
QCD quantum correlation and multi-parton dynamics

by

Zhongbo Kang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Nuclear Physics

Program of Study Committee:
Jian-Wei Qiu, Major Professor

Mark Gordon
John Hill

John Lajoie
Marshall Luban

Iowa State University

Ames, Iowa

2009

Copyright c© Zhongbo Kang, 2009. All rights reserved.



ii

DEDICATION

I would like to dedicate this work to my family, who always love me, support me and

appreciate me ...



iii

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Structure of matter: History towards QCD . . . . . . . . . . . . . . . . . . . . 1

1.2 QCD: Lagrangian, asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 QCD Lagrange density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Factorization and probability distributions . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2. Single transverse-spin asymmetry: Overview . . . . . . . . . 12

2.1 Twist-3 approach: quark-gluon correlation function . . . . . . . . . . . . . . . . 13

2.2 Twist-3 correlation functions relevant to SSAs . . . . . . . . . . . . . . . . . . . 18

CHAPTER 3. Tri-gluon correlations and single transverse spin asymmetry

in open charm production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 SSAs for open charm production in SIDIS . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Unpolarized cross section . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Twist-three polarized cross section . . . . . . . . . . . . . . . . . . . . . 32

3.2 SSAs for open charm production in hadronic collisions . . . . . . . . . . . . . . 36

3.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Numerical estimate of the SSAs in SIDIS . . . . . . . . . . . . . . . . . 44



iv

3.3.2 Numerical estimate of the SSAs in hadronic collisions . . . . . . . . . . 49

3.3.3 Current experimental status . . . . . . . . . . . . . . . . . . . . . . . . . 52

CHAPTER 4. Evolution of twist-3 correlation functions . . . . . . . . . . . . 54

4.1 Feynman diagram representation and cut vertex . . . . . . . . . . . . . . . . . 55

4.2 Factorization and evolution equations . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Non-singlet case: quark-gluon correlations . . . . . . . . . . . . . . . . . 60

4.2.2 Non-singlet case: tri-gluon correlations . . . . . . . . . . . . . . . . . . . 68

4.2.3 Complete evolution equations . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Evolution kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Scale dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CHAPTER 5. Transverse momentum dependent parton distributions . . . 93

5.1 The QCD prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 SSAs from W production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 SSAs for W boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 SSAs for single lepton production from the decay of W boson . . . . . . 101

CHAPTER 6. Nuclear dependence: Overview . . . . . . . . . . . . . . . . . . 105

CHAPTER 7. Transverse momentum broadening of vector boson produc-

tion in high energy nuclear collisions . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Why transverse momentum broadening . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Transverse momentum broadening in Drell-Yan production . . . . . . . . . . . 112

7.3 Transverse momentum broadening in heavy quarkonium production . . . . . . 118

7.3.1 Color Evaporation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.2 Non-Relativistic QCD Model . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.3 Transverse momentum broadening in nucleus-nucleus collisions . . . . . 132

7.4 Transverse momentum broadening of Z (and W ) production at the LHC . . . . 134

7.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

CHAPTER 8. SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . 146



v

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



vi

LIST OF FIGURES

Figure 1.1 The QCD coupling constant αs(µ
2) as a function of µ from measure-

ments. (Compiled from Ref. [15]) . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.2 Perturbative QCD factorization corresponds to Eq. (1.17) . . . . . . . 9

Figure 2.1 Generic Feynman diagram contributing to the single transverse-spin

asymmetry for inclusive hadron production in proton-proton scattering

at leading twist (twist-three). The polarized cross section can be factor-

ized into convolutions of the following terms: twist-three quark-gluon

correlation functions for the transversely polarized proton, parton dis-

tributions for the unpolarized proton, hadron fragmentation functions,

and hard-scattering functions calculable in QCD perturbation theory. . 13

Figure 2.2 Generic Feynman diagram . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.3 Single transverse spin asymmetry of π0 (left) and π+, π− (right) com-

pared with Fermilab data. (Compiled from Ref. [16]) . . . . . . . . . . 17

Figure 2.4 Single transverse spin asymmetry compared with recent STAR (left)

and BRAMHS (right) data. (Compiled from Ref. [27]) . . . . . . . . . 18

Figure 3.1 Kinematics of the SIDIS process in hadron frame. . . . . . . . . . . . . 28

Figure 3.2 Leading order contribution to the partonic hard part comes from the

photon-gluon fusion channel. . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.3 A typical diagram that gives a non-vanishing contribution to the SSA. 32



vii

Figure 3.4 Feynman diagrams that give the twist-three contribution to the spin-

dependent cross section. The short bar indicates the propagator that

produces the pole. The letters, a, b and c in Fig. (a), represent the color

of the initial-state gluons. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.5 Lowest order Feynman diagram for light quark-antiquark annihilation

(a) and for gluon-gluon fusion to a pair of heavy quarks. . . . . . . . . 38

Figure 3.6 Feynman diagrams that give the twist-3 contribution to the spin-dependent

cross section in the quark-antiquark annihilation channel: initial-state

interaction (a), (b), and final-state interaction (c), (d). The short bar

indicates the propagator that produces the unpinched pole. . . . . . . 39

Figure 3.7 Feynman diagrams that give the twist-3 contribution to the spin-dependent

cross section in the gluon-gluon fusion channel: initial-state interaction

(a), (b), and final-state interaction (c), (d). The short bar indicates the

propagator that produces the pole. . . . . . . . . . . . . . . . . . . . . 41

Figure 3.8 The fully differential unpolarized cross section for D0 production in

SIDIS for COMPASS kinematics. The curves represent: σU0 (solid),

σU1 (dashed), and σU2 (dotted) in Eq. (3.58). . . . . . . . . . . . . . . . . 45

Figure 3.9 The fully differential unpolarized cross section for D0 production in

SIDIS at the future eRHIC. The curves represent: σU0 (solid), σU1 (dashed),

and σU2 (dotted) in Eq. (3.58). . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.10 Single-transverse-spin-asymmetries defined in Eq. (3.60) for D0 pro-

duction in SIDIS for COMPASS kinematics. The curves are: solid-〈1〉,

dashed-〈1〉 with derivative-term only, dot-dashed-〈cosφ〉, and dotted-

〈cos 2φ〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.11 Single-transverse-spin-asymmetries defined in Eq. (3.60) for D0 pro-

duction in SIDIS for eRHIC kinematics. The curves are: solid-〈1〉,

dashed-〈1〉 with derivative-term only, dot-dashed-〈cosφ〉, and dotted-

〈cos 2φ〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



viii

Figure 3.12 The SSA as a function of rapidity y for D0 meson (left) and D̄0 meson

production (right) at
√
s = 200 GeV and Ph⊥ = 2 GeV. The curves

are: solid (λf = λd = 0.07 GeV), dashed (λf = λd = 0), dotted

(λf = −λd = 0.07 GeV). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.13 Same as Fig. 3.12, but as a function of Feynman-xF . . . . . . . . . . . 51

Figure 3.14 The SSA as a function of Ph⊥ for D0 (left) and D̄0 mesons (right)

at mid-rapidity, y = 0, and
√
s = 200 GeV. The curves are: solid

(λf = λd = 0.07 GeV), dashed (λf = λd = 0), dotted (λf = −λd = 0.07

GeV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.15 Same as Fig. 3.14, but at forward rapidity, y = 1.8. . . . . . . . . . . . 52

Figure 3.16 Transverse single spin asymmetry of prompt single muons (most from

open flavor (charm and bottom) decay) at backward (left) and forward

(right) rapidities in RHIC. (Compiled from Ref. [39]) . . . . . . . . . . 53

Figure 4.1 Feynman diagrams that contribute to the twist-3 quark-gluon (a) and

tri-gluon (b) correlation functions. α, β, µ and a, b, c are Lorentz and

color indices of gluon field operators, respectively. . . . . . . . . . . . . 56

Figure 4.2 Feynman diagrams that contribute to the flavor non-singlet change

of the twist-3 quark-gluon correlation function where µ, ρ and c are

Lorentz and color indices of gluon field operators, respectively. The

lower part of quark and gluon lines are contracted to the cut vertex

that defines the quark-gluon correlation function. . . . . . . . . . . . . 59

Figure 4.3 Partonic Feynman diagrams that contribute to the evolution kernels of

the twist-3 correlation functions. . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.4 Feynman diagrams that contribute to the change of the twist-3 tri-

gluon correlation functions where α, β, µ, ρ and a, b, c are Lorentz and

color indices of gluon field operators, respectively. The lower part of

gluon lines are contracted to the cut vertices that define the tri-gluon

correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



ix

Figure 4.5 Feynman diagrams that contribute to the change of the twist-3 quark-

gluon correlation function where α, β, µ, ρ and a, b, c are Lorentz and

color indices of gluon field operators, respectively. The lower part of

quark and gluon lines are contracted to the cut vertex that defines the

quark-gluon correlation function. . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.6 Feynman diagrams that contribute to the change of the twist-3 tri-gluon

correlation functions from the interaction initiated from the quark-gluon

correlation functions. The lower part of gluon lines are contracted to

the cut vertices that define the tri-gluon correlation functions. . . . . . 73

Figure 4.7 Feynman diagrams that contribute to the leading order flavor non-

singlet evolution kernel of the twist-3 quark-gluon correlation function. 77

Figure 4.8 Feynman diagrams that contribute to the leading order evolution ker-

nel from the tri-gluon correlation functions to the tri-gluon correlation

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.9 Feynman diagrams that contribute to the leading order evolution kernel

from the tri-gluon correlation functions to the quark-gluon correlation

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.10 Feynman diagrams that contribute to the leading order evolution kernel

from the quark-gluon correlation functions to the tri-gluon correlation

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.11 The factor e−
x2

2σ2 as a function of x for σ = 1/4 (solid) and σ = 1/8

(dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.12 Twist-3 up-quark-gluon correlation Tu,F (x, x, µF ) as a function of x at

µF = 4 GeV (left) and µF = 10 GeV (right). The factorization scale

dependence is a solution of the flavor non-singlet evolution equation

in Eq. (4.73). Solid and dotted curves correspond to σ = 1/4 and

1/8, while the dashed curve is obtained by keeping only the DGLAP

evolution kernel Pqq(z) in Eq. (4.73). . . . . . . . . . . . . . . . . . . . 88



x

Figure 4.13 Twist-3 down-quark-gluon correlation Td,F (x, x, µF ) as a function of x

at µF = 4 GeV (left) and µF = 10 GeV (right). Solid and dotted curves

correspond to σ = 1/4 and 1/8, while the dashed curve is obtained by

keeping only the DGLAP evolution kernel Pqq(z) in Eq. (4.73). . . . . 88

Figure 4.14 Twist-3 up-quark-gluon correlation Tu,F (x, x, µF ) as a function of x

at µF = 4 GeV (left) and µF = 10 GeV (right). The factorization

scale dependence is obtained by solving the full set of evolution equa-

tions in Eq. (4.82) through (4.85). Solid and dotted curves correspond

to σ = 1/4 and 1/8 for the width of input off-diagonal correlation

functions. The dashed curves represent the quark-gluon correlation

functions obtained from the parametrization of Fit II in Ref. [27] by

assuming all quark-gluon and tri-gluon correlation functions obey the

DGLAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.15 Twist-3 down-quark-gluon correlation Td,F (x, x, µF ) as a function of x

at µF = 4 GeV (left) and µF = 10 GeV (right). all curves are defined

in the same way as those in Fig. 4.14. . . . . . . . . . . . . . . . . . . . 91

Figure 4.16 Twist-3 tri-gluon correlation function T
(f)
G,F (x, x, µF ) as a function of

x at µF = 4 GeV (left) and µF = 10 GeV (right). Dashed curves

are from T
(f)
G,F (x, x, µF ) = λf G(x, µF ), and solid and dotted curves are

from solving the full evolution equations with σ = 1/4 and 1/8 for the

input correlation functions, respectively. . . . . . . . . . . . . . . . . . 92

Figure 4.17 Twist-3 tri-gluon correlation function T
(d)
G,F (x, x, µF ) as a function of

x at µF = 4 GeV (left) and µF = 10 GeV (right). Dashed curves

are from T
(d)
G,F (x, x, µF ) = λdG(x, µF ), and solid and dotted curves are

from solving the full evolution equations with σ = 1/4 and 1/8 for the

input correlation functions, respectively. . . . . . . . . . . . . . . . . . 92

Figure 5.1 AN as a function of W -boson rapidity for W− (left) and W+ (right).

We have integrated over the qT range from 0 to 3 GeV. . . . . . . . . . 101



xi

Figure 5.2 AN as a function of W -boson transverse momentum for W− (left) and

W+ (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.3 AN as a function of lepton rapidity at pT = 41 GeV for negative lepton

(left) and positive lepton (right). . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.4 AN as a function of lepton transverse momentum at different rapidity

for negative lepton (left) and positive lepton (right). . . . . . . . . . . 104

Figure 6.1 Clascification of parton multiple scattering in nuclear medium: (a) in-

teractions internal to the nucleus, (b) initial-state interactions, and (c)

final-state interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 7.1 Lowest order double scattering Feynman diagram that contributes to

the broadening of Drell-Yan transverse momentum distribution, which

shows an antiquark of momentum x′p′ of incoming hadron scatters off

a gluon of a nucleus (the bottom blob) before it annihilates a quark to

produce a vector boson. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 7.2 Lowest-order double scattering diagram that leads to the factorized

partonic part, H, in Eq. (7.10). . . . . . . . . . . . . . . . . . . . . . . 115

Figure 7.3 Lowest order Feynman diagram for light quark-antiquark annihilation

(a) and for gluon-gluon fusion to a pair of heavy quark. . . . . . . . . . 118

Figure 7.4 Leading order double scattering diagrams for qq̄ → QQ̄: initial-state

double scattering (a), and final-state double scattering (b), (c), (d),

and (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 7.5 Leading order double scattering diagrams for gg → QQ̄: initial-state

double scattering (a), and final-state double scattering (b), (c), (d), and

(e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xii

Figure 7.6 Sketch of heavy quarkonium production in hadron-nucleus collisions

as viewed in the target rest frame (a), and that in nucleus-nucleus

collisions as viewed in the center-of-mass frame (b). The thin and thick

lines indicate the incoming parton and the outgoing heavy quark pair,

respectively. The cross indicates potential rescattering point with soft

partons of the nuclear medium. . . . . . . . . . . . . . . . . . . . . . . 132

Figure 7.7 Leading order double scattering diagrams for production of a Z (or a

W ) boson in hadron-nucleus collisions via the initial-state interaction

(a) and the possible final-state rescattering if the vector boson is recon-

structed from its hadronic decay. . . . . . . . . . . . . . . . . . . . . . 135

Figure 7.8 Data on transverse momentum broadening of heavy quarkonium as well

as Drell-Yan production in hadron-nucleus collisions. Also plotted are

theoretical calculations using Eq. (7.31) (solid lines) and Eq. (7.54)

(dashed lines), derived by using CEM and NRQCD model, respectively.

Three solid lines (from the top to bottom) correspond to J/ψ, Υ, and

Drell-Yan, while three dashed lines represent ψ′, J/ψ, and Υ produc-

tion from NRQCD model. The quarkonium broadening calculated in

NRQCD model is evaluated with (a) and without (b) quarkonia from

the feeddown mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 7.9 RHIC data on averaged transverse momentum square of J/ψ production

as a function of the number of participants [115]. The top panel is for

the J/ψ’s produced in the central rapidity region while the bottom

panel is for those produced in more forward or backward region. Also

plotted are theoretical calculations using Eq. (7.59). Solid lines for

Au-Au collisions and dashed lines for Cu-Cu collisions, respectively. . 141



xiii

Figure 7.10 Transverse momentum broadening of Z and W (lower set of curves)

in hadron-nucleus collisions (a) and nucleus-nucleus collisions (b) at

√
s = 5.5 TeV as a function of atomic weight of nuclear beam and the

number of participants, Npart, respectively. Also plotted are predictions

(upper set of curves) for the transverse momentum broadening of heavy

quarkonium production in hadron-nucleus collision at the LHC energy

(a); and the initial-state only broadening in nucleus-nucleus collision at

the same energy (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



xiv

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis.

First and foremost, I would like to thank my Ph.D advisor Dr. Jian-Wei Qiu for his

guidance, patience and support throughout the research and the writing of this thesis. I thank

him for spending a significant effort and time to teach me new valuable knowledge and skills.

I am also very grateful for his willingness to answer countless questions and patiently discuss

with me even the smallest technical detail.

I would like to thank my collaborators Drs. Werner Vogelsang and Feng Yuan for working

with me, for their encouragement and suggestions. Furthermore, I thank Drs. Marshal Luban

and Xiaofeng Guo for their encouragements, Dr. German Valencia for teaching me high energy

physics and for his valuable suggestions and encouragement. Thanks must go as well to Drs.

John Lajoie, Kirill Tuchin, Ming Liu and Andreas Metz for many interesting discussions.

I would like to thank Feng Wei and Jian Zhou for lots of valuable discussions on various

physics problems. Thanks also go to my friends Andrew Ansorge, Alina Negoita, Jun Li, Oleg

Antipin, Alberto Accardi, Ricardo Rodriguez, Jie Ma, Qian Wang, Asif Imran, and Ben-Wei

Zhang for their friendship and for discussion on everything, including the future of the career.

I wish to thank my parents, Linzhi Yang and Jianting Kang for their unconditional love.

They support every step of my life. Their love is beyond words. I thank my parents-in-law,

Shuxian Yang and Rongshan Ni, and my sister Zhonglei Kang for their love, understanding and

encouragements. Finally, I would like to thank my wife, Ni Ni, for her love and her support all

these years. Perhaps none of this work would be completed without her love, encouragements

and appreciation. I feel deeply blessed for having this lovely wife.



xv

ABSTRACT

Protons and neutrons are known to be the building blocks of matter, and also known to

be the bound states of quarks and gluons - the partons, whose dynamics is best described by

Quantum Chromodynamics (QCD). Perturbative QCD has been very successful in interpreting

and predicting high-energy hadronic scattering processes by factorizing the leading contribution

to the physical cross sections into a convolution of the perturbatively calculable short-distance

part and the universal long-distance parton distribution functions (PDFs) of colliding hadrons.

Besides testing QCD dynamics at the short-distance, these cross sections also probe partonic

structure inside a colliding hadron via PDFs, which are often interpreted as the probability

densities of finding a parton inside a hadron with a given longitudinal momentum fraction.

In this thesis I discuss the possibilities to explore the rich partonic dynamics inside a

hadron or a large nucleus beyond the probability distributions. I will first explain why a

difference of two transverse-spin dependent cross sections (or the measurement of the single

transverse-spin asymmetry) can directly probe a set of new three-parton correlation functions.

These correlation functions provide the first direct information on quantum correlation between

quarks and gluons inside a polarized hadron. I will describe the basic formalism and the

experimental measurements of these correlation functions. I will present the first derivation

of evolution equations (or renormalization group equations) for these correlation functions.

I will then discuss how to use the nuclear dependence of high energy nuclear collisions to

extract the information on four-parton correlations inside a large nucleus or a nuclear medium.

The measurements of the spin asymmetry and the anomalous nuclear dependence provide us

new opportunities to explore the QCD dynamics and hadron structure beyond the parton

probability distributions.
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CHAPTER 1. Introduction

1.1 Structure of matter: History towards QCD

What is the world made of? What are the most fundamental constituents of matter?

Present-day particle physics research represents man’s most ambitious and most organized

effort to answer these questions. The earliest attempt dates to at least 6th century BC, when

ancient Greek philosophers were studying the philosophical doctrine of atomism and the nature

of their basic building blocks. These ideas were founded in abstract, philosophical reasoning,

thus remained only a speculation for the next 2400 years. In the early nineteenth century

investigators applied the method of experimental science to study this problem and raise these

ideas to the level of a full-fledged scientific theory.

In 1803, English natural philosopher John Dalton proposed the atomic theory in chemistry,

in which the concept of atoms was introduced and used to explain various new discoveries in

chemistry. In 1911, Ernest Rutherford from New Zealand discovered that atoms have a small

charged nucleus. The atomic nucleus was originally thought to be made of protons only,

until English physicist James Chadwick discovered neutrons in 1932. Until then, the general

understanding was that matter in the universe is composed of atoms which consist of a nucleus

and electrons. The nucleus is further made of protons and neutrons, collectively called nucleons.

Since particle accelerators were introduced in late 1920s, many new particles have been

discovered in scattering experiments. It has become clear that the neutron and proton were

not alone. They turned out to be just the lightest particles in a spectrum of strongly interacting

fermion states, called baryons. There is also another sequence of strongly interacting bosons,

called mesons, in which pion is the lightest. Baryons and mesons are collectively called hadrons,

which add up to more than several hundred.
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With a bewildering variety of particles, it becomes difficult to believe that all of them

are fundamental. In 1964 Gell-Mann [1] and Zweig [2] proposed the quark model to classify

all hadrons in terms of their more fundamental building blocks, named quarks: three quarks

for baryons and a quark-antiquark pair for mesons. These so called “constituent quarks” are

spin-1/2 fermions with fractional electric charges and new quantum numbers of flavor, ie, up,

down, strange, charm, bottom and top.

However, there is a difficulty in constructing low-lying baryon states in this naive quark

model. For example, ∆++ with spin 3/2, is made of three u-quark. To satisfy the Pauli

exclusion principle, a hidden degrees of freedom “color” was introduced for the quarks. We

suppose that quarks come in three primary colors, usually called red, green and blue, and the

baryon wave functions are totally antisymmetric in this new quantum number. Since we do not

observe the color degrees of freedom directly, we may assume that the hadronic phenomena

be unaltered under the exchange of colors. In other words, all hadron states and physical

observables are color-singlets.

The quark model with flavor and color quantum numbers can successfully describe most

of the basic properties and the qualitative features of the observed low-energy hadronic states.

It was thus natural to try to detect the quarks in high energy scattering experiments, and

to explore the dynamics between them. The first experimental attempt to directly “see” the

substructure of the hadron (proton) was initiated at SLAC in the late 1960s [3, 4], so called

electron proton deep inelastic scattering (DIS). The famous Bjorken scaling [5] of the structure

functions and the so-called Callan-Gross relation [6] between them inspired Feynman to propose

his parton model [7]: the hadrons are composed of pointlike spin-1/2 partons, interacting

weakly at high energy. It then became natural to identify Feynman’s partons with the quarks

proposed by Gell-Mann and Zweig. However, the total momentum carried by these partons is

only around 50% of the proton’s momentum. It suggests that there are other particles inside

the proton, which should be electric neutral and thus do not interact with electrons. It was

then assumed that these are gluons, which carry color charge and mediate strong interactions

between the quarks.



3

However, one has never observed an isolated quark indicating that they are strongly con-

fined inside the hadron. On the other hand, they appear almost free at high energy DIS

experiments. To solve this dynamical difficulty, we need to build a theory of strong interac-

tions. Following the pioneering work on non-Abelian gauge symmetries by C. N. Yang and

R. L. Mills [8], Fritzsch et al. [9] introduced the gauge theory of strong interaction in 1973:

Quantum Chromodynamics (QCD), which preserves the local color SU(3) gauge symmetry. It

was soon realized that QCD has the feature of asymptotic freedom [10, 11]: the interaction

between the quarks and gluons becomes weaker at shorter distances. Because of this property,

physical observable (for example, cross section) related to parton interactions at high energy

can be calculated as a series in the small QCD running coupling αs in so called “perturbative

QCD”.

On the other hand, because of parton confinement, any physical observable involving

hadrons contains both short- and long-distance physics, which requires a systematic separation

of the dynamics between them. The possibilities for such separation are proven by QCD fac-

torization theorems [12], which factorize the physical observable into perturbatively calculable

short-distant hard parts convoluted with universal long-distant distribution functions. Predic-

tions follow when processes with different hard scatterings but the same distribution functions

are compared. This approach has been very successful in interpreting and predicting almost

all existing data from high energy collisions with momentum transfer larger than a few GeV

[13, 14]. It it fair to say that the faith in QCD as a true physics theory ultimately founded, at

least up to now, on the successes of perturbative QCD.

In this chapter, we would like to give an elementary introduction to the fundamental

formulation of perturbative QCD: QCD Lagrangian, asymptotic freedom, and factorization.

Finally I propose how to go beyond the so-called leading twist formalism, to study the strong

interaction beyond simple probabilities.
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1.2 QCD: Lagrangian, asymptotic freedom

1.2.1 QCD Lagrange density

QCD is a quantum field theory of quarks and gluons endowed with a non-abelian gauge

symmetry group - SU(3) of color. The classical Lagrangian which explicitly exhibits this

symmetry is given by the Yang-Mills formula:

Linvariant =
∑

f

ψ̄f,i(iγ
µDµ,ij −mfδij)ψf,j −

1

4
(F aµν)

2. (1.1)

Here Dµ = ∂µ + igAaµt
a, g is the gauge coupling constant, the quark fields are ψf of mass mf

(f = 1, ..., nf labels flavor) with color index i = 1, 2, 3 (Nc = 3). The gluon fields are Aaµ,

a = 1, 2, .., 8 (N2
c − 1 = 8), and the corresponding non-Abelian gauge field strength is given by

F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν (1.2)

with fabc the structure constants of SU(3), which define its Lie algebra.

The gauge invariance of Linvariant actually makes it difficult to quantize. This problem is

solved by adding to Linvariant a gauge-fixing density, Lgauge, given by

Lgauge = −λ
2
(ηµAaµ)

2, (1.3)

which fixes the gauge η ·A = 0. η is typically chosen as the gradient ∂ (covariant gauge) or as

a fixed vector n (axial gauge). In covariant gauges, a ghost term Lghost is also needed

Lghost = ηµc̄a(∂µδ
ad − gfabdAbµ)c

d, (1.4)

with ghost fields ca. So in general a quantized QCD Lagrangian can be written as

LQCD(ψf , Aµ) = Linvariant + Lgauge + Lghost. (1.5)
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1.2.2 Asymptotic freedom

Given the QCD Lagrangian in Eq. (1.5), it is straightforward to derive the Feynman rules

for QCD perturbation theory. However, similar to other field theories, Green functions, and

consequently cross sections, calculated according to these unmodified Feynman rules suffer a

severe problem when we include diagrams with loops. These are the ultraviolet (UV) diver-

gences, associated with infinite loop momenta. Therefore, perturbative calculations need to

be regularized, and renormalized. The term “renormalization” means, together with the re-

definition of the mass and coupling constant, the readjustment of the normalization of cross

sections by suitable multiplicative factors which may eliminate possible infinities in the cross

section. Physical predictions of the theory come only after the divergences are systematically

removed.

Renormalization in QCD can be summarized as follows. Start with the QCD Lagrangian

in Eq. (1.5), we define

LRenormalized(ψR, AR, Z
′s) ≡ LClassical(ψR, AR) + Lcounterterm(ψR, AR, Z

′s)

= LBare(ψ0, A0), (1.6)

where LClassical(ψR, AR) and LBare(ψ0, A0) have the same functional form as LQCD(ψ,A) in

Eq. (1.5). LBare(ψ0, A0) is presented in terms of “bare” (unrenormalized) quantities (fields, cou-

pling constants, and mass parameters) while LClassical(ψR, AR) is given in terms of renormalized

ones. Z ′s are renormalization constants, which define the relation between the renormalized

and bare quantities,

ψf,0 = Z
1/2
ψ (µ)ψf,R(µ),

Aaµ,0 = Z
1/2
A (µ)Aaµ,R(µ),

ca0 = Z1/2
c (µ)caR(µ),

g0 = Zg(µ) g(µ),

mf,0 = Zm(µ)mf,R(µ), (1.7)
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where µ is the renormalization scale.

When QCD is renormalized, an arbitrary scale µ arises. However, a physically observed

quantity (e.g., the cross section σ) should be independent of this scale, ie,

µ2 d

dµ2
σ

(
Q2
ij

µ2
, αs(µ), µ

)
= 0, (1.8)

where Q2
ij are Lorentz invariants constructed from external momenta and αs = g2/4π. We can

then derive a renormalization group equation as

(
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
+ ω

)
σ

(
Q2
ij

µ2
, αs(µ), µ

)
= 0. (1.9)

Here β(αs) is defined as

β(αs) = µ2∂αs
∂µ2

, (1.10)

which measures the change of the coupling constant αs as one changes the renormalization scale

µ. This leads to an important concept: running coupling constant, whose strength depends on

the renormalization scale, and it represents an effective “local” interaction including a lot of

high mass states. The running coupling constant αs(µ
2) is controlled by the QCD β-function,

which has the perturbative expansion

β(αs) = −β0

2π
α2
s −

β1

4π2
α3
s −

β2

64π3
α4
s − . . . , (1.11)

where

β0 = 11 − 2

3
nf

β1 = 51 − 19

3
nf

β2 = 2857 − 5033

9
nf +

325

27
n2
f (1.12)
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The solution to the lowest order approximation to Eq. (1.10) can be written as

αs(µ
2) =

αs(µ
2
0)

1 + (β0/4π)αs(µ
2
0) ln(µ2/µ2

0)
, (1.13)

where the value of αs(µ
2
0) gives the boundary condition for the solution of the differential

equation. Since αs(µ
2
0) and µ2

0 are not independent, it is more convenient to introduce a

common constant, ΛQCD,

Λ2
QCD = µ2

0 e
4π/β0αs(µ2

0), (1.14)

such that

αs(µ
2) =

4π

β0 ln(µ2/Λ2
QCD)

, (1.15)

where the famous ΛQCD is of the order 200 MeV determined from the experiments, and it has

the qualitative definition of being the momentum scale at which the QCD coupling constant is

large thus perturbative QCD is not applicable. From Eq. (1.15), the running coupling αs(µ
2)

decreases to zero as µ2 becomes very large, see Fig. 1.1. This is known as asymptotic freedom

[10, 11] for QCD perturbation theory.

0

0.1

0.2

0.3

1 10 10
2

µ GeV

α s(
µ)

Figure 1.1 The QCD coupling constant αs(µ
2) as a function of µ from

measurements. (Compiled from Ref. [15])
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1.3 Factorization and probability distributions

With asymptotic freedom, one could in principle apply QCD perturbation theory to physical

observables at high energy where coupling constant αs is small. However, most of the physical

processes involve hadrons. Typically there are two scales in the physical observable (e.g., cross

section):

- the energy exchange Q in the hard scattering: usually larger than a few GeV,

- the scale of hadron wavefunction: 1/R, with R the hadron mean radius, around the order

of ΛQCD ∼ 200 MeV.

This kind of processes contain both short- and long-distance physics. Certainly the per-

turbative techniques only apply for short-distance part where αs(Q) is small, but not for

long-distance part where αs(1/R) is relevant and large. A way out is through the factorization

theorems [12]. According to these theorems, for many scattering processes, a physical mea-

sured quantity can be factorized into some perturbatively calculable short-distant hard parts

convoluted with non-perturbative but universal long-distant distribution functions (or matrix

elements). The interference between these two scales are power suppressed.

Take the single inclusive hard-scattering process,

h1(p1) + h2(p2) → H(Q) +X, (1.16)

as an example. Here the colliding hadrons h1 and h2 have momenta p1 and p2, H denotes

the observed particle or jets and X stands for any unobserved particles produced by the

collisions. The typical scale Q of the scattering process is set by the invariant mass or the

transverse momentum of the observed particle or jets. For example, the hard process may be

the production of a W± boson, or the production of a pion with large transverse momentum.

According to the factorization theorem [12], the cross section for this process can be written
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as

σ(p1, p2, Q) =
∑

a,b

∫
dx1dx2fa/h1

(x1, Q
2)fb/h2

(x2, Q
2)σ̂ab(x1p1, x2p2, Q, αs(Q))

+ O ((ΛQCD/Q)p) (1.17)

Here the indices a, b = q, q̄, g denote parton flavors; σ̂ab is the short-distance coefficient function

(partonic cross section); fa/h(x,Q
2) is a non-perturbative, long-distance matrix element on the

hadron state, which is interpreted as the probability density to find a parton of flavor a inside

a hadron h with momentum fraction x (or parton distributions of flavor a). See Fig. 1.2 for

a diagram illustration of this factorization. The partonic cross section σ̂ab is computable as a

power series expansion in the QCD coupling αs(Q). On the other hand, parton distribution

functions fa/h(x,Q
2) are independent of the details of collision, and they are universal. Thus

one could measure them in one experiment (or one process), or obtain them through a global

fitting procedure, then use the same set of distribution functions to make predictions. This

formalism, so called leading twist (power) collinear pQCD factorization formalism, has been

very successful in interpreting and predicting almost all existing data from high energy collisions

with momentum transfer larger than a few GeV.

ab

a/h

p

1

1

h

p

h

1

f

^

a

2 a/h

1

2

x

b

H

2x

σ

2

f

Figure 1.2 Perturbative QCD factorization corresponds to Eq. (1.17)

What happen to the power suppressed terms O ((ΛQCD/Q)p)? Do they have any effect,

or any significance at all? These are the key questions this thesis is trying to investigate and

answer. We will find that in some cases, these power suppressed terms have important effects
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and lead to non-trivial and very interesting phenomena. They give us new opportunities to

study the structure of the hadron and the quantum correlation between quarks and gluons

beyond what have been learned so far. It also provides us new insights into nonperturbative

regime of QCD through multiparton correlation matrix elements.

In the 1990s Qiu and Sterman has developed and proved a factrorization formalism beyond

leading power (higher twist) in hadronic collisions [16, 17, 18, 19]. This formalism can be

schematically written as

σ(Q) = H0 ⊗ f2 ⊗ f2 +

(
1

Q

)N
H1 ⊗ f2 ⊗ f2+N + O

(
1

Q

)N+1

, (1.18)

where N = 1 for transversely polarized scatterings, while N = 2 for unpolarized scattering.

The H0 and H1 are perturbatively calculable coefficient functions in power series of αs, and

fn are non-perturbative matrix elements of the products of fields on the light cone and are

often loosely referred as “twist-n” parton distribution or correlation functions. In Eq. (1.18),

the “⊗” represents the convolution over partons’ momentum fractions.

Using this formalism, we will first explain why and how a difference of two transverse-

spin dependent cross sections (or the measurement of the single transverse-spin asymmetry)

can directly probe new sets of twist-3 three-parton correlation functions in Chapter 2. We

will construct two sets of correlation functions that are responsible for generating the novel

single transverse spin asymmetries (SSAs). These correlation functions provide the first direct

information on quantum correlation between quarks and gluons inside a polarized hadron.

In Chapter 3, we calculate the SSAs for the open charm production and propose to use it to

access one set of correlation functions, so called tri-gluon correlation functions, which represent

the role gluon has played in generating the SSAs. In chapter 4, we study how to go beyond

the leading order formalism and present the necessary step: the first derivation of evolution

equations (or renormalization group equations) for these correlation functions. In chapter 5,

we study the SSAs in a complementary approach - TMD approach, ie, calculate the SSAs in

terms of transverse-momentum-dependent (TMD) distribution. In chapter 6 and 7, we discuss

the close connection between QCD partonic multiple scattering and nuclear dependence in high
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energy nuclear collisions, and demonstrate how to use the nuclear dependence of high energy

nuclear collisions to extract the information on four-parton correlations inside a large nucleus

or a nuclear medium. As an example, we investigate the transverse momentum broadening of

vector boson production in hadron-nucleus and nucleus-nuclues collisions. We summarize our

results in chapter 8. Taking advantages of the spin and/or nuclear dependence will enable us

to explore the hadron structure beyond the probability distributions.
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CHAPTER 2. Single transverse-spin asymmetry: Overview

Single transverse-spin asymmetries (SSAs) in high energy collisions are important phenom-

ena and have been observed for more than three decades in various processes [20, 21, 22, 23]. In

these processes, a transversely polarized nucleon scatters off an unpolarized nucleon (or virtual

photon) target, the observed final-state hadrons show an asymmetric distribution in a plane

perpendicular to the beam direction depending on the polarization vector of the scattering

nucleon. The spin-averaged cross section and the corresponding spin-dependent cross section

may be represented as

σ ≡ 1

2
[σ(sT ) + σ(−sT )] ,

∆σ(sT ) ≡ 1

2
[σ(sT ) − σ(−sT )] , (2.1)

respectively, where sT is the transverse spin vector of the initial hadron. The SSA is often

defined as a dimensionless ratio of spin-dependent and spin-averaged cross sections as AN =

∆σ(sT )/σ. Starting from the 1970s and 1980s, surprisingly large SSAs, as large as 30 percent,

have been consistently observed in various experiments at different collision energies [24], such

as in p↑p→ π +X at
√
s = 200 GeV at Relativistic Heavy Ion Collider (RHIC).

Despite the conceptual simplicity of AN , the theoretical description of SSAs has proven to

be a challenge [24], since the leading power collinear QCD factorization contribution to the

asymmetries vanishes as discovered long ago in [25]. Efremov and Teryaev [26] later point out

that a nonvanishing SSA can be obtained in perturbative QCD if one goes beyond the leading

power. Such asymmetries were later consistently evaluated and the details were worked out by

Qiu and Sterman [16] in terms of generalized factorization theorems [18, 19] in perturbative
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QCD. The asymmetries are presented as a convolution of a twist-2 parton distribution from the

unpolarized hadron, a twist-3 quark-gluon correlation function from the polarized hadron, and

a short-distant partonic hard part calculable in perturbative QCD. This is so-called Efremov-

Teryaev-Qiu-Sterman (ETQS) mechanism, or twist-3 approach to the SSAs.

In this chapter, we will first review the basic idea of this mechanism. We then identify

other twist-3 contributions and construct the corresponding correlation functions beyond the

twist-3 quark-gluon correlation function that has been studied originally by Qiu and Sterman.

2.1 Twist-3 approach: quark-gluon correlation function

In this section, we review the basic Qiu-Sterman formalism to set up the notation and

terminology. We will use the following example

A(P, sT ) +B(P ′) → h(ℓ) +X, (2.2)

where A is a transversely polarized spin-1/2 hadron with momentum P and spin vector sT , B

is an unpolarized hadron with momentum P ′, and h is the hadron produced with momentum

ℓ.

P ′

P, ST P, ST

P ′

pc

π(ℓ)

⊗

⊗ ⊗

=
σ, B

Figure 2.1 Generic Feynman diagram contributing to the single trans-

verse-spin asymmetry for inclusive hadron production in pro-

ton-proton scattering at leading twist (twist-three). The po-

larized cross section can be factorized into convolutions of the

following terms: twist-three quark-gluon correlation functions

for the transversely polarized proton, parton distributions for

the unpolarized proton, hadron fragmentation functions, and

hard-scattering functions calculable in QCD perturbation the-

ory.
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Following the generalized factorization theorem [16, 17, 18], the transverse spin-dependent

cross section for large ℓT hadron can be written as

d∆σAB→hX(ℓT , sT ) =
∑

abc

f
(3)
a/A(x1, x2, sT ) ⊗ fb/B(x′) ⊗Hab→c ⊗Dc→h(z) + . . . , (2.3)

where the symbol ⊗ denotes an appropriate convolution in partonic light-cone momentum

fractions, fb/B(x′) and Dc→h(z) are the standard twist-2 unpolarized parton distributions, and

the fragmentation functions, respectively. f
(3)
a/A(x1, x2, sT ) is the twist-3 correlation functions,

and Hab→c is the partonic hard scattering. This contribution can be represented by a generic

Feynman diagram shown in Fig. 2.1.

T

S

1 2k k

P

sT

Figure 2.2 Generic Feynman diagram

In order to find the field-theoretic expression for the twist-3 function, and to get the master

formula in this approach, we start with a generic diagram in Fig. 2.2 and it can be written as

d∆σ(sT ) ≡ 1

2S

∑

a

∫
d4k1

(2π)4
d4k2

(2π)4
[Ta(k1, k2, sT )Sa(k1, k2)] , (2.4)

where 1/2S is the flux factor,
∑

a runs over the quark (antiquark) flavor, Ta is proportional to

the nonperturbative matrix element of quark-gluon operator between polarized initial hadron

states (a twist-3 matrix element) and Sa refers to the rest of the process. Expanding Sa in the

collinear approximation enables us to reduce the four-dimensional integrals to convolutions in

the momentum fractions of partons with kµi = xiP
µ + kµi,⊥, we have

Sa(k1, k2) = Sa(x1, x2) +
∂Sa
∂kρ1

(x1, x2)(k1 − x1P )ρ +
∂Sa
∂kρ2

(x1, x2)(k2 − x2P )ρ + . . . (2.5)
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One then derives

d∆σ(sT ) =
1

2S

∑

a

∫
dx1dx2

[
iǫρsTnn̄

∂Sa
∂kρ2

(x1, x2)

]
Ta,F (x1, x2), (2.6)

where ǫρsTnn̄ = ǫρσµνsTσnµn̄ν, n and n̄ are light-like unit vectors whose spatial components are

parallel to those of P ′ and P , respectively. Usually one chooses the polarized beam P along

+z direction, and P ′ along −z direction, thus

nµ =
[
n+, n−, n⊥

]
= [0, 1, 0⊥] , n̄µ = [1, 0, 0⊥] , (2.7)

where the light-cone momentum components are defined as V ± = (V 0 ± V 3)/
√

2 for a general

four-vector V µ. nµ and n̄µ has the following properties:

V · n = V +, V · n̄ = V −, n · n̄ = 1. (2.8)

Ta,F (x1, x2) in Eq. (2.6) is called quark-gluon correlation function and has the following oper-

ator definition,

Ta,F (x1, x2) =

∫
dy−1 dy

−
2

2π
eix1P+y−1 ei(x2−x1)P+y−2

×〈P, sT |ψa(0)
γ+

2

[
ǫsTσnn̄F +

σ (y−2 )
]
ψa(y

−
1 )|P, sT 〉 , (2.9)

with F +
σ the gluon field strength. Since Ta,F is real, one needs a phase to generate a nonva-

nishing SSA. This phase will come from the pole structure of Sa. The details how this pole

appears will be presented in chapter 3 when we discuss the single transverse spin asymmetry

of open charm.

The last step is to factorize the remaining function Sa into a perturbatively calculable

partonic term, Hab→c, a corresponding target parton distribution, fb/B , and a fragmentation
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function, Dc→h:

d∆σ(sT ) =
1

2S

∑

abc

∫
dzDc→h(z)

∫
dx′

x′
fb/B(x′)

∫
dx1dx2 Ta,F (x1, x2)

×
[
i ǫρsTnn̄

∂

∂kρ2
Hab→c(x1, x2, x

′, z)

]

kρ
2=0

. (2.10)

Working out the partonic hard parts, one ends up with the following final result:

Eℓ
d3∆σ(sT )

d3ℓ
=

α2
s

S

∑

a,b,c

∫ 1

zmin

dz

z2
Dc→h(z)

∫ 1

x′min

dx′

x′
1

x′S + T/z
fb/B(x′)

√
4παs

×
(
ǫℓsTnn̄

zû

)
1

x

[
Ta,F (x, x) − x

(
d

dx
Ta,F (x, x)

)]
Hab→c(ŝ, t̂, û) , (2.11)

where ŝ, t̂, û are the standard partonic Mandelstam variables, Hab→c(ŝ, t̂, û) are given in Ref. [27].

It is interesting to note that the asymmetry calculated here depends only on the diagonal part

of the quark-gluon correlation functions Ta,F (x1, x2) with x1 = x2 = x. This is generally true

for the process with single hard scale in the scattering, in which only “soft-pole” contributes.

In our case, Ta,F (x, x) corresponds to the situation in which the momentum of the extra gluon

from the initial state goes to zero. This contribution is so-called “soft-gluonic pole” contribu-

tions. In general, the so-called “soft-fermionic pole” contributions, for which the pole in the

hard-scattering is taken in such a way that the initial quark becomes soft, could also exist. This

corresponds to the contribution proportional to Ta,F (0, x). Soft-gluonic pole and soft-fermionic

pole contributions are both the special case of the more general contribution from Ta,F (x1, x2),

which will be discussed a bit more in the next section.

In order to perform a phenomenological study, one needs the information for the unknown

but universal twist-3 quark-gluon correlation functions. The ordinary quark parton distribution

functions are defined as

fa(x) =

∫
dy−1
2π

eixP
+y−1 〈P |ψ̄a(0)

γ+

2
ψa(y

−
1 )|P 〉. (2.12)

Realizing the Ta,F (x, x) function is based on the above parton distribution function with the
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following operator insertion,

[∫
dy−2 ǫ

sTσnn̄F +
σ (y−2 )

]
, (2.13)

the most natural ansatz for Ta,F (x, x) is:

Ta,F (x, x) = Na(x)fa(x) (2.14)

Initially a simple functional form with Na(x) = κaλF was adopted [16], where λF ≈ 0.07

GeV and κu,d = ±1 (for a proton). The comparison with the Fermilab data is impressive, see

Fig. 2.3.

Figure 2.3 Single transverse spin asymmetry of π0 (left) and π+, π− (right)

compared with Fermilab data. (Compiled from Ref. [16])

More recently, with more data having become available, a more general form has been

adopted [27] , Na(x) = Nax
αa(1 − x)βa . The formalism can describe both the Fermilab and

RHIC data simultaneously, see Fig. 2.4 for the comparison with the RHIC data.
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Figure 2.4 Single transverse spin asymmetry compared with recent STAR

(left) and BRAMHS (right) data. (Compiled from Ref. [27])

2.2 Twist-3 correlation functions relevant to SSAs

There are other twist-3 correlation functions besides the quark-gluon correlation function

Tq,F (x1, x2) discussed in previous section. In this section, we will identify other twist-3 contri-

butions. We will find that there will be another set of quark-gluon correlation functions, and

the tri-gluon correlation function, which represents the role of gluon played in single transverse

spin asymmetry.

We construct two sets of twist-3 correlation functions that are responsible for generating

the nonvanishing SSAs in the QCD collinear factorization approach. We start with two general

twist-3 correlation functions: quark-gluon correlation function T̃q,F,σ(x1, x2, sT ) and tri-gluon

correlation function T̃ (f,d)
G,F,σ(x1, x2, sT ) defined as

T̃q,F,σ(x1, x2, sT ) ≡
∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

×〈P, sT |ψq(0)
γ+

2

[
F +
σ (y−2 )

]
ψq(y

−
1 )|P, sT 〉 , (2.15)

T̃ (f,d)
G,F,σ(x1, x2, sT ) ≡

∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

1

P+

×〈P, sT |F+ρ(0)
[
F +
σ (y−2 )

]
F+λ(y−1 )|P, sT 〉 (−gρλ) , (2.16)

where the subscript “F” indicates that a field strength operator (not a covariant derivative
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operator [16]) is inserted in the middle of the bi-local operator that defines the twist-2 spin-

averaged quark (q) or gluon (G) distribution function. There is one quark-gluon correlation

function, T̃q,F,σ, for each quark (antiquark) flavor q (q̄). However, there are two independent

tri-gluon correlation functions, T̃ (f)
G,F,σ and T̃ (d)

G,F,σ, because of the fact that the color of the

three gluon field strengths in Eq. (2.16) can be neutralized by contracting with either the

antisymmetric ifabc or the symmetric dabc tensors with color indices, a, b, and c.

The reality property of these two functions can be expressed as [16],

T̃q,F,σ(x1, x2, sT )∗ = T̃q,F,σ(x2, x1, sT ) ,

T̃ (f,d)
G,F,σ(x1, x2, sT )∗ = T̃ (f,d)

G,F,σ(x2, x1, sT ) . (2.17)

That is, the real part of these two functions are symmetric in the exchange of x1 and x2, while

the imaginary part is antisymmetric. Similarly, from the parity and time-reversal invariance,

we find [16]

T̃q,F,σ(x1, x2, sT ) = −T̃q,F,σ(x2, x1,−sT ) ,

T̃ (f,d)
G,F,σ(x1, x2, sT ) = −T̃ (f,d)

G,F,σ(x2, x1,−sT ) . (2.18)

That is, these two functions are antisymmetric when the transverse spin vector sT reverses its

direction.

From the definition in Eq. (2.15) and the symmetry properties in Eqs. (2.17) and (2.18),

we construct a twist-3 quark-gluon correlation function that is relevant to the SSA as follows,

Tq,F (x1, x2) ≡ ǫsT σnn̄
1

2

[
T̃q,F,σ(x1, x2, sT ) − T̃q,F,σ(x1, x2,−sT )

]

= ǫsT σnn̄
1

2

[
T̃q,F,σ(x1, x2, sT ) + T̃q,F,σ(x2, x1, sT )

]

≡ 1

2

[
T̃q,F (x1, x2, sT ) + T̃q,F (x2, x1, sT )

]

= Re
[
T̃q,F (x1, x2, sT )

]
, (2.19)
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where the spin-dependent twist-3 quark-gluon correlation function is defined as

T̃q,F (x1, x2, sT ) ≡
∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

×〈P, sT |ψq(0)
γ+

2

[
ǫsTσnn̄F +

σ (y−2 )
]
ψq(y

−
1 )|P, sT 〉

= T̃q,F (x2, x1,−sT ) . (2.20)

As shown in Eq. (2.19), the twist-3 quark-gluon correlation function Tq,F (x1, x2) is real and

symmetric when the active momentum fraction x1 exchanges with x2.

Similarly, we can construct the tri-gluon correlation function relevant to the SSA as,

T (f,d)
G,F (x1, x2) ≡ ǫsTσnn̄

1

2

[
T̃ (f,d)
G,F,σ(x1, x2, sT ) − T̃ (f,d)

G,F,σ(x1, x2,−sT )
]

= ǫsTσnn̄
1

2

[
T̃ (f,d)
G,F,σ(x1, x2, sT ) + T̃ (f,d)

G,F,σ(x2, x1, sT )
]

≡ 1

2

[
T̃ (f,d)
G,F (x1, x2, sT ) + T̃ (f,d)

G,F (x2, x1, sT )
]

= Re
[
T̃ (f,d)
G,F (x1, x2, sT )

]
, (2.21)

where the spin-dependent twist-3 tri-gluon correlation function is defined as

T̃ (f,d)
G,F (x1, x2, sT ) ≡

∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

1

P+

×〈P, sT |F+ρ(0)
[
ǫsT σnn̄F +

σ (y−2 )
]
F+λ(y−1 )|P, sT 〉(−gρλ)

= T̃ (f,d)
G,F (x2, x1,−sT ) . (2.22)

The tri-gluon correlation function T (f,d)
G,F (x1, x2) is also real and symmetric in the exchange of

x1 and x2.

For later convenience, we also define the diagonal correlation functions Tq,F (x, x) and

T
(f,d)
G,F (x, x) as

Tq,F (x, x) =

∫
dx′

[
2π δ(x′ − x)

]
Tq,F (x, x′) = 2π Tq,F (x, x) ,

T
(f,d)
G,F (x, x) =

∫
dx′

[
2π δ(x′ − x)

] (1

x

)
T (f,d)
G,F (x, x′) = 2π

T (f,d)
G,F (x, x)

x
. (2.23)
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Notice that the new tri-gluon correlation function, TG,F (x, x′), is symmetric in the exchange

of x and x′, while a direct generalization of the diagonal tri-gluon correlation function in

Eq. (2.23), TG,F (x, x′) ≡ 2π TG,F (x, x′)/x is not symmetric in exchanging x and x′.

In addition to the gluonic pole contribution, the SSA could also be generated by the

fermionic pole of partonic hard scattering [17, 26]. The fermionic pole contribution at twist-3

is proportional to the off-diagonal part of the correlation functions Tq,F and TG,F , as well as a

new set of twist-3 correlation functions which vanishes when x2 = x1 [17, 28]. To construct this

new set of twist-3 correlation functions, we introduce two new twist-3 correlation functions,

T̃∆q,F,σ(x1, x2, sT ) ≡
∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

×〈P, sT |ψq(0)
γ+γ5

2

[
i F +

σ (y−2 )
]
ψq(y

−
1 )|P, sT 〉 , (2.24)

T̃ (f,d)
∆G,F,σ(x1, x2, sT ) ≡

∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

1

P+

×〈P, sT |F+ρ(0)
[
i F +

σ (y−2 )
]
F+λ(y−1 )|P, sT 〉 (iǫ⊥ρλ) , (2.25)

where the antisymmetric tensor ǫ⊥ρλ = ǫρλ⊥ = −ǫρλnn̄ and subscript “∆q” and “∆G” indi-

cate that the field strength operator is inserted in the middle of the bi-local field operators

that define the twist-2 quark helicity distribution ∆q and the gluon helicity distribution ∆G,

respectively. Similar to Eq. (2.17), the reality property of these two new twist-3 correlation

functions can be expressed as,

T̃∆q,F,σ(x1, x2, sT )∗ = −T̃∆q,F,σ(x2, x1, sT ) ,

T̃ (f,d)
∆G,F,σ(x1, x2, sT )∗ = −T̃ (f,d)

∆G,F,σ(x2, x1, sT ) . (2.26)

That is, the real part of these two new functions are antisymmetric in the exchange of x1 and

x2, while the imaginary part is symmetric. This reality property is different from that of the
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functions Tq,F,σ and TG,F,σ. Similarly, from the parity and time-reversal invariance, we find,

T̃∆q,F,σ(x1, x2, sT ) = T̃∆q,F,σ(x2, x1,−sT ) ,

T̃ (f,d)
∆G,F,σ(x1, x2, sT ) = T̃ (f,d)

∆G,F,σ(x2, x1,−sT ) . (2.27)

That is, these two functions are symmetric when the transverse spin vector sT reverses its

direction.

From the definition of these new correlation functions in Eqs. (2.24) and (2.25) and their

properties in Eqs. (2.26) and (2.27), we construct the second set of twist-3 quark-gluon and

tri-gluon correlation functions that could also contribute to the SSAs. The new quark-gluon

correlation function is defined as,

T∆q,F (x1, x2) ≡ sσT
1

2

[
T̃∆q,F,σ(x1, x2, sT ) − T̃∆q,F,σ(x1, x2,−sT )

]

= sσT
1

2

[
T̃∆q,F,σ(x1, x2, sT ) − T̃∆q,F,σ(x2, x1, sT )

]

≡ 1

2

[
T̃∆q,F (x1, x2, sT ) − T̃∆q,F (x2, x1, sT )

]

= Re
[
T̃∆q,F (x1, x2, sT )

]
, (2.28)

where the spin-dependent new twist-3 quark-gluon correlation function is defined as

T̃∆q,F (x1, x2, sT ) ≡
∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

×〈P, sT |ψq(0)
γ+γ5

2

[
i sσT F

+
σ (y−2 )

]
ψq(y

−
1 )|P, sT 〉 ,

= −T̃∆q,F (x2, x1,−sT ) (2.29)

which was also discussed in Ref. [28]. As shown in Eq. (2.28), this new twist-3 quark-gluon

correlation function T∆q,F (x1, x2) that is relevant to the SSA is also real, but, is antisymmetric
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in the exchange of x1 and x2. Similarly, the new tri-gluon correlation function is defined as,

T (f,d)
∆G,F (x1, x2) ≡ sσT

1

2

[
T̃ (f,d)

∆G,F,σ(x1, x2, sT ) − T̃ (f,d)
∆G,F,σ(x1, x2,−sT )

]

= sσT
1

2

[
T̃ (f,d)

∆G,F,σ(x1, x2, sT ) − T̃ (f,d)
∆G,F,σ(x2, x1, sT )

]

≡ 1

2

[
T̃ (f,d)

∆G,F (x1, x2, sT ) − T̃ (f,d)
∆G,F (x2, x1, sT )

]

= Re
[
T̃ (f,d)

∆G,F (x1, x2, sT )
]
, (2.30)

where the spin-dependent new twist-3 tri-gluon correlation function is defined as

T̃ (f,d)
∆G,F (x1, x2, sT ) ≡

∫
dy−1 dy

−
2

(2π)2
eix1P+y−1 ei(x2−x1)P+y−2

1

P+

×〈P, sT |F+ρ(0)
[
i sσT F

+
σ (y−2 )

]
F+λ(y−1 )|P, sT 〉 (iǫ⊥ρλ)

= −T̃ (f,d)
∆G,F (x2, x1,−sT ). (2.31)

From Eq. (2.30), it is clear that the new twist-3 tri-gluon correlation function T (f,d)
∆G,F (x1, x2) is

also real, but, antisymmetric in the exchange of x1 and x2. Consequently, the diagonal part of

these two new correlation functions vanishes,

T∆q,F (x, x) ≡
∫
dx′

[
2π δ(x′ − x)

]
T∆q,F (x, x′) = 0 ,

T
(f,d)
∆G,F (x, x) ≡

∫
dx′

[
2π δ(x′ − x)

] (1

x

)
T (f,d)

∆G,F (x, x′) = 0 . (2.32)

That is, this set of twist-3 correlation functions does not directly generate soft gluonic pole

contribution to the SSAs [17, 28].

For phenomenological studies, conventionally we use the following definition for the corre-
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lation functions

Tq,F (x, x′) = 2π Tq,F (x, x′)

TG,F (x, x′) = 2π
TG,F (x, x′)

x

T∆q,F (x, x′) = 2π T∆q,F (x, x′)

T
(f,d)
∆G,F (x, x′) = 2π

T∆G,F (x, x′)

x
(2.33)

To complete this section, we summarize the key properties of these twist-3 correlation

functions that are responsible for generating the SSAs from the unpinched gluonic and fermionic

poles of partonic scattering in the QCD collinear factorization approach. From their operator

structure, these correlation functions can be grouped into two sets. One set is for the Tq,F and

T (f,d)
G,F , and the other includes T∆q,F and T (f,d)

∆G,F . The operators for the first set of correlation

functions, Tq,F and T (f,d)
G,F , are constructed from the bi-local operators that define the twist-2

spin-averaged PDFs with an insertion of the following operator,

∫
dy−2
2π

eix2P+y−2
[
ǫsT σnn̄ F +

σ (y−2 )
]

= i

∫
dy−2
2π

eix2P+y−2
[
i ǫρσ⊥ sTρ F

+
σ (y−2 )

]
; (2.34)

and the operators for the second set of correlation functions, T∆q,F and T (f,d)
∆G,F , are constructed

from the bi-local operators that define the twist-2 spin-dependent parton helicity distributions

with an insertion of a slightly different operator,

i

∫
dy−2
2π

eix2P+y−2
[
sσT F

+
σ (y−2 )

]
. (2.35)

The iǫρσ⊥ in Eq. (2.34) takes care of the parity invariance of the spin asymmetry for the first

set of correlation functions, while the same property was taken care of naturally by the γ5 or

iǫ⊥ρλ in the operator definition of the spin-dependent helicity distributions. The extra “i” in

both Eq. (2.34) and Eq. (2.35) provides the necessary phase for the SSAs and is a result of

taking the contribution from the gluonic or fermionic pole of partonic scattering [17].
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CHAPTER 3. Tri-gluon correlations and single transverse spin

asymmetry in open charm production

We have identified four twist-3 correlation functions which are responsible for the single

transverse spin asymmetry: Tq,F , T
(f,d)
G,F , T∆q,F , and T

(f,d)
∆G,F . The diagonal part of T∆q,F and

T
(f,d)
∆G,F vanish, thus their contribution to the SSAs might be small. The contribution of Tq,F to

the SSAs has been studied extensively, which represents the role quarks play in generating the

SSAs. The tri-gluon correlation functions T
(f,d)
G,F represents the role gluon plays in generating

the SSAs. Since the gluon is an essential component of QCD dynamics and has played a

dominant role in many high energy hadronic scattering processes. To fully understand the

physics of the SSAs requires us to investigate the role of gluons in generating the SSAs. In

this chapter, we study the contribution of T
(f,d)
G,F to the SSAs, ie, the role of gluons in the QCD

collinear factorization approach. We calculate the SSAs for open charm production in both

Semi-Inclusive lepton-hadron Deep Inelastic Scattering (SIDIS) and hadronic collisions. We

find that the asymmetry is sensitive to the tri-gluon correlation functions and could be used

to extract the tri-gluon correlations.

3.1 SSAs for open charm production in SIDIS

In this section, we present our calculation of the SSAs for open charm production in SIDIS.

We first introduce the relevant kinematics of open charm production in SIDIS and present the

formula for the unpolarized cross section. We then derive the twist-three formula for the SSA

in QCD collinear factorization approach and express the asymmetry in terms of the tri-gluon

correlation functions, T
(f,d)
G,F (x, x).
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3.1.1 Kinematics

We start this subsection by specifying our notation and kinematics of SIDIS. We consider

the scattering processes of an unpolarized lepton, e, on a polarized hadron, p,

e(ℓ) + p(P, sT ) → e(ℓ′) + h(Ph) +X, (3.1)

where sT is the transverse spin vector defined below, h represents the observed D meson with

momentum Ph and mass mh. We work in the approximation of one-photon exchange, and

define the virtual photon momentum q = ℓ − ℓ′ and its invariant mass Q2 = −q2. The usual

SIDIS variables are defined as:

Sep = (P + ℓ)2, xB =
Q2

2P · q , y =
P · q
P · ℓ =

Q2

xBSep
, zh =

P · Ph
P · q . (3.2)

It is also convenient to introduce the “transverse” component of the virtual photon momentum,

q, as

qµt = qµ − q · Ph
P · Ph

Pµ − q · P
P · Ph

Pµh , (3.3)

which is orthogonal to both P and Ph. q
µ
t is a space-like vector, we thus define

~q 2
⊥ ≡ −qµt qtµ = Q2

[
1 +

1

xB

q · P
P · Ph

]
− m2

h

z2
h

. (3.4)

To completely specify the kinematics, we will work in the so-called hadron frame [30], where

the virtual photon and the polarized proton are taken to have only one spatial component that

is in the z-direction:

Pµ = P+n̄µ, qµ = −xBP+n̄µ +
Q2

2xBP+
nµ, (3.5)
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where n̄µ and nµ are given in Eq. (2.7). The momentum of final-state D-meson can be written

as

Pµh =
xBP

+

zhQ2
m2
h⊥n̄

µ +
zhQ

2

2xBP+
nµ + Pµh⊥, (3.6)

where m2
h⊥ = m2

h + P 2
h⊥ with Ph⊥ =

√
~P 2
h⊥. From Eq. (3.4) one can show that q⊥ ≡

√
~q 2
⊥ =

Ph⊥/zh in this hadron frame, independent of mass mh.

In this hadron frame, usually, one chooses the coordinate system such that the virtual

photon has a vanishing energy component, corresponding to P+ = Q/
√

2xB , and Ph lies in

the xz-plane (known as the hadron plane), as shown in Fig. 3.1. The lepton momenta, ℓ and

ℓ′ define the lepton plane and can be expressed in terms of variables ψ and φ as follows [30],

ℓµ =
Q

2
(coshψ, sinhψ cosφ, sinhψ sinφ,−1) ,

ℓ′µ =
Q

2
(coshψ, sinhψ cosφ, sinhψ sinφ,+1) , (3.7)

where φ is the azimuthal angle between the hadron and lepton plane, as indicated in Fig. 3.1,

and

coshψ =
2xBSep
Q2

− 1 =
2

y
− 1. (3.8)

We parametrize the transverse spin vector of the initial proton sT as

sT = (0, cos φs, sinφs, 0), (3.9)

where φs is the azimuthal angle of sT measured from the hadron plane, as shown in Fig. 3.1.

If one uses the lepton plane as the reference to define the azimuthal angle of sT as ΦS , and

that of hadron plane as Φh, one has the relation φs = ΦS − Φh and φ = −Φh.

To be more precise, the single transverse-spin asymmetry is defined by the ratio of the
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ℓ

ℓ′

hadron plane

φs
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z
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φ
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q P

Figure 3.1 Kinematics of the SIDIS process in hadron frame.

following deferential cross sections as

AN =
d∆σ(sT )

dxBdydzhdP
2
h⊥dφ

/
dσ

dxBdydzhdP
2
h⊥dφ

. (3.10)

In the following subsections, we will first review the unpolarized cross section at leading order,

and then derive the single-transverse polarized cross sections, ∆σ(sT ).

3.1.2 Unpolarized cross section

The unpolarized differential SIDIS cross section may be calculated from the formula

dσ

dxBdydzhdP
2
h⊥dφ

=
πα2

emy

Q4
Lµν(ℓ, q)W

µν(P, q, Ph), (3.11)

where Lµν and W µν are the leptonic and hadronic tensors, respectively. The leptonic tensor

is given by

Lµν(ℓ, q) = 2
(
ℓµℓ

′
ν + ℓ′νℓµ − gµνQ

2/2
)
. (3.12)

The hadronic tensor has the following expression in QCD:

W µν(P, q, Ph) =
1

4zh

∑

X

∫
d4ξ

(2π)4
eiq·ξ〈P |Jµ(ξ)|X Ph〉〈X Ph|Jν(0)|P 〉, (3.13)
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where Jµ is the quark electromagnetic current and X represents all other final-state hadrons

other than the observed open charm meson h.

The hadronic tensor can be decomposed in terms of five parity and current conserving

tensors Vµνi [30]:

W µν =
5∑

i=1

Vµνi Wi, (3.14)

where the Wi are structure functions which may be projected out from W µν by Wi = WρσṼρσi ,

with the corresponding inverse tensors Ṽi. Both Vi and Ṽi can be constructed from four

orthonormal basis vectors:

T µ =
1

Q
(qµ + 2xBP

µ) ,

Xµ =
1

q⊥

[
Pµh
zh

− qµ −
(

1 +
q2⊥ +m2

h/z
2
h

Q2

)
xBP

µ

]
,

Y µ = ǫµνρσZνXρTσ,

Zµ = −q
µ

Q
, (3.15)

with normalization T 2 = 1 and X2 = Y 2 = Z2 = −1, which are reduced to those in [30] when

mh = 0. The tensor V5 does not contribute to the cross section when it is contracted with a

symmetric Lµν , the other four tensors and their inverse are given as [30]:

Vµν1 = XµXν + Y µY ν , Vµν2 = gµν + ZµZν,

Vµν3 = T µXν + T νXµ, Vµν4 = XµXν − Y µY ν , (3.16)

Ṽµν1 =
1

2
(2T µT ν +XµXν + Y µY ν) , Ṽµν2 = T µT ν ,

Ṽµν3 = −1

2
(T µXν + T νXµ) , Ṽµν4 =

1

2
(XµXν − Y µY ν) . (3.17)

The contraction of Lµν and Vµνi leads to various angular distributions. Let Ai = LµνVµνi /Q2,
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we have

A1 = 1 + cosh2 ψ, A2 = −2, A3 = − cosφ sinh 2ψ, A4 = cos 2φ sinh2 ψ. (3.18)

We can then write the cross section in Eq. (3.11) as

dσ

dxBdydzhdP
2
h⊥dφ

=
πα2

emy

Q2

4∑

i=1

AiWi. (3.19)

At large Ph⊥ ∼ Q, the collinear factorization is expected to be valid, and Wi can be

factorized into a convolution of the parton distribution function, the fragmentation function

for the produced D meson, and a short-distance partonic hard part. The lowest-order (LO)

contribution to the partonic hard part comes from the photon-gluon fusion subprocess γ∗+g →

Q(pc) + Q̄(pc̄), see Fig. 3.2, which gives the leading order cross section as

dσ

dxBdydzhdP
2
h⊥dφ

= σ0

∫ 1

xmin

dx

x

∫
dz

z
G(x)D(z) δ

(
P 2
h⊥

z2
h

− (1 − x̂)(1 − ẑ)

x̂ẑ
Q2 + ẑ2m2

c

)

×
(

1

2

) 4∑

i=1

AiŴi, (3.20)

where σ0 = e2cα
2
emαsy/(8πz

2
hQ

2), x̂ = xB/x, ẑ = zh/z, and ec and mc are the fractional charge

and mass of the charm quark, respectively. The P 2
h⊥/z

2
h in the δ-function could be replaced by

q2⊥, and the 1/2 is the color factor. In Eq. (3.20), G(x) is the unpolarized gluon distribution

X

Q

e
e

P

_
Q

Figure 3.2 Leading order contribution to the partonic hard part comes

from the photon-gluon fusion channel.

function with gluon momentum fraction x, and D(z) is the fragmentation function for the
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charm quark to become a D meson with z = P ·Ph/P ·pc. We have suppressed the dependence

on the factorization and renormalization scales for simplicity. We used Ph⊥ ≈ zpc⊥ inside the

δ-function, which fixes the z integration. The lower limit of x integration xmin is given by:

xmin =





xB

[
1 +

P 2
h⊥+m2

c

zh(1−zh)Q2

]
, if zh +

√
z2
h +

P 2
h⊥
m2

c
≥ 1;

xB

[
1 + 2m2

c

Q2

(
1 +

√
1 +

P 2
h⊥

z2
h
m2

c

)]
, if zh +

√
z2
h +

P 2
h⊥
m2

c
≤ 1.

(3.21)

The short-distance parts Ŵi are calculated from the photon-gluon scattering and are given by

Ŵ1 = 2

[
û

t̂
+
t̂

û
− 2ŝQ2

t̂û
+

4x̂2ŝ

Q2

]

+4m2
c

[
Q2 − 2t̂

t̂2
+
Q2 − 2û

û2
− 2x̂2

Q2

(
û

t̂
+
t̂

û
+ 2

)]
− 8m4

c

[
1

t̂
+

1

û

]2

,

Ŵ2 =
16x̂2

Q2

[
ŝ−m2

c

(
û

t̂
+
t̂

û
+ 2

)]
,

Ŵ3 = 4x̂ẑ
q⊥
Q

(û− t̂)

[
ŝ−Q2

t̂û
− 2m2

c

(
1

t̂
+

1

û

)2
]
,

Ŵ4 = 8ẑ2q2⊥

[
Q2

t̂û
+m2

c

(
1

t̂
+

1

û

)2
]
, (3.22)

where ŝ, t̂, û are defined at the partonic level as

ŝ ≡ (xP + q)2 =
1 − x̂

x̂
Q2,

t̂ ≡ (pc − q)2 −m2
c = −1 − ẑ

x̂
Q2,

û ≡ (xP − pc)
2 −m2

c = − ẑ
x̂
Q2 , (3.23)

which are different from some definitions used in the literature. We found that this definition

makes the expression of Ŵi for massive quark production simpler. Taking mc = 0 in Eqs. (3.22)

and (3.23), one recovers the results for the production of massless quark derived in [28, 31].
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3.1.3 Twist-three polarized cross section

We now proceed to derive the single transverse-spin dependent cross section by applying

the method [16, 17, 27] reviewed in chapter 2. When both physically observed scales Q,Ph⊥ ≫

ΛQCD, the spin-dependent cross section for D-meson production is expected to be factorized

in terms of twist-three transverse-spin dependent tri-gluon correlation function [18],

d∆σ(sT ) ∝ 1

2Sep

∫
dzD(z)

∫
dx1dx2T̃

(f,d)
G,F (x1, x2) iǫ

ρsTnn̄ lim
k⊥→0

∂

∂kρ⊥
H(x1, x2, k⊥), (3.24)

where 1/2Sep is the flux factor and

T̃
(f,d)
G,F (x1, x2) =

∫
P+dy−1 dy

−
2

2π
eix1P+y−1 +i(x2−x1)P+y−2

×dαβ〈P, sT |Aα(0)
[
ǫsTσnn̄F +

σ (y−2 )
]
Aβ(y−1 )|P, sT 〉, (3.25)

where dαβ = −gαβ + n̄αnβ + n̄βnα. T̃
(f,d)
G,F (x1, x2) is related to the tri-gluon correlation function

through T
(f,d)
G,F (x, x) = xT̃

(f,d)
G,F (x, x). Since T̃

(f,d)
G,F (x1, x2) is real, we need an imaginary part of

the hard-scattering function H(x1, x2, k⊥) to contract with iǫρsTnn̄ in order to obtain a real

∆σ(sT ). This imaginary part comes from the interference between a real part of scattering

amplitude with a single gluon initial state and an imaginary part of the partonic scattering

amplitude with an extra gluon, see Fig. 3.3. Technically, the imaginary part, or the phase, “i”,

arises when the virtual momentum integral of the extra gluon is evaluated by the residue of

an unpinched pole from a propagator in the amplitude with an extra gluon. Such propagator

is indicated by the one marked with a short bar in the diagrams in Fig. 3.4.

Q

P

e

Q
_

Figure 3.3 A typical diagram that gives a non-vanishing contribution to

the SSA.
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There are a total of eight partonic diagrams contributing to the twist-three polarized cross

sections, ∆σ(sT ). Four of them are shown in Fig. 3.4, and the other four are obtained by

attaching the extra gluon in the same way on the right side of the final-state cut. When the

extra gluon is attached to the left side of the final-state cut, as shown in Fig. 3.4, the phase

from the propagator marked by the bar arises effectively as

1

(pc − (x2 − x1)P − k⊥)2 −m2
c + iǫ

=
1

2P · pc
1

x1 − x2 + v1 · k⊥ + iǫ
+ O(k2

⊥)

→ −iπ
2P · pc

δ(x1 − x2 + v1 · k⊥), (3.26)

to fix the virtual loop momentum fraction x1 = x2 − v1 · k⊥ with vµ1 = −2pµc /2P · pc. On the

acb

P
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+
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+
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+
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-
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+

x
1 2x

P( +) k

Figure 3.4 Feynman diagrams that give the twist-three contribution to the

spin-dependent cross section. The short bar indicates the prop-

agator that produces the pole. The letters, a, b and c in Fig. (a),

represent the color of the initial-state gluons.

other hand, the on-shell condition associated with the unobserved anti-charm quark fixes the

momentum fraction of the active initial-state gluon as

δ(p2
c̄ −m2

c) = δ
(
(x2P + k⊥ + q − pc)

2 −m2
c

)

=
1

2P · (q − pc)
δ(x2 − x− v2 · k⊥), (3.27)
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where terms at O(k2
⊥) and higher are neglected and

x = −(q − pc)
2 −m2

c

2P · (q − pc)
, vµ2 =

2pµc
2P · (q − pc)

. (3.28)

When the extra gluon is attached to the right hand side of the cut, the phase arises as

1

(pc + (x2 − x1)P + k⊥)2 −m2
c − iǫ

=
1

2P · pc
1

x2 − x1 − v1 · k⊥ − iǫ
+ O(k2

⊥)

→ iπ

2P · pc
δ(x2 − x1 − v1 · k⊥), (3.29)

and the on-shell condition of the unobserved anti-charm quark gives

δ(p2
c̄ −m2

c) =
1

2P · (q − pc)
δ(x1 − x), (3.30)

which has no k⊥-dependence.

Applying these delta functions in Eq. (3.24), we have the following general expression:

lim
k⊥→0

∂

∂kρ⊥

∫
dx1

∫
dx2 T̃

(f,d)
G,F (x1, x2) [HL(x1, x2, k⊥)δ(x1 − x2 + v1 · k⊥)δ(x2 − x− v2 · k⊥)

−HR(x1, x2, k⊥)δ(x2 − x1 − v1 · k⊥)δ(x1 − x)]

= (v2 − v1)
ρHL(x, x, 0)

d

dx


T

(f,d)
G,F (x, x)

x


+

T
(f,d)
G,F (x, x)

x

× lim
k⊥→0

∂

∂kρ⊥
[HL(x+ (v2 − v1) · k⊥, x+ v2 · k⊥, k⊥) −HR(x, x+ v1 · k⊥, k⊥)] , (3.31)

where we have already used the facts thatHL(x, x, 0) = HR(x, x, 0) and T
(f,d)
G,F (x, x) = xT̃

(f,d)
G,F (x, x).

The fact that Eq. (3.31) depends only on the diagonal part of the tri-gluon correlation function,

T
(f,d)
G,F (x1, x2), with x1 = x2 = x is a consequence of that the photon-gluon fusion subprocess

at this order has only the so-called “soft-pole” contribution to the SSA [17, 32]. Therefore,

the measurement of the SSA in D-meson production in SIDIS is a direct measurement of the

tri-gluon correlation function, T
(f,d)
G,F (x, x).
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In terms of ŝ, t̂, û defined in the previous subsection, we have

vµ1 =
2x

û
pµc , vµ2 = −2x

t̂
pµc , (v2 − v1)

µ = −2x

t̂

(
1 +

t̂

û

)
pµc . (3.32)

Using Eqs. (3.24), (3.31), and adding the contributions from the eight diagrams together, we

derive the fully differential single-transverse-spin-dependent cross section for D meson produc-

tion:

d∆σ(sT )

dxBdydzhdP
2
h⊥dφ

= σ0

∫ 1

xmin

dx

x

∫
dz

z
D(z)δ

(
P 2
h⊥

z2
h

− (1 − x̂)(1 − ẑ)

x̂ẑ
Q2 + ẑ2m2

c

)

×
(

1

4

)[
ǫPhsTnn̄

(√
4παs

zt̂

)(
1 +

t̂

û

)]

×
∑

j=f,d

4∑

i=1

Ai


−x2 d

dx


T

(j)
G,F (x, x)

x


 Ŵi + T

(j)
G,F (x, x)N̂i


 (3.33)

Here 1/4 is the color factor, Ŵi are given in Eq. (3.22), and the hard parts for the “non-

derivative” term, N̂i, are given by

N̂1 = 4

[
2m2

c −Q2

t̂û
+

6x̂2

Q2

] [(
ŝ−Q2

)
− 2m2

c

(
û

t̂
+
t̂

û
+ 2

)]
,

N̂2 =
16x̂2

Q2

[(
ŝ−Q2

)
− 2m2

c

(
û

t̂
+
t̂

û
+ 2

)]
,

N̂3 =
2Q

ẑq⊥

(
û− t̂

) [(4ẑ2q2⊥
t̂û

− 1

Q2 + ŝ

)(
2m2

c

(
1

t̂
+

1

û

)
− Q2 − ŝ

Q2 + ŝ

)
− 2ẑq2⊥

]
,

N̂4 = 8

[
2ẑq2⊥ − t̂û

Q2 + ŝ

][
Q2

t̂û
+m2

c

(
1

t̂
+

1

û

)2
]
. (3.34)

Eq. (3.33) is our main result for the leading order twist-three T
(f,d)
G,F (x, x) contribution to the

fully differential polarized cross section, ∆σ(sT ), of D-meson production in SIDIS. The single

transverse-spin asymmetry for the D-meson production in SIDIS is obtained by substituting

Eqs. (3.20) and (3.33) into Eq. (3.10).

Similarly, by attaching the extra gluon to the final anti-charm quark instead of charm quark,

we could calculate the SSAs for producing a D̄ meson, which is fragmented from an anti-charm

quark. We find that attaching the gluon to the anti-charm quark leads to an opposite phase
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compared to the attachment to the charm quark, thus the partonic hard parts change sign.

On the other hand, the color factor associated with T
(f)
G,F (x, x) will also change sign due to

the antisymmetric nature of the color structure constant fabc. But for the symmetric one

dabc, the color factor remains the same. The combined effect is that the SSA for D̄ meson

has the same functional form as that for the D meson production except that the sum of the

trigluon correlation functions, T
(f)
G,F (x, x)+T

(d)
G,F (x, x) in Eq. (3.33) is replaced by the difference,

T
(f)
G,F (x, x) − T

(d)
G,F (x, x). That is, the D and D̄ meson production should have the same SSAs

if T
(d)
G,F (x, x) = 0, but, with an opposite sign if T

(f)
G,F (x, x) = 0. We could gain valuable

information on both tri-gluon correlation functions by comparing the SSAs for producing D

and D̄-mesons in SIDIS.

Similar to the twist-three contributions to the SSAs generated by the fermionic quark-gluon

correlation function, Tq,F (x, x), the gluonic twist-three contribution to the SSA of D-meson

production in Eq. (3.33) has both the “derivative” and “non-derivative” terms, a unique feature

of twist-three contribution. It was found that the fermionic “non-derivative” and “derivative”

terms can be combined into a simple form Tq,F (x, x) − xT ′
q,F (x, x) [27, 29]. Realizing that

−x2 d

dx


T

(f,d)
G,F (x, x)

x


 = T

(f,d)
G,F (x, x) − x

d

dx
T

(f,d)
G,F (x, x), (3.35)

we found that the first term in Eq. (3.33) follows the same simple combination for tri-gluon

correlation function. However, the terms ∝ N̂i introduce the violation of this simple form.

3.2 SSAs for open charm production in hadronic collisions

Studying SSAs for open charm in SIDIS helps us to extract tri-gluon correlation functions.

However, it does not provide a test of the QCD collinear factorization approach to the SSAs.

In order to better test this approach, we need to test the universality of these tri-gluon cor-

relation functions. For this purpose, we also study the SSAs for open charm production in

hadronic collisions. We calculate the SSAs in the same approach, and demonstrate that the

SSAs depend on the same tri-gluon correlations. Comparing SSAs for physical cross sections



37

involving the same non-perturbative twist-three correlation functions but different partonic

hard subprocesses will provide stringent tests of QCD dynamics and the twist-3 factorization

we use.

We consider inclusive single charm meson production in a scattering process between a

polarized proton A of momentum P and transverse spin vector sT and an unpolarized proton

B of momentum P ′,

A(P, sT ) +B(P ′) → h(Ph) +X, (3.36)

where h represents the observed open charm (D or D̄) meson with momentum Ph and mass

mh. The single transverse-spin asymmetry AN can be written as

AN = EPh

d∆σ(Ph, sT )

d3Ph

/
EPh

dσ(Ph)

d3Ph
, (3.37)

for the single hadron differential cross sections.

The spin-averaged differential cross section for D meson production at large transverse

momentum, Ph⊥ > mh, can be expressed in the following factorized form [12]:

EPh

dσ

d3Ph
=

α2
s

S

∑

a,b

∫
dz

z2
Dc→h(z)

∫
dx′

x′
fb/B(x′)

∫
dx

x
fa/A(x)

×δ
(
s̃+ t̃+ ũ

)
HU
ab→c(s̃, t̃, ũ), (3.38)

where
∑

a,b represents the sum over all light parton flavors and S = (P + P ′)2 is the total

collision energy squared. fa/A(x) and fb/B(x′) are the standard parton distribution functions,

and Dc→h(z) is the fragmentation function for a charm quark c fragmenting into a D meson.

We have neglected all dependence on the factorization and renormalization scales in (3.38).

In Eq. (3.38), HU
ab→c is a short-distance hard part for two partons of flavor a and b to

produce a charm quark c. At the lowest order, it gets contributions from the light quark-

antiquark annihilation and gluon-gluon fusion subprocesses, as sketched in Fig. 3.5, and is
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given by

HU
qq̄→c =

CF
NC

[
t̃2 + ũ2 + 2m2

c s̃

s̃2

]
,

HU
gg→c =

1

2NC

[
1

t̃ũ
− NC

CF

1

s̃2

] [
t̃2 + ũ2 + 4m2

c s̃−
4m4

c s̃
2

t̃ũ

]
, (3.39)

where s̃, t̃, ũ are defined at the partonic level as

s̃ = (xP + x′P ′)2, t̃ = (xP − pc)
2 −m2

c , ũ = (x′P ′ − pc)
2 −m2

c , (3.40)

with pc and mc the momentum and mass of the charm quark that fragments into the D meson,

respectively.

(a) (b)

Figure 3.5 Lowest order Feynman diagram for light quark-antiquark anni-

hilation (a) and for gluon-gluon fusion to a pair of heavy quarks.

The transverse spin-dependent cross section now gets contributions from both the qq̄ an-

nihilation and gg fusion channels. Following the same method [16, 17, 27], the cross section in

the qq̄ annihilation channel can be expressed in terms of the twist-3 quark-gluon correlation

function Tq,F (x1, x2),

d∆σ(sT ) ∝ 1

2S

∑

q

∫
dzDc→h(z)

∫
dx′

x′
fq̄/B(x′)

∫
dx1dx2Tq,F (x1, x2)

× iǫρsTnn̄ lim
k⊥→0

∂

∂kρ⊥
Hqq̄→c(x1, x2, k⊥), (3.41)

with Tq,F (x1, x2) given in chapter 2.

Again, the strong interaction phase needed to generate a non-vanishing SSA comes from

the interference between a real part of the scattering amplitude and an imaginary part of the
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partonic scattering amplitude with an extra gluon, as shown in Fig. 3.6. The propagator which

provides the unpinched poles is indicated by the short bars in the diagrams in Fig. 3.6, just as

in the last section. The phase can arise from the attachment of the extra gluon to either the

initial-state parton, or the final-state charm quark, which we will refer to as initial-state and

final-state interactions, respectively.

(a) (b) (c) (d)

Figure 3.6 Feynman diagrams that give the twist-3 contribution to the

spin-dependent cross section in the quark-antiquark annihila-

tion channel: initial-state interaction (a), (b), and final-state

interaction (c), (d). The short bar indicates the propagator

that produces the unpinched pole.

At lowest order, there are four diagrams contributing to the twist-3 polarized cross section

in the quark-antiquark annihilation channel, as sketched in Fig. 3.6, where the blob is given

by the diagram in Fig. 3.5(a). Using the same techniques as in last section, we have

EPh

d∆σ

d3Ph

∣∣∣∣
qq̄→cc̄

=
α2
s

S

∑

q

∫
dz

z2
Dc→h(z)

∫
dx′

x′
fq̄/B(x′)

∫
dx

x

×
√

4παs

(
ǫPhsTnn̄

zũ

)
δ
(
s̃+ t̃+ ũ

)

×
[(
Tq,F (x, x) − x

d

dx
Tq,F (x, x)

)
Hqq̄→c(s̃, t̃, ũ)

+Tq,F (x, x)Hqq̄→c(s̃, t̃, ũ)

]
, (3.42)

where Hqq̄→c can be written as

Hqq̄→c = HI
qq̄→c +HF

qq̄→c

(
1 +

ũ

t̃

)
, (3.43)
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and likewise for Hqq̄→c, and where the corresponding hard parts are given by

HI
qq̄→c =

1

2N2
C

[
t̃2 + ũ2 + 2m2

c s̃

s̃2

]
,

HF
qq̄→c =

N2
C − 2

2N2
C

[
t̃2 + ũ2 + 2m2

c s̃

s̃2

]
, (3.44)

HI
qq̄→c =

1

2N2
C

[
2m2

c

s̃

]
,

HF
qq̄→c =

N2
C − 2

2N2
C

[
2m2

c

s̃

]
. (3.45)

Note that HI
qq̄→c and HF

qq̄→c are proportional to the charm quark mass. As a check of our

results, when m2
c → 0 the spin-dependent cross section in Eq. (3.42) becomes identical to

the one for pion production through the qq̄ → q′q̄′ channel [27] (if one replaces the D meson

fragmentation function by the pion fragmentation function).

The spin-dependent cross section for D̄ meson production can be calculated in the same

way. The Feynman diagrams are the same as those for D meson production in Fig. 3.6, except

that the extra gluon should be attached to the anti-charm c̄ quark for the final-state interaction.

The cross section for D̄ meson production has the same factorized form as that in Eq. (3.42),

with the fragmentation function Dc→D(z) replaced by Dc̄→D̄(z), and the hard parts given by

HI
qq̄→c̄ =

1

2N2
C

[
t̃2 + ũ2 + 2m2

c s̃

s̃2

]
,

HF
qq̄→c̄ =

1

N2
C

[
t̃2 + ũ2 + 2m2

c s̃

s̃2

]
, (3.46)

HI
qq̄→c̄ =

1

2N2
C

[
2m2

c

s̃

]
,

HF
qq̄→c̄ =

1

N2
C

[
2m2

c

s̃

]
. (3.47)

These short-distance hard parts are consistent with those presented in the calculation of the

SSAs for heavy quark and anti-quark production in hadronic collisions [33]. We note that

the hard parts for q̄q scattering are obtained from those for qq̄ by HI,F
q̄q→c = −HI,F

qq̄→c̄ and

HI,F
q̄q→c̄ = −HI,F

qq̄→c, and likewise for the HI,F .

Similar to Eq. (3.41), the spin-dependent cross section for the gg fusion channel has the
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following factorized form:

d∆σ(sT ) ∝ 1

2S

∫
dzDc→h(z)

∫
dx′

x′
fg/B(x′)

∫
dx1dx2T̃

(f,d)
G,F (x1, x2)

× iǫρsTnn̄ lim
k⊥→0

∂

∂kρ⊥
Hgg→c(x1, x2, k⊥), (3.48)

(a) (b) (c) (d)

Figure 3.7 Feynman diagrams that give the twist-3 contribution to the

spin-dependent cross section in the gluon-gluon fusion channel:

initial-state interaction (a), (b), and final-state interaction (c),

(d). The short bar indicates the propagator that produces the

pole.

To calculate the partonic hard part, Hgg→c, in Eq. (3.48), we need to consider Feynman

diagrams with either initial-state or final-state interactions, as sketched in Fig. 3.7, where the

blob is given by the sum of the three diagrams in Fig. 3.5(b). Hence, each diagram in Fig. 3.7

corresponds to nine diagrams. Instead of four diagrams in Fig. 3.6 for the quark-antiquark

annihilation subprocess, we have a total of 36 diagrams for gluon-gluon fusion. By evaluating

these diagrams, we obtain the contribution to the spin-dependent cross section,

EPh

d∆σ

d3Ph

∣∣∣∣
gg→cc̄

=
α2
s

S

∑

i=f,d

∫
dz

z2
Dc→h(z)

∫
dx′

x′
fg/B(x′)

∫
dx

x

×
√

4παs

(
ǫPhsTnn̄

zũ

)
δ
(
s̃+ t̃+ ũ

)

×
[(
T

(i)
G (x, x) − x

d

dx
T

(i)
G (x, x)

)
H(i)
gg→c(s̃, t̃, ũ)

+T
(i)
G (x, x)H(i)

gg→c(s̃, t̃, ũ)

]
, (3.49)

where the sum,
∑

i=f,d, is over the two correlation functions T
(f)
G,F (x, x) and T

(d)
G,F (x, x). The
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partonic hard part H
(i)
gg→c can be written as

H(i)
gg→c = HI(i)

gg→c +HF (i)
gg→c

(
1 +

ũ

t̃

)
, (3.50)

and likewise for H(i)
gg→c, and we find

HI(f)
gg→c = − 1

8CF

t̃2 + ũ2

t̃ũs̃2

[
t̃2 + ũ2 + 4m2

c s̃−
4m4

c s̃
2

t̃ũ

]
,

HI(d)
gg→c = − 1

8CF

ũ− t̃

t̃ũs̃

[
t̃2 + ũ2 + 4m2

c s̃−
4m4

c s̃
2

t̃ũ

]
, (3.51)

HF (f)
gg→c = HF (d)

gg→c

=

[
NC

4
(
N2
C − 1

) ũ

t̃s̃2
− 1

4NC

(
N2
C − 1

) 1

t̃ũ

][
t̃2 + ũ2 + 4m2

c s̃−
4m4

c s̃
2

t̃ũ

]
, (3.52)

HI(f)
gg→c = − 1

2CF

m2
c

(
t̃2 + ũ2

) (
t̃ũ− 2m2

c s̃
)

s̃t̃2ũ2
,

HI(d)
gg→c = − 1

2CF

m2
c

(
ũ− t̃

) (
t̃ũ− 2m2

c s̃
)

t̃2ũ2
,

HF (f)
gg→c = HF (d)

gg→c = −
[

1

NC(N2
C − 1)

1

ũ2
− NC

N2
C − 1

1

s̃2

]
m2
c s̃(t̃ũ− 2m2

c s̃)

t̃2
. (3.53)

The gluon-gluon subprocess of course also contributes to the cross section for D̄ meson

production. The corresponding partonic hard parts for producing an anti-charm quark are

given by

H
(f)
gg→c̄ = H(f)

gg→c, H
(d)
gg→c̄ = −H(d)

gg→c,

H(f)
gg→c̄ = H(f)

gg→c , H(d)
gg→c̄ = −H(d)

gg→c , (3.54)

where the sign difference of the partonic hard parts for the T
(d)
G,F contribution will be responsible

for the difference of the SSAs for D and D̄ meson production that will be discussed in the

next section. We note that this sign difference can also be observed in the expressions for the

“gluonic pole matrix elements” given in [34].

We point out that the compact dependence of the spin-dependent cross section on the

combinations Tq,F (x, x)− xT ′
q,F (x, x) of the twist-3 correlation functions found in Ref. [27] for
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the “massless” case of pion production in hadronic collisions, is violated for the production

of D (or D̄) mesons by the additional non-derivative terms in Eqs. (3.42) and (3.49). The

violation is caused by the heavy quark mass since the additional terms vanish when mc → 0.

In fact, we observe that the hard parts we have derived satisfy the following relation:

HI,F
ab→c = m2

c

dHI,F
ab→c

dm2
c

, (3.55)

separately for any of the various contributions considered above (and likewise for c̄ production).

This connection is likely a consequence of the “master formula” for twist-3 soft-gluon-pole

contributions derived in [29].

We also note that “soft-fermion pole” contributions [17], for which the pole in the hard-

scattering function is taken in such a way that the initial quark, rather than the initial

gluon, becomes soft, are absent for the qq̄ process at the leading order. This is because

qq̄ annihilation proceeds through an s-channel diagram, whereas soft-fermion poles would

only appear in t-channel diagrams. If they were present, such contributions would involve

the function Tq,F (0, x). For the tri-gluon correlation contribution, terms proportional to

T
(f)
G,F (0, x) and T

(d)
G,F (0, x) are automatically included in our calculations. This is due to the

symmetry of the partonic hard part under interchange of two gluon lines, and to the fact

that field operators commute on the light-cone [19]. This leads to the symmetry properties

TG,F (x, x) = TG,F (0, x) = TG,F (x, 0) [35].

Combining the factorized cross sections in Eqs. (3.42) and (3.49) with the corresponding

partonic hard parts, we have

EPh

d∆σ

d3Ph
= EPh

d∆σ

d3Ph

∣∣∣∣
qq̄→cc̄

+ EPh

d∆σ

d3Ph

∣∣∣∣
gg→cc̄

(3.56)

for the leading-order contribution to the transverse-spin-dependent cross section for D (or D̄)

meson production in hadronic collisions. The corresponding single transverse-spin asymmetry

is obtained by substituting Eqs. (3.38) and (3.56) into Eq. (3.37).
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3.3 Phenomenology

In order to estimate the SSAs for the production of D or D̄ mesons, we need the unknown,

but universal, tri-gluon correlation functions T
(f,d)
G,F (x, x). Similar to the ansatz for quark-

gluon correlation function Tq,F (x, x), which was originally introduced in [16] and found to be

consistent with the latest experimental data [27], we model the tri-gluon correlation function

T
(f,d)
G,F (x, x) as

T
(f)
G,F (x, x) = λf G(x), T

(d)
G,F (x, x) = λdG(x) (3.57)

with G(x) the normal unpolarized gluon distribution function. Because of its non-perturbative

nature, T
(f,d)
G,F (x, x) should be extracted from the experiments and the values and the signs of

λf,d should be fixed by future data. For the following numerical estimate, we assume that

λf,d has the same size as that for quark-gluon correlation function Tq,F (x, x) [16], choose

|λf | = |λd| = λF = 0.07 GeV.

For open charm production in hadronic collisions, we will also need the quark-gluon corre-

lation functions Tq,F (x, x). Recently an updated form for Tq,F (x, x) has been extracted from

experimental data on the SSAs in pp→ πX including both fix-target [21] and RHIC [23] data.

In the following, we will adopt the set referred to as “Fit II” in [27] for Tq,F (x, x).

We will use CTEQ6L parton distribution functions [13], and charm-to-D fragmentation

functions from Ref. [36]. We further assume that Dc̄→D̄(z) = Dc→D(z) for the D̄ meson

fragmentation functions. We choose the factorization scale to be equal to the renormalization

scale throughout, and set µ =
√
Q2 +m2

c + P 2
h⊥ for SIDIS and µ =

√
m2
c + P 2

h⊥ for hadronic

case with mc = 1.3 GeV.

3.3.1 Numerical estimate of the SSAs in SIDIS

In this section we first evaluate the inclusive D-meson production rate at large Ph⊥ in

SIDIS. We then estimate the size of SSA for the D-meson production in SIDIS.

The charm meson’s transverse momentum, Ph⊥, is chosen to be along the x-direction in
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the hadron frame, and therefore, ǫPhsTnn̄ = −Ph⊥ sinφs. The fully differential cross sections in

Eqs. (3.20) and (3.33) can be decomposed in terms of the independent angular distributions

as follows,

dσ

dxBdydzhdP
2
h⊥dφ

= σU0 + σU1 cosφ+ σU2 cos 2φ,

d∆σ

dxBdydzhdP
2
h⊥dφ

= sinφs (∆σ0 + ∆σ1 cosφ+ ∆σ2 cos 2φ) . (3.58)

Before evaluating the SSA, we first estimate the D-meson production rate in the unpolarized

SIDIS by using our LO formula in Eq. (3.20).

In the following plots, we choose two sets of kinematic variables. The first one is Sep = 300

GeV2, xB = 0.01 and Q = 1 GeV, which is close to the COMPASS kinematics. The other is

Sep = 2500 GeV2, xB = 0.01 and Q = 4 GeV, which is more relevant to the planned eRHIC

experiment [37].
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Figure 3.8 The fully differential unpolarized cross section for D0 produc-

tion in SIDIS for COMPASS kinematics. The curves represent:

σU0 (solid), σU1 (dashed), and σU2 (dotted) in Eq. (3.58).

In Fig. 3.8, we show individual coefficients of the angular distribution, σU0 , σU1 , and σU2 , of

the fully differential unpolarized cross section for D0 production in Eq. (3.58) as a function of

both zh and Ph⊥ for the kinematics relevant to COMPASS experiment. It is clear that the

angular dependent pieces σU1 , σ
U
2 ≪ σU0 , and might be too small to be significant. Without
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worrying about the detection efficiency, the D-meson production at Ph⊥ ∼ 1 GeV could be

measurable. Likewise, Fig. 3.9 shows the fully differential unpolarized cross section for D0

production for eRHIC kinematics. With larger Q and Ph⊥, the production rate is smaller but

may still have enough events with a high luminosity.
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Figure 3.9 The fully differential unpolarized cross section for D0 pro-

duction in SIDIS at the future eRHIC. The curves represent:

σU0 (solid), σU1 (dashed), and σU2 (dotted) in Eq. (3.58).

In order to obtain the numerical estimate for the SSAs of D-meson production, we use the

model for tri-gluon correlation function T
(f,d)
G,F (x, x) proposed in Eq. (3.57). Since the SSAs

in SIDIS has relatively simple dependence on the tri-gluon correlation functions, we choose

λf = +0.07 GeV and present in the following the SSAs of D meson production coming from

the contribution of T
(f)
G,F (x, x) only. The full dependence is easily recovered: if the contribution

from T
(d)
G,F (x, x) is also included, the SSAs for D meson will be doubled if T

(d)
G,F = T

(f)
G,F and

vanish if T
(d)
G,F = −T (f)

G,F . However, the situation will be opposite for D̄ meson.

In order to present the SSA and its angular dependence on the φ, the angle between the

hadron plane and the lepton plane, we define the φ-integrated single spin azimuthal asymme-

tries as

〈cos(nφ)〉 =
1

sinφs

∫ 2π
0 dφ cos(nφ) d∆σ(sT )

dxBdydzhdP
2
h⊥dφ∫ 2π

0 dφ dσ
dxBdydzhdP

2
h⊥dφ

, (3.59)
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which gives

〈1〉 =
∆σ0

σU0
, 〈cosφ〉 =

∆σ1

2σU0
, 〈cos 2φ〉 =

∆σ2

2σU0
. (3.60)

In Fig. 3.10 we plot the SSAs as a function of zh (left) and Ph⊥ (right) for the COMPASS

kinematics. The asymmetries, 〈1〉, 〈cos φ〉, and 〈cos 2φ〉, defined in Eq. (3.60), are shown by

the solid, dot-dashed, and dotted curves, respectively. For a comparison between the size

of the “derivative” and the “non-derivative” terms, we also show, by the dashed curves, the

contribution to the SSA, 〈1〉, from the derivative term only. It is clear that the derivative

term dominates over the whole kinematic region. The asymmetries, 〈cosφ〉 and 〈cos 2φ〉, are

too small to be observed experimentally. The SSA, 〈1〉, is of the order of 10%, and could be

measurable at COMPASS experiment.

Fig. 3.10 indicates that the SSA hits a minimum at zh ∼ 0.5 and increases very fast when

zh becomes very large or very small. This is because the SSA, 〈1〉 ∼ 1/(1 − xmin), due to the

derivative of T
(f,d)
G,F (x, x) [16]. From the definition of xmin in Eq. (3.21), the zh(1 − zh) has

a maximum at zh = 0.5. Therefore, xmin increases, equivalently, the SSA increases when zh

becomes either smaller or larger than 0.5. When zh is much further away from the central value

0.5, the xmin becomes so large that the perturbatively calculated asymmetry could increase

sharply, which could signal a breakdown of the twist-three approximation and a need of higher

power corrections. Nevertheless, the increase of the SSA when zh is moving away from the

central value 0.5 has the same physics origin as the observed increase of the SSA as a function

of increasing xF (or rapidity y) in the hadronic pion production [21, 23], and it could be tested

in the COMPASS experiment.

Fig. 3.10 also indicates a monotonic increase of the SSA as a function of Ph⊥. Although we

expect the SSA to fall when Ph⊥ increases, a natural behavior of the twist-three effect in QCD

collinear factorization, the enhancement from the derivative of the T
(f,d)
G,F (x, x) at large x wins

over the suppression from large Ph⊥ due to the limited phase space at COMPASS kinematics.

As we will see below, the decrease of the SSA as the increase of Ph⊥ is clearly seen at the

eRHIC kinematics.
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Figure 3.10 Single-transverse-spin-asymmetries defined in Eq. (3.60) for

D0 production in SIDIS for COMPASS kinematics. The

curves are: solid-〈1〉, dashed-〈1〉 with derivative-term only,

dot-dashed-〈cosφ〉, and dotted-〈cos 2φ〉.

Similarly, we plot the SSAs for D0 production for the eRHIC kinematics in Fig. 3.11.

Due to the higher collision energy, the effective gluon momentum fraction x that dominates

the SSAs is smaller, which leads to a smaller derivative of T
(f,d)
G,F (x, x) and a smaller SSAs.

Similar feature has been seen in the SSA for hadronic pion production when we compare the

data from the fixed-target experiments with that from RHIC experiments. The 5% SSA for

D-meson production at eRHIC could be significant.

The slightly different shape of the SSA as a function of zh is purely a consequence of

the difference in effective range of parton momentum fraction x. That is, the zh-dependence

of the SSA provides a good measurement of the x-dependence of the correlation function,

T
(f,d)
G,F (x, x). On the other hand, the slow falloff of the SSA as a function Ph⊥ is natural due to

the asymptotic λf/Ph⊥ behavior of the twist-3 contribution when Ph⊥ increases. Of course, as

discussed above, the 1/(1 − xmin) dependence of the twist-three formalism compensates some

of the 1/Ph⊥ falloff due to the phase space limit on parton momentum fraction x.
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Figure 3.11 Single-transverse-spin-asymmetries defined in Eq. (3.60)

for D0 production in SIDIS for eRHIC kinematics. The

curves are: solid-〈1〉, dashed-〈1〉 with derivative-term only,

dot-dashed-〈cosφ〉, and dotted-〈cos 2φ〉.

3.3.2 Numerical estimate of the SSAs in hadronic collisions

In this section, we estimate the size of the SSAs for D and D̄ meson production in p↑p

collisions at RHIC at
√
s = 200 GeV.

In order to treat the kinematic charm mass effects in the fragmentation process, we adopt

one of the choices introduced in Ref. [38], which corresponds to setting Ph⊥ = zpc⊥ and

yD = yc ≡ y, where Ph⊥ (pc⊥) and yD (yc) are the transverse momentum and rapidity of the D

meson (charm quark), respectively. With this choice, we then have for s̃, t̃, ũ and the Feynman

variable xF :

s̃ = x′xS, t̃ = −xmc⊥

√
Se−y, ũ = −x′mc⊥

√
Sey, xF =

mh⊥√
S

(
ey − e−y

)
, (3.61)

where mc⊥ =
√
m2
c + p2

c⊥ and mh⊥ =
√
m2
h + P 2

h⊥.

Since the SSAs of open charm production in hadronic collisions depend on both quark-

gluon and tri-gluon correlation functions, the situation is slightly more complicated than that

in SIDIS. In order to cover a range of possibilities for the nonperturbative correlation functions,

we introduce three sets of values for the parameters λf and λd: (1) λf = λd = 0.07 GeV, (2)
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λf = λd = 0, and (3) λf = −λd = 0.07 GeV, corresponding to the assumptions: T
(f)
G,F = T

(d)
G,F ,

T
(f)
G,F = T

(d)
G,F = 0, and T

(f)
G,F = −T (d)

G,F , respectively. In principle, the signs and the values of λf

and λd, as well as the functional form of the correlation functions should be fixed by future

data.
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Figure 3.12 The SSA as a function of rapidity y for D0 meson (left)

and D̄0 meson production (right) at
√
s = 200 GeV and

Ph⊥ = 2 GeV. The curves are: solid (λf = λd = 0.07 GeV),

dashed (λf = λd = 0), dotted (λf = −λd = 0.07 GeV).

In Figs. 3.12 and 3.13 we plot the SSAs, AN , for the production of D and D̄ mesons

as functions of rapidity y and Feynman-xF , respectively. We count positive rapidity in the

forward direction of the polarized proton. The solid, dashed, and dotted curves correspond

to the three sets of parameters: λf = λd = 0.07 GeV, λf = λd = 0, and λf = −λd = 0.07

GeV, respectively. From the dashed curves in Figs. 3.12 and 3.13, it is clear that the quark-

gluon correlation function Tq,F alone generates a very small single transverse-spin asymmetry

at RHIC energy. This is because of the dominance of the gg fusion contribution over the qq̄ one

in the spin-averaged cross section in the denominator of AN . In other words, any significant

size of the SSA in open charm production signals the discovery of tri-gluon correlations inside

a polarized proton.

The difference between the solid and dotted curves in Figs. 3.12 and 3.13 indicates that

the two tri-gluon correlation functions, T
(f)
G,F and T

(d)
G,F , may both play very important, but

different, roles for the SSA in D and D̄ meson production. In the case of D mesons, a large
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Figure 3.13 Same as Fig. 3.12, but as a function of Feynman-xF .

AN (see the solid curve) is obtained when λf = λd = 0.07 GeV, i.e., when T
(f)
G,F and T

(d)
G,F

have the same sign. However, when their signs are opposite, their contributions to the SSA

tend to cancel, leading to a much smaller SSA (dotted curve). On the contrary, for D̄ meson

production, the largest AN is found when T
(f)
G,F and T

(d)
G,F have opposite signs. This is due to

the fact that, as shown in Eq. (3.54), the partonic hard parts associated with T
(d)
G,F change

sign when going from charm to anti-charm production, while the hard parts for T
(f)
G,F remain

the same. As a result, the SSA for D̄ mesons is much smaller if T
(f)
G,F and T

(d)
G,F have the

same sign. In addition, as seen from Figs. 3.12 and 3.13, scans of the SSA from the forward

to the backward region may provide good sources of information on the x-dependence or the

functional form of the tri-gluon correlation functions, in particular if a sign change occurs. It

is also striking to see that the asymmetry for either D or D̄ mesons may become very large at

forward rapidities at RHIC (but not for both simultaneously).

In Figs. 3.14 and 3.15, we show AN for D0 and D̄0 meson production as a function of Ph⊥,

at mid-rapidity (y = 0) and forward-rapidity (y = 1.8), respectively. The absolute values of

the SSAs decrease as a function of Ph⊥, which is a natural behavior of the twist-3 effect in

QCD collinear factorization. As before, while the contribution by the quark-gluon correlation

functions is very small, the two tri-gluon correlation functions can make sizable, and very

different, contributions to the SSA, thanks to the difference in the partonic hard parts in

Eq. (3.54).
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Figure 3.14 The SSA as a function of Ph⊥ for D0 (left) and D̄0 mesons

(right) at mid-rapidity, y = 0, and
√
s = 200 GeV. The curves
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dotted (λf = −λd = 0.07 GeV).
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Figure 3.15 Same as Fig. 3.14, but at forward rapidity, y = 1.8.

3.3.3 Current experimental status

The first experimental data on the SSAs for open charm production are now emerging from

PHENIX group at RHIC [39]. The first measurement of AN of single muons from open heavy

flavor decay has been made as a function of pT in the forward and backward rapidities, see

Fig. 3.16.

Obviously, the uncertainties are currently too large to allow distinction of the various models

we have proposed, but the measurements are certainly very encouraging. With the Forward

Vertex Detector available in the future [40], we expect great improvement and much better
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Figure 3.16 Transverse single spin asymmetry of prompt single muons

(most from open flavor (charm and bottom) decay) at back-

ward (left) and forward (right) rapidities in RHIC. (Compiled

from Ref. [39])

measurements for the single transverse spin asymmetry in open charm production. With better

data from RHIC and perhaps in the future in SIDIS, we will be able to extract the tri-gluon

correlation functions and to learn for the first time about the dynamics of quantum correlations

of gluons inside a polarized proton.
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CHAPTER 4. Evolution of twist-3 correlation functions

Almost all the existing perturbative calculations of single transverse spin asymmetry, in-

cluding those presented in the previous two chapters are at the leading order (LO) in strong

coupling constant, αs(µ). Only very recently, a calculation of next leading order (NLO) result

becomes available for Drell-Yan production [41]. A LO formalism has a strong dependence

on the choice of the renormalization scale µ as well as the factorization scale µF , while the

physically observed SSAs should not depend on the choice of the renormalization and/or the

factorization scale. The strong dependence on the choice of renormalization and factorization

scale is an artifact of the lowest order perturbative calculation, and a significant cancellation of

the scale dependence between the leading and the next-to-leading order (NLO) contribution is

expected from the QCD factorization theorem [12, 13, 14, 19]. In order to test QCD dynamics

for SSAs, it is necessary to calculate the evolution (or the scale dependence) of the universal

long-distance distributions and to evaluate the perturbative short-distance contribution beyond

the lowest order.

In this chapter, we derive the evolution equations of the correlation functions constructed

in Chapter 2. We first introduce the Feynman diagram representation for these twist-3 cor-

relation functions that are relevant to the SSAs. From the operator definition of the twist-3

correlation functions, we then derive the cut vertices in momentum space to explicitly connect

these correlation functions to Feynman diagrams [42]. Following the technique introduced in

Ref. [43], we derive the evolution equations in two steps. First, we factorize, in terms of QCD

collinear factorization approach [12, 44, 45], the perturbative modification to the twist-3 cor-

relation functions into a convolution of the short-distance evolution kernels with the twist-3

correlation functions. Then, we calculate corresponding evolution kernels in the light-cone
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gauge. We also provide the prescription to calculate the evolution kernels in a covariant gauge

which should give the same results. Finally we discuss the scale dependence of these correlation

functions by solving the evolution equations.

4.1 Feynman diagram representation and cut vertex

In this section we introduce the Feynman diagram representation of the twist-3 quark-

gluon and tri-gluon correlation functions constructed in chapter 2. We derive cut vertices in

momentum space to connect the Feynman diagrams to specific twist-3 correlation functions

[42].

In QCD collinear factorization approach to SSAs, the twist-3 three-parton correlation func-

tions measure the net effect of the quantum interference between two scattering amplitudes

of the transversely polarized hadron: one with single active parton and the other with two

active partons, participating in the short-distance hard scattering [16]. Like the normal PDFs,

the quark-gluon and tri-gluon correlation functions could be represented by the cut forward

scattering diagrams as sketched in Figs. 4.1(a) and 4.1(b), respectively. The cut represents a

particular final-state. The Feynman diagrams in Fig. 4.1 should include all possible cuts to

sum over all possible final states. We suppress the explicit cuts for the diagrams in Fig. 4.1

since the matrix element of the three-parton correlation functions with the middle gluon field

strength in the left side of the cut is equal to the matrix element with the gluon field strength

in the right side of the final-state cut. This is because the field operators of hadronic matrix

elements commute on the light-cone [19, 46]. Because of the odd number of active fields defin-

ing the twist-3 correlation functions, unlike the normal PDFs, these correlation functions do

not have a probability interpretation.

As discussed in chapter 2, one set of twist-3 correlation functions is expressed in terms of a

sum of two spin-dependent twist-3 correlation functions, as in Eqs. (2.19) and (2.21), and the

other by a difference of two spin-dependent twist-3 correlation functions, as in Eqs. (2.28) and

(2.30). These spin-dependent twist-3 correlation functions are given in terms of explicit matrix

elements of the transverse-spin dependent hadronic state and could be represented by Feynman
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Figure 4.1 Feynman diagrams that contribute to the twist-3 quark-gluon

(a) and tri-gluon (b) correlation functions. α, β, µ and a, b, c are

Lorentz and color indices of gluon field operators, respectively.

diagrams. However, since all gluon lines in Feynman diagrams are connected to gluon fields,

calculating the Feynman diagrams in Fig. 4.1 does not immediately give the twist-3 correlation

functions whose gluonic degree of freedom is represented by the field strength, F+µ, not the

gluon field, Aµ. Therefore, in order to fully define the Feynman diagram representation of the

spin-dependent twist-3 correlation functions, we need to derive the cut vertex [42] to connect

the operator definition of the spin-dependent twist-3 correlation functions to the cut forward

scattering Feynman diagrams in Fig. 4.1. With different cut vertices, the same diagrams in

Fig. 4.1 can represent both sets of the spin-dependent twist-3 correlation functions.

To derive the cut vertex to connect the spin-dependent quark-gluon correlation function

in Eq. (2.20) to the Feynman diagram in Fig. 4.1(a), we reexpress the operator definition of

the correlation function in Eq. (2.20) in terms of hadronic matrix elements of quark and gluon

operators in momentum space and find,

T̃q,F (x, x+ x2, µF , sT ) =

∫
d4k

(2π)4
d4k2

(2π)4
〈P, sT | ψ̃q,i(−k − k2)

×
[
γ+

2P+
δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)(
i ǫsT σnn̄

)

×
(
−gσµ +

k2σnµ

k+
2

)]
(Cq)cij Ãµ,c(k2) ψ̃q,j(k) |P, sT 〉 , (4.1)

where the fermionic color contraction factor Cq is given by

(Cq)cij = (tc)ij , (4.2)

with quark and gluon color indices, i, j = 1, 2, 3 = Nc and c = 1, 2, ..., 8 = N2
c − 1, respectively,
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and tc are the generators of the fundamental representation of SU(3) color. The field operators

listed with “∼” in Eq. (4.1) represent the momentum space field operators of those in Eq. (2.20).

The matrix element, 〈P, sT | ψ̃q,i(−k−k2)Ã
µ,c(k2) ψ̃q,j(k) |P, sT 〉, in Eq. (4.1) can be represented

by the Feynman diagram in Fig. 4.1(a). By comparing the definition of quark-gluon correlation

function in Eq. (4.1) and the Feynman diagram in Fig. 4.1(a), it is clear that we can derive the

quark-gluon correlation function, T̃q,F , from the Feynman diagram in Fig. 4.1(a) by contracting

the quark and gluon lines with the expression in the square brackets and the color contraction

factor (tc)ij , plus the integration over the loop momenta in Eq. (4.1). The expression in the

square brackets plus the color contraction factor Cq defines the cut vertex that connects the

Feynman diagram in Fig. 4.1(a) to the quark-gluon correlation function T̃q,F in Eq. (2.20),

Vq,F ≡ γ+

2P+
δ

(
x− k+

P+

)(
i ǫsT σnn̄

)
x2 δ

(
x2 −

k+
2

P+

)[
−gσµ +

k2σnµ

k+
2

]
Cq . (4.3)

Similarly, we can rewrite the tri-gluon correlation function in Eq. (2.22) as

T̃ (f,d)
G,F (x, x+ x2, µF , sT ) =

∫
d4k

(2π)4
d4k2

(2π)4
〈P, sT | Ãβ,b(−k − k2) Ã

µ,c(k2) Ã
α,a(k) |P, sT 〉

×
[(

−gαβ +
(k + k2)αnβ
(k + k2)+

+
kβ nα
k+

− k · (k + k2)nαnβ
k+ (k + k2)+

)

×x(x+ x2)δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)

×
(
i ǫsT σnn̄

)(
−gσµ +

k2σ nµ

k+
2

)]
(Cg)(f,d)bca , (4.4)

where the gluonic color contraction factor Cg is given by

(Cg)(f)
bca = ifbca = (Fc)ba , and (Cg)(d)bca = dbca , (4.5)

where Fc are the generators of adjoint representation of SU(3) color. In Eq. (4.4), the matrix

element 〈P, sT | Ãβ,b(−k − k2) Ã
µ,c(k2) Ã

α,a(k) |P, sT 〉 can be represented by the Feynman dia-

gram in Fig. 4.1(b). Similar to the situation of quark-gluon correlation, the expression in the

square brackets plus the color contraction factor C(f,d)
bca defines the cut vertex for calculating
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the tri-gluon correlation function T̃ (f,d)
G,F from the diagram in Fig. 4.1(b),

VG,F ≡ x(x+ x2)

(
−gαβ +

(k + k2)αnβ
(k + k2)+

+
kβ nα
k+

− k · (k + k2)nαnβ
k+ (k + k2)+

)

× δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)(
i ǫsTσnn̄

) [
−gσµ +

k2σ nµ

k+
2

]
(Cg)(f,d)bca . (4.6)

Similarly, by rewriting the operator definitions of the second set of spin-dependent twist-3

correlation functions in terms of quark and gluon field operators in momentum space, we derive

the following cut vertices,

V∆q,F ≡ γ+γ5

2P+
δ

(
x− k+

P+

)
(−sσT ) x2 δ

(
x2 −

k+
2

P+

)[
−gσµ +

k2σnµ

k+
2

]
Cq (4.7)

for connecting the same Feynman diagram in Fig. 4.1(a) to the second set quark-gluon corre-

lation function T̃∆q,F (x, x+ x2, µF , sT ) in Eq. (2.29), and

V∆G,F ≡ x(x+ x2) (iǫ⊥ρλ)

[
−gρβ +

(k + k2)
ρnβ

(k + k2)+

] [
−gλα +

kλ nα
k+

]
δ

(
x− k+

P+

)

×x2 δ

(
x2 −

k+
2

P+

)
(−sσT )

[
−gσµ +

k2σ nµ

k+
2

]
C(f,d)
g (4.8)

for connecting the same Feynman diagram in Fig. 4.1(b) to the second set tri-gluon correlation

function T̃∆G,F (x, x+ x2, µF , sT ) in Eq. (2.31). The color factors in Eqs. (4.7) and Eqs. (4.8)

are the same as those in Eqs. (4.3) and Eqs. (4.6), respectively.

For our calculation of the evolution kernels in the next section in the light-cone gauge,

n ·A = 0, the cut vertices are simplified as,

VLC
q,F =

γ+

2P+
δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)(
i ǫsT σnn̄

)
[−gσµ] Cq (4.9)

VLC
G,F = x(x+ x2) (−gαβ) δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)(
i ǫsTσnn̄

)
[−gσµ] C(f,d)

g (4.10)

VLC
∆q,F =

γ+γ5

2P+
δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)
(−sσT ) [−gσµ] Cq (4.11)

VLC
∆G,F = x(x+ x2)

(
iǫβα⊥

)
δ

(
x− k+

P+

)
x2 δ

(
x2 −

k+
2

P+

)
(−sσT ) [−gσµ] C(f,d)

g (4.12)
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for correlation functions, T̃q,F , T̃ (f,d)
G,F , T̃∆q,F , T̃ (f,d)

∆G,F , respectively.

4.2 Factorization and evolution equations

In order to derive the evolution equations and evolution kernels from the definition of

the twist-3 correlation functions, we need to compute the perturbative modification to these

correlation functions caused by the quark-gluon interaction in QCD [43]. For example, we need

to calculate the diagram in Fig. 4.2 for extracting the flavor non-singlet evolution kernel of the

quark-gluon correlation function.

Figure 4.2 Feynman diagrams that contribute to the flavor non-singlet

change of the twist-3 quark-gluon correlation function where

µ, ρ and c are Lorentz and color indices of gluon field opera-

tors, respectively. The lower part of quark and gluon lines are

contracted to the cut vertex that defines the quark-gluon cor-

relation function.

We first evaluate the perturbative change to all spin-dependent correlation functions, T̃q,F ,

T̃ (f,d)
G,F , T̃∆q,F , and T̃ (f,d)

∆G,F , because they are defined in terms of hadronic matrix elements

and represented by the Feynman diagrams with proper cut vertices. We follow the stan-

dard QCD collinear factorization approach to factorize the perturbative change to these spin-

dependent correlation functions into short-distance evolution kernels convoluted with corre-

sponding gauge invariant long-distance matrix elements or the correlation functions [43, 44, 45].

From Eqs. (2.19), (2.21), (2.28), and (2.30), we then derive the evolution equations for the two

sets of twist-3 correlation functions that are responsible for generating the SSAs in QCD

collinear factorization approach.
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4.2.1 Non-singlet case: quark-gluon correlations

We start with the flavor non-singlet change to the quark-gluon correlation function, T̃q,F ,

as represented by the diagrams in Fig. 4.2 with the cut vertex in Eq. (4.3). For the twist-3

correlation functions relevant to the SSAs, we are interested in the difference of the diagrams

in Fig. 4.2 with hadron spin sT and that with −sT . The only surviving leading twist matrix

element from the top of the diagram in Fig. 4.2(a) after taking the difference is the transversity

distribution that does not contribute to the change of the quark-gluon correlation function of

massless quark due to the symmetry of time-reversal or simply due to an odd number of gamma

matrices in the spinor trace. However, the twist-3 or sub-leading contribution from the diagram

in Fig. 4.2(a) can be combined with the leading contribution of the diagram in Fig. 4.2(b) due

to color gauge invariance [19, 28, 44, 45]. Long-distance physics of the combined contribution

from two diagrams in Fig. 4.2 could be expressed in terms of four twist-3 long-distance matrix

elements or correlation functions, T
(V,A)
(D,F ), as defined in Ref. [17], where superscripts V and

A represent the vector and axial vector current, respectively, and subscripts, D and F , refer

to the standard QCD covariant derivative and field strength, respectively. The correlation

functions, T VF and TAF , correspond to our spin-dependent quark-gluon correlation functions,

T̃q,F and T̃∆q,F , respectively, while the other two functions could be obtained by replacing the

field strength operator F +
σ by the covariant derivative operator Dσ. As explained in Ref. [17],

the two correlation functions with the covariant derivative operator do not contribute to the

SSAs.

We now provide a detailed derivation of the projection operator for extracting the fla-

vor non-singlet evolution kernels or the short-distance contribution from both diagrams in

Fig. 4.2. There are two sources of twist-3 or subleading power contribution from the diagram

in Fig. 4.2(a) [19, 44, 45]. One is from the transverse momentum expansion of the parton

momenta entering the bottom part of the diagram, which leads to the contribution associated

with matrix elements, T V,AD , thus does not contribute to the SSAs. The other is from the spinor

trace decomposition when the bottom part of the diagram is contracted by γ ·n instead of the

leading γ · P [44, 45], so-called contact contribution [19, 45]. Although the matrix element of
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this term has only two quark field operators, it can be expressed in terms of the same matrix

element of two quark fields and a gluon field, T V,AF , after applying the equation of motion [44].

That is, this part of subleading contribution from the diagram in Fig. 4.2(a) can be represented

by the same diagram in Fig. 4.2(b) except that the partonic Feynman diagrams in the bottom

part of the diagram are given by the diagrams with the contact interaction [19, 45]. Therefore,

we can derive the full flavor non-singlet evolution kernels from the diagram in Fig. 4.2(b) with

the understanding that the bottom part of the diagram also includes those with the contact

interaction or the special propagator [19, 45].

We represent the perturbative change to T̃q,F from the diagram in Fig. 4.2(b) as

dT̃q,F (x, x+ x2, µF , sT ) ≡
∫
d4p d4p2

(2π)8
Tr
[
T̂ ρ(p, p2, P, sT )Ĥρ(p, p2, x, x2, µF )

]
, (4.13)

where the “Tr” represents the trace over the fermion fields’ spinor indices, and T̂ and Ĥ

represent the top part and the bottom part of the Feynman diagram, respectively. In the

momentum space, the T̂ is given by the matrix element,

T̂ ρ(p, p2, P, sT ) = 〈P, sT | ψ̃q,i(−p− p2)Ã
ρ,c(p2) ψ̃q,j(p) |P, sT 〉 , (4.14)

where i, j are color indices of the quark fields and ρ, c are Lorentz and color indices of the

gluon field, respectively. The Ĥ represents the bottom blob that includes all cut Feynman

diagrams for the given external quark and gluon lines. The list of all cut diagrams at order of

αs will be given in the next section when we present the calculation of evolution kernels. The

bottom quark and gluon lines of these diagrams are contracted by the cut vertex that defines

the correlation function. The dependence of x and x2 in the argument of Ĥ in Eq. (4.13)

is from the cut vertex, and the scale µF represents the hardness or the off-shellness of the

parton momenta, k and k2. To pick up the leading power contribution from the perturbative

modification to the quark-gluon correlation function, we first separate the spinor trace for the
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case of massless partons by [45]

Ĥρ(p, p2, x, x2, µF ) ≈ Hρ,α(p, p2, x, x2, µF )

(
1

2
γα
)

+H̃ρ,α(p, p2, x, x2, µF )

(
1

2
γα
(
iγ5
))

+ . . . , (4.15)

where “. . . ” represents terms with even number of γ-matrices and subleading, and

Hρ,α(p, p2, x, x2, µF ) =
1

2
Tr
[
Ĥρ(p, p2, x, x2, µF )γα

]
, (4.16)

H̃ρ,α(p, p2, x, x2, µF ) =
1

2
Tr
[
Ĥρ(p, p2, x, x2, µF )γα

(
iγ5
)]
. (4.17)

In order to derive the contribution from the first term in Eq. (4.15) in details, we introduce

Iq ≡
∫
d4p d4p2

(2π)8
T ρ,α(p, p2, P, sT )Hρ,α(p, p2, x, x2, µF ) , (4.18)

with

T ρ,α(p, p2, P, sT ) =
1

2
Tr
[
T̂ ρ(p, p2, P, sT )γα

]
. (4.19)

We then apply the strong ordering in the off-shellness of active partons, |p2| ≪ µ2
F and |p2

2| ≪

µ2
F , and make the collinear approximation to expand the parton momenta entering into the Ĥ

in Fig. 4.2(b) around p = ξP and p2 = ξ2P as

Hρ,α(p, p2, x, x2, µF ) ≈ Hρ,α(ξP, ξ2P, x, x2, µF ) +
∂Hρ,α(ξP, ξ2P, x, x2, µF )

∂pβ
(p − ξP )β

+
∂Hρ,α(ξP, ξ2P, x, x2, µF )

∂pβ2
(p2 − ξ2P )β + . . . . (4.20)
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By substituting Eq. (4.20) into Eq. (4.18), we can rewrite the Iq as

Iq ≈
∫
dξ dξ2 T

ρ,α(ξ, ξ + ξ2)Hρ,α(ξ, ξ2, x, x2, µF )

+

∫
dξ dξ2 T

ρ,α,β
1 (ξ, ξ + ξ2)

∂Hρ,α(ξ, ξ2, x, x2, µF )

∂pβ

+

∫
dξ dξ2 T

ρ,α,β
2 (ξ, ξ + ξ2)

∂Hρ,α(ξ, ξ2, x, x2, µF )

∂pβ2
+ . . . , (4.21)

where the explicit P dependence in Hρ,α is suppressed. The correlation functions in Eq. (4.21)

are given by

T ρ,α(ξ, ξ + ξ2) =

∫
d4p d4p2

(2π)8
δ

(
ξ − p+

P+

)
δ

(
ξ2 −

p+
2

P+

)

×〈P, sT | ψ̃q,i(−p− p2)
γα

2
Ãρ,c(p2) ψ̃q,j(p) |P, sT 〉 ;

T ρ,α,β1 (ξ, ξ + ξ2) =

∫
d4p d4p2

(2π)8
δ

(
ξ − p+

P+

)
δ

(
ξ2 −

p+
2

P+

)
(p− ξP )β

×〈P, sT | ψ̃q,i(−p− p2)
γα

2
Ãρ,c(p2) ψ̃q,j(p) |P, sT 〉 ;

T ρ,α,β2 (ξ, ξ + ξ2) =

∫
d4p d4p2

(2π)8
δ

(
ξ − p+

P+

)
δ

(
ξ2 −

p+
2

P+

)
(p2 − ξ2P )β

×〈P, sT | ψ̃q,i(−p− p2)
γα

2
Ãρ,c(p2) ψ̃q,j(p) |P, sT 〉 . (4.22)

Finally, we decouple the contraction of Lorentz indices in the RHS of Eq. (4.21) to express

the quark-gluon correlation functions in terms of the T̃q,F , defined in Eq. (4.1), so that we

can factorize the leading term of the RHS of Eq. (4.21) into a convolution of the T̃q,F and

corresponding evolution kernel. We find

T ρ,α(ξ, ξ + ξ2) ≈
[
C̃q
(−1

ξ2

)(
i ǫsT ρnn̄

)
Pα
]
T̃ (LC)
q,F (ξ, ξ + ξ2, sT ) + . . . (4.23)

where the factorization scale dependence is suppressed and the fermionic color projection

operator C̃q is given by

(C̃q)cji = 2/(N2
c − 1)(tc)ji , (4.24)
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with the quark and gluon color indices ij and c as labeled in Fig. 4.2(a), so that C̃q Cq = 1. In

Eq. (4.23), the quark-gluon correlation function T̃ (LC)
q,F has the same definition as that of T̃q,F

in Eq. (2.20), except the cut vertex in the square brackets is replaced by the cut vertex in the

light-cone gauge in Eq. (4.9). The superscript “LC” indicates that this quark-gluon correlation

function is calculated by using the light-cone gauge cut vertex instead of the full cut vertex.

We find that the term proportional to T ρ,α,β1 (ξ, ξ + ξ2) in Eq. (4.21) does not give the leading

power contribution. For the third term in Eq. (4.21), we have

T ρ,α,β2 (ξ, ξ + ξ2) ≈
[
C̃q
(
i ǫsTβnn̄

)
P ρ Pα

]
T̃ (CO)
q,F (ξ, ξ + ξ2, sT ) + . . . (4.25)

where the long-distance quark-gluon correlation function, T̃ (CO)
q,F , has the same definition as

that of T̃q,F in Eq. (2.20), except the cut vertex in the square brackets is replaced by

γ+

2P+
δ

(
ξ − p+

P+

)(
i ǫsT σnn̄

)
ξ2 δ

(
ξ2 −

p+
2

P+

)
p2σ nρ

p+
2

(Cq)cij , (4.26)

which corresponds to the second term in the square brackets in Eq. (4.3). The superscript “CO”

indicates that this term provides the leading contribution in a covariant gauge calculation of

the correlation functions [19, 47]. From the factorized expression for the first and the third

term, we find the leading contribution from the RHS of Eq. (4.21) can be factorized as

Iq ≈
∫
dξ dξ2

{
T̃ (LC)
q,F (ξ, ξ + ξ2, sT )

[
C̃q
(−1

ξ2

)(
i ǫsT ρ nn̄

)
PαHρ,α(ξ, ξ2, x, x2, µF )

]

+T̃ (CO)
q,F (ξ, ξ + ξ2, sT )


C̃q

(
i ǫsTβ nn̄

)
P ρ Pα

∂Hρ,α(ξ, ξ2, x, x2, µF )

∂pβ2

∣∣∣∣∣
p2=ξ2P



}

+ . . . , (4.27)

where the “. . . ” again represents the subleading term which includes the contribution from the

T ρ,α,β1 in Eq. (4.21). From the definitions of T̃ (LC)
q,F (ξ, ξ + ξ2, sT ) and T̃ (CO)

q,F (ξ, ξ + ξ2, sT ), we

have

T̃q,F (ξ, ξ + ξ2, sT ) = T̃ (LC)
q,F (ξ, ξ + ξ2, sT ) + T̃ (CO)

q,F (ξ, ξ + ξ2, sT ) . (4.28)
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Therefore, QCD color gauge invariance requires

C̃q
(−1

ξ2

)(
i ǫsT ρ nn̄

)
PαH(LC)

ρ,α (ξ, ξ2, x, x2, µF )

= C̃q
(
i ǫsT β nn̄

)
P ρ Pα

∂H
(CO)
ρ,α (ξ, ξ2, x, x2, µF )

∂pβ2

∣∣∣∣∣
p2=ξ2P

, (4.29)

when the LHS is evaluated in the light-cone gauge and the RHS is evaluated in a covariant

gauge. Then, the two terms in Eq. (4.27) can be combined into one term proportional to the

quark-gluon correlation function, T̃q,F (ξ, ξ + ξ2, sT ). Since T̃ (CO)
q,F (ξ, ξ + ξ2, sT ) vanishes in the

light-cone gauge, the left-hand-side (LHS) of the equality in Eq. (4.29) represents the short-

distance partonic part calculated in the light-cone gauge. On the other hand, the RHS of the

equality in Eq. (4.29) represents the short-distance partonic part calculated in a covariant gauge

[19]. This is because the matrix element T̃ (CO)
q,F (ξ, ξ+ξ2, sT ) dominates over T̃ (LC)

q,F (ξ, ξ+ξ2, sT )

in a covariant gauge calculation [19, 47]. That is, the equality in Eq. (4.29) provides an excellent

consistency test for the perturbative modification of the quark-gluon correlation functions

evaluated in different gauges.

By using Eqs. (4.28) and (4.29), we can combine the two factorized terms in Eq. (4.27) into

one factorized term as

Iq ≈
∫
dξ dξ2 T̃q,F (ξ, ξ + ξ2, sT ) dKqq(ξ, ξ + ξ2, x, x+ x2, µF ) + . . . , (4.30)

where the perturbative modification to the correlation function, dKqq(ξ, ξ + ξ2, x, x+ x2, µF ),

can be calculated by using either side of the equality in Eq. (4.29) depending on the gauge

used for the calculation. For the light-cone gauge calculation,

dKqq(ξ, ξ + ξ2, x, x+ x2, µF ) = C̃q
(−1

ξ2

)(
i ǫsT ρ nn̄

)
PαH(LC)

ρ,α (ξ, ξ2, x, x2, µF ) . (4.31)

From Eqs. (4.16) and Eq. (4.31), we derive the projection operator in the light-cone gauge,

P(LC)
q,F =

1

2
γ · P

(−1

ξ2

)(
i ǫsT ρ nn̄

)
C̃q , (4.32)
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for extracting the perturbative modification dKqq from the partonic diagram in Fig. 4.3(a),

which is equal to the lower blob of the diagram in Fig. 4.2(b) plus all diagrams with the contact

interaction. From the RHS of Eq. (4.29), we have the projection operator for the covariant

gauge calculation

P(CO)
q,F =

1

2
γ · P P ρ

(
i ǫsTβ nn̄

)
C̃q

∂

∂pβ2
, (4.33)

where the p2 is set to ξ2P following the derivative [19].

Figure 4.3 Partonic Feynman diagrams that contribute to the evolution

kernels of the twist-3 correlation functions.

In order to derive the leading contribution from the second term in Eq. (4.15), we introduce

I∆q ≡
∫
d4p d4p2

(2π)8
T̃ ρ,α(p, p2, P, sT )H̃ρ,α(p, p2, x, x2, µF ) , (4.34)

with

T̃ ρ,α(p, p2, P, sT ) =
1

2
Tr
[
T̂ ρ(p, p2, P, sT )γα

(
iγ5
)]
. (4.35)
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Following the same derivation as that for Iq, we find

I∆q ≈
∫
dξ dξ2

{
T̃ (LC)

∆q,F (ξ, ξ + ξ2, sT )

[
C̃q
(−1

ξ2

)(
i sρT

)
Pα H̃ρ,α(ξ, ξ2, x, x2, µF )

]

+T̃ (CO)
∆q,F (ξ, ξ + ξ2, sT )


C̃q

(
i sβT

)
P ρ Pα

∂H̃ρ,α(ξ, ξ2, x, x2, µF )

∂pβ2

∣∣∣∣∣
p2=ξ2P



}

+ . . . (4.36)

≡
∫
dξ dξ2 T̃∆q,F (ξ, ξ + ξ2, sT ) dKq∆q(ξ, ξ + ξ2, x, x+ x2, µF ) + . . . , (4.37)

where the perturbative modification to T̃q,F from T̃∆q,F is given by

dKq∆q(ξ, ξ + ξ2, x, x+ x2, µF ) = C̃q
(−1

ξ2

)(
i sρT

)
Pα H̃(LC)

ρ,α (ξ, ξ2, x, x2, µF )

= C̃q
(
i sβT

)
P ρ Pα

∂H̃
(CO)
ρ,α (ξ, ξ2, x, x2, µF )

∂pβ2

∣∣∣∣∣
p2=ξ2P

(4.38)

where the subscript “LC” (“CO”) again indicates the light-cone (covariant) gauge calculation.

From Eq. (4.38), we obtain the projection operator,

P(LC)
∆q,F =

1

2
γ · P γ5

(−1

ξ2

)(
−sρT

)
C̃q , (4.39)

for extracting dKq∆q from the same diagram in Fig. 4.3(a) in the light-cone gauge. Similarly,

one can easily derive the projection operator for the covariant gauge calculation from Eq. (4.38).

By adding contributions from Eqs. (4.30) and (4.37), we obtain the factorized perturbative

modification to T̃q,F ,

dT̃q,F (x, x+ x2, µF , sT ) ≈
∫
dξ dξ2

[
T̃q,F (ξ, ξ + ξ2, sT ) dKqq(ξ, ξ + ξ2, x, x+ x2, µF )

+T̃∆q,F (ξ, ξ + ξ2, sT ) dKq∆q(ξ, ξ + ξ2, x, x+ x2, µF )
]
. (4.40)

As shown in the next section, the leading power perturbative modification, dKij with i, j =
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q,∆q, g,∆g, can be expressed as

dKij(ξ, ξ + ξ2, x, x+ x2, µF ) =

∫ µ2
F dk2

T

k2
T

Kij(ξ, ξ + ξ2, x, x+ x2, αs) + . . . , (4.41)

where Kij(ξ, ξ+ξ2, x, x+x2, αs) is referred as the short-distance perturbative evolution kernel.

Substituting Eq. (4.41) into Eq. (4.40) and taking the derivative with respect to the factoriza-

tion scale µF in both sides in Eq. (4.40), we derive the leading order flavor non-singlet evolution

equation for the quark-gluon correlation function,

µ2
F

∂

∂µ2
F

T̃q,F (x, x+ x2, µF , sT )

=

∫
dξ dξ2

[
T̃q,F (ξ, ξ + ξ2, µF , sT )Kqq(ξ, ξ + ξ2, x, x+ x2, αs)

+T̃∆q,F (ξ, ξ + ξ2, µF , sT )Kq∆q(ξ, ξ + ξ2, x, x+ x2, αs)
]
, (4.42)

which has the generic homogeneous differential-integral form of the typical evolution equation,

such as the DGLAP evolution equation of PDFs [43, 48].

Figure 4.4 Feynman diagrams that contribute to the change of the twist-3

tri-gluon correlation functions where α, β, µ, ρ and a, b, c are

Lorentz and color indices of gluon field operators, respectively.

The lower part of gluon lines are contracted to the cut vertices

that define the tri-gluon correlation functions.

4.2.2 Non-singlet case: tri-gluon correlations

Next, we derive the perturbative change of tri-gluon correlation function T̃ (f,d)
G,F from the

diagrams in Fig. 4.4. Since gluon transversity distribution vanishes [49], there is no leading

twist or leading power contribution to the evolution of the tri-gluon correlation functions from
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Fig. 4.4(a). Similar to the case of the flavor non-singlet change of quark-gluon correlation

function discussed above, the subleading power contribution from the diagram in Fig. 4.4(a)

can be combined with the leading contribution of the diagram in Fig. 4.4(b) [45]. We can then

derive the projection operator for calculating the gluonic evolution kernel by factorizing the

diagram in Fig. 4.4(b).

We express the diagram in Fig. 4.4(b) as

dT̃ (i)
G,F (x, x+ x2, µF , sT ) ≡

∫
d4p d4p2

(2π)8

∑

ρ,α,β

[
T ρ,α,β(p, p2, P, sT )H

(i)
ρ,α,β(p, p2, x, x2, µF )

]

≡ I
(i)
G + I

(i)
∆G , (4.43)

where the superscript i = f, d from the cut vertex and IG (I∆G) represents the part of the

perturbative change that is symmetric (antisymmetric) in the exchange of the Lorentz indices

α and β. In Eq. (4.43), the partonic part Hρ,α,β is given by the bottom part of the diagram in

Fig. 4.4(b) plus diagrams with the contact interaction from the subleading contribution of the

diagram in Fig. 4.4(a). All partonic diagrams are contracted by the cut vertex in Eq. (4.6).

The tri-gluon matrix element T ρ,α,β in Eq. (4.43) is defined as

T ρ,α,β(p, p2, P, sT ) = 〈P, sT | Ãβ,b(−p− p2) Ã
ρ,c(p2) Ã

α,a(p) |P, sT 〉 (4.44)

with the gluon color indices, b, c, a and is represented by the top part of the Feynman diagram

in Fig. 4.4(b). Following the same steps used to factorize the diagram in Fig. 4.2(b), we can
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factorize the leading power contribution to the part that is symmetric in α and β as

I
(i)
G ≈

∫
dξ dξ2

{
 T̃

(j)(LC)
G,F (ξ, ξ + ξ2, sT )

ξ(ξ + ξ2)




×
[
C̃(j)
g

1

2
dαβ

(−1

ξ2

)(
i ǫsT ρ nn̄

)
H

(i)
ρ,α,β(ξ, ξ2, x, x2, µF )

]
(4.45)

+


 T̃

(j)(CO)
G,F (ξ, ξ + ξ2, sT )

ξ(ξ + ξ2)




×


 C̃(j)

g

1

2
dαβ P ρ

(
i ǫsTσ nn̄

) ∂H(i)
ρ,α,β(ξ, ξ2, x, x2, µF )

∂pσ2

∣∣∣∣∣∣
p2=ξ2P



}

+ . . . ,

where the transverse polarization tensor dαβ ≡ −gαβ + nαn̄β + n̄αnβ and the gluonic color

projection operators C̃(i)
g with j = f, d are given by

(C̃(f)
g )acb =

1

Nc(N2
c − 1)

ifacb , and (C̃(d)
g )acb =

Nc

(N2
c − 4)(N2

c − 1)
dacb , (4.46)

for color indices labeled in Fig. 4.4(b), so that C̃(j)
g C(j)

g = 1 for j = f, d. In Eq. (4.45), T̃ (j)(LC)
G,F

and T̃ (j)(CO)
G,F with j = f, d are tri-gluon correlation functions that have the same definition as

that of T̃ (f,d)
G,F in Eq. (4.4), except that the cut vertex is now replaced by the corresponding one

in the light-cone gauge and the one in a covariant gauge, respectively, and they satisfy

T̃ (f,d)
G,F (ξ, ξ + ξ2, sT ) = T̃ (f,d)(LC)

G,F (ξ, ξ + ξ2, sT ) + T̃ (f,d)(CO)
G,F (ξ, ξ + ξ2, sT ) . (4.47)

Again, the color gauge invariance requires

1

2
dαβ

(−1

ξ2

)(
i ǫsT ρ nn̄

)
H

(i)(LC)
ρ,α,β (ξ, ξ2, x, x2, µF )

=
1

2
dαβ P ρ

(
i ǫsT σ nn̄

) ∂H(i)(CO)
ρ,α,β (ξ, ξ2, x, x2, µF )

∂pσ2

∣∣∣∣∣∣
p2=ξ2P

, (4.48)

when the LHS is evaluated in the light-cone gauge and the RHS in a covariant gauge. Therefore,
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the two leading terms in Eq. (4.45) can be combined together as

I
(i)
G ≈

∫
dξ dξ2 T̃ (j)

G,F (ξ, ξ + ξ2, sT ) dK(ij)
gg (ξ, ξ + ξ2, x, x+ x2, µF ) (4.49)

with

dK(ij)
gg (ξ, ξ + ξ2, x, x+ x2, µF )

= C̃(j)
g

1

2
dαβ

1

ξ(ξ + ξ2)

(−1

ξ2

)(
i ǫsT ρ nn̄

)
H

(i)(LC)
ρ,α,β (ξ, ξ2, x, x2, µF ) (4.50)

in the light-cone gauge. The dK
(ij)
gg can also be derived in a covariant gauge from the RHS of

Eq. (4.48). The equality in Eq. (4.48) provides an independent check of perturbative calculation

done in different gauges. From Eq. (4.50), we obtain the light-cone gauge projection operator,

P(f,d)(LC)
G,F =

1

2
dαβ

1

ξ(ξ + ξ2)

(−1

ξ2

)(
i ǫsT ρ nn̄

)
C̃(f,d)
g ; (4.51)

for calculating the perturbative modification to the tri-gluon correlation function T̃ (f,d)
G,F from

the diagrams in Fig. 4.3(b), which includes all the partonic Feynman diagrams from the lower

blob of the diagram in Fig. 4.4(b) plus corresponding twist-3 contribution from the diagram in

Fig. 4.4(a) expressed in terms of diagrams with the contact interaction [45]. Similar projection

operator can be derived from the RHS of Eq. (4.48) for the covariant gauge calculation.

Similarly, we derive the perturbative modification to T̃ (f,d)
G,F from the tri-gluon correlation

function T̃ (f,d)
∆G,F ,

I
(i)
∆G ≈

∫
dξ dξ2 T̃ (j)

∆G,F (ξ, ξ + ξ2, sT ) dK
(ij)
g∆g(ξ, ξ + ξ2, x, x+ x2, µF ) (4.52)

with

dK
(ij)
g∆g(ξ, ξ + ξ2, x, x+ x2, µF )

= C̃(j)
g

1

2

(
iǫαβ⊥

) 1

ξ(ξ + ξ2)

(−1

ξ2

)(
−sρT

)
H

(i)(LC)
ρ,α,β (ξ, ξ2, x, x2, µF ) (4.53)
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in the light-cone gauge. One can easily derive the expression for dK
(ij)
g∆g in a covariant gauge

as well. From Eq. (4.53), we obtain the light-cone gauge projection operator,

P(f,d)(LC)
∆G,F =

1

2

(
iǫαβ⊥

) 1

ξ(ξ + ξ2)

(−1

ξ2

)(
−sρT

)
C̃(f,d)
g ; (4.54)

for calculating the perturbative modification from the tri-gluon correlation function T̃ (f,d)
∆G,F

from the same diagrams in Fig. 4.3(b).

Using the generic expression of the leading power contribution to the perturbative modi-

fication factor dKij in Eq. (4.41), we derive the evolution equation for the factorization scale

dependence of the tri-gluon correlation function T̃ (f,d)
G,F by factorizing the perturbative correc-

tion from the diagrams in Fig. 4.4,

µ2
F

∂

∂µ2
F

T̃ (i)
G,F (x, x+ x2, µF , sT )

=
∑

j=f,d

∫
dξ dξ2

[
T̃ (j)
G,F (ξ, ξ + ξ2, µF , sT )K(ji)

gg (ξ, ξ + ξ2, x, x+ x2, αs)

+ T̃ (j)
∆G,F (ξ, ξ + ξ2, µF , sT )K

(ji)
g∆g(ξ, ξ + ξ2, x, x+ x2, αs)

]
, (4.55)

where the superscript i, j = f, d, K
(ji)
gg and K

(ji)
g∆g are evolution kernels that can be perturba-

tively calculated from the diagram in Fig. 4.3(b) with proper projection operators as discussed

above.

Figure 4.5 Feynman diagrams that contribute to the change of the twist-3

quark-gluon correlation function where α, β, µ, ρ and a, b, c are

Lorentz and color indices of gluon field operators, respectively.

The lower part of quark and gluon lines are contracted to the

cut vertex that defines the quark-gluon correlation function.
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Figure 4.6 Feynman diagrams that contribute to the change of the twist-3

tri-gluon correlation functions from the interaction initiated

from the quark-gluon correlation functions. The lower part of

gluon lines are contracted to the cut vertices that define the

tri-gluon correlation functions.

4.2.3 Complete evolution equations

The evolution equation for the scale dependence of the quark-gluon correlation function in

Eq. (4.42) can also get contributions from the tri-gluon correlation functions via the diagrams

in Fig. 4.5. Similarly, the evolution equation for the tri-gluon correlation functions in Eq. (4.55)

can get additional contribution from the quark-gluon correlation function via the diagrams in

Fig. 4.6.

Following the same procedure to factorize the diagrams in Fig. 4.4, we derive the addi-

tional contribution to the evolution of the quark-gluon correlation function from the tri-gluon

correlation functions and have,

µ2
F

∂

∂µ2
F

T̃q,F (x, x+ x2, µF , sT )

=

∫
dξ dξ2

[
T̃q,F (ξ, ξ + ξ2, µF , sT )Kqq(ξ, ξ + ξ2, x, x+ x2, αs)

+T̃∆q,F (ξ, ξ + ξ2, µF , sT )Kq∆q(ξ, ξ + ξ2, x, x+ x2, αs)
]

+
∑

i=f,d

∫
dξ dξ2

[
T̃ (i)
G,F (ξ, ξ + ξ2, µF , sT )K(i)

qg (ξ, ξ + ξ2, x, x+ x2, αs)

+ T̃ (i)
∆G,F (ξ, ξ + ξ2, µF , sT )K

(i)
q∆g(ξ, ξ + ξ2, x, x+ x2, αs)

]
. (4.56)

The evolution kernels from the tri-gluon correlation functions to the quark-gluon correlation

function, K
(f,d)
qg and K

(f,d)
q∆g , can be obtained by calculating the diagram in Fig. 4.3(c) with
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proper projection operators. If the kernels are evaluated in the light-cone gauge, the three

gluon lines on the top of the diagram are contracted by the projection operator in Eqs. (4.51)

and (4.54), respectively. The diagram in Fig. 4.3(c) includes all Feynman diagrams from the

bottom part of the diagram in Fig. 4.5(b) plus diagrams from the subleading contribution of

the diagram in Fig. 4.5(a), which can be effectively expressed in terms of the diagrams with

the contact interaction and the same external lines as those in Fig. 4.5(b). The combination

of these diagrams forms a gauge invariant set [45].

Similarly, following the same procedure to factorize the diagrams in Fig. 4.2, we derive the

additional contribution to the evolution equation of the tri-gluon correlation functions from

the quark-gluon correlation functions and have,

µ2
F

∂

∂µ2
F

T̃ (i)
G,F (x, x+ x2, µF , sT )

=
∑

j=f,d

∫
dξ dξ2

[
T̃ (j)
G,F (ξ, ξ + ξ2, µF , sT )K(ji)

gg (ξ, ξ + ξ2, x, x+ x2, αs)

+ T̃ (j)
∆G,F (ξ, ξ + ξ2, µF , sT )K

(ji)
g∆g(ξ, ξ + ξ2, x, x+ x2, αs)

]

+
∑

q

∫
dξ dξ2

[
T̃q,F (ξ, ξ + ξ2, µF , sT )K(i)

gq (ξ, ξ + ξ2, x, x+ x2, αs)

+T̃∆q,F (ξ, ξ + ξ2, µF , sT )K
(i)
g∆q(ξ, ξ + ξ2, x, x+ x2, αs)

]
. (4.57)

where
∑

q runs over all quark and antiquark flavors, the superscript, i, j = f, d. The evolution

kernels from the quark-gluon correlation functions to the tri-gluon correlation functions, K
(f,d)
gq

and K
(f,d)
g∆q , can be obtained by calculating the diagram in Fig. 4.3(d) with proper projection

operators. If the evolution kernels are evaluated in the light-cone gauge, the quark and gluon

lines on the top of the diagram are contracted by the projection operator in Eqs. (4.32) and

(4.39), respectively. The diagram in Fig. 4.3(d) includes all partonic Feynman diagrams from

the bottom part of the diagram in Fig. 4.6(b) plus the diagrams with the contact interaction

representing the subleading contribution of the diagram in Fig. 4.6(a).

Following the same derivation for the perturbative corrections to the first set twist-3 cor-

relation functions, we derive the evolution equations for the second set of twist-3 correlation
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functions,

µ2
F

∂

∂µ2
F

T̃∆q,F (x, x+ x2, µF , sT )

=

∫
dξ dξ2

[
T̃∆q,F (ξ, ξ + ξ2, µF , sT )K∆q∆q(ξ, ξ + ξ2, x, x+ x2, αs)

+T̃q,F (ξ, ξ + ξ2, µF , sT )K∆q q(ξ, ξ + ξ2, x, x+ x2, αs)
]

+
∑

i=f,d

∫
dξ dξ2

[
T̃ (i)
G,F (ξ, ξ + ξ2, µF , sT )K

(i)
∆q g(ξ, ξ + ξ2, x, x+ x2, αs)

+ T̃ (i)
∆G,F (ξ, ξ + ξ2, µF , sT )K

(i)
∆q∆g(ξ, ξ + ξ2, x, x+ x2, αs)

]
, (4.58)

and

µ2
F

∂

∂µ2
F

T̃ (i)
∆G,F (x, x+ x2, µF , sT )

=
∑

j=f,d

∫
dξ dξ2

[
T̃ (j)

∆G,F (ξ, ξ + ξ2, µF , sT )K
(ji)
∆g∆g(ξ, ξ + ξ2, x, x+ x2, αs)

+ T̃ (j)
G,F (ξ, ξ + ξ2, µF , sT )K

(ji)
∆g g(ξ, ξ + ξ2, x, x+ x2, αs)

]

+
∑

q

∫
dξ dξ2

[
T̃q,F (ξ, ξ + ξ2, µF , sT )K

(i)
∆g q(ξ, ξ + ξ2, x, x+ x2, αs)

+T̃∆q,F (ξ, ξ + ξ2, µF , sT )K
(i)
∆g∆q(ξ, ξ + ξ2, x, x+ x2, αs)

]
. (4.59)

All evolution kernels in Eqs. (4.58) and (4.59) can be derived by calculating diagrams in Fig. 4.3

with proper projection operators discussed in this section.

Equations (4.56), (4.57), (4.58), and (4.59) form a closed set of evolution equations for

the scale dependence of the two sets of twist-3 quark-gluon and tri-gluon correlation functions

defined in the last section. From these evolution equations, we can construct the evolution
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equations of twist-3 correlation functions that are responsible for the SSAs as,

µ2
F

∂

∂µ2
F

Tq,F (x, x+ x2, µF ) =
1

2

[
µ2
F

∂

∂µ2
F

T̃q,F (x, x+ x2, µF , sT )

+µ2
F

∂

∂µ2
F

T̃q,F (x+ x2, x, µF , sT )

]
, (4.60)

µ2
F

∂

∂µ2
F

T (i)
G,F (x, x+ x2, µF ) =

1

2

[
µ2
F

∂

∂µ2
F

T̃ (i)
G,F (x, x+ x2, µF , sT )

+µ2
F

∂

∂µ2
F

T̃ (i)
G,F (x+ x2, x, µF , sT )

]
, (4.61)

µ2
F

∂

∂µ2
F

T∆q,F (x, x+ x2, µF ) =
1

2

[
µ2
F

∂

∂µ2
F

T̃∆q,F (x, x+ x2, µF , sT )

−µ2
F

∂

∂µ2
F

T̃∆q,F (x+ x2, x, µF , sT )

]
, (4.62)

µ2
F

∂

∂µ2
F

T (i)
∆G,F (x, x+ x2, µF ) =

1

2

[
µ2
F

∂

∂µ2
F

T̃ (i)
∆G,F (x, x+ x2, µF , sT )

−µ2
F

∂

∂µ2
F

T̃ (i)
∆G,F (x+ x2, x, µF , sT )

]
. (4.63)

As we show in the next section, the sum or the difference in the RHS of above equations

determines the symmetry property of these correlation functions when the active momentum

fractions x and x+ x2 are switched.

4.3 Evolution kernels

In the previous two chapters, the calculated SSAs for single inclusive particle production

depend on the first set of twist-3 correlation function, more precisely, they are so-called gluonic

pole contribution or the diagonal part of the correlation functions. The evolution of these diag-

onal correlation functions can be derived by calculating the evolution kernels for the evolution

equations that are derived in the last section at x2 = 0.

The evolution kernels can be derived from the order of αs diagrams in Fig. 4.3 after setting

x2 = 0 or integrating over x2 weighted by δ(x2). We use the light-cone gauge cut vertices

and projection operators derived in the last section to contract the quark and gluon lines at

the bottom and the top of these diagrams, respectively. Since the cut vertices with the middle

gluon in the LHS of the cut are the same as that with the gluon in the RHS of the cut, we
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only need to calculate the cut Feynman diagrams in Fig. 4.3 that have the middle gluon at

the bottom part of the diagrams in one side of the cut. On the other hand, the sum of the

all final-state cuts requires us to calculate all diagrams with the middle gluon on the top part

of the diagrams in both sides of the cut. In addition, we need to calculate the same diagrams

in Fig. 4.3 with the active momentum fractions x and x + x2 switched, as indicated by the

equations in Eq. (4.60) to Eq. (4.63).

Figure 4.7 Feynman diagrams that contribute to the leading order flavor

non-singlet evolution kernel of the twist-3 quark-gluon correla-

tion function.

We start with a detailed calculation of the order of αs evolution kernels for the evolution

equations of T̃q,F (x, x + x2, µF , sT ) and T̃q,F (x + x2, x, µF , sT ), and then, we construct the

evolution equation for Tq,F (x, x, µF ) from Eq. (4.60). Finally, from Eq. (2.23), we have the

diagonal correlation function, Tq,F (x, x, µF ) = 2πTq,F (x, x, µF ). We define

dIqq ≡
∫
dx2 δ(x2) dKqq(ξ, ξ + ξ2, x, x+ x2, αs) , (4.64)
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where dKqq is given by the diagrams in Fig. 4.3(a) with the cut vertex in Eq. (4.9) and the

projection operator in Eq. (4.32). We list in Fig. 4.7 all cut Feynman diagrams at order of

αs with the gluon at the cut vertex in the LHS of the cut. Diagrams labeled from (a) to (m)

have the top middle gluon in the LHS of the cut while the diagrams from (n) to (q) have

the top middle gluon in the RHS of the cut. The quark propagator with a short bar for the

diagrams labeled by (l), (m), (n), and (o) is the special propagator introduced in Ref. [45] to

represent the contact interaction. These diagrams represent the contribution from the diagram

in Fig. 4.2(a) that is necessary to make the full twist-3 contribution gauge invariant. In the

n · A = 0 light-cone gauge, the Feynman rule for the special quark propagator of momentum

k is [45]

iγ · n
2k · n

k2

k2 + iǫ
. (4.65)

Having the cut vertex and the projection operator for the bottom and top quark and gluon lines,

respectively, calculation of these Feynman diagrams in Fig. 4.7 is straightforward. In particular,

after setting x2 = 0 or integrating over x2 weighted by the δ(x2), all diagrams labeled from (f)

to (q) give the vanishing contribution to the diagonal evolution kernel, Kqq(ξ, ξ + ξ2, x, x, αs).

Using the technique introduced in Ref. [43], we find the following results for the rest of diagrams,

dI(a)
qq = δ(ξ2)

1

ξ

∫ µ2
F dk2

T

k2
T

[
CF − CA

2

]
αs
2π

(
1 + z2

1 − z

)
, (4.66)

dI(b)
qq = δ(ξ − x)

1

ξ2

∫ µ2
F dk2

T

k2
T

[
CA
2

]
αs
2π

(
1

2

2x+ ξ2
x+ ξ2

)
, (4.67)

dI(c)
qq = δ(ξ + ξ2 − x)

1

ξ

∫ µ2
F dk2

T

k2
T

[
CA
2

]
αs
2π

(
1

2

1 + z

1 − z

)
, (4.68)

dI(d+e)
qq = −δ(ξ2) δ(ξ − x)

∫ µ2
F dk2

T

k2
T

∫ 1

0
dz [CF ]

αs
2π

(
1 + z2

1 − z

)
. (4.69)

In above equations, z = x/ξ and the color factor for each diagram is explicitly shown in the

square brackets with CF = (N2
c − 1)/2Nc, CA = Nc and Nc = 3, the number of color. We

notice that the RHS of the last equation from the diagrams (d) and (e) is infrared divergent,

and the divergence is needed to cancel the infrared divergence from the term proportional to
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CF in Eq. (4.66) when z → 1. This cancellation of infrared divergence between the real and

virtual diagrams is the same as that takes place in the evolution kernel of normal PDFs [43].

The remaining infrared divergence as z → 1 in Eq. (4.66) is proportional to a different color

factor, CA/2, and is cancelled by the contribution from diagrams (b) and (c).

From the same Feynman diagrams in Fig. 4.7, we can also calculate the contribution from

T̃∆q,F ,

dIq∆q ≡
∫
dx2 δ(x2) dKq∆q(ξ, ξ + ξ2, x, x+ x2, αs) (4.70)

by using the projection operator in Eq. (4.39). In this case, only diagrams (b) and (c) give

nonvanishing results,

dI(b)
q∆q = δ(ξ − x)

∫ µ2
F dk2

T

k2
T

[
CA
2

]
αs
2π

(
1

2

1

x+ ξ2

)
, (4.71)

dI(c)
q∆q = −δ(ξ + ξ2 − x)

1

ξ

∫ µ2
F dk2

T

k2
T

[
CA
2

]
αs
2π

(
1

2

)
. (4.72)

By comparing above calculated results with Eq. (4.41), we extract evolution kernels, Kqq(ξ, ξ+

ξ2, x, x) and Kq∆q(ξ, ξ+ξ2, x, x). By calculating the same diagrams in Fig. 4.3 with momentum

fractions ξ and x switched with ξ + ξ2 and x + x2, respectively, we derive evolution kernels,

Kqq(ξ + ξ2, ξ, x, x) and Kq∆q(ξ + ξ2, ξ, x, x). By integrating Eq. (4.60) over x2 weighted by

δ(x2) or simply setting x2 = 0, we obtain the order of αs evolution equation for Tq,F (x, x, µF )

from flavor non-singlet interactions,

∂Tq,F (x, x, µF )

∂lnµ2
F

=
αs
2π

∫ 1

x

dξ

ξ

{
Pqq(z)Tq,F (ξ, ξ, µF )

+
CA
2

[
1 + z2

1 − z
[Tq,F (ξ, x, µF ) − Tq,F (ξ, ξ, µF )] + z Tq,F (ξ, x, µF )

]

+
CA
2

[
T∆q,F (x, ξ, µF )

]}
, (4.73)
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where

Pqq(z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
(4.74)

is the LO quark-to-quark splitting function for the normal PDFs. The standard definition of

“+” distribution is

∫ 1

x
dz

f(z)

(1 − z)+
=

∫ 1

x
dz
f(z) − f(1)

1 − z
+ f(1) ln(1 − x) (4.75)

for a smooth function f(z). In deriving Eq. (4.73), Eqs. (2.19) and (2.28) were used. It is

clear from Eq. (4.73) that the flavor non-singlet evolution kernels for the diagonal twist-3

quark-gluon correlation function Tq,F (x, x, µF ) = 2πTq,F (x, x, µF ) are all infrared safe. The

evolution equation for the diagonal correlation function Tq,F (x, x, µF ) is not a closed one since

it gets contribution not only from the same diagonal function Tq,F (ξ, ξ, µF ) but also from the

off-diagonal part of the same function as well as gets the contribution from a different function

T∆q,F (x, ξ, µF ).

In the rest of this section, we derive the order of αs evolution kernels involving gluons as

well as those with the flavor change. In Fig. 4.8, we list all cut Feynman diagrams at the order

of αs that could contribute to the evolution kernels, K
(ij)
gg and K

(ij)
∆g∆g with i, j = f, d, when

proper cut vertices and projection operators are used. The gluon propagator with a short bar

in the diagrams (l), (m), (n), and (o) is the gluonic special propagator defined in Ref. [45],

given by

inαnβ

(k · n)2
k2

k2 + iǫ
, (4.76)

which represents the contact interaction. The diagrams with the contact interaction are respon-

sible for the twist-3 contribution from the diagram in Fig. 4.4(a). We calculate all diagrams

with the cut vertices and projection operators derived in last section and setting x2 = 0. We

find that after taking x2 = 0 or integrating over x2 weighted with δ(x2), only diagrams (a),
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Figure 4.8 Feynman diagrams that contribute to the leading order evo-

lution kernel from the tri-gluon correlation functions to the

tri-gluon correlation function.

(b), (c), (d), (e), (f), and (g) give the nonvanishing contribution to the evolution kernel, K
(i,j)
gg ,

dI(a)
gg = 2π δ(ξ2)

1

ξ

∫ µ2
F dk2

T

k2
T

[
CA − CA

2

]
αs
2π

2z

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)
;(4.77)

dI(b)
gg = 2π δ(ξ − x)

1

ξ2

∫ µ2
F dk2

T

k2
T

[
CA
2

]
αs
2π

(
1

2

x2 + (x+ ξ2)
2

(x+ ξ2)2

)
; (4.78)

dI(c)
gg = 2π δ(ξ + ξ2 − x)

1

ξ

∫ µ2
F dk2

T

k2
T

[
CA
2

]
αs
2π

(
1

2

1 + z2

1 − z

)
; (4.79)

dI(d+e)
gg = −2π δ(ξ2) δ(ξ − x)

∫ µ2
F dk2

T

k2
T

∫ 1

0
dz

1

2
[CA]

×αs
2π

2

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)
; (4.80)

dI(f+g)
gg = −2π δ(ξ2) δ(ξ − x)

∫ µ2
F dk2

T

k2
T

∫ 1

0
dz

1

2
(2nf )

[
1

2

]
αs
2π

(
(1 − z)2 + z2

)
, (4.81)

where nf = 1, 2, ... the number of active quark flavors and the color factors are shown in the

square brackets. We find that the results from Eq. (4.77) to (4.81) are the same for the evolution
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kernel K
(ff)
gg and K

(dd)
gg . All evolution kernels of the crossing contribution K

(fd)
gg = K

(df)
gg = 0.

By adding the flavor changing contribution to the evolution kernels from Figs. 4.9 and

4.10, and adding the contributions from the same diagrams but with their parton momentum

fractions ξ and ξ + ξ2 switched, we derive the order of αs evolution equations for the diagonal
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twist-3 quark-gluon and tri-gluon correlation functions defined in Eq. (2.23),

∂Tq,F (x, x, µF )

∂lnµ2
F

=
αs
2π

∫ 1

x

dξ

ξ

{
Pqq(z)Tq,F (ξ, ξ, µF )

+
CA
2

[
1 + z2

1 − z
[Tq,F (ξ, x, µF ) − Tq,F (ξ, ξ, µF )] + z Tq,F (ξ, x, µF )

]

+
CA
2

[
T∆q,F (x, ξ, µF )

]

+Pqg(z)

(
1

2

)[
T

(d)
G,F (ξ, ξ, µF ) + T

(f)
G,F (ξ, ξ, µF )

]}
; (4.82)

∂Tq̄,F (x, x, µF )

∂lnµ2
F

=
αs
2π

∫ 1

x

dξ

ξ

{
Pqq(z)Tq̄,F (ξ, ξ, µF )

+
CA
2

[
1 + z2

1 − z
[Tq̄,F (ξ, x, µF ) − Tq̄,F (ξ, ξ, µF )] + z Tq̄,F (ξ, x, µF )

]

+
CA
2

[
T∆q̄,F (x, ξ, µF )

]

+Pqg(z)

(
1

2

)[
T

(d)
G,F (ξ, ξ, µF ) − T

(f)
G,F (ξ, ξ, µF )

]}
; (4.83)

∂T
(f)
G,F (x, x, µF )

∂lnµ2
F

=
αs
2π

∫ 1

x

dξ

ξ

{
Pgg(z)T

(f)
G (ξ, ξ, µF )

+
CA
2

[
2

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)[
T

(f)
G,F (ξ, x, µF ) − T

(f)
G,F (ξ, ξ, µF )

]

+2

(
1 − 1 − z

2z
− z(1 − z)

)
T

(f)
G,F (ξ, x, µF )

]

+
CA
2

[
(1 + z)T

(f)
∆G,F (x, ξ, µF )

]

+Pgq(z)

(
N2
c

N2
c − 1

)∑

q

[Tq,F (ξ, ξ, µF ) − Tq̄,F (ξ, ξ, µF )]

}
; (4.84)

∂T
(d)
G,F (x, x, µF )

∂lnµ2
F

=
αs
2π

∫ 1

x

dξ

ξ

{
Pgg(z)T

(d)
G,F (ξ, ξ, µF )

+
CA
2

[
2

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)[
T

(d)
G,F (ξ, x, µF ) − T

(d)
G,F (ξ, ξ, µF )

]

+2

(
1 − 1 − z

2z
− z(1 − z)

)
T

(d)
G,F (ξ, x, µF )

]

+
CA
2

[
(1 + z)T

(d)
∆G,F (x, ξ, µF )

]

+Pgq(z)

(
N2
c − 4

N2
c − 1

)∑

q

[Tq,F (ξ, ξ, µF ) + Tq̄,F (ξ, ξ, µF )]

}
. (4.85)

In above evolution equations, the LO quark-to-quark splitting function is given in Eq. (4.74),



84

and the rest LO parton-to-parton splitting functions for the normal PDFs are given by

Pqg(z) =
1

2

[
(1 − z)2 + z2

]
,

Pgg(z) = 2CA

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]
+

(
CA

11

6
− nf

3

)
δ(1 − z) ,

Pgq(z) = CF

[
(1 − z)2 + 1

z

]
. (4.86)

Figure 4.9 Feynman diagrams that contribute to the leading order evo-

lution kernel from the tri-gluon correlation functions to the

quark-gluon correlation function.

Figure 4.10 Feynman diagrams that contribute to the leading order evolu-

tion kernel from the quark-gluon correlation functions to the

tri-gluon correlation functions.

Our explicit calculation also verifies that evolution equations for the diagonal parts of the

second set of twist-3 correlation functions vanish,

∂T∆q(q̄),F (x, x, µF )

∂lnµ2
F

= 0 ,
∂T

(f,d)
∆G,F (x, x, µF )

∂lnµ2
F

= 0 , (4.87)

which are consistent with the antisymmetric nature of the second set of twist-3 correlation

functions. The off-diagonal correlation functions in Eqs. (4.82) to (4.85) are defined as in

Eq. (2.33).
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Equations from (4.82) to (4.85) plus Eq. (4.87) form a complete set of evolution equations

of the diagonal twist-3 correlation functions relevant to the leading gluonic pole contribution

to the SSAs. All evolution kernels at the order of αs are infrared safe and perturbatively

calculated. However, unlike the evolution equations for the full twist-3 correlation functions

from Eq. (4.60) to Eq. (4.63), these evolution equations do not form a closed equation set.

The evolution equations of the diagonal twist-3 correlation functions have a lot in common

with the DGLAP evolution equations of normal PDFs. Every channel of parton-to-parton

evolution kernel is led by a term that is proportional to the DGLAP splitting function and the

diagonal twist-3 correlation functions. All other terms are either proportional to the difference

between the diagonal and the off-diagonal correlation functions or proportional to the off-

diagonal correlation functions. Therefore, we expect that the scale dependence of the diagonal

part of the twist-3 correlation functions is more close to the scale dependence of spin-averaged

PDFs, not the spin-dependent helicity distributions.

Unlike the normal PDFs, the quark-gluon and antiquark-gluon correlation functions could

have a different evolution equation unless the tri-gluon correlation function T
(f)
G,F = 0. The

difference was caused by the difference in color contraction for T
(f)
G,F and T

(d)
G,F . As we show

in Chapter 3, the production of open charm mesons in SIDIS or hadron-hadron collisions can

provide the excellent information on the tri-gluon correlation functions. If T
(f)
G,F 6= 0, the differ-

ence between the quark-gluon and antiquark-gluon correlation functions could be enhanced as

the scale evolves. The difference should lead to interesting measurable consequences when we

compare the SSAs generated by the quark-gluon correlation with that by the antiquark-gluon

correlation.

It was argued in Ref. [50] that one of the two tri-gluon correlation functions T
(f)
G,F can be

related to the moment of a TMD gluon distribution, known as the gluonic Sivers function, in

terms of their operator definitions. However, the other tri-gluon correlation function T
(d)
G,F does

not have a direct operator connection to the TMD gluon distribution. Equation (4.85) indicates

that within QCD collinear factorization formalism, the T
(d)
G,F can be generated perturbatively

from the quark-gluon and antiquark-gluon correlation functions as long as Tq,F (x, x, µF ) +
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Tq̄,F (x, x, µF ) 6= 0 or T
(d)
∆G,F (x, ξ, µF ) 6= 0, even if T

(d)
G,F vanishes at one scale.

To complete this section, we state that we also examined the infrared sensitivity of the

order of αs evolution kernels for correlation functions that give the leading fermionic pole

contribution to the SSAs. The fermionic pole contribution is generated by the off-diagonal

correlation functions, Tq,F (0, x, µF ), TG,F (0, x, µF ), T∆q,F (0, x, µF ), and T∆G,F (0, x, µF ) (or

equivalently from Tq,F (x, 0, µF ), TG,F (x, 0, µF ), T∆q,F (x, 0, µF ), and T∆G,F (x, 0, µF ) for the

diagrams in which the gluon at the cut vertex is in the RHS of the cut). At the order of αs,

all evolution kernels are also infrared safe. For example, the flavor non-singlet evolution kernel

for the quark-gluon correlation function T̃q,F can be calculated from the diagrams in Fig. 4.7

by setting x = 0. We find that after setting x = 0, only diagrams (a), (b), (c), (e), (f), and (g)

in Fig. 4.7 give nonvanishing contribution to the evolution kernel. Again, the evolution kernel

is infrared safe and all infrared divergences cancel between diagrams. It will be interesting

to derive the full evolution equations for the off-diagonal twist-3 correlation functions in the

future.

4.4 Scale dependence

In this section, we study the scale dependence of the diagonal twist-3 quark-gluon and

tri-gluon correlation functions relevant to SSAs by solving the evolution equations derived in

the last section.

Since the evolution equations for the diagonal twist-3 correlation functions from Eq. (4.82)

to (4.85) do not form a closed set of differential equations, we need to make a model for

off-diagonal correlation functions before we can study the scale dependence of the diagonal

correlation functions. For the following numerical study, we introduce the following model

to express the symmetric off-diagonal correlation functions in terms of diagonal correlation

functions and a universal width,

Tq,F (x1, x2, µF ) =
1

2
[Tq,F (x1, x1, µF ) + Tq,F (x2, x2, µF )] e−

(x1−x2)2

2σ2 ,

T (f,d)
G,F (x1, x2, µF ) =

1

2

[
T (f,d)
G,F (x1, x1, µF ) + T (f,d)

G,F (x2, x2, µF )
]
e−

(x1−x2)2

2σ2 , (4.88)
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where both Tq,F and T (f,d)
G,F are symmetric in exchange of x1 and x2 and the σ is a width

for the strength of the off-diagonal correlation. However, the off-diagonal correlation function

T
(f,d)
G,F (x1, x2, µF ) defined in Eq. (2.33) is not symmetric. From Eq. (4.88), we have

T
(f,d)
G,F (x1, x2, µF ) =

1

2

[
T

(f,d)
G,F (x1, x1, µF ) +

x2

x1
T

(f,d)
G,F (x2, x2, µF )

]
e−

(x1−x2)2

2σ2 . (4.89)

We choose the width σ such that

e−
(x1−x2)2

2σ2 ∼ 0 (4.90)

when |x1 −x2| → 1. In Fig. 4.11, we plot the factor e−
x2

2σ2 as a function of x for σ = 1/4 (solid

line) and 1/8 (dashed line).
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Figure 4.11 The factor e−
x2

2σ2 as a function of x for σ = 1/4 (solid) and

σ = 1/8 (dashed).

To numerically solve the evolution equations in Eqs. (4.82) to (4.85), we choose the fol-

lowing input correlation functions at µF0 = 2 GeV. For the quark-gluon correlation function

Tq,F (x, x, µF0), we choose the Fit. II of the quark-gluon correlation function Tq,F (x, x, µF ) from

Ref. [27]. For the tri-gluon correlation functions, we follow Eq. (3.57) in chapter 3,

T
(f)
G,F (x, x, µF0) = λf G(x, µF0) T

(d)
G,F (x, x, µF0) = λdG(x, µF0) (4.91)

with λf = λd = +0.07 GeV at µF0 = 2 GeV and CTEQ6L unpolarized gluon distribution
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[13]. As an approximation, we also set T∆q,F (x, ξ, µF ) = 0 and T∆G,F (x, ξ, µF ) = 0 for less

parameters since they have vanishing diagonal contribution and the size of the off-diagonal

part could be smaller than that of set one correlation functions. For a better convergence of

the numerical solution, we use the linear combination of the two tri-gluon correlation functions,

T
(±)
G,F = T

(d)
G,F ± T

(f)
G,F , when we solve for the evolution equations.
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Figure 4.12 Twist-3 up-quark-gluon correlation Tu,F (x, x, µF ) as a func-

tion of x at µF = 4 GeV (left) and µF = 10 GeV (right).

The factorization scale dependence is a solution of the flavor

non-singlet evolution equation in Eq. (4.73). Solid and dot-

ted curves correspond to σ = 1/4 and 1/8, while the dashed

curve is obtained by keeping only the DGLAP evolution kernel

Pqq(z) in Eq. (4.73).
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Figure 4.13 Twist-3 down-quark-gluon correlation Td,F (x, x, µF ) as a func-

tion of x at µF = 4 GeV (left) and µF = 10 GeV (right). Solid

and dotted curves correspond to σ = 1/4 and 1/8, while the

dashed curve is obtained by keeping only the DGLAP evolu-

tion kernel Pqq(z) in Eq. (4.73).
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We first solve the flavor non-singlet evolution equation for the quark-gluon correlation

function in Eq. (4.73) to test the relative role of the normal DGLAP evolution term that is

proportional to Pqq(z) and the new piece that depends on the off-diagonal correlation function.

In Fig. 4.12, we plot the twist-3 up-quark-gluon correlation Tu,F (x, x, µF ) as a function of x at

the factorization scale µF = 4 GeV (left) and µF = 10 GeV (right). The difference between the

left figure and the one on the right indicates the evolution of the twist-3 correlation functions.

The factorization scale dependence is a solution of the flavor non-singlet evolution equation in

Eq. (4.73). Solid and dotted curves correspond to two different choices of the width for the

off-diagonal input correlation function at σ = 1/4 and 1/8, respectively. The dashed curve

is obtained by keeping only the DGLAP evolution kernel Pqq(z) when we solve the flavor

non-singlet evolution equation in Eq. (4.73). Similarly, we plot the twist-3 down-quark-gluon

correlation Td,F (x, x, µF ) as a function of x at the factorization scale µF = 4 GeV (left) and

µF = 10 GeV (right) in Fig. 4.13. Unlike the up-quark-gluon correlation function Tu,F , the

down-quark-gluon correlation function Td,F is negative [16]. Figures 4.12 and 4.13 clearly

show that the scale dependence of the diagonal twist-3 quark-gluon correlation function does

follow the evolution of the unpolarized quark distribution. The difference between the solid

and the dashed curves indicates that the effect of non-DGLAP type contribution from the off-

diagonal correlation function could be very important at small x if the width of the off-diagonal

correlation function is large.

In Figs. 4.14 and 4.15, we plot the twist-3 up-quark-gluon and down-quark-gluon correlation

functions, Tu,F (x, x, µF ) and Td,F (x, x, µF ), as a function of x at µF = 4 GeV (left) and

µF = 10 GeV (right). The only difference between the solid and dotted curves in these

figures and those in Figs. 4.12 and 4.13 is that we use the full set of evolution equations in

Eq. (4.82) through (4.85) to solve for the factorization scale dependence of these correlation

functions. The dashed curves represent the quark-gluon correlation functions obtained from

the parametrization of Fit II in Ref. [27] by assuming all quark-gluon and tri-gluon correlation

functions obey the DGLAP evolution. We find that non-DGLAP terms in the full evolution

equations for the diagonal twist-3 correlation functions play a significant role in modifying the
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Figure 4.14 Twist-3 up-quark-gluon correlation Tu,F (x, x, µF ) as a func-

tion of x at µF = 4 GeV (left) and µF = 10 GeV (right).

The factorization scale dependence is obtained by solving the

full set of evolution equations in Eq. (4.82) through (4.85).

Solid and dotted curves correspond to σ = 1/4 and 1/8 for

the width of input off-diagonal correlation functions. The

dashed curves represent the quark-gluon correlation functions

obtained from the parametrization of Fit II in Ref. [27] by

assuming all quark-gluon and tri-gluon correlation functions

obey the DGLAP.

evolution of these correlation functions at small x, where the role of the off-diagonal correlation

functions is enhanced due to a larger available phase space for the evolution kernels. The extra

enhancement of the solid and dotted curves over the dashed curves in Figs. 4.14 and 4.15 is

mainly from the term proportional to the sum of both tri-gluon correlation functions T
(f)
G,F and

T
(d)
G,F that we assumed to have the same sign.

In Figs. 4.16 and 4.17, we plot the twist-3 tri-gluon correlation functions, T
(f)
G,F (x, x, µF )

and T
(d)
G,F (x, x, µF ), as a function of x at µF = 4 GeV (left) and µF = 10 GeV (right),

respectively. Solid and dotted curves are from solving the full evolution equations with the

input correlation functions evaluated at σ = 1/4 and 1/8, respectively. Dashed curves are given

by the normal CTEQ6L gluon distribution multiplied by the normalization constant λf (or

λd), which corresponds to making an assumption that all twist-3 correlation functions obey the

DGLAP evolution, like the normal unpolarized PDFs. We notice that for the evolution of tri-

gluon correlation functions, the difference in color factor for the DGLAP-type terms in the full

evolution equations tends to compensate the contribution from the terms proportional to the
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Figure 4.15 Twist-3 down-quark-gluon correlation Td,F (x, x, µF ) as a func-

tion of x at µF = 4 GeV (left) and µF = 10 GeV (right). all

curves are defined in the same way as those in Fig. 4.14.

off-diagonal correlation functions, so that the evolution of the tri-gluon correlation functions

follow more closely to the DGLAP evolution as shown in Figs. 4.16 and 4.17.

We complete this section by stressing that the scale dependence presented in this section is

sensitive to our assumption to neglect the role of the second set of twist-3 correlation functions

and our model for the input tri-gluon correlation functions (equal and positive at the input

scale). Although the overall features found here should be valid, the precise numerical values

of these correlation functions should be extracted from a consistent global QCD analysis by

comparing experimental data on SSAs and corresponding theoretical calculations, like what

have been done to test the leading power QCD factorization formalism [13, 14]. The new

evolution equation derived here is the necessary step to make such a consistent global QCD

analysis possible for twist-3 correlation functions relevant to SSAs.
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Figure 4.16 Twist-3 tri-gluon correlation function T
(f)
G,F (x, x, µF ) as a func-

tion of x at µF = 4 GeV (left) and µF = 10 GeV (right).

Dashed curves are from T
(f)
G,F (x, x, µF ) = λf G(x, µF ), and

solid and dotted curves are from solving the full evolution

equations with σ = 1/4 and 1/8 for the input correlation func-

tions, respectively.
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Figure 4.17 Twist-3 tri-gluon correlation function T
(d)
G,F (x, x, µF ) as a func-

tion of x at µF = 4 GeV (left) and µF = 10 GeV (right).

Dashed curves are from T
(d)
G,F (x, x, µF ) = λdG(x, µF ), and

solid and dotted curves are from solving the full evolution

equations with σ = 1/4 and 1/8 for the input correlation func-

tions, respectively.
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CHAPTER 5. Transverse momentum dependent parton distributions

We have demonstrated that SSAs of cross sections, whose observed momentum scales are

much larger than ΛQCD, can be described in terms of the collinear factorization approach.

When the momentum transfer of the partonic collisions Q is much larger than the typical

transverse momentum of active partons k⊥, the collinear factorization approach expands the

active parton momentum entering the hard collision around its large collinear component

k ≈ k‖ ∼ Q. The leading contribution of the collinear expansion does not generate the

SSAs because of the parity and time-reversal invariance of QCD. That is, the nonvanishing

SSA has to be a consequence of parton’s transverse motion or quantum interference between

scattering amplitudes with different number of active partons. As demonstrated in last three

chapters, SSAs in the collinear factorization approach are determined by the twist-3 three-

parton correlation functions. These correlation functions can be related to the moments of

transverse momentum dependent (TMD) parton distributions [51]

Tq,F (x, x) =

∫
d2k⊥k⊥

1

2
∆Nfq/h↑(x, k⊥) . (5.1)

That is, the SSA in the collinear factorization approach measures the integrated effect of the

parton’s transverse motion inside a transversely polarized hadron. This is because the cross

sections with one large momentum transfer Q is not very sensitive to the parton’s transverse

motion when k⊥ ≪ Q.

The TMD function ∆Nfq/h↑(x, k⊥) is the spin-dependent part of the TMD parton distri-

bution fq/h↑(x,k⊥, ~S⊥), which is interpreted to be a probability density to find a parton of

flavor q with longitudinal momentum fraction x and transverse momentum k⊥ inside a hadron

h of transverse spin ~S⊥ [54, 55, 56, 57, 58]. Unlike the three-parton correlation function in the
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collinear factorization approach, which provides the net or integrated spin dependence of the

parton’s transverse motion inside a polarized hadron, TMD parton distribution provides the

direct information on the spin dependence of parton’s transverse motion at a given transverse

momentum k⊥. Extracting the TMD parton distribution provides very valuable information

on partonic dynamics inside a polarized hadron.

However, high energy collision experiments measure the cross section and the spin depen-

dence of the cross sections. It is the QCD factorization that connects the measured cross

sections to the gauge invariant nonperturbative distributions or correlation functions. That is,

we need to factorize the cross sections in terms of TMD parton distributions.

It has been shown that cross sections with two very different momentum scales Q≫ qT &

ΛQCD, such as Drell-Yan dilepton production with lepton pair’s invariant mass Q much larger

than the pair’s transverse momentum qT , could be factorized in terms of the TMD parton

distributions [56]. In this TMD factorization approach, the SSAs are attributed to the Sivers

function [59], which is the spin dependent part of the TMD parton distributions. If a final-

state hadron was observed, the SSAs could be generated by the Collins function [60], which

describes the asymmetric hadron formation around the direction of a transversely polarized

parton. This TMD factorization approach to the SSAs has also been applied extensively in

phenomenological studies of SSAs [24].

The twist-3 collinear factorization approach is more relevant to the cross section with

all observed momentum scales are much larger than ΛQCD. On the other hand, the TMD

factorization approach is more relevant to the observables with at least one large momentum

scale to ensure the perturbative calculation and at least one small scale that is sensitive to

the parton’s transverse momentum. Although the twist-3 collinear approach and the TMD

approach each have their kinematic domain of validity, they were shown to be consistent

with each other in the kinematic regime where they both apply [32]. Each approach has its

advantage and disadvantage. The twist-3 collinear factorization approach seems to work for

more high energy observables or cross sections, but, it only probes the integrated effect of

parton’s transverse motion. On the other hand, the TMD factorization approach relates the
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cross section to TMD parton distributions, and directly probe the spin dependence of parton’s

transverse motion at a given k⊥. But, the TMD factorization can only apply to a very limited

number of cross sections [58]. These two approaches complement to each other.

However, there is one crucial difference between these two factorization approaches besides

the difference in kinematic regimes where they apply. The Sivers function in the TMD factor-

ization approach could be process dependent, while all distribution functions in the collinear

factorization approach are universal. It was predicted by Collins [54] on the basis of time-

reversal arguments that the quark Sivers function in semi-inclusive deep inelastic scattering

(SIDIS) and in Drell-Yan process (DY) have the same functional form but an opposite sign,

a time-reversal modified universality. In this chapter, we derive the same time-reversal mod-

ified universality for both quark and gluon Sivers function from the parity and time-reversal

invariance of QCD.

The experimental check of this time-reversal modified universality of the Sivers function

would provide a critical test for the TMD factorization approach [54, 55, 56, 57, 58]. Recently,

the quark Sivers function has been extracted from data of SIDIS experiments [61]. Future

measurements of the SSAs in DY production have been planned [62]. Since the W production

shares the same Sivers function as DY, and will be available very soon at RHIC [63], we

calculate the SSAs of W production, and the induced SSAs of the inclusive single lepton

production from the decay of W bosons at RHIC experiment. We find that although the

asymmetry is diluted from the decay of W bosons, the lepton asymmetry is significant and

measurable for a good range of lepton rapidity at RHIC. We show that the lepton SSAs provide

the better flavor separation of the quark Sivers function than what the standard DY can do. We

also show that the lepton SSAs are sharply peaked at transverse momentum pT ∼MW /2 with

W mass MW . Since leptons from heavy quarkonium decay and other potential backgrounds

are unlikely to be peaked at the pT ∼ MW /2, we argue that the SSA of inclusive high pT

leptons at RHIC is an excellent observable for testing the time-reversal modified universality

of the Sivers function.
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5.1 The QCD prediction

The predictive power of the TMD factorization approach to the SSAs relies on the uni-

versality of the TMD parton distributions. For the lepton-hadron SIDIS, ℓ(l) + h(p, ~S) →

ℓ′(l′) + h′(p′) + X, the factorized TMD quark distribution has the following gauge invariant

operator definition [64],

fSIDIS
q/h↑ (x,k⊥, ~S) =

∫
dy−d2y⊥

(2π)3
eixp

+y−−ik⊥·y⊥〈p, ~S|ψ̄(0−,0⊥)Φ†
n({∞, 0},0⊥)

×Φ†
n⊥

(∞, {y⊥,0⊥})
γ+

2
Φn({∞, y−},y⊥)ψ(y−,y⊥)|p, ~S〉, (5.2)

where y+ = 0+ dependence is suppressed and the gauge links from the final-state interaction

of SIDIS are

Φn({∞, y−},y⊥) ≡ Pe−ig
R ∞
y−

dy−1 n
µAµ(y−1 ,y⊥) ,

Φn⊥
(∞, {y⊥,0⊥}) ≡ Pe−ig

R y⊥
0⊥

dy′
⊥n

µ
⊥Aµ(∞,y′

⊥)
, (5.3)

where P indicates the path ordering and the direction n⊥ is pointed from 0⊥ to y⊥, nµ and

n̄µ are given in Eq. (2.7).

For the DY, h(p, ~S)+h′(p′) → γ∗(Q)[→ ℓ+ℓ−]+X, the factorized TMD quark distribution

is given by

fDY
q/h↑(x,k⊥, ~S) =

∫
dy−d2y⊥

(2π)3
eixp

+y−−ik⊥·y⊥〈p, ~S|ψ̄(0−,0⊥)Φ†
n({−∞, 0},0⊥)

×Φ†
n⊥

(−∞, {y⊥,0⊥})
γ+

2
Φn({−∞, y−},y⊥)ψ(y−,y⊥)|p, ~S〉, (5.4)

where the past pointing gauge links were caused by the initial-state interactions of DY produc-

tion [54]. From Eqs. (5.2) and (5.4), it is easy to show that the collinear quark distributions

are process independent,

∫
d2k⊥f

SIDIS
q/h↑ (x,k⊥, ~S) =

∫
d2k⊥f

DY
q/h↑(x,k⊥, ~S), (5.5)
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if the same renormalization scheme was used for the ultraviolet divergence of the k⊥ integration.

Let |α〉 = |p, ~S〉 and 〈β| be equal to the rest of the matrix element in Eq. (5.2) [65]. From

the parity and time-reversal invariance of QCD, 〈αP |βP 〉 = 〈α|β〉 and 〈βT |αT 〉 = 〈α|β〉, where

|αP 〉 and |βP 〉, and |αT 〉 and |βT 〉 are the parity and time-reversal transformed states from the

states |α〉 and |β〉, respectively, we derive

fSIDIS
q/h↑ (x,k⊥, ~S) = fDY

q/h↑(x,k⊥,−~S) , (5.6)

thus the spin-averaged TMD quark distributions are process independent. Following the no-

tation of Ref. [61], we expand the TMD quark distribution as

fq/h↑(x,k⊥, ~S) ≡ fq/h(x, k⊥) +
1

2
∆Nfq/h↑(x, k⊥) ~S ·

(
p̂× k̂⊥

)
(5.7)

where k⊥ = |k⊥|, p̂ and k̂⊥ are the unit vectors of ~p and k⊥, respectively, fq/h(x, k⊥) is the

spin-averaged TMD distribution, and ∆Nfq/h↑(x, k⊥) is the Sivers function [59]. Substituting

Eq. (5.7) into Eq. (5.6), we obtain,

∆NfSIDIS
q/h↑ (x, k⊥) = −∆NfDY

q/h↑(x, k⊥) , (5.8)

which confirms the Collins’ prediction [54] that the Sivers function in SIDIS and in DY differ

by a sign.

We define the gauge invariant TMD gluon distribution in SIDIS and in DY by replacing

the quark operator ψ̄(γ+/2)ψ in Eqs. (5.2) and (5.4) by the gluon operator F+µF+ν(−gµν),

and the gauge links by those in the adjoint representation of SU(3) color. From the parity and

time-reversal invariance of the matrix elements of the TMD gluon distribution, we find, like

Eq. (5.6),

fSIDIS
g/h↑ (x,k⊥, ~S) = fDY

g/h↑(x,k⊥,−~S) . (5.9)

Applying Eq. (5.7) to the gluon TMD distribution, we derive the same time-reversal modified
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universality for the gluon Sivers function,

∆NfSIDIS
g/h↑ (x, k⊥) = −∆NfDY

g/h↑(x, k⊥) . (5.10)

The sign change of the Sivers function is a property of the gauge invariant TMD parton

distributions.

5.2 SSAs from W production

In this section, we first calculate the SSAs of W production at RHIC and then the SSAs

of single lepton production from the decay of W bosons.

5.2.1 SSAs for W boson

We consider the following process,

A(pA, ~S⊥) +B(pB) →W±(q) +X , (5.11)

where A is a proton with momentum pA and transverse spin vector ~S⊥, B is another colliding

proton with momentum pB. We will use the TMD factorization formalism becauseW bosons at

RHIC are likely produced with transverse momentum |q⊥| ≪MW [63]. We work in a frame in

which the polarized hadron A moves in the +z-direction. For the production of reconstructed

W bosons, we label the momenta of colliding partons and the W in light-cone component as

pµa =

[
xa

√
s

2
,

k2
a⊥

xa
√

2 s
, ka⊥

]
,

pµb =

[
k2
b⊥

xb
√

2 s
, xb

√
s

2
, kb⊥

]
,

qµ =

[
MT√

2
eyW ,

MT√
2
e−yW , q⊥

]
, (5.12)
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where yW is W rapidity andMT ≡
√
M2
W + |q⊥|2. At leading order, we have the spin-averaged

W cross section,

dσAB→W

dyW d2q⊥
= σ0

∑

a,b

|Vab|2
∫
d2ka⊥d

2kb⊥fa/A(xa, ka⊥)

×fb/B(xb, kb⊥) δ2(q⊥ − ka⊥ − kb⊥), (5.13)

where σ0 = (π/3)
√

2 GFM
2
W /s is the lowest order partonic cross section with the Fermi weak

coupling constant GF and s = (pA + pB)2,
∑

ab runs over all light (anti)quark flavors, Vab

are the CKM matrix elements for the weak interaction, and fi/h(xi, ki⊥) with i = a, b and

h = A,B are spin-averaged TMD (anti)quark distribution of flavor i in hadron h, which are

process independent. The parton momentum fractions in Eq. (5.13) are given by

xa =
MW√
s
eyW , xb =

MW√
s
e−yW (5.14)

to the leading power in q2⊥/M
2
W . Similarly, we have the leading order factorized spin-dependent

W cross section ∆σ(~S⊥) as

d∆σA↑B→W (~S⊥)

dyW d2q⊥
=

σ0

2

∑

a,b

|Vab|2
∫
d2ka⊥d

2kb⊥ ~S⊥ · (p̂A × k̂a⊥)

×∆NfDY
a/A↑(xa, ka⊥)fb/B(xb, kb⊥) δ2(q⊥ − ka⊥ − kb⊥) . (5.15)

The SSA of W production is then defined as,

A
(W )
N ≡ d∆σ(~S⊥)A↑B→W

dyW d2q⊥

/
dσAB→W

dyW d2q⊥
, (5.16)

whose sign depends on the sign of the Sivers function and the direction of the spin vector ~S⊥.

To evaluate the SSA in Eq. (5.16), we use the parameterization of TMD parton distributions
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in Ref. [61],

fq/h(x, k⊥) = fq(x)
1

π〈k2
⊥〉

e−k
2
⊥/〈k

2
⊥〉, (5.17)

∆NfSIDIS
q/h↑ (x, k⊥) = 2Nq(x)h(k⊥) fq/h(x, k⊥), (5.18)

h(k⊥) =
√

2e
k⊥
M1

e−k
2
⊥/M1 (5.19)

where fq(x) is the standard unpolarized parton distribution of flavor q, 〈k2
⊥〉 and M1 are fitting

parameters, and Nq(x) is a fitted distribution given in Ref. [61]. By carrying out the integration

d2ka⊥d
2kb⊥ in Eqs. (5.13) and (5.15) analytically, we obtain,

A
(W )
N = ~S⊥ · (p̂A × q⊥)

2〈k2
s〉2

[〈k2
⊥〉 + 〈k2

s〉]2
e
−

»

〈k2
⊥〉−〈k2

s 〉

〈k2
⊥

〉+〈k2
s〉

–

q2
⊥

2〈k2
⊥

〉

×
√

2e

M1

∑
ab |Vab|2 [−Na(xa)] fa(xa) fb(xb)∑

ab |Vab|2 fa(xa) fb(xb)
, (5.20)

where 〈k2
s〉 = M2

1 〈k2
⊥〉/[M2

1 + 〈k2
⊥〉] and the “−” sign in front of Na(xa) is from Eq. (5.8),

ie, due to the fact that the Sivers function in W production is opposite to those in SIDIS

process. If we choose the ~S⊥ along the y-axis as in Ref. [61], ~S⊥ · (p̂A×q⊥) = qT cos(φW ) with

qT ≡ |q⊥| and azimuthal angle φW . For our numerical predictions below, we choose φW = 0

and the GRV98LO parton distribution [67] for fq(x) to be consistent with the usage of the

TMD distributions of Ref. [61].

In Figs. 5.1 and 5.2, we plot the AN from Eq. (5.20) at
√
s = 500 GeV. The W asymmetry

is peaked at qT ≪ MW and is much larger than that of DY production [62]. This is because

the u and d Sivers functions have an opposite sign, and they partially cancel each other in

their contribution to the DY asymmetry, while they contribute to the W+ and W− separately.

The large W− asymmetry is caused by a large d Sivers function [61]. The negative d Sivers

function in SIDIS gives the positive W− asymmetry. The rapidity dependence in Fig. 5.1

provides excellent informations for the flavor separation as well as the functional form of the

Sivers function if we could reconstruct the W bosons.
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Figure 5.1 AN as a function of W -boson rapidity for W− (left) and W+

(right). We have integrated over the qT range from 0 to 3 GeV.
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Figure 5.2 AN as a function of W -boson transverse momentum for W−

(left) and W+ (right).

5.2.2 SSAs for single lepton production from the decay of W boson

The SSAs of W production at RHIC were originally proposed in Refs. [66] to measure

the Sivers function. As we have shown in last subsection, the SSAs of W boson is very large

and should be a perfect channel to measure the Sivers functions and verify the time-reversal

modified universality of the Sivers functions. However, it is difficult to reconstruct W bosons

by the current detectors at RHIC [63]. It is the lepton from the decay of W bosons that is

readily measured at RHIC. In this subsection, we will present our calculation for the SSAs of
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the inclusive lepton production from W decay, ie, we now consider

A(pA, ~S⊥) +B(pB) →
[
W±(q) → ℓ±(p)

]
+X . (5.21)

Since we do not measure the (anti)neutrino, we integrate over the momentum of (anti)neutrino

from the W decay. We then obtain the leading order factorized cross section for the production

of leptons of rapidity y and transverse momentum p⊥,

dσA↑B→ℓ(p)(~S⊥)

dy d2p⊥
=

∑

a,b

|Vab|2
∫
dxa d

2ka⊥

∫
dxb d

2kb⊥f
DY
a/A↑(xa,ka⊥, ~S⊥)

×fb/B(xb, kb⊥)
1

16π2ŝ

∣∣Mab→ℓ

∣∣2 δ(ŝ + t̂+ û) , (5.22)

where ŝ, t̂, and û are the Mandelstam variables and the leading order partonic scattering

amplitude square,
∣∣Mab→ℓ

∣∣2, is given by

∣∣Mab→ℓ

∣∣2 =
8(GFM

2
W )2

3

û2

(ŝ−M2
W )2 +M2

W Γ2
W

(5.23)

for partonic channels ab = dū, sū, d̄u, s̄u;

∣∣Mab→ℓ

∣∣2 =
8(GFM

2
W )2

3

t̂2

(ŝ−M2
W )2 +M2

W Γ2
W

(5.24)

for the rest light flavor channels ab = ūd, ūs, ud̄, us̄. ΓW in Eqs. (5.23) and (5.24) is the W

leptonic decay width.

Substituting Eq. (5.7) into Eq. (5.22), we derive both the spin-averaged and spin-dependent
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cross sections as

dσA↑B→ℓ(p)(~S⊥)

dy d2p⊥
=

∑

a,b

|Vab|2
∫
dxa d

2ka⊥

∫
dxb d

2kb⊥fa/A(xa, ka⊥)

×fb/B(xb, kb⊥)
1

16π2ŝ

∣∣Mab→ℓ

∣∣2 δ(ŝ + t̂+ û), (5.25)

d∆σA↑B→ℓ(p)(~S⊥)

dy d2p⊥
=

∑

a,b

|Vab|2
∫
dxa d

2ka⊥

∫
dxb d

2kb⊥~S⊥ · (p̂A × k̂a⊥)∆NfDY
a/A↑(xa, ka⊥)

×fb/B(xb, kb⊥)
1

16π2ŝ

∣∣Mab→ℓ

∣∣2 δ(ŝ + t̂+ û), (5.26)

from which we evaluate the SSAs of inclusive lepton production from W decay numerically.
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Figure 5.3 AN as a function of lepton rapidity at pT = 41 GeV for negative

lepton (left) and positive lepton (right).

In Figs. 5.3 and 5.4, we present our predictions for the inclusive lepton asymmetry from

the decay of W bosons at RHIC energy. Although the decay diluted the size of the asymmetry,

the lepton inherited all key features of the W asymmetry in Figs. 5.1 and 5.2. As shown in

Fig. 5.4, the lepton asymmetry is sharply peaked at pT ∼ 41 GeV, which should help control

the potential background. The difference in rapidity dependence of the W+ and W− in Fig. 5.3

provides the excellent flavor separation of the Sivers function, as well as rich information on the

functional form. For a good range of rapidity, the lepton asymmetry is measurable at RHIC

and should be a good channel to test the time-reversal modified universality of the Sivers

functions.
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CHAPTER 6. Nuclear dependence: Overview

We investigated the three parton correlation functions inside a polarized hadron in last

four chapters by taking advantage of the spin-dependnece of the collisions. In this and next

chapter we will use the nuclear dependence in high energy nuclear collisions to probe the four

parton correlation functions.

Since 1970s it has been observed [68] that inclusive cross sections for single high transverse

momentum particle produced in hadron-nucleus scattering show an anomalous nuclear depen-

dence, in which the cross section at fixed transverse momentum might rise faster than linearly

with atomic number A. Since typical energy exchange in a high transverse-momentum scatter-

ing process is over GeV, the hard scattering should take place at a distance scale less than 1/5

fm, which is certainly localized within a single nucleon. Because of the weak nuclear depen-

dence of the nuclear density, a linear A dependence was expected for single scattering process.

The anomalous nuclear dependence is often attributed to multiple scattering of partons inside

nuclear matter [69, 70, 71, 72, 98]. For a recent review, see Ref. [73].

In terms of factorization at higher twist [18, 19], Luo, Qiu and Sterman (LQS) have de-

veloped a consistent treatment of multiple scattering at partonic level [98]. According to this

generalized factorization theorem, the double scattering contribution (the first nontrivial term

in multiple scattering) can be expressed in terms of universal four-parton correlation functions

in nuclei and the corresponding short-distant hard parts can be calculated in perturbation

theory systematically.

Since then, this formalism has been widely used to study the multiple scattering effect

in hadron nucleus and heavy-ion collisions. Originally LQS applied this formalism to single

particle inclusive and single-jet production in deep inelastic scattering and photo-production
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[98]. Guo [89] used the formalism to study the so-called transverse momentum broadening,

∆〈q2T 〉 ≡ 〈q2T 〉|AB−〈q2T 〉|hh, which is defined as a difference between the averaged transverse mo-

mentum square in hadron-nucleus collision and that in hadron-hadron collision. The averaged

transverse momentum square that will be defined in the next Chapter could be perturbatively

more stable than the transverse momentum distribution itself. Qiu and Vitev [74] studied

the role of the partonic multiple scattering in understanding the nuclear shadowing of the

structure functions in lepton deep inelastic scattering off a large nucleus. More recently, Guo,

Wang and Zhang [75] extended this multiple scattering formalism to the heavy ion collision

and studied the jet quenching phenomena [76, 77]: an energetic parton loses its energy when

passing through the hot and dense medium formed in high energy nucleus-nucleus collisions.

These studies have been successful in explaining the data observed in hadron-nucleus and

nucleus-nucleus collisions. For a review, see Ref. [96].

A

q

xp

jet

(a)

A

q

xp

jet

(b)

A

q

xp

jet

(c)

Figure 6.1 Clascification of parton multiple scattering in nuclear medium:

(a) interactions internal to the nucleus, (b) initial-state interac-

tions, and (c) final-state interactions.

To discuss the multiple scattering effect in a bit more detail, let us classify the multi-

ple scattering into the following three categories: (a) initial-state interactions internal to the
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nucleus, (b) initial-state parton-nucleus interactions (ISI), and (c) final-state parton-nuclues

interactions (FSI), as sketched in Fig. 6.1. Here, we only consider the multiple scattering be-

tween the hard probes and the soft partons in the medium and do not consider the soft parton

interactions between two heavy ions and those that are responsible for the formation of the

hot and dense medium. The formation of the hot and dense medium observed at RHIC is very

interesting and is beyond the scope of this thesis.

Initial-state interactions internal to the nucleus as shown in Fig. 6.1(a) will change the

parton distributions of the nucleus. Consequently the effective parton distribution functions

in a large nucleus (nPDFs) are different from a simple sum of individual nucleons parton

distribution functions. The perturbatively calculable short-distance single scattering is infrared

safe and is therefore the same for hadron scattering on a proton or a large nucleus. The

nPDFs and the normal PDFs in a proton share the same operator definition except the proton

state is replaced by the nuclear state. Since they share the same operator, the nPDFs and

the normal PDFs obey the same DGLAP evolution equations [48] at the leading power of

the large momentum exchange. Consequently, only nuclear dependence of the leading power

nPDFs is from the boundary conditions, the input nPDFs, which are needed to solve the

DGLAP evolution equations. Several groups have been trying to find consistent sets of nPDFs

by the global fitting with all the existing experimental data in lepton-nuclues and hadron-

nucleus collisions. Currently there are at least five parameterizations of nPDFs available for

the community to use: EKS98 [78], dFS2003 [79], HKM [80], EPS08 [81], and EPS09 [82].

Although all of them are consistent with the experimental data, the nuclear dependence of

the x behavior of nPDFs are quite different from each other, especially for nuclear gluon

distribution. Recently, we have shown that the low-mass lepton pair production at large

transverse momentum could be a very sensitive probe to the nuclear gluon distribution and

should help to better pin down the nuclear gluon distribution [83].

The initial-state interactions internal to the nucleus not only change the absolute value

of the nPDFs, they could also change the evolution of these parton distributions. Recently

using DIS as an example, we are able to calculate the leading nuclear size enhanced power
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corrections to the DGLAP evolution equations [84]. By doing so, we were able to include the

process independent nuclear dependence to nPDFs not only from the input distributions but

also from the dynamics of evolution. We find that these power corrections significantly slow

down the growth of gluon density at small-x, which could drive the parton distribution at

small-x into the saturation regime [85].

On the other hand, the process dependent initial-state and final-state parton-nucleus in-

teractions, as shown in Fig. 6.1(b) and (c), directly change the physical cross sections and

corresponding momentum distributions. Since the multiple scattering involves at least two

physically polarized partons from the nucleus, the effect of these multiple scattering are power

suppressed for the inclusive cross section or momentum distributions. However, as we will

show in detail in next chapter, these effects are enhanced by the nuclear size and significant.

The partonic multiple scattering might be the most important mechanics for generating the

anomalous nuclear dependence. In next chapter, we will use this generalized factorization

formalism to study the transverse momentum broadening of vector boson production in both

hadron-nucleus and nucleus-nucleus collisions.
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CHAPTER 7. Transverse momentum broadening of vector boson

production in high energy nuclear collisions

In this chapter, we apply the generalized factorization theorems developed by LQS [98] to

study the transverse momentum broadening of heavy vector boson production in high energy

nuclear collisions.

7.1 Why transverse momentum broadening

The transverse momentum distribution of a heavy vector boson, such as a virtual photon

with a large invariant mass, a heavy quarkonium, and a Z (or W ) boson, is calculable in

perturbative QCD when the transverse momentum qT is also large [12, 86]. When qT ≪ Q

(invariant mass of vector boson), the qT distribution calculated in the conventional fixed-order

perturbation theory receives a large logarithm, ln
(
Q2/q2T

)
, at every power of αs, which is a

direct consequence of emission of soft and collinear gluons by the incoming partons (sometimes

referred as “parton shower”). In order to have a reliable prediction, one need to resum these

large logarithms. This so-called Sudakov resummation formalisms [52, 53] are classical ones

and have been applied extensively in phenomenological studies [87].

In high energy nuclear collisions, partonic multiple scattering in a nuclear medium could

modify the distribution of the vector boson’s transverse momentum qT . Each rescattering is

likely to change the momentum spectrum by an order of the typical transverse momentum of the

partons inside the nuclear matter, which is significantly softer than the momentum exchange

in the hard collision. Therefore, the change to the transverse momentum spectrum, dσ/dq2T ,

should be most significant when qT is relatively small. But, the rescattering effect on the low

qT spectrum is unlikely to be calculable in perturbative QCD [47, 88, 96, 98]. Furthermore,
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the potential interference between the rescattering and the parton shower could complicate the

resummation of the logarithms and lead to even less control on the low qT spectrum. On the

other hand, an averaged transverse momentum square of the produced heavy vector boson,

〈q2T 〉 ≡
∫
dq2T q

2
T

dσhh→V ∗

dq2T

/∫
dq2T

dσhh→V ∗

dq2T
, (7.1)

is much more inclusive. If we integrate over all kinematically allowed qT , the 〈q2T 〉 depends on

only one single hard scale, Q, the mass of the vector boson and is perturbatively calculable

[47, 58, 88, 96]. The large logarithmic contribution to the q2T -distribution from the power of

ln(Q2/q2T ) is suppressed by the q2T weight.

The accumulative change from the rescattering to the averaged transverse momentum

square - transverse momentum broadening, ∆〈q2T 〉 ≡ 〈q2T 〉|AB − 〈q2T 〉|hh, defined as a difference

between the calculable transverse momentum square in nuclear collision and that in hadron-

hadron collision, should be calculable too [47, 96]. Some time ago, by taking into account the

initial-state multiple scattering between the partons of the incoming beam and nuclear matter,

Guo [89] has studied the Drell-Yan transverse momentum broadening. The broadening was

shown to be proportional to the target size or to have the A1/3-type nuclear dependence. The

calculated nuclear dependence was found to be consistent with both Fermilab and CERN data.

On the other hand, as shown in Ref. [90], there have been difficulties in understanding

the same broadening in the production of heavy quarkonia (J/ψ and Υ). At the leading

order of perturbative calculation, the Drell-Yan dilepton production is dominated by a quark-

antiquark annihilation subprocess, while the heavy quarkonium production in hadronic collision

is dominated by a gluon-gluon fusion subprocess. One thus expects that the ratio of broadening

of heavy quarkonium over Drell-Yan is close to the ratio of the multiple scattering effect of a

gluon over that of a quark (or an antiquark) inside a nuclear medium [91]. At the lowest order,

the ratio is approximately equal to the ratio of color factors of the lowest order gluon and

(anti)quark rescattering, CA/CF = 9/4, with CA = Nc = 3 and CF = (N2
c − 1)/(2Nc) = 4/3.

Although the data on heavy quarkonium broadening in hadron-nucleus collisions shows the

expected A1/3-type nuclear dependence, the ratio to the Drell-Yan broadening could be as
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large as 5, twice of the naive expectation [90].

In this chapter, we will start with a study on the transverse momentum broadening of

the heavy quarkonium in hadron nucleus collisions. We will show that the net broadening is a

combined effect of the initial-state interaction and final-state rescattering between the produced

heavy quark pair and the nuclear matter. Since the final-state interaction is sensitive to the

non-perturbative formation mechanism of the bound state, we calculate the broadening of

heavy quarkonium production in both non-relativistic QCD (NRQCD) model [92] and Color

Evaporation model [93]. In the NRQCD model, the non-perturbative dynamics for a heavy

quark pair to form a bound quarkonium is organized through matrix elements of operators that

are characterized by an expansion in the relative velocity of the pair and the pair’s rotational

and color quantum numbers. On the other hand, in the Color Evaporation model, all heavy

quark pairs with invariant mass less than the mass threshold of producing a pair of open

flavor heavy mesons have the same probability to become a bound quarkonium regardless the

pair’s rotational and color quantum numbers. Rescattering of the heavy quark pair in nuclear

medium could change the pair’s rotational and color quantum numbers. Therefore, these two

models could lead to different predictions for the nuclear dependence of heavy quarkonium

production in nuclear collisions. If the difference is significant, an accurate measurement of

the nuclear dependence could provide important information on the hadronization. We find

that the heavy quarkonium broadening calculated in these two models have different analytical

expressions. But, numerically, these two models predict a very similar result for the broadening

of J/ψ and Υ in hadron-nucleus collision. The calculated broadening is close to 2CA/CF , which

is consistent with Fermilab data [90, 94].

We further extend our calculations of heavy quarkonium’s transverse momentum broad-

ening in hadron-nucleus collisions to the broadening in nucleus-nucleus collisions. The net

broadening in nucleus-nucleus collisions will depend on whether there is hot medium pro-

duced in nucleus-nucleus collisions. As shown in Ref. [95], the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory has produced good evidence that a new state of

hot and dense matter of quarks and gluons, the quark-gluon plasma (QGP), was formed in
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ultra-relativistic heavy-ion collisions. We discuss the broadening in this kind of situation and

investigate the role of transverse momentum broadening in probing the properties of the dense

and hot QCD matter. We also propose to use the broadening of Z (as well as W ) bosons to

independently study the initial-state interaction and extract the medium density. We make

the predictions for the broadening of Z (or W ) bosons in relativistic heavy ion collisions at the

future Large Hadron Collider (LHC) to test our formalism.

To set up the notation and terminology, we first review the perturbative QCD calculation

for the transverse momentum broadening for Drell-Yan production in a covariant gauge, in

which the calculation of broadening is the easiest. We then derive the transverse momen-

tum broadening of heavy quarkonium production in hadron-nucleus collision in Sec. 7.3. We

calculate both initial-state and final-state multiple scattering. We evaluate the transverse

momentum broadening in both NRQCD model and Color Evaporation model. We then ex-

tend the calculation to the broadening of heavy quarkonium production in nucleus-nucleus

collisions. In Sec. 7.4, we calculate the broadening of Z (as well as W ) boson production in

both hadron-nucleus and nucleus-nucleus collisions at the LHC. We argue that the transverse

momentum broadening of Z (or W ) bosons that are reconstructed from their leptonic decay

channels is an excellent probe for initial-state rescattering and the medium density at an early

stage of relativistic heavy ion collisions. We present our numerical study of the transverse

momentum broadening of vector boson production in Sec. 7.5. We discuss the extrapolation

of the non-perturbative matrix elements from the fixed target energies to collider energies.

We compare our calculations with data from both fixed-target experiments at Fermilab, and

collider experiments at RHIC. We also predict the broadening at the LHC energy.

7.2 Transverse momentum broadening in Drell-Yan production

Consider the Drell-Yan process in hadron-nucleus collisions,

h(p′) +A(p) → γ∗(q)[→ ℓ+ℓ−] +X, (7.2)
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where q, p′, p are the four momentum of the virtual photon, the incoming hadron, and the

nucleus (per nucleon) with atomic weight A, respectively. In nuclear collisions, it is very likely

that the energetic incoming parton can have several scatterings with soft partons inside the

nuclear matter before the hard collision to produce the vector boson (γ∗). Such initial-state

multiple scattering could induce more soft radiation from the incoming parton and broaden

the parton’s transverse momentum. The additional parton transverse momentum at the hard

collision leads to the broadening of the observed vector bosons.

In terms of contributions with different number of rescattering, the Drell-Yan cross section

can be written as

σhA = σShA + σDhA + . . . (7.3)

with superscript S for single scattering, D for double scattering, and etc. As explained earlier,

single hard scattering is localized in space and time, and is unlikely to provide the target length

(or the A1/3-type nuclear size) enhancement to the cross section, although it can get a weaker

nuclear dependence to the cross section from nuclear parton distributions [96]. The leading

contribution to the broadening of the dilepton’s transverse momentum square comes from the

double scattering [89],

∆〈q2T 〉DY ≈
∫
dq2T q

2
T

dσDhA
dQ2dq2T

/
dσhA
dQ2

, (7.4)

with the inclusive Drell-Yan cross section given by

dσhA
dQ2

≈ dσShA
dQ2

≈ A
∑

q

∫
dx′ fq̄/h(x

′)

∫
dx fq/A(x)

dσ̂qq̄
dQ2

, (7.5)

where A is the atomic weight of the nucleus,
∑

q runs over all quark and antiquark flavors,

fq̄/h and fq/A represent the hadron and nuclear partonic distribution functions, respectively,

and dσ̂qq̄/dQ
2 is the lowest partonic qq̄ annihilation cross section to a lepton pair of invariant

mass Q.
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In Fig. 7.1, we sketch the leading order Feynman diagram that contributes to the double

scattering cross section, dσDhA: an antiquark of momentum x′p′ from the incoming hadron

scatters off a gluon from the nucleus (indicated by the bottom blob) before it annihilates with

a quark from the nucleus to form a vector boson of large invariant mass, Q, which then decays

into a lepton pair. The interference diagrams, that have both gluons in the same side of the

final-state cut (the dashed line), do not contribute to the broadening in a covariant gauge

calculation [89], while they are very important in the light-cone gauge calculation [97]. It is

clear from the diagram that the momentum of the observed vector boson is only sensitive

to the total momentum from the nucleus, which is equal to a sum of the gluon and quark

momentum. Therefore, the gluon (or quark) momentum in the scattering amplitude (the left

of the dashed line) is not necessary to be equal to the gluon (or quark) momentum on the

right of the final-state cut. This is a consequence of the fact that there could be an arbitrary

momentum flow from the nucleus through the quark line, the internal antiquark line, and back

to the nucleus from the gluon line without changing both initial- and final-state. To drive

the double scattering contribution to the cross section, we need to integrate over this loop

momentum for both the amplitude and complex conjugate of the amplitude, or equivalently,

the momentum flows through those two gluons in Fig. 7.1. The internal antiquark propagator

following the gluon rescattering can be very large if the gluon momentum is very soft, and it can

actually diverge if the gluon momentum vanishes. But, it is easy to verify that the singularity

of the internal antiquark propagator when gluon momentum vanishes is not pinched. The

integration of the gluon momentum can be deformed far away from the on-shell singularity

into a perturbative off-shell region at the order of the hard scale Q; and the net result from

the integration is given by the residue of the pole of the antiquark propagator [96, 98].

Following the derivation in a covariant gauge as in Ref. [89], the contribution from the

double scattering diagram in Fig. 7.1 to the q2T -moment of Drell-Yan cross section can be
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Figure 7.1 Lowest order double scattering Feynman diagram that con-

tributes to the broadening of Drell-Yan transverse momentum

distribution, which shows an antiquark of momentum x′p′ of

incoming hadron scatters off a gluon of a nucleus (the bottom

blob) before it annihilates a quark to produce a vector boson.
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Figure 7.2 Lowest-order double scattering diagram that leads to the fac-

torized partonic part, H, in Eq. (7.10).

expressed as

∫
dq2T q

2
T

dσDhA
dQ2dq2T

=
∑

q

∫
dq2T q

2
T

∫
dx′fq̄/h(x

′)

∫
dx dx1 dx2 d

2kT TAq(x, x1, x2, kT , p)

×H(x, x1, x2, kT , p, q, x
′p′) δ(q2T − k2

T ) , (7.6)

where the matrix element TAq is given by the bottom blob in Fig. 7.1, which includes the

propagators of all quarks and gluons connecting to the blob,

TAq(x, x1, x2, kT , p) =

∫
dy−

2π

dy−1
2π

dy−2
2π

∫
d2yT
(2π)2

eix1p+y
−
1 ei(x−x1)p+y−e−i(x−x2)p+y

−
2 e−ikT ·yT

×1

2
〈pA|A+(y−2 , 0T )ψ̄(0)γ+ψ(y−1 )A+(y−, yT )|pA〉 , (7.7)

where the subscript “Aq” indicates that the matrix element is made of the gluon and quark

field operators. The partonic part H in Eq. (7.6) is given by the top partonic part of the

diagram in Fig. 7.1 with two antiquark lines traced with (γ · p′)/2, two quark lines from the

nucleus traced with (γ · p)/2, and the Lorentz indices of two gluon lines from the nucleus

contracted by pαpβ [89].
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The separation of the partonic part H from the hadronic matrix element TAq in Eq. (7.6)

is not yet a gauge invariant factorization. The matrix element TAq in Eq. (7.7) has an

explicit dependence on the gluon field operator A+, which is not gauge covariant. That

is, the matrix element TAq cannot be made gauge invariant by the insertion of ordered

gauge links between the field operators [96]. To achieve a gauge invariant factorization,

it is necessary to convert the gluon field operator A+ in the matrix element into corre-

sponding gluon field strength, F+α, with a transversely polarized Lorentz index α. We can

achieve this conversion in a covariant gauge as follows. We first expand the kT in the par-

tonic part, H, around k2
T = 0, because k2

T ≪ Q2, and keep the first nonvanishing term,

H(x, x1, x2, p, q, x
′p′) = H(x, x1, x2, kT = 0, p, q, x′p′), which is given by the diagram in Fig. 7.2.

We then write the transverse momentum square, q2T in Eq. (7.6) as k2
T by taking advantage of

the δ(q2T − k2
T ), and convert k2

T A
+(y−2 , 0T )A+(y−, yT ) to F +

α (y−2 , 0T )F+α(y−, yT ) by a partial

integration [89]. Finally, up to the power corrections in 〈k2
T 〉/Q2, we can rewrite the q2T -moment

in Eq. (7.6) as

∫
dq2T q

2
T

dσDhA
dQ2dq2T

=
∑

q

∫
dx′ fq̄/h(x

′)

∫
dx dx1 dx2 T

(I)
Fq (x, x1, x2, p)H(x, x1, x2, p, q, x

′p′)(7.8)

where TFq is a twist-4 parton correlation function defined as

T
(I)
Fq (x, x1, x2, p) =

∫
dy−

2π

dy−1
2π

dy−2
2π

eix1p+y
−
1 ei(x−x1)p+y−e−i(x−x2)p+y

−
2

×1

2
〈pA|F +

α (y−2 )ψ̄(0)γ+ψ(y−1 )F+α(y−)|pA〉 , (7.9)

with the superscript “(I)” indicates the matrix element corresponding to the initial-state rescat-

tering [89]. The leading order contribution to the partonic hard part from the diagram in

Fig. 7.2 is [89]

H(x, x1, x2, p, q, x
′p′) =

8π2αs
N2
c − 1

CF

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
dσ̂qq̄
dQ2

, (7.10)

where two unpinched poles are from the two antiquark propagators in Fig. 7.2. Substituting
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Eq. (7.10) to Eq. (7.8), and integrating over x1, x2, by taking the residues of the unpinched

poles (the leading pole approximation [96]), we obtain

∫
dq2T q

2
T

dσDhA
dQ2dq2T

=
∑

q

∫
dx′ fq̄/h(x

′)

∫
dxT

(I)
q/A(x)

dσ̂qq̄
dQ2

(
8π2αs
N2
c − 1

CF

)
, (7.11)

with the measurable twist-4 quark-gluon correlation function [89, 96],

T
(I)
q/A(x) =

∫
dy−

2π
eixp

+y−
∫
dy−1 dy

−
2

2π
θ(y− − y−1 ) θ(−y−2 )

× 1

2
〈pA|F +

α (y−2 )ψ̄q(0)γ
+ψq(y

−)F+α(y−1 )|pA〉 , (7.12)

where the superscript “(I)” again indicates the initial-state rescattering. From Eq. (7.4), we

obtain the leading double scattering contribution to the Drell-Yan broadening [89],

∆〈q2T 〉DY ≈
∑

q

∫
dx′ fq̄/h(x

′)
∫
dxT

(I)
q/A(x)

dσ̂qq̄

dQ2

(
8π2αs

N2
c −1 CF

)

A
∑

q

∫
dx′ fq̄/h(x′)

∫
dx fq/A(x)

dσ̂qq̄

dQ2

. (7.13)

By using the model proposed for the twist-4 parton correlation functions [89, 98]

T
(I)
q/A(x) = λ2A4/3 fq/A(x) , (7.14)

we can express the Drell-Yan broadening in a much simpler form [89]

∆〈q2T 〉DY = CF

(
8π2αs
N2
c − 1

λ2A1/3

)
, (7.15)

with an unknown non-perturbative parameter λ2 defined in Eq. (7.14). The leading contri-

bution to the Drell-Yan broadening in Eq. (7.15) shows a clear A1/3-type dependence and is

proportional to the color factor CF from the rescattering between an antiquark (or a quark)

and a gluon.



118

7.3 Transverse momentum broadening in heavy quarkonium production

In this section we use the same technique reviewed in last section to calculate the transverse

momentum broadening of heavy quarkonium production in both hadron-nucleus and nucleus-

nucleus collisions.

The heavy quarkonium’s transverse momentum broadening in hadron-nucleus collision was

often attributed to the initial-state multiple scattering between the active parton of the pro-

jectile and soft partons of the nuclear target before the hard collision to produce the heavy

quark pair [91]. Calculation of such initial-state rescattering should be very similar to that

for the Drell-Yan broadening, except that the quark-antiquark annihilation is accompanied

by a much larger gluon-gluon fusion subprocess. If one considers only the gluon-gluon fusion

subprocess, one should expect to have Eq. (7.15) for the heavy quarkonium broadening with

the overall color factor CF replaced by CA = Nc = 3 due to the difference in color factors

between gluon rescattering and quark rescattering. The initial-state rescattering alone leads

to the naive expectation for the ratio of broadening between heavy quarkonium and Drell-Yan

as CA/CF = 2.25, which is much smaller than the data [90].

However, since a heavy quarkonium is unlikely to be formed at the same time when the

heavy quark pair was produced [99], the final-state interaction between the heavy quark pair

and the nuclear medium could generate additional broadening. Since the final-state rescat-

tering is sensitive to the detailed dynamics that transmutes a heavy quark pair into a bound

quarkonium, we calculate the final-state contribution to heavy quarkonium broadening in both

NRQCD and Color Evaporation models.

(a) (b)

Figure 7.3 Lowest order Feynman diagram for light quark-antiquark anni-

hilation (a) and for gluon-gluon fusion to a pair of heavy quark.
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7.3.1 Color Evaporation Model

In the Color Evaporation model (CEM), heavy quarkonium production is factorized into

two steps: the production of a pair of heavy quarks with an invariant mass Q followed by a

non-perturbative hadronization process with an universal transition probability for the pair to

become a bound quarkonium [93]. It was assumed that the transition probability is the same

for all heavy quark pairs whose invariant mass is less than the mass threshold of producing

two open flavor heavy mesons, and the cross section for producing a heavy quarkonium, H,

can be written as [93]

σCEM
hA→H = FQQ̄→H

∫ 4M2
Q

4m2
Q

dQ2
dσhA→QQ̄

dQ2
, (7.16)

where FQQ̄→H is a non-perturbative transition probability and is independent of the color and

angular momentum of the heavy quark pair, mQ and MQ are the mass of the heavy quark

and open flavor heavy meson, respectively. There is one transition probability for each heavy

quarkonium state, H. In Eq. (7.16), the inclusive cross section for producing a pair of heavy

quarks of invariant mass Q can be factorized as [100]

dσhA→QQ̄

dQ2
= A

∑

a,b

∫
dx′ fa/h(x

′)

∫
dx fb/A(x)

dσ̂ab→QQ̄

dQ2
, (7.17)

where
∑

a,b sum over all parton flavors, and dσ̂ab→QQ̄/dQ
2 is a short-distance hard part for

two partons of flavor a and b to produce a pair of heavy quarks of invariant mass Q. At

the lowest order, they are given by the light quark-antiquark annihilation and gluon-gluon

fusion subprocess, as sketched in Fig. 7.3. The transition probability in Eq. (7.16) is assumed

to be universal and independent of how the heavy quark pair was produced. It fixes the

overall normalization for the cross section of heavy quarkonium production in different collision

processes and provides the predictive power of the model. The model has been reasonably

successful when comparing with data of inclusive heavy quarkonium production [101, 102].

Similar to Fig. 7.2, the leading order double scattering diagrams for producing a heavy

quark pair are sketched in Fig. 7.4 for quark-antiquark annihilation subprocess, and in Fig. 7.5



120

(a)

(b) (c) (d) (e)

Figure 7.4 Leading order double scattering diagrams for qq̄ → QQ̄: ini-

tial-state double scattering (a), and final-state double scattering

(b), (c), (d), and (e).

(a)

(b) (c) (d) (e)

Figure 7.5 Leading order double scattering diagrams for gg → QQ̄: ini-

tial-state double scattering (a), and final-state double scattering

(b), (c), (d), and (e).

for gluon-gluon fusion subprocess, respectively. The blob in the quark-antiquark annihilation

subprocess in Fig. 7.4 is given by the diagram in Fig. 7.3(a), and the blob in the gluon-gluon

fusion subprocess in Fig. 7.5 is given by a sum of the three diagrams in Fig. 7.3(b).

In CEM, the transverse momentum broadening of a heavy quarkonium is equal to the trans-

verse momentum broadening of the parent heavy quark pair, since the transition probability

from a heavy quark pair to a bound quarkonium is given by a constant, FQQ̄→H . We use the

same method reviewed in last section to calculate the transverse momentum broadening of the
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heavy quark pairs. Similar to Eq. (7.8) in the Drell-Yan case, we have

∫
dq2T q

2
T

dσD
hA→QQ̄

dQ2dq2T
=

∑

q

∫
dx′fq̄/h(x

′)

∫
dx dx1 dx2

×
[
T

(I)
Fq (x, x1, x2, p)H

(I)

qq̄→QQ̄
(x, x1, x2, p, q, x

′p′)

+T
(F )
Fq (x, x1, x2, p)H

(F )

qq̄→QQ̄
(x, x1, x2, p, q, x

′p′)
]

+

∫
dx′fg/h(x

′)

∫
dx dx1 dx2

×
[
T

(I)
FF (x, x1, x2, p)H

(I)

gg→QQ̄
(x, x1, x2, p, q, x

′p′)

+T
(F )
FF (x, x1, x2, p)H

(F )

gg→QQ̄
(x, x1, x2, p, q, x

′p′)
]
, (7.18)

where the superscripts, “(I)” and “(F )”, indicate the initial-state and final-state rescattering,

respectively, and the matrix element T
(I)
Fq is given in Eq. (7.9). T

(I)
FF is given by

T
(I)
FF (x, x1, x2, p) =

∫
dy−

2π

dy−1
2π

dy−2
2π

eix1p+y
−
1 ei(x−x1)p+y−e−i(x−x2)p+y

−
2

×〈pA|F +
α (y−2 )F σ+(0)F+

σ(y
−
1 )F+α(y−)|pA〉 . (7.19)

The matrix elements with final-state rescattering, T
(F )
Fq and T

(F )
FF , have the same expressions as

corresponding matrix elements with initial-state rescattering, since the field operators in the

definition of the multiparton matrix elements in the collinear factorization approach commute

on the light-cone [96].

The diagram with initial-state rescattering in Fig. 7.4(a) contributes to H
(I)

qq̄→QQ̄
as

H
(I)

qq̄→QQ̄
= H

(7.4a)

qq̄→QQ̄
=

8π2αs
N2
c − 1

CF

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
dσ̂qq̄→QQ̄

dQ2
. (7.20)

All four diagrams with the final-state rescattering, in Figs. 7.4(b), (c), (d), and (e), contribute

to H
(F )

qq̄→QQ̄
as

H
(F )

qq̄→QQ̄
= H

(7.4b+7.4c+7.4d+7.4e)

qq̄→QQ̄
=

8π2αs
N2
c − 1

CA

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

]
dσ̂qq̄→QQ̄

dQ2
. (7.21)

Here dσ̂qq̄→QQ̄/dQ
2 represents the lowest order partonic cross section from qq̄ annihilation to
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a heavy quark pair of invariant mass Q, and it is given by [103],

dσ̂qq̄→QQ̄

dQ2
=

2

9

4παs
3Q2

(
1 +

1

2
γ

)√
1 − γ, (7.22)

with γ = 4m2
Q/Q

2. The final-state contribution in Eq. (7.21) is very similar to the initial-state

contribution in Eq. (7.20) except the overall color factor and the location of the unpinched

poles. The difference in the location of the unpinched poles, indicated by the sign difference of

the iǫ, is a consequence of the order of the rescattering taken place either before or after the

hard collision. The overall color factor for the final-state interaction, CA in Eq. (7.21), indicates

that as far as the color is concerned, the rescattering of a heavy quark pair is effectively the

same as that of a color-octet gluon when the effect is calculated in the Color Evaporation

model.

Similarly, we evaluate the double scattering diagrams from gluon-gluon fusion subprocess

in Fig. 7.5 and obtain their contribution to the partonic hard part,

H
(I)

gg→QQ̄
= H

(7.5a)

gg→QQ̄
=

8π2αs
N2
c − 1

CA

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
dσ̂gg→QQ̄

dQ2
, (7.23)

for the initial-state double scattering, and

H
(F )

gg→QQ̄
= H7.5b+7.5c+7.5d+7.5e

gg→QQ̄
=

8π2αs
N2
c − 1

CA

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

]
dσ̂gg→QQ̄

dQ2
, (7.24)

for the final-state double scattering. The lowest order partonic cross section from gg fusion to

a heavy quark pair of invariant mass Q, dσ̂gg→QQ̄/dQ
2, is given by [103],

dσ̂gg→QQ̄

dQ2
=
παs
3Q2

[
(1 + γ +

1

16
γ2) ln

(
1 +

√
1 − γ

1 −√
1 − γ

)
−
(

7

4
+

31

16
γ
√

1 − γ

)]
. (7.25)

Compare Eqs. (7.23) and (7.24), we find that the contribution to the gluon-gluon fusion subpro-

cess from the final-state double scattering is the same as that from the initial-state interaction.

That is because the rescattering effect of a heavy quark pair is the same as that of a color-octet

gluon when the effect is calculated in the Color Evaporation model.
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Substituting the partonic hard parts in Eqs. (7.20), (7.21), (7.23), and (7.24) into Eq. (7.18),

integrating over the momentum fractions, x1 and x2 of the rescattering gluons under the leading

pole approximation, we obtain the leading double scattering contribution to the q2T -moment of

producing a heavy quark pair in hadron-nucleus collisions,

∫
dq2T q

2
T

dσD
hA→QQ̄

dQ2dq2T

=

[
8π2αs
N2
c − 1

](∑

q

∫
dx′fq̄/h(x

′)

∫
dx
[
CF T

(I)
q/A(x) + CA T

(F )
q/A(x)

] dσ̂qq̄→QQ̄

dQ2

+

∫
dx′fg/h(x

′)

∫
dx
[
CA T

(I)
g/A(x) + CA T

(F )
g/A(x)

] dσ̂gg→QQ̄

dQ2

)
, (7.26)

where the quark-gluon correlation function, T
(I)
q/A, is given in Eq. (7.12), the T

(I)
g/A is given by

T
(I)
g/A(x) =

∫
dy−

2π
eixp

+y−
∫
dy−1 dy

−
2

2π
θ(y− − y−1 ) θ(−y−2 )

× 1

xp+
〈pA|F +

α (y−2 )F σ+(0)F+
σ(y

−)F+α(y−1 )|pA〉 , (7.27)

and T
(F )
q/A and T

(F )
g/A are given by the same expressions in Eq. (7.12) and Eq. (7.27), respectively,

except the θ-functions are replaced as [96]

θ(y− − y−1 ) θ(−y−2 ) → θ(y−1 − y−) θ(y−2 ) , (7.28)

due to the different order of rescattering (or the sign of the iǫ for the unpinched poles).

By integrating over the invariant mass of the heavy quark pair we can derive the heavy

quarkonium transverse momentum broadening in CEM as

∆〈q2T 〉CEM
HQ ≈

∫
dq2T q

2
T

∫ 4M2
Q

4m2
Q

dQ2
dσD

hA→QQ̄

dQ2dq2T

/∫ 4M2
Q

4m2
Q

dQ2
dσhA→QQ̄

dQ2
. (7.29)

As pointed out in Ref. [96], the field operators on the light-cone in the definition of the mul-

tiparton matrix elements, as those in Eqs. (7.12) and (7.27) commute. The matrix element with

initial-state rescattering is equal to corresponding matrix element with final-state rescattering,
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if the phase space interaction of these two matrix elements, such as the
∫
dy− dy−1 dy

−
2 θ(y

− −

y−1 )θ(−y−2 ) in Eq. (7.12) for initial-state rescattering and
∫
dy− dy−1 dy

−
2 θ(y

−
1 − y−)θ(y−2 ) for

the corresponding final-state rescattering, are the same [89]. However, the phase space integra-

tion for the final-state interaction in heavy quarkonium production may not cover the full size

of the nuclear medium if the heavy quark pair becomes a physical quarkonium or transmutes

into a color singlet pre-hadron quarkonium state before the pair exits the nuclear medium.

Rescattering between a quarkonium and nuclear medium and that between a colored heavy

quark pair and the same medium could be different, and lead to a different heavy quarkonium

broadening.

It was argued in Ref. [99] that a physical quarkonium state is likely to form outside nuclear

matter in hadron-nucleus collision. Therefore, the matrix elements with final- and initial-

state rescattering could have the same phase space interaction. If we assume that the matrix

elements with the final- and initial-state rescattering are the same, T
(F )
q/A(x) = T

(I)
q/A(x) and

T
(F )
g/A(x) = T

(I)
g/A(x), and assume the same model for both twist-4 quark-gluon and gluon-gluon

correlation functions,

T
(I)
g/A(x) = λ2A4/3 fg/A(x) , (7.30)

we can express the heavy quarkonium broadening in hadron-nucleus collisions as,

∆〈q2T 〉CEM
HQ =

(
8π2αs
N2
c − 1

λ2A1/3

)
(CF + CA)σqq̄ + 2CA σgg

σqq̄ + σgg
, (7.31)

where σqq̄ and σgg are the lowest order inclusive cross sections from the qq̄ → QQ̄ → H and

gg → QQ̄→ H subprocess, respectively. They are given by [103, 116]

σqq̄ = FQQ̄→H

∫ 4M2
Q

4m2
Q

dQ2
∑

q

∫
dx′fq̄/h(x

′)

∫
dx fq/A(x)

dσ̂qq̄→QQ̄

dQ2
(7.32)

σgg = FQQ̄→H

∫ 4M2
Q

4m2
Q

dQ2

∫
dx′fg/h(x

′)

∫
dx fg/A(x)

dσ̂gg→QQ̄

dQ2
, (7.33)

where the lowest order partonic cross sections to produce a pair of QQ̄ are given in Eqs. (7.22)
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and (7.25). If the gluon-gluon subprocess dominates the heavy quarkonium production rate,

σgg ≫ σqq̄, we have

∆〈q2T 〉CEM
HQ ≈ 2CA

(
8π2αs
N2
c − 1

λ2A1/3

)
. (7.34)

By comparing the Drell-Yan broadening in Eq. (7.15) and the leading heavy quarkonium

broadening in Eq. (7.34), we conclude that the leading contribution to heavy quarkonium

transverse momentum broadening in hadron-nucleus collision, calculated in CEM, is about

2CA/CF = 4.5 times Drell-Yan broadening.

7.3.2 Non-Relativistic QCD Model

The application of NRQCD to the production of a heavy quarkonium H in hadronic colli-

sions relies on the proposed factorization formalism [92],

σNRQCD
hA→H = A

∑

a,b

∫
dx′ fa/h(x

′)

∫
dx fb/A(x)

[
∑

n

Hab→QQ̄[n]〈OH(n)〉
]

(7.35)

where a and b run over all parton flavors, andHab→QQ̄[n] are perturbatively calculable coefficient

functions for producing the heavy QQ̄[n] states. The state of the heavy quark pair, [n], is

characterized by the pair’s rotational, 2s+1LJ , and color quantum numbers. The coefficient

function for producing each QQ̄[n] state is perturbatively calculable in a power series of the

strong coupling constant, αs. The matrix elements of 〈OH(n)〉 in Eq. (7.35) describe the non-

perturbative hadronization dynamics and give the probability for the pair to become a physical

heavy quarkonium H [92, 104]. The matrix elements should be universal. That is necessary

for the predictive power of the NRQCD formalism. The expansion in Eq. (7.35) is organized

according to the effective power of the heavy quark pair’s relative velocity. Although it still

lacks a fully compelling proof for the NRQCD factorization formula in Eq. (7.35) [104], the

formalism for heavy quarkonium production has had many successes, in particular, its success

in interpreting the CDF data on J/ψ and ψ′ production as a function of transverse momentum

[113, 105].
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In NRQCD model of heavy quarkonium production, the transition probability from a heavy

quark pair to a bound quarkonium is sensitive to the pair’s rotational and color quantum num-

bers. Partonic multiple scattering has a potential to change not only the heavy quark pair’s

momentum, but also the pair’s color and other quantum numbers. Therefore, the transverse

momentum broadening calculated in NRQCD model is not necessary the same as that cal-

culated in CEM in last subsection. If the difference is significant, a precise measurement of

transverse momentum broadening could shed some lights on heavy quarkonium’s production

mechanism.

We assume that the q2T -moment of heavy quarkonium production,
∫
dq2T (q2T )ndσNRQCD

hA→H /dq2T

with n ≥ 0, can be factorized in the same way as the 0th-moment given in Eq. (7.35). We

calculate the leading double scattering contribution to the broadening of the first moment.

Like the calculation done in CEM in last subsection, the partonic double scattering diagrams

are given in Figs. 7.4 and 7.5. Similar to Eq. (7.18), we obtain

∫
dq2T q

2
T

dσDhA→H

dq2T
=

∑

q

∫
dx′fq̄/h(x

′)

∫
dx dx1 dx2

×
[
T

(I)
Fq (x, x1, x2, p)H

(I)
qq̄→H(x, x1, x2, p, q, x

′p′)

+T
(F )
Fq (x, x1, x2, p)H

(F )
qq̄→H(x, x1, x2, p, q, x

′p′)
]

+

∫
dx′fg/h(x

′)

∫
dx dx1 dx2

×
[
T

(I)
FF (x, x1, x2, p)H

(I)
gg→H(x, x1, x2, p, q, x

′p′)

+T
(F )
FF (x, x1, x2, p)H

(F )
gg→H(x, x1, x2, p, q, x

′p′)
]
, (7.36)

with the partonic cross sections defined as

H
(I,F )
qq̄→H(x, x1, x2, p, q, x

′p′) =
∑

n

H
(I,F )
qq̄ (n) 〈OH(n)〉 ,

H
(I,F )
gg→H(x, x1, x2, p, q, x

′p′) =
∑

n

H(I,F )
gg (n) 〈OH(n)〉 , (7.37)

where
∑

n sums over all possible QQ̄ states, n, with appropriate spin and color quantum

numbers [106], and H
(I,F )
qq̄ (n) and H

(I,F )
gg (n), whose dependence on parton momentum fractions
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and kinematic variables are suppressed, represent partonic hard parts for producing a heavy

quark pair at a quantum state n from quark-antiquark annihilation subprocess and gluon-gluon

fusion subprocess, respectively.

The partonic parts for the quark-antiquark annihilation subprocess,H
(I,F )
qq̄ (n) in Eq. (7.37),

are derived from diagrams in Fig. 7.4. The single diagram in Fig. 7.4(a) contributes to H
(I)
qq̄ (n).

Under the leading pole approximation, the initial-state rescattering does not change the nature

of the s-channel qq̄ → QQ̄ subprocess, which produces a heavy QQ̄ pair in a color octet and

spin-1 state: n = 3S
(8)
1 . The corresponding hard part is given by

H
(I)
qq̄ (3S

(8)
1 ) =

8π2αs
N2
c − 1

CF

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
H

(0)
qq̄ (3S

(8)
1 ) , (7.38)

where H
(0)
qq̄ (3S

(8)
1 ) is the lowest order short-distance coefficient for qq̄ → QQ̄(3S

(8)
1 ) subprocess

and is given by

H
(0)
qq̄ (3S

(8)
1 ) =

π3α2
s

M3

16

27
δ(ŝ −M2) , (7.39)

with the mass of a quarkonium: M = 2mQ. The final-state rescattering effect to the qq̄

annihilation subprocess comes from the four diagrams in Figs. 7.4(b), (c), (d), and (e). The

additional gluon rescattering in the final-state allows more quantum states for the produced

QQ̄ pair. At this order, we have the following nonvanishing states: n = 3S
(8)
1 , 3P

(1,8)
J=1,2, and

corresponding hard parts,

H
(F )
qq̄ (3S

(8)
1 ) =

8π2αs
N2
c − 1

CA

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

]
H

(0)
qq̄ (3S

(8)
1 ) ,

H
(F )
qq̄ (3P

(1,8)
J=1,2) =

8π2αs
N2
c − 1

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

]
H

(1)
qq̄ (3P

(1,8)
J=1,2) , (7.40)
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where H
(0)
qq̄ (3S

(8)
1 ) is given in Eq. (7.39) and the leading order P -wave contribution is given by

H
(1)
qq̄ (3P

(8)
1 ) =

5

3
H

(1)
qq̄ (3P

(8)
2 ) =

π3α2
s

M3

40

27

1

3m2
Q

δ(ŝ −M2) ,

H
(1)
qq̄ (3P

(1)
1 ) =

5

3
H

(1)
qq̄ (3P

(1)
2 ) =

π3α2
s

M3

64

81

1

3m2
Q

δ(ŝ −M2) . (7.41)

The nonvanishing contribution to the 3P
(1,8)
J=1,2 states is a consequence of the gluon rescattering,

which effectively provides a gg → QQ̄ subprocess.

Similarly, partonic parts for the gluon-gluon fusion subprocess, H
(I,F )
gg (n) in Eq. (7.37),

are derived from diagrams in Fig. 7.5. Unlike the quark-antiquark annihilation subprocess,

the heavy quark pair produced in gluon-gluon subprocess can have more than one quantum

state. For the initial-state rescattering diagram in Fig. 7.5(a), the heavy quark pair with

n = 1S
(1,8)
0 , 3P

(1,8)
J=0,2 can all give nonvanishing contribution to H

(I)
gg (n). The four final-state

rescattering diagrams in Figs. 7.5(b), (c), (d), and (e) can produce heavy quark pairs with

n = 1S
(8)
0 and 3P

(8)
J=0,2. We obtain the hard parts from gluon-gluon fusion diagrams in Fig. 7.5

as

H(I)
gg (1S

(1,8)
0 , 3P

(1,8)
J=0,2) =

8π2αs
N2
c − 1

CA

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]

×H(0)
gg (1S

(1,8)
0 , 3P

(1,8)
J=0,2) , (7.42)

H(F )
gg (1S

(8)
0 , 3P

(1,8)
J=0,2) =

8π2αs
N2
c − 1

CA

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

]

×H(0)
gg (1S

(8)
0 , 3P

(8)
J=0,2) , (7.43)

where H
(0)
gg (1S

(1,8)
0 , 3P

(1,8)
J=0,2) are the lowest order cross sections without the rescattering,

H(0)
gg (1S

(1,8)
0 ) =

π3α2
s

M3
Bnδ(ŝ −M2) ,

H(0)
gg (3P

(1,8)
0 ) =

π3α2
s

M3
Bn

3

m2
Q

δ(ŝ −M2) ,

H(0)
gg (3P

(1,8)
2 ) =

π3α2
s

M3
Bn

4

5m2
Q

δ(ŝ −M2) , (7.44)

with a color factor Bn = 2/9 for a color-singlet state and 5/12 for a color-octet state, respec-
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tively.

Having obtained the short-distance hard parts, we can derive the leading double scatter-

ing contribution to the q2T -moment of heavy quarkonium production in Eq. (7.36). We limit

ourselves to the direct production of spin-1, S-wave heavy quarkonia, such as J/ψ, Υ and etc.

After neglecting the color singlet QQ̄ states not equal to 3S1, we are left with the following

QQ̄ states, which contribute to the direct production of a H(3S1) heavy quarkonium,

qq̄ → QQ̄(3S
(8)
1 , 3P

(8)
J=1,2) → H(3S1) ,

gg → QQ̄(1S
(8)
0 , 3P

(8)
J=0,2) → H(3S1) . (7.45)

From Eq. (7.37), we obtain by summing over all QQ̄ states in Eq. (7.45),

H
(I)
qq̄→H =

8π2αs
N2
c − 1

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
CF H

(0)
qq̄ (3S

(8)
1 )〈OH(3S

(8)
1 )〉

=
8π2αs
N2
c − 1

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
CF σ̂

(0)
qq̄ , (7.46)

where the lowest order quark-antiquark annihilation cross section is defined as

σ̂
(0)
qq̄ ≡ H

(0)
qq̄ (3S

(8)
1 ) 〈OH(3S

(8)
1 )〉 =

π3α2
s

M3

16

27
δ(ŝ −M2) 〈OH(3S

(8)
1 )〉 (7.47)

with the nonperturbative NRQCD matrix element, 〈OH(3S
(8)
1 )〉, for aQQ̄[3S

(8)
1 ] pair to become

a heavy quarkonium H. Similarly, we have the final-state rescattering contribution,

H
(F )
qq̄→H =

8π2αs
N2
c − 1

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

](
CAH

(0)
qq̄ (3S

(8)
1 )〈OH(3S

(8)
1 )〉

+H
(1)
qq̄ (3P

(8)
1 )〈OH(3P

(8)
1 )〉 +H

(1)
qq̄ (3P

(8)
2 )〈OH(3P

(8)
2 )〉

)

=
8π2αs
N2
c − 1

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

](
CA σ̂

(0)
qq̄ + σ̂

(1)
qq̄

)
, (7.48)
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where we defined the P -wave contribution as

σ̂
(1)
qq̄ ≡ H

(1)
qq̄ (3P

(8)
1 )〈OH(3P

(8)
1 )〉 +H

(1)
qq̄ (3P

(8)
2 )〈OH(3P

(8)
2 )〉

=
π3α2

s

M3

80

27
δ(ŝ −M2) 〈OH(3P

(8)
0 )〉 . (7.49)

In deriving the last equation, we used the heavy quark spin symmetry [106],

〈OH(3P
(8)
J )〉 = (2J + 1)〈OH(3P

(8)
0 )〉 . (7.50)

From Eqs. (7.42) and (7.43), after we neglect the color singlet channels that have wrong

spin and angular momentum quantum numbers, the gluonic contribution from the initial-state

and final-state rescattering to the direct production of H(3S1) are effectively the same except

the sign of the iǫ for the unpinched poles,

H
(I)
gg→H =

8π2αs
N2
c − 1

[
1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]
CA σ̂

(0)
gg ,

H
(F )
gg→H =

8π2αs
N2
c − 1

[
1

2π

1

x1 − x+ iǫ

1

x2 − x− iǫ

]
CA σ̂

(0)
gg , (7.51)

where the gluon-gluon fusion cross section is defined as

σ̂(0)
gg ≡ π3α2

s

M3

5

12
δ(ŝ −M2)

[
〈OH(1S

(8)
0 )〉 +

7

m2
Q

〈OH(3P
(8)
0 )〉

]
. (7.52)

In deriving Eq. (7.51), the heavy quark spin symmetry in Eq. (7.50) was used again.

Substituting the partonic cross sections in Eqs. (7.46), (7.48), and (7.51) into Eq. (7.36),

and integrating over gluon momentum fractions, x1 and x2, we obtain the double scattering
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contribution to the q2T -moment of heavy quarkonium production in NRQCD model as,

∫
dq2T q

2
T

dσDhA→H

dq2T

=

[
8π2αs
N2
c − 1

](∑

q

∫
dx′fq̄/h(x

′)

∫
dx
[
T

(I)
q/A(x)CF σ̂

(0)
qq̄ + T

(F )
q/A(x)

(
CA σ̂

(0)
qq̄ + σ̂

(1)
qq̄

)]

+

∫
dx′fg/h(x

′)

∫
dx
[
T

(I)
g/A(x)CA σ̂

(0)
gg + T

(F )
g/A(x)CA σ̂

(0)
gg

])
, (7.53)

which has a very similar expression as that in Eq. (7.26) derived in CEM in last subsection.

If we use the same model for the quark-gluon and gluon-gluon correlation functions as that

used in CEM calculation in last subsection, we obtain the heavy quarkonium broadening in

NRQCD model as

∆〈q2T 〉NRQCD
HQ =

(
8π2αs
N2
c − 1

λ2A1/3

)
(CF + CA)σ

(0)
qq̄ + 2CA σ

(0)
gg + σ

(1)
qq̄

σ
(0)
qq̄ + σ

(0)
gg

, (7.54)

where the leading order cross sections calculated in NRQCD model are given by

σ
(0,1)
qq̄ =

∑

q

∫
dx′ fq̄/h(x

′)

∫
dx fq/A(x) σ̂

(0,1)
qq̄ ,

σ(0)
gg =

∫
dx′ fg/h(x

′)

∫
dx fg/A(x) σ̂(0)

gg , (7.55)

with the partonic cross sections given in Eqs. (7.47), (7.49), and (7.52), respectively.

From the transverse momentum broadening in Eq. (7.31) calculated in CEM in last sub-

section and that in Eq. (7.54) calculated in NRQCD model, it is clear that the leading double

scattering contribution to the broadening calculated in these two models have the same ex-

pression if one neglects the P -wave contribution in NRQCD approach. Since the P -wave

contribution is smaller than the S-wave contribution, and the gluon-gluon fusion subprocess

dominates the heavy quarkonium cross section, we expect that ∆〈q2T 〉
NRQCD
HQ ≈ ∆〈q2T 〉CEM

HQ ≈

(2CA/CF )∆〈q2T 〉DY.

In both CEM and NRQCD approach to the production of quarkonia, H(3S1), we can also

calculate the broadening effect on those quarkonia that were produced from the decay of either
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excited or high spin states of produced quarkonia, known as the feeddown mechanism of the

quarkonium production. Since the q2T -moment is normalized by the cross section (the 0th-

moment), and the rescattering takes place at the parton-level, we expect that the feed-down

mechanism is not very sensitive to the quarkonium broadening while it is much more sensitive

to the quarkonium production rate. We will come back to the role of the feeddown mechanism

in quarkonium broadening in Sec. 7.5 when we present our numerical results.

7.3.3 Transverse momentum broadening in nucleus-nucleus collisions

In this subsection, we extend our calculations of heavy quarkonium’s transverse momen-

tum broadening in hadron-nucleus collisions to the broadening in nucleus-nucleus collisions.

We discuss the similarities and differences between the hadron-nucleus and nucleus-nucleus

collisions, and the role of transverse momentum broadening in probing the properties of the

dense and hot QCD matter created in high energy nucleus-nucleus collisions.

(a)

h

H

A A B

H

(b)

Figure 7.6 Sketch of heavy quarkonium production in hadron-nucleus col-

lisions as viewed in the target rest frame (a), and that in nucle-

us-nucleus collisions as viewed in the center-of-mass frame (b).

The thin and thick lines indicate the incoming parton and the

outgoing heavy quark pair, respectively. The cross indicates

potential rescattering point with soft partons of the nuclear

medium.

The broadening of heavy quarkonium’s transverse momentum is a consequence of both

initial-state and final-state rescattering in nuclear medium. In high energy hadron-nucleus

collisions, both initial-state and final-state rescattering probe the same properties of a normal

nuclear matter. If the scattering process is viewed in the rest frame of the nucleus, as sketched
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in Fig. 7.6(a), the incoming active parton and the produced heavy quark pair move very fast

along the direction of the incoming hadron and interact with only partons of the nucleus near

the same impact parameter. This picture supports our approximation that the correlation

functions for final-state interaction are about the same as that for initial-state interaction. If

the same process is viewed in the center of mass frame, we get the same conclusion that only

nuclear partons near the same impact parameter can participate in the rescattering because

the nuclear matter is moving very fast in this frame.

However, in high energy nucleus-nucleus collisions, the situation can be very different. If,

other than the hard parton-parton scattering to produce the heavy quark pair and correspond-

ing rescattering discussed above, other partons from two colliding nuclei did not interact in

the collision, the transverse momentum broadening of heavy quarkonium production would

be a simple superposition of the broadening in hadron-nucleus collision. In this picture, the

leading contribution to the broadening in a collision between a nucleus A and a nucleus B

would be given by the same expression in Eq. (7.34) with the A1/3 replaced by A1/3 + B1/3

or more precisely by LAB/r0, where r0 ≈ 0.8 fm and LAB is an effective medium length in

nucleus-nucleus collision calculated in the Glauber model [107]. The value of r0 is obtained by

letting LpA ≈ r0A
1/3 ≈ (3/4)RA with the nuclear radius RA.

But, as indicated by the RHIC data [95], soft partons from two nuclei do interact to form

a dense and hot QCD quark-gluon medium in high energy nucleus-nucleus collisions. The

final-state rescattering between the produced heavy quark pair of transverse momentum qT

and the almost stationary or slowly expanding hot QCD medium in the center of mass frame

of nucleus-nucleus collision, as sketched in Fig. 7.6(b), is very unlikely to broaden the pair’s

transverse momentum. Instead, the final-state interaction could suppress the production rate

of the leading (or large momentum) colored and coherent heavy quark pair due to the energy

loss [108], which is responsible for the observed jet quenching (or the suppression of leading

hadrons or heavy quarks) at RHIC [95], and decrease the averaged transverse momentum 〈q2T 〉.

On the other hand, the initial-state interaction in nucleus-nucleus collisions is likely to broaden

the transverse momentum of the active parton in the same way as that in hadron-nucleus
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collisions. Therefore, the measured 〈q2T 〉 in nucleus-nucleus collision is a consequence of two

competing effects: the initial-state interaction tries to broaden the transverse momentum while

the final-state rescattering in a slowly expanding medium tends to reduce the pair’s transverse

momentum. The detailed analysis and calculation of the competing final-state effects on the

quarkonium broadening in nucleus-nucleus collisions requires a careful modeling of the hot and

dense medium, and we will not discuss in this work.

Precise measurements of transverse momentum broadening of heavy quarkonium produc-

tion in relativistic heavy ion collisions should provide very valuable information on the forma-

tion of the dense and hot quark-gluon medium and its properties. In nucleus-nucleus collisions,

a deviation of the transverse momentum broadening from the simple superposition of that mea-

sured in hadron-nucleus collisions clearly indicates a change of nuclear matter properties from

the interaction between soft partons of colliding nuclei. It should indicate the formation of a

dense quark-gluon medium when the measured transverse momentum broadening is equal or

less than the expected broadening from the initial-state interaction alone.

If the long-range interaction of soft partons from two colliding nuclei is quick and strong,

and the dense quark-gluon medium is formed very early in relativistic heavy ion collisions, the

initial-state interaction in nucleus-nucleus collisions could be different from a superposition of

the initial-state effect in hadron-nucleus collisions due to the modification of nuclear matter. In

order to independently test the initial-state effect from the final-state rescattering, we calculate

the transverse momentum broadening of Z (as well as W ) bosons in relativistic heavy ion

collisions at the LHC in next section.

7.4 Transverse momentum broadening of Z (and W ) production at the

LHC

The lack of the final-state interaction of a Z (or a W ) boson when it is reconstructed

from its leptonic decay channels makes its transverse momentum broadening in high energy

nuclear collisions an ideal probe for the initial-state interaction, in particular, the density of

nuclear medium in the early stage of relativistic heavy ion collisions [109]. If the long-range
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soft gluon interactions between two incoming heavy ions were so strong and a dense nuclear

medium was formed before the short-distance creation of a Z (or a W ) boson, the transverse

momentum broadening would be a clean probe of the density of the dense medium. Otherwise,

the transverse momentum broadening of Z (or W ) bosons in nucleus-nucleus collisions would

be a simple superposition of that in hadron-nucleus collision. Therefore, by measuring the

broadening of Z (or W ) bosons in both hadron-nucleus and nucleus-nucleus collisions, we

could learn valuable information on whether the dense quark-gluon medium could be formed

at a very early stage in relativistic heavy ion collisions [110].

(a)

W, Z

(b)

W, Z

Figure 7.7 Leading order double scattering diagrams for production of a Z

(or a W ) boson in hadron-nucleus collisions via the initial-state

interaction (a) and the possible final-state rescattering if the

vector boson is reconstructed from its hadronic decay.

In Fig. 7.7, we sketch the leading double scattering diagrams for the Z (or W ) production

in hadron-nucleus collisions. The diagram in Fig. 7.7(a), which is almost identical to that for

the Drell-Yan transverse momentum broadening, represents the initial-state interaction, while

that in Fig. 7.7(b) represents the possible final-state rescattering if the vector boson could

be reconstructed from its hadronic decay channels. For the Z and W bosons reconstructed

from their leptonic decay channels, their transverse momentum broadening is mainly caused

by the initial-state interaction, just like the broadening of the virtual photon in the Drell-

Yan production. From the leading double scattering diagram in Fig. 7.7(a) and following the

same derivation for the Drell-Yan broadening in Sec. 7.2, we obtain the leading transverse
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momentum broadening of Z (or W ) bosons in hadron-nucleus collisions as,

∆〈q2T 〉ZhA = CF
8π2αs(MZ)

N2
c − 1

λ2
Z A

1/3 ,

∆〈q2T 〉WhA = CF
8π2αs(MW )

N2
c − 1

λ2
W A1/3 , (7.56)

where λ2
Z (λ2

W ) is the nonperturbative scale for the double scattering production of Z (or

W ) bosons. It is defined in the same was as that in Eq.(7.14) and represents a ratio of

nuclear four parton correlation function over a corresponding normal parton distribution. It is

proportional to an averaged gluon field strength square in nuclear matter, 〈F+αF+
α〉 [74]. The

λZ should be proportional to the typical transverse momentum or effective virtuality of soft

gluons participating in the double scattering. As we will discuss in next section, the value of

the λ2
Z (or λ2

W ) could depend on the momentum exchange of the hard collision, Q ∼ MZ (or

MW ), as well as the collision energy.

If we assume that the dense quark-gluon medium in relativistic heavy ion collisions is not

formed before the creation of the heavy vector boson Z (or W ), we could apply our formula

in Eq. (7.56) to the broadening in nucleus-nucleus collisions as a simple superposition of the

hadron-nucleus collision, and obtain the transverse momentum broadening in nucleus-nucleus

collision as

∆〈q2T 〉VAB ≈ CF
8π2αs(MV )

N2
c − 1

λ2
V

LAB
r0

, (7.57)

where V = Z,W for the Z and W production, respectively. If the long-range soft gluon

interactions between two colliding heavy ions are so strong that the dense quark-gluon medium

was formed before the short-distance creation of a Z (or a W ) boson, we expect the same

formula in Eq. (7.57) to be valid for the leading contribution to the transverse momentum

broadening, but, with a new λ2
V different from that of a normal nuclear matter. The value

of the effective λ2
V and its dependence on the collision geometry and collision energy should

provide valuable informations on the formation of the QCD medium and its properties.
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7.5 Numerical results

In this section, we provide a numerical comparison between our calculated heavy quarko-

nium broadening in nuclear collisions with existing data from Fermilab and RHIC experiments,

and make predictions for the transverse momentum broadening at the LHC.

We have calculated the transverse momentum broadening of vector boson production in

nuclear collisions in terms of the QCD factorization approach. We factorized the rescatter-

ing contribution to the broadening into two parts: (1) the non-perturbative, but, well-defined

universal parton-parton correlation functions, which represent the probability to find the scat-

tering centers in the nuclear medium, and (2) corresponding parton-level rescattering subpro-

cess, which are infrared safe and perturbatively calculable. As a result of the factorization,

the normalization for the transverse momentum broadening from partonic double scattering

is uniquely fixed by the size of the non-perturbative quark-gluon and gluon-gluon correla-

tion functions. If we use the model in Eqs. (7.14) and (7.30) to parameterize the correlation

functions, the numerical results of our calculated transverse momentum broadening should be

directly proportional to the value of the λ2.

The value of the λ2, or more precisely, the value of the parton-parton correlation functions

should not depend on which vector boson was produced. This is because of the universality

and the long-distance nature of the correlation functions. However, the value of the correlation

functions or the λ2 should depend on the momentum scale at which the hard part of the partonic

scattering was evaluated.

As explicitly demonstrated in last three sections, all phase space integrations for the par-

tonic rescattering can be deformed into perturbative region, and both initial- and final-state

parton-level rescattering are evaluated at a hard scale Q ∼ 2mQ or MZ (or MW ) for heavy

quarkonium or Z (or W ) production, respectively. From the model in Eq. (7.14) (or (7.30)), the

non-perturbative parameter, λ2, represents a ratio of nuclear four parton correlation function

over a normal parton distribution. As demonstrated in Ref. [74] by approximately decompos-

ing a nuclear state into a product of nucleon states, the ratio (so as the λ2) can be expressed in

terms of an averaged gluon field strength square, 〈F+αF+
α〉. In this picture, the λ represents
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the virtuality or the typical transverse momentum of the partons participating in the partonic

rescattering, and certainly depends on the momentum exchange of the hard collision, Q, as

well as the collision energy,
√
s, which determines the available phase space for the collision.

For hadron-nucleus collisions with a large momentum transfer, Q, we expect the λ2 to be pro-

portional to ln(Q2) from the parton shower leading to the hard collision. If the collision energy

√
s is very large and the momentum fraction of the active parton, x, is very small, we would

expect the λ2 to be proportional to the saturation scale Q2
s ∝ 1/xδ with δ ≈ 0.3 [111, 112]. For

the vector boson production, the typical momentum fraction of an active parton, x ∼ Q/
√
s.

Therefore, we expect λ2(Q) ∝ ln(Q2) (
√
s/Q)δ .

We use data on the Drell-Yan broadening in hadron-nucleus collisions, which were measured

by Fermilab experiments at the fixed target energy,
√
s = 38.8 GeV [90], to extract the λ2

DY.

From the value of λ2
DY, we estimate the value of λ2 for producing a vector boson of invariant

mass Q at a collision energy
√
s as follows,

λ2(Q) ≈ λ2
DY

ln(Q2)

ln(〈Q2
DY〉)

( √
s/Q

38.8/〈QDY〉

)δ
, (7.58)

with the
√
s in unit of GeV, 〈QDY〉 ∼ 6 GeV, and δ ∼ 0.3.

Fermilab experiments: E772, E789, and E866 have measured the transverse momentum

broadening of the Drell-Yan, as well as J/ψ, ψ′, and Υ production in hadron-nucleus collisions

[90, 94]. In Fig. 7.8, we plot the data on both the Drell-Yan and heavy quarkonium broadening

as a function of atomic weight of nuclear targets. The broadening for the data was defined as a

difference between the q2T -moment in proton-nucleus and proton-deuteron collisions: ∆〈q2T 〉 =

〈q2T 〉pA−〈q2T 〉pD. By fitting the data on the Drell-Yan broadening as a function of A1/3 − 21/3,

we obtain λ2
DY ≈ 0.01 GeV2, which gives the bottom solid line for the Drell-Yan broadening

in Fig. 7.8, and is consistent with the value extracted in Ref. [89].

In Fig. 7.8(a), we plot our theoretical calculations of transverse momentum broadening of

direct heavy quarkonium production in hadron-nucleus collisions at the Fermilab fixed target

energy,
√
s = 38.8 GeV. To obtain the numerical results of theoretical calculations, we use

CTEQ6L for nucleon parton distribution functions [13] and EKS98 parametrization for nuclear
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Figure 7.8 Data on transverse momentum broadening of heavy quarko-

nium as well as Drell-Yan production in hadron-nucleus colli-

sions. Also plotted are theoretical calculations using Eq. (7.31)

(solid lines) and Eq. (7.54) (dashed lines), derived by using

CEM and NRQCD model, respectively. Three solid lines (from

the top to bottom) correspond to J/ψ, Υ, and Drell-Yan, while

three dashed lines represent ψ′, J/ψ, and Υ production from

NRQCD model. The quarkonium broadening calculated in

NRQCD model is evaluated with (a) and without (b) quarkonia

from the feeddown mechanism.

parton distributions (nPDF) [78] to evaluate the leading order production cross sections in

Eqs. (7.31) and (7.54). The non-perturbative parameter, λ2, in Eqs. (7.31) and (7.54) could

be slightly different for J/ψ and Υ production due to the difference in the scale of hard

collision, Q ∼ 2mQ. Using λ2
DY ≈ 0.01 GeV2, MJ/ψ = 3.1 GeV, MΥ = 9.5 GeV, we estimate

from Eq. (7.58) that λ2
J/ψ ≈ 0.008 GeV2 and λ2

Υ ≈ 0.011 GeV2 at
√
s = 38.8 GeV. We use

Eq. (7.54) to evaluate the broadening for ψ′, J/ψ, and Υ (the dashed lines) in NRQCD model.

The NRQCD matrix elements are taken from Refs. [113, 114]. The small difference between the

broadening of J/ψ and Υ is caused by the relative size between the quark and gluon contribution

due to different sizes of matrix elements and the range of parton momentum fractions. For the

direct production, J/ψ and ψ′ have almost the identical broadening as shown in Fig. 7.8(a).
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Similarly, we use Eq. (7.31) to evaluate the broadening for J/ψ (top solid line) and Υ (middle

solid line) in CEM with mQ = 1.5 GeV and MQ = 1.85 GeV for J/ψ and mQ = 4.5 GeV and

MQ = 5.3 GeV for Υ production, respectively. The transition probability, FQQ̄→H , cancels

between the numerator and the denominator in Eq. (7.31). The small difference between these

two solid lines are again caused by the relative size of the quark and gluon contribution due

to the slightly different ranges of parton momentum fractions for J/ψ and Υ production.

We also test the effect of transverse momentum broadening on heavy quarkonia produced

by the feeddown mechanism. Using the partonic hard parts derived in Sec. 7.3.2, we calculate

in NRQCD model the transverse momentum broadening of quarkonia in high spin or excited

states, which then decay into the observed spin-1 and S-wave quarkonia, H(3S1). We plot the

calculated broadening with this feeddown mechanism in Fig. 7.8(b). Although the feeddown

mechanism could provide as much as 40% of J/ψ production rate, its net effect on the trans-

verse momentum broadening is very small because of the fact that the broadening defined is

normalized by the inclusive cross section.

For a large nucleus with the atomic weight A ≥ 102, some of the produced heavy quark pairs

could transmute to a color singlet pre-quarkonium state (or even a physical quarkonium) before

exiting the nuclear matter. Comparing to a colored heavy quark pair, these color singlet states

should have a weaker interaction with the nuclear matter and get less broadening in transverse

momentum. Therefore, we expect the theoretical curves in Fig. 7.8 to be slightly less steep

than what were shown when A ≥ 102.

From Fig. 7.8, we conclude that perturbative QCD calculations of the quarkonium broad-

ening based on both CEM and NRQCD model give a good description of existing experimental

data in hadron-nucleus collisions. The major difference between the heavy quarkonium and the

Drell-Yan broadening is naturally explained by the role of final-state interactions. Although

the production mechanism in CEM and NRQCD model is different, these two models of heavy

quarkonium production predict almost the same functional form for the transverse momentum

broadening, as shown in Eq. (7.31) and Eq. (7.54), respectively. Since the P -wave contribution

is relatively small, as shown in Fig. 7.8, these two models predict almost the same transverse
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momentum broadening. In addition, both models predict that J/ψ and Υ have effectively

the same broadening in hadron-nucleus collisions other than a small difference caused by the

available phase space (i.e., the available range of parton momentum fractions).
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Figure 7.9 RHIC data on averaged transverse momentum square of J/ψ

production as a function of the number of participants [115].

The top panel is for the J/ψ’s produced in the central rapidity

region while the bottom panel is for those produced in more

forward or backward region. Also plotted are theoretical cal-

culations using Eq. (7.59). Solid lines for Au-Au collisions and

dashed lines for Cu-Cu collisions, respectively.

In Fig. 7.9, we plot PHENIX data on averaged transverse momentum square of J/ψ pro-

duction at RHIC energies as a function of the number of participants, Npart [115]. The top

panel is for the J/ψ produced in the central rapidity region with |y| < 0.35, and the bottom is

for those produced in the forward and backward region with 1.2 < |y| < 2.2. We also plot our

theoretical calculations of the transverse momentum square by using

〈q2T 〉AB ≈ 〈q2T 〉|pp−exp + ∆〈q2T 〉AB , (7.59)
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where 〈q2T 〉|pp−exp is fixed by the data point from proton-proton collision in Fig. 7.9 and

∆〈q2T 〉AB is given by our calculation. We evaluate ∆〈q2T 〉AB in nucleus-nucleus collisions with

an effective medium length LAB as

∆〈q2T 〉CEM
AB→J/ψ =

(
8π2αs
N2
c − 1

λJ/ψ(RHIC)2
LAB
r0

)
(CF + CA)σqq̄ + 2CA σgg

σqq̄ + σgg
(7.60)

in CEM. Eq. (7.60) is obtained from Eq. (7.31) by replacing the A1/3 by LAB/r0. We can

calculate the broadening in NRQCD model by applying the same replacement to Eq. (7.54).

At the RHIC energy, we obtain λJ/ψ(RHIC)2 ≈ 0.013 GeV2 from Eq. (7.58). We calculate the

LAB in Glauber model and convert it to Npart [107].

In nucleus-nucleus collisions, soft gluons from the colliding ions can interact even if the

collision is not a head-on or a central collision. Such interaction in a non-central collision may

not be strong enough to stop all soft partons to form an almost stationary or slowly expanding

hot medium of quarks and gluons. It certainly can slow down some of the colliding soft partons

to change the characteristics of the nuclear matter, which could alter the final-state interactions.

As a result, the final-state interaction between the produced heavy quark pairs and the modified

nuclear matter in nucleus-nucleus collisions, as sketched in Fig. 7.6(b), generates less transverse

momentum broadening if it does not reduce the transverse momentum due to energy loss. In

Fig. 7.9, we plot our calculations of J/ψ transverse momentum broadening by using Eqs. (7.59)

and (7.60), and keeping only the contribution from initial-state rescattering. The solid lines

are for the Au-Au collision, while the dashed lines are for the Cu-Cu collision. Our calculations

are consistent with the data in both rapidity regions.

In the central Au-Au collision, a hot and dense medium is produced. As discussed above,

the averaged transverse momentum could be reduced, instead of the broadening, due to the

energy loss of the produced heavy quark pairs when they interact with the hot and slowly

expanding medium. A more detailed study of the momentum shift of the heavy quark pairs

in such a hot medium could provide a more accurate description of the data in central region,

and help the extraction of medium properties.

Transverse momentum broadening of Z (or W ) bosons in high energy nuclear collisions
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could provide a clean measurement of initial-state interactions, and help isolating final-state

rescattering effect in heavy quarkonium production. However, because of the heavy mass of Z

(or W ) boson, only the LHC has a chance to measure the broadening reliably [110].

We use Eq. (7.58) to estimate the λ2 for the heavy vector boson production at
√
s = 5.5 TeV,

the averaged nucleon-nucleon collision energy in relativistic heavy ion collisions at the LHC.

We obtain λ2(LHC) ≈ 0.035, 0.05 and 0.05 GeV2 for the production of J/ψ, Υ, and the heavy

vector boson Z (or W ), respectively. Although the Υ mass is much smaller than that of

a Z boson, the Υ and Z have the same λ2(LHC) for the transverse momentum broadening

due to the larger available phase space for Υ production [117]. In Fig. 7.10, we present our

predictions for the transverse momentum broadening of vector boson production at the LHC.

Using the estimated λ2
Z/W (LHC) ≈ 0.05 GeV2 and Eq. (7.56), we evaluate the transverse

momentum broadening of Z (and W ) bosons reconstructed from their leptonic decays, and

plot the predictions for hadron-nucleus collisions as a function of atomic weight of the nucleus,

A, in Fig. 7.10(a). We also plot the expected transverse momentum broadening of J/ψ and

Υ production in hadron-nucleus collisions in Fig. 7.10(a). The curves for heavy quarkonium

broadening are evaluated by using λ2
J/ψ(LHC) ≈ 0.035 GeV2 and λ2

Υ(LHC) ≈ 0.05 GeV2,

and Eq. (7.31) from CEM without contributions from the feeddown mechanism. Eq. (7.54)

derived from NRQCD model gives the similar results. The heavy quarkonium broadening in

Fig. 7.10(a) is much larger than that of Z (or W ) bosons because of the additional final-state

effect, and the difference in color factor and the strength of the strong coupling constant,

αs(Q).

In Fig. 7.10(b), we plot the expected transverse momentum broadening of vector boson

production in Pb-Pb collision at
√
s = 5.5 TeV at the LHC as a function of the number of

participants, Npart [107]. We calculate the LAB in Glauber model with inelastic nucleon-nucleon

cross section σinNN = 70mb at the LHC energy and convert it to Npart in Pb-Pb collisions [107].

For the Z (and W ) broadening, we use λZ/W (LHC)2 ≈ 0.05 GeV2, the same value used for

the broadening in hadron-nucleus collisions in Fig. 7.10(a). Since the transverse momentum

broadening is directly proportional to the λ2, which is proportional to the gluon strength in
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Figure 7.10 Transverse momentum broadening of Z and W (lower set of

curves) in hadron-nucleus collisions (a) and nucleus-nucleus

collisions (b) at
√
s = 5.5 TeV as a function of atomic weight

of nuclear beam and the number of participants, Npart, respec-

tively. Also plotted are predictions (upper set of curves) for the

transverse momentum broadening of heavy quarkonium pro-

duction in hadron-nucleus collision at the LHC energy (a); and

the initial-state only broadening in nucleus-nucleus collision at

the same energy (b).

the medium, a deviation from the predicted curves in Fig. 7.10(b) signals the formation of the

hot quark-gluon medium before the creation of the heavy Z (or W ) bosons.

For J/ψ and Υ production in Fig. 7.10(b), we use λ2
J/ψ(LHC) ≈ 0.035 GeV2 and λ2

Υ(LHC) ≈

0.05 GeV2, and Eq. (7.31) from CEM to evaluate the quarkonium broadening. Eq. (7.54) from

NRQCD model gives similar predictions. The plotted curves for J/ψ and Υ production in

Fig. 7.10(b) include only initial-state interaction. As discussed in Sec. 7.3.3, the final-state

rescattering in nucleus-nucleus collisions is more likely to reduce the transverse momentum

broadening due to the energy loss, if a slowly expanding medium was produced. Therefore,

we expect the curves in Fig. 7.10(b) to represent the maximum broadening of J/ψ and Υ that

will be seen in relativistic heavy ion collisions at the LHC [110].

If we could reconstruct Z and W bosons from their hadronic decay (e.g., into two jets),

which might be impossible to do in the LHC environment, the hadronic jets from Z and W

decay will have to interact with the nuclear medium. The final-state multiple scattering could

generate momentum imbalance between these two jets and effectively introduce an apparent
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mass shift for the Z and W boson [47]. Such mass shift would provide additional information

on the properties of the hot quark-gluon medium.
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CHAPTER 8. SUMMARY AND OUTLOOK

Perturbative QCD has made up the most amazing story of Quantum Chromodynamics be-

cause of the asymptotic freedom and factorization theorems. With factorization theorems, the

physical observables in high energy scattering processes can be factorized into short-distance

hard parts convoluted with universal long-distance parton distribution functions (PDFs) at

leading power. The factorization assures that both the short distance hard parts and the PDFs

could be interpreted as probabilities evaluated at two very different momentum scales. All

quantum correlations between physics at these two different scales are proved to be suppressed

by the power of the ratio of these two momentum scales. The short-distance hard parts are

often referred as the partonic cross sections with all collinear divergences removed. With the

asymptotic freedom, we are able to calculate the short-distance hard parts in terms of a power

series expansion in the QCD coupling αs. The universal PDFs are interpreted as probability

densities to find a parton of various flavors inside a hadron with a given momentum frac-

tion. Once the process independent PDFs are extracted from some experiments, they can be

used to make predictions for observables in other experiments. This so-called leading power

(twist) QCD factorization formalism has been very successful in interpreting and predicting

high energy scattering processes.

In this thesis, we investigated QCD dynamics and hadron structure beyond what have

been learned from this probability picture. Using the generalized factorization theorems, by

taking advantage of spin and nuclear dependence, we were able to explore the three-parton

and four-parton quantum correlations inside a hadron.

We have shown that the single transverse spin asymmetries (SSAs) are sensitive to three-

parton correlation functions inside a polarized hadron. We constructed two sets of twist-
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3 three-parton correlation functions relevant to the SSAs. The quark-gluon and tri-gluon

correlation functions represent the role that quark and gluon have played in generating the

SSAs, respectively. Since gluon is an essential component of QCD dynamics and has played a

dominant role in many high energy hadronic scattering processes, we investigated the potential

role of gluons in generating the SSAs in both lepton-hadron and hadron-hadron collisions.

We derived for the first time the leading order (LO) formalism for the SSAs of open charm

meson production in both SIDIS and hadronic collisions. We found that the SSAs are likely

dominated by the contribution of the tri-gluon correlation functions, thus the observation of

any significant single-spin asymmetry in these processes would be a clear indication of the

presence of tri-gluon correlations inside a polarized hadron. We also found that the two tri-

gluon correlation functions could play very different role in generating the SSAs for production

of D and D̄ mesons. These features make the SSAs in open charm production excellent probes

of tri-gluon correlation functions.

We could easily generalize the current formalism to study the contribution of tri-gluon

correlation functions in other processes, such as single jet production p↑p → jet + X, single

inclusive pion production p↑p→ π+X, prompt photon production p↑p→ γ+X, J/ψ produc-

tion p↑p → J/ψ +X, and Drell-Yan production p↑p → [γ∗ → ℓ+ℓ−] +X. Once we derive the

formalisms for all these processes, we could try to extract the first information on the tri-gluon

correlation functions through a global QCD fitting procedure. These studies are under way

and will be available in the near future.

Although the twist-3 collinear factorization approach to the SSAs at the leading power in

αs has had some successes phenomenologically, there are still many challenges. One of the

challenges is the strong dependence on the choice of the renormalization scale µ as well as

the factorization scale µF , while the physically observed SSAs are independent of any of these

scales. The strong dependence on the choice of renormalization and factorization scale is an

artifact of the lowest order perturbative calculation. A significant cancellation of the scale

dependence between the leading and the next-to-leading order (NLO) contribution is expected

from the QCD factorization theorem and has been proved to be true for many processes at
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the leading power (or leading twist). In order to really test QCD dynamics for SSAs, it is

necessary to calculate the evolution (or the scale dependence) of the universal long-distance

distributions and to evaluate the perturbative short-distance contribution beyond the lowest

order in αs.

We introduced the Feynman diagram representation for the twist-3 quark-gluon and tri-

gluon correlation functions relevant to SSAs in QCD collinear factorization approach. We

derived the cut vertices to connect the hadronic matrix elements of these correlation functions

to the forward scattering Feynman diagrams. In terms of the Feynman diagram representa-

tion, we derived for the first time a closed set of evolution equations for these quark-gluon

and tri-gluon correlation functions. We calculated evolution kernels relevant to the gluonic

pole contribution to the SSAs at the order of αs. We found that all evolution kernels are

infrared safe and have a lot in common to the DGLAP evolution kernels of unpolarized parton

distributions (not the polarized helicity distributions). Having derived evolution equations for

these correlation functions, we will be able to systematically compute NLO corrections to the

SSAs, which represents a necessary step moving toward the goal of global analysis of QCD

dynamics beyond what have been explored by the very successful leading power QCD collinear

factorization formalism.

We further extended our current study on the SSAs to the two-scale observables. Using

the TMD approach, we studied the SSAs of W production in terms of the Sivers functions and

found that the measurable lepton asymmetry from W decay at RHIC is an excellent observable

for testing the time-reversal modified universality of the Sivers functions.

We also explored the opportunities to study the four-parton correlation functions by tak-

ing the advantage of nuclear dependence in high energy nuclear collisions. We found that the

nuclear-size dependent effect are sensitive to the four-parton correlation functions in nuclei.

We investigated the transverse momentum broadening of vector boson production in hadron-

nucleus and nucleus-nucleus collisions in terms of parton-level multiple scattering. We factor-

ized the contribution to transverse momentum broadening into the calculable short-distance

partonic rescattering multiplied by universal parton-parton correlation functions, which could
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be interpreted as the probabilities to find coherent rescattering centers in a nuclear medium.

We derived the short-distance hard parts by evaluating the partonic rescattering diagrams at

a perturbative hard scale Q which is of the order of vector boson mass. We verified the univer-

sality of the non-perturbative parton-parton correlation functions by fitting the data on both

the Drell-Yan broadening and the broadening of J/ψ and Υ production, and demonstrated

clearly the predictive power of the QCD factorization approach.

For the Drell-Yan virtual photon and Z (or W ) boson production, we evaluated transverse

momentum broadening from purely initial-state multiple scattering. We discussed the scale

dependence of the non-perturbative parameter, λ2, and extrapolated it from its value at the

fixed-target energy to the collider energies. We calculated the broadening of Z (and W ) bosons

in both hadron-nucleus and nucleus-nucleus collisions at the LHC. We evaluated the Z (and W )

boson broadening in nucleus-nucleus collisions as a superpostion of its broadening in hadron-

nucleus collisions, and argued that a deviation from our calculation is a clear signal indicating

that strong interactions between soft partons of colliding heavy ions took place before the short-

distance creation of the heavy vector bosons. That is, the transverse momentum broadening of

Z (or W ) bosons could be a clean and excellent probe of the early stage dynamics of relativistic

heavy ion collisions.

For J/ψ and Υ production, we demonstated that the final-state interaction between the

produced heavy quark pair and the nuclear medium is very important in understanding the

existing data. We calculated the broadening in both CEM and NRQCD model, and clearly

showed that the two models generate a small difference in the broadening and the broadening

has a weak dependence on the feeddown mechanism. That is, the transverse momentum

broadening is insensitive to the details of the hadronization mechanism and perturbatively

reliable. We found that the leading contribution to heavy quarkonium broadening in hadron-

nucleus collisions is about 2CA/CF = 4.5 times the corresponding Drell-Yan broadening, which

gives a good description of the existing Fermilab data.

We argued that the role of the final-state interaction to the transverse momentum broaden-

ing in nucleus-nucleus collisions could be very different from that in hadron-nucleus collisions.
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In hadron-nucleus collisions, both initial-state and final-state interactions involve only soft

partons of the nucleus near the same impact parameter, and therefore, provide similar contri-

butions to the transverse momentum broadening as long as the heavy quark pair stays in a

colored state. On the other hand, soft partons from two colliding nuclei could strongly interact

to produce a slowly expanding quark-gluon medium. This new medium could interact with

the produced heavy quark pair as shown in Fig. 7.6. The interaction could be very weak if the

pair is in a singlet state. On the other hand, the interaction could be very strong if the pair

is in a color octet state, but, is unlikely to increase the pair’s transverse momentum if it does

not reduce the momentum due to the pair’s medium induced energy loss.

This generalized factorization approach could also be applied to study the nuclear depen-

dence of quarkonium cross sections in high energy nuclear collisions, as well as the nuclear

dependence of the quarkonium’s rapidity and transverse momentum distributions if the trans-

verse momentum qT is large enough. Quantum suppression was proposed as one of the most

reliable signals for the formation of quark-gluon plasma in relativistic heavy ion collisions.

Since the temperature of the hot medium in heavy ion collisions is comparable with the bind-

ing energy of a physical heavy quarkonium meson, understanding the formation of a heavy

quarkonium in the medium can not only provide valuable information on the medium proper-

ties but also shed some lights on how a bound and color singlet (or confined) physical meson

was formed from a pair of colored heavy quarks produced at the very short distance. This is

another direction that my future research will be focused on.

QCD has been proven to be very successful in interpreting many complex phenomena

observed in high energy experiments, and serves the basis of predictions and tests for new

physics beyond the Standard Model. However, QCD is a very rich theory and is much more

complex than the theory of Quantum Electrodynamics, which is the fundamental quantum

theory behind all excitements of condensed matter phenomena. After more than 35 years

since it was first proposed, we have only learned a very small part of QCD dynamics. We

do not know how quarks and gluons, and their color degree of freedom were confined to form

the bound hadrons, and we have not found the robust way to derive the basic properties of
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the hadrons, such as its mass and spin, from the first principle calculation of QCD dynamics.

Our work presented in this thesis does represent an important effort to better understand the

QCD dynamics by exploring the quantum interference and quantum correlations between its

fundamental fields/particles: quarks and gluons. We derived from QCD new predictions and

proposed experimental measurements to test our predictions. With data arriving from the

current and future experiments around the world, we will be able to learn features of QCD

dynamics and its role in understanding the physics of the strong interaction.
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