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Two highly pathogenic avian influenza (HPAI) outbreaks have affected commercial egg production flocks in the American continent in
recent years; a H7N3 outbreak in Mexico in 2012 that caused 70% to 85% mortality and a H5N2 outbreak in the United States in
2015 with over 99% mortality. Blood samples were obtained from survivors of each outbreak and from age and genetics matched
non-affected controls. A total of 485 individuals (survivors and controls) were genotyped with a 600 k single nucleotide polymorphism
(SNP) array to detect genomic regions that influenced the outcome of highly pathogenic influenza infection in the two outbreaks.
A total of 420458 high quality, segregating SNPs were identified across all samples. Genetic differences between survivors and controls
were analyzed using a logistic model, mixed models and a Bayesian variable selection approach. Several genomic regions potentially
associated with resistance to HPAI were identified, after performing multidimensional scaling and adjustment for multiple testing.
Analysis conducted within each outbreak identified different genomic regions for resistance to the two virus strains. The strongest
signals for the Iowa H5N2 survivor samples were detected on chromosomes 1, 7, 9 and 15. Positional candidate genes were mainly
coding for plasma membrane proteins with receptor activity and were also involved in immune response. Three regions with the
strongest signal for the Mexico H7N3 samples were located on chromosomes 1 and 5. Neuronal cell surface, signal transduction and
immune response proteins coding genes were located in the close proximity of these regions.
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Implications

Highly pathogenic avian influenza (HPAI) outbreaks have a
devastating impact on the poultry industry, with high mortal-
ity, reduced egg production and mandated euthanization of
infected flocks. Within the last four years, two HPAI outbreaks
have affected egg production flocks in the American continent;
a H7N3 outbreak in Mexico in 2012 that caused 70% to 85%
mortality and a H5N2 outbreak in the United States in 2015
with over 99% mortality. Identification of genetic regions and
candidate genes associated with HPAI survival could increase
our understanding of HPAI viral pathogenesis and may aid
drug and/or vaccine development in the future.

Introduction

Highly pathogenic avian influenza infections lead to rapid
onset of severe, contagious systemic disease with nearly

100% mortality. In contrast, low pathogenic avian influenza
virus (LPAI) usually produces subclinical infections in
chickens, with decreases in production but minimal mortality.
So far, significant pathogenicity differences observed between
HPAI and LPAI were related to specific characteristics of virus
strains, tissue tropism and host response (Post et al., 2012).
Host responses to avian influenza (AI) vary between different
avian species. For example, ducks frequently show no signs of
disease due to low pro-inflammatory response, in contrast to
hypercytokinemia in chickens (Burggraaf et al., 2014). One of
the genes responsible for these differences is RIG-I, whose
absence in chickens has been connected to high susceptibility
to HPAI (Karpala et al., 2011). The IFITM123 protein family was
also implicated, as low expression during HPAI infection has
been observed in Galliform birds (Smith et al., 2015). Infection
of chickens with HPAI H5N1 virus triggers expression
of genes related to inflammatory and innate immune
responses. Intense host antiviral response is, however,
unsuccessful in controlling this rapidly progressing infection,
which subsequently results in high mortality in chickens.† E-mail: wioleta_drobik@sggw.pl
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In contrast, following LPAI infection, the expression level of
most of these genes remains unchanged in the lung tissue of
infected chickens (Post et al., 2012).
Comparison of two inbred chicken lines for viral shedding

levels following experimental LPAI (H7N7) infection revealed
clear differences in host-genetic control (Ruiz-Hernandez
et al., 2016). Absence of cloacal shedding and a restricted
time course of oropharyngeal shedding were observed in the
more resistant line. However, the genetic mechanisms
behind these differences were not examined. Sironi et al.
(2011) determined that response of chickens to the HPAI
H7N1 virus was significantly different between lines but
failed to find a significant association between major histo-
compatibility complex (MHC) haplotype and HPAI resistance.
The influence of genetics on survival following HPAI infection
was also examined in indigenous Thai breeds but no
significant association between sensitivity to HPAI infection
and variation in either the BF1 locus of the MHC or the Mx
gene was found (Matsuu et al., 2016).
The aim of this study was to identify genetic variation

associated with HPAI survival in the Mexico/H7N3 and Iowa/
H5N2 outbreaks. The second goal was to determine whether
the genomic regions that are associated with survival after
infection are the same for different HPAI strains (H7N3
and H5N2).

Material and methods

Material
Samples were obtained following two different HPAI out-
breaks in multiple commercial layer facilities in two different
countries. All blood samples were from the Hy-Line W-36
White Leghorn layer variety (a commercial multiple line
hybrid) and were collected on FTA Elute Microcards (GE
Healthcare, Piscataway, NJ, USA). In Mexico, HPAI H7N3
infections resulted in 70% to 85% mortality of hens. Blood
samples (n= 273) were collected on survivors in 2012, 4 to
8 weeks following cessation of non-routine mortality.
Flocks were re-sampled 10 months later in 2013 (n= 187),
following repeated vaccinations with killed AI vaccines.
A total of 12 flocks were sampled in Mexico, with 48 samples
per flock, giving 460 challenge-surviving birds in total. The
HPAI outbreak in Iowa, US, was a different strain (H5N2) and
was far more virulent, with >99% mortality occurring within
5 days of infection. The rare survivors sampled had survived
in the production houses for 4 weeks post infection. A total
of 104 samples were obtained from survivors from three
flocks in two locations in Iowa. Age matched non-affected
controls were also sampled for both the Mexico (n= 95) and
Iowa (n= 186) samples. These were identified from hatchery
records as hatching within 1 week of the affected flocks and
being sourced from the same parent flock (Iowa, USA) or
being the same age (within 3 months) and from the same
fertile egg sources (Mexico). In total samples of 555 (460
survivors) and 290 (104 survivors) birds were available from
the Mexico and Iowa outbreaks respectively.

Genotyping
DNA was extracted from the FTA cards using manufacturer
standard procedures. Genotypes were determined using the
commercially available 600 k Axiom chicken single nucleo-
tide polymorphism (SNP) chip from Affymetrix (Santa Clara,
CA, USA) (Kranis et al., 2013). Genotype calling and quality
control was performed on all samples using the Axiom
Analysis Suite, resulting in data on 420458 segregating
SNPs. Genotyping data were analyzed in PLINK ver 1.0.7
(Purcell et al., 2007). During this quality control process, the
data was filtered based on call rate (<0.90) and minor allele
frequency (MAF< 0.01 for Mexico’s samples and MAF<
0.02 for Iowa’s samples, reflecting differences in sample size)
leaving a total of 348161 SNPs for Mexico samples and
340791 SNPs for Iowa samples.

Statistical analysis
A variety of approaches were used to identify SNPs and
genomic regions associated with AI survival, including
logistic regression using (1) PLINK and (2) a Bayesian vari-
able selection GWAS approach using the GenSel software
(Fernando and Garrick, 2008). Regions significant according
to at least one of the approaches were marked as candidate
regions. In each region, statistical significance of the SNP
with the estimated highest effect on survival was tested with
ASReml 4.0 (Gilmour et al., 2015) using a logit model.
A basic SNP allele frequency test between cases and control
was also performed in PLINK, with results provided as sup-
plementary information (Supplementary Material Table S1
and Supplementary Material Figure S1).
Linkage-disequilibrium pruning was performed using PLINK

with an r 2 threshold of 0.2 to obtain a subset of approximately
independently segregating SNPs. After removing SNPs from
chromosome Z (n= 206), 12724 approximately independent
autosomal SNPs were identified and used in multidimensional
scaling (MDS) analysis to correct for population stratification.
The genome-wide significance level was set using Bonferroni
correction based on the total number of approximately inde-
pendently segregating SNPs as 0.05 divided by 12930, which is
equal to 3.87E-06. This was used for all models beside BayesB
where windows that explained over 0.8% of variance were
considered in the further analysis.
The software PLINK was used to run a basic case–control

allele frequency test and logistic regression analysis, which
included location and the first three MDS components as
covariates. Both these analyses were performed separately for
the Iowa/H5N2 and the Mexico/H7N3 outbreaks. The 10000
SNPs with the largest effects in PLINK logistic regression ana-
lyses were verified using the ASReml software with a logit
model that included the genomic relationship matrix to correct
for population structure and polygenic effects.
Bayesian variable selection method BayesB (Meuwissen

et al., 2001) was used to analyze survival as a binary trait
using all SNPs simultaneously, following Kizilkaya et al.
(2013). Parameter πwas set equal to 0.9995 so as to fit ~200
markers (0.0005× 420 k) per iteration of the Markov chain in
a mixture model for estimation of individual SNP allele
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substitution effects. The chain length was 41 000 iterations,
with the first 1000 iterations discarded as burn in. Markers
were grouped into 1016 non-overlapping 1Mb windows
across the chicken genome and results were summarized as
the proportion of genetic variance explained by SNPs in
each 1Mb window. The mean number of markers in a 1Mb
window was equal to 409.8 ± 160.7 (mean ± SD).
To utilize haplotype information for identifying genes

underlying AI survival, BayesB analysis was also carried out
with a haplotype model. To perform this analysis, genotypes
for each individual were phased (based on the Galgal 4.0
assembly) using the BEAGLE v4.1 software (Browning and
Browning, 2007). Haplotype files were prepared based on
phased Variant Call Format files with an in-house Python
script. Fixed window sizes of either 40 or 100 kb were used.
Only haplotypes with a frequency ~0.8%were considered for
further analysis and fitted using the same BayesB approach
as used for the SNP allele model but with π set to 0.999.
Linkage disequilibrium in regions of interest was visualized

with Haploview 4.2 (Barrett et al., 2005). Genes that overlap
regions of interest were identified with the Ensembl BioMart
webtool (http://www.ensembl.org/biomart/) based on the
Galgal4 assembly and the Ensembl Genes 86 database. Analysis
of overrepresented gene ontology (GO) terms and pathways was
performed using the PANTHER Classification System (http://
www.pantherdb.org/). Identification of quantitative trait loci
(QTL) that overlap the regions of interest was based on release
30 of ChickenQTLdb (http://www.animalgenome.org/).

Results

Population stratification
Population stratification was analyzed by the identity-
by-state and MDS clustering methods available in the
PLINK software. The first two principal components (Figure 1)
showed no separation between survivor and control samples.
To correct for population stratification, the first three MDS
components were used as a covariates in further analyses.

Regions associated with survival in the Mexico/H7N3and
Iowa/H5N2 outbreak
Regions associated with AI resistance in the Mexico/H7N3
and Iowa/H5N2 outbreak are summarized in Tables 1 and 2
for the logistic model and Bayesian GWAS, respectively.
Manhattan plots for the logistic and Bayes B model are in
Figures 2 and 3. Results across methods are summarized
in Tables 3 and 4. Results based on the frequency model are
in Supplementary data. The estimate of heritability for HPAI
survival based on the BayesB threshold model, was equal to
0.24 ± 0.07 and 0.18 ± 0.08, for the Mexico/H7N3 and Iowa/
H5N2 outbreak, respectively. The main regions identified for
each model are described in the following section.

Logistic model
The strongest association with survival for the Mexico/H7N3
outbreak was found on chromosome 1 (126.0Mb) for SNP
rs315546485 (Table 1 and Figure 2). Relatively low r 2 values
with neighboring SNPs were observed, so the location of SNP
rs315546485 was also confirmed on genome build GalGal5.
Two regions approaching significance were also found on
chromosome 5 (39.2Mb) and chromosome 1 (82.3Mb).
The two significant regions on chromosome 1 were also
significant in the basic case–control frequency association
test (Supplementary Material Table S1 and Figure S1). The
most significant SNP from the logistic model for the Iowa/
H5N2 outbreak was located on chromosome 7 (28.7Mb)
(Table 1 and Figure 2). The other region that approached
significance in the logistic model was located on chromo-
some 4. Both these signals were also significant in the basic
case–control association test (Supplementary Material
Table S1 and Figure S1).

BayesB model
The highest percentage of variance for the Mexico/H7N3
outbreak was explained by 1Mb window located on
chromosome 1 (126.0 to 127.0Mb) (Table 2 and Figure 3). This
region on chromosome 1 also explained a high percentage of

Figure 1 Population structure based on the first two multidimensional scaling (MDS) components of the single nucleotide polymorphism (SNP) genotypes
for the Iowa/H5N2 (a) and the Mexico/H7N3 outbreaks (b).
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variance in the haplotype model. In the haplotype model, a
high percentage of variance was also explained by haplotypes
on chromosome 5 and 12 (Table 2). The regions explaining
highest percentage of variance based on the BayesB analysis for
the Iowa/H5N2 outbreak were identified on chromosomes 1, 7,
9 and 15 (Table 2 and Figure 3), however none had a large
effect in terms of % variance explained. The highest proportion
of genetic variance (2.12%) was explained by a 1Mb window
on chromosome 1 between 32 and 33Mb, but no significant

SNP was identified within this region in logistic model (Table 1).
The position of the window that explained the largest percen-
tage of genetic variance on chromosome 7 in BayesB was
consistent with results from the single SNP logistic model in
PLINK, where SNP rs16605877 was the variant with lowest
P-value and significant after Bonferroni correction (Table 1). The
significant window on chromosome 15 (1.0 to 2.0Mb) is also
located near the SNP that was significant in the case–control
association model (Supplementary Material Table S1).

Table 1 The five most significant single nucleotide polymorphisms (SNPs) according to the logistic model for the Mexico/H7N3 and Iowa/H5N2
outbreaks

Logistic model Logit model

Chr SNP rs Position (Mb) P-value OR Adjusted P-value P-value Freq surv Freq con Closest gene Location (kbp)

Mexico/H7N3 outbreak
1 315546485 126.028 1.91E-12 0.146 0.000 3.99E-05 0.025 0.163 PUDP −96

NLGN4X, Mir-1397 +262
+290

5 315754877 39.294 4.15E-06 0.332 0.054 2.30E-02 0.114 0.234 NRXN3,
Mir-1799

−70,
−78

NRXN3* +200
1 314788866 82.189 1.45E-05 0.428 0.188 2.00E-03 0.255 0.404 GAP43 −136

ZBTB20 +455
1 313212776 82.174 1.85E-05 0.425 0.239 1.36E-03 0.223 0.371 GAP43 −150

ZBTB20 +440
4 15502311 14.507 2.08E-05 0.080 0.269 Ns 0.010 0.081 SMARCA1 −201

TENM1 +660
Iowa/H5N2 outbreak
7 16605877 28.707 2.02E-07 6.257 0.003 1.52E-03 0.261 0.085 DPP10 Overlap
4 13513973 31.465 1.38E-05 4.145 0.178 2.73E-04 0.234 0.101 ARHGAP10 Overlap
4 315481943 31.382 1.38E-05 4.145 0.178 2.73E-04 0.234 0.101 EDNRA −3

TMEM184C +19
4 313186373 31.405 1.38E-05 4.145 0.178 2.73E-04 0.234 0.101 TMEM184C Overlap
4 14446938 31.404 1.38E-05 4.145 0.178 2.73E-04 0.234 0.101 TMEM184C Overlap

Chr= chromosome; SNP= reference SNP ID (rs); Position in Mb according to build 4; OR= estimated odds ratio from logistic model; Adjusted P-value= P-value adjusted
for multiple testing with Bonferroni correction; Logit model= P-value from logit model with relationship matrix; Freq surv= frequency in survivors; Freq con= frequency
in controls; Location= location of the closest gene= +SNP is located X kbp upstream, –SNP is located X kbp downstream; NRXN3*= neurexin 3 isoform c precursor.

Table 2 Summary of genomic regions associated with avian influenza survival in the Mexico/H7N3 outbreak based on the BayesB model, fitting SNP
alleles or haplotypes

BayesB – SNP alleles BayesB – Haplotypes

Chr
Window location

(Mb)
Genetic variance

(%)
Iterations
(%)1

Genetic variance
(%)

Location
(Mb)

Iterations
(%)1 SNP rs2

Logistic model
P-value

Mexico/H7N3 outbreak
1 126.0 to 127.0 42.55 99.5 31.29 126.1 91.2 315546485 1.91E-12
5 39.0 to 40.0 0.23 14.0 1.15 39.3 5.9 315754877 4.15E-06
12 12.0 to 13.0 0.54 32.8 1.31 12.5 9.6 317538164 4.19E-05
Iowa/H5N2 outbreak
1 32.0 to 33.0 2.12 23.8 0.45 32.7 4.0 313567940 1.23E-04
7 28.0 to 29.0 1.59 21.3 0.06 28.8 1.2 16605877 2.02E-07
9 16.0 to 17.0 1.25 31.3 0.04 16.3 1.5 14677594 2.28E-04
15 1.0 to 2.0 1.35 38.3 0.18 1.9 1.5 315054601 1.12E-03

Regions were selected based on explaining high percent of variance (>0.8%) in BayesB model (windowed SNPs or haplotypes).
1% of windows with non-zero effect.
2SNP rs number with lowest P-value (logistic model) within the window.
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Candidate genes within identified regions for survival in the
Mexico/H7N3 outbreak
Three regions with highest significance were located on chro-
mosomes 1 and 5, out of which two (Chr 1 at 126Mb and Chr 5
at 39Mb) gave consistent signals for both SNP and haplotype
analyses (Tables 1 and 2). Only the region on chromosome 1
(at 126Mb) approached significance also for the logit model,
which is, therefore, the most promising candidate.
Positional candidate genes that are located in close

proximity (within 1Mb) to the regions mentioned above are
shown in Table 3. The overrepresentation test in Panther was
performed for these genes but found no significant terms
after Bonferroni correction with P< 0.05. Two out of three
regions identified in Table 3 overlapped with QTL that were
previously identified for disease-related traits, including
antibody response to sheep red blood cells antigen (SRBC)

(Chr 1, 82.2Mb;Chr 5, 39.3Mb), antibody titer to LTA
antigen (lipoteichoic acid) (Chr 5, 39.3Mb), cloacal bacterial
burden after challenge with Salmonella (Chr 5, 39.2Mb),
oocyst shedding (Chr 1, 82.2Mb) and plasma coloration
(Chr 1, 82.2Mb).

Candidate genes within identified regions for survival in the
Iowa/H5N2 outbreak
Regions with highest significance were located on chromo-
somes 1, 4, 7, 9 and 15. One region on chromosome 7
(28.7Mb) gave consistent signal for both SNP and haplotype
analyses and was, therefore, considered as the most pro-
mising candidate.
Positional candidate genes that are located in close

proximity (within 1Mb) to the regions mentioned above are
shown in Table 4. The overrepresentation test in Panther was

Figure 2 Manhattan plot for genome-wide association analysis results with avian influenza (AI) survival based on the logistic model for the (a) Mexico/
H7N3 and (b) Iowa/H5N2 outbreaks. The blue line represents the 5% significance threshold after Bonferroni correction.

Figure 3 Manhattan plot for genome-wide association analysis results with AI survival based on the Bayesian model. Percentage of genetic variance
explained by 1Mb windows in the (a) Mexico/H7N3 and (b) Iowa/H5N2 outbreaks is shown on the y-axis. The blue line represents the 0.8% of genetic
variance explained threshold. For the Mexico/H7N3 outbreak, the window that explained over 40%of genetic variance on chromosome 1 at 126Mb is
marked with dashed vertical line.
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Table 3 Genes located within regions associated with survival in the Mexico/H7N3 outbreak

Chr Region (Mb) Association model Genes1
Selected gene functions that can be connected to viral resistance (based on GO terms and
Panther classification system)

1 82.2 SNPs (Logistic) GAP43 (growth associated protein 43) Neuromodulin, nervous system regeneration
ZBTB20 (Zinc finger and BTB domain containing 20) Negative regulation of gene expression, positive regulation of interleukin-6 production, positive

regulation of IFN-β production
1 126-127 All models used STS (steroid sulfatase) Integral component of membrane, membrane lipid metabolic process

PUDP (pseudouridine 5'-phosphatase) Pseudouridine 5'-phosphatase activity, located in cytosol and extracellular exosome
NLGN4 (Neuroligin 4) Neuronal cell surface protein, neurexin family protein binding
gga-mir-1397 Known miRNA

5 39.2-39.3 SNPs (Logistic), Haplotypes, NRXN3 (Neurexin 3) Neuronal cell surface protein that may be involved in cell recognition and adhesion
TSHR (Thyroid stimulating hormone receptor) Signal transduction, B cell differentiation
GTF2A1 (general transcription factor IIA 1) Involved in HIV infection in humans

Chr= chromosome.
1Only genes located within ±0.5Mb range were included.

Table 4 Genes located within regions associated with survival in the Iowa/H5N2 outbreak

Chr Region (Mb) Association model Genes1
Selected gene functions that can be connected to viral resistance
(based on GO terms and Panther classification system)

1 31.0 to 33.0 SNPs (windowed) FAM19A2 (chemokine-like protein TAFA-2) A member of TAFA family, encode small secreted proteins, a member of chemokines
SLC16A7 (monocarboxylate transporter 2) Transmembrane transport of amino acids

4 31.4 to 31.5 SNPs (logistic) ARHGAP10 (Rho GTPase activating protein 10) Negative regulation of apoptotic process
ENDRA (endothelin receptor type A) Integral component of membrane, endothelin receptor activity
TMEM184C (transmembrane protein 184C) Integral component of membrane

7 28.7 All models used DPP10 (dipeptidyl-peptidase 10) GO terms: positive regulation of establishment of protein localization to plasma membrane and
proteolysis. Associated with respiratory system diseases in humans

SCTR (secretin receptor precursor) Cell surface receptor involved in immune response, synaptic vesicle exocytosis and response to stress
9 15.0 to 17.0 SNPs (windowed) BCL6 (B-cell lymphoma 6 protein homolog) IL4-mediated signaling pathway, B cell receptor signaling pathway, regulation of memory T cell differentiation

ZNF639 (17.01Mb, zinc finger protein 639) Viral entry into host cell, negative regulation by host of viral transcription
15 1.0 to 2.0 SNPs (windowed),

Haplotypes
MAPK1 (mitogen-activated protein kinase 1) B and T cell receptors signaling pathways, Toll-like receptor signaling pathway, innate immune response

Chr= chromosome.
1Only genes located within ±0.5Mb range were included.
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performed for these genes, but found no significant terms
after Bonferroni correction with P< 0.05. However, one
biological process had P-value below 0.01, ion transport.
Three of five regions that were identified overlapped with QTL

identified for disease susceptibility, including antibody response
to SRBC antigen (Chr 1, 31.0 to 33.0), cloacal bacterial burden
after challenge with Salmonella (Chr 1, 31.0 to 33.0), and
Marek’s disease-related traits (Chr 4, 31.4Mb; Chr 7, 28.7Mb).
Although the region on chromosome 15 did not directly overlap
with disease susceptibility QTL, a number of QTL for Marek’s
disease-related traits, antibody response to SRBC antigen, and
antibody titer to LPS antigen, were located within 1.5Mb from
this region.

Discussion

This is to our knowledge the first study on identification of
genetic regions related to survival following natural infection
of chickens with HPAI. A genome-wide association study
using a 600 K SNP chip and survivors and controls from
two distinct HPAI outbreaks (H7N3 and H5N2) was per-
formed. We did not identify any single SNP or region that
distinguished survivors from controls for either virus strain,
which suggests complex genetic influences on survival
following HPAI infection. Several regions that are worth
further research were, however, identified: four for the Iowa/
H5N2 outbreak and five for the Mexico/H7N3 outbreak.
Positional candidate genes that overlapped these regions
and/or SNPs were identified.
As the Mexico and United States outbreaks were caused

by different strains of the virus, with different levels of
mortality, the analysis was performed separately for each
outbreak data set. Different genomic regions were identified
in these two outbreak data sets, probably due to differences in
the pathogenesis for the two analyzed HPAI virus strains. It has
been shown that even closely related AI virus strains can have
quite different virulence. For example Matsuu et al. (2016)
found that host responses, especially cytokine response during
the early phase of infection, differed between different H5N1
virus strains. Also, Post et al. (2012) found clear differences in
gene expression of the host between AI strains (H7N1 HPAIV
and LPAIV), especially in the brain tissue.
A number of statistical approaches were applied to

identify genomic regions associated with survival. The
logistic model was used over simple case–control frequency
analysis to allow correction for population stratification. We
decided to include MDS components as covariates in the
analysis, as results from the Iowa/H5N2 outbreak confirmed
that including MDS components led to different results, and
the majority of regions identified in the basic case–control
association test were not significant in the logistic model. On
the other hand, incorporating genomic relationships in the
logit model did lead to the same associations (although
weak) as the logistic model. The most probable explanation
for the weak associations that were identified was the small
sample size and lack of SNPs with large effects in the Iowa
H5N2 outbreak.

The Bayesian GWAS yields a posterior probability of
association rather than P-values for the null hypothesis and,
thus this approach can be more confidently applied with
relatively small sample size (Zhao et al., 2013). The BayesB
method performed better than linear model for dichotomous
phenotypes for simulation data (Villanueva et al., 2011) and
for real case–control data (Kizilkaya et al., 2013). On this
basis, we assumed that the BayesB method is a suitable
approach for this type of study. In addition, McCarthy et al.
(2008) determined that multiple locus inference is a better
strategy to identify weak associations than a single marker
analysis, as small allele effects and low minor allele
frequencies can affect the detection rate of associations. Thus,
on assumption that a genomic region has a higher association
with survival than individual SNPs, we fitted SNPs simulta-
neously and summarized results from neighboring SNPs using
1Mb windows and in the haplotype model.
Little is known about why some birds survive HPAI out-

breaks, while resulting in rapid death for the majority of
individuals. Some studies have associated lack of HPAI sur-
vival in chickens with lack of the RIG-I gene, which plays a
critical role in the outcome of RNA virus infections in mam-
mals and ducks (Karpala et al., 2011). Lower cytokine
response followed by activation of major pattern recognition
receptors (TLR7, RIG-I, MDA-5) and a persistent cellular
response were responsible for fighting HPAI infection in
ducks with a high level of success (Cornelissen et al., 2013).
In chickens, 1 day post infection, lung, brain and spleen
responded with a high, but delayed, pro-inflammatory
response of IL-6 and IL-1b, including upregulation of IFN-β,
IFN-γ, TLR3 and MDA-5. These responses were however
unsuccessful and four out of six chickens died by the 3rd day
post infection. The other main gene hypothesized to play a
critical role in resistance to RNA virus infections in chickens is
MDA-5, although knockdown of the expression of this gene
had little impact on influenza proliferation (Karpala et al.,
2011). The Mx gene has also been proposed as a major
candidate gene associated with AI resistance, where sub-
stitution of asparagine for serine at amino acid 631 of the Mx
protein led to higher antiviral activity against H5N1 (Ko et al.,
2002). However, Sironi et al. (2008) failed to confirm this
association. Also, results obtained from a number of RNA
expression studies (Zou et al., 2010; Smith et al., 2015;
Ranaware et al., 2016), have not identified a mechanism of
resistance to AI. It is understood that expression of some
genes is intensely triggered during infection. However, as
this response is often not effective, the key factors underlying
HPAI survival are still not known.
The study herein suggests that the gene NLGN4, located

on chromosome 1 between 126.29 and126.41Mb, can be a
positional candidate for resistance to H7N3 infection. This
gene codes a neuronal cell surface protein, neuroligin 4, that
is expressed mostly in brain tissue, and has been associated
with autism in humans (Jamain et al., 2003). Neurovirulence
of some Influenza strains has been observed in a number of
studies. It is worth mentioning that some strains of AI show
high affinity to brain tissue and neurological symptoms can
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be very severe (Balasubramaniam et al., 2012). According to
Zou et al. (2010), the most significant changes in gene
expression as a result of HPAI infection were found in
cytoskeleton proteins, proteins associated with the ubiquitin-
proteasome pathway, and neural signal transduction pro-
teins. Another signal in our analysis pointed to the NRXN3
gene, located on chromosome 5 at 39.2Mb, which also
codes a neuronal surface protein. In addition, NLGN4
belongs to the family of neurexin binding proteins, which
suggests a functional relationship between the products of
two genes. According to Cornelissen et al. (2013), the influx
of replicating virus in the brain and its induced immune
process, may be critical for the high mortality in chickens to
HPAI infection.
It is important to mention that both variants located on

chromosomes 1 (126.028Mb) and 5 (39.2Mb) were located
in close proximity to micro RNAs (miRNAs) coding regions.
The role of miRNAs in host pathogen interactions has been
confirmed in a number of studies, although it is not yet fully
understood. In the work of Wang et al. (2012), differential
expression of 73 miRNAs in lungs and 36 miRNAs in tracheae
was observed between AI infected and noninfected chickens.
None of the two miRNAs included in Table 4 were reported in
the study of Wang et al. (2012) nevertheless as that study
was performed on broilers it is possible that not all associa-
tions of miRNAs with HPAI resistance will overlap within
different layers lines. Thus, the role of miRNAs close to
identified regions in HPAI survival requires further research.
A region that approached significance in the logistic model

was located at 82.2Mb on chromosome 1. The SNPs under-
lying the signal in this region are located between GAP43
(neuromodilin) and zinc finger and BTB domain containing
20 (ZBTB20) genes. The first of these two genes plays a major
role in effective regeneration of the nervous system, while the
other gene, ZBTB20, is a transcription factor involved in
immune response, such as regulation of IL-6 production and
IFN-β (Table 4). A number of other genes important for nervous
system functioning such as Limbic system-associated mem-
brane protein (LSAMP) or dopamine receptor D3 (DRD3) were
also located in close proximity to the identified region.
The region identified at 28Mb on chromosome 7 is spanned

by the gene dipeptidyl-peptidase 10 (DPP10), which encodes
a protein that is an integral component of the plasma
membrane. Biological process GO terms associated with
DPP10 include cell communication, immune system process,
and cellular defense response. In humans, the DPP10 gene is
primarily expressed in brain but expression was also present in
lung and it has been implicated as a disease factor for asthma
(Malerba and Pignatti, 2005). In addition, several other inter-
esting genes are located in close proximity to the rs16605877
SNP, such as secretic receptor (SCTR) (at 27.85Mb), which is a
cell surface receptor involved in immune response, synaptic
vesicle exocytosis, and response to stress based on Panther
GO terms.
A number of regions that were identified by the BayesB

analysis of the Iowa/H5N2 outbreak data were located on
chromosomes 9 and 15. The region on chromosome 9

overlaps the BCL6 gene (B-cell CLL/lymphoma 6) and the
ZNF639gene (zinc finger protein 639), which are potential
candidate genes due to their role in immune response during
virus infection. The BCL6 gene has a number of functions
related to cell growth and proliferation. Its expression in
human is regulated by interleukin-6 and interleukin-21 and
the gene is required for BCL6 for programming of T follicular
helper cell generation (Nurieva et al., 2009). The region on
chromosome 15 is also rich in genes with immune system
function, for example the MAPK1 gene, which is a member of
the apoptosis signaling pathway. Programmed cell death
has been suggested to contribute to mortality of the host
following virus infection (Post et al., 2012). It is also known
that delayed apoptosis of infected cells is an important
mechanism for prolonged virus replication (Hui et al., 2016).
Four genomic regions associated with survival during HPAI

challenge were associated with survival in the Iowa/H5N2
outbreak and three with survival in the Mexico/H7N3
outbreak but these regions did not overlap. The presence of
different genomic regions associated with survival to differ-
ent virus strains can be challenging for the poultry industry,
as it requires more diversified strategies to be developed for
fighting AI. Our identification of genetic regions and candi-
date genes associated with HPAI survival is a step forward to
better characterization of the genetic basis for AI resistance
in chicken. Follow-up molecular studies on the identified
regions are needed to increase our understanding of HPAI
viral pathogenesis. Specifically, some of the identified can-
didate genes may be further investigated for targeted use of
genomic methods, such as gene editing, or for targeting
vaccines to block the products of these genes as entry route
for the virus. No single gene with large effect on HPAI
survival was identified, which suggests a complex nature of
survival to HPAI challenge but with a significant genetic
component.
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