constant the ratio τ2/τ2H = 5,
and the parameter κ = 6. Each panel plots the relevant assessments after
having been transformed according to 2 log{P [E(j,k)|Y ]/(1 − P [E(j,k)|Y ])},
where E(j,k) collects all models Ms such that (j, k) ∈ As,2. That is, the values
plotted in Figure 1 indicate support for an adverse event of type j in body-
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B&B NDC, unadj. NDC, adj.

j k p̂1jk p̂2jk eq. AE eq. AE eq. AE

1 1 0.303 0.385 0.762 0.211 0.392 0.601 0.956 0.043
1 2 0.197 0.230 0.827 0.122 0.798 0.180 0.992 0.007
1 3 0.000 0.014 0.796 0.101 0.054 0.944 0.947 0.053
1 4 0.008 0.020 0.813 0.100 0.765 0.216 0.992 0.008
1 5 0.152 0.182 0.826 0.116 0.798 0.179 0.993 0.007

3 1 0.015 0.047 0.821 0.117 0.328 0.666 0.949 0.050
3 2 0.000 0.014 0.835 0.083 0.067 0.932 0.738 0.261
3 3 0.000 0.014 0.812 0.101 0.068 0.930 0.859 0.141
3 4 0.076 0.162 0.743 0.231 0.030 0.969 0.517 0.483
3 5 0.008 0.020 0.823 0.093 0.767 0.214 0.992 0.008
3 6 0.053 0.014 0.805 0.050 0.211 0.003 0.910 0.000
3 7 0.144 0.128 0.849 0.076 0.890 0.044 0.996 0.002

5 1 0.015 0.020 0.717 0.136 0.882 0.083 0.996 0.003

6 1 0.015 0.000 0.666 0.087 0.039 0.001 0.431 0.000

8 1 0.000 0.014 0.655 0.185 0.023 0.977 0.749 0.251
8 2 0.015 0.014 0.661 0.153 0.898 0.048 0.997 0.001
8 3 0.326 0.507 0.214 0.780 0.001 0.999 0.033 0.967

9 1 0.008 0.027 0.900 0.059 0.560 0.428 0.981 0.019
9 2 0.015 0.027 0.901 0.058 0.828 0.147 0.994 0.005
9 3 0.015 0.007 0.896 0.040 0.858 0.026 0.995 0.001
9 4 0.061 0.088 0.906 0.062 0.758 0.223 0.991 0.008
9 5 0.152 0.189 0.897 0.083 0.754 0.228 0.990 0.009
9 6 0.008 0.014 0.898 0.047 0.870 0.101 0.996 0.003
9 7 0.061 0.088 0.906 0.061 0.758 0.223 0.991 0.008
9 8 0.106 0.101 0.904 0.051 0.894 0.055 0.997 0.002
9 9 0.008 0.020 0.903 0.051 0.766 0.215 0.992 0.008
9 10 0.008 0.014 0.905 0.042 0.870 0.101 0.996 0.003
9 11 0.008 0.020 0.907 0.050 0.769 0.212 0.992 0.008

10 1 0.000 0.027 0.859 0.087 0.001 0.999 0.065 0.935
10 2 0.000 0.014 0.860 0.070 0.001 0.999 0.945 0.054
10 3 0.008 0.014 0.868 0.062 0.872 0.099 0.996 0.003
10 4 0.023 0.088 0.784 0.190 0.011 0.989 0.287 0.713
10 5 0.015 0.041 0.852 0.099 0.540 0.450 0.978 0.022
10 6 0.008 0.054 0.836 0.126 0.014 0.986 0.364 0.636
10 7 0.015 0.027 0.862 0.076 0.828 0.148 0.994 0.005
10 8 0.015 0.000 0.852 0.048 0.009 0.000 0.798 0.000
10 9 0.015 0.007 0.855 0.055 0.857 0.026 0.995 0.001

11 1 0.015 0.000 0.721 0.079 0.008 0.000 0.789 0.000
11 2 0.106 0.122 0.757 0.102 0.858 0.111 0.995 0.004
11 3 0.008 0.014 0.749 0.121 0.872 0.099 0.996 0.003

Table 1 Posterior probabilities on Berry and Berry’s (2004) adverse-event data. Index
values are listed for body system (j) and AE-type (k) in the first pair of columns; the

remaining columns list raw adverse-event relative frequencies, followed by the posterior
probabilities from Berry and Berry’s (2004) analysis (headed “B & B”), then those
derived from calibrated Bayes factors unadjusted for multiplicity, and finally those

derived from calibrated Bayes factors that are adjusted for multiplicity. The columns
labeled “eq.” list posterior probabilities that the rates of adverse events between treatment
and control conditions are equal, and those labeled “AE” list posterior probabilities of an

adverse event.
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system k, transformed for interpretation on Kass and Raftery’s (1995) scale
of evidence. Only four AE-types are represented in Figure 1, those with
index values (j, k) = (3, 4), (8, 3), (10, 4), and (10, 6), which were selected by
Berry and Berry for having been flagged in a previous frequentist analysis.
Selected results for all AE-types are listed in Table 1, but only at τ = 100.

The three panels of Figure 1 show results of the proposed procedure in three
configurations of the discrete prior: the configuration represented in the left
panel has ρst(φ, τ ) = 1, hence the results shown are from Bayes factors;
that of the middle panel has ρ̃st(φ, τ ) = 1 and τ̃ = 1, hence the results
are from calibrated Bayes factors that are calibrated to avoid sensitivity to
the prior, but do not incorporate a multiplicity adjustment; and, that of
the right panel has ρ̃st(φ, τ ) = 1 and τ̃ = ks, which is as in the middle
panel but with a multiplicity adjustment. The latter two configurations are
also represented in Table 1, as posterior probabilities, alongside Berry and
Berry’s results for comparison.

As expected, and illustrated in Figure 1, support for an adverse event dras-
tically weakens as τ grows large when it is reported as a Bayes factor, but
it eventually stabilizes when it is reported as a calibrated Bayes factor.
“Strong” evidence of an AE (a reported value above 6) of every selected
type is indicated in the middle panel, with each calibrated Bayes factor
stabilizing (by coincidence) near the maximum of the corresponding Bayes
factor in the left panel. Comparison with the right panel illustrates how the
multiple-model adjustment weakens evidence across the board, so much that
“strong” support of an AE remains only for the AE-type at (j, k) = (8, 3).
The adjustment ultimately induces a beneficial clarifying effect of reducing
the collection of several suspicious AE-types to just one that is to be flagged.

In Table 1, it is seen that Berry and Berry’s prior weakens the reported
evidence even more, to the point where no strong evidence of an AE is
exhibited among any of the forty AE-types. Consider that on Berry and
Berry’s results the transformation 2 log{P [E(j,k)|Y ]/(1−P [E(j,k)|Y ])} yields
the values -2.41, 2.53, -2.90, and -3.87 for (j, k) = (3, 4), (8, 3), (10, 4),
and (10, 6). These transformed assessments are much different than those
of the multiplicity-adjusted calibrated Bayes factors, and it is interesting
that Berry and Berry’s results are also hard to place among the patterns
exhibited in Figure 1: even at τ = 100, the Bayes factors in the left panel
report much stronger evidence than those of Berry and Berry, and yet the
calibrated Bayes factors of the other two panels are well past the point of
having stabilized with respect to τ . From this perspective, the configuration
introduced in Berry and Berry’s hierarchical discrete prior is seen to have



24 Dan J. Spitzner

an astoundingly strong effect.

5.2 The Behrens-Fisher problem

This next example demonstrates the proposed methodology in the context of
the Behrens-Fisher problem, a setup that has been studied by many authors,
frequentist and Bayesian. It is important in forensic “matching” applications
in which measurements of trace material (e.g., glass fragments) or pattern
marks (e.g., fingerprints) found at a crime scene are compared to those
on a suspect; the aim is to quantify the strength of evidence that the two
sets of measurements are from the same source. See e.g., Lindley (1977) and
Lund and Iyer (2017) for further discussion of such applications. The present
exploration uses data from a simpler application, the “yarn strength” data
from Box and Tiao (1992, ex. 2.5.4).

The Behrens-Fisher problem involves two data vectors, Y 1 and Y 2, which
represent measurements drawn from independent samples of respective size
n1 and n2. The example data describe measurements of yarn breaking-
strength from samples of size n1 = 20 and n2 = 12, with respective sample
means Ȳ1 = 50 and Ȳ2 = 55, and sample variances s21 = 12 and s22 = 40.
The model M0 puts Y i|µ, σ2i ∼ G(µ1, σ2i Ini) and M1, puts Y i|µi, σ2i ∼
G(µi1, σ

2
i Ini).

Although formula (22) defines a scaled unit-information prior from Fisher
information, it is possible in this problem to identify such a prior from direct
arguments. Observe that, under M1,

n1Ȳ1/σ
2
1 + n2Ȳ2/σ

2
2

n1/σ21 + n2/σ22

∣∣∣∣∣σ21, σ22 ∼ G
(
n1µ1/σ

2
1 + n2µ2/σ

2
2

n1/σ21 + n2/σ22
,

1

n1/σ21 + n2/σ22

)
(28)

and, independently,

Ȳ1 − Ȳ2
σ21/n1 + σ22/n2

∣∣∣∣∣σ21, σ22 ∼ G
(

µ1 − µ2
σ21/n1 + σ22/n2

,
1

σ21/n1 + σ22/n2

)
. (29)

In light of these formulas, Kass and Wasserman’s (1995) characterization of
unit-information is easily adapted to reflect equality of variance in the prior
to the variance associated with one observation from each sample. Applying
this concept to (28) and (29) motivates the transformation

µ =
µ1/σ

2
1 + µ2/σ

2
2

1/σ21 + 1/σ22
and θ =

µ1 − µ2
σ21 + σ22

, (30)
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and identifies the corresponding conditional scaled unit-information priors

µ|σ21, σ22 ∼ G
(

0,
τ2

1/σ21 + 1/σ22

)
and θ|σ21, σ22 ∼ G

(
0,

τ2

σ21 + σ22

)
,

where τ is the scale parameter. The variance parameters are assigned inde-
pendent scaled inverse-chi-square distributions, λ/σ21 ∼ χ2

κ and λ/σ22 ∼ χ2
κ,

as priors.

Under the transformation (30), the modelM1 is re-parameterized to Y 1|θ,φ ∼
G((µ + σ21θ)1, σ

2
1In1) and Y 2|θ,φ ∼ G((µ − σ22θ)1, σ22In2), having set φ =

(µ, σ21, σ
2
2). The model M0 is specified by the setting θ = θ0 = 0. The relevant

conditional Bayes factor is

BF01(Y |φ) =

(
1 + τ2

n1σ
2
1 + n2σ

2
2

σ21 + σ22

)1/2

exp

{
−1

2
w(σ21, σ

2
2)Z(φ)2

}
,(31)

where

Z(φ)2 =
{n1(Ȳ1 − µ)− n2(Ȳ2 − µ)}2

n1σ21 + n2σ22

and

w(σ21, σ
2
2) =

τ2(n1σ
2
1 + n2σ

2
2)/(σ21 + σ22)

1 + τ2(n1σ21 + n2σ22)/(σ21 + σ22)
.

This completes the pre-calibration steps listed at the end of Section 2.1.
The derived framework for conditioning allows the subsequent calibration
steps to be implemented using the arguments put forward in Section 2.2 for
the Gaussian means problem: by adopting the default value τ̃ = 1, which is
implied from the unit-information default-prior concept, and incorporating
the target value (12), the calibrated Bayes factor is

NDC01(Y |φ) =

(
1

τ2
+
n1σ

2
1 + n2σ

2
2

σ21 + σ22

)1/2

exp

{
−1

2
w(σ21, σ

2
2)Z(φ)2

}
. (32)

The present exploration also considers a second version of the analysis in
which the Gaussian prior on the target parameter is replaced with a Cauchy
prior,

θ|σ21, σ22 ∼ Cauchy

(
0, τ

√
1

σ21 + σ22

)
.
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Figure 2 Evidence assessments on Box and Tiao’s yarn-strength data for τ between 1
and 100, plotted on a standard scale of evidence. The solid line and dashed lines plot
evidence from calibrated Bayes factors under a Gaussian and Cauchy prior, respectively.
The solid lines overlaid with circles or diamonds plot evidence from uncalibrated Bayes
factors under a Gaussian and Cauchy prior, respectively. The points BIC1 and BIC2 mark
values of the Schwarz criterion, using “MLE substitution” to handle nuisance parameters,
under a Gaussian and Cauchy prior, respectively.

This is consistent with a recommendation of Jeffreys (1961), by which the
default setting is τ̃ = 1. A Cauchy prior is also recommended in Liang et al.
(2008) in order to avoid the “information paradox,” a phenomenon that oc-
curs in Gaussian testing problems when variance parameters are estimated.

The calculation of unconditional versions of a calibrated or uncalibrated
Bayes factor is implemented using the formula

P [M0|Y ] =

{
1 +

∫
P [M1|Y ,φ]π0(φ|Y )dφ∫
P [M0|Y ,φ]π1(φ|Y )dφ

}−1
, (33)

which converts conditional posterior model probabilities to unconditional
posterior model probabilities. Here, π0(φ|Y ) and π1(φ|Y ) denote the model-
specific posterior densities of the nuisance parameter. Integration in (33) is
carried out numerically by averaging over model-specific MCMC-generated
samples.

Figure 2 displays unconditional assessments calculated from calibrated and
uncalibrated Bayes factors, under both the Gaussian and Cauchy spec-
ifications of the prior. Twenty values of the scale parameter are exam-
ined, across the range 1 ≤ τ ≤ 100, which indexes the horizontal axis of
Figure 2. The prior variance parameters are set to κ = λ = 0 in every
evaluation, a standard setting that is applied for illustration. The precise
quantities that are plotted in Figure 2 are manifestations of the formula
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2 log(P [M1|Y ]/P [M0|Y ]), by which larger magnitudes indicate stronger ev-
idence for M1.

In Figure 2, the solid lines overlaid with circles or diamonds are calculated
from the uncalibrated Bayes factor (31), under a Gaussian or Cauchy prior,
respectively. The solid and dashed lines calculated from the calibrated Bayes
factor (32), under a Gaussian or Cauchy prior, respectively. As expected from
its scaling properties, the evidence for M1 exhibited by the Bayes factor
grows drastically weaker as τ increases beyond a certain value, while that
exhibited by the calibrated Bayes factor eventually stabilize. The results are
also consistent in illustrating that evidence for M1 is weaker under a Cauchy
prior.

Several assessments alluded to in previous discussion, but not addressed
in detail, are also plotted in Figure 2. Results from two versions of the
Schwarz criterion are marked by asterisks and labeled “BIC1” and “BIC2,”
each of which is calculated using a different ad hoc technique for handling
the nuisance parameters and definition of “sample size.” The values are
calculated by evaluating the formula (25) and applying “MLE substitution”
to handle the nuisance parameters. Refer to Bollen et al. (2012) for general
discussion of such techniques. The formula is

Ŝ01(Y ) =
1

2
Z(φ̂)2 − 1

2
log

(
n1σ̂

2
1 + n2σ̂

2
2

σ̂21 + σ̂22

)
− log f(0),

where φ̂ = (µ̂, σ̂21, σ̂
2
2) is the maximum-likelihood value of φ under M1.

The value BIC1 is calculated using f(x) = e−x, which is associated with a
Gaussian prior, and BIC2 is calculated using f(x) =

√
2/π(1+2x)−1, which

is associated with a Cauchy prior. It is reassuring that the results derived
from the calibrated Bayes factors tend to stabilize near those of the ad hoc
Schwarz criteria. It will be seen in the example analysis of Section 5.2, below,
that this pattern can be disrupted in more complicated testing contexts.

5.3 Log-linear models for the analysis of two-way tables

The example of this section demonstrates the proposed methodology in the
analysis of two-way tables. The data are taken from Raftery (1993, sec 9.3)
and consist of three 2×2 tables generated from separate experiments. Write
Y = (Y11, Y12, Y21, Y22) to denote the data of an individual table, where
Yjk is the cell count of the j’th row and k’th column. The raw data are
Y = (32, 11, 60, 30) for the “Smoking” experiment, Y = (4, 16, 1, 21) for
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Figure 3 Evidence assessments on Raftery’s “Smoking,” “Teeth,” and “Lizard Perch”
tables for τ between 0.1 and 10, plotted on a standard scale of evidence. The solid line
marks calibrated Bayes factors; the solid line with circles marks Bayes factors. The aster-
isks labelled “R1,” “R2,” “R3,” mark the assessments obtained under Raftery’s prior at
respective values 1, 1.65, and 5 of that prior’s scale parameter.

the “Teeth” experiment, and Y = (32, 11, 86, 35) for the “Lizard Perch”
experiment. See Raftery (1993) for sources and additional description.

The Yjk are taken to be Poisson counts that are independent across the
table cells. The models M0 and M1 are distinguished by the absence, in M0,
or presence, in M1, of row-column interaction among the log-transformed
Poisson means, ηjk = logE[Yjk]. The nuisance parameter, φ = (φ1, φ2, φ3),
collects the parameters φ1 = (η11 + η12 + η21 + η22)/2, φ2 = (η11 − η12 +
η21 − η22)/2, and φ3 = (η11 + η12 − η21 − η22)/2, which are orthonormal
transformations of the ηjk. The target parameter θ = (η11−η12−η21+η22)/2
identifies the magnitude of interaction; it is fixed at θ = θ0 = 0 under model
M0. The log-likelihood function is

l(θ,φ;Y ) =
∑
j,k

Yjkηjk − n(θ,φ),

where n(θ,φ) =
∑
j,k e

ηjk gives the expected total count of table cells, in
which the ηjk are understood as functions of θ and φ by inverting the rela-
tionships identified above.

This completes the pre-calibration Steps A and C listed at the end of
Section 2.1. A scaled unit-information prior is to be specified, but its formu-
lation will be clearer upon first confirming the assumptions of Theorem 2,
which will incidentally ready the completion of the calibration Steps E and
F by prescribing that BFst(Ỹ |φ) be set to the limiting value τ/τ̃ identified
in formula (20).
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To work with Theorem 2, a suitable asymptotic framework is needed. For
that, treat n(θ0,φ) as “sample size,” and assume that each E[Yjk] = eηjk

is asymptotically similar to n(θ0,φ) as the latter quantity becomes arbi-
trarily large, i.e., the ratios of one to the other of these quantities are both
bounded. This represents a “fixed marginal” scenario in which new mea-
surements arrive independently to the table and fall into cells in proportions
determined by the experimental phenomenon. The fixed marginal scenario is
mechanically distinct from the “random marginal” scenario defined by Pois-
son counts, but it is easy to check that the respective likelihood functions are
proportional, and so the scenarios are equivalent for purposes of inference.
The dependence of sample size, n = n(θ0,φ), on a nuisance parameter is
unconventional, but it nevertheless yields a Laplace approximation to the
conditional Bayes factor (18), and is otherwise consistent with the frame-
work of Section 4. The assumption of asymptotic similarity is necessary
to be sure that the conditional maximum-likelihood value θ̂ → θ0 = 0, as
n(θ0,φ)→∞, for data generated under M0.

To formulate a scaled unit-information prior, start by making the straight-
forward deduction that În(θ̂|φ) ≈ In(θ0|φ) = n(θ0,φ)/4. The rate at which
this quantity grows, relative to sample size, is I0(θ0|φ) = 1/4, which is
taken to define unit-information. Accordingly, the scaled unit-information
prior adopted here specifies θ ∼ G(0, 4τ2), independently of φ. Similarly,
the prior on φ has independent φi ∼ G(0, 4τ2). This is equivalent to specify-
ing independent ηjk ∼ G(0, 4τ2) under model M1, and a constrained version
of the same prior under model M0. Having adopted a scaled unit-information
prior, which identifies the scale parameter and its default value as part of
its formulation, this completes the remaining pre-calibration Step B and
calibration Step D listed at the end of Section 2.1.

Analysis results on Raftery’s count data, calculated at several settings of
τ2, are plotted in Figure 3. As in previous example analyses, the scale pa-
rameter is examined across of range of twenty values, this time across 0.1 ≤
τ ≤ 10, which form the horizontal axis of each panel; as before, the quan-
tities plotted are 2 log(P [M1|Y ]/P [M0|Y ]), calculated from a Bayes factor,
with ρ01(φ) = 1, or calibrated Bayes factor, with τ̃ = 1 and ρ̃01(φ) = 1,
either of which indicate the strength of evidence for the model M1. As in the
example of Section 5.2, computations rely on MCMC simulation, together
with formula (33). In each panel of Figure 3, one sees the same pattern
observed previously, wherein the uncalibrated Bayes factor exhibits increas-
ingly stronger evidence for M0 at larger values of τ , while the calibrated
Bayes factor stabilizes.
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For reference, results associated with the Bayes factors calculated in Raftery
(1993) are marked in each panel of Figure 3 by asterisks and labeled “R1,”
“R2,” and “R3,” which correspond to three values of a scale parameter
for the class of priors used in those analyses. It is unsurprising that these
plotted values are typically smaller than the values produced by calibrated
Bayes factors at large τ , since they presumably respond to scale in much
the same way as the Bayes factors calculated here. A value derived from an
ad hoc version of the Schwarz criterion also appears in each panel, marked
by an asterisk and labeled “BIC.” The calculation is made by the formula
Ŝ01(Y ) = l(θ̂, φ̂n;Y )− l(θ0, φ̂n;Y )− 1

2 logN , where N =
∑
jk Yjk and θ̂ and

φ̂n are maximum-likelihood values. It is interesting that the relative pattern
in BIC is inconsistent across these examples: on the “Lizard Perch” data, the
result based on BIC falls near those of the limiting calibrated Bayes factors
for large τ2; in the other examples, the strength of evidence indicated by
BIC for M1, relative to calibrated Bayes factors, is substantially weaker.

6 Conclusions

The goal of this article is to develop testing methodology for Bayesian prac-
tice that promotes the voice of the expert in scenarios where it is desirable
that statistical procedures exhibit certain analytically-derived properties.
The proposed scheme is fully coherent, and does not deviate from the math-
ematical formulation of subjective Bayesian analysis. It offers the expert
flexibility to specify the continuous portion of the prior using intuition from
estimation, and the option to retain influence on the discrete portion of
the prior and the assessment of evidence through the quantities ρ̃st(φ). The
methodology is proposed with the hope of cultivating greater involvement
by experts in specifying prior knowledge.

Its goal is achieved by reducing the role of default priors from outright
substitutes for prior knowledge to tools used to calibrate Bayes factors. A
calibration scheme is proposed that operates by anchoring analysis to a point
in the data space, under the guidance of a default-prior concept. An unam-
biguous rule (19) is provided for defining the anchor point in a meaningful
way, in the sense that it may be interpreted in terms of a conceptual exercise
of imagining “neutral” data. Theoretical results establish that the scheme is
relevant and practical to apply within a widely-used class of regular models.
Its feasibility is supported by demonstrations on example data.

It is worthwhile to delineate between the subjective and objective Bayes
aspects of the proposed calibration scheme. Observe that the continuous
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portion of the prior is determined before the data are observed or the like-
lihood function is formulated, and in that aspect the scheme is entirely
subjectivist. This points to one of the scheme’s major practical benefits,
which is that the analyst need not adopt a different mindset between esti-
mation and testing, but may use the same continuous prior for both. The
discrete portion of the prior is defined through calibrated prior odds, ρst(φ),
as in (17), which is a combination of expert knowledge and a calibration rule
that builds on a chosen default-prior concept. The calibrated prior odds is
determined before the data are collected (i.e., there is no “double-use” of
data), and defines a model that is a plausible result of expert elicitation.
Nevertheless, because default-prior concepts are typically defined from the
likelihood function, there is reason to regard discrete prior’s subjectivism as
having been compromised.

In particular, from the viewpoint of personal probability, it may be unclear
whose prior defines the quantity ρst(φ), despite that its uncalibrated ana-
logue, ρ̃st(φ), is the expression of an expert. One the other hand, it is not
difficult to envision an alternative use for the ideas presented here as tools
for guiding the back-and-forth between expert and analyst in an actual elici-
tation process, wherein the expert, having through this process gained some
understanding of the nuances of Bayesian testing, ultimately becomes in-
vested in the value identified for ρst(φ). Surely such alternative use requires
development, which is not attempted here, but it points to a setting in which
the proposed methodology would be entirely subjective in character.

The article furthermore explores a particular multiplicity adjustment for
variable selection problems that is related to the truncated Poisson prior
of Womack et al. (2015). In the present exploration, its asymptotic con-
sistency properties are established under weak dimensionality assumptions.
It is reformulated as a calibration, and demonstrated in an analysis of an
example data set of adverse-event responses, where it is shown to have a
strong clarifying effect for flagging worrisome adverse-event types.

The proposed methodology is also examined for its connection to Schwarz’s
(1978) model-choice criterion. The exploration of Section 4.2 suggests an in-
terpretation by which a scaled unit-information prior (22) places a calibrated
Bayes factor on a spectrum falling between a default-configured Bayes fac-
tor and the exponentiated Schwarz criterion, highlighting that a calibrated
assessment of evidence is robust to modifications of the prior, but it is still
sensitive to expert opinion. This property is reflected in the example analyses
of Section 5; however, those demonstrations also show that the connection
to the Schwarz criterion may be disrupted when ad hoc adjustments are
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incorporated in the Schwarz criterion to account for nuisance parameters.

The proposed methodology makes heavy use of conditioning in order to
deal with nuisance parameters. The example analysis of log-linear models in
Section 5.2 highlights a particularly useful aspect of this approach, which is
that it expands the concept of sample size to allow formulations that depend
on nuisance parameters, as does the formulation of n(θ0,φ) for that analysis.
The possibilities for meeting the requirements of intuition are widened by
the added flexibility of parameter-specific formulations for sample size.

Although this article focuses on multiplicity adjustments and prior sensitiv-
ity, an expectation is stated in Section 1 that the proposed calibration frame-
work has broader applicability. As one example of a potential application
not explicitly discussed here, the reader is invited to ponder methodology for
high-dimensional global testing under a smoothness assumption, as would
be applied in non-parametric regression or functional data analysis. For a
canonical version of those contexts, explored in Spitzner (2008), consider
working with “preprocessed” data that are either the Fourier coefficients of
a smooth function measured densely, with error, or the average of Fourier
coefficients of a random sample of densely measured smooth functions. For
either situation, suppose the coefficients are collected into a high-dimensional
summary vector of p independent components, Y = (Ȳ1, . . . , Ȳp), in which
each component is modeled as Ȳi|θi ∼ G(θi, 1/n). The “global” test is of the
model-comparison M0 vs M1, where M0 has all θi = 0, and M1 treats all
θi as free parameters. A suitable prior for M1 has θi ∼ G(0, τ2i ), indepen-
dently across i. Smoothness may be understood through such concepts as a
“Sobolev” geometry, which motivates a configuration of the prior such that
its scale parameters taper to zero, τi → 0. Moreover, it is possible to set the
tapering rate in such a way as to achieve a desirable analytical property.
Should expert opinion specify a different rate, or no tapering at all, then
the calibration techniques developed here would be useful for managing the
discrepancy.

Appendix A: Appendix

Proof. (Theorem 1) It is equivalent to establish the boundedness of Rs =
1/P [Ms|Y ]. Writing this quantity as a sum of non-negative terms, Rs =∑
t∈S{P [Mt|Y ]/P [Ms|Y ]}, as is implied by

∑
t∈S P [Mt|Y ] = 1, admits use

of an extension of the Borel-Cantelli lemma (cf. Billingsley, 1995, prob. 22.3,
p. 294), which provides that the boundedness of Rs = 1/P [Ms|Y ] follows
from that of E[Rs|θ].
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Substitution of each calibrated Bayes factor in (18) with NDCuv(Y ) =
kuBFuv(Y )/τ yields

P [Ms|Y ]

P [Mt|Y ]
=

{
ks!

(ks − j1)!
BFsuj1 (Y )

τ j1

}{
(ks − j1)!

(ks − j1 + j2)!

τ j2

BFtuj1 (Y )

}
.

For Mu vs Mv such that Au − Av = {i}, the Bayes factor is BFuv(Y ) =
(1+τ2n)1/2 exp{−1

2wnZ
2
i }, where Zi = n1/2Ȳi, Ȳ = n−1

∑n
j=1 Yij , and wn =

τ2n/(1+τ2n). Conditional on θi, the quantity Z2
i is a non-central chi-square

random variable with one degree of freedom and non-centrality parameter
nθ2i . It follows from the chi-square moment-generating function formula,
M(t) = (1− 2t)−1/2 exp{nθ2i t/(1− 2t)}, that for r = 1, . . . , j1, since i ∈ As
has θi = 0, E

[
1/BFur−1ur(Y )

∣∣θs] = 1; and, for r = j1 +1, . . . , j1 + j2, since
i /∈ As has ξn ≤ |θi|, E

[
BFurur−1(Y )

∣∣θs] ≤ τζn, where

ζn =

(
1 + τ2n

τ2

)1/2(
1 + τ2n

1 + 2τ2n

)1/2

exp

{
−1

2

(
τ2n

1 + 2τ2n

)
nξ2n

}
.

The above insights set up a partition of the index space, S, relative to
s ∈ S, into subsets corresponding to the unique pairs (j1, j2), for j1 =
0, . . . , ks and j2 = 0, . . . , νs such that the subset associated with a given
pair (j1, j2) indexes the

(ks
j1

)(νs
j2

)
model-configurations that each selects j1

variables among those omitted in Ms and omits j2 variables among those
selected in Ms. It follows that

E[Rs|θs] ≤ R∗s =
ks∑
j1=0

νs∑
j2=0

(
ks
j1

)(
νs
j2

)
(ks − j1)!

ks!
τ j1

(ks − j1 + j2)!

(ks − j1)!
ζj2n .

This is evaluated by separately considering the “outer sum” and “inner sum”
operations of the double sum, R∗s =

∑ks
j1=0 U

out
j1

∑νs
j2=0 U

in
j2

(j1), where

Uoutj1 =

(
ks
j1

)
(ks − j1)!

ks!
τ j1 and U inj2 (j1) =

(
νs
j2

)
(ks − j1 + j2)!

(ks − j1)!
ζj2n .

Observe that at j2 = 0 one has U inj2 (j1). Otherwise, if 1 ≤ j2 ≤ νs, use

Sterling’s approximation,
√

2πkk+1/2e−k ≤ k! ≤ ekk+1/2e−k, to see that

U inj2 (j1) ≤ B0B1(j2)
ks−j1+1/2B3(j2)

νs+1/2 (34)

× 1

j2!
exp [j2 {log ζn + logB2(j2) + logB4(j2)− 2}]
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where B0 is a fixed constant, B1(j2) = 1 + j2/(ks − j1) if j1 < ks and
B1(j2) = j2 if j1 = ks; B2(j2) = ks − j1 + j2 if j2 > 0 and B2(j2) = 1 if
j2 = 0; B3(j2) = 1 + j2/(νs − j2) if j2 < νs and B3(j2) = j2 if j2 = νs; and,
B4(j2) = νs − j2 if j2 < νs and B4(j2) = 1 if j2 = νs. The exponent in the
final factor of (34) is bounded above by j2(log ζn + 2 log pn − 2). It follows,
after moving initial terms into the exponent, that

U inj2 (j1) ≤ B0 ×
1

j2!
exp [j2 {log ζn + 2 log pn − 2 + g(j2)}] (35)

where

g(j2) = j−12 {(ks − j1 + 1/2) logB1(j2) + (νs + 1/2) logB3(j2)} .

For the case in which νs ≥ 2, use the inequality 0 < x−1 log(1 + x) < 1 to
see that g(1), g(νs − 1)/(log νs), and g(νs)/(log νs) are bounded. Moreover,
a calculus exercise will show that g(j2) is convex across 1 ≤ j2 ≤ νs− 1. (To
see this, write g(j2) = g1(j2) + g2(j2) and observe that each of g1(j2) and
g2(j2) are convex.) It follows that g(j2) ≤ g∗ = max{g(1), g(νs − 1)} across
j2 = 1, . . . , νs − 1. Hence, by evaluating the “inner sum” in parts, one has

νs∑
j2=0

U inj2 (j1) ≤ 1 +B0

νs−1∑
j2=1

1

j2!
exp [j2 {log ζn + 2 log pn − 2 + g∗}] + U inνs (j1)

≤ 1 +B0 exp {log ζn + 2 log pn − 2 + g∗}+ U inνs (j1), (36)

having noted that the middle term evaluates the first few terms of the power
series expansion of the exponential function. Because g∗ = O(log pn) and
g(νs) = O(log pn), as has been shown, the conditions of the theorem im-
ply that the log ζn term dominates in each exponent of the last two terms
in (36), the exponent of U inνs (j1) defined in (35), sending the exponent di-
verging toward negative infinity. It follows that the “inner sum” converges,∑νs
j2=0 U

in
j2

(j1) → 1. The same conclusion holds for the case νs ≤ 1, and is
deduced from (36) in a parallel way by noting that the middle term is not
present when νs = 1 and neither of the last two terms are present when
νs = 0.

Having bounded the “inner sum,” it is straightforward to bound the “outer
sum” using familiar techniques. It has been shown that R∗s ≤ B5

∑ks
j1=0 U

out
j1

,
eventually, for some fixed constant B5. Subsequently, upon noting that
Uoutj1

= (1/j1!)τ
j1 , by simple cancellation, the “outer sum” is understood

from the power series expansion of the exponential function,

ks∑
j1=0

Uoutj1 =
ks∑
j1=0

1

j1!
τ j1 ≤ eτ .
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which establishes that R∗s is bounded and completes the proof.

Proof. (Theorem 2) Write θ̃ and Z̃(θ̃|φ) for the respective values of θ̂
and Z(θ̂|φ) calculated at the solution Ỹ .

For any sequence θ1,θ2, . . ., because În(θn|φ) is a constant multiple of a
derivative of Z̃(θn|φ), the two objects diverge at the same rate, as n→∞,
unless Z̃(θn|φ)→ 0, which requires θn → θ0. Apply the approximation (18)
to rewrite (19) as

|În(θ̃|φ)|1/2 ≈ e
1
2
‖Z(θ̃|φ)‖2(2π)ν/2π(θ̃|φ) (37)

The failure of Z̃(θ|φ)→ 0 would imply the contradictory situation wherein
the left and right sides of (37) are asymptotically dissimilar. It must therefore
be the case that θ̃n → θ0.

By (18), the solution (19) satisfies

e
1
2
‖Z̃(φ)‖2 ≈ τ̃ν

|În(θ̃|φ)|1/2

(2π)ν/2π(θ̃/τ̃ |φ)
,

and the approximate Bayes factor is,

BFst(Ỹ |φ) ≈
(
τ

τ̃

)ν π(θ̃/τ̃ |φ)

π(θ̃/τ |φ)
≈
(
τ

τ̃

)ν π(θ0/τ̃ |φ)

π(θ0/τ |φ)
≈
(
τ

τ̃

)ν
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